BossPro: a biometrics-based obfuscation scheme
for softwar e protection

Torben Kuseler, lhsan A. Lami, Hisham Al-Assam
Applied Computing Department
University of Buckingham
Hunter Street, Buckingham, MK18 1EG, UK
(phone: 44-1280-814080; email: first.last@buckimgleec.uk)

ABSTRACT

This paper proposes to integrate biometric-basgdglemeration into an obfuscated interpretation rélgm to protect
authentication application software from illegitimause or reverse-engineering. This is especiaflgessary for
mCommerce because application programmes on mdbilees, such as Smartphones and Tablet-PCs amaltyp
open for misuse by hackers. Therefore, the scheopmoped in this paper ensures that a correct irgtion / execution
of the obfuscated program code of the authenticagjaplication requires a valid biometric generadted of the actual
person to be authenticated, in real-time. Withbig key, the real semantics of the program caneatrerstood by an
attacker even if he/she gains access to this atigit code. Furthermore, the security providedhiy scheme can be a
vital aspect in protecting any application runnimg mobile devices that are increasingly used tofop@r
business/financial or other security related aitims, but are easily lost or stolen. The schetagssby creating a
personalised copy of any application based on fbenétric key generated during an enrolment proceits the
authenticator as well as a nuance created at riee ¢f communication between the client and the enttbator. The
obfuscated code is then shipped to the client'silaalevise and integrated with real-time biome&xtracted data of the
client to form the unlocking key during executidrhe novelty of this scheme is achieved by the clmsding of this
application program to the biometric key of theenti thus making this application unusable for th&Trials and
experimental results on biometric key generati@sell on client's faces, and an implemented scheohetype, based
on the Android emulator, prove the concept and tpweé this proposed scheme.

Keywords. Biometrics, Mobile applications, Obfuscated intetption, Software protection

1. INTRODUCTION

Software anti-piracy protection techniques attetoptontain/limit the financial damage of softwatieapy or misuse of
any kind. Software misuse is rapidly increasingrgwear and it was quoted to cost the industry s8btk4 billion in
2009 [1]. One of the major concerns to softwareett®ping companies and software users in today’shimobile and
connected world is the distribution of “cracked’hdathe use of unlicensed software. On the othed hamobile
applications on Smartphones or Tablet-PCs, e.gon@Mndroid based devices, are increasingly usegetdorm
financial/business or security related transactewerywhere anytime. As these mobile devices asdydast or stolen,
the protection of data and applications on suclicgevagainst unauthorised access/use becomes &venmportant.

Biometric-based (or data regarding one's identitysomething you are) authentication, knowledgeeig®r data of
something you know, e.g. a password) authenticati@hobject-based (or data about something you, leagea token)
authentication have been used extensively in vanemote communication to validate a client to athenticator [2]. In
contrast to object-based or knowledge-based autlaion factors, in biometric-based authenticatiolegitimate client
does not have to carry or remember anything tooperthe authentication. However, biometric autreation, which is
known to be more reliable than the other traditian#hentication methods, requires only the phygicasence of the
client, which makes it a very convenient and sintplase for authentication.

Current generations of personal computers, notehddkartphones or Tablet-PCs feature a wide vaoietgnsors (e.g.
camera, microphone or multi-touch displays) that loa easily employed to capture a client's biortri

This paper proposes to use a biometric key, gesdricbm fresh and real-time captured client biorettata, in
conjunction with obfuscated interpretation to pobtthe "execution of a software application" on thient’s device.

Without presenting the correct biometric key to sigetem, the obfuscated program will not run abalvill produce an
incorrect authentication for any illegitimate clien

A prototype of BossPro is implemented on an Andmatform emulator. It is designed in such a wagt ihcan handle
both normal (unprotected) applications as well dfuscated (protected) applications at the same. tiigo, the
proposed methods can be combined seamlessly amddrfvee with other software protection techniqueg. opaque
predicates or lexical/control flow transformatioas the instruction obfuscation is employed on #mult of previous
transformation steps. Additional software protettimethods that increase the number of instructicens further
enhance the security of the obfuscated interpoetati

The rest of the paper is organised as follows:i®e&@ describes the background and outlines relatantt of software
protection techniques and biometric-based key gioer. Section 3 introduces the general concephefproposed
biometric-secured obfuscated interpretation schenetion 4 describes the implementation of theqgtype application
based on the Android emulator and discusses thkand experimental results. Finally, we conclude paper and
outline future work in Section 5.

2. BACKGROUND AND RELATED WORK
2.1 Softwar e protection techniques

Software protection can be broadly categorised thtee main groups [3]: 1) Software watermarkiny,Sbftware
tamper proofing or tamper resistance, and 3) Soéwabfuscation. Software watermarking adds visiiehidden
information to source code to prevent softwarettbefo proof the original ownership, if a misudeagiece of software
has been discovered. To generate resilient, chadpstealthy software watermarks various methodedam, for
example, opaque predicates [4], register allocaiiror self-validating branches [6] were propos&dftware tamper
proofing or more precisely tamper resistance (&syeprotection mechanism can be bypassed withcserffi knowledge,
time or resources) tries to prevent illegal modificn or distribution of software. Examples of pospd tamper
resistance techniques include self-modifying anétdserypting Integrity Verification kernels (IVK}7] or dynamic
integrity checking [8]. Software obfuscation is 8anto tamper resistance in that it also aimsnatgrt the code against
malicious modifications. However, in contrast tentger resistance, software obfuscation [9] atterptyansform a
piece of software into an equivalent program tres the same behaviour but is more difficult to regeengineer and
therefore harder to manipulate by an attacker.

Neither watermarking nor tamper resistance or aaftisn techniques alone can guarantee a fully predesoftware
[10]. But even though one technique on its own leareasily broken [11], a combination of severalhods can “raise
the bar” substantially. This makes any attempbtd §uch protection system uneconomical for thechtr.

Monden has introduced a framework for obfuscatddrpmetation [12] where a hardware implementedtdirgtate
machine (FSM) was proposed. This ASM “retranslatbg”instructions of an obfuscated program intodtiginal ones
during program execution/interpretation (Figure The main security concept of obfuscation intemien is that a
program can be considered "secure" (in terms afreevengineering) if an attacker can not underdiamdeal semantics
of the program from the available code instructiamishout having the state transition rules for thanslation (reverse
obfuscation). A major drawback of the frameworkgmsed by Monden is that the change of the tramsitites is very
difficult in the hardware based implementationlt#d #SM during development and nearly impossibleedhe hardware
unit is integrated into the end-user device. Inittmd dummy instructions must be injected into timele to guarantee
the correct interpretation by the FSM. However, dymnstructions could leak information about thalreemantics of
the program code and so make attacks possible.vEcame these problems, Zhang [13] proposed ansoafed
interpretation framework that uses a permutatiosedanterpreter (PMI) implemented in software. FiI allows in
their proposed framework an easy change of thaitran rules and does not require any additionahihy instructions.
Recently, Zeng [14] has developed a software watgtmg scheme based on obfuscated interpretation.

BossPro uses a protection scheme similar to [18]ubes biometric generated keys to (de-)obfusnatauctions during
program development and execution/interpretatidns Will tightly bind the obfuscated software tetlegitimate client
and shall remove the requirement to hide the inéep from the program user (or a possible attyckerwell as the
necessary encryption of the permutation rules destiby Zhang.

------ Instruction stream Obfuscated
scate
Proiram ..|add| sub[add|sub| Interpretation
A
...... ')
! sub
No stati sub
Input / re(l)aiignlschi _____ > add RCSUH o i
Y div 1nterpret?1t10n
(Semantics)

Figure 1. Concept of obfuscated interpretationragrally proposed in [12]

2.2 Biometric key generation methods

Biometric cryptosystems have been proposed to geostronger security mechanisms by combining binasetvith
cryptography. Biometric cryptosystems can be brpadtegorised into three main approaches: (i) lebgase, (i) key
generation, and (iii) key binding.

In the key release approach, the cryptographicakelythe biometric data of a client are stored asdeparate identities
at different hosts where the key is released omilgman authentication attempt of the client is sasful. This method is
straightforward and easy to implement but it has taajor drawbacks [15]. The first drawback is dodhe fact that
biometric templates are not secure and that theniéiric matcher" can be overridden. The second lamelvis due to
the fact that cryptographic keys are not secural®e they are not combined with biometric data wiwenpared to the
other two approaches.

In the key generation approach, a cryptographic ikedirectly derived from the biometric data withastoring it
anywhere. Typically, biometric features in this eg@axch are represented as a binary string and thestrbits are selected
as a cryptographic key. It has been shown that suethods have high False Rejection Rates (FRR)hathiem an
impractical method [16].

Finally, in key binding approaches, the biometramplate and the key are combined in a way that make
computationally infeasible to retrieve the key witih previous knowledge of client’s biometric dafae cryptographic
key is randomly generated during the enrolmentest@fen it is discarded after combining it with liemetric data. At

the authentication stage, the cryptographic keglsased only if the query biometric sample is imedic It is known that
biometric data are fuzzy due to intra-class vaniai resulting from the differences between thehfsesaptured

biometric sample and the enrolled templates. Ornother hand, cryptographic keys have to be premigkrepeatable
every time. Therefore, there is a need to emplogrerorrection techniques such as Error Correctiogles (ECC) to
bridge the gap between the fuzziness of biometritthe preciseness of cryptographic keys.

BossPro adopts the key binding approach for oulempntation based on face biometric. Note thagughout this
paper "key binding" and "key generation" are usedlarly. Figure 2 illustrates the process of bidrnekey binding.
The cryptographic key is fed into an ECC encodet tien XORed with the binary representation of @t data to
produce a biometric lock or helper data. After thiagé key is discarded and the biometric lock drahash of the key
are saved. The binary representation of the bioeata is calculated from extracted biometric diea$ where a client-
based transformation such as random projection ¢&aii]be employed to produce cancellable biomettiovied by a
biometric binarisation. At the authentication stggey retrieval stage), the binary representat®calculated using a
fresh biometric sample in the same way as descritbede and then XORed with the biometric lock. Them error
correcting technique is used in the decoding modmlerate intra-class variation. The decodinguiscessful and the
key released if the difference between the referdriometric sample(s) and the fresh biometric saniplwithin a
certain predefined threshold.

|
Feature I Feature
Extraction I Extraction
Reference v [v Sample
Enrolment User-Based) User-Based
Transformation I Transformation Key Retrieval
Stage 3 3
[Stage
Discard Binarisation Biometric Binarisation
* Lock
v
, _ECC) »| Digital AN, EcC | T
0 Encoding M U Decoding
Key Key’

Figure 2. Biometric key binding process

3. BIOMETRIC-SECURED OBFUSCATED INTERPRETATION

The two base elements of the BossPro scheme aréhélpiometric key generation and (2) a standarftivace
development cycle supplemented by an optional Epation step that defines the application elemémtise obfuscated
(Figure 3).

Application development
Define Application
Application elements P
development ¥ (classes/methods) compnlgtnon /
testing
to obfuscate
] Application
Biometri Biometri Client
iometric iometric
enrolment »{ key generation enrolment
Client, Clienty
Biometric Biometric Application Application
e ke L R distribution and
Yy keyx obfuscation > ;
database installation
Biometric Biometric
enrolment » Kkey generation
Clienty Clienty

Figure 3. Application development and client enreiin

During an enrolment process, biometric keys aregead from the freshly taken client biometricg (éace) and stored
for later use (application obfuscation) in a dassb#éogether with additional client information (ewunique client
identifier). To protect the sensitive client-spacibiometric data, only cancellable / revocablentigtric keys [18] are
used and stored in the database.

A possible usage scenario for BossPro is a remgteeatication process between a client and a bakmCommerce
transaction. For example, the bank wants to offieirtservices only to enrolled clients, who haverbsuccessfully
verified to the bank at the moment of system useotder application example is when any softwareetiger or
business company (e.g. bank) wants to distributewa (or an updated version of) their biometric-sedusoftware
application to their enrolled clients. Then, a dind software development cycle (e.g. Java devetoprior Android
based mobile devices) is executed. If it is notsfide or desired that the complete applicationr@qrted by obfuscated
interpretation (e.g. when some parts may be usdim@sies by other (not protected) applicatiorthen an optional
development step can specify the elements to besolfed. Otherwise the complete application coddbisscated. If

the software works as expected, the new (or updlatgolication is obfuscated using the biometric.Keythis process,
the original program instructions are substitutetifiscated) with instructions selected on the basieach client's
stored biometric key making the resultant applaratprogram code uniquely tailored/dependent on edieht. This
individual biometrically-secured obfuscated apglima “code" is then distributed to its associatad anrolled client for
installation on the client's device, e.g. Smartphoio enhance the authentication process, somsagaons may
encode a "nuance" generated at the communicatioséction time to secure the transmitted prograde and so
eliminate the replay attacks.

Secure storage of the client’s cancellable biomddelys in the proposed scheme removes the nece$sityenrolment
of the client for each new (or updated) versionthef application, which would be expensive, timestoning and
inefficient in scenarios with many applications amtolled clients.

Once a client wants to execute a possible proteapgdication on the mobile device, for example &othentication
purpose for a financial transaction, the proposeittse shall start the application and check if #pglication is
protected and so needs an obfuscation interpratdfiigure 4). As the general layout and the instoms of an
obfuscated program are not distinguishable fronugrotected program during interpretation/execytenm additional
label is inserted during the obfuscation procegghik label is present in the application, or wn® parts of the
application, then the scheme invokes a process¢chwhenerates a new biometric key from a freshlyenaklient
biometrics (e.g. face), and passes this key toahglication interpreter to perform the obfuscatatkerpretation.
Otherwise, the application is executed normallyheyinterpreter.

Is

Application application) Application
ppstart obF\)‘Escated? No %P -
standard
or
Yes Biometric obfuscated

~ client biometrics

L key
Fresh » generation interpretation

Figure 4. Application execution on client’'s mohdlevice

4. BOSSPRO IMPLEMENTATION AND RESULTS

4.1 Prototypeimplementation

To test this proposed biometric-secured obfuscatgerpretation scheme, and to verify the practigabf this
authentication, a prototype implementation, basedwdroid version 2.2 (Froyo), was developed.

Android is a software stack initially invented bydroid Inc. and since 2005 developed by Googleamd the Open
Handset Alliance [19]. The fact that the completdtvgare stack, including the operating system, heddre and
important applications are available to the develept community as Open Source makes Android a @ecéndidate
for this prototype development. Furthermore, Andrisi the fastest growing operating system used dbile devices
with enhanced sensors and capabilities. Note kimirhplementation does require the use of Smarngdso to capture
and process the biometric data. It is expectedAhdtoid will surplus all other mobile operatingssgms by 2014 [20].

The Android operating system is based on a modifigdux kernel. System and client applications are
executed/interpreted by the Dalvik virtual mach{ig/M) which is part of the Android runtime and Ided in the
Android system architecture above the Linux kerfidgle DVM is a register-based virtual machine whicterprets
Dalvik byte code instructions generated by the “thbdl from compiled Java language sources, i.eh egplication,
when started on an Android device, is first load@in an .apk-file which contains the generated xabyte code
instructions. This is then verified and optimiseddve being interpreted by the DVM (Figure 5).

For our testing, to execute the biometric-secutefdscated interpretation inside the DVM, the sowde of the DVM
was adapted; a new operating system image was ampnd used with the Android emulator for testinig prototype
implementation.

Application Application Application Application
loading ——» verification —— optimisation ———» interpretation
(apk-File) (dexopt) (dexopt) (DVM)

Figure 5. DVM steps during application execution

4.2 Bytecodeinstructionsfor obfuscation

In order for an application to pass the compilatioading, verification and optimisation stepstof tAndroid DVM, not
all byte code instructions can be substituted dutie obfuscation process. For example, it is ngsjble to replace the
“return-void” instruction because this is the ofWM instruction without parameters. Similarly, “ig& “iput*”,
“invoke-*" or “invoke-*/range” instructions (Tabl&) cannot be obfuscated because these instruaiensutomatically
replaced by the DVM optimiser with other instructio and thus are not available to the interpretedé-obfuscation.
Finally, instructions can be only replaced withestinstructions, if and only if they have the sageaeral return type as
well as the same number and type of parametersotAér substitutions would not pass the verificatstage of the
DVM. For example the “add-int” instruction can oriig substituted with 16 byte code instructions,“theqz” with 6
instructions (Table 2).

Obviously, the security of obfuscated interpretatiocreases by increasing number of instructioas ¢An be used for
substitution of byte code instructions. Table 3vghiohe total number of instructions for six Andraigplications. The
first four applications (Browser, Contacts, E-Maild Phone) are standard system applications alaiteball Android

mobile devices, while the remaining two applicatidRayPal and FXCM Mobile TSIl (MarketSimplifiedch are “top-

free in Finance” applications from the Android nmettkThe total number of byte code instructionshim fapk-file of the

application varies between 23.000 (Browser) and.d@® (E-Mail) with around 60% of instructions thed&n be

theoretically obfuscated.

Table 1. Instructions replaced by DVM optimiser

Instruction group Instruction M nemonic
iget* iget, iget-wide, iget-object, iget-booleaget-short, iget-byte, iget-char, iget-short
iput* iput, iput-wide, iput-object, iput-booleamuit-short, iput-byte, iput-char, iput-short
invoke-* invoke-virtual, invoke-super, invoke-ditemvoke-static
invoke-*/range invoke-virtual/range, invoke-supange, invoke-direct/range, invoke-static/range

Table 2. Possible instructions substitutions

I nstruction Possible substitutions

add-int, sub-int, mul-int, div-int, rem-int, andtjror-int, xor-int, shl-int, shr-int, ushr-int, add
float, sub-float, mul-float, div-float, rem-float

if-eqz if-eqz, if-nez, if-ltz, if-gez, if-gtz, iféz

add-int

Table 3. Instructions available for obfuscation

Application name | Total #instructions | #instructionsto obfuscate | % instructionsto obfuscate
Browser 23000 14400 63%
Contacts 3380(22100 65%
E-Mail 99600 67700 68%
Phone 42200 25100 59%
Paypal 60000 38600 64%
FXCM Mobile 34300 20900 61%

4.3 Biometric generated keys

The BossPro prototype implementation of biometayg kinding (generation) is based on face biometsidlustrated in
Figure 2. The Extended Yale B database [21], whie$138 subjects and each one in frontal pose hasd&fes captured
under different illumination conditions, is used the experiments. The images in the database igided into five

subsets according to the direction of the lightrsedrom the camera axis. Figure 6 illustrates taigation for images

of the same person in the database.

(a) Subset 1 (b) Subset 2 (c) Subset 3 (d) Subset 4 (e) Subset 5

'y

v

Figure 6. Images for the same person in diffeféurnination subsets

In the experiments, the first three images pemntliom subset 1 (the Yale-B database) were salexdethe gallery set
and all the remaining images were used for matchigcrete Wavelet Transforms (DWTs) are selected dacial
feature extraction technique to be used efficieotlySmartphones. By selecting wavelet feature attlhird level of
decomposition, each face is represented by 504evVi@ature vector X, which is then converted to @ahy string as
described in [22]. By analysing the error patteshiter- and intra-class variation of face imagesyas concluded that
38% of the binary face feature vectors need todmeected, i.e. 191 bits out of 504 bits. In otherds, if the hamming
distance between two binary feature vectors istless 191, then the two feature vectors belongnéosame individual.
Otherwise, the two feature vectors are considecede from two different individuals. To cope withtria-class
variations of face samples, Reed-Solomon (RS) ewarecting code algorithm is selected (versiond®$(129,191)),
which takes a cryptographic key of size 129 bitam#nput to produce a biometric lock of size 5it$,kand corrects up
to 191 errors.

The experiments showed that the Equal Error R&ER$ %) of biometric key binding is 0%, 0.9%, 1.33P5.48%,
17.15% for subsetl, subset2, subset3, subset4&ulnsets of the extended Yale face dataset resphchased on Reed-
Solomon ECC to retrieve a key of size 129 bitss ivorth mentioning that the 129 bit biometric kegn be used as a
seed to generate longer keys of any length baséecbniques such as Linear Feedback Shift RegiftESR).

4.4 BossPro application development and byte code obfuscation

Android applications are written in Java, compileith Java language compilers and then convertéhtoik byte code
by the Android “dx” tool. In BossPro prototype, tbencept of Java Annotations is used to define whiethods and/or
complete classes should be obfuscated. Introdubigoncept of “partial obfuscation” in the BossBHows protection
of nothing but the important parts and algorithnisan application. This will speed-up the DVM integtation in
applications which do not require complete coddagmtion as the number of necessary de-obfuscateps slecreases.
To obfuscate the byte code instructions, the Dadwilirce code is de-compiled in the prototype bisassembler. Figure
7 shows an example of a short java method withGlfiscate” annotation, two integer parameters haddsultant de-
compiled Dalvik byte code.

As the number of instructions available for obfugoavaries from application to application, antrastion substitution
key with a fixed length, as produced by a standsodhetric key generator, is not applicable. A psgaddom number
generator (PRNG) with the biometric generated leged is used to produce a pseudorandom bit stk required
length.

@Obfuscate () .method private doIt (II)I
private int dolt (int a, int b) { .annotation Luk/ac/buckingham/Obfuscate;
int ¢ = a + b; add-int vO0, pl, p2
if (¢ > 0) return c; else return a; if-gez v0, :cond 1
} move v0, pl
:cond 1
return vO
.end method

Figure 7. Java source code (left) and Dalvik bytecinstructions (right)

Depending on the byte code instruction and the remdom bits from the PRNG output, an instructiconf the same
instruction group is selected. Figure 8 shows thiescation process for the two instructions “add-and “if-gez” (see
Figure 7 and Table 2. First, the biometric keyha enrolled client is then extracted from the bitio&key database and
used as a seed to the PRNG. “add-int” is in stépeirst instruction which needs to be obfuscafdte group size of
possible substitutions for this instruction is 1éngents, i.e. requires 4 bits from the key stre@he first 4 bits from the
stream are “0110” (or position 6 in the group, titar with 0). These bits are then used to index ghbstitution
instruction “or-int”. The group of the second ingttion “if-gez” contains 6 elements and therefaquires only the next
3 bits (“010") from the key stream; resulting irethubstitution instruction “if-ltz”. After all instictions are successfully
obfuscated, the byte code is assembled again. "dbisiscation and protected Android application"fimn be then
distributed to the client.

- Biometric key

O, e PRNG 100100110——»

add-int PRNG key stream ,

@ (Groupsize: 16 > 4Bits) 10010)61 10 0110 = or-int—p
if-gez PRNG key stream .

@ (Groupsize: 6 > 3Bits) 100100110 010 = if-ltz—»

Figure 8. Instruction obfuscation process

4.5 Application execution and de-obfuscation process on the mobile device

Upon receiving the obfuscated application from dluhenticator, the client installs it on his moldievice. Once the
client starts this protected application, the DVM the mobile device triggers a process to captreshf biometric
information of the client. A biometric key and fiseudorandom bit stream are then calculated/getkerasimilar steps
to the key generation process at the authenticader (cp. section 4.4). The resultant PRNG outpuhén used to de-
obfuscate the application code during interpretat®ased on the next PRNG input value and theatig obfuscated
instruction read from the protected byte code, dhiginal instruction is determined/obtained by neweg the used
obfuscation rule (Table 2). The resultant de-olditestt code is then ready to be executed by the DVM.

5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

In conclusion, this paper proposes to combine bidmbased key generation with obfuscated integtieh to prevent
the illegitimate execution of applications as wall to protect the software against reverse-endimgeihis is

particularly aimed at, but not limited to, applicat software installed on mobile devices with erdehcapabilities and
sensors such as Smartphones or Tablet-PCs. BosaPtoe utilised in a similar way to all kinds ofte@re programs
running on standard PCs. Obfuscating the progratnuctions with a client's specific biometric kehal tightly binds

the genuine client to the application and hencmiiglites the possibility that an attacker is ableige this protected
application. This becomes more and more importariha use of mobile devices to perform financiadibess or other
security related transactions grows.

The implemented prototype of BossPro based on Addtfmyo shows clearly the practicality of this posed scheme.
That is the advantages and benefits of this tightliination of biometric authentication and softwaretection through
obfuscated interpretation. The Dalvik virtual maehiwhich runs all system and client applicationsAmdroid based
mobile devices) was modified to test the obfuscatéerpretation in a real operating system envirenmnAn Android
system image with the adapted DVM was generateduaad in the emulator based trials and experimémtalyses of
many Android build-in and market-place applicatiasswell as the Dalvik byte code structure shows ahound 60% of
all byte code instructions can be statisticallyusichted. Also note that instructions can be reglacgy with similar
ones from the same instruction group. Otherwiseltjie code verifier or optimiser would recognise tincorrect
program and an application installation on the neodievice would not be possible. Also, the grouse sif similar
instructions varies for the Android Dalvik byte eotletween two and sixteen elements. This resul@nimimmense
number of possible substitution combinations. Baneple, a simple method with only 20 instructioh® (nstructions
from the “add-int” and 10 from the “if-eq” group)owld already result in 6.6*1019 possible combinadiol he fact that
a standard Android application has several thousstel code instructions makes it very difficultunderstand the real
semantics of a program without having the correcblbfuscation key. Although it would be possible o attacker to
start a program protected by BossPro, as the ohiedgrogram is still a valid application, the elteer cannot be sure
about the program behaviour or results, or if thegpam terminates correctly. However, it is moikely that the
program will crash and produce no meaningful ougll.

Since BossPro adds with the required byte codefdsoéition process an additional step to the apmicanterpretation
and therefore increases the application execufioe.tAs the methods and classes and consequemtlyegultant
number of byte code instructions to be deobfuscatad be precisely specified during the applicati@velopment
process, the run-time overhead can be adjustedetalésired security level of the application. Bah the emulator
showed that the introduced overhead by BossProtiaaticeable for any client in an authenticatipplecation scenario.
However, full time and CPU overhead measuremestplaned when the full actual implementation hanmmpleted
and tested on Android mobile devices.

5.2 FutureWork

Work on the biometric-secured obfuscation integiieh is ongoing to further analyse and enhancestwirity of
BossPro. As a first step, the authors will extéet prototype and implement all possible instrucsabstitutions in the
obfuscation process as well as inside the Dalvikual machine. Furthermore, real-world experimeantsl trials on
Android mobile devices will be carried out, whidquires installation of the adapted Android operasystem on real
hardware. The authors will also investigate, howitiiegration of present location and real-time ithte key generation
and obfuscation process can further eliminate uaripossibilities of application misuse, i.e. by égmg the current
location of the mobile device determined by the GB&iver into the obfuscation algorithms. Thisliskiminate
various types of "distance attacks" which are anrtiaieat to mobile devices and mobile based apjiits

To further verify and increase the security of Btgs the results of various de-compilation and rexengineering
tools for Java and Dalvik byte code, e.g. “undx™Dex2Jar” on the biometric-secured obfuscationliapfions will be

analysed. However, first reverse-engineering erpenis clearly showed that these programs are nettalestore the
original semantics of the obfuscated applicatiéiisally, the combination of biometric-secured olsfated interpretation
with other software protection techniques, e.g.tmdnflow obfuscation [23] or opaque constructs J[24ill be

investigated. It is expected, that these technigaasbe easily used together and that a combinatilbmot negatively
affect the obfuscated interpretation. In contristy should further enhance the security of BossBrthey build a first
line of defence against attacks and even increaseme cases the number of instructions which ¢herbe obfuscated.

[1]
2]
[3]
[4]

[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]

[19]
[20]

[21]

[22]
(23]

[24]

REFERENCES

B. S. Alliance, “Seventh annual bsa/idc globaftware 09 piracy study,” (2010)

S. Z. Liand A. K. Jain, [Encyclopedia of Biotnies], Springer US, (2009)

C. Collberg and C. Thomborson, “Watermarkingmper-proofing, and obfuscation - tools for softevar
protection,” IEEE Transactions on Software Engimegr28, 735—-746 (2002)

G. Myles and C. Collberg, “Software watermaxkinia opaque predicates: Implementation, analyesisl
attacks,” Electronic Commerce Research, 6(2), 135{2006)

W. Zhu and C. Thomborson, “Algorithms to watemk software through register allocation,” DigiRights
Management. Technologies, Issues, Challenges asttr8y ser. Lecture Notes in Computer Science, 3919,
180-191 (2006)

G. Myles and H. Jin, “Self-validating branchdea software watermarking,” Information Hiding seecture
Notes in Computer Science, 3727, 342-356 (2005.

D. Aucsmith, “Tamper resistant software: An ilementation,” Information Hiding ser. Lecture Notes
Computer Science, 1174, 317-333 (1996)

P. Wang, S. Kang, and K. Kim, “Tamper resistaottware through dynamic integrity checking,” Pufcthe
SCIS, (2005)

C. Collberg, C. Thomborson, and D. Low, “A tasamy of obfuscating transformations,” Technical 8148,
Department of Computer Science, University of Aackl, (1997)

B. Barak, O. Goldreich, R. Impagliazzo, S. Rin A. Sahai, S. Vadhan, and K. Yang, “On the fiagsibility
of obfuscating programs,” in Lecture Notes in Cotepiscience, 1-18 (2001)

A. W. Appel, “Deobfuscation is in np,” (2002)

A. Monden, A. Monsifrot, and C. Thomborson, framework for obfuscated interpretation,” ACSW Hhtiers
'04: Proceedings of the second workshop on Austiata information security, Data Mining and Web
Intelligence, and Software Internationalisation] §€2004)

X. Zhang, F. He, and W. Zuo, “A framework fonobile phone java software protection,” ICCIT '08:
Proceedings of the 2008 Third International Confeecon Convergence and Hybrid Information Technglog
527-532 (2008)

Y. Zeng, F. Liu, X. Luo, and C. Yang, “Robusbftware watermarking scheme based on obfuscated
interpretation,” Proc 2010 International ConferenceMultimedia Information Networking and Securiéz1—
675 (2010)

F. Hao, R. Anderson, and J. Daugman, “Comigintryptography with biometrics effectively,” IEEE
Transactions on Computers, 1081-1088 (2006)

K. Nandakumar, A. Jain, and S. Pankanti, “Eimgint-based fuzzy vault: Implementation and penfance,”
IEEE Transactions on Information Forensics and 8gc2(4), 744—757 (2007)

H. Al-Assam, H. Sellahewa, and S. Jassim, ihtweight approach for biometric template protecfi Proc
SPIE 7351, 73510P.1-73510P.12 (2009)

A. Teoh, Y. Kuan, and S. Lee, “Cancellablerhairics and annotations on biohash,” Pattern reétiogn41(6),
2034-2044 (2008)

O. H. Alliance, “Open handset alliance.” httpyww.openhandsetalliance.com/

Gartner Inc., “Forecast: Mobile communicatiotisvices by open operating system, worldwide, 220%74
(2010)

A. Georghiades, P. Belhumeur, and D. Kriegnignpm few to many: Generative models for recogmtunder
variable pose and illumination,” IEEE TransactiamsPattern Analysis and Machine Intelligence, 28-&660
(2001)

A. Jin, D. Ling, and A. Goh, “Biohashing: twlactor authentication featuring fingerprint datal ankenised
random number,” Pattern Recognition, 37(11), 2225522004)

T. Hou, H. Chen, and M. Tsai, “Three contrlov obfuscation methods for java software,” IEE ¢&edings-
Software, 153(2), 80-86 (2006)

C. Collberg, C. Thomborson, and D. Low, “Maacturing cheap, resilient, and stealthy opaque toacts,”
Conference Record Of The ACM Symposium On PrinsipiEProgramming Languages 1998, 184-196 (1998)

