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Abstract

In this era, security trends identified violence as a significant issue plaguing society glob-

ally. Statistics depicted alarming thresholds for violence, establishing itself as a momen-

tous challenge for homeland security and defence institutions, predominantly in schools

and other public locations. The advent of state-of-the-art closed-circuit television (CCTV)

surveillance solutions exists to aid in limiting the manifestations of violence and its im-

pact. However, most institutions need proper analysis mechanisms that lead to preven-

tion, apprehension, or conviction in a timely fashion. Manually monitoring and collectively

analysing anthropometric data generated by CCTV surveillance devices proved impractical

and time-consuming, and its outcome increases the complexity of identifying violent be-

havioural patterns as substantial evidence. Despite innovative CCTV sensor improvement,

the impact of adequately analysing vast amounts of CCTV data adds to the monitoring

challenge. This thesis proposed the amalgamation of the ”You Only Look Once version five

medium” model (YOLOv5m) as activity recognition and Three Dimensional Convolution

Neural Network Single level (3DCNNsl) activity recognition, two state-of-the-art artifi-

cial intelligence models incorporating weight embedding procedures to identify primitive

stages of violence and weapons artefacts. The approach integrates classification support

to confirm the existence of specific weapon objects (knives, bladed instruments, clubs, and

guns) of interest belonging to a specific class of violence (beating, shooting, stabbing).

It also validates the presence (primitive stages of violence) of violent classes by utilising

the existence of weapons belonging to its category group to infer the activity outcome.

Utilising classification support concepts to validate the existence of primitive stages of

violence enhances the classification outcome of violent activity recognition with robust re-

sults. This thesis commenced by conducting a two-stage literature investigation to satisfy

the research objectives, which disclosed the state-of-the-art 3DCNNsl at stage one and

the YOLOv5m framework for activity with artefact recognition towards violence at stage

two. The proposed one-stage (simultaneously performing object localisation and classifica-

tion) solution combines the models’ processing, reducing the impact of their architectural
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limitations. 3DCNNsl facilitates behavioural pattern classification, generically associating

sub-class labels suggesting the presence of violence at high accuracy. In addition to 3DC-

NNsl, YOLOv5m architecture serves two functions: operating in an activity recognition

capacity, fortifying 3DCNNsl activity output, and detecting artefacts, which establish the

presence of weapons, enhancing the action classification and overall accuracy. The thesis

optimised the deep learning model selections by identifying violence in scenarios and val-

idating its presence through a redundant weapon artefact classification weight embedding

procedure. The concept allows the classification of violence in its primitive stages before

its impact escalates to lethal outcomes. The proposal extensively reviewed its operations

via transfer learning in multiple fusion scenarios to identify the most optimal strategies to

realise the research objective. The evaluation dataset utilised in this thesis encompassed

a selection of samples accumulated via the University of Central Florida (UCF) dataset

and several social media forums. The violent action samples reflect several multifaceted

real-world scenarios representing sporadic accelerated motion attributes in various envi-

ronments, which aids in reducing the risk of dispensing biased results and affecting the

model’s robustness. The proposal disclosed three contributory elements, which reflect the

following;

1. Conducted performance testing of two known machine learning techniques (YOLOv5m

and 3DCNNsl) in independently recognising violent and non-violent activities in

CCTV video footage.

2. Demonstrated violent activity recognition performance in such videos when both

machine learning techniques operate in tandem.

3. Implemented performance enhancement by further incorporating threat object

detection in the previous combined solution.

Contribution one disclosed the effectiveness of YOLOv5m activity recognition at 74% and
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the state-of-the-art 3DCNN at 75%, conceding high misclassifications utilising data with

and without augmentations and resolution modifications. The operations emphasised the

obligation to explore alternative processing measures to alleviate the disadvantages of the

two machine learning models. Contribution two emphasised the effectiveness of fusion en-

hancement techniques via decision-level voting at 85.20% over 3DCNNsl and YOLOv5m

activity recognition. As a validation strategy, the operations incorporated surplus data

encompassing 50 samples designed to enhance the classification complexity. The approach

rigorously appraised the operations, thus confirming its applicability. Contribution three

showcased the amalgamation of fusion’s activity recognition and the power of object de-

tection to establish its effectiveness in concatenating weight embedding. The experiments

maintained data consistency similar to contribution two. Analysis disclosed the domi-

nance of fusion incorporating threat object detection at 88.20% over 3DCNNsl, YOLOv5m

activity recognition, and fusion without threat object enhancement.

The results underscore the robustness of the proposed method, which has proven its classi-

fication competence, particularly in scenarios with surplus data, from an overall accuracy

perspective. While the proposal debates the efficiency of individual processing compared to

fusion without support, the research endeavour accentuates the effectiveness of integrating

classification redundancy through weight embedding to suggest the presence of artefacts

confirming the occurrence of violent actions. The findings highlight the effectiveness of

the proposed method without artefact processing at 85.20% while incorporating threat ob-

ject support analysis concatenating weapons (knife, club, gun in the videos) improved the

accuracy to 88.20%. This evidence substantiates the solution’s robustness, fulfilling the

research objectives to conclude the investigations1.

1Keywords: Anomalous Detection, Activity Recognition, Motion Detection, Violence Recognition,
Human Activity Detection
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Chapter 1

Introduction

The study of human behaviour proved a complex phenomenon that has amazed researchers

over the millennium. The correlation of individual behavioural patterns varies considerably,

especially when comparing the accelerated propensity of such normal or abnormal human

motions from its primitive stage (start, middle and end). Those varying actions inspired

security concepts with capabilities that capture such complexities through innovative sen-

sor devices. Vision sensors such as closed-circuit television (CCTV) devices are considered

appropriate monitoring tools that can manually substantiate and focus on abnormal action

features with the collective support of human aid. In this era, such tools evolved mainly

to alleviate security issues by tracking violent human actions to limit the manifestation of

violent corollaries in society. Although these powerful surveillance CCTV devices are at the

forefront when monitoring nefarious human activities, further analytical aid is required to

mitigate law enforcement’s deficiencies competently with the apprehension of collaborating

subjects. As a result, criminals evade proper convictions as the manual CCTV data col-

lective measures lack appropriate activity analysis that substantiates crucial evidence with

precision accuracy ratings. Most of the CCTV images attain low-level gradient intensities

with poor resolution, negatively impacting the aggregation of pertinent details that can
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provide valuable conviction results. It is immensely challenging for humans to manually

discern abnormal activities accurately in scenarios where scenes contain low-level gradient

intensities. However, manual discernment issues have a high possibility of being solved by

implementing artificial intelligence (AI) mediums.

With the availability and accessibility of AI super-processing, it can produce details of an

object’s instantaneous pre-movement based on anthropomorphic patterns in dismal loca-

tions in real-time. Such state-of-the-art AI solutions attain capabilities that can identify

homogeneous and heterogeneous attributes in behavioural patterns, concluding an object’s

speed, trajectory, and velocity. AI solutions can achieve formidable superhuman tasks

by monitoring anthropometric comparisons and analysis, but some areas are unscaled re-

garding research. Object detection as an individual processing pipeline can detect the

possibility of weapon objects during the scenario, and the activity detection pipeline cor-

roborates the resonance of violent human activities. The previously mentioned approaches

proved formidable for complex detection scenarios, but their advantages are ostensible

when surveying the literature.

Nevertheless, object detection and activity recognition methods experience challenges as

individual processing mechanisms with framework limitations concerning the risks of pro-

ducing erroneous results. Some classification misrepresentations plagued object detection

methods because of the model’s convolutional capabilities. That issue occurs when eval-

uating the propensity of microscopic objects (mainly knives, guns, and sharp objects),

specifically when their optical flows accelerate with intensity across multiple video frames.

Most activity detection models deploy multiple scaling techniques that enhance image di-

mensionality during convolution. This procedure exhausts the processing resources during

the generalisation stages amidst the dense, fully connected layers and negatively impacts

real-time performance.

Moreover, a distinct detection singularity emerged that evaded the focus of researchers as
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they are yet to explore the performance impact of consolidating both practices as a single

pipeline that accurately and efficiently discerns abnormal behavioural patterns circumvent-

ing violence.

To address the previously mentioned concerns, the thesis proposed the aggregated recog-

nition of AI mediums as a reliable application that accurately and efficiently recognises

violent activity utilising real-time CCTV sensors. The investigations targeted the first

state-of-the-art mechanism, YOLO (you only look once, YOLOv5), as the object detection

tool that discerns distinctive weapon features in addition to the violent activity classes.

YOLO’s detection limitations (concerning minute objects) improved by passing a combina-

tion of the regions of interest (violence) within the image scenery and weapon artefacts as

input in a feed-forward operation for convolution, thus producing a classification output.

Identifying and combining the objects this way through pre-processing and blob analysis

enhances YOLO’s accuracy ratings tremendously, thus enhancing its ability to classify a

much larger object.

The second state-of-the-art mechanism entails deploying a 3DCNN (3-dimension convolu-

tion neural network) activity recognition technique with the aptitude to discern anthropo-

metrics relative violence and abnormality in human behaviour. Excessive computational

resources bear significance in processing data and can negatively impact real-time opera-

tions. Negating such impact issues increases the 3DCNN processing capabilities by applying

layer modifications. From a parallel standpoint, this reduces image dimensionality chal-

lenges and stabilises the complexity of the class features amidst the dense layers during

generalisation. The proposed joint operation integrates a fusion mechanism of the model’s

output in its final stages, producing precision accuracy results at its highest. It also reveals

two possible methods of applying the YOLO mechanism. The first method constitutes

sectioning weapon objects and separately feeding that as input together with the activity

recognition blob features for classification. The other approach entails pre-processing both
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weapon and activity, merging those regions of interest to act as one object entirely; this

technique defies YOLO’s limitation of detecting and classifying minute blobs.

1.1 Summary of the Research Motivation

Violence persistently impedes society, effectuating lethal outcomes predominantly when

parties engage in criminal intentions, substances, and differing opinions in communication,

domestic disputes, discrimination, and religion [1] and [2]. These scenarios assist in being

the catalyst of severe injuries resulting in psychological distress by the death of loved ones

involved [3] and [4]. Committing violence produces negative consequences; however, if

technologically monitored, innovative CCTV sensors can be deployed to pre-empt the risks

of attacks relative to those outbursts through automated surveillance. The idea reduces

the impact to its minimum or nullifies the altercation completely. These malicious attacks

reported in Figure 1.1 produced vast data volumes as UK citizens are ranked high for being

Figure 1.1: CCTV Monitoring Creates Data Volumes, Source: [3], [5], [6], [7], [8],[9]
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constantly monitored. Another concern surrounded the deficiency in simultaneously analysing

the magnitude of data that induces an insignificant number of convictions for involving par-

ties [7], [10], [9], [11], and [5]. Authors [12],[13] and [14] presented statistics on violence in

Figure 1.2 illustrating the number of violent offences fluctuating from zero to 25,000 over

13 years from March 2011 to Mar 2023. The motive behind this illustration accentuates

the high number of violent instances occurring at 21,456 for assaults with injury and with

intentions to enact bodily harm in dark blue, which substantiates the investigative notions.

The evidence outlined the fluctuation of violence from 2011 to 2023. The data showed

Figure 1.2: Knife or sharp instrument offences: [12],[13] and [14]

19,126 robberies in turquoise blue, differentiating in instances by 2,330 compared to as-

saults with an injury. The fluctuation in offences depicted threats to kill in navy blue at

5,599 instances, with other selected offences at 1640 as the lowest category. The other of-

fences indicate violence by sexual assault or rape, attempted murder, and homicide. Police
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recorded an increase of 3% in crimes involving a knife or sharp instrument (knife-enabled

crime) at 50,833 offences in June 2023 compared to June 2022’s 49,435 offences in Eng-

land and Wales, excluding Greater Manchester. The gap in analysis between March 2021

and 2022 reflects a data adjustment made before the year ending March 2020 for police

forces, who recently implemented a national data quality improvement service (NDQIS)

tool, which calculated the statistics for England and Wales. The data from March 2011-

2019 proved the seriousness of this escalating issue as the fluctuation of violent patterns

illustrates an increase in the proportion of offenders as a direct link to the COVID-19

pandemic.

The significance concerning the statistical overview fortifies the rationale for the research

proposal as the issue of violence is unmanageable, with a steady rise in fluctuations in

offences for the period March 2021 [14], 2023 [12] and 2024 [13]. The rationale for the

proposal accentuates the severity of violence relative to human demographics per category

and the weapons used in Appendix 1.1. The rationale behind this aspect of the statistical

Figure 1.3: Lethal Events Source [15], [16], [17], [18], [19], [20], [21], [22] 01-10-2022.

analysis proved that violence is not partial to one specific group, as the demographic in-
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fluence relative to homicides showed no boundaries from the ethnic sense. However, it

signified the rising impact of the number of occurrences. The authors [15], [19], [20], and

[16] fortified the last analysis in Figure 1.3 with heinous reports afflicting human lives (from

ordinary folks to parliamentarians) during that specific year only, yet violence perpetuates.

The statistical data relating to the categories of violence indicated that an effective solution

is urgently needed to mitigate such instances. As the need for a solution became apparent,

concatenating the evidence and analysis of the literature proved crucial. The investigations

revealed complex techniques utilising hybrid feature extraction and generalisation proce-

dures. Although those hybrid mediums present a measure of significance in applicability,

the challenge of pre-empting violence persists. The previously mentioned approaches can-

not accurately discern violence to distinguish its generic state (whether the activities are

violent or not with its sub-class) as output. Additionally, other problem factors relative

to heavy computing resource dependency during processing impact the trade-off between

real-time performance and accuracy, and this tenacious challenge can potentially affect

their approach negatively.

As analysis of past violent trends intensified, the disclosure of unscaled domains with

limited knowledge of a proper solution emerged. Such discoveries included artificial intel-

ligence mediums that can significantly reduce the impact of current security challenges,

thus propelling technological advancements in this domain. Exposing object detection

and activity recognition as individual processing pipelines disclosed the potential to detect

the pre-existence of weapon objects during violent scenarios. In this regard, the activity

detection pipeline corroborates the resonance of abnormal human activities relative to an-

thropometrics, and object detection focuses on lethal weapons. To fully understand their

(the AI models) capabilities, thorough investigations into existing solutions proved cru-

cial to gain insight into their processing performance, architecture, and critical limitations

before proposing the fusion approach. The following research questions highlight the ob-

jectives/ intended operations and their stages to commence the task of activity recognition.
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The questions facilitate the investigation of the architectures and demonstrate a profound

analysis of the model’s superiority via simulations. Subsequently, a presentation of the

proposed technique aids in solidifying its superiority for real-time processing and robust

results.

1.2 Summary of the Research Questions

The research objectives encompassed a main section as a link to the proposed solution

and sub-questions requiring a measure of investigation to disclose the feasibility of the

operations. The guidelines are as follows,

1.2.1 Summary of the Main Research Question:

Research Question-1: Can violent activity and weapons (bladed instruments, knives,

guns) be recognised in CCTV videos?

1.2.2 Summary of the Sub-Research Questions:

Research Question-2: What is the impact of deploying pre-processed (modified data)

data and no pre-processing (data without modification)?

Research Question-3: What is the model’s processing impact based on performance if

the training data or sample size increases?

Research Question-4: Can multi-class activity as neutral (non-violent) or violent be

generalised?

Research Question-5: Is object detection superior to activity recognition and vice versa

in predicting violence?

Research Question-6: How can object detection enhance activity recognition’s output

28



through fusion?

1.3 Overview of the Aim and Objectives

The research aims to develop an innovative violent activity detection mechanism for real-

time applications that can accurately and efficiently recognise violence in CCTV data. A

series of objectives facilitated the realisation of the overall aim below.

1. Conduct an extensive investigation into the state-of-the-art YOLOv5 object detection

and 3DCNN activity recognition and authenticate the mechanisms for effectiveness.

2. Acquire an object detection dataset and construct the first R-CNN (region base

convolution network) object detection model to evaluate the possibility of weapons-

(bladed instruments, guns) detection and violent activity recognition in CCTV videos

with high-performance capabilities.

3. Evaluate the applicability of the state-of-the-art YOLO and 3DCNN for performance

efficiency

(a) Evaluate the impact possibilities of deploying pre-processed data modified to en-

hance feature selections (augmentation, contrast alterations, cropping, zooming,

shearing and rotations of image features of interest).

(b) Evaluate the impact possibilities of deploying raw data containing no pre-processing,

resolution, or illumination enhancements.

(c) Evaluate the impact of increasing the training data sample sizes.

(d) Evaluate the impact of deploying (from-scratch) random hyper-parameter op-

tions, bias, and weights.
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(e) Evaluate the impact of applying pre-training weights and biases.

4. Evaluate model superiority by generalising multi-class activity as neutral (non-violent)

or violent.

(a) Evaluate whether object detection is superior to activity recognition and vice

versa.

5. Present the proposed fusion technique utilising object detection with the activity

recognition framework relative to previous simulations and discoveries.

(a) Evaluate the effectiveness of the proposed fusion operations through simulations,

observations, and analysis.

(b) Evaluate the effectiveness of the operations before fusion, after fusion, and after

fusion supported by YOLO artefact detection enhancement.

(c) Hypothesise the results and formulate conclusions.

1.4 The Contributions of the Thesis

The following summary emphasises contributory elements towards validating the effective-

ness of the proposed fusion operations.

1. Chapter-3 to 4 Conducted performance testing of two known machine learning

techniques (YOLOv5m and 3DCNNsl) in independently recognising violent and

non-violent activities in CCTV video footage.

2. Chapter-5 Demonstrated violent activity recognition performance in such videos
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when both machine learning techniques operate in tandem through a decision-level

fusion operation.

3. Chapter-6 Implemented performance enhancement by further incorporating threat

object detection in the previous combined solution. The idea applied weight value

embedding to suggest the presence of lethal weapon objects/artefacts, thus enhanc-

ing the outcome.

1.5 Overview of the Thesis Structure
The thesis structure summarises each chapter, further informing the reader on a brief

reflection of the subject matter. The idea also manages the topics with clear operational

directives at every stage. The structure is as follows:

Chapter-1 Introduction: The chapter introduces the issue of violence and its impact

on society, providing the motivation, aim and objectives for the research efforts.

Chapter-2 Context & Fundamental Knowledge: Demonstrates essential knowledge

required to comprehend the technical operations, followed by an introduction into

the phases of the literature review concepts.

Chapter-3 Research Methodology: The section justified the quantitative approach

through experiments using volumes of violent data collected from benchmark reposi-

tories and social media forums. The chapter also considers the experimental protocol

and evaluation strategy to measure performance.

Chapter-4 Evaluating 3DCNNsl & YOLOv5m for Activity Recognition: The sec-

tion presented evaluations for YOLOv5m as activity recognition and 3DCNNsl op-

erations derived from the experimental setup with a focus on stabbing as the violent
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class. The chapter also fortified the rationale for proposing fusion by presenting pro-

cessing challenges affecting both models and discussions on operational procedures

limiting the impact of such challenges.

Chapter-5 Fusing YOLOv5m & 3DCNN for Reliable Activity Recognition: The

section introduced concepts of the proposed fusion by combining the operations of

YOLOv5m as activity recognition and 3DCNNsl and applying additional configura-

tions to foster performance efficiency. At this level, an evaluation of the fusion results

demonstrated model superiority with operational discussions disclosing weapon arte-

facts as additional elements detected in the violent scenes. The idea of artefacts is

applied via embedding to facilitate performance enhancements.

Chapter-6 Utilising Object Recognition for Improving Activity Recognition: The

section emphasises YOLOv5m object detection via weapon artefact enhancement.

The concept combined weapons with the target activity objects that suggest the pre-

empting of violence. The idea further enhances the classification status and accuracy

scores. The approach evaluated violence from a frame-by-frame approach to con-

sider scenarios limited by the availability of test data. The chapter also investigated

utilising the entire video in scenarios that reflect an abundance of test data with a

discussion on model superiority.

Chapter-7 Overall Conclusions: The chapter provided overall conclusions to validate

the fulfilment of the objectives with clear indications of performance contributions

towards achieving the aim.
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Chapter 2

Context and Fundamental

Knowledge

Chapter 2 provides essential information regarding object detection and activity recogni-

tion concepts. At this stage, the primary aim is to highlight key elements that facilitate

the processing of human activity towards anticipating such actions as violent activity. The

chapter also describes the data pre-processing concepts, computational library packages,

and classification networks with various mathematical computing procedures and graph-

ical representations required to validate the overall operations. The concept of artificial

intelligence considers operations of machine learning and deep learning systems to achieve

the tasks of activity recognition and object detection. Machine learning, described by

[23], is a division of artificial intelligence applied to generalise a specific task utilising its

cognitive sense derived from experience without requiring direct programming. However,

Deep learning in [24] is a machine learning division employing artificial neural networks

that comprehend the complexity of data patterns through computer vision. Activity recog-

nition and object detection formulate essential domains to achieve substantial results in

several tasks. Artificial intelligence follows cognitive tasks such as supervisor learning,
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unsupervised learning, and reinforcement learning. Supervised learning in [25] derived

from machine learning encompasses training an algorithm that uses manually annotated

labelled datasets to suggest correct classes. Unlike supervised learning in [25], where data

is labelled, Unsupervised learning in [26] operates from an unlabeled data perspective that

identifies features of interest and relations of objects within the data without the need for

guidance. The idea facilitates scenarios when data proves a challenge to acquire.

Contrarily, reinforcement learning discussed in [27] incorporates agent learning to gener-

ate decisions based on environmental interactions. The idea integrates a general reward,

which transfers into learning strategies towards recognising actions. Indicating the objects

of interest encompasses learning processes suggested in [28], which utilises a classification

task to identify the type of action performed in a video or image sequence. Activity recog-

nition facilitates the enactment of educating systems to identify human action through

classification in a video or sequence of actions within image data [29]. Object detection

discussed in [30] employed through classification networks extracts spatial features relative

to a desired object from images. The idea incorporates accumulating enormous volumes

of data identified by specific category labelling for training. The data endures a feature

extraction process through techniques such as blob analysis in [31], which educates the

artificial intelligence on the contours and distinct characteristics of an object of interest.

The operations endure training demonstrating relationship attributes among features, ac-

tivities, and objects of interest. Subsequently, during the inference stages, the artificial

intelligent model is redirected to data that it had not seen to project its predictions based

on the actions or activities it recognises similar to [29] and [30]. The applicability of such

systems facilitates the detection of unwanted, abnormal or gesturing actions, pedestrian

detection and traffic management through surveillance sensor devices. With insight into

artificial intelligence, chapter two expounds further on necessary operations to achieve high

performance.

Chapter two incorporates ten sections to present an overview of the motive, concepts and
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mechanisms applied during development. The structure at this stage is as follows. Sec-

tion 2.1 emphasised fundamental concepts concerning Object Detection (OD), Activity

Recognition (AR) data pre-processing, and blob analysis. Section 2.2 details the impor-

tance of data validation split procedures. Section 2.3 encompasses deploying software ap-

plications and library packages that facilitate complex processing operations. Section 2.4

highlights various classification neural network concepts and their importance. Section 2.5

presents a background of YOLOv5 object detection (you only look once) operations. Sec-

tion 2.6 provides a background of 3DCNN activity recognition processing components.

Section 2.7 presents an overview of measures to evaluate classification operations. Sec-

tion 2.8 accentuates graphical representations depicting the classification’s true processing

capabilities. Section 2.9 presents an investigative analysis disclosing the applicability of

other available techniques compared to the state-of-the-art for object detection and activity

recognition. Finally, Section 2.10 presents a conclusion of the entire chapter.

To fully understand the context of the research operations, one must first appreciate arti-

ficial intelligence as a construct of computer vision that trains a computer to decipher the

visual interpretations of the world [32]. The concept considers the similarity of displaying

many images towards educating toddlers to recognise objects. This notion is somewhat

the same when training the machine; however, the computer’s cognitive sense discussed in

[33] involves the computational processing of numbers. Image representations projected as

2-dimensional arrays of numbers called pixels allow computer processing to categorise spe-

cific number values to perceive such objects as items of interest [34]. By utilising millions

of digital images generated from IoT (internet of things) devices to train a computer, the

possibility of accurately classifying objects through classification algorithms is astounding.

Some concepts require a measure of understanding to achieve the full complement of the

operation and encourage performance efficiency.
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2.1 Overview of Data Pre-processing and Blob Analysis

Data pre-processing describes the stage of preparing (cleaning and formatting) the raw

data to meet the required standards given the specifications of the artificial intelligence

architecture. The operations entail acquiring a prodigious amount of data and conform-

ing such video files to a respective size with substantial representations of the relevant

objects of interest (violent activity, weapons, knives occurring across the temporal plane)

in the image scenery. The data acquisition generated raw files online from various social

media platforms with variations in image dimensions and other anomalies that adversely

affect the artificial intelligence processing state. Considering pre-processing, the issue re-

flects better representations of the objects in the image scenery, simultaneously reducing

the video file duration and negating object redundancy (removing objects with similar

characteristics in multiple images). The investigation disclosed [35], an open-source tool

that conforms the previously mentioned issues to the required data specification and di-

mensionality. Blob analysis outlined by [36] is the term that describes the technique of

locating and annotating the regions of interest (the object) relative to its coordinates re-

flecting violence in the image scenery. The technique separated object/s of interest from

other unimportant elements in an image by creating a demarcated bounding box around

its boundaries. Other data generation processing techniques consist of augmentation en-

hancements. This operation generates variations of the clean data by shearing (slanting the

image to the left of the right), rotation (rotating the image to an aspect ratio of 0.001%,

45%), flipping (clockwise/anti-clockwise, left, right), contrast alterations (Grayscale/ im-

ages without colour), illumination (brightening/ darkening), distortion (introducing salt &

pepper noise) and blurring. Blob analysis techniques assist the object detection algorithm

by generating bounding boxes around the regions of interest. The approach demonstrated

in [37] and [38] utilises the outline of multiple objects in the image to infer that its label is

present during classification.
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2.1.1 Summary of the Class of Activity Template (CoAT):

To understand the motive for blob analysis, one must grasp the characteristics of impor-

tance relative to violent actions and their range of erratic patterns. A class of activity

template (CoAT) described by [37] emphasises anthropometrics that distinguishes its ac-

tion significance from other features in an image. Its purpose is to identify abnormal

behaviour indicators relative to the specificity of objects, their motion, their acceleration,

and their trajectory [39], [40] and [41]. The idea identifies actions symbolising abnormal

human-to-human violent altercations to cause severe injuries [40]. These actions (beating,

stabbing, fighting, and shooting) reflect the human gait with or without weapon objects

depending on the class category relative to 1-human versus 1-human, 1-human vs many

and many individuals vs 1-human. The class of activity template decomposes the context

of violent actions to present a holistic perspective of the features of significance extracted

during the blob analysis phase. Its attributes emphasised by [42] denote a stabbing ac-

tion as slicing, penetrating, wounding, or causing any grievous bodily harm with sharp or

bladed objects. According to [43], Humans that physically strike others with or without

an object to cause physical or psychological harm conveyed beating actions. Author [44]

described a shooting action as the act of pointing or discharging lethal barrelled weapon/s

of any description (handgun, shotgun or taser) from which any shot, bullet or other pro-

jectile missiles are dispensed with high speed to endanger life intentionally. Authors [45],

[46], and [47] projected non-violent human actions as any human action accepted and em-

braced by society relative to its governing laws. It is necessary to highlight the target

categories relative to violent and non-violent actions to demonstrate the applicability of

datasets during the developmental stages. Although non-violent actions are not the focal

point of this research, their definition and significance show the model actions that are

not violent to enhance the classification’s performance during inference. Non-violent blob

features of this class will assist the model in generalising and distinguishing violent from

non-violent features during processing.
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2.1.2 Blob Analysis Applied on the Class of Activity Template (CoAT):

We sectioned the class-of-activity-template (CoAT) to demonstrate how colliding trajec-

tories and motion features of the object within the images can be tracked through blob

analysis. The features representing the pre-violent action leading up to the start, middle

and end of a potential attack can be measured and classified accordingly across (temporal

plane) several image frames [47], [48], [49], [50], and [51]. The processing approach dis-

closed in [52], [38], [53] is paramount as it reduces the proficiency of the entire operation if

blob selections neglect standards and consistency during training. The concept circumvents

transfer learning initiatives (modifying a relevant model already trained on another task

to process the current activity recognition task for prediction) that facilitate high-accuracy

results and reduce time spent during development analysis. The algorithm must

Figure 2.1: Blob Analysis Operations via MATLAB.

understand the object/s of interest size variation and its coordinates. The blob analysis

technique assists in identifying and annotating the class of activity template within the

images to present the object’s specification to the processing architecture during training

[54], and [55]. The approach in Figure 2.1 discerns pictorial values through colour space

sectionation, sorting the foreground and background as pixel properties as an illustration of

blob analysis concerning [56], [57], and [58]. Refining the class’s spatiotemporal regions re-
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duces image noise (unwanted details in image) by applying colour space thresholding and

morphological dilation (object expansion, erosion, reduction) processing techniques [59],

[60], [61], [62], and [63]. The concept of blob analysis cannot extract the spatiotemporal

activity details of an object’s accelerated trajectory and boundaries in static images. How-

ever, [36], [64], and [65] confirmed the possibility across the temporal plane when processing

the optical flow of actions in several frames.

2.2 Summary of Cross-Validation Split

Following the data augmentation, which generated more data and pre-processing (data

cleaning) concepts, applying the cross-validation methods validates accuracy performance

after every epoch (data traversing forward and backward as one iteration). This pro-

cess guides the operations towards generating the highest output value and systematically

highlights whether the training is on target, ensuring that the model learns effectively and

accurately. The cross-validation hold-out technique similar to [66] and [67] splits the given

dataset into smaller subsections and utilises a combination of the subsections to evaluate

the model’s overall performance. The data sectioning ratio in Figure 2.2 relative to [68]

and [69] consists of an 80:20 splits reflecting 60% training, 20% validation, and 20% for

the testing stages. Alternative splitting concepts conveying 70:30 [70], 55:45 [71], 60:40,

and 50:50 [72] exists to allow further analysis. Those previous splitting concepts negatively

impact the training if the model is not trained sufficiently on significant ratios of data. The

literature approach of 80:20 in [73] provides sufficient data to allow the model to generalise

the construct of violence over time effectively. The technique prevents the model from

over-fitting, where it excels at classifying the samples in the training set but experiences

generalisation challenges when classifying objects on unused data [74]. The 60% training

data is applied to train the model to generalise hidden features/patterns relative to the

object in the data. In each epoch (iterations of the data in a forward and
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Figure 2.2: Cross-Validation Dataset Split Procedures.

a backward pass during training), the same training data is fed to the neural network

repeatedly in batches, and the model continues the reiteration of the learning cycle of

relevant features of the objects in the dataset. The 20% section of validation data is

separate from the training as it is applied to fine-tune hyper-parameters (specific option

values applied to fine-tune the model’s accuracy) and configurations to assist the model’s

performance.

2.3 Overview of Software and Library Packages

Software tools such as MATLAB and Python facilitate the computational dispensing of

the results as output. MATLAB’s sophisticated programming functions in [75] assist with

visualising data anomalies requiring attention through scripting. Python allows intuitive

programmable syntax control and advanced functionality, thus simplifying processing out-

puts. Its libraries (various pre-compiled codes) provided the framework for initialising
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artificial intelligence models utilising well-defined operations without complex deployment.

Python’s library package contains over 200 modules consisting of scripting documentation,

memo templates, configuration data files, and class definitions to aid AI with its compu-

tations [76]. These packages ranged from TensorFlow, Matplotlib, Pandas, NumPy, SciPy,

Scikit-Learn and PyTorch. Most library packages are applied to reduce the iterative task of

writing and re-writing script files to executive a combination of commands. The processing

packages search for a particular library and execute its pre-scripted functions to interpret

the input-output commands of the classification operations accordingly.

2.4 Overview of Classification Network Operations

As a mathematical approach, classification detailed in Figure 2.3 amalgamates two func-

tions to produce a third function, which occurs at the input stage using a kernel to generate

a feature maps output [33] and [77]. A classification neural network has many layers that

Figure 2.3: Kernel Processing Operations.

generalises different image features as the processing deepens from an input-output per-

spective [50]. Processing Filters (kernels) compute the values of each training image at

specified resolutions. Author [78] disclosed how all output results of each operation act as

the input for the next layer. These layered kernels commence by processing simple features

relative to brightness and edges. Subsequently, it increases its processing capabilities to

discern more complex features unique to the nature of the object [79]. Its processing com-
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mences at the top left corner of the image, traversing from left to right on a 1-pixel column

per interval until the filter edge reaches the edge/end of the image [80]. A single kernel is

defined as 2 pixels high and 2 pixels wide (rows, columns) and can vary according to the

system’s operations [81]. According to [82], differently sized filters will detect differently

sized features in the input image, resulting in differently sized feature maps. A common

practice applies a 3×3, 5×5 or even 7×7 sized kernel for larger input images [83].

2.4.1 Overview of Kernel Stride and Padding Operations:

The neural network’s stride parameter is responsible for modifying the movement across

the width of the input image. The model’s processing reflects whole integers instead of

fractions to alleviate processing issues when generating its output [84]. Therefore, if the

stride parameter reflects 1 with no padding, the 2x2 kernel’s operations on an array input

of 6x6 will move to one pixel at a time, resulting in 5 positions, producing a 5x5 output

identical to Figure 2.4’s illustration. Stride value modification promotes processing

Figure 2.4: (a) Kernel Processing Operations.

efficiency depending on the input image size and the required task at hand. Its processing

reduces the generalisation complexity and the computational memory required to generate

an output, thus creating a smoother convergence due to a smaller volume of array values

[85]. If the stride reflects a processing value of two as described in Figure 2.5 with a 2 x
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2 kernel on a 6 x 6 input array with padding, the output will result in a 4 x 4 output. A

reflection of padding in [86] allows the creation of deeper neural networks by controlling

image border details. Padding extends the image borders by adding pixel details during

classification, and this presents the kernel with more area to optimise the analysis of the

images [87] and [83]. Therefore, setting padding to zero means that each pixel value added

will reflect zero. In contrast to the padding setting 1, a single-pixel border of zeros is

applied to the image.

Figure 2.5: (b) Padding with Stride Parameter Set as 1/2.

2.4.2 Summary of RGB Images Evaluation:

Completing the classification processing requires the inter-operation of several specialised

hidden layers within a hierarchy. Therefore, the first layers detect lines, curves, and edges.

As the operations reach more profound processing components within the hierarchical

layers, high-level complex shapes and colours relative to an object or objects are generated

(body parts, knife sections). A digital image incorporates 3-distinct elements: its width,

height relative to its pixelated values, and its colours in 3 channels: red, green, and blue

[88]. Because the input image represents three distinct colour channels, the operations

apply three filters to compute their values simultaneously. The concept emphasised in [89]

enables the convolving 3x3x3 kernel demonstrated in Figure 2.6 to process images with a
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depth reflecting the output of lines and edges from the RGB colour channels.

Figure 2.6: Classifying an RGB Image.

2.4.3 Summary of RELU Layer Operations:

Another classification aspect entails the rectified linear activation function in Figure 2.7 as a

piece-wise linear operation that outputs an input directly in red if it is positive. Otherwise,

it dispenses an output of zero as per the blue arrow. During classification, the rectifier

Figure 2.7: RELU (Rectified Linear Activation Function) Operations.

function increases non-linearity in the input data to remove all dark-shaded elements within
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the image. In [90]’s demonstration, the processing retains only those details carrying a

positive value; this reflects a grey-coloured tensor as its output. Some ubiquitous techniques

within the literature apply the sigmoid activation function, the logistic function, or the

hyperbolic tangent to improve their performance based on the framework and the research

objectives.

2.4.4 Summary of Pooling Layer Operations:

Classification emphasised in [91] generates high computations between its layers, which

increases the complexity of the processing. If the latter is unregulated, as per [92], it

intensifies the tensor dimensions substantially and negatively decreases the processing speed

and capability of the entire operation. The processing solves the issue by exercising a

down-sampling max pooling operation in [93], which reduces the input feature map and

the volume of computing parameters required for its processing. Pooling has no computing

parameters defined in [94]; this operates by sliding a kernel algorithm (window) over its

input and selects only the max value as the output. The operation accentuated in [95]

creates shorter training times and regulates over-fitting if the function is aligned too close

to a limited set of data points. As pooling works independently on each depth slice of

the feature maps generated from the RGB input, it simultaneously increases the network’s

operational efficacy. Other techniques can suffice relative to the application and framework

Figure 2.8: Max Pooling Operations.
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deployment. However, figure 2.8 max pooling operations depicts a ubiquitous approach

that computes its operations with a 2x2 window, a stride of 2 and no padding.

2.4.5 Overview of 1st Object Detection Processing via RCNN:

RCNN demonstrates the concept of object detection as the first processing medium relative

to the previously mentioned classification sections. This section briefly discusses its object

detection framework and attributes utilising ubiquitous static images online. Figure 2.9

and 2.10 disclose fundamental concepts of RCNN’s processing in [96] regarding a two-

Figure 2.9: R-CNN 2-Stage Processing Operations Source: [97].

stage object detection technique. Its framework illustrated in [78] emphasises the proposal

generation region operations, feature extraction processing and classification operations.

The RCNN object detection processing in [98] utilises a fixed selective search approach to

generate region proposals using a greedy search algorithm, which recursively aggregates

feature candidate similarities into large ones and produces a result. The RCNN algorithm

extracts 2000 proposal regions from the image at the input image at 1 in Figure 2.10. The

processing highlighted in [97] accepts the features from step-1/2 for feature extraction and

classification processing. RCNN computes relevant features at step-3 generating a 4096-

feature vector of object estimations for classification by a support vector machine utilising
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Figure 2.10: R-CNN Processing Operations Source: [97].

regression at step-4 similar to [99]. RCNN in Figure 2.11 demonstrates its ability to predict

additional offset proposal values that enhance the operations accuracy output by precisely

adjusting the bounding boxes around the coordinates of the regions of interest in [97]. The

application of non-maximum suppression is highlighted at this stage as it plays a significant

role during classification. This value quantifies the degree of overlapping between the boun-

Figure 2.11: R-CNN Ground-truth Overlapping and Intersection Over Union

-ding boxes of the ground truth (hand-labelled bounding boxes of the test dataset specify-

ing object coordinates in the image) of the class data and the predicted class regions made

by the model [100]. The intersection over union overlapping operations suppresses insignif-

icant estimations with its computations to evaluate its accuracy on the dataset. Authors

[101] and [102] defined the process as a single score operation for each classified object.
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R-CNN’s pipeline in Figure 2.12 discloses its object detection capabilities and emphasises

its constraints when processing objects within static images. Linked to Figure 2.12’s archi-

tecture, the model is affected by real-time constraints as it computes 2000 proposal regions

with a convergence of the results, which generates an output between 40 to 50 seconds per

image [103]. The previously mentioned limitation intensifies the model training operations

demonstrated in [98] and [104] by applying a fixed selective search algorithm that restricts

further feature learning and frequently encourages impractical feature candidate proposals

with large feature map generations. With an understanding of the fundamental concept

of classification, Figure 2.13 presents an overview of YOLOv5’s non-maximum suppression

predictive ability with bounding box encapsulation and confidence scores that suggest poor,

good, and excellent processing conditions. The green square demonstrates the significance

Figure 2.12: R-CNN Dispenses Added Offset Value for Prediction Support Source: [103].

of the classification accuracy compared to the ground truth data in red regarding poor,

good and excellent performance. The background of the 3DCNN model provides insight

into its processing as the state-of-the-art activity recognition from the class label prediction

process. The operation undertakes identical input-output label classification operations
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employing a 3-dimensional input for its processing layers.

Figure 2.13: YOLO’s Intersection Over Union Processing Output.

2.5 Background of YOLOv5

Discussions on YOLOv5 architecture in this section highlight its processing operations as a

formidable approach for object detection. Although multiple techniques exist for object de-

tection (mask [105], vehicle [106] and head [107] detection, the YOLOv5 framework strongly

applies to the proposed approach. The aim is to present the classification concept in the

possibility of objection detection and activity recognition before the literature review. The

idea fortifies the reader’s knowledge of classification mechanisms as the proposed strategy

for activity recognition before presenting investigations that led to the model selections. To

commence, demonstrating the YOLOv5 individual activity recognition method provided

systematic processing for the proposed model.

2.5.1 Overview of YOLOv5 Activity Recognition Perspectives:

YOLOv5 operations in [108] encompass 3-primary classification layers relative to its back-

bone processing network centred on CSPDarknet53. The approach utilised another 15-

processing layer comprising the neck and 3-defining the classification detection comprising

the head in [109]. Classification networks like CSPDarknet53 in [110] separate the base

layer activations into two sections, merging them through a cross-stage hierarchy to en-
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hance further its generalisation (learning violent action features) process. Further details

via Appendix 2 concerning YOLOv5 input-output processing accentuate its classification

operations. The essence of YOLOv5 demonstrated in Figure 2.14 accepts input and pro-

cesses it, utilising multiple layers to derive an output result. CSPL (cross-stage partial

connections) bottleneck layers are applied to regulate parameters that affect computa-

tional processing loads, thus smoothing the transitional flow of data directly by skipping

specific layers. Author’s [111] outlined how a 1x1 convolution layer achieves this by de-

creasing erroneous error details within the data to increase the performance of YOLOv5

additional layers. A spatial pyramid pooling (SPP) layer at stage two accepts this data as

the input and normalises the regions of interest that contain size and scale variations. Its

processing sections the input data into several feature map grids. According to [112], it

independently computes a max pooling operation to each grid to retain varying scales and

gradient intensities of the object/s features. SSP constitutes three individual pyramid lev-

els at differing scales with specific pooling that increases the feature processing for minute

object details. YOLOv5 feature fusing neck applies a path aggregation network operation

(PAnet) like [113], which combines the ROI attributes of the data in the adjacent layers

to facilitate higher prediction results. Another CSPL convolution operation at stage four

normalises those activation tensor block values. Following this is a 1x1 filter at stage five

that generates activations containing similar spatial attributes with distinctive channels.

Those operations improve the feature processing performance by minimising dimensional-

ity issues and adding non-linearity to the tensor output with a RELU non-linear activation

function. The model introduces up-sampling at stage seven to maximise the spatial resolu-

tion of activations by merging low-quality layer feature maps with others of higher quality

in adjacent layers. Author’s [114] suggested that its application improved the model’s pre-

diction accuracy on objects with multiple sizes and scale ratios. A concatenation technique

at stage eight described by [115] applied another refining process, further improving the

clarity of the object of interest by combining appropriate gradient intensity details of the
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Figure 2.14: YOLOv5 Object Detection Processing Source: [116].
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tensors. The data traverse additional classification, up-sampling, concatenation, and bot-

tlenecking from stages nine to eighteen to enhance the feature fusion operations. Within

the classification head, the function computes a final object detection prediction output

based on the feature representations generated from the neck’s operations. Discussed in

[108], it applied a feature extraction layer which processed the objects, scales and sizes.

An additional function layer within the head combines those extracted features to produce

refined tensors of the objects of interest. At stages nineteen to twenty-one, these final layers

applied a grid cell over each image with a series of bounding box scores and coordinates

for each cell. As discussed in [106] and [110], the function determined the prediction’s

probability relative to the object of interest at stage twenty-two.

2.6 Background of 3DCNN

It is paramount for the reader to understand the core aspects of activity recognition and

its 3D kernel towards 3-dimensional processing. The 3DCNN model is applied to predom-

inantly detect medical imaging and complex human actions with high accuracy [117]. The

technique entails processing blob features demonstrated in images via [118] and [119] in a

cube across a sequence of spatiotemporal frames utilising dense classification layers. The

3DCNN kernel discussed in [120] slides in 3 dimensions and dispenses a feature map of

width (how broad the region of interest is), height (the height of such regions), and depth

by several channels (visual colour spectrum as red, blue, and green). The depth identified

in [104] and [121] plays a significant role in the 3-dimensional structure towards regulating

the growth of the feature map block. The significance of the growth feature mentioned in

[122] and [123] negatively impacts the operation’s real-time processing if improperly con-

figured. Its depth mentioned in [118] has a specific configuration value applied to designate

a selective number of image frames for classification. This operation computes feature rep-

resentations of each primary colour channel to produce a final output. The critical concept

accentuates its importance, as it requires a degree of experience attained through multi-
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ple experiments to produce a balanced hyperparameter value. The depth regularisation

highlighted in [124], [125] and [118] reduces the impact of the computational load required

during the generalisation stages, which increases the real-time processing simultaneously.

Figure 2.15 classification provides context into 2D(a) and 3D(b)-dimensional data input to

bridge the reader’s understanding of the idea.

Figure 2.15: 3-Dimensional Input Compared to 2-Dimensional Classification Input.

2.6.1 Overview of 3DCNN Activity Recognition Layers:

Figure 2.16 illustrates the concepts of activity recognition with a further breakdown of its

operations in Appendices 2.2 to Appendices 2.3.2. Classification commences from input

stage zero into Cov3d, the first classification layer at stage one. The clean data reflect an

image size of (32x32x12x32) with a height and width of thirty-two relative to the model’s

dimensional requirements, with a depth of 12 to regulate the growth of the tensor block.

The depth parameter is paramount as it reduces the impact of application memory and

computation overload. A batch of 32 samples aligned with [126] is configured during train-

ing to regulate the accuracy output. At stage two, data from stage one is fed to this layer
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for processing with similar image size specifications via an activation layer. Its operation

defined in [127] refines the activity object’s edges and line pattern details within this tensor

block. At stage three, the Cov3d-1 layer, the data undertakes another convolution con-

version utilising similar dimensional specifications to accentuate the violent activity blob

objects. The operations applied a mathematical max pooling function at stage four to

reduce the tensor map dimensionality to 11x11x4x32.

The concept accentuated in [128] alleviates the computational complexity between adja-

cent layers. Stage five Cov3d-2 conducts another classification processing to refine those

high-level features at stage four. Its computations generated a larger tensor map size of

11x11x4x64. Upsizing and downsizing image dimensionalities mentioned in [129] during

convolution reduces its computational requirement, keeping its symmetrical specifications

in each layer. At stages six to seven, another activation layer, Act-1 and Con-3, refines the

violent activity features utilising similar image dimensions at stage #5. The operations

applied another Max Pooling-1 layer at stage eight to reduce the computational complexity

and the data’s dimensionality to 4x4x2x64. Following the latter, a Conv3d layer at stage

nine, Act-2 layers at stage ten and a Conv3d layer at stage eleven refine the violent features

further. Its operations generate more features at a dimension of 4x4x2x128.

The model applies another Max Pool-2 at stage twelve to reduce computational complex-

ity and dimensionality to 2x2x1x128 relative to the previous layers. Following is another

dropout layer at stage thirteen with similar size specifications. This operation regulates

the neurological processing mentioned in [80] between layer nodes on the network. The

function alleviates over-fitting and biased results by dropping neurons that become exces-

sively dependent on other reinforced input features. The operation feeds forward the data

towards Cov3d-6 at stage fourteen, Act-3 at stage fifteen and Cov3d-7 at stage sixteen.

Its computations alter the image dimensions to 2x2x1x256 as output. At this level, 256

high-level features are refined further and fed forward towards a final Max-Pool-3 at stage

seventeen. Max pooling reduces the computational processing and image dimen-
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Figure 2.16: 3DCNN Proposed Architecture.

-sions to 1x1x1x256. The operations utilised stage seventeen’s data as input for another Drop Out-1 at stage eighteen.

Its operations implement regularisation to encourage robust predictions and further reduce the risks of over-fitting.

The network utilises a flattening procedure at stage nineteen to reshape the cube-like output from stage eighteen into

a 1-dimensional vector that retains the spatial and temporal attributes of the violent activity features similar to [117].

The data reformation procedures defined in [130] emphasised the format requirements for the densely connected, fully

interconnected layers. The operations applied a dense layer at stage twenty to generate a label mapping sequence for

the activity input data from stage nineteen. Its logic discussed in [131] and [132] corresponds to feature relationships

and determines the probability scores of its predictions through linear and non-linear computations.
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The notion reinforced by [132] formulated the actual concept of activity recognition. An-

other Drop Out-2 layer induces regularisation and feeds output to a final Dense-1 Layer at

stage twenty-one for classification. At stage twenty-two, the Soft-Max function defined in

[133] maps probability scores with class labels, interpreting the confidence of the 3DCNN’s

predictions to conclude its processing. The final Soft-Max fully connected classification

layer utilises Soft-Max and Cross Entropy loss functions that ensure the probability of

predictions. Those layers aggregate features generalised during convolution identical to

Figure 2.17: 3DCNN Soft-Max Cross-Entropy Log Loss Process.

[134], which constructs a universal depiction of the object or objects of interest. The Soft-

Max function reflected in [135] interprets the output values as scores (turns the flattened

vector values into a flattened vector of values that sum to one), where input values undergo

transformations that denote probabilities as output with a range between 1 and 0. In this

demonstration, the data complexity hindered the processing from generating sufficient

values for the x,y curve zero intersection point, which demonstrates the starting position

of the processing. Log loss or cross-entropy loss outlined in [136] is applied to evaluate

the classification performance of the probability output as its predictions diverge from the
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ground-truth label as the score increases. Therefore, having a log loss of zero or closest

to zero with a predicted value of 1 is ideal. Nevertheless, an example of the log loss value

demonstrated in [136] suggests .012 with low probability scores is considered insignificant.

Figure 2.17 illustrates an ideal log loss performance for activity recognition where lower

log loss constitutes high accuracy results towards one hundred per cent.

2.6.2 Overview of Activity Recognition Processing Components:

Like YOLOv5, other mechanisms exist that perform activity recognition in the literature

as the state-of-the-art [65], [137] and [138]. With that knowledge, the investigations consid-

ered 3DCNN architecture as the state-of-the-art component to satisfy the objectives at this

stage. In this section, classification connotations provided context relative to 3DCNN from

an individual visual perspective, illustrating its processing capability as the second element

applied to fortify the proposed fusion technique. 3DCNN detailed in Appendices 2.2 in-

corporates several classification processing layers, thus transforming the CCTV data from

a 3-dimensional input stage into activity recognition at the output.

2.7 Overview of Classification Evaluation Measures

With an understanding of 3DCNN’s operations, evaluation techniques played a significant

role in appraising the actual performance. The measuring components accentuated in [139]

include graphical depictions and the confusion matrix’s application to reflect the output’s

interpretation. Author [140] projected graphical depictions of the results, encouraging

visual interpretations of the findings. Moreover, the confusion matrix outlined in [141]

measures overall classification performance. The approach followed [142] utilising combi-

nations of 4-predicted values that discern the integer one as a positive occurrence or a

lesser value to zero as a negative occurrence. The confusion matrix in [143] ’s processing

facilitated binary (2-class) and multi-class (greater than two classes) classification relative

to processing tasks. Its classification process considers important computational equations
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reflecting the mean average precision, accuracy, false discovery rate, sensitivity/ recall, the

f1-score, and specificity. Further details in Appendices 2.3.1 to Appendices 2.3.3 expanded

the concepts of the evaluation metric discussions below to fortify the understanding of

binary and multi-class assessment techniques.

(i) TP/Recall/Sensitivity (TPRS): Demonstrates results of all classes that are truly

positive, how many were labelled correctly [144]. Sensitivity (TP, Recall) denotes:

TPRS =
TP

TP + FN

(ii) TN/Specificity: The ability of a model to correctly classify a class as weapons or

not [145]. Specificity denotes:

Specificity =
TN

FP + TN

(iii) Fall Out: The proportion of incorrect predictions incorrectly identified as correct

predictions. The idea refers to the probability that a false alarm will be raised [146].

FP (false positive) or Fall Out Rate denotes:

FalsePositive(FP ) =
FP

FP + TN

(iv) FN/False Negative Rate/Miss Rate: The proportion of correctly predicted cases

that were incorrectly classified as incorrect [141]. False Negative Rate denote:

FalseNegativeRate =
FN

TP + FN

(v) Precision/Positive Predictive Values: Of all correct labelled predictions, how many
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are correct? [147]. Precision denote:

Precision =
TP

TP + FP

(vi) False Discovery Rate: The number of classes that are not weapons in nature but

are identified as weapon objects [148]. False Discovery Rate denotes:

FalseDiscoveryRate =
FP

FP + TP

(vii) F1-score: The total amount of low False Positives and False Negatives [149] and

[144]. F1-score denotes:

F1 − score =
2x(PrecisionxRecall)

(Precision + Recall)

(viii) Accuracy: The overall performance of predictions correctly classified [150]. Accu-

racy denote:

Accuracy =
TP + TN

(TP + FP + FN + TN)

(ix) Average Precision (AP): The average in this instance computes results for each

class utilising several other metrics, including the Precision, Recall, IoU, the Precision

Recall-Curve (graphical representation of the precision against the recall values) and

the area under the PR curve (AUC). The idea encompasses generating the model’s

prediction score, evaluating its precision, and recall outcome status with the confusion

matrix for each class object. The metric condenses the Precision/Recall curve to 1

numeric value. Its output is usually high when the precision and recall values are high

and considered low when both are low relative to the range of confidence threshold

results. The numeric output described in [151] ranges between 0 and 1. It takes the

area under the precision/recall curve by applying the integral function of the recall

59



values ranging from 0 to 1, where r is the recall, p is the precision at specific values

with a summation of the precision values p(r) [152]. Computing the average precision

is as follows:

AveragePrecision(AP ) =

∫ 1

r=0
p(r) dr

(x) Mean Average Precision(mAP):IoU=0.5 The performance is measured by com-

puting the average relative to the AP of every class to analyse convolution classifi-

cation accuracy. Here, (n) is the number of classes for each class that (i) and (AP-i)

considers. The idea represents the AP value for the (i-th) class across different IoU

thresholds relative to Figure 2.11. Calculating the final mAP value specified in [151]

produces an average of all mAP scores per class. The computation of the Mean

Average Precision (mAP) is as follows:

MeanAveragePrecision(mAP ) =
1

n

n∑
i=1

APi

Appreciating the model evaluation techniques, the outlook on performance establishes a

comprehension of the results regarding positive operations or otherwise. The outlook on

performance is as follows.

2.8 Summary of Classification Issues: Over/Under and Good Fitting

At this level, performance issues relative to over-fitting, under-fitting and context of a good

fit accentuate evaluation concepts as per previous discussions. Also, emphasising signifi-

cant progress and insignificant performance demonstrate essential items for deep learning

models. Graphical depiction scripts are implemented during development to highlight the

visual outlook of these issues to convey the operation’s significance using the matplotlib li-

brary packages [153], [154] and [155]. The analysis of these metrics plays a crucial role when
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visually observing the processing. The curvature of the graphical depictions expressed in

[156] and [157] determines whether the model requires further hyper-parameter fine-tuning

(tuning the model’s option features), more training data, or architectural adjustments to

reduce the negative impact on its processing. These evaluating factors discussed in [158],

[159], and Appendices 1.5 expound on whether the issue of over-fitting or under-fitting

is present when dispensing the final output. The idea of an insignificant performance is

presented at this stage to enhance one’s awareness of factors that can limit the processing

efficiency

Figure 2.18: Graphical Representation of a Good Data Fitting Operations Model.

of the model. Moreover, the idea of a good fit defines positive processing results. The

output determines the mitigation strategy when experiencing fluctuations by appreciating

the previously discussed graphical depictions. Reducing model complexity to align with the

task and integrating large datasets with sufficient feature patterns can mitigate over-fitting

and under-fitting issues. A good fit demonstrated in Figure 2.18 displayed a graphical

representation of a well-fitted operation reflecting high-performance processing. The visual
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reflection of the operation coincides with [160], [161] and [162] as a balanced distribution

of the values facilitating a gradual descent of the training in blue followed by the validation

outputs in orange. The graph illustrates the operations at high loss up commencing the

processing and gradually descending, which projects how well the model generalises for

each epoch iteration.

2.9 Literature Review

Activity recognition is a prominent concept that facilitates tasks involving predicting hu-

man motion relative to acceleration, velocity and trajectory. Before artificial intelligence

concepts, authors in [163], [164], [165] and [166] explored heuristic and statistical meth-

ods concerning relationship and pattern knowledge to recognise activities as traditional

measures. Other researchers in [167], [168] and [169] incorporated decision trees concern-

ing random forests to simplify processing input features and relations of target variables.

Authors [170], [171] and [169] incorporated the power of support vector machines (SVM)

to compute high dimensional activity recognition data in classification challenges. Ac-

tivity recognition via [172], [173] and [174] incorporated K-Nearest Neighbors to achieve

classification effectiveness by locating the k-nearest data points and assigning the most

common label to suggest the presence of the activity. Some approaches assumed inde-

pendence amid features to disclose the classification state utilising Naive Bayes techniques

[175], [176] and [177]. A more chronological data and time-series approach in [178], [179]

and [180] employed activity recognition with hidden Markov models (HMM) to achieve

classification effectiveness. Authors [181], [173] and [182] attempted a Gaussian mixture

models (GMM) clustering technique to process the activity recognition data’s probability

distribution towards activity classification.

Further investigations revealed a template pattern-matching procedure in [183], [184] and

[137] that achieved classification by generating templates of activities from sample data
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and matching new attributes to classify activities. Authors [185], [186] and [187] attempted

ensemble bagging and boosting techniques via combining multiple classifiers to enhance the

activity recognition performance outcome. Some investigations integrated signal processing

techniques via Fourier and wavelet transform, thus altering time and frequency signals

relative to accelerometer data to convey actions [188], [189] and [190]. The authors in [191],

[192] and [193] applied graph-based methods to pinpoint probabilistic relationships among

variables. Activity recognition in [169], [194] and [195] applied clustering, which segments

the data into clusters relative to the similarity in relationships to unveil activity patterns

without the application of labelled data. Other techniques in [196], [197] and [198] finetuned

hyperparameters to generate rules through natural selection and genetic processing. More

futuristic approaches in [199], [200], [201] and [202] explored the applicability of sensors

base measures to conclude the human gait in various forms.

Like activity recognition, object detection traditional methods in [203] encompasses HAAR

feature-based concepts as a cascade approach of complex classifiers to effectively generate

an image’s edges, lines and gradient boundaries in real-time. Comprehending the detection

process within an image in [203], [204] and [205] relates to feature-based detectors and

descriptor algorithms working in tandem to establish edge boundaries accentuating its

relationship resonance. Descriptor tools such as the Local Binary Pattern LBP [206],

Histogram Of Gradient HOG [207], Scale-Invariant Feature Transform SIFT [208], Speeded-

Up Robust Features SURF a combination of both [209], Binary Robust Invariant Scalable

Key-points BRISK [210], Binary Robust Independent Elementary Features BRIEF [211],

and Gradient Location and Orientation Histogram GLOH [212], match features between

different images. Detectors concerning Harris corner detection [213], Oriented Fast And

Rotated Brief ORB [214], and Features from accelerated segment test FAST [215] obtain

key repeatable attribute points to present the critical attributes of an object within an

image.

Some authors incorporated a sliding window technique across an image at several ratio
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scales, extracting features from each window and implementing machine learning via sup-

port vector machines SVMs or decision trees to achieve its classification [216], [217], and

[218]. On the other hand, a selective search in [98], [219], and [220] incorporated a region

proposal classification scheme, which creates candidate object regions by combining region

and pixel similarity regarding resolution, size, gradient colour, colour textures, object size,

and it dimensional shape. Some researchers investigated colour histograms and textures-

based solutions depending on texture patterns and colour proportions for object identifi-

cation and classification [221], [222], and [223]. Traditional object detection model-based

techniques implemented in [224], [225], and [223] relied heavily on applications coupled

with the object’s geometric properties regarding boundary detection and matching shapes

to achieve its classification outcomes.

As available techniques for the proposed solution through the literature investigations be-

came apparent, most research works generally applied object detection and activity recog-

nition to classify actions. Ubiquitous evidence proved that the gist of achieving a high-

performance activity prediction solution circumvents anthropometric notions specific to

normal (neutral) human actions. Several research efforts presented the activity classifica-

tion individually rather than disclosing its generic status. The evidence in the literature

proved that human activities lacked the holistic representation as non-violent actions or

violent behavioural patterns before aligning the specifics of its action class (whether the

action is violent or not and then aligning its subclass status towards a stabbing or rough

playing). Most works lack representations of pre-empting violent attacks that identify vic-

tims, aggressors, and weapon possibilities deployed during the altercations. The literature

investigations also disclosed extensive research towards neutral human action classification

without affiliation to violent outbursts. The previous notion led the investigations towards

individual processing mechanisms, which facilitate violence processing and promote ro-

bustness for the proposed concept. The approach commenced by exploring the possibility

of developing a reliable human activity model that accurately and efficiently pre-empts
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violent activity in CCTV videos as the primary prospect.

At inception, the investigations reflect innovative artificial intelligence frameworks in 2-

stages to evaluate the true capability of the formidable processing techniques. Stage-

1 explored innovative concepts of object detection towards violent action and weapon

artefact classification. Following Stage-1 is Stage-2, which determines the state-of-the-

art techniques concerning activity recognition. Implementing this specific investigative

structure determines whether object detection can efficiently perform activity recognition

before integrating supplementary activity recognition mechanisms. The approach fortifies

the rationale for the proposed robust fusion concepts and their processing. The review is

as follows.

2.9.1 Stage-1: Object Detection for Violent Activity Mechanisms:

The investigative task disclosed a human key-point pose prediction and action classifica-

tion in raw images as a proposition for action detection utilising RCNN as the first object

detection mechanism [226]. Their proposal attained a 70.5% mean average precision with

an input object proposal using RCNN towards neutral action classification issues on the

PASCAL VOC dataset. The approach considers activity detection tasks containing less

complex movement. However, the complexity of tracking anthropometric key points during

violent altercations could adversely impact the overall processing due to the sporadic na-

ture of the motions relative to the ROI’s speed, trajectory, and velocity. Because RCNN’s

framework generates 2000-proposal regions at a rate of 45-50 seconds per image for object

detection, its applicability towards real-time operations proved challenging as it slows pro-

cessing speed. Further investigations presented an adaptive RCNN concept that processed

typical contextual action cues using R*CNN [227]. They applied several proposal regions

for classification while maintaining the ability to localise the action detection. Their ap-

proach achieved 90.2% mean average precision with 1 second per iteration for training and

0.4 seconds on testing per image using GPU on PASCAL VOC and Berkeley attributes
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of people dataset. Their efforts emphasised classification significance relative to its GPU

processing and inference speed for real-time applications. However, they employed neutral

actions (jumping, phoning, playing an instrument, reading, riding a bike, riding a horse,

running, taking a photo, using a computer, walking) that reflect limited cross-correlation

of body parts with a high sporadic motion to evaluate classification complexity during

inference. Because of the importance of human life in real-world scenarios, the demand

for performance mechanisms satisfying the dependency ratio between total accuracy and

speed is high.

Author [228] introduced a collaborative effort utilising mask region-based classification net-

work (Mask RCNN), key-point detection, and long short-term memory (LSTM) for action

detection relative to punching and kicking. They achieved 93.4% as the highest accuracy

on 40,423 frames at a split ratio of 80:20 generated from Weizmann (containing 90 video

samples) and KTH (with 2391 sequences) datasets of neutral human action. They intro-

duced a third fabricated dataset of 273 videos sectioned into 90-Boxing, 90-Kicking, and

93-neutral video samples, in which they extracted the object’s temporal key-point mask

details for processing. Compared to author [227], author [228] ’s approach facilitates ac-

tivity recognition; however, its limitation reflects similarities relative to RCNN. Violence’s

complexity and sporadic nature potentially intensify generalisation issues if human-body

correlations escalate. Also, the computational resources required for its operation are ex-

ceptionally high. As discussed in Section 2.4.5, RCNN’s processing complexity adversely

impacts computational resources. This notion led to the investigation towards [229], which

confirmed the drawbacks of region-based approaches utilising RCNN. The author developed

a Fast-RCNN (fast region-based classification network) technique emulated from RCNN,

achieving a mean average precision of 66.9%. The approach applied a single-stage training

algorithm to detect object proposals and refine their spatial locations in 0.3 seconds (ex-

cluding the object proposal time) using several test samples derived from PASCAL VOC

2012. Fast-RCNN attained high significance for object detection relative to weapon de-

66



tection in static images; however, its operations require reinforcements to perceive objects

containing spatiotemporal trajectories over high speed relative to humans holding bladed

instruments. Also, its framework must improve towards real-time efficacy due to heavy

computational storage dependency when scaling image sizes.

Author [216] proposed Faster-RCNN as a region proposal network (RPN) concept that

generates premium, nearly cost-free region proposals and predicts object boundaries with

scores simultaneously using Fast R-CNN for detection. They achieved this by alternat-

ing the selective search process with RPN for object detection. Their efforts dispensed

a mean average precision accuracy of 75.9% with 300 proposals per image on a selective

sample size of 10k images derived from PASCAL-VOC-2007 and 2012-MS-COCO. In this

instance, RPN’s shared concept demonstrated a high capability for object detection rel-

ative to weapon artefacts. Its object detection design validated its operations for typical

human actions in non-violent scenarios. However, the technique introduces high risks con-

cerning robust performance towards the criticality of pre-empting lethal scenarios relative

to human life. Its capability to generate 300 proposals per image is a critical output risk

concerning the depletion of the computational resource; nevertheless, its processing capa-

bility exceeded RCNN’s 2000 proposal efforts. The discovery of [230] ’s method ”you only

look once” (YOLO) is the first milestone in the state-of-the-art object detection for this do-

main. The authors applied YOLO as a human object detector on the Pascal VOC dataset

and achieved a mean average precision score of 63.4% accuracy at 45 frames per second.

YOLO’s processing divides violent image data into a grid system where each cell detects

objects within itself at high speed and accuracy. Although the state-of-the-art is fast, its

processing is limited when detecting small objects conveying high acceleration, velocity,

and trajectory. Further investigation disclosed several versions of YOLO’s architectures

that produce high-efficiency performance ratings for object detection.

Further investigations into [231] and [232] reveal LIRIS non-violent human activity recog-
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nition concepts utilising YOLO. They focused on classifying the complexity of non-violent

human actions and detected each human object’s localisation. Their ADSC-NUS-UIUC

team achieved a precision of 41%, an f1-score of 53%, and a recall of 74% on the LIRIS

dataset comprising 55,298 images of activity containing 828 actions in their dataset. Their

approach facilitated activity recognition, but the YOLO base framework cannot detect

highly accelerated motions of bladed objects, in addition to the combined complexity of

violent actions and the criticality of attaining robust outputs. Author [113] applied YOLO

version two (YOLOv2) as a pedestrian detection system, achieving accuracy increments

ratios of 9.03%, 6.37% and 5.91% on 14999-samples containing multiple pedestrians per

image in the KTH dataset. YOLOv2 proved fast for object detection on neutral data;

however, it suffers from classification issues relative to low recall compared to YOLO’s

base version. This issue escalates in conditions where the correlated patterns of humans

or small objects convey highly accelerated motions. YOLO’s version three (YOLOv3) in

[redmon2018yolov3] improved on YOLOv2. They applied a modified framework to fa-

cilitate a high-speed human detection approach, achieving a mapping result of 57.9% on

the COCO dataset. The approach facilitated human object detection; however, the model

exacts a high demand for application memory and classification challenges when process-

ing smaller objects. The investigations disclosed [233] ’s YOLO version four (YOLOv4).

They developed a weapon detection solution towards identifying violent crimes. They fo-

cused on detecting deadly weapons such as handguns and knives, utilising custom-trained

models circumventing the YOLOv4 Darknet framework for single and multi-class classi-

fication. Their single-class approach achieved a mAP of 77.78% accuracy, whilst their

multiple-class endeavour dispensed up to 100% accuracy on a section of the Open Images

V6 dataset exceeding 3000 images. Their approach facilitates small weapon detection from

a static perspective with high performance. Although the approach proved promising,

the framework demands high application memory processing and experiences challenges

when processing low-level CCTV image resolution with high noise ratios and fluctuating
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luminous intensities of the scenery.

Author [234] developed a pedestrian detection and suspicious activity recognition tracking

technique utilising the YOLO version five (YOLOv5) on a pedestrian dataset containing

600 videos of student behaviour relative to cheating, stealing lab devices, disputes involving

minor scuffling scenarios. They attained a mAP of 96.12% towards object detection. Their

work facilitates object detection but needs proper analysis of small weaponry with high

motion and excessively violent correlated human interactions. There are limited official

publications on YOLOv5. The investigations into [235] disclosed a suspicious activity

trigger system (SATS) that automatically triggers a suspicious activity alert message when

such actions are detected. They applied YOLOv6 to detect human objects and determine

whether the actions were suspicious or not concerning property intrusions. Their solution

triggers an alarm, sending notifications for evasive actions in the context of suspicious

activities. They attained a mAP of 96.6% accuracy, utilising a split ratio of 80% training

and 20% for validation and testing on 1000 images of humans from the Google Open

Image dataset. Their efforts disclosed merit towards real-time object detection for weapons

and suspicious actions; however, its applicability towards the complexity of human-to-

human violent interactions with artefacts requires further analysis to determine its impact.

YOLOv6 processing lacks framework flexibility with stability issues compared to YOLOv5’s

ability to facilitate the processing of more enormous frame proportions with high-resolution

video inputs.

Author [236] applied YOLO version seven (YOLOv7) towards anomalous activity detection

using a control room alarm technique. They collected video data from online platforms

and applied a split ratio of 60% for training and 40% for validations. They achieved 65-

75% mAP, disclosing that a significant volume of data is necessary for high performance.

The approach demonstrated merits towards object detection for activity recognition as a

new object detection medium. However, it lacked the robust performance requirement due
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to the significance of pre-empting the loss of human life. Authors’ [116] YOLOv7 and

[237] YOLOv8 are new techniques with limited research prospects within the literature

to evaluate their feasibility. The review disclosed [238] ’s YOLO version nine (YOLOv9)

and [239] ’s YOLO version ten (YOLOv10) as the state-of-the-art for object detection and

activity recognition. However, no significant publications detailed the evaluation of violent

activity detection with weapon artefacts from a theoretical standpoint. The context of

YOLO’s model selection in Chapter 3 disclosed the significance of the current research.

Exploring the state-of-the-art object detection possibilities for enhanced classification with

minimal disadvantages was necessary to expose activity recognition innovations in Stage

2 below. The idea is to evaluate the pros and cons of performance compared to YOLO

individual processing discoveries.

2.9.2 Stage 2 Investigations: for Violent Activity Recognition:

The investigations commenced Phase 2 of the literature review by reviewing state-of-the-art

activity recognition methodologies relative to the previous discussions. Several innovative

propositions substantiated the capability of YOLO object detection performance. How-

ever, an appropriate concept that nullifies vulnerable classification issues regarding the

movement of small objects with a high trajectory, velocity and acceleration is yet to be de-

termined. The earliest concept of activity recognition considered [240] ’s wearable activity

motion sensors approach that detected neutral actions in motion relative to the distribution

of the human gait. They developed a novel approach for automatic activity recognition

relative to multi-sensor data via an offline adaptive-hidden Markov model. The technique

detected commonly performed non-violent actions rather than complex violent scenarios.

They examined human subjects with digital button sensors generating activity data by

monitoring a gyroscope’s axis orientation signals, the accelerometer motion and location

from a GPS. Their activity recognition efforts dispensed an f1-score of 0.98% as the highest

output for non-violent actions compared to complex, violent actions. The framework’s core
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operation introduced complex configurations to capture the heterogeneous violent features.

Violent real-world scenarios require robust processing systems that supersede accelerometer

sensors relative to their ambiguous nature and the range of violent sporadic motions.

The investigations disclosed [119]. They applied a concatenation of the state-of-the-art

3DCNN and LSTM as a Bi-Directional LSTM solution for early action frame prediction

relating to motion patterns and object appearances as a modern automated technique. The

authors achieved 0.68% accuracy on the UCF crime dataset toward activity recognition.

However, the technique required improvement relative to feature learning and extractions

at the input stages. The impact introduced an adverse effect that hindered the model’s in-

ference capability due to overlooking pertinent complex processing anomalies encompassing

violent activity features during training. Its operations increase the risk of biased results.

Further investigations revealed [241], who integrated a mixed classification Resnet-50 re-

gression block approach on the UCF-101 dataset based on feature and model fusing for

specific targets. They achieved an activity recognition correct rate of 71.07% at a pro-

cessing speed of 200 fps (frame per second) with complex configurations. Authors [242]

developed a hybrid 3DCNN HAR model for activity recognition actions of KTH and J-

HMDB datasets. They demonstrated state-of-the-art performance compared to baseline

methods, with an accuracy output of 78% on KTH and 90% on J-HMDB from a non-

violent perspective. They experienced image dimension challenges that adversely affected

their generalisation operations. The issue negatively impacts the model’s robust processing

capability as a critical component of preventing the loss of human life. Author [243] pro-

posed a hybrid technique including 3D-CNNs and optical flow-gated networks for violent

activity recognition as the second milestone. They obtained an accuracy of 87.25% on the

RWF dataset containing 2000-sample videos with complex script configurations. The idea

at this stage was to establish state-of-the-art activity recognition that allows framework

integration flexibility for further development.
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2.10 Conclusion

To summarise Chapter Two, essential knowledge provided context into the research area

to assist the reader with understanding the technical jargon and processing operations

required for this research thesis. The chapter provides context into blob analysis, cross-

validation, library packages, and an introduction to classification models as crucial data

handling and pre-processing measures that encourage high performance during the devel-

opment stages. To fortify the processing concept, an introduction to the background of

the YOLOv5 and 3DCNN provided an overview of the evaluation measures to achieve

processing efficacy. It was necessary to demonstrate the context of classification issues

to emphasise the importance of attaining a well-fitted model. Conducting the literature

review in two stages facilitates the difference in the object detection and activity recog-

nition approaches. The literature’s first stage presented YOLO as object detection, with

a second stage disclosing 3DCNN. Achieving the milestones allowed the assessment of the

experimental methodology in Chapter 3 to formulate processing efficacies between both

models. Disclosing the methodology is as follows.
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Chapter 3

Research Methodology

Chapter 3 accentuates the experimental approach towards developing an innovative vio-

lent activity detection solution, which recognises violence accurately and efficiently within

CCTV data. The research methodology reflects a series of experiments that expose the

technical operations required to align Section 1.3 objectives with the developmental phase.

The investigations commenced with a quantitative approach aligning [244] ’s approach

towards observing violent scenarios affecting society through statistical analysis relative

to collecting and processing significant volumes of data. The concepts emphasise data

patterns that aid model learning through convolution to infer results dispensed via sim-

ulations; this validated the significance of the proposal’s contributions. The operations

designed encompass the effectiveness of YOLOv5m and 3DCNN as diverse artificial in-

telligence mechanisms from an individual processing perspective. The idea of YOLOv5m

as the state-of-the-art for object detection facilitated the classification of lethal weapons

pertinent to the class of activities within the scenery of static frames. In contrast, the lit-

erature review disclosed the possibility of the YOLO base model as an activity recognition

solution using non-violent data across a sequence of frames. The possibility of a YOLO

base version in a non-violent capacity allowed the integration of YOLOv5m in a similar ac-
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tivity recognition context, utilising multiple classes conveying violent actions. The strategy

reduced integration challenges via programming and provided a method to merge weapon

and action objects portrayed in a sequence of frames.

Fortifying the processing encompasses the implementation of 3DCNN as the state-of-the-

art for activity recognition. The concept validated the existence of the action’s generic

category, and this inferred whether such leads to potential violence, non-violent attributes,

or individual sub-classes reflecting stabbing, beating, fighting, or shooting. The idea entails

observing the significance of YOLOv5m and 3DCNN by implementing activity recognition

fine-tuning modifications that established model consistency and high performance. Apply-

ing the precision, mAP and recall metrics allowed the evaluation of the task to determine

the factual processing accuracy discussed within Section 2.7 and Section 2.8. Chapter 3

is divided into five sections to illustrate the stages required to achieve the methodology

towards pre-empting lethal violent scenarios. Section 3.1 commenced by providing an

overview of dataset processing operations in alignment with research question-2’s objec-

tives in section 1.2.1. Given the previous data procedures, a projection of the experimental

protocol in Section 3.2 aids in formulating prospects to attain the results in alignment with

the research initiatives discussed in Section 1.3.

Moreover, details concerning YOLOv5m’s framework in Section 3.3 and 3DCNN in Sec-

tion 3.4 provide the evaluation strategy to foster effectiveness. Finally, a summary of

discussions disclosed the alignment of the research endeavours in Section 3.5 to conclude

the chapter. Acquiring significant volumes of relevant data containing quality resolutions

of real-world stabbing data, with its pre-start duration, proved challenging to locate as a

prerequisite. The fact that the nature of the research depended on data predominantly

concerning individuals being fatally injured or losing their lives intensified the previously

mentioned challenge during the data acquisition process. Because of the criticality of

human life, an additional challenge presented itself if unrealistic data repositories were
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employed. The issue escalates biased false positive computations dispensing erroneous

outcomes. Additionally, the challenge intensified the processing complexity by distorting

the model’s ability to interpret valid attributes of violence via stabbing compared to rough

playing. The research investigations in Section 2.9 disclosed multiple bench-marked dataset

repositories that facilitated activity recognition from a neutral, non-violent human action

perspective. The data acquisition task selectively sourced violent samples via online so-

cial media forums and avoided items containing poor resolutions to establish a balance of

violent samples compared to the availability of non-violent samples in ubiquitous reposi-

tories. The raw data acquisition approach entails downloading significant violent action

samples for YOLOv5m and 3DCNN during the training stages. The strategy produced a

balanced range of motions as a significant sample size to enhance the models’ individual

processing/learning initiatives regarding the architectural difference.

3.1 YOLOv5m Activity Recognition Class Description

Completing the data acquisition operations previously discussed ensured that the classes

obtained matched the context of the class of activity template specified in Section 2.1.1.

The approach ensured that the action categories clearly distinguished between what consti-

tutes violent and non-violent classes before commencing development. Applying 16 classes

in Table 3.1 of a balanced ratio of violent and non-violent categories assisted in accentuat-

ing the operation’s significance during YOLOv5m’s development. The significance of the

sixteen classes assists in optimising the processing and encourages effective classification

in alignment with the aim and objectives.

3.1.1 YOLOv5m/3DCNN Activity Recognition Dataset Grouping:

With an understanding of the data classes, a grouping strategy sectioned the samples to

reflect a new real-world violent action detection dataset (RWVAD). After the augmentation

process, a 560-sample dataset endured further segmentation into a balanced ratio of 280
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Class Labels YOLOv5 Class Label Description

Violent Classes Classes used to indicate the presence of or violent activity

0 Aggressor Individual/s about to commit or committing an act of violence

1 Blood Indication of injuries sustained during violent altercations

2 Knife-weapon Indication of a knife used for violence or is in the image scenery

3 Stabbing Pre-violent/ violent action has occurred/ is continuing

4 Sword Indication of a bladed object (fencing mainly/ can occur in stabbing)

5 Knife-Deploy An indication of the Stabbing Posture or Gesturing

6 Hand Indication of a knife being held to initiate a stabbing

7 Victim Indication of person/s being attacked/receiving injuries

Non-Violent Classes Classes used to indicate Non-violent Activity

8 Fencing sport actions used in action similarity experiments

9 Person Indication of additional person/s involved in or around the attack

10 Discussion-WGI Persons chatting Whilst Giving an Item to another person

11 Discussion-WOBoard Persons chatting whilst Writing On black or white Board

12 Discussion-ppl People/Person chatting casually or formally

13 Item-passed Person handing off an item to another person

14 Writing-On-Board Person/s Writing on black or white board

15 Background-Images No object of interest in the scenery (enhances inference ability)

Table 3.1: YOLOv5m Subclass Violent and Non-Violent Description.

samples per the generic class between violent and non-violent actions with varying duration, resolutions, and dimen-

sionality. Each subclass category reflects 35 videos per class for consistency in the generic classes. The intentional

integration of action similarity samples supported the evaluation of non-violent/violent actions containing high simi-

larity in characteristics, such as fencing and stabbing. The rationale behind the deliberate grouping strategy challenges
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the classification operation for both models as a prerequisite towards thoroughly validating the approach. The class

objects significance within Table 3.1 and Table 3.2 constitute object detection and from an activity recognition sense

to convey the difference in YOLOv5m and 3DCNN input sequence. For example, the stabbing class label in Table 3.1

is an object for YOLOv5m, which conveys one object demonstrated across a sequence of frames for a given duration

between 10-12 seconds. Contrarily, the 3DCNN stabbing object in Table 3.2 represents the entirety of the video to

signify the action from a class label classification perspective.

The real-world violent action detection dataset (RWVAD) was strategically separated into RWVAD1st and RW-

VAD2nd. This separation was not just a technical detail but a key factor in facilitating the comparison between

the two models (3DCNN/YOLOv5m). Grouping the data in this fashion facilitated superiority investigations into

YOLOv5m as an activity recognition model and the state-of-the-art 3DCNN activity recognition. The distinction

in the datasets’ naming convention also plays a crucial role, providing a clear way to identify the data designed for

YOLOv5m’s framework as RWVAD1st dataset, as opposed to the data designed for 3DCNN’s architecture as RW-

VAD2nd during development. Although the architectures differ, as discussed in Appendices 3.1 and Appendices 3.2,

consistency in alignment with the model’s processing proved paramount as standards. Utilising the same data de-

rived from the acquisition procedures via social media sources and [245]’s repository adds value to the operation’s

effectiveness.

3.2 3DCNN Activity Recognition Class Description

Like YOLOv5m’s class overview in Table 3.1, it was necessary to investigate 3DCNN action similarity processing

utilising classes emphasised in Table 3.2 to establish its true processing abilities. The findings proved the fulfilment
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of the action similarity objectives by implementing RWVAD2nd conforming its details relative to Appendix 3.2 to

facilitate 3DCNN’s architecture.

# Class Label 3DCNN Class Label Description

Non-violent(neutral) Generic Category: Indication of normal human actions

0 Cutting-in-Kitchen(C) Indications of food preparation in a kitchen as a neutral class

1 Nun-chucks(N) Indications individual using nun-chuck alone in a non-violent manner

2 Fencing(Fe) Actions relative to the fencing sport/ For Action Similarity experiments

3 Sumo-wrestling(Su) Similarity relative to the wrestling sport

4 Walk-with-dog(W) Actions relative to person/s walking dog/s

5 Knitting(K) Actions relative to person/s sitting/ knitting

Violent Classes Generic Category: 1 vs 1, many vs 1, 1 vs many, group violence

6 Fighting(Fi) Striking with arms/legs to cause harm / For Action Similarity Experiments

7 Beating(B) Striking with object to cause bodily harm

8 Shooting(Sh) Use of projectile weapon/s to cause human endangerment

9 Stabbing(St) Use of bladed/sharpened instrument/s to cause bodily harm

Table 3.2: 3DCNN Activity Recognition Subclass Description.

3.3 Experimental Protocol:

The application of YOLOv5m activity recognition with 3DCNN allowed the generation of essential results to satisfy

the research objectives relative to Appendix 1.3 and 1.4. The notion emerged from the understanding of the data

operations and YOLOv5m as object detection concepts discussed in Appendix 1.5. The research approach focused on

a series of tasks to demonstrate the practicality of artificial intelligence models in achieving the aim and objectives.

These tasks include.
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Task-(1) Explore YOLOv5m object detection locating human stabbing objects/weapon

artefacts using RWVAD1st dataset to satisfy the aim and objectives via research

question-1 to 3 and 5 in section 1.2 and Section 1.3

Task-(2) Evaluate 3DCNN activity recognition ability to determine the generic status

of actions between violent and non-violent classes. Following those results, inves-

tigations of 3DCNN from an individual perspective established subclasses such as

stabbing, beating, fencing, and shooting. The operations satisfied the aim and ob-

jectives via research question-1 to 5 in section 1.2 and Section 1.3.

Task-(3) The applicability of YOLOv5m supports the enhancing of 3DCNN for activ-

ity recognition relative to model superiority. The operations satisfied the aim and

objectives via research question-1 to 6 in section 1.2 and Section 1.3.

3.3.1 Overview of YOLOv5m Activity Recognition Setup:

The operations commenced by downloading YOLOv5m object detection files from the

MacBook command line terminal adhering to explicit standards detailed in Appendix 3.3

concerning [108]’s online repository. Following those initiatives, blob analysis techniques

applied section regions of interest(ROIs) concerning violent action features from the RW-

VAD1st dataset. From a sequence of frames, a blob extraction task sections specific features

conveying violence. The concept accentuated regions of interest (ROIs) utilising bound-

ing boxes to establish the coordinates of weapons or the activity object’s spatiotemporal

location within the data during training stages. Blob analysis proved beneficial as it also

reduced the classifications high processed demand on the memory by eliminating redundant

image frames in the RWVAD1s dataset. The breakthrough promoted further augmentation

procedures that generated surplus data as both models are heavily dependent on enormous

volumes of data to generalise the concept of violence and encouraged robust operations.

The RWVAD dataset endured pre-processing to dispose of unwanted noise (unwanted ac-
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tions/objects) to facilitate YOLOV5m and 3DCNN input standards. The idea reduced the

negative processing impact that affects the real-time result convergence. Augmentation

operations assisted in generating more data (from initially 200 to 560 raw samples) via

rotations left and right 30-90% at 1-5%, shearing ranges between 0.001 to 5%, grey-scale

between 1 to 10%, cropping between 1 to 10%, Gaussian noise at 5%, and contrast manip-

ulation between 1 to 10%. The data sectioning reflects 80% training, 20% validation and

20% exempted from the RWVAD1 dataset for testing as the ratio to match ubiquitous ap-

proaches within the literature review. The split operations via [246] applied 448 samples for

training (112 videos for validation) and 112 videos for testing. For demonstration purposes,

ten additional samples facilitated the testing procedures to project the model’s capability

from an informed perspective. Those efforts ensured that a significant amount of data

facilitated the cross-validation operations to establish the model’s aptitude via training.

YOLOv5m operations incorporated an M1-silicon chip Metal 3, Ventura-13.2.1 operating

system, 32-processing cores, 64-giga byte Mac-Book Pro computer with the availability

of a graphical processing unit (GPU) for real-time operations and central processing unit

(CPU) for mundane tasks.

3.3.2 Overview of 3DCNN Activity Recognition Setup:

Unlike YOLOv5m, 3DCNN’s framework classifies action class labels instead of regions

of interest processed with bounding boxes during the blob analysis stages. The frame-

work undertakes a different setup encompassing some similarities relative to YOLOv5m.

3DCNN’s operation utilised the PyTorch platform and Python previously mentioned in

Section 2.3. Acquiring author [118]’s framework via the online GitHub repository allowed

the modification of its layers and hyper-parameter fine-tuning options to meet the process-

ing requirements of the proposed fusion concepts. The operations mirrored cross-validation

split procedures to reflect YOLOv5m’s ratio to maintain configuration consistency utilis-

ing the RWVAD2nd dataset. Like YOLOv5m, 3DCNN’s architecture required explicit
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standards discussed in Appendix 3.4 to encourage efficiency.

3.4 Evaluation Approach for Standalone Models

Validating YOLOv5m and 3DCNN concerning artefact and activity recognition incorpo-

rated the confusion matrix, precision, recall and mean average precision (mAP) as mea-

sures to estimate the model’s classification performance discussed in Section 2.7 and Ap-

pendix 2.3. The idea established the true nature of the operations and its robust state

at this level. The confusion matrix summarised the volume of predictions accurately and

inaccurately classified per action class from a True-Positive (TP), True-Negative (TN),

False-Positive (FP), and False-Negative (FN) perspective. Its operations presented an

overview of the classes that challenged the models’ classification capabilities. The pre-

cision was adopted to estimate the correct proportions of all class objects predicted by

the model. At this stage, applying the recall aided in quantifying the number of accurate

predictions classified relative to all positive classifications generated. Applying the mean

average precision provided a critical understanding of the models’ classification state with

a score projection range between 0–1. Classification scores closer to the range of 1 insinuate

high accuracy performance, and low scores suggest the opposite. Analysis of the operations

involved observing performance ratings exceeding a 50% margin. The significance of the

threshold insinuated how accurate the models were when producing scores above the 50%

range.

3.5 Conclusion

The methodology described in this chapter emphasised critical discussions regarding the

dataset acquisition process and the importance of applying explicit violent classes to train

YOLOv5m and 3DCNN. The significance of grouping new data to satisfy the intricacies

of object detection and activity recognition frameworks towards promoting processing ef-
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ficiency proved crucial to the overall task. A projection of the experimental protocol

demonstrated results generation operations utilising the experimental setup linked to the

objectives. A clear overview of the evaluation methods at this level established the valida-

tion procedures. The methodological approach standardised the objectives to evaluate the

effectiveness of individual processing in Chapter 4.
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Chapter 4

Evaluating YOLOv5m/3DCNNsl

Understanding the research methodology facilitated the next step, which involved an in-

vestigation of the functionality of YOLOv5 and 3DCNN’s individual activity recognition

processing to generate the necessary data for analysis. Individually evaluating the models’

operations fortified the activity recognition concepts previously mentioned regarding actual

performance. At this level, the results presented evidence endorsing the proposed fusion

strategy through experimental investigations and observations. The chapter is organised

into 6-sections to define the outcome with conclusions. A definition of YOLOv5 opera-

tions provided context in Section 4.2, followed by 3DCNNsl in Section 4.3. Section 4.1

discusses the experimental setup facilitating high performance. Section 4.4 outlined the re-

sults and observations through analysis. Further discussions on the operational challenges

between YOLOv5/3DCNNsl fortified the proposed fusion concepts in Section 4.5. Finally,

a conclusion in Section 4.6 projects the evaluated objectives.
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4.1 Experimental Setup

With the understanding of YOLOv5 and 3DCNN activity recognition, the next step in-

volved creating an experimental setup to evaluate the individual approaches to establish

the possibility of alternative processing enhancement. The evaluations approach considers

conditions in two phases’ detailed via Appendix 4.5 that evaluate the architecture’s limita-

tions when discerning real-world altercations. Without essential processing knowledge, the

operations can drastically induce possibilities of biased results, further threatening the op-

eration’s processing. Phase-1 describes the YOLOv5 experimental setup, whereas Phase-2

follows similar conditions for 3DCNN. Table 4.1 expounds on these conditions.

# Experiment Conditions Impact Experiment Definition

1
No Pre-processing/

No Background Images
Experiment Contains No Data pre-processing

or enhancements or background image support.

2
No Pre-processing/

With Background Images
Experiment Contains No Data pre-processing or

enhancements But, contains background image support.

3
With Pre-processing/

No Background Images
Experiment contains data pre-processing

enhancements But, no background image support.

4
With Pre-processing/

With Background Images
Experiment Contains Data pre-processing

enhancements and has background image support.

Table 4.1: Summary of Activity Recognition Experimental Conditions.

4.1.1 Overview of Experimental Conditions for YOLOv5 (Phase One):

Standards detailed in Appendix 4.5.2 considered the efficiency and feasibility of multiple

versions of YOLOv5’s architecture following Table 4.1’s conditions to validate the rationale

driving the model selection. The investigations considered pre-trained and from-scratch

operations utilising the RWVAD1st dataset to determine performance superiority. The

objective satisfied concepts of recognising violent actions in CCTV videos via research

question-1, the impact of data modifications in questions-2/3 and evaluating performance

superiority via question-5 in section 1.2.1.
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4.1.2 Overview of Experimental Conditions for 3DCNN (Phase-2):

At this phase, the single-level approach proved its processing capability to obtain the

generic status of the activity by utilising script configurations. Single-level network op-

erations reduce processing complexity via input layers, which receive the data and out-

put layers that produce the results. Moreover, simulations utilising single-level 3DCNN

approaches mirrored Table 4.1 for processing, focusing on action similarity conditions us-

ing the RWVAD2nd dataset. To adhere to developmental standards, specifics in [247]’s

platform supported the script initiation process previously highlighted in Section 2.3 and

Section 3.1.1. The rationale behind Phase-2 fulfilled research questions 1 to 4, focusing on

research question 5 in Section 1.2.1 from a generic standpoint.

4.1.3 Summary of YOLOv5m Experimental Setup:

Defining the structured phases aligned the fashioning of 12 pre-trained and 12 from-scratch

experiments to evaluate research questions 1 to 5 via section 1.2.1, which exposes framework

feasibility and superiority. Through transfer learning investigations, the results disclosed

the applicability of YOLOv5m compared to other versions in Appendix 4.5.2 discussions.

The operations required script reconfiguration through programming precepts to align the

model’s processing with action classes previously specified in Section 3.1 utilising the new

RWVAD1st dataset. The application of mean average precision with a subscript threshold

of 0.5 denoted the significance of the outcomes. The subscript defined class elements at

varying intersections over union (IoU) thresholds above 50% accuracy. The measure identi-

fies accuracy’s of importance and insinuates the prediction outcome. That procedure con-

sidered scores above the 50% margin as significant, and scores below the margin are deemed

insignificant. The measure quantifies ground truth bounding boxes with predicted bound-

ing boxes as high integers insinuate high performance. Incorporating precision gauges to

measure how frequently YOLOv5m accurately recognises positive class occurrences, based

on all other instances, is anticipated to be positive. Employing recall metrics accurately
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measured YOLOv5m’s ability to classify favourable circumstances regarding all the ground

truth instances. To validate performance, variations in hyper-parameter options specified

in Appendix 4.5.3 are applied to regulate the model’s overall performance. Pre-processing

each video file to reflect a max duration between 5-15 seconds at 30fps (frames per second)

sacrificed critical actions within the data but fostered processing speed in real-time. The

operations presented the opportunity to specify multiple objects of interest, suggesting the

pre-start of any attack from its inception. Two strategies emerged as proposed methods

to achieve this.

Strategy-1: Separating Activity and Weapon Blob During Blob Analysis:

Advantage: Increasing the number and variation of object of interest as blobs for training

intensifies classification proficiency to discern the suitable object class.

Disadvantages: Separately specifying violent objects of interest drastically affected the

model’s processing performance. The approach intensified the complexity of dis-

tinguishing multiple regions from unwanted background objects conveying high ac-

celeration, high velocity, and trajectory. Utilising graphic unit processing (GPU)

processing can facilitate such issues in previous discussions.

Strategy-2: Combining Activity and Weapon Blob During Blob Analysis:

Advantage: Amalgamating objects of interest during blob analysis to reflect a combined

object of heterogeneous traits increased classification performance. The approach

reduced computational resources required for classification with fewer objects of sig-

nificance to generalise during convolution.

Disadvantages: Like Strategy-1, Strategy-2 displayed significant potential for rapid per-

formance with graphic unit processing (GPU) integration.
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With knowledge of YOLOv5m experimental setup strategies, Strategy-2, as the chosen

option, proved effective in reducing the generalisation complexity and promoting high clas-

sification results.

4.1.4 Summary of 3DCNNsl Experimental Setup:

Following the YOLOv5m setup, a projection of 3DCNN approaches enact single and multi-

level operations to attain processing efficiency. The idea examined single-level neural net-

works with a construct that allows single input and output layers. Contrarily, multi-level,

like single-level, apply multiple hidden layers to promote efficiency. With insight on multi-

level and its limitations detailed in Appendix 4.5.4, the idea entailed fashioning 3DCNN

single-level impact experiments to fulfil research questions-4 to 6 in 1.2 using the RW-

VAD2nd dataset. Integrating surplus data conveying real-life videos in RWVAD2nd dataset

aided in deliberately challenging research questions 2 and 3 in section 1.2 like YOLOv5m

setup for 3DCNN. Detailed in Appendix 4.5.5, sample variations reflecting 160-videos of 2-

violent and 2-non-violent (neutral) class categories supported the project’s current life-cycle

and evaluate the generic and multi-class prediction operations. The rationale behind the

selection criterion considers the assessment of violent actions emulating heterogeneous and

homogeneous properties within the hardware’s processing capacity utilising identical setup

standards as YOLOv5m. The prospect maintained configuration consistency to eradicate

biased results between YOLOv5m/3DCNN’s operations. Boosting 3DCNN’s efficiency

required framework adjustments (adapt 3DCNN to 3DCNNsl’s processing) to recognise

sporadic violent actions via transfer learning to encourage robust classification. 3DCNNsl

evaluation incorporated analysis of combinations of graphical projections, accuracy, recall,

precision, and confusion matrix estimations. During development, two methods emerged

in Appendix 4.5.6 that generalised the action status to satisfy research questions 1 to 5 in

section 1.2. Those methods are as follows.
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o Method-1: Entails the categorisation of the dataset to reflect the generic status

from the dataset level.

o Method-2: Entails scripting the generic statuses with subclass labels at the output

level. The concept entails categorising the dataset to emulate the generic class status

from the dataset level.

Considering the two approaches, method 2 proved its feasibility by regulating complex data

categorisations with fewer computations. The idea positively impacted 3DCNNsl opera-

tions, reducing the computational dependency on the hardware resources, thus allowing

real-time processing speeds.

4.2 How YOLOv5 Operates

Appendix 3.3.1 analysis proved that the spatiotemporal flow of violence combined with

weapon artefacts in static images is unlikely. Considering several simulations with object

detection, processing incorporating YOLOv5m object detection from an individual pro-

cessing perspective is required to achieve the overall objectives. Further investigations

disclosed [248] utilising YOLO’s base version for activity recognition applying LIRIS’s

non-violent action dataset. The authors implemented the YOLO base version as activity

recognition using sequences of video frames to denote the spatiotemporal regions of inter-

est detailed in Appendix 3.3.1. They tracked the action’s coordinates across time with a

bounding box approach encapsulating regions of interest within each image frame. The

discovery presented the opportunity to implement YOLOv5 as activity recognition towards

satisfying research question-1 in section 1.2.1. The prospect promoted model integration

with reduced memory resources required for operations compared to object detection. The

idea extrapolated in Appendix 3.3.1 discusses the distinction between object detection and

activity recognition from the input stage with the following limitations.
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4.2.1 YOLOv5 Activity Recognition Limitations:

Investigating the actual classification potential for activity recognition enacts YOLOv5 to

detect challenging classes purposely selected during inference in alignment with [248]. The

operations projected the model’s inference capability utilising mean average precision as

the performance metric on 8-designated images at a balanced class ratio between violent

Figure 4.1: Rational for the Proposed Fusion: YOLOv5’s Misclassification Performance.

and neutral samples in alignment with Appendix 4.2. The predictions project the desig-

nated class’s label and its highest classification outcome per image to show its processing

capability. YOLOv5m produced 67% on Image-1 in Figure 4.1 as the highest intersection

over union outcome, 74% on Image-2, 57% on Image-3 and 20% on Image-4 for the stab-

bing class. For the non-violent fencing class, YOLOv5 dispensed 39% on Image-5, 40% on

Image-7 and no score or prediction for Image-6 and Image-8. YOLOv5 activity recognition

operations disclosed evidence of classification limitations, suggesting the need for a more

refined approach. Figure 4.1 evidence proved YOLOv5’s true capabilities when anticipating
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and distinguishing stabbing activities. The results exposed severe class misclassification

between the stabbing/aggressor and the victim.

Further analysis validated its processing limitations for activity recognition on two classes

with homogeneous actions (stabbing & fencing), that is, actions conveying similar traits

with different outcomes. The evidence fortified the notion and critical need for a profound

solution. The discoveries of YOLOv5m limitations prompted the evaluation of 3DCNNsl

before considering alternative measures.

4.3 How 3DCNN Operates

Insight into the state-of-the-art 3DCNN for activity recognition processing within Sec-

tion 2.6 aligned its operational prospects similarly to YOLOv5. Compared to YOLOv5

frame-by-frame processing, 3DCNN processes the entire duration of video files to estab-

lish the probability of category labels. The model produces probability accuracy scores

affiliated with class labels via convolution during inference. With knowledge of 3DCNN’s

processing in Section 3.3.2, a root folder containing videos representing actions of a suitable

volume acts at the datasets for its processing. That specific folder plays a vital role in iden-

tifying the relevance of the generic and individual categories relative to violent/non-violent

actions. With the concept specified in Appendix 2.6.1, 3DCNN generally takes 16 videos

as input and applies the classification operations from a 3-dimensional perspective, out-

putting the object’s height, width, depth, and channels. The input-output process specified

in Section 2.6 conforms to the output associating probability score with class labels as the

final score. The rationale behind 3DCNN considers the state-of-the-art to identify violence

and evaluate its processing to satisfy research questions 1-4 in section 1.2.1. Further in-

vestigations into 3DCNN’s performance outlined its flaws, given the fragility of human life

during violent scenarios, before analysing its effectiveness compared to YOLOv5. The idea

eliminated anomalies associated with category misclassifications, presenting knowledgeable
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assessments concerning the true processing impact in conditions that reflect homogeneous

actions, focusing on stabbing.

4.3.1 3DCNN Activity Recognition Limitation Breakdown:

Appreciating concepts of an ideal process in Appendix 4.3 fortifies the general understand-

ing of good performance in contrast to 3DCNN’s limitations. As 3DCNN is state-of-the-art

for activity recognition tasks, a deliberate selection of closely related actions proved neces-

sary to evaluate its discerning abilities in complex lethal scenarios relative to the criticality

and fragility of human life. Considering 3DCNN without applying additional tuning or

script enhancements as an individual processing model determines its actual processing,

like YOLOv5’s operations. The idea considers generic categories reflecting violent/non-

violent actions with an individual representation of sub-class statuses and accuracy scores

of either stabbing/or fencing. Concluding the processing appraisal meant evaluating ar-

chitectural limitations by presenting performance results from the previously mentioned

experiments. The operations accentuated the previously mentioned alerts projected for

the generic action status as violent activity and its subclass stabbing, with a high accuracy

of 75%. Simultaneously, 3DCNN flagged the generic class status as neutral or non-violent

human activity and its subclass as fencing at 62% accuracy in Figure 4.2. Although the

results appeared promising, the classification processing outlined in Appendix 4.3 to 4.4

suggest the model could not efficiently discern anthropometrics, especially heterogeneous

action objects bearing spatiotemporal relevance.

4.4 Overview of YOLOv5m and 3DCNNsl Results Analysis

With insight into the model’s experimental operations, evaluating YOLOv5m and 3DC-

NNsl’s results proved crucial to establishing the classification potential for pre-empting

violence. The appraisal considers the outcomes utilising accuracy, precision, and recall
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Figure 4.2: Validating 3DCNN’s Limitations via its Class Status/Accuracy Output.

outlined in Appendix 4.5; this aligns the target objectives with the experiments. Accuracy

denoted via the mean average precision with a subscript of 50% (mAP 0.5) represents the

overall classification metric. The threshold establishes the significance of the outcomes ver-

sus poor performance. Additionally, the mean average precision metric with precision and

recall projects the model’s effectiveness. The results structure coincides with the research

questions, followed by the confusion matrix representations for YOLOv5m/3DCNNsl. The

result analysis is as follows.

4.4.1 Summary of YOLOv5m Precision, Recall and mAP:

The analysis commenced by investigating the possibility of research questions 1-3 and 5

in section 1.2.1 utilising YOLOv5m and evaluating its classification state. The notion

projected clear performance indications that determined how the research initiatives were

satisfied regarding violent objects of interest via the impact experiments. Appendix 4.6-A

analysis proved that #8 experiment 21 maintained its superiority overall with a precision

score of 0.85, recall of 0.82 and a mean average precision subscript set to 50% at 0.85. The
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research questions convey the following.

A. Fulfilling Research Question-1 with YOLOv5m: In all simulations, YOLOv5m

demonstrated its ability to recognise violent activity/weapons in CCTV videos above a

threshold of 50%. Considering Table 4.1, Appendix 4.4’s number 1-8 from scratch and

pre-trained processing accentuated all mAP 0.5 scores above the previously mentioned

thresholds. The operations fulfilled research question-1’s objective in section 1.2 by

achieving the highest performance from #8 pre-trained experiment-21 with a precision

score of 0.85, recall of 0.82 and a mAP 0.5 of 0.85. Analysis proved that experiment 21

maintained superiority over all other experiments.

B. Fulfilling Research Question-2 and 3 via YOLOv5m Pre-Trained Operations:

The experimental investigation projected the performance impact when utilising pre-

processed data and no pre-processing (data without modification) via Appendix 4.6-B.

The tasks were analysed from scratch first, followed by a pre-trained perspective to

emphasise the contrast between both methods via performance. Analysis of pre-trained

operations via #5 experiment-12 proved the fulfilment of research questions 2 and 3

in section 1.2. The operations generated a precision score of 0.77, recall of 0.72 and a

mAP 0.5 of 0.75 that superseded all from-scratch operations on every level.

C. Fulfilling Research Question-5 via YOLOv5m: The operations demonstrated su-

periority by analysing all from-scratch versus pre-trained performance outputs relative

to experiments with and without enhancements aligned with Table 4.1. In the previous

analysis in section B, research questions 2 and 3 above projected pre-trained operations

as superior. However, #7 experiment-9 procedures proved that pre-processing with

background image support positively impacted the YOLOv5m classification state via a

precision score of 0.83, recall of 0.81 and a mAP 0.5 of 0.83 compared to experiment-21.
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4.4.2 Summary of 3DCNNsl Precision, Recall and mAP:

Considering YOLOv5m’s results, 3DCNNsl data analysis engaged similar contexts to project

performance increments for 2-neutral and 2-violent classes to satisfy research questions 1

to 5 in section 1.2. Like YOLOv5m, the outputs denote subsections A, B, and C above

to reflect the fulfilment of the research objectives in chronological order. Detailed in Ap-

pendix 4.6, Table 4.5A, B, and C illustrates individual scores and overall processing ac-

curacy to emphasize the model’s predictions and validate its processing superiority. The

integration of the confusion matrix appraised error rates to endorse 3DCNNsl’s classifi-

cation operations. From this perspective, all experiment subcategories reflect stages of

no pre-processing, pre-processing and action similarity data, which convey real-world con-

ditions utilizing action classes discussed in Table 3.2. The analysis commenced in the

following section.

A. Fulfilling Research Question-1 Via 3DCNNsl Containing No Pre-Processing:

In this group, evaluations on action results reflect differentiation in characteristics with

no pre-processing in 6 experiments focusing on stabbing violence. Implementing the

class selection per experiment assesses the processing impact of 2-violent and 2-neutral

actions, which satisfy research question-1 in section 1.2. Appendix 4.7, Table 4.5-

A presents class distinctions in performance. The performance distinctions relate to

combined operations individually and action similarity as a measure to challenge the

model’s discerning abilities. The evidence validated the efficiency of individual clas-

sification on violent actions containing no pre-processing support exceeding the 75th

percentile. Analysis in Appendix 4.7, Table 4.5-A highlighted 0.94% for stabbing as

the highest performance rating overall to satisfy the objective.

B. Fulfilling Research Question-2/3 via 3DCNNsl Classes with Pre-Processing:

Considering Group-A’s results, the evaluation considered the pre-processing context to

identify robust results via Group-B impact experiments and satisfy the research ques-
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tions focusing on the stabbing class. Appendix 4.7, Table 4.12-B data emphasized

dissimilarity between combined processing, individual processing and violent actions.

The enhancements were deliberately applied to challenge 3DCNNsl’s discerning abil-

ities. The results outlined an improvement in individual precision and recall scores,

which impacted 3DCNNsl’s overall classification state irrespective of the complexity

of the violent/neutral classes. Though stabbing in Appendix 4.7, Table 4.5-A exper-

iment #5 projected the highest violent prediction score at 94%, unstable individual

precision and recall insinuated that the models attained a high misclassification rate.

Stabbing at 0.88 depreciated between 6-13% in Appendix 4.7 and Table 4.12-B but

achieved stable individual metrics scores with higher overall ratings. The evidence

proved that pre-processing strategies positively impacted the operations towards ro-

bust results compared to the context of no pre-processing. Further analysis on Group-

B disclosed prediction results exceeding the 70th percentile ratio for all violent classes

therein Appendix 4.7, Table 4.12-B compared to the dissimilarity in Appendix 4.7,

Table 4.5-A. The evaluation fulfilled research questions-1-3 with further analysis in

Appendix 4.7, Table 4.12-B to validate result interpretations.

C. Fulfilling Research Question-2/3 via 3DCNNsl Containing Action Similar-

ity: Evaluating the data conveying pre-processing with action similarity occurred by

accumulating the necessary insight into Group B’s experiments in previous discussions.

The investigations validated performance on stabbing and neutral activities with iden-

tical attributes but distinct actions. In this instance, 3DCNNsl processes violence

and identical traits of non-violent action to challenge the model’s classification. Ap-

pendix 4.7, Table 4.19-C emphasized variations in performance between individual

classifications and overall accuracy operations. Analysis proved action similarity condi-

tions impacted 3DCNNsl’s prediction state in circumstances where data samples covey

homogeneous attributes. Most individual violent classes ranked above the 75th per-

centile, with fighting and shooting at 100%. Because stabbing sporadically alternates
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between fighting, beating and back to stabbing, 3DCNNsl experienced classification

challenges. Those limitations reflected sporadic fluctuations between precision (false

positive indicators) and recall (false negative indicators), thus suggesting stability is-

sues. Moreover, stabbing generated the lowest score of 63% due to its highly sporadic

nature and ability to alternate between beating, fighting, and fencing attributes. The

evaluation fulfilled research questions-1 to 3 in section 1.2 with further analysis in Ap-

pendix 4.7, Table 4.19-C to validate the result interpretations. With an appreciation

for the results, a projection of discussions into the operational anomalies presents the

pros and cons of the findings. The discussions are as follows.

4.5 Overview of YOLOv5m/3DCNNsl Discussions

With insight into pre-empting violence via YOLOv5m Phase-1 strategy and 3DCNNsl’s

Phase-2 method, discussions on overall performance emphasize the technique’s true pro-

cessing impact at this level. The approach is necessary as it accentuates the operational

and developmental challenges with risk factors that could impede pre-empting violence in

real-world conditions. Finally, further discussions align the mitigation strategy concern-

ing operational and developmental risks to alleviate the challenges entirely or reduce their

impact to a minimum. The discussions are as follows.

4.5.1 YOLOv5m Metrics and Confusion Matrix Discussions:

The results implied that the YOLOv5m classification state improved from scratch and

pre-trained experiments. The model’s precision and recall outcomes increased when more

data was applied, as demonstrated in Appendix 4.9.1 to Appendix 4.9.2. The evaluations

projected pre-trained operations as the superior approach compared to from-scratch meth-

ods. Referencing evidence in Appendix 4 provided the context to validate the processing,

which satisfied research questions-1-3 and 5 in section 1.2.1.
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4.5.2 3DCNNsl Metrics and Confusion Matrix Discussions:

3DCNNsl analysis presented classification limitations when discerning interchanging vio-

lent conditions. Unstable precision and recall scores emphasised the erratic nature of this

model type regarding the construct of violence. By fashioning 3DCNNsl’s simulations with

multiple types of challenging violent actions, emulating real-world scenarios aids in demon-

strating the model’s true abilities while observing its robust performance. The evidence

suggested that the stabbing class intensified 3DCNNsl’s generalisation ability due to its al-

ternating gaits, increasing the risks of misinterpretation between fighting, beating, and fenc-

ing. 3DCNNsl operations dispensed high outcomes via the pre-processing approach, which

satisfied research questions-1 to 3 in section 1.2.1 summarised in Appendix 4.9.2 and Ap-

pendix 4.9.3. However, Appendix 4.7 ’s results projected heavy misclassification outcomes

utilising the entirety of the videos and its processing ranking compared to YOLOv5m,

which employed a frame-by-frame operation. With insight into the metric performance for

YOLOv5m and 3DCNNsl, a re-evaluation of the research questions proved necessary to

assess the fulfilment of the objectives. The re-evaluation procedure reflects the following.

4.5.3 Research Question Discussions Evaluating YOLOv5m/ 3DCNNsl:

With an idea of the previous metrics, section 1.2.1 re-evaluated the fulfilment of the research

objectives to demonstrate framework feasibility.

1. Fulfilling Research Question-1; (Can violence/weapons be recognised?):

The tasks facilitated the recognition of violent activity and weapons (bladed instru-

ments, knives) in CCTV videos by conducting YOLOv5m (from scratch/pre-trained)

and 3DCNNsl (single and multi-level) experiments. The thesis proved this by fabri-

cating conditions to challenge and evaluate the model’s interpretation of violent alter-

cations from a real-world perspective. Convolution models facilitated the prediction

of violence by processing raw data via the input stage during training operations.
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Achieving the input objective encompasses feeding raw data through programmable

scripts fortified by Appendix 4.10.

2. Fulfilling Research Question-2; (What is the Impact/Data Modification?):

Understanding the results previously discussed, the operations evaluated the impact

of pre-processing and no pre-processing enhancements to satisfy research question-2 in

section 1.2.1. Appendix 4 ’s results proved the models’ capability to pre-empt violence

and establish its significance relative to non-violent behavioural patterns. Although

YOLOv5m/3DCNNsl established dis-similarities in anthropometric variations, their

operations dispensed high fluctuations via previous metric evaluations. Action sim-

ilarity operations dispensed a 7% decrease in performance, yet applying a surplus

of violent samples further increases its potential. The evidence proved the positive

impact on performance regarding pre-trained, pre-processing or pre-processing with

action similarity techniques via Appendix 4 ’s results. The continuous fluctuation in-

dicated the model experienced challenges during individual classification, specifically

via the stabbing class. The high complexity of violent actions and the small sam-

ple size applied in training influenced the stability of precision and recall processing.

Further details in Appendix 4.10 fortify the previous notions.

3. Fulfilling Research Question-3; (What is data impact if sample increase?):

Evaluations into the impact of sample size and parameter increase determine realis-

tic performance thresholds by establishing the ability to pre-empt violence in CCTV

videos via the pre-processing context. By increasing the data volumes, the evidence

proved that the models dispense steady signs of performance increase in accuracy,

precision, and recall values irrespective of the fluctuating individual scores. With

the ability to recognise violence in CCTV videos, the operations assessed 3DCNNsl’s

performance impact if the sample size increased. Appendix 4.13 to Appendix 4.16

proved that if the volume of violent samples increased during training, the overall

accuracy and individual performance improved above the 80th percentile. More-
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over, the individual model experienced challenges when processing data containing

homogeneous action attributes, specifically between stabbing and fencing.

4. Fulfilling Research Question-4; (Can actions be generalised?): With in-

sight into research question-3 above, the operations satisfied research question-4 in

section 1.2.1 by categorising violence/neutral non-violent activities within the con-

figurations. Because the operations combined the outcomes of 2-architectures, the

programmed scrips applied the classification once in the final layers, which emulated

Figure 4.2 results. A limitation emerged where the simultaneous implementation

of the programmable configurations for YOLOv5m and 3DCNNsl in the final layers

hindered real-time results. The previously mentioned issue introduced unknown risks

resulting in slow processing memory deprivation regarding the hardware’s process-

ing capability. The idea behind the programmable scripts provided auxiliary clas-

sification support aiding in distinguishing the generic and subclass status between

non-violent/violent actions in any scenario.

5. Fulfilling Research Question-5; (Can model superiority be determined?):

Understanding research question-4’s result, an evaluation of the models’ processing

superiority determined the status of research question-5 in section 1.2.1. Detailed in

Appendix 4.16, YOLOv5m proved its processing superiority over 3DCNNsl outcomes

regardless of the changes in environmental conditions relative to the gradient lumi-

nosities and environmental scenery. Although YOLOv5m/3DCNNsl proved incapable

of truly discerning homogeneous attributes of violent actions, the misclassification

evidence therein in Appendix 4.17 validated YOLOv5m’s superiority over 3DCNNsl

when processing fencing27.avi. Since action similarity conditions complicated the

classification, YOLOv5m identified 3- scenarios via frames #52, #55 and #56 that

projected fencing’s status towards fulfilling research question-5 in section 1.2.1. More-

over, the evidence validated the need for the proposed fusion concept, as both models

succumb to complexity in the action similarity conditions. In that sense, auxiliary
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support through the proposed fusion approach can mitigate misclassifications and

maintain robust accuracy performance regardless of the conditions.

4.5.4 Summary of Operational Challenges:

With crucial insight into model superiority, projecting several operational challenges re-

quiring attention proved crucial to promote efficiency. To commence the discussion, a

projection of YOLOv5m challenges with a proposed solution emphasised context that lim-

its the impact of its issue to a minimum. Subsequently, 3DCNNsl disclose its additional

challenges detailed in Appendices 4.17 to 4.19. Investigating YOLOv5m’s processing ex-

poses its framework intricacies from an object detection and activity recognition viewpoint.

The crucial insight is derived by fortifying knowledge in both areas through auxiliary arti-

ficial intelligence courses. The strategy entails devoting considerable time towards gaining

practical experience via programming. At this level, emphasis on the challenges influencing

YOLOv5m’s operations and its mitigation strategy proved the model’s effectiveness, with

additional details in Appendix 4.18. The overview demonstrates further issues impacting

the operations or the project’s timeline. Following the identical operations utilising the

same eight test images in section 4.2.1, is a nuance of the YOLOv5m incorporating separate

objects, solidifying the processing effectiveness notions regarding classification limitations.

Figure 4.3 accentuates multiple instances of YOLOv5m processing limitations regarding

class misrepresentations within the data. YOLOv5m on Image 1 generated five inaccurate

predictions, two stabbing outcomes at 19% and 32%, two knife weapon predictions at 22%

and 32%, and one aggressor class at 10%. The model processing separate objects on Image

2 created ten misclassifications. Those outcomes reflect two victim classes at 12% and 9%,

two stabbing at 32% and 0.19, three aggressors at 7%, 9%, and 34% and three knife weapon

objects at 10%, 15%, and 32%. Image three disclosed more promising outcomes at four

misclassifications regarding the aggressor class at 19%, knife deploy at 39%, knife weapon

at 49%, and stabbing at 20%. Image 4 declined in processing with three misclassifications;
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this showed knife weapon at 15% and two stabbing class instances at 12% and 9%. Image 5

dispensed one inaccurate victim outcome at 6%. Image 6 displayed two incorrect stabbing

instances at 19% and 14%. Finally, Images 7 and 8 produced no results to insinuate an

insignificant classification attempt. The outcomes on Images 7 and 8 provided room for

open interpretations where it failed at the task or made a correct classification as violence

is absent in the fencing class. The following discussions elaborate further on the limitations

and the possibility of misinterpretations.

Figure 4.3: YOLOv5m Separate Object Processing Complications.

A. YOLOv5m Processing Limitation on Small Objects Discussions: YOLOv5m

revealed multiple flaws in processing small spatiotemporal objects containing high spo-

radic acceleration, trajectory, and velocity. Violent scenarios conveying minute weapons

proved problematic for the model to classify seconds before the climax of a lethal attack.

The analysis projected increased processing complexity during inference if diminutive

weapons undergo separation from each stabbing action object. The application of small
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human body parts and artefacts representing the stabbing class object/s contributed to

the intricacy of the classification operation. The processing misconstrued the relevance

of essential objects with background elements, thus hindering the object’s classifica-

tion. Figure 4.4 highlights the intricacy issue of specifying multiple-minute artefacts

separately to represent the actions of stabbing scenarios.

Figure 4.4: YOLOv5m’s Complications with Minute Objects.

B. *Solution to A: YOLOv5m Processing Limitation on Small Objects: With

insight into YOLOv5m’s processing, a contribution emerged by proposing combining

weapon artefacts and the aggressor with relevant objects to suggest the disposition of

a stabbing scenario as a prominent solution. The proposed idea reduced the complex-

ity between generalising overlapping and correlated human features during training.

The operations projected a stable increase in performance by amalgamating each class

during inference stages, as illustrated in Figure 4.6. The concept suggests that if an

aggressor is present, a knife and hand posturing class are also available to contribute

to pre-empting the stabbing scenario, thus enhancing its classification. The proposed

rationale established clear distinctions of bounding boxes between the focus stabbing

class, aggressor, victim, and other artefacts. The idea increased the combined objects’

significance relative to violence as one class with supporting categories. To validate the
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theory, further experiments incorporating the same eight image test samples applied in

section 4.2.1 confirmed YOLOv5m’s processing utilising the proposed combining of ob-

jects approach. Figure 4.5 evidence proved the processing superiority of the proposed

amalgamation of objects approach compared to separately processing each object to

Figure 4.5: YOLOv5m Separate Object Processing Complications.

reveal violence. YOLOv5m produced six outcomes with four accurate instances. YOLOv5m

correct classifications on Image 1 produced the stabbing class at 57%, victim at 53%,

knife deployed at 51%, and the knife weapon at 55%. The two misrepresented classes

reflect aggressor at 44% with an additional prediction for knife weapons at 44%. Image

2 created five accurate instances at 53% for the stabbing class, the aggressor achieved

55%, the knife deployed produced 62%, the victim achieved 51%, and the knife weapon

at 52%. The evidence in Image 3 showed four accurate classifications where stabbing

achieved 61%, knife deployed produces 63%, aggressor at 56%, and knife weapon at

52%. Image 4 dispensed two instances, a correct prediction for stabbing at 66% and an
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Figure 4.6: Combining Classes to Reduce YOLOv5m Class Misrepresentation.

inaccurate reflection of the victim at 47%. Images 5 to 8 produced no results to suggest

the model’s decisions on violence in a non-violent domain. The proposed approach de-

creased its class misclassification issues that harmed the operations as the object’s size

increased, thus positively impacting inference. As a by-product, the concept added ro-

bustness in processing scenarios containing minute weapons with sporadic acceleration,

high velocity, and object trajectory.

4.5.5 Summary of 3DCNNsl Operational Challenges:

Discussions on 3DCNNsl operational challenges similar to YOLOv5m utilising the same

data nullify operation discrepancies. Because YOLOv5m’s issues were remedied (raw data

acquisition, pre-processing, applying two classes), the operations avoided additional alter-

ations at this stage. With an unbalanced layer configurations issue, the original 3DCNN

struggled to distinguish between fencing/stabbing scenarios via action similarity. To em-

phasise 3DCNN’s processing limitations, a nuance of its processing issues in Figure 4.7

displayed high classification performance at 100% for all predicted classes (WalkWithDog

100%, Knitting

100%, Fighting 100%, and Shooting 100%). 3DCNN’s results utilising the same approach
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Figure 4.7: Combining Classes to Reduce YOLOv5m Class Misrepresentation.

disclosed in Section 4.1.4 displayed a low accuracy score of 21% and a high test loss at

10.7827% suggesting an insignificant classification performance. The low test loss outcomes

insinuate robust performances. Compared to YOLOv5m, 3DCNNsl cannot facilitate the

Figure 4.8: Combining Classes to Reduce YOLOv5m Class Misrepresentation.

coordinates of objects via bounding boxes; however, it’s structure enabled category labels

and scores to insinuate its prediction state, utilising the entire duration of the videos.
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3DCNN’s classification operations improved employing the remodelling strategy via 3DC-

NNsl in Figure 4.8. The approach utilising the identical concept in Section 4.1.4 gener-

ated realistic outcomes reflecting WalkWithDog at 69%, Knitting 81%, Fighting 94%, and

Shooting 81%. The model projected its robustness with an accuracy of 63% and a low

loss outcome at 0.15%, taken from Appendix 4.7.2, Table (A) 3DCNNsl impact exper-

iments with no pre-processing. The evidence of 3DCNNsl compared to 3DCNN proved

its processing stability at this level. Like YOLOv5m, discussions accentuated 3DCNN’s

main challenges and mitigation strategy to promote efficiency with additional factors in

Appendix 4.19 to validate the approach of violence recognition. 3DCNNsl’s discussions are

as follows.

A. 3DCNN Heavy Resource Demand Discussions: The significant memory demand

of 3DCNN severely hampers its processing capabilities. Despite the CPU functioning,

3DCNNsl encountered processing latency during training, stretching the durations from

hours to weeks. This issue was particularly pronounced when processing raw violence

containing parallel accelerated motion. In contrast to YOLOv5m, 3DCNNsl’s configu-

rations reverted to CPU processing due to a platform package mismatch that affected

PyTorch on new silicon chip GPU-compatible MacBook Pro computers.

B. * Solution to A: 3DCNN Heavy Resource Demand: Reducing the data dimen-

sionality standards from 414x414 to 320x240 mitigated 3DCNNsl’s issues discussed in

(A). The operations considered pre-processed salient action frames regarding violence,

only emulating variations in background scenery to fortify its effectiveness. The ap-

proach significantly reduced the data volume for processing with prolonged file durations

from 5-10 minutes to 5-15 seconds per video file. 3DCNNsl produced smoother com-

putational outputs, reducing the sporadic interruptions caused by the MacBook Pro’s

CPU. Though the operations projected a significant reduction in training and infer-

ence times, the future intentions consider GPU support to eradicate 3DCNNsl sporadic
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lagging. 3DCNNsl reduces computational overload by adopting additional processing

support, facilitating action similarity irrespective of the parallel action scenarios. Like

YOLOv5m, monitoring tasks engage the PyTorch community for integration strate-

gies towards solving the CPU reverting issues within the configurations between the

MacBook m1 MPS device and Torch-vision.

4.6 Conclusion

Chapter 4 underscored the importance of the experimental setup in validating the perfor-

mance outcomes. This setup, which served as the plot to generate valid results, confirmed

the rationale for alternative measures to foster robust processing. The setup disclosed

YOLOv5m/3DCNNsl’s limitations via multiple experiments discussed in Appendix 4, thus

fulfilling the objectives. Those operations accentuated YOLOv5m’s superiority over 3DC-

NNsl from the frame-by-frame level. Given the task of violent activity recognition from

an individual perspective at this level, comparing the outcomes with other state-of-the-art

(SOTA) approaches in the literature proved impractical due to the type of data applied to

solve the aim and objectives. Most solutions achieved activity recognition in a non-violent

sense. Several efforts applied violent activity recognition, disclosing the activity in mo-

tion and conveying the lethal impact instead of the pre-stages and generic status of such

actions. In multiple scenarios, the data used demonstrated easily identified violent situa-

tions on complex hybrid models compared to investigating the complexity of the actions

in homogeneous conditions. The significance of reviewing the literature’s solutions acts as

a guide as opposed to formulating comparisons. Because of the extent of the investiga-

tions, the results within the appendix act as an overview of the operations to solidify the

approach if further details are required. The experimental operations primarily focus on

the possibility of achieving activity recognition and the model’s limitations. The chapter

proposed several methods towards promoting further classification enhancement by com-

bining weapon artefacts/stabbing classes for YOLOv5m and reducing 3DCNNsl processing
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complexity and the model’s limitations. The idea relates to lessons learnt discussions in

Appendix 4.20. The effectiveness of the actual performance encouraged proceedings to

Chapter 5. The following chapter emphasises theories behind the proposed fusion and its

effectiveness towards violence.
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Chapter 5

Merging 3DCNNsl/YOLOv5m for

Robust Violent Activity

Recognition

Chapter 4 investigated the automation of violent activity recognition centred on video

analysis using 3DCNNsl prediction models. It also investigated YOLOvm5 concerning the

recognition of relevant objects in violence. This chapter outlines the need for the proposed

fusion, which builds on the previous operations discussed in Chapter 4. It explores fu-

sion strategies using two models to enhance the system’s prediction accuracy and satisfy

research question-5’s tasks of superiority amid models in section 1.2.1. The concept in-

vestigated 3DCNNsl/YOLOv5m activity recognition to evaluate its effectiveness compared

to the proposed fusion, mainly on 2-samples. The chapter investigates the complexity of

fencing and stabbing as actions relatively challenging to discern as opposed to utilising

easily classified actions with high-performance outcomes. The idea added a measure of

significance to the proposal’s rationale, emphasising the classification effectiveness using

challenging action samples. Chapter 5 comprises seven sections that justify fusion’s activ-
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ity recognition prospects via a decision-level approach. Section 5.1 outlines the motivation

for the fusion concepts concerning 2-fusion scheme scenarios. Following the motive, the

operations evaluated the first fusion scheme using only 12-frames-per-video samples to es-

tablish its effectiveness in Section 5.2. Section 5.3 highlights fusion scheme-2 concerning

the efficacy of processing the entire video using surplus data instead of applying 12-salient

frames. Following those sections, the analysis entails results of all operations in Section 5.4

and 5.5 to evaluate the proposed fusion robustness. Section 5.6 provided further discus-

sions into the effectiveness of fusion scheme-1/2, followed by the conclusion in Section 5.7

to end the chapter.

5.1 Motivation for the Fusion Enhancement Approach

Appreciating the processes and results demonstrated in Chapter 4, Chapter 5 discusses the

rationale concerning fusion to support the operations towards encouraging robust results.

The context of fusion has potential in various applications concerning processing as it joins

the computations of multiple classifier models to provide a final output [249] and [250].

Several classifier-based and arithmetic fusion methods concerning [251], [252], [253], [254],

[255], and [256] exist to generate the outcomes. With knowledge of the individual models’

processing limitations in Chapter 4, the operations focused on computational simplicity,

which targeted the following fusion approaches as a plot to reduce the computational load

to further enhance the effectiveness at the final stages.

1. Arithmetic Averaging Fusion: Computes an average on multiple values gen-

erated by multiple classifiers at the score level to produce a single value as the

final prediction outcome.

2. Decision-Level via Majority Voting: Offers even weights to the decisions

generated by several classifiers using a majority voting class-association prediction
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system, which records the highest number of votes as the final result.

Arithmetic Averaging Fusion: The score-level arithmetic averaging fuses multiple

classifier outcomes, thus creating a final value reflecting its overall prediction. It

generates a final value per [254], [255] utilising simple computations that reflect sum-

mation, average, median, minimum, maximum, and the product. The approach

achieved 99.25% utilising a 3-dimensional 3D-face-ear for human recognition on face

recognition grand challenge via the University of Notre Dame collection F, 3Dfaceear

datasets [257]. Those authors solved unimodal bio-metric systems and 2D-bio-metric

problems regarding occlusion and illumination. The score-level fusion discussed in

[258] demonstrated its capability in 4-stages to recognise human activities. The

authors used pre-processing conversions with 2-hybrid classifiers and score-level fu-

sion strategies to generate 95% accuracy via the UCF-ARG dataset. Other works

exploited the score-level approach to build a combiner classifier to facilitate multi-

modal biometric user authentication [259]. They used bio-metric sensors as input,

and their fusion algorithm achieved a true positive rate of 99.15% and a true nega-

tive rate of 99.28%. Although arithmetic at score-level proved effective in previous

discussions, [252] outlined the approach as lacking robustness where the scores vary

by a logarithmic factor, thus intensifying the computational load with possible risks

that add classification complexity to the current model’s operations at the output

stages.

Decision-Level Fusion: With knowledge of the arithmetic score-level processing ap-

proach, the operations investigated the possibilities of decision-level fusion in align-

ment with [260]. Those authors achieved 98.22% utilising CaffeNet and GoogleNet by

amalgamating features in the model’s last layer for VHR image classification trained

on the ImageNet dataset. Others, such as [261], examined YOLOv4 activity detec-

tion and 3DCNN fine-tuned decision level on UCF crime and the Microsoft COCO

dataset. The authors achieved suspicious activity recognition circumventing the In-
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ternet of Things in intelligent city security with 94.21% accuracy. Moreover, [262]

employed a fusion of depth camera and inertial sensors by applying feature-level fu-

sion techniques and decision-level fusion to combine the outcomes from 2-classifiers.

The authors achieved 2-23% recognition rate improvements on the Berkeley MHAD

dataset to improve human action recognition. Because of the decision-level’s fusion

efficacy in the previous discussion, the operations investigated the fusion approach

to pool YOLOv5m activity recognition and 3DCNNsl computations at the output

stage. The idea promotes fusion simplicity, creating a mutual evaluation process of

the action classes. The decision-level strategy approach followed [263] multi-modal

driving behavioural algorithm at 96.57% accuracy rating, [264] localisation activ-

ity recognition at 98.2%, and [265] decision-level facial recognition fusion at 81%.

Those concepts rely heavily on majority voting systems, which process outcomes to

devise a routine multi-modal decision relative to [266], [267], and [268]. Although

decision-level operations discussed in [269] and [270] deteriorate while representing

inconsistent, ambiguous statistical data, it reduces computational loads as per [271],

this improves the effectiveness of the current model’s processing in scenarios with

fewer class categories. Utilising decision level at this level creates a single outcome

generated from YOLOv5m activity recognition and 3DCNNsl by incorporating ma-

jority voting techniques. The idea fuses all associated decisions to represent binary

outcomes reflecting violent or non-violent actions. Facilitating decision-level fusing

through programmable configurations merged each model’s (YOLOV5m/3DCNNsl)

final layer of several decisions to generate a robust result as the outcome. Figure 5.1

below illustrates the proposed decision-level fusion concept by training the model at

step 1 and processing the actions through steps 2 to 6. The proposed fusion above

encompasses 6-stages, which convert video data from the input stage at steps 1 to 5,

utilising a layered convolution combined with decision-level configurations to achieve

an outcome. The following details itemise fusion’s stages and its critical operations.
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Step-1 - Model Training: The dataset acquisition process explored social platforms to

accumulate a substantial volume of data containing the pre-start to violence concerning

shooting, stabbing, fighting, and beating. The models assisted in establishing action differ-

entiation during the final classification stages combined through programming for training

operations.

Figure 5.1: Illustration of Fusion Operations via Step-1-5.

Step-2 -Pre-Processing: Following Step-1, the operations engaged software (Robo-Flow

and HandBreak) to align the raw data with the model’s input standards. At this stage, soft-

ware tools manipulated the testing data to emulate no pre-processing, pre-processing, and

action similarity experiment conditions as a measure to validate the model’s effectiveness.

Step-3 –YOLOv5m/3DCNNsl activity recognition Convolution: Following Step-

2, Step-3 presents the data for convolution operations. By applying convolution, the models

accept the data and generalised distinctions between violent/non-violent actions across

several processing layers. 3DCNNsl modifications allow the generations of several outcomes

relative to the generic status and the subclass label stage in one go to achieve robust
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classification at this stage.

Step-4 –YOLOv5m/3DCNNsl activity recognition Output: Following Step-3’s

convolution, YOLOv5m activity recognition/3DCNNsl generates individual outcomes at

Step-4, emulating its classification during inference. The convolution processing dispensed

results projecting non-violent/violent categories with sub-class labels (fencing or stabbing).

Step-5 –Fusion: Following Step-4, Step-5 encompasses a decision-level fusion; this aggre-

gates class associations from Step-4 and applies a majority vote process, which establishes

the outcome.

5.1.1 Overview of the Fusion Rationale:

The rationale for the proposed fusion support limits the crucial misclassifications exposed

during the individual assessment of YOLOv5/3DCNN towards pre-empting violence. Be-

cause of those misclassification issues, the operations applied YOLOv5m activity recog-

nition and 3DCNNsl with decision-level support to create an enhanced outcome. 3DC-

NNsl’s processing establishes the actual nature of the activity concerning the generic status

(whether the actions are violent or not) and the action’s subclass (if it is violence, what

type of violence). YOLOv5m activity recognition substantiates 3DCNNsl’s processing by

acting as a supporting plot that establishes the activities’ resonance. The idea mitigates

misclassification challenges relative to fencing27.avi in Appendix 4.40, which demonstrates

classification instances of the non-violent sample as violent actions. The outcomes proved

3DCNNsl unreliable operations in the 3DPred column and YOLOv5m activity recognition

via the YoloPreds output column. Those operations outlined episodes of the model’s clas-

sification effectiveness on complex real-world samples concerning identifying the action’s

correct nature via pre-processed data. YOLOv5m activity recognition experienced adverse

effects when processing violence, mainly in circumstances where the actions portrayed
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high acceleration trajectory and velocity. By applying alterations towards amalgamating

YOLOv5m activity recognition and 3DCNNsl output through decision-level fusion, the

model drastically improved its robust accuracy regardless of the class of violence. Another

fundamental factor involves reducing programming challenges via developing decision-level

combined with YOLOv5m activity recognition/3DCNNsl. Decision-level via fusion facili-

tates high and low data volume developments by promoting fewer integration challenges.

The idea maintains processing consistency, which enhances the value of its predictions.

5.1.2 Definition of Decision Level Fusion Protocols:

It is essential to define conditions that consider the outcome of 3DCNNsl/YOLOv5m ac-

tivity recognition via class association to achieve a desired outcome regardless of the action

type and luminous intensities of objects in the image scenery. At this level, the decision-

level protocols’ intentional design bears partiality towards positive categories, which sug-

gests the presence of the generic status (is the action violent?) and its subclass (type?

stabbing?). Promoting bias for the positive classes as an intentional flag of violence in

# YOLOv5m Outcome 3DCNNsl Outcome Decision-Level Protocol Outcome

1 Positive Positive YOLOv5m Positive
2 Positive Negative YOLOv5m Positive
3 Negative Positive 3DCNNsl Positive
4 Activity Unknown Positive 3DCNNsl Positive
5 Activity Unknown Negative YOLOv5m Activity Unknown
6 Positive Activity Unknown YOLOv5m Positive
7 Negative Activity Unknown 3DCNNsl Activity Unknown
8 Activity Unknown Activity Unknown YOLOv5m Activity Unknown
9 Negative Negative YOLOv5m Negative

Table 5.1: Decision Level Protocol Operations.

negative cases act as a redundant contingency measure and allow validation procedures

by a manual operator towards reducing the occurrence of lethal actions. The operations

favoured the previous idea of aligning the fundamental objectives behind the research pro-
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posal, which pre-empts violence as a focus to reduce its impact using YOLOv5m as a

bias technique, due to its robustness in Chapter 4. Incorporating additional validation

monitoring support reduces the impact of violence, thus fortifying the classification opera-

tions. Table 5.1 introduce possibilities to establish the outcomes. In previous discussions,

those operations opted for an approach that applies a biased operation towards the pos-

itive (violence exists) class and activity unknown (actions the model is not trained to

identify) outcomes over negative (non-violent action) outcomes. The idea differentiates

the pre-empted attacks in violent and non-violent actions in any conditions. Table 5.1

Decision-level reasoning shadows the following conditions to create results.

1. if both models dispensed positive (produced violent outcomes) predictions,

decision-level fusion suggests that the outcome is positive.

2. if one of the models predicted a positive (produced violent outcomes) and

the other produced a negative (produced negative/inaccurate result) output,

decision-level fusion selects only the positive outcome to suggest violence as

the outcome.

3. If one of the models predicts a negative (produced negative/inaccurate result)

and the other predicts a positive (produced violent) outcome, decision-level

selects the positive prediction as the outcome.

4. If one model predicts activity unknown (produced unknown outcome), and the

other predicts positive(produced violent outcome), decision level fusion selects

the model with the positive prediction as the outcome.

5. If one model predicts activity unknown (produced unknown outcome), and the

other predicts negative(produced negative/inaccurate result), decision level
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fusion selects the activity unknown prediction as the outcome.

7. If both models produced activity unknown(produced unknown) as outcomes, decision level fusion

implies the outcome is activity unknown.

8. If both models predict negative outcomes (produced negative/inaccurate results), decision-level processing

infers the outcome is negative and reiterates its operations to reproduce an appropriate outcome. In

this scenario, the process recycles, reiterating the fusion tasks to avoid errors. The possibility of protocol

#7 proved rare. Thus, the operation continually implies appropriate outcomes. Prospectively, further

configurations applied mitigated such cases as a contingency strategy should this situation become apparent.

Figure 5.2: Decision Level Fusion Protocol Operations.
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Figure 5.2 illustrates the operational concept of the proposed fusion protocol above as a

visual nuance of the conditions and the expected outcome.

5.1.3 Experimental Setup of Fusion:

Implementing the fusion operations meant considering the final layers processing of 3DC-

NNsl and YOLOv5m activity recognition to achieve optimal performance by employing

2-sets of decision-level constraints. The rationale for fusion constraints aids in establishing

the decision level’s practicality, which positively impacts the computing resources, espe-

cially in instances emulating sporadic increment and decrement of input data. Initialising

the processing detailed in Chapter 4, commence the proposed fusion utilising the following

protocol conditions.

1. Fusion Scheme-1: Decisions of the activity recognition models (YOLOv5m

and 3DCNNsl) from selected frames (first 12 frames of pre-stages of violence) are

fused individually at the frame level using the decision-level strategy explained

above. A majority voting process among the resulting 12 decisions at the frame

level generates a final decision for the video/activity. The idea concluded the

operation’s processing impact using only 12 frames to represent a video and

simulate scenarios involving a decrement in input data.

2. Fusion Scheme-2: Like Fusion Scheme-1 decision-level processing, the op-

eration at this stage considers the entire video duration at a frame rate of

30fps(frames per second) with an interval window of 10-12 seconds of data. The

idea concluded the operation’s processing impact by utilising more data to sim-

ulate scenarios involving an increment in input data to represent a video instead

of only 12-action frames.

The difference between the fusion scheme conditions is that Fusion Scheme-1 evaluates
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the model’s effectiveness when processing fewer data, and Fusion Scheme-2 examines the

model’s impact using more data. The operational difference between the fusion schemes

outlines their ability to provide robust outcomes regarding computational efficacy consis-

tently. The following provides a further breakdown of the fusion schemes’ intricacies to

accentuate the fusion operations.

5.2 Fusion Scheme-1: Utilising 12-Frame Processing

Appreciating the fusion motivation above, a projection of Fusion Scheme-1’s concept con-

cludes research question-5 model superiority objective in section 1.2.1. YOLOvm5, applied

as an activity recognition model, recognises violence by assigning violent actions to indi-

vidual frames in a video. Contrarily, 3DCNNsl architecture recognises violent activity by

analysing the entire duration of the video and assigning violence to multiple frames to

achieve its violent classification outcome. Both operations are combined to evaluate Fu-

sion Scheme-1 by re-configuring 3DCNNsl’s conventional whole video processing to mirror

a similar frame-by-frame approach like YOLOv5m activity recognition. The rationale con-

cerning the frame-by-frame idea allows the simultaneous grouping of sequential frames to

establish class associations per model. Specifying robust class association outcomes aids

the smooth transitioning of decision-level operations at this level. The approach integrates

only 12 salient frames, suggesting the pre-start (mainly leading to violence) during the

(violent start) attack period per video, focusing on violence as the positive class. The op-

erations strongly considered the approach in alignment with the research proposal as violent

actions occur predominantly during the pre-start of the video samples. With this insight,

the development task incorporated non-violent samples to deliberately confuse the model’s

operations concerning action similarity to establish processing superiority. The idea dis-

pensed 12 decisions per video as 3DCNNsl/YOLOv5m activity recognition outcomes. The

idea is to investigate suitable fusion techniques from the 12-frame video perspective to

determine effective strategies towards combining the outcomes to foster accuracy score
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improvements. Because of its computational effectiveness, the operations integrated the

decision-level technique instead of arithmetic processing to emphasise the fusion aggrega-

tion prospects. The operations produced the decision-level’s frame-by-frame outcome by

integrating programming scripts to define its class association amid 3DCNNsl/YOLOv5m

activity recognition. Decision-level fusion operations consider the first decision from 3DC-

NNsl and the first decision from YOLOv5m activity recognition on frame #1, which fuses

it for a single outcome at the frame level. The identical operation applies for the remaining

11 frames, which generate 12 fused action outcomes. The decision level finalises its out-

come by employing majority voting procedures to imitate the fusion protocols discussed

via section 5.1.2. The overall concept defines the processing effectiveness and the model’s

robustness in scenarios lacking data.

5.3 Fusion Scheme-2: Processing the Entire Video

Fusion Scheme-1 evaluated the models in a frame-by-frame operation incorporating only

the first 12 salient frames of violence to represent a video. The idea determined efficacy in

cases lacking data during processing to satisfy research question-5 superiority objectives in

section 1.2.1. The tasks were built on Fusion Scheme-1 by evaluating activity recognition

performance using the entire video as Fusion Scheme-2 of 10 videos to conclude process-

ing superiority. As YOLOvm5 activity recognition recognises violence by assigning violent

actions to individual frames on a frame-by-frame basis, the operations employed the en-

tire video duration of each sample to attain an overall accurate outcome. The operations

achieved this by applying configurations that passes each video sample for frame extraction

at a frame rate of 30fps(frames per second) with a duration interval of 10-12 seconds. The

application of surplus data represents the entire duration of violence in a video from its

primitive stage (pre-start) to its end per sample. Supplying the models with surplus data

in this context presented opportunities to stimulate robust outcomes. Considering 3DC-

NNsl/YOLOv5m activity recognition from a frame-by-frame perspective, the operations
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explored the same decision-level techniques applied in Fusion Scheme-1 to produce a sin-

gle outcome per video. 3DCNNsl/YOLOv5m activity recognition creates more outcomes

because of the video 30-frame rate of 10-12 seconds per sample. Like Fusion Scheme-1 in

the previous discussion on duration interval, the decision level creates class associations for

each frame. The technique applies Fusion Scheme-1’s majority voting processing to fuse

the class associations, creating a single class outcome. Evaluating processing effectiveness

employing surplus data proved crucial to cross-analyse section 5.1.3 fusion protocols to con-

clude research question-5’s processing superiority in section 1.2.1. By understanding the

fusion scheme techniques above, the operations determine the actual processing impact by

computing overall accuracy confidence to reflect decision-level fusion’s overall performance

per model relative to [272], [273], [274], [138], [275], [276], [277], and [278]. Achieving

the overall accuracy task incorporates computing the ratio of correctly classified samples

divided by the total number of samples. The previous computation is multiplied by one

hundred, exposing the operation’s performance outcome as a percentage value. The fol-

lowing algorithm emphasises the computation of activity recognition’s overall performance.

To summarise the formula, ”arOA” represents the overall accuracy of activity recognition,

where the total number of correctly labelled videos denotes ”nCLvids”. The total number

of videos suggests the ”TnVids” factor, where ”100%” represents the percentage compu-

tation and the outcome.

arOA =
nCLvids

TnVids
× 100

5.4 Fusion Scheme-1 Results: Utilising 12-Frame Processing

The operations demonstrate results for YOLOv5m activity recognition, 3DCNNsl, and

fusion to satisfy research question-5 processing superiority between the models in sec-

tion 1.2.1. Column title definitions provide context to the output towards evaluating the
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results, which defines the outcomes and their significance per model. Following the title

description is an overview of the confidence threshold possibilities to validate the proposed

fusion outcomes.

5.4.1 Definition of Column Title per Outcome:

Distinguishing the model’s performance status meant defining the relevance of the following

column titles in Table 5.2 in alignment with section 5.1.2 proposed fusion constraints to

express the outcome’s significance.

# Column Name Description

1 Fr Number of frames from the 12-frame only processing operations
2 Video Number of Videos used in the whole video operations

The Actual Class

3 Correct Class The action’s true class label as the ground truth sample

3DCNNsl Individual Processing

4 3D-Gen Generic class predicted is the action Violent or Non-Violent?
5 3DPreds Sub-Class label discloses the action type
6 3D-OA Computing 3DCNNsl’s Overall Accuracy
7 3D-Conf Discloses 3DCNNsl’s classification confidence in its decision outcome

YOLOv5m Individual Processing

8 YoloPreds Sub-Class label predicted during processing
9 YO-OA Computing YOLOv5m’s Overall Accuracy
10 YO-Conf Discloses YOLOv5m’s classification confidence in its decision outcome

Proposed Fusion Results

11 Fusion Class 12 Sub-Class label output from decision level processing
12 Fusion Results Decision Level fusion applies generic, and subclass label its outcome
13 F-OA Computing Fusion’s Overall Accuracy
14 F-Conf Discloses Fusion’s classification confidence in its decision outcome
15 Confidence Displays how confident the model is in its decision

Table 5.2: Column Description of the Results.

5.4.2 Definition of Confidence Thresholds for Stabbing:

Appreciating the output description discussed above, it proved necessary to accentuate

various planes of confidence similar to [279], [280], [281], and [282], which signifies the
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model’s classification effectiveness from the video level. The following details imply the

model’s aptitude and confidence towards making the right decision using only 12 frames

per video. Confidence indicates the number of positive instances predicted for the stabbing

class and negative instances for fencing and activity unknown categories. At this level, the

confidence adopts a high, medium, and low threshold, which signifies the number of violent

positive and non-violent negative instances produced during the classification stages. A

nuance of a high confidence threshold count indicates the highest positive prediction ratios

ranging between 10-12 instances, with a lower bound for the negative category outcomes

(via the subscripts a, b c). High confidence instances also indicate the model’s decision-level

effectiveness as favourable results.

Table 5.3: Examples of Confidence Level for Stabbing

# Confidence
Positive

(Stabbing)
Negative
(Fencing)

Negative
(Activity Unknown)

1a High 12 0 0
2a High 11 0 1
3a High 10 1 1

4b Medium 8 2 2
5b Medium 9 2 1

6c Low 7 1 4
7c Low 6 1 5
8c Low 4 2 6
9c Low 2 1 9
10c Low 0 0 12

a The highest confidence range, the higher the stabbing instance
between 10-12, the stronger the classification confidence is to-
wards stabbing to suggest violence.

b Instances ranging between 8-9 for stabbing outcomes and indicat-
ing low instance ratios of 1-2 for fencing and activity unknown to
suggest violence.

c The lowest classification confidence range indicating low ratios for
stabbing with high outcomes for fencing and activity unknown to
suggest violence. This is rank as an insignificant classification
performance.
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A medium confidence threshold denotes positive prediction ratios between 8-9 instances

with a sparse indication of the negative classes between 1-2 outcomes. Medium confidence

also discloses the presence of classification challenges adversely affecting the model’s abil-

ity to produce accurate outcomes. The episode of medium confidence necessitates more

training samples with additional architecture fine-tuning to encourage suitable outcomes.

Conversely, low confidence indicates an insignificant prediction operation; this exposes low

positive instances between 0 and 7, with high representations of negative categories as

outcomes. Low confidence signifies that the models experienced operation discrepancies

relative to processing anomalies surrounding the data samples. Sporadic low confidence

outcomes also suggest that the hyper-parameter option features require higher fine-tuning

levels to achieve suitable/stable outcomes. Option

Figure 5.3: Fusion 12-Frame Confidence Processing using 1-Sample (Stabbing91.avi).

fine-tuning refers to regulating the learning controls to enhance prediction effectiveness.

Table 5.3 provides nuances of previous discussions of the confidence levels to illustrate the

concepts of the model’s range of outcome possibilities. The operations evaluated scenarios

with surplus data, suggesting a specific confidence ratio of 68+% as high prediction out-
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comes to accommodate the data increase, with a ratio of 34-67% for medium confidence

and 0-33% for low confidence operations. Fusion Scheme-1 considers overall accuracy and

confidence concerning prediction correctness instead of representing accuracy score out-

comes from an individual sample approach. The concept measures the models’ aptitude

in its decision strategy, producing outcome consistency and the effect of processing sam-

ples represented by a few frames to mimic scenarios lacking data from an overall perfor-

mance level. Figure 5.3 clarifies nuances of decision level 12-frame processing employing

1-stabbing91.avi video sample, which emulates the concept of the model’s outcomes re-

garding its confidence outputs. Primarily, the operations validated the proposed fusion

confidence discussed above by disclosing exceptional cases utilising a 10-random test sam-

ples operation, each at 12 frames per video, to establish effectiveness. The 10-test sample

experiment incorporated a ratio of five fencing and five stabbing actions; this produced

ten single outcomes. A demonstration of 3-exceptional action similarity cases in Figure 5.4

concern-

Figure 5.4: 10-Test Sample Nuance of Fusion Special Classification Cases.

-ing Figure 5.3 ’s confidence procedures provided context into the idea. Moreover, the

operations employed the 10-test samples approach to illustrate those abnormal instances

where the proposed fusion exhibited its processing effectiveness on complex action simi-

larity classes with suitable outcome responses specifically for Fencing27.avi. The results
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insinuated the absence of violence denoted by zero; fencing’s presence occurred in three

instances, with nine activities with unknown outcomes. The nine unknown instances of

activity occurred because the model struggled to establish its classification of actions that

it cannot identify based on its training, therefore responding with a suitable low-confidence

outcome to reflect its decisions. Following the proposed fusion’s case demonstration con-

cerning Figure 5.4 ’s outlined samples, the operations integrated 50-random samples to

thoroughly scrutinise and validate fusion’s processing impact like the 10-sample evaluation

operations incorporating 12-frames per video.

5.4.3 Fusion Scheme-1 12-Frame Results for Stabbing24.avi:

With knowledge of Figure 5.3 ’s fusion outcomes, assessments determine its effectiveness

on stabbing24.avi to demonstrate notable results employing 12-frames to represent a video

sample. Because the primary focus is on 2-action classes only, a demonstration of Fusion’s

prediction power emphasised the processing anomalies affecting 3DCNNsl/YOLOv5m ac-

tivity recognition misclassifications. Frames #36-47 evaluation disclosed 3DCNNsl capa-

bility to discern stabbing24.avi efficiently and confidently. YOLOv5m activity recognition

created 12 unknown activity instances, failing to identify stabbing and accurately produc-

ing a low confidence threshold to emulate its decisions. The low confidence issue links to

excessive pre-processing procedures, which degrade the video’s resolution and further hin-

der the object’s classification. Table 5.4 results demonstrated Fusion’s decision effectiveness

by accurately discerning the action as violent, reflecting its subclass label as stabbing with

high confidence. The findings depicted low confidence thresholds for YOLOv5m activity

recognition relative to its insignificant results. Although the proposed Fusion relies heavily

on individual processing (3DCNNsl/YOLOv5m activity recognition), it generated 12-high

confidence cases irrespective of YOLOv5m activity recognition’s 12-misclassification errors.

The model satisfied research question-5 in section 1.2.1 by demonstrating the proposed

Fusion’s processing superiority over 3DCNNsl/YOLOv5m activity recognition with high
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confidence considering Table 5.4.

5.4.4 Fusion Scheme-1 12-Frame Stabbing37.avi Results:

Comparing fusion’s results above, YOLOv5m activity recognition improved by produc-

ing 5-accurate and 7-inaccurate outcomes in Table 5.5. YOLOv5m activity recognition

failed unknown classification cases, and low confidence does not affect the final fusion de-

cision because it considers accurate responses between individual models. Analysis proved

3DCNNsl’s effectiveness with 12 accurate outcomes identifying the action’s stabbing sta-

tus with high confidence via frames #72-83. The proposed fusion processing dominated

3DCNNls/YOLOv5m activity recognition by generating 12 accurate responses with high

confidence to solidify its violence decision. The evidence proved the proposed fusion’s pro-

cessing effectiveness as expected, which satisfied research question-5 processing stability

objective in section 1.2.1.

Fr Correct Class 3DPreds YoloPreds Fusion Class Fusion Results Confidence

36 stabbing24.avi Stabbing Activity Unknown Stabbing

Violence Stabbing High

37 stabbing24.avi Stabbing Activity Unknown Stabbing
38 stabbing24.avi Stabbing Activity Unknown Stabbing
39 stabbing24.avi Stabbing Activity Unknown Stabbing
40 stabbing24.avi Stabbing Activity Unknown Stabbing
41 stabbing24.avi Stabbing Activity Unknown Stabbing
42 stabbing24.avi Stabbing Activity Unknown Stabbing
43 stabbing24.avi Stabbing Activity Unknown Stabbing
44 stabbing24.avi Stabbing Activity Unknown Stabbing
45 stabbing24.avi Stabbing Activity Unknown Stabbing
46 stabbing24.avi Stabbing Activity Unknown Stabbing
47 stabbing24.avi Stabbing Activity Unknown Stabbing

Table 5.4: Fusion Scheme-1 12-Frame Evaluation via stabbing24.avi.

5.4.5 Fusion Scheme-1 12-Frame Fencing27.avi Results:

A representation of the results disclosed stabbing attributes for the non-violent class to

illustrate fusion’s power, as most test samples validated the proposed fusion’s process-
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Fr Correct-Class 3DPreds YoloPreds Fusion Class Fusion Results Confidence

72 stabbing37.avi Stabbing Stabbing Stabbing

Violence Stabbing High

73 stabbing37.avi Stabbing Activity Unknown Stabbing
74 stabbing37.avi Stabbing Stabbing Stabbing
75 stabbing37.avi Stabbing Stabbing Stabbing
76 stabbing37.avi Stabbing Activity Unknown Stabbing
77 stabbing37.avi Stabbing Stabbing Stabbing
78 stabbing37.avi Stabbing Activity Unknown Stabbing
79 stabbing37.avi Stabbing Stabbing Stabbing
80 stabbing37.avi Stabbing Activity Unknown Stabbing
81 stabbing37.avi Stabbing Activity Unknown Stabbing
82 stabbing37.avi Stabbing Activity Unknown Stabbing
83 stabbing37.avi Stabbing Activity Unknown Stabbing

Table 5.5: Fusion Scheme-1 12-Frame Evaluation via stabbing37.avi.

ing effectiveness on stabbing in action similarity conditions. The rationale validates the

proposed fusion confidence stability and its aptitude to produce accurate results on stab-

bing features in non-violent conditions. Analysis on fencing27.avi in Table 5.6 confirmed

YOLOv5m activity recognition’s confidence in its decis-

Fr Correct Class 3DPreds YoloPreds Fusion Class Fusion Results Confidence

48 fencing27.avi Stabbing Activity Unknown Activity Unknown

Activity Unknown Activity Unknown Low

49 fencing27.avi Stabbing Activity Unknown Activity Unknown
50 fencing27.avi Stabbing Activity Unknown Activity Unknown
51 fencing27.avi Stabbing Activity Unknown Activity Unknown
52 fencing27.avi Stabbing Fencing Fencing
53 fencing27.avi Stabbing Activity Unknown Activity Unknown
54 fencing27.avi Stabbing Activity Unknown Activity Unknown
55 fencing27.avi Stabbing Fencing Fencing
56 fencing27.avi Stabbing Fencing Fencing
57 fencing27.avi Stabbing Activity Unknown Activity Unknown
58 fencing27.avi Stabbing Activity Unknown Activity Unknown
59 fencing27.avi Stabbing Activity Unknown Activity Unknown

Table 5.6: Fusion Scheme-1 12-Frame Evaluation via fencing27.avi.

-ions over 3DCNNsl. 3DCNNsl’s low confidence validated its inability to discern fencing

correctly. YOLOv5m activity recognition analysis outlined nine cases where activity un-

known tags were applied to insinuate its low confidence and uncertainty of the action’s

status. Although fencing and stabbing actions sometimes convey homogeneous qualities,

the model’s intense training should generate high-confidence decisions to discern action dis-

similarity. Because the similarities between stabbing and fencing intensified in this sample,
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3DCNNsl provided 12 inaccurate low-confidence instances for fencing. The decision-level

protocols maintained fusion’s processing effectiveness by designating correct activity un-

known replies for unidentified action cases. Subjectivity toward stabbing as the positive

class is granted only in cases where the models’ (3DCNNsl/YOLOv5m) predictions are

accurate. In such cases, fusion protocols monitor these bounds by validating the correct

class ground-truth data with the actual predictions, thus incorporating accurate replies

in sync with its confidence level. The evidence on fencing27.avi 12-frame operations veri-

fied the proposed fusion confidence, which satisfied research question-5 activity recognition

processing superiority in section 1.2.1.

5.4.6 Fusion Scheme-1 12-Frame Overall Accuracy Evaluation:

The anomaly discussed above proved the overall accuracy of fusion’s processing superior-

ity compared to 3DCNNsl/YOLOv5m activity recognition, which incorporates the same

10-samples applied in Fusion Scheme-1. Fusion Scheme-2 activity recognition’s overall ac-

curacy formula considers the number of correctly classified samples divided by the total

number of frames from all videos (10 videos x 12 frames), multiplied by 100%. The op-

erations disclosed overall accuracy for all 12-frame videos by considering misclassifications

for all video samples instead of computing misclassifications for a single video. Confidence

threshold ratios discussed in section 5.4.2 played an integral role in determining high,

medium, and low outcomes to validate the models’ aptitude.

Incorporating the 10-sample dataset defined in Table 5.7, 3DCNNsl disclosed an overall

accuracy of 40.83% utilising 120 frames, with 49 correctly classified instances in total,

zero activity unknown, and zero instances of the fencing class. Also, 3DCNNsl dispensed

71 inaccurate predictions, with 50 incorrectly classified stabbing instances, including 21-

activity unknown cases where the model could not accurately discern violence within the

actions. 3DCNNsl recorded no inaccurate instances of fencing, thus indicating its ability

to differentiate the fencing class amid violent actions with a medium confidence ranking.
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3DCNNsl depicted classification instances per class, emphasising its capability to detect

violence. YOLOv5m activity recognition overall accuracy decreased by 0.7% at 33.33%,

with 40 correctly classified samples. YOLOv5m demonstrated its ability to correctly iden-

tify 3-instances of the non-violent fencing class and 37 instances in the stabbing class.

YOLOv5m, at this stage, produced 80 incorrect predictions in total, with no inaccurate

cases for the fencing class. The model dispensed 46 inaccurate stabbing instances, includ-

ing 34-activity unknown cases, with a low confidence ranking. The findings indicated that

the model experiences challenges discerning violence using a few frames as the dataset.

Fusion demonstrated its dominance by generating an overall accuracy of 52.50%, disclos-

ing its superiority lead by 11.67% over 3DCNNsl and by 19.17% over YOLOv5m activity

recognition. At this level, fusion produced 63 correctly classified instances with no activ-

ity unknown cases and three predictions for the non-violent fencing class. Fusion proved

its ability to identify violence with robust ratings compared to YOLOv5m’s processing.

Though fusion proved effective, the model dispensed 57 inaccurate predictions with zero

inaccurate cases for the non-violent fencing class and 9-activity unknown outcomes. Fusion

misclassifications increased by 2% at 48 cases compared to YOLOv5m activity recogni-

tion at 46 cases. The outcomes insinuate that the proposed fusion experience processing

challenges linked to the insignificant size of the dataset during 3DCNNsl and YOLOv5m

activity recognition operations and their ability to generalise violence adequately.

Moreover, fusion demonstrated its dominance and capability to differentiate between stab-

bing and fencing over 3DCNNsl and YOLOv5m activity recognition. Fusion’s total col-

umn at 63 correct cases depicts a medium prediction rating projecting fusion’s decision

certainty, thus simultaneously satisfying research question-5’s superiority between models

in section 1.2.1. Using inadequate sample sizes leads to invariance (creates the same re-

sults, regardless of system fine-tuning), which scientifically limits thorough evaluations of

fusion’s processing power. However, surplus data comprising 50 samples (50 videos x 12

frames) establishes the models’ processing capabilities in the following evaluation.
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Dataset
Performance Correctly Classified Instances Incorrectly Classified Instances Confidence-

ThresholdModel Overall-Accuracy Fencing Stabbing Activity Unknown Total Fencing Stabbing Activity Unknown Total

10 Samples at
12-Frames

Per Sample =
120

Frames

3DCNNsl 40.83% 0 49 0 49 0 50 21 71 Medium
YOLOv5m 33.33% 3 37 0 40 0 46 34 80 Low

Fusion Led By
52.50% 3 60 0 63 0 48 9 57 Medium

11.67% Superiority Over 3DCNNsl
19.17% Superiority Over YOLOv5m

Table 5.7: Fusion Scheme-1 Performance Evaluation for 12 Frames per 10-Samples.

5.4.7 Fusion Scheme-1-12 Frames per Sample Results 50 Samples:

Considering the 10-test video evaluation discussed above, the operations validated the proposed fusion effectiveness by utilising 50 random

samples of equal fencing and stabbing ratios (50 videos x 12 frames) in a similar context. Employing the surplus 50 samples 600 frame

action similarity dataset at this stage allowed the models to act realistically as a plot to eradicate the risks of bias processing. 3DCNNsl

via Table 5.8 produced an overall accuracy of 66.50% with 400-correctly classified instances. The model generated 203 correctly classified

cases of the non-violent fencing class, with 197 instances for stabbing and zero for the activity unknown category. 3DCNNsl, at this stage,

demonstrated its capability to recognise violence in complex action scenarios. The model generated 200 inaccurate classifications via the

activity unknown class in Table 5.8. The outcome suggests that the actions processed contain no fencing or stabbing attributes, with

no direct incorrect classifications for both classes, ranking medium confidence for its decisions. YOLOv5m activity recognition improved

its overall accuracy performance by 36.83% at 70.16% compared to Table 5.7. The model produced 421 correctly classified instances,

exceeding 3DCNNsl’s 400 outcomes.

The analysis recorded 211 cases of fencing and 210 of stabbing for YOLOv5m, which demonstrated its ability to classify violence accurately

in complex conditions with high confidence in its decisions. The model dispensed 179 inaccurate predictions via the activity unknown

category without directly misclassifying the fencing and stabbing categories. YOLOv5m demonstrated its processing effectiveness with

no indication of processing challenges via incorrect classification of the target classes using the same 50-sample dataset. Like the 10

test sample discussions, the proposed fusion proved its prediction superiority by dispensing an overall accuracy of 83.83%. Fusion
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validated its prediction superiority over 3DCNNsl by 17.33% and YOLOv5m activity recognition by 13.67%. The model dispensed 503

correctly classified instances, with 260 cases of the fencing class and 243 for stabbing. Fusion produced 97 inaccurate predictions directly

linked to unknown activity cases without traces of fencing/stabbing attributes. Although 3DCNNsl/YOLOv5m activity recognition

demonstrated classification challenges in some scenarios, the proposed fusion maintained its realistic outcome consistency, proving its

processing flexibility and stability via the correctly classified outcomes. Fusion produced high classifications for fencing/stabbing with

fewer misclassifications compared to the other models. The findings indicate that by applying the proposed fusion processing on surplus

data, the effectiveness improved as a superior approach over the previously mentioned models to satisfy research question-5’s model

dominance in section 1.2.1. With an appreciation for fusion’s realistic 12-frame processing, further evaluations of the model’s power using

whole video duration samples disclosed its overall accuracy performance using more data in the following discussions. The operations

considered the same ten samples with similar column output titles taken from Fusion Scheme-1 to disclose Fusion Scheme-2’s effectiveness

and maintain data and experiment consistency.

Dataset
Performance Correctly Classified Instances Incorrectly Classified Instances Confidence-

ThresholdModel Overall-Accuracy Fencing Stabbing Activity Unknown Total Fencing Stabbing Activity Unknown Total

50 Samples at
12-Frames

Per Sample =
600 Frames

3DCNNsl 66.50% 203 197 0 400 0 0 200 200 Medium
YOLOv5m 70.16% 211 210 0 421 0 0 179 179 High

Fusion Led By
83.83% 260 243 0 503 0 0 97 97 High

17.33% Superiority Over 3DCNNsl
13.67% Superiority Over YOLOv5m

Table 5.8: Evaluating Accuracy/Confidence on 50-Samples at 12-Frames per Sample.

5.5 Fusion Scheme-2 Results: Processing the Entire Video

Appreciating Fusion Scheme-1’s capability of employing the 50-videos-12-frames-per-sample dataset encourages another strategy involving

building on the idea to substantiate fusion’s power. The idea incorporated the entire video as surplus data for Fusion Scheme-2. The

results also measure the impact of processing superiority between models from an overall accuracy perspective.
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Like Fusion Scheme-1 in the previous evaluation, the task considered all misclassifications for all

samples instead of evaluating each sample individually. The individual video misclassification

concept detours the research objectives towards considering single-shot accuracy scores. Hence, the

concept avoided the individual video approach to maintain the proposal’s time constraints. The

models proved their effectiveness by computing the overall accuracy, which considers the number

of correctly classified samples divided by the total number of frames from all videos, multiplied

by 100%. The investigations commenced with Fusion Scheme-1’s 10-samples incorporating the

entire video duration, followed by the same 50-sample dataset featuring the entire duration. Fusion

scheme-1’s 10-samples full video duration dataset considered a frame rate of 30fps(frames per

second) at a 10-second interval (10-vids x 30-fps x 10-secs) to establish the model’s decision-making

effectiveness on 3000-frames. The 50-sample entire video duration dataset considered a frame rate

of 30fps(frames per second) varying in duration between 10-12 seconds. The data features 10-

video samples at 11-seconds (10-vids x 30-fps x 11-secs), 20-video samples at 10-seconds (20-vids

x 30-fps x 10-secs) and 20-video samples at 12-seconds (20-vids x 30-fps x 12-secs) to establish

decision effectiveness on 16,500-frames. The idea returns 1-outcome computed by the activity

recognition overall accuracy formula in alignment with [272], [273], [274], [138], [275], and [276].

The formula reflects the ”arOA” value representing activity recognition’s overall accuracy, with

”nCLvids” indicating the total number of correctly classified samples. The computation applies the

total number of samples via ”TnVids”, with a ”100%” value denoting the percentage computation

which indicates the outcome. The following expression illustrates the formula used to generate

activity recognition’s overall confidence per model to establish processing superiority.

arOA =
nCLvids

TnVids
× 100

5.5.1 Summary of Confidence for Full Video Classification Effectiveness:

Like section 5.4.2 discussions on confidence, the operations applied identical measures similar to

[279], [280], [281], [282], [283] and [284] to accommodate the surplus data, which constitutes bound-

aries to describe the models’ decision certainty. High confidence indicates the highest classification

ratings regarding positive predictions above 68% confidence. High confidence indicates favourable

outcomes and the model’s prediction effectiveness. Medium confidence signifies confidence ratios

between 34-67%, suggesting the presence of processing challenges affecting the effectiveness of the
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operation. Medium confidence episodes require additional training samples with fine-tuning archi-

tecture to generate significant results. Conversely, low confidence indicates insignificant results,

reflecting a 0-33% ratio. Sporadic low confidence also suggests that the models experienced gen-

eralisation challenges necessitating hyper-parameter option fine-tuning and sample pre-processing

to achieve favourable results. Option fine-tuning encompasses tweaking the models’ generalisation

controls to promote effectiveness. The following demonstrates Fusion Scheme-1’s 10-test sample re-

sults employing the whole video duration to emphasise the range of outcome possibilities concerning

overall accuracy.

5.5.2 Fusion Scheme-2 Whole Video Evaluation on 10-Test Samples:

To establish the models’ overall accuracy, the operations validated fusion whole video processing

using the approach discussed in section 5.4.6 on ten videos totalling 3000 frames. Table 5.9 analysis

disclosed an overall accuracy of 82.43% for 3DCNNsl using the whole duration of the video, with

a 41.60% difference compared to its efforts in section 5.4.6 and 15.93% in section 5.4.7. 3DCNNsl

produced 2,473 correctly classified instances, with 1275 cases suggesting fencing, 1198 instances for

stabbing and zero outcomes for the activity unknown class. 3DCNNsl, at this stage, proved its

ability to discern the target actions in violent and non-violent scenarios accurately. Although 3DC-

NNsl’s performance improved with surplus data, the operations produced 527 inaccurate predictions

disclosing zero outcomes for fencing, one inaccurate prediction for stabbing and 526 activity un-

known cases. The findings suggest that the model improved significantly because of surplus data,

with high confidence in its decisions regardless of the 527 inaccurate cases. YOLOv5m activity

recognition produced an overall accuracy of 79.50%, improving by 46.17% compared to its 33.33%

efforts in section 5.4.6 and 9.34% at 70.16 in section 5.4.7. The model correctly classified 2,385

instances, with 1105 predictions suggesting the presence of the non-violent fencing category. At

this level, the stabbing class generated 1280 violent predictions with no activity unknown cases.

The findings disclosed a 2.93% depreciation in performance by YOLOv5m at 79.50% compared to

3DCNNsl’s processing at 82.43%. The operations projected an anticipated outcome because of the

difference in architectures and the complexity of similar action activities in various scenarios.

Regarding YOLOv5m 615 inaccurate predictions, the model projected 102 inaccurate instances of

the non-violent fencing class and 513 inaccurate cases for activity unknown. Though YOLOv5m

615 inaccurate predictions appeared high, stabbing recorded zero inaccurate outcomes with high
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confidence in its decisions. The findings suggested that YOLOv5m experiences challenges discerning the true nature of fencing against

actions it cannot recognise due to its training procedures. At this level, fusion proved its dominance by dispensing 85.20% overall

accuracy for whole video operations. Fusion’s operations increased by 32.70% compared to its 52.50% efforts in section 5.4.6 and 1.33%

in section 5.4.7. Fusion dominated 3DCNNsl by 2.77% and YOLOv5m activity recognition by 5.70%. The findings reflected 2556 correctly

classified instances, with 1228 cases of the non-violent fencing class and 1328 outcomes for stabbing in bold text. The correctly classified

results proved fusion’s capability to identify the target classes in violent and non-violent scenarios. Although fusion proved formidable

in its processing, the operations produced 444 inaccurate predictions, with 102 cases suggesting fencing and activity unknown each and

no direct outcomes for stabbing. The evidence validated fusion’s processing effectiveness with high confidence in its decisions regardless

of the 444 inaccurate predictions utilising surplus data.

Dataset
Performance Correctly Classified Instances Incorrectly Classified Instances Confidence-

ThresholdModel Overall-Accuracy Fencing Stabbing Activity Unknown Total Fencing Stabbing Activity Unknown Total

10 Whole
Video

Samples =
3000

Frames

3DCNNsl 82.43% 1275 1198 0 2473 0 1 526 527 High
YOLOv5m 79.50% 1105 1280 0 2385 102 0 513 615 High

Fusion Led By
85.20% 1228 1328 0 2556 102 0 102 444 High

2.77% Superiority Over 3DCNNsl
5.70% Superiority Over YOLOv5m

Table 5.9: Performance Evaluation for 10-Samples in Whole Video Processing.

5.5.3 Fusion Scheme-2 Whole Video Evaluation on 50 Test Samples:

Like section 5.4.7 using 50 samples at 12 frames per sample, the same 50 samples employing the entire video duration established realistic

outcomes. Table 5.10 whole video analysis revealed a decrease in 3DCNNsl’s processing by 13.38% at 69.05% compared to Table 5.9

whole video processing at 82.43%. Increasing the surplus data concerning real-world action similarity scenarios impacted the model’s

processing because it intensified the complexity of differentiating violence from non-violent actions. Predictably, the model dispensed

realistic outcomes matching the complexity of the action similarity data in real-world conditions. 3DCNNsl correctly classified 11,394

instances, with 5503 cases of the non-violent fencing class and 5891 cases suggesting the presence of stabbing violence. The evidence
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suggests that the model experienced challenges processing the complexity of action similarity utilising an increment in surplus data via 50

samples. 3DCNNsl dispensed 5,106 inaccurate activity unknown cases with no direct misclassifications for fencing/stabbing. Although

3DCNNsl experienced classification challenges, receiving only activity unknown misclassifications suggests that the model maintained

high confidence in accurately classifying violence in the total column (11394 instances).

Dataset
Performance Correctly Classified Instances Incorrectly Classified Instances Confidence-

ThresholdModel Overall-Accuracy Fencing Stabbing Activity Unknown Total Fencing Stabbing Activity Unknown Total
50 Whole
Video

Samples =
16,500
Frames

3DCNNsl 69.05% 5503 5891 0 11394 0 0 5106 5106 High
YOLOv5m 67.86% 5211 5987 0 11198 1348 0 3954 5302 Medium

Fusion
Led By

84.75% 6853 7131 0 13984 1082 0 1434 2516 High
15.70% Superiority Over 3DCNNsl
16.89% Superiority Over YOLOv5m

Table 5.10: Performance Evaluation for 50-Samples in Whole Video Processing

YOLOv5m activity recognition demonstrated a decline in performance by 11.64% at 67.86% in Table 5.10 compared to its 79.50% efforts

in Table 5.9. Predictably, like 3DCNNsl’s processing, YOLOv5m demonstrated a similar depreciation in performance linked to the action

similarity complexity via the 50-sample dataset. YOLOv5m activity recognition correctly classified 11,198 instances, with 5211 cases

suggesting the fencing class presence and 5987 for stabbing violence. The model recorded 5,302 inaccurate predictions with an increase in

misclassifications of 1348 for fencing, 3954 for activity unknown and zero for stabbing. YOLOv5m depreciation in performance reflected

medium confidence in its decision because of several misclassifications and the action similarity complexity of the 50 video data. The

findings revealed a decrease in performance for the proposed fusion by 0.45% at 84.75% compared to its 85.20% efforts in Table 5.9

using ten whole video samples. Predictably, like 3DCNNsl and YOLOv5m, the complexity of action similarity in the 50 samples dataset

depicted a similar effect. At this level, fusion produced 13,984 correctly classified cases, with 6853 cases suggesting the presence of

the fencing class and 7131 for stabbing. The model dispensed 2516 inaccurate classifications with 1082 misclassifications for fencing in

bold text, zero for stabbing and 1434 reflecting activity unknown cases. Unlike YOLOv5m’s 1348 misclassification, fusion improved its

outcomes with high confidence in its decisions. The evidence proved that by incorporating the proposed fusion with surplus data, its

effectiveness and dominance improved over 3DCNNsl by 15.70% and YOLOv5m activity recognition at 16.89% to validate the research

136



question-5 objectives in section 1.2.1.

5.6 Fusion Scheme-1 and Fusion Scheme 2’s Discussions

The primary goal of the fusion schemes is to enhance the model’s predictive power and

accuracy instead of generating individual video sample outcomes. This concept evaluates

the models’ decision-making confidence, ensuring consistent and effective outcomes in sce-

narios with varying data availability. The complexity of actions like stabbing and fencing

often leads to ambiguous interpretations, necessitating additional data to strengthen the

model’s discerning strategy. Multiple datasets serve as a tool to rigorously evaluate the

complexity of violence rather than specifying classification efficiency on easily identifiable

class samples.

The fusion scheme ideas avoided simple classification tasks as an informed decision by focus-

ing on two complex samples only because of the sporadic nature of violence. The complexity

of fencing and stabbing encouraged classification difficulty, which provides the opportunity

to evaluate fusion’s effectiveness honestly and avoid the risks of producing erroneous results

in real-world conditions. Investigating alternative processing possibilities by incorporating

average arithmetic methods endorsed the proposed fusion’s processing before considering

alternative solutions, which increased the classification anomalies and lengthened the du-

ration of results convergence. However, alternative solutions were applied to evaluate the

fusion thoroughly. Analysing the max score arithmetic as other methods proved unrealistic

and biased as its operations produced identical high scores from 3DCNNsl and YOLOv5m

activity recognition. With insight into the max score arithmetic impact, the procedure

abandoned further analysis because it negatively affected all operations.

Contrary to the alternative solutions, processing surplus data increased the misclassifica-

tion outcomes, thus impacting the individual model’s overall performance. However, the

analysis showed minimal impact via the proposed fusion efficiency, maintaining its confi-
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dence consistency above 80%. Accuracy score as a solution relative to individual samples

and frame-level processing considered the ratio of inaccurate prediction conceded per frame

during processing [285], [286], and [287]. Exploring accuracy per sample and frame as a

solution significantly detoured the research objectives to establish its full potential. The op-

erations avoided the accuracy approach because it exceeded the proposal’s time constraints;

this primarily answered another research question, which investigates the model’s ability

to accurately classify violence in a single shot via a single frame perspective. The find-

ings showed several instances where the models experienced classification challenges that

impacted their decision-making capabilities because of the homogeneity of the datasets

but maintained their processing robustness on surplus data. Analysis accentuated Fusion

Scheme-2’s utilising whole video surplus data over Fusion Scheme-1 employing 12-frame-

per-video from 10 and 50-sample perspectives. One reason surrounds the limitations of the

3DCNNsl/YOLOv5m activity recognition processing ability when employing complex ac-

tion similarity data. Providing surplus data to the fusion models increased their confidence,

boosting their robustness in action similarity conditions.

5.7 Conclusion

Chapter 5 evaluated 3DCNNsl/YOLOv5m activity recognition capabilities compared to

the proposed fusion concerning action similarity datasets in 2-fusion schemes. The chapter

evaluated the proposed fusion’s overall accuracy by applying surplus data reporting real-

istic outcomes compared to smaller datasets employing fewer samples. Like discussions on

state-of-the-art comparisons in Section 4.6, the same outlook applies at this level. Because

of the dataset and the pre-stages of violence, it proved impractical to thoroughly compare

the outcomes with other state-of-the-art solutions. The concept implemented two state-

of-the-art models (YOLOv5m and 3DCNNsl) to compare those simulations and Chap-

ter 5’s operations. Chapter 5 fusion demonstrated dominance of 52.50% over 3DCNNsl

at 40.83% and YOLOV5m activity recognition at 33.33% to quantify Fusion Scheme-1.
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Fusion dominance increased to 83.83% over 3DCNNsl at 40.83% and YOLOV5m activity

recognition at 33.33% by employing a 50-sample-12-frames-per-sample dataset as surplus

data. The findings validated fusion’s superiority at 85.20% over 3DCNNsl capabilities at

82.43% and YOLOV5m activity recognition at 79.50%, incorporating surplus data via the

10-sample-whole-video dataset. Fusion proved its robust processing with 84.75% overall

accuracy over 3DCNNsl at 69.05% and YOLOV5m activity recognition at 67.86% via the

50-sample-whole-video dataset.

Fusion outlined its consistency and stability in Fusion Scheme-1 and 2 by dispensing high

confidence thresholds instead of fluctuating outcomes between low and medium for the

other models. The chapter proved the viability of Fusion Scheme-2 operations toward high

confidence, demonstrating robustness involving an increment and decrement in complex

action conditions in the data. The proposed fusion at this level demonstrated its robust-

ness and aptitude to classify the complexity of the actions and create a suitable response

in Figure 5.4. The idea emphasises an increase in performance but at the cost of efficiency

by utilising a few frames to suggest the resonance of a violent class. The approach can

potentially introduce errors during blob analysis due to human fatigue caused by long

durations of intense object encapsulation, which positively impacts the real-time results.

The efficiency cost projected a trade-off to performance, signalling the need for alternative

measures to increase the model’s speed of discerning the actions via a graphical unit pro-

cessing approach. The model experienced efficiency challenges resulting from a PyTorch

package issue discussed in Section 4.5.4. The integration of hardware facilitating graphical

processing unit operations attains the computational power to mitigate challenges regard-

ing efficiency to counter the speed of the model’s result convergence. With knowledge of

fusion’s performance, the operations evaluated an alternative strategy in Chapter 6, which

enhances the operations further specific to the artefacts of interest and their existence

within the scenery.
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Chapter 6

Merging Action

Recognition/Object Detection for

Violence Recognition

Chapter 5 implemented fusion by modifying 3DCNNsl/YOLOv5m activity recognition’s

final layer outputs via fusion strategies. Chapter Six’s operations incorporated weapons

in scenarios by exploiting YOLOv5m object detection dominance to advance the classifi-

cation status of fusion activity recognition. The chapter propositioned weapon detection

operations denoted as artefacts specific to its violent class, which combined its output with

the proposed fusion discussed in Chapter 5. The idea validated the existence of violence

relative to violence focusing on stabbing. The focus on stabbing maintained the pro-

posal’s life cycle without negatively impacting its competition time. This chapter features

five sections to substantiate the proposed fusion’s idea incorporating YOLOv5m activity

recognition artefact power. The operations commenced by presenting the effectiveness of

YOLOv5m artefact object recognition to illustrate the potential of utilising static images

containing specific artefacts of interest for fusion’s development in Section 6.1. Section 6.2
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focuses on the fundamental operations of YOLOV5m activity recognition artefact process-

ing. Section 6.3 emphasises essential fusion stages using artefact support to satisfy research

question-6 in 1.2. The section also expresses the findings via the results dispensed from

each model. Essential discussions on operational anomalies express performance issues in

Section 6.4. Finally, Section 6.5 outlines the findings to conclude the chapter.

6.1 Overview of YOLOv5m as Artefact Object Detection

YOLOv5m object recognition considers objects of interest in static frames using bounding

boxes, which encapsulate and identify targets in the region of interest. The strategy at

this stage emphasises its effectiveness as an informed decision before exploring alternative

artefact processing measures within violence. The idea exploits the identical frame-by-

frame processing strategies as YOLOv5m activity recognition. However, YOLOv5m ac-

tivity recognition considers frame sequences constituting an action over a spatiotemporal

period, which utilises bounding box techniques to identify action objects of interest in a sce-

nario. To evaluate YOLOv5m artefact object detection processing, the concept employed

12 randomly selected static images in the following experimental setup to investigate its

performance outcomes.

6.1.1 YOLOv5m Artefact Object Detection Experimental Setup:

Maintaining experiment consistency and eradicating biased results is crucial during train-

ing. The object detection model incorporated Chapter 5’s data to reduce consistency risks.

Implementing blob analysis specified the following classes relevant to violence to facilitate

YOLOv5m Artefact Object Detection operations to evaluate its capability.

Aggressor Class: Signifies perpetrator/s exists (suspicious actions leading up to

the beginning of violence) The aggressor validates/indicates the attacker’s existence in
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motion to execute stabbing actions.

Knife-Weapon Class: Signifies the existence of weapons in a scenario before

the action of violence commences. The knife-weapon class validates/indicates the

existence of a weapon (bladed/knife objects) and posturing before committing stabbing.

Knife-Deployed Class: Signifies that a stabbing action is pending. The knife-

deployed validates/indicates the existence of knife weapon/s (bladed objects) before and af-

ter committing the act. This class suggests the presence of a bladed instrument (weapons)

used in the scenery for violence.

Hand Class: Validates the existence of the knife-deployed action class. The hand

validates/indicates the existence of knife weapons (bladed objects) in the hand/s of the

aggressor before the attack. This class acts as a redundancy to confirm that the aggressor

is indeed holding/using a weapon to commit an act of violence.

Blood Class: Signifies that individual/s sustained injuries. The existence of blood

validates/indicates injuries sustained, and medical attention is required. Its significance

specifies the presence of blood/injuries, which usually occur after the pre-empting duration

of the action. The idea ensures that a solution is available to prevent the loss of human

life, further indicating the need for urgent medical attention in such cases.

Victim Class: Signifies the target person/individual’s about to receive/receiving

the injuries. The victim category validates/indicates the existence of stabbing and high-

lights the individuals receiving lethal injuries as the target.

Stabbing Class: Signifies the action object that suggests a pending stabbing

action for object detection. The stabbing object for object detection validates/indicates
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the existence of stabbing but cannot determine the action over time.

People Class: Signifies individuals within the scenario for object detection

purposes only that suggest a pending stabbing action. The people object for

object detection validates/indicates the existence of an individual within the scenario as

a measure to enhance the object detection processing to facilitate distinctions between

normal actions and stabbing.

Crucial modifications via programming assist the model in focusing on 12 static images

derived from online social media platforms to consider the abovementioned artefacts. The

idea establishes YOLOv5m’s object detection classification possibilities from an informed

decision concerning violent weapon artefacts on randomly selected images. Like Chap-

ter 5 ’s experimental setup, the processing of the operation quantifies YOLOv5m’s artefact

object detection effectiveness on violence in the following results.

6.1.2 Evaluating YOLOv5m Artefact Object Detection

YOLOv5m artefact object detection operations produced multiple outcomes relative to

objects of violence in images 1-6 in Figure 6.1 and 7-12 in Figure 6.2, a total of 12-static

samples. The idea projects examples of the power of object detection’s performance be-

fore considering its integration. Image-1 in Figure 6.1 analysis demonstrated 4-correctly

classified instances, 2-hand artefacts at 0.50% and 0.82%, knife-deploy at 0.82%, and knife-

weapon at 0.75%. Image 2 dispensed 3-correct incidents where the hand artefact achieved

0.65% misclassification and 0.47% for the actual hand object. The analysis projected an

accurate classification for knife-deployed at 0.37%. Although the model produced fluc-

tuating results, its classification distinction outlined the targets to prove its capability.

Image-3 dispensed 1-accurate classification at 0.58% for the stabbing artefact with lower

scores for persons at 0.45% and 42%, aggressor at 0.33%, knife weapon at 0.44%, hand
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at 0.38% and victim at 0.35%. Like Image-1, Image-4 produced 0.29% for knife-deploy,

0.55% and 0.39% for the hand artefact as three accurate classifications. Image-5 dispensed

accurate instances of 0.81% for stabbing and 0.52% for the person’s artefact. Analysis

showed that the model overlooked the actual perception of stabbing because of the image

pre-processing operations. Image-6 produces no artefacts as its rationale evaluated the

context of violent artefact in non-violent actions relative to object detection. The idea

provided crucial insight into YOLOv5m artefact object detection ability to differentiate

Figure 6.1: YOLOv5m Artefact Object Detection Results for Image 1-6.

the resonance between fencing/stabbing. Image-7 in Figure 6.2 dispensed 0.28% for the

stabbing artefact, 0.26% for a person, 0.31% for knife-deploy and 0.42% for the hand

object. The analysis depicted 2-stabbing instances at 0.28% and 0.74% for Image-8. Like

Image-8, Image-9 produces 2-artefact outcomes, one at 0.88% for stabbing and 0.65%.

The model produced one score indicating stabbing at 0.46% for Image 10. Although

Images 8 to 10 produced fewer artefact outcomes, the classification operations proved the

artefact processing’s significance in establishing the object’s existence. Image-11 dispensed

3-artefact instances, 0.27% for knife-weapon, 0.33% for knife-deploy, and hand at 0.39%
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and 0.70%, respectively. Finally, Image-12 produced nine instances of the artefacts to

prove the effectiveness of the artefact operations at this level. The findings disclosed 0.78%

and 0.64% for the stabbing artefact, 0.74% for the aggressor, 0.54% for knife-weapon,

0.69% for knife-deploy, 0.59% and 0.21% for the hand artefact, with 0.52% for the victim.

The model produced multiple instances of lower scores; however, it identified the main

artefact representing violence to prove the viability of the artefact processing for research

question-6 in section 1.2.1.

Figure 6.2: YOLOv5m Artefact Object Detection Results for Image 7-12.

With knowledge of YOLOv5m as activity recognition and fusion’s superiority in Chap-

ter 5, the chapter proposed a contributory fusion element exploiting YOLOv5m’s object

detection bounding box encapsulation capabilities in the context of YOLOv5m activity

recognition. Similar blob analysis techniques integrated across a series of frames facilitated

YOLOv5m object detection utilising static image processing. YOLOv5m object detection

cannot facilitate activity recognition in the context of unrelated objects in static image pro-

cessing. The frame sequence approach encompassing related actions in images allows the

complete representation of action/artefacts across spatiotemporal periods. Remodelling
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of the YOLOv5m activity recognition input sequence via programming accepts the data

dispensing artefacts synchronised with its activity objects across a series of frames during

inference. The concept enhances activity recognition utilising classification redundancy,

which validates artefact presence in sync with its activity object over a spatiotemporal

period at the output stage.

6.2 How YOLOv5m Artefact Detection Works

As Chapter 5 discussed the classification of stabbing objects over spatiotemporal bound-

aries, Chapter 6 enhances the classification by employing YOLOv5m activity recognition

capability to identify stabbing action and artefacts relative to the knife-weapon, aggressor,

victim, posturing, hand positioning, and knife deployed across a series of frames [288],

[289], [290]. The objects discussed above represent fundamental attributes of artefact as-

sociation, which aids in establishing existing pre-empted stabbing conditions to enhance

action classification. Appreciating Chapter 5’s fusion discussion, the concept integrated

YOLOv5m activity recognition to target spatiotemporal actions and artefacts to enhance

its predictions similar to [291], [292], [293]. The idea behind artefact prediction enhances

activity recognition by fusing weapon/activity object outcomes, proving the existence of vi-

olence because weapons linked to stabbing actions are present in a scenario. Implementing

further classification redundancy to support activity recognition enhances the processing’s

effectiveness before stabbing attacks, thus reducing the violent possibilities.

Achieving object detection’s power by utilising the YOLOv5m activity recognition model

incorporated final layer programming instructing YOLOv5m activity recognition to identify

specific actions and artefacts depicting the pre-stages of violence. The analysis disclosed

the model’s ability to produce results on stabbing incorporating datasets processed in

Chapter 5’s operations. Considering blob analysis, specific object boundaries facilitate

YOLOv5m activity recognition, which enables learning operations. To maintain exper-
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Figure 6.3: YOLOv5m Artefact Weighted Values.

-iment consistency, the operations implemented Chapter 5’s decision level fusion demon-

strated in Section 5.1 and its protocols in section 5.1.2 to generate relevant data in

alignment with [260], [261], [262], [263], [264] and [265]. Figure 6.3 demonstrates 3DC-

NNsl/YOLOv5m activity recognition artefact processing as a nuance of its framework be-

fore surveying alternative fusion approaches. The illustration emphasises the YOLOv5m

activity recognition artefact processing, clarifying object detection class label dispensing

capabilities for activity recognition. YOLOv5m activity recognition artefact processing

dispenses results with clear distinctions of the objects in bounding boxes concerning their

spatiotemporal location in the scenario. The operations apply no detection field outcomes

to compensate for instances lacking the presence of weapons within the image scenery.

YOLOv5m activity recognition artefact processing dispenses outcomes from the first frame,

thus indicating the artefacts’ existence in violence. Incorporating Chapter 5’s 10-sample

dataset encompassing a balanced ratio of fencing and stabbing actions disclosed the model’s

aptitude, which justified the reduction in score biases by maintaining sample consistency.

The approach investigates YOLOv5m artefact activity recognition using 12-salient frames
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per video sample, establishing its effectiveness before considering alternative datasets and fusion adjustments. Incor-

porating similar Fusion Scheme-1 and 2 conditions employing Chapter 5’s 10-sample dataset aided in maintaining

experiment consistency. At this level, YOLOv5m artefact activity recognition expressed its capability in 3-examples,

which validated its viability.

6.2.1 YOLOv5m Action Recognition Artefact using 12-Frame Stabbing8.avi:

YOLOv5m activity recognition artefact processing confirmed its capability from an informed perspective on stab-

bing8.avi in Table 6.1. The analysis emphasised the presence of artefacts in frames #1-12 without the blood label.

YOLOv5m activity recognition artefact processing proved its viability towards satisfying research question-6 activity

recognition enhancement objectives in 1.2.

Fr Correct Class 3DPreds YoloPreds Fusion Class Aggressor Knife-Weapon Knife-Deployed Hand Victim Blood

1 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
2 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
3 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
4 Stabbing8.avi Activity Unknown Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
5 Stabbing8.avi Activity Unknown Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
6 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
7 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
8 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
9 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
10 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
11 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
12 Stabbing8.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND

Table 6.1: YOLOv5m Artefact Activity Recognition on Stabbing8.avi.
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6.2.2 YOLOv5m Action Recognition Artefact using 12-Frame Stabbing48.avi:

Table 6.1 findings demonstrated 2-instances lacking the presence of the artefacts in frames #17-18 action. No

detection fields (ND) insinuate the obscuring of objects from the camera sensor’s field of view. The analysis emphasised

YOLOv5m artefact activity recognition’s robustness, dispensing ten accurate labels suggesting violence in this sample.

The outcomes satisfied objective-6 object detection towards enhancing action recognition in 1.2.

6.2.3 YOLOv5m Action Recognition Artefact using 12-Frame Fencing27.avi:

YOLOv5m activity recognition artefact evidence presented no results because Table 6.3 fencing27.avi represents non-

violent action. The model depicted signs of classification challenges discerning the non-violent status by producing 9-

activity-unknown instances with 3-correctly classified fencing outcomes. Although fencing27.avi dispensed no artefact

results, the idea demonstrates examples of the model’s processing capability even in action similarity conditions.

YOLOv5m activity recognition artefact processing proved its viability towards satisfying research question-6 activity

recognition enhancement objectives in 1.2.

6.3 How Fusion Activity Recognition Work using Artefact Support

With insight into Chapter 5 ’s fusion and YOLOv5m artefact activity recognition discussed above, Chapter Six

proposed an alternative contributory fusion strategy via enhancing activity recognition’s overall accuracy. The concept

incorporates YOLOv5m activity recognition artefact processing to identify groups of target objects with an embedded

weight values operation, which confirms the existence of violence. At this stage, merging Chapter 5 ’s fusion operations

with YOLOv5m activity recognition artefact processing fostered enhancements utilising the same 10 and 50-sample
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Fr Correct Class 3DPreds YoloPreds Fusion Class Aggressor Knife-Weapon Knife-Deployed Hand Victim Blood

13 Stabbing48.avi Activity Unknown Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
14 Stabbing48.avi Activity Unknown Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
15 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
16 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
17 Stabbing48.avi Stabbing Activity Unknown Stabbing ND ND ND ND ND ND
18 Stabbing48.avi Stabbing Activity Unknown Stabbing ND ND ND ND ND ND
19 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
20 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
21 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
22 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
23 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND
24 Stabbing48.avi Stabbing Stabbing Stabbing Aggressor Knife-Weapon Knife-Deployed Hand Victim ND

Table 6.2: YOLOv5m Artefact Activity Recognition on Stabbing48.avi.

Fr Correct Class 3DPreds YoloPreds Fusion Class Aggressor Knife-Weapon Knife-Deployed Hand Victim Blood

25 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

26 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

27 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

28 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

29 Fencing27.avi Fencing Fencing Fencing ND ND ND ND ND ND

30 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

31 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

32 Fencing27.avi Fencing Fencing Fencing ND ND ND ND ND ND

33 Fencing27.avi Fencing Fencing Fencing ND ND ND ND ND ND

34 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

35 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

36 Fencing27.avi Fencing Activity Unknown Activity Unknown ND ND ND ND ND ND

Table 6.3: YOLOv5m Artefact Activity Recognition on Fencing27.avi.
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datasets as a plot to maintain data and experiment consistency discussed in section 5.4.2.

The following process summarises the fusion embedding concept with weighted values to

facilitate research question-6 points in 1.2. Figure 6.4 emphasises the fusion enhancement

concept further by illustrating redundancy to confirm the presence of violent action ob-

jects, identifying artefacts, and computing an improved overall accuracy result. Given the

existence of artefacts within the scenarios, the rationale behind the weight enhancement

fusion processing validates pending violence by introducing classification redundancy.

1. Process-#1 separates objects of interest dispensed from individual model outcomes

after the starting point

2. Task-#2 validates the presence of positive class labels (violence) in the outcomes

before assessing the presence of artefacts. If the negative class labels exist, fusion-1

applies its results as the outcome.

3. Operation-#3 confirms the artefact group presence from #2’s processing and applies

a weighted score. Artefact grouping relates to its significance to violence, which

represents a specific weight value that triggers the enhancement programming upon

its classification at process #3. If the artefact object groups are absent at operation

#3, the processing employs fusion-1 output as the result.

4. Process-#4 fuses label outcomes derived from process #3 and generates a score with

their weight values reflecting the existence of the artefact groups.

5. Task-#5 avoids biased results by regulating process #4’s overall accuracy score at

100%. If the scores record thresholds below 100%, the processing accepts the results

as the outcomes.

6. Process-#6 applies subtraction adjustments to regulate the outcomes, which simul-

taneously represents artefacts should process #5 score exceed the 100% threshold.

The idea regresses the summation of the artefact category applied at process #4,
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which regulates its values at a 100% threshold.

7. Process-#7 generates the outcome from the stages at the end. Fusion at this level produces a generic status

(violence or not), its subclass (stabbing or fencing), and overall accuracy with artefacts that triggered the score

enhancement. Artefact validation introduces classification redundancy, which promotes robust predictions, in

contrast to Chapter 5’s fusion, which contains action objects only.

Figure 6.4: Proposed Fusion with Artefact Decision Level Weight Enhancement.
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Demonstrating the proposed overall accuracy enhancement fusion operations discloses the

prospect of embedding the weight values concept. The following Figure 6.5 illustration

fortifies discussions on Figure 6.4, representing the significance of the weight embedding

operations in 6-stages from start to end.

Step-1 Training: Trains the model to recognise homogeneous differences between violent/non-

violent actions and identifies the presence of artefact objects.

Step-2 Input Test Data: Prepares the test data samples for the convolution and infer-

ence stages.

Step-3 YOLOv5m activity recognition artefact and 3DCNNsl Convolution: Initialises

the convolution operations on the input data, generating the critical results

Step-4 Action Output: Applies configuration that dispenses action objects relative to

generic and sub-classes for 3DCNNsl and action objects with artefact status for

YOLOv5m activity recognition artefact processing.

Step-5 Fusion & Weights: Determines the action status and embeds weight scores to

boast the final overall accuracy score via programming.

Step-6 Final Output: The model’s programming dispenses the generic status (violent

or not), its sub-classes, the overall accuracy, artefacts detected and confidence level

of the operations, whether high, medium, or low.

6.3.1 Embedding YOLOv5m Activity Recognition Artefact FusionWeights:

Appreciating Section 6.3 artefact operations further clarified the weighting process to sim-

plify the weight delegation concept to represent specific artefact groups. Defining the weight

value’s significance in Table 6.4 emphasises specific artefacts discussed in Section 6.1.1 via
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YOLOv5m activity recognition artefact processing for investigation. The concept incorpo-

rates integers representing the artefacts’ existence during inference. If specific groups of

artefacts are detected, a weight value is added to the proposed fusion’s overall accuracy

value, boosting its outcome. Conversely, the model preserves the original overall accuracy if

no artefact objects exist per Section 6.3 ’s discussions. The following integer and weighted

value representation improves the classification, enhancing the proposed fusion’s overall

accuracy and confidence during inference.

Figure 6.5: YOLOv5m Artefact Weighted Values

Specifying weights by grouping artefacts suggests the pre-stage importance of stabbing

actions relative to violence. A weighted score of 0.03 is applied if YOLOv5m activity

recognition artefact operations identify the main artefacts in action; this represents 3%.

A weighted score of 0.01 is applied if YOLOv5m activity recognition artefact processing

identifies artefacts concerning the injury indicators; this represents 1%. The previous

weight values meet the criteria that signified the presence of artefacts during inference as a

plot to enhance the proposed fusion’s output. At this weight evaluation level, the strategy
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#
Weighted-
Classes

Weight-
Value

Description

1
Main

Artefacts

Aggressor
(Committing the act)

0.03

If all elements are present in a scenario,
weighted value will be applied to the
stabbing accuracy. The idea validates the
pre-empting of violence by detecting
specific action attributes before an attack.

2
Knife-Weapon

(Aggressor has a weapon)

3
Knife-Deployed

(Aggressor with weapon
displays stabbing posturing)

4
Hand

(Validates aggressor
holding a weapon)

5 Identifies
Injury

Victim
(Person

being attacked)
0.01

If this class is present in a scenario,
the weighted value will be applied to the
stabbing accuracy. The idea validates the
victim sustaining injuries, immediate
assistance required

6
Blood

(Victim
received injuries)

Table 6.4: Definition of Weighted Class & Score Values.

explored alternative integers experimentally (0.01-0.10) as a plot to evaluate the chosen

values’ effectiveness in representing the artefacts. The literature investigations suggested

avoiding alternative weights reflecting (0.04-0.10) as they adversely affected the idea of

increasing the final scores (beyond 100%) to an unrealistic outcome, thus intensifying biased

outcomes. The concept, applied during development, validated instances of generating

biased results.

6.3.2 Fusion using Artefact Decision Level Protocol Embedding:

Like Chapter 5 decision level fusion protocols, the operations followed the same Fusion

Scheme-1 and 2 procedures (Fusion Scheme-1: 12-salient frames representing a

video sample processing, Fusion Scheme-2: processing the entire video) to pre-

serve experiment consistency and reduce bias outcomes. The idea evaluates weight values

discussed above combined with YOLOv5m activity recognition artefact processing against

Chapter 5 operations using the same 10 and 50-sample datasets towards establishing ef-

fectiveness. Modifying YOLOv5m activity recognition final output layers through pro-
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gramming identifies distinct artefacts in Steps-1 to 3 via Figure 6.5. At this level, the

strategy adapted Section 5.1.2 protocols, which considered specific conditions to identify

cases of positive (artefacts exist) and negative (artefacts absent) actions. Table 6.5 con-

ditions integrate the presence of artefacts as a redundancy measure to capture primitive

stages of violent actions. After combining weight enhancements, applying these conditions

ensured that the model dispensed the action’s generic/subclass label and fusion overall

accuracy. Considering the artefact, decision-level protocols maintain partiality towards

the positive action category. The intentional design suggests the presence of the generic

status (action violent or not), its subclass (type), its overall accuracy fusion score after

the artefacts support, the weight classes identified and its confidence ratio. Conversely,

negative cases suggest the absence of violence and artefacts in the actions. Also, the bias

design previously discussed intentionally maintains realistic scores below 100% and flags

violence in negative cases as a contingency measure to be validated by a manual operator.

The idea reduces escalating violent scenarios in its primitive stages. The strategy involves

subtracting the artefact percentage identified during prediction from the fusion score to

regulate the 100% score threshold, maintaining the significance of the artefact’s presence

in the overall accuracy. The previously discussed strategy maintains a realistic outcome

should the fusion score exceed the 100% threshold. Utilising Chapter 5 ’s overall accuracy

formula, the overall accuracy calculates the correctly classified samples ratio divided by the

total number of samples, multiplied by 100% to maintain a percentage value in line with

[272], [273], [138], [275], [276], [277], and [278]. To summarise the formula below, ”arOA”

represents the activity recognition overall accuracy where the total number of correctly

labelled videos denotes” nCLvids”. The total number of videos represents ”TnVids”. The

integrations of ”100%” reflect the percentage computation and the outcome.

arOA =
nCLvids

TnVids
× 100
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Although the approach introduces redundancy by applying a subtraction computation to

the overall accuracy and returning the values, the tactic implies that Table 6.4 artefact

process is combined with the fusion outcomes to represent score enhancements and validate

its presence. The approach aligns the fundamental objectives behind research question-6

in 1.2, that is, to pre-empt violence by identifying artefacts of relevance (utilising object

detection’s power) to enhance the classification outcome and reduce its impact. Introduc-

ing artefact enhancement possibilities in Table 6.6 aligned adapted decision-level protocols

to establish the proposed fusion combined with artefact weight accuracy outcomes. Em-

phasising the notion of fusion combined with weight score embedding

KEY
Action Unknown AU

No Detection ND

# Fusion Score Main Artefact Injury Artefacts
Weight Value Protocol Applies

Outcome Computation

1 Positive Positive (Exist) Positive (Exist) Positive Fusion Score +0.03% +0.01%
2 Positive Positive (Exist) Negative/ND Positive Fusion Score +0.03%
3 Positive Negative/ND Negative/ND Negative Fusion Score
4 Positive Negative/ND Positive (Exist) Positive Fusion Score +0.01%
5 Negative/AU Negative/ND Negative/ND Negative/AU Fusion Score
6 Negative/AU Positive (Exist) Positive (Exist) Negative/AU Fusion Score
7 Negative/AU Negative/ND Positive (Exist) Negative/AU Fusion Score
8 Negative/AU Positive (Exist) Negative/ND Negative/AU Fusion Score

Table 6.5: Artefact Decision Level Fusion.

representing existing artefacts incorporated the following conditions discussed in Table 6.5,

which enhanced the overall accuracy. The constraints provided through programming

configurations initiated the procedures described in Figure 6.4’s illustration. The conditions

are as follows.

Adapted Decision Level Protocols Incorporating Artefact Support:

1. If fusion-one overall accuracy is positive (between 50-100% ratio) and the main
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and injury artefacts are positive (artefacts detected), decision protocols

apply a summation of 3% to the overall accuracy outcome for main artefacts

present in the actions and 1% for injury artefacts for a total of 4% as a positive

outcome. If the overall accuracy outcome exceeds 100%, decision protocols sub-

tract the weights accordingly as a regulatory procedure to specify the significance

of the artefacts and preserve the maximum outcome of 100%. The decision proto-

cols ignore low overall accuracy scores below the 50% ratio, implying insignificant

classification operations.

2. If fusion-one overall accuracy is positive (between 50-100% ratio), main arte-

facts are positive (artefacts detected), and injury artefacts are negative

(No Detection), the case is positive. The protocols subtract 3% simultaneously,

returning 3% to the overall accuracy to represent main artefacts and 0% for

injury artefacts. If the overall accuracy outcome exceeds 100%, decision proto-

cols subtract the weight as a regulatory procedure to indicate artefact presence

and preserve the maximum outcome of 100%.

3. If fusion-one overall accuracy is positive (between 50-100% ratio), the main

and injury artefacts dispense negative (No Detection), and the outcome is

negative. However, the decision protocol’s process ignores Fusion-One’s overall

accuracy enhancements to suggest the absence of artefacts.

4. If fusion-one overall accuracy is positive (between 50-100% ratio), main arte-

facts are negative (No Detection), and injury artefacts are positive (arte-

facts detected), the prediction is positive. However, the decision level’s pro-

gramming applies a summation of 1% to fusion-one overall accuracy to insinuate

injury artefacts’ presence. If the overall accuracy is 100%, decision protocols

subtract the existing weight value as a regulatory procedure to indicate artefact

presence and preserve the maximum outcome of 100%. The anomaly occurs if
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violence moves outside the field of view of the on-site camera sensors.

5. If fusion-one overall accuracy dispensed is Negative/Action Unknown (action

unknown/ score below 50%), the main and injury artefacts display negative

(No Detection), and the outcome is negative. The artefact decision level pro-

tocol’s programming applies no weight value enhancement to fusion-one’s overall

accuracy outcome.

6. If fusion-one overall accuracy dispensed Negative/Action Unknown (action

unknown/ score below 50%), main and injury artefacts show positive (arte-

facts detected), the outcome is Negative/Action Unknown. The artefact

decision level protocol’s programming applies no weight value enhancement to

fusion-one overall accuracy outcome. The anomaly occurs because the individ-

ual models’ processing detects artefact features. Although Fusion-one identified

the artefact’s presence in the individual activity recognition models, the decision

protocols consider Fusion-1’s outcome regulating its decision to coincide with

such.

7. If fusion-one overall accuracy dispensed Negative/Action Unknown (action un-

known/ score below 50%), main artefacts are negative (No Detection), and in-

jury artefacts are positive (artefacts detected), the outcome is Negative/Action

Unknown. Like protocol #6, The artefact decision level protocol’s programming ap-

plies no weight value enhancement to the fusion-one overall accuracy outcome.

8. If fusion-one overall accuracy displays Negative/Action Unknown (action un-

known/ score below 50%), main artefacts are positive (artefacts detected), in-

jury artefacts are negative (No Detection), and the outcome is Negative/Action

Unknown. Like process #6, The artefact decision level protocol’s
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programming applies no weight value enhancement to the fusion-one overall accuracy outcome.

6.3.3 Fusion Scheme-1 12-Frame Artefact Support (on 10-Test Samples):

Appreciating the artefact processing and its rationale above provided the results that validated its effectiveness in

satisfying research question-6’s objectives in section 1.2.1. The analysis confirmed the dominance of the proposed

fusion with artefact support with an increase in performance by 3% to suggest the presence of main artefacts over

the original overall accuracy in Table 6.6. The main artefacts recorded 37 instances with no outcomes for injury

artefacts, which signified the presence of the artefacts with no sustained injuries in the Fusion Scheme-1 scenario.

The artefact findings demonstrated an enhanced original overall accuracy of 3DCNNsl at 43.83% at medium

Dataset
Original Performance Artefact Enhancement Confidence Correctly Classified Instances Incorrectly Classified Instances

Model
Overall-
Accuracy

Main Injury Score Threshold Fencing Stabbing
Activity
Unknown

Total Fencing Stabbing
Activity
Unknown

Total

10-Samples
at 12-Frames
Per Sample =
120 Frames

3DCNNsl 40.83%
37 0

43.83% Medium 0 49 0 49 0 50 21 71
YOLOv5m 33.33% 36.33% Low 3 37 0 40 0 46 34 80

Artefact Fusion
Led By

52.50% 55.50% Medium 3 60 0 63 0 48 9 57
11.67% Over 3DCNNsl

19.17% Confidence Over YOLOv5m

Table 6.6: Fusion Scheme-1 Artefact Results for 10-Samples at 12-Frames per Sample.

confidence compared to its original performance at 40.83%. 3DCNNsl operations recorded 49 correctly classified and

71 incorrect instances between the stabbing and activity unknown classes. YOLOv5m activity recognition artefact

process dispensed 36.33% as the score enhancement result with low confidence compared to its original performance at

33.33%. YOLOv5m demonstrated 40 correctly classified instances with 80 incorrect instances amongst the sub-classes.

The proposed artefact fusion recorded 55.50%, demonstrating its dominance over its original performance at 52.50%

and other models. Fusion at this level produced 63 correctly classified instances and 57 incorrect categorisations at
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this level. The proposed artefact fusion results substantiate its dominance over 3DCNNsl by 11.67% and YOLOv5m

by 19.17% to validate its effectiveness.

6.3.4 Fusion Scheme-1 12-Frame Artefact Support (on 50-Test Samples):

The evaluation of surplus data in Table 6.7 demonstrated an increment in overall accuracy performance and the

presence of the artefacts during inference at this level. The analysis showed the artefact’s effectiveness in performance

by 3% with 204 main instances using 50 12-frames per test sample compared to section 6.3.3’s 10. The findings

disclosed no support for the injury artefacts, signifying its absence. 3DCNNsl artefact support produced a high

confidence outcome of 69.50% overall accuracy compared to its 66.50 % original score. The data proved that 3DCNNsl

incurred 400 correct predictions between the stabbing and fencing sub-classes and 200 misclassifications for the activity

unknown class. YOLOv5m artefact support dispensed a high confidence outcome of 73.16%, suggesting the presence

of the main artefacts compared to its original score of 70.16%. At this stage, YOLOv5m correct classifications

increased to 421 with a reduction in inaccuracy predictions at 179 over 3DCNNsl’s 200 cases. Fusion with artefact

support recorded 86.83% at high confidence compared to its original performance at 83.83%. Fusion’s artefact

Dataset
Original

Performance
Artefact

Enhancement
Confidence Correctly Classified Instances Incorrectly Classified Instances

Model
Overall-
Accuracy

Main Injury Score Threshold Fencing Stabbing
Activity
Unknown

Total Fencing Stabbing
Activity
Unknown

Total

50-Samples
at 12-Frames
Per Sample=
600 Frames

3DCNNsl 66.50%
204 0

69.50% High 203 197 0 400 0 0 200 200
YOLOv5m 70.16% 73.16% High 211 210 0 421 0 0 179 179

Artefact Fusion
Led By

83.83% 86.83% High 260 243 0 503 0 0 97 97
17.33% Confidence Over 3DCNNsl
13.67% Confidence Over YOLOv5m

Table 6.7: Fusion Scheme-1 Artefact Results for 50-Samples at 12-Frames per Sample.
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support incurred the highest correct subclass classifications at 503 instances, with 97 activity unknown misclassifica-

tions. Artefact support proved its effectiveness by dominating 3DCNNsl by 17.33% and YOLOv5m by 13.67%. The

findings proved the effectiveness of the proposed fusion with artefact support, which satisfied research objective-6

towards using YOLOv5m’s object detection capabilities to enhance activity recognition’s status in 1.2.

6.3.5 Fusion Scheme-2 Whole Video Artefact Support (on 10-Test Samples):

Appreciating the evidence of the 10/50 12-frames per sample results in Table 6.6 and Table 6.7, the artefact support

results using whole video samples proved its capability as a proof of concept utilising surplus data in Table 6.8. The

findings projected the main artefact in 1059 cases, which triggered the 3% score increase with no predictions for

the injury group. Like Table 6.6 and Table 6.7, the absence of the injury artefacts signified that no individual

injuries occurred in the Fusion Scheme-2 scenario. 3DCNNsl’s artefact support results showed high confidence with an

increase in performance of 85.43% over the original performance results at 82.43%, Table 6.6 at 43.83% and Table 6.7

at 69.50%. 3DCNNsl artefact processing produced 2473 correctly classified instances with 527 misclassifications at

the subclass level. YOLOv5m artefact support results improved by 82.50% at high confidence compared to its original

Dataset
Original Performance

Artefact
Enhancement

Confidence Correctly Classified Instances Incorrectly Classified Instances

Model
Overall-
Accuracy

Main Injury Score Threshold Fencing Stabbing
Activity
Unknown

Total Fencing Stabbing
Activity
Unknown

Total

10-Whole
Video Samples
= 3000 Frames

3DCNNsl 82.43%
1059 0

85.43% High 1275 1198 0 2473 0 1 526 527
YOLOv5m 79.50% 82.50% High 1105 1280 0 2385 102 0 513 615

Artefact Fusion
Led By

85.20% 88.20% High 1228 1328 0 2556 102 0 342 444
2.77% Confidence Over 3DCNNsl
5.70% Confidence Over YOLOv5m

Table 6.8: Fusion Scheme-2 Artefact Results for 10-Samples in Whole Video Processing.

162



performance score of 79.50%, Table 6.6 at 36.33% and Table 6.7 at 73.16%. YOLOv5m artefact support produced 2385

correctly classified instances at this level, increasing misclassification by 615 compared to 3DCNNsl’s 527 instances.

Analysis accentuated the proposed fusion with artefact support superiority at 88.20% at high confidence compared

to its original outcome at 85.20%, Table 6.6 at 55.50% and Table 6.7 at 86.83%. The proposed fusion generated the

highest accurate prediction at 2556 instances with a decrease in misclassifications by 444 compared to 3DCNNsl’s 527

and YOLOv5m’s 615 instances. Fusion incorporating artefact support proved its effectiveness by demonstrating a

performance lead of 2.77% over 3DCNNsl and 5.70% over YOLOv5msl. Fusion Scheme-2 operations results satisfied

research objective-6 in 1.2 as a proof of concept by applying YOLOv5m activity recognition artefact power to enhance

the status of its activity recognition.

6.3.6 Fusion Scheme-2 Whole Video Artefact Support (on 50-Test Samples):

Artefact support proved its effectiveness using surplus data for Fusion Scheme-2’s operations by dispensing 4422 cases

at a 3% score increase in Table 6.9. Like Table 6.6 to Table 6.8, the operations observed no injury to identify the

possibility of increasing the original performance outcome further. Though the artefact support outcomes recorded

high confidence thresholds, the operations decreased performance for all outcomes compared to Table 6.8’s 3DCNNsl

85.43%, YOLOv5m 82.50% and Fusion artefact support 88.20%. The increase in surplus data caused performance

issues linked to the complexity of processing more actions, which affected the models’ ability to provide correct

responses in such cases. 3DCNNsl artefact support recorded 72.05% compared to its original performance score of

69.05%. At this level, 3DCNNsl produced 11,394 correctly classified instances with 5,106 misclassifications for the

subclass categories. The evidence exposed a decrease in performance of 0.19% for YOLOv5m at 71.86% compared

to 3DCNNsl’s 72.05%. YOLOv5m artefact support dispensed 11,198 correctly classified subclass instances and 5,302

163



misclassifications

Dataset
Original Performance

Artefact
Enhancement

Confidence Correctly Classified Instances Incorrectly Classified Instances

Model Overall-Accuracy Main Injury Score Threshold Fencing Stabbing
Activity
Unknown

Total Fencing Stabbing
Activity
Unknown

Total

50-Whole
Video Samples
=16,500 Frames

3DCNNsl 69.05%
4422 0

72.05% High 5503 5891 0 11394 0 0 5106 5106
YOLOv5m 67.86% 70.86% High 5211 5987 0 11198 1348 0 3954 5302

Artefact Fusion
Led By

84.75% 87.75% High 6853 7131 0 13984 1082 0 1434 2516
15.70% Confidence Over 3DCNNsl
16.89% Confidence Over YOLOv5m

Table 6.9: Fusion Scheme-2 Artefact Support for 50-Samples in Whole Video Processing.

compared to previous discussions on 3DCNNsl’s outcomes. Finally, fusion artefact support in Table 6.9 reduced

performance by 0.45% at 87.75% compared to Table 6.8 88.20% fusion artefact support score. However, the model

demonstrated its performance enhancement effectiveness by dominating the original performance score at 84.75%.

Fusion with artefact support demonstrated capability, leading 3DCNNsl by 15.70% and YOLOv5m by 16.89% at this

level. The evidence satisfied research objective-6 in section 1.2 as a proof of concept based on evaluating the results

towards employing the power of object detection to enhance activity recognition’s status.

6.4 Artefact Operational Discussions

The results above proved the effectiveness of fusion fortified by artefact enhancements instead of Chapter 5’s fusion

in a self-operating approach. Fusion Scheme-1 and 2 evaluated the models’ aptitude in conditions containing surplus

and less data. The notion established fusion’s ability to produce consistent results, validating the idea as a proof

of concept from an informed decision perspective. At this level, fusion containing artefact support generated score

improvements for its confidence threshold regardless of the action similarity complexity within Fusion Scheme-1 and

2’s data. Investigating alternative weights established the scope of their impact towards achieving optimal results.
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Although integrating fusion score regulators facilitated the processing, alternative weights

increased the regulator’s classification bias beyond the overall accuracy threshold of 100%

(101%-104%). Abandoning the idea of alternative weigh values proved helpful as it gener-

ated insignificant results that negatively impacted the entire operation.

6.4.1 Fusion Scheme-1 12-frame Discussions on Artefact Processing:

The operations experienced output anomalies reflecting the absence of artefacts during

inference because YOLOv5m activity recognition artefact processing produced inconse-

quential outcomes. Insufficient data in experiments utilising 12 frames reflecting violence

impacted its classification, producing fewer misclassifications and lower overall score out-

comes. Providing scenarios replicating complex unidentified activity unknown classifica-

tions indicated in stabbing24.avi with no detections emphasises Fusion Scheme-1’s pro-

cessing. The findings suggest the artefacts’ absence in the sample, as demonstrated in

Figure 6.6. Figure 6.7 solidified YOLOv5m activity recognition artefact effectiveness on

Figure 6.6: Fusion Scheme-1 12-Frame Stabbing24.avi Activity Unknown Cases.

stabbing37.avi, showing 5-artefact instances. The model depicted 7-activity unknown mis-

classifications with several no-detection cases for the victim and blood artefacts. The

results insinuated that the model experienced challenges discerning the action’s state re-
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lating to its motion complexity. Because the presence of blood artefact is improbable in the

pre-stages of violence, no detection outcomes proved as accurate as anticipated. However,

the role of blood artefacts is to identify injuries sustained and individuals requiring urgent

medical attention. The findings proved artefact support effectiveness on stabbing37.avi,

which satisfied research question-6 classification enhancement objectives in section 1.2.1.

Figure 6.7: Fusion Scheme-1 12-Frame Stabbing37.avi Artefacts Special Cases

6.4.2 Fusion Scheme-2 Whole Video Discussions on Artefact Processing:

The evidence dispensed by the models at this level solidified the impact of incorporat-

ing more data to achieve optimal performance. The positive impact of the surplus data

demonstrated a coherent increment in performance at the whole video processing level as

opposed to the 12 frames per sample exercise of Fusion Scheme-1. Analysis of the whole

video experiments disclosed vivid score differences because of the complexity of the action

similarity conditions and the impact of surplus data. Observations showed an innate rela-

tion between applying surplus data and realistic outcomes. Fusion-Scheme-2’s operations

validated the relationship of applying surplus data to achieve realistic outcomes. Although

artefact processing recorded high overall accuracy scores in Fusion Scheme-1 and 2, the

score’s relationship differed as expected among the video experiments utilising 10 and 50

samples because of the surplus data. The relationship between performance and surplus
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data revealed a strong misclassification link when the sample size increased. As antici-

pated, the impact of the data/performance relationship relative to surplus data contained

higher levels of complex actions, further intensifying the operation’s classification challenge

on more action similarity conditions.

6.5 Conclusion

Chapter 6 investigated the prospects of Chapter 5’s fusion amalgamating YOLOv5m ac-

tivity recognition artefact processing in 2-fusion schemes to achieve optimal results. The

evidence demonstrated the power of fusion with artefact support by designing specific

weights to reflect the presence of artefact categories, thus boosting the classification out-

come within violent scenarios. Table 6.10 artefact enhancements solidified its dominance

over fusion without support, 3DCNNsl, and YOLOv5m activity recognition operations.

Like discussions on state-of-the-art comparisons in Section 4.6 and Section 5.7, it proved

impractical to compare other state-of-the-art solutions because of the aim and objectives

coupled with the dataset pre-stage structure. The analysis accentuated Fusion Scheme-2’s

artefact processing dominance of 88.20% and 87%.75% at high confid-

Dataset
Original Performance Artefact Enhancement Confidence

Model Overall Accuracy Main Injury Score Threshold

10-Samples
12-Frames

3DCNNsl 40.83%
37 0

43.83% Medium
YOLOv5m 33.33% 36.33% Medium
Fusion 52.50% 55.50% Medium

50-Samples
12-Frames

3DCNNsl 66.50%
204 0

69.50% High
YOLOv5m 70.16% 73.16% High
Fusion 83.83% 86.83% High

10-Whole
Video Samples

3DCNNsl 82.43%
1059 0

85.43% High
YOLOv5m 79.50% 82.50% High
Fusion 85.20% 88.20% High

50-Whole
Video Samples

3DCNNsl 69.05%
4422 0

72.05% High
YOLOv5m 67.86% 71.86% High
Fusion 84.75% 87.75% High

Table 6.10: Fusion Scheme-1 & 2 Artefact Processing Dominance.
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-ence thresholds over Fusion Scheme-1 overall accuracy scores at 52.50% and 87%.75%.

The evidence proved fusion’s artefact enhancement superiority over 3DCNNsl’s 40.83%,

82.43%, 69.05% and YOLOv5m activity recognition’s 33.33%, 70.16%, 79.50%, 67.86%

as individual operations. Figure 6.8 graphical projection visually validated the proposed

fusion processing superiority emphasised in Table 6.10 over 3DCNNsl and YOLOv5m. The

findings substantiated Fusion Scheme-2 robustness, which fulfilled research question-6 in

section 1.2.1 and section 1.2.2 to conclude the investigations.

Figure 6.8: Fusion’s Dominance Over Individual Processing
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Chapter 7

Conclusion

The current research proposal presents violent activity recognition pre-empting techniques

that considered the amalgamation of 2-state-of-the-art convolution models through fusion

to remedy individual processing limitations regarding homogeneous and heterogeneous

human actions. A recap of the 2-stage literature investigations disclosed 3-dimensional

convolution neural networks (3DCNN) state-of-the-art activity recognition model and you-

only-look-once (YOLO) object detection with architecture conforming possibilities, which

fosters activity recognition utilising frame sequences during input stages. The proposal

also addresses contributory decision-level fusion approaches through programming configu-

rations aligned with quantitative experiments. This research reveals processing dominance

by deliberately incorporating complex action similarity data to validate the model’s ef-

fectiveness and achieve high classification outcomes. Achieving the solution incorporated

the development of research objectives driven by the research motivation, which defined

the investigation’s structure and experimental approach within Chapter 1. The following

are milestones organised into sections to summarise the main findings and contributory

prospects regarding the proposal’s objectives. Section 7.1 considers research question eval-

uations to establish the attainment of the objectives. Section 7.2 features the proposal’s
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contributory factors with the proposal’s limitations’ in Section 7.3. Section 7.4 projects

future research initiatives and concerns, thus highlighting prospects for violent artefact

activity recognition.

7.1 Research Questions’ Assessment

Chapter 1: Accentuated the structure of the expected elements within the thesis, followed

by a lucid summary of the research’s aim and objectives driven by the motivation to solve

the primitive stages of violence before its lethal impact.

Chapter 2: This chapter emphasises the general background on classification intricacies

regarding several sequential processes, data handling, software/hardware require-

ments, and evaluation procedures, which promotes processing efficiency. The chapter

simplifies artificial intelligence operations, linking the reader’s understanding of es-

sential components applied to achieve the proposal’s outcome. The chapter also

accentuates a 2-stage literature review evaluation for potential mediums leading to

the discovery of 3DCNN/YOLOv5m. The investigation targeted research question-1

in 1.2 to establish avenues for achieving violent activity recognition with weapons.

Chapter 3: This chapter detailed action class descriptions of the dataset acquisition,

which accumulated 3DCNNsl RWVAD1st dataset and YOLOv5m RWVAD2nd dataset.

The subdivisions expound on procedures satisfying each model’s processing standards

concerning architectural differences. Specifying the protocols sets the structure for

the experimental operations towards appraising 3DCNN/YOLOv5 individual pro-

cessing limitations in Chapter 4. The context designed the experimental foundation

to achieve research question-1 in 1.2 as the primary objective concerning recognising

violent activity with weapons as artefacts.
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Chapter 4: This chapter presents the experimental assessments which defined the fea-

sibility of YOLOv5/3DCNN’s processing and the fulfilment of research question-2

in 1.2 via the impact of data pre-processing concepts. Chapter 4 defined YOLOv5m

activity recognition as identifying specific objects across multiple frames compared to

its object detection static image approach. The section satisfied research objective-

1 via in 1.2, which considered violence and weapon artefact predictions in CCTV

videos. The chapter expressed YOLOv5 activity recognition challenges when iden-

tifying small weapon instruments emulating sporadic accelerated motion specific to

its convolutional architecture. Although YOLOv5 activity recognition created mod-

erate result ratios of 67-74% in Section 4.2.1, the sporadic motion of the small ob-

ject, combined with complex homogeneous attributes amid violent and non-violent

human actions, impacted its classification operations negatively. 3DCNN’s investi-

gations substantiated its classification limitations when processing complex action

similarity experimental categories. Because of action complexity classification issues,

the model’s action recognition processing capabilities declined. At this level, 3DCNN

state-of-the-art dispensed 62% for fencing and 75% for stabbing. The appraisal sub-

stantiated YOLOv5m activity recognition, as 3DCNNsl emerged from fashioning ad-

ditional layer support using reconfiguration. The analysis fulfilled the action class

classifications using dataset variations to satisfy research questions 3 and 4 in 1.2.

Chapter 4 proposed the object combining technique towards enhancing the model’s

processing outcomes. At this level, the operations fulfilled research question-1 in sec-

tion 1.2 as the primary objective, concluding YOLOv5m/3DCNNsl violent activity

recognition before considering alternative measures.

Chapter 5: This section explored fusing 3DCNNsl/YOLOv5m activity recognition with

decision-level support to establish the fulfilment of research question-5’s processing

superiority in section 1.2.1. The operations investigated several techniques (max
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score) to conclude fusion’s feasibility in addition to 2-fusion schemes, which vali-

dated the performance. Chapter 5 projected the proposed fusion status by analysing

2-fusion schemes to achieve optimality. The procedure considered a 10/50-sample

dataset where each sample represented 12 frames to simulate conditions lacking data

as Fusion Scheme-1 and conditions with surplus data concerning whole video opera-

tions as Fusion Scheme-2. The idea established the difference in model effectiveness

in conditions reflecting short videos with limited frames and videos with longer du-

rations. Fusion-Scheme-2 dominated Fusion Scheme-1 to insinuate the need for more

data to dispense more robust overall accuracy results. At this level, the evidence

emphasised YOLOv5m activity recognition dominance on the fencing27.avi action

similarity sample compared to 3DCNNsl. The findings substantiate the proposed

fusion’s effectiveness, fulfilling research question-5 model superiority in section 1.2.1

by producing significant outcomes.

Chapter 6: With knowledge of fusion’s effectiveness in Chapter 5, Chapter 6 surveyed

YOLOv5m activity recognition’s feasibility of exploiting its object detection power.

Chapter 6 investigated weapon artefact classification resonance to enhance further

the proposed fusion activity recognition status incorporating weight value embed-

ding. The analysis corroborated YOLO artefact activity recognition’s effectiveness

with high ratings using the same fusion scheme strategies in Chapter 5 at this level.

By achieving the artefact classification milestone, Chapter 6 proposed an artefact

weight value embedding operation that enhances the proposed fusion activity recog-

nition status regardless of the violent conditions. Table 6.10 ’s results accentuated

the proposed fusion’s robustness fortified by artefact embedding procedure on vio-

lence and conditions containing homogeneous action attributes. Task-3’s 88.20% and

Task-4’s 87.75% overall accuracy at high confidence proved the effectiveness of fu-

sion artefact enhancement processing. Chapter 6 artefact processing mitigated the
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distinction of actions between action similarity containing strong characteristics of

violence. The findings indicated that combining objects and data processes discussed

in section 4.5.4 and section 4.5.5 strongly influenced the outcomes. Chapter 6 fulfilled

the research question-6 objective in section 1.2, which illustrates investigating object

detection’s power towards enhancing the classification status of activity recognition.

7.2 Contributory Factors

The proposal’s contributions disclosed in Section 1.4 are emphasised as follows:

1. Chapter-3 to 4 Conducted performance testing of two known machine learning

techniques (YOLOv5m and 3DCNNsl) in independently recognising violent and

non-violent activities in CCTV video footage. The findings demonstrated the

model’s processing capability to classify complex violence in multiple scenarios.

The concept stimulated the need for the proposed fusion as an alternative robust

approach.

2. Chapter-5 Demonstrated violent activity recognition performance in such videos

when both machine learning techniques operate in tandem through a decision-level

fusion operation. The strategy combined the processing of the individual mod-

els utilising decision-level techniques to generate robust results regardless of the

homogeneous action attributes.

3. Chapter-6 Implemented performance enhancement by further incorporating threat

object detection in the previous combined solution. The idea applied weight value

embedding to suggest the presence of lethal weapon objects/artefacts, thus enhanc-

ing the outcome. The method incorporated classification redundancy to suggest

certainty of action if weapons belonging to a specific class of violence exist within
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a given scenario. The proposed approach demonstrated classification effectiveness,

which satisfied research questions 1-6.

7.2.1 Introduction to publications:

The research efforts presented the first publication, ”Suspicious Activity Detection for

Defence Applications”. Though it is the final review stage, the paper demonstrated the

operations utilising 3DCNNsl as a tool for activity recognition. The following papers are

due for publication in the coming future.

1. Leveraging YOLOv5m for Detecting Violent Activities: A Novel Ap-

proach in Activity Recognition

2. Fusing YOLOv5m and 3DCNNsl Activity Recognition for Defence Ap-

plication

3. Weighted Fusion of YOLOv5m and 3DCNNsl for Robust Violent Activ-

ity Classification in Defence Systems

7.3 Limitations of the Study

Although the research question’s assessment and contributory factors suggest high perfor-

mance, acknowledging restrictions impacting the operations and the scope of the research

efforts at this level provided context for further research.

Dataset Acquisition Limitations: Violent data proved challenging to obtain, containing

the crux of the pre-start, middle and end attributes (primitive stages of violence) in publicly

available datasets. Although some publicly available datasets contain violence relative to

movies, the application of such data conveying violent movies and acting contributed to
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flawed results. Because of this notion, a manual investigation into social media platforms

acted as a buffer to acquire a significant sample size of raw data reflecting pre-start violent

scenario elements. Following the acquisition task, the operations experienced an increase

in the project’s operational timeline utilising data conforming, pre-processing, and blob

analysis tools. Although automated software tools were acknowledged, those initiatives

applied unwanted blob features as objects of interest during training. As the proposal’s

nature involves the criticality of human lives, a manual blob analysis approach avoided

object issues, ultimately affecting the overall classification and the proposal’s timeline.

Violent Class Evaluation Reduction: Underestimating the scope of analysis using an

8-class category weighed heavily on the time constraints to formulate a balance between

violent/non-violent for 3DCNNsl/YOLOv5m activity recognition during development and

the hypothesis phase. Because of the weight of the analysis, a 2-class action reduction

comprising similarity proved effective towards evaluations between fencing and stabbing.

The 8-category task negatively affected the proposal’s timeline because of the volume of

assessments per class.

Field of View: Instances of erratic and sporadic violent actions occurred outside the

camera sensor’s field of view, thus obscuring the activity recognition prediction processing.

Human Dependency in Some Cases: Intermittently, the model produced prediction

anomalies, thus requiring manual operator assistance to establish the actual nature of the

actions given the criticality of life in violent scenarios. The event creates human dependency

to mitigate such circumstances and verify the action validation procedures.

7.4 Future Research and Recommendations

The thesis proposes the merging of violent artefact activity recognition with GPU support

and the new drone technology to reduce memory and the field of view challenge to en-
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courage absolute monitoring as prospects. The idea integrates an onboard camera sensor

to generate the video data, performing identical classification tasks as motionless CCTV

devices. Drones promote critical data capturing for processing using wireless connectivity,

which accesses the device’s framework and controls amassing data via a mainframe dis-

persed geographically, facilitating its activity recognition capacity. Although drone tech-

nology has disadvantages, its influence has no impact on the current proposal. Thus, its

feasibility is possible via investigations to achieve a formidable strategy. The concept in-

creases the possibility of violent activity recognition artefacts, extends its mobility, and

expands the scope of the CCTV sensor device from aerial perspectives. Drone technology

significantly reduces human dependency input because violent activity recognition artefact

operations using drones expand its classification range. However, maintaining human sup-

port to enhance operations and save lives is encouraged. For proper prevention, the model

predicts the pre-empted stages of violence and facilitates integration with an alarm system

that alerts persons near the altercation, providing crucial time to evade lethal outcomes in

preliminary stages.

A continuation of the data acquisition procedures plays an integral role in achieving a

substantial volume of videos as a major element for violent activity recognition in its

pre-stages. The proposed solution not only addresses the current challenges in security

technology but also paves the way for a futuristic approach. The investigations experienced

time constraint issues analysing eight classes balanced between violent and non-violent

actions. However, future works entail exploring the concept of more actions to increase

the complexity, further testing the model’s robustness. Regardless of the data issues, the

proposed solution facilitates a futuristic approach when combined with innovative facial

recognition and robotics that only captures the data necessary to suggest the presence of

violence and its perpetrators from a lethal perspective. The idea allows the restructuring

of security/government institutions to incorporate a robust solution without intruding into

the private lives of its citizens. With the deployment of such technology the scale of
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employment vs achieving a secure environment is a factor to consider.

The algorithmic approaches present future interest for external researchers to explore hu-

man activity recognition and the flexibility of the proposed technique in several object

detection/recognition tasks. For this task, the idea of fusion utilising the decision level

facilitates flexibility in hardware at this level. The experimental evidence proved that as a

future strategy, employing arithmetic processing utilising GPU may provide substantiating

analysis to suggest its effectiveness if applied accurately. The deployment of the proposed

fusion can positively impact society’s global scourge of crime. Some countries detest the

constant CCTV monitoring as a breach of human rights and privacy, which can affect

data-generating devices.

Moreover, ethical concerns concerning European general data protection regulations may

hinder CCTV surveillance. However, if configured appropriately, the proposed solution’s

processing through new-age robotics can facilitate the classification task with a reduced

impact on human privacy. The current proposed software as a service tool facilitates only

violence. As artificial intelligence becomes increasingly powerful, control issues (preventing

AI from adverse outcomes) must undergo thoroughly examined before societal deployment.

Violent activity recognition is continually evolving as a direct link created by the advent of

new artificial intelligence innovations in computing devices. With the growing rate of com-

puting power, the availability of GPU and TPU devices will positively impact the processing

speed of the application, thus increasing its potential exponentially. Amalgamating violent

artefact activity recognition with drone technology increases its range towards solving so-

ciety’s security challenges relative to the pre-empting of criminal activities and the loss of

lives via violence. Although the model explicitly remedies the complexity of pre-empting

violence, because of the 2-state-of-the-art frameworks, the model facilitates any task in-

volving object detection and activity recognition. The proposal identified the issue of the

field of view challenges with a demand for higher bands of processing as disadvantages that
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affected the effectiveness of the application’s output. The proposal acknowledged integrat-

ing drone technology with GPU processing that motions high-performance classification

efficiency to mitigate the previously mentioned challenges. The strategy involves altering

CPU to GPU processing, with drone technology, to eradicate memory and the field of view

issues as an advantage compared to the static camera sensor classification. Drone tech-

nology encourages classification efficiency in scenarios impeding the inference processing of

static camera sensors. In the future, further evolution of applying violent artefact activity

recognition to aid security and other institutions in pre-empting violence will become a

global innovation. The fusion idea complements the judicial system by providing evidence

to display altercations requiring specific details from an in-depth perspective. Because fu-

sion artefact processing incorporates object detection and activity recognition profiling, it

can facilitate disaster-prone possibilities on construction sites as a plot to enforce litigation,

predict/prevent accidents and reduce incidents leading to death in public (prisons, schools,

public bars) and domestic areas (fall detection/ action abnormality in hospitals). The

advent of innovative artificial intelligence models and package upgrades pushes the bound-

aries of pre-empting violence beyond the scope of 15-20 seconds before the act occurs. The

challenges identified will be mitigated in the future as technological companies jostle for

market dominance, thus causing the cost of processing devices to become affordable. At

this stage, drone technology disadvantages and the advent of new technology are unknown.

Therefore, further investigations must consider the implications of drone technology and its

classification impact using the violent artefact activity recognition application with GPU

capabilities.
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[275] Flávia Alves et al. “Sensor Data for Human Activity Recognition: Feature Repre-

sentation and Benchmarking”. In: 2020 International Joint Conference on Neural

Networks (IJCNN). IEEE. 2020, pp. 1–8.

[276] Anthony J Alberg et al. “REVIEW The Use of “Overall Accuracy” to Evaluate the

Validity of Screening or Diagnostic Tests.” In: JGIM: Journal of General Internal

Medicine 19.5 (2004).

[277] Suneth Ranasinghe, Fadi Al Machot, and Heinrich C Mayr. “A review on applica-

tions of activity recognition systems with regard to performance and evaluation”. In:

International Journal of Distributed Sensor Networks 12.8 (2016), p. 1550147716665520.

[278] Ebrahim Mortaz. “Imbalance accuracy metric for model selection in multi-class im-

balance classification problems”. In: Knowledge-Based Systems 210 (2020), p. 106490.

[279] Sushovan Chanda et al. “A deep audiovisual approach for human confidence classi-

fication”. In: Frontiers in Computer Science 3 (2021), p. 674533.

208



[280] Yagna Gudipalli et al. “Deep Modelling Strategies for Human Confidence Classifi-

cation using Audio-visual Data”. In: 2023 45th Annual International Conference of

the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE. 2023, pp. 1–4.

[281] WANG Changhai, ZHANG Jianzhong, XU Jingdong, et al. “Identifying the confi-

dence level of activity recognition via HMM”. In: Journal on Communication 37.5

(2016), pp. 143–151.

[282] Zahraa S Abdallah et al. “Activity recognition with evolving data streams: A re-

view”. In: ACM Computing Surveys (CSUR) 51.4 (2018), pp. 1–36.

[283] Elizabeth F Chua, Daniel L Schacter, and Reisa A Sperling. “Neural basis for recog-

nition confidence in younger and older adults.” In: Psychology and Aging 24.1 (2009),

p. 139.

[284] Nathan Weber and Neil Brewer. “Confidence-accuracy calibration in absolute and

relative face recognition judgments.” In: Journal of Experimental Psychology: Ap-

plied 10.3 (2004), p. 156.

[285] Weiyao Lin et al. “Activity recognition using a combination of category components

and local models for video surveillance”. In: IEEE Transactions on Circuits and

Systems for Video Technology 18.8 (2008), pp. 1128–1139.

[286] Haibo He and Edwardo A Garcia. “Learning from imbalanced data”. In: IEEE

Transactions on knowledge and data engineering 21.9 (2009), pp. 1263–1284.

[287] Foster Provost and Tom Fawcett. Data Science for Business: What you need to

know about data mining and data-analytic thinking. ” O’Reilly Media, Inc.”, 2013.

[288] Tanvi S Motwani and Raymond J Mooney. “Improving video activity recognition

using object recognition and text mining”. In: ECAI 2012. IOS Press, 2012, pp. 600–

605.

[289] Alexander Diete and Heiner Stuckenschmidt. “Fusing object information and iner-

tial data for activity recognition”. In: Sensors 19.19 (2019), p. 4119.

209



[290] Bingbing Ni et al. “Multilevel depth and image fusion for human activity detection”.

In: IEEE transactions on cybernetics 43.5 (2013), pp. 1383–1394.

[291] Vishva Payghode et al. “Object detection and activity recognition in video surveil-

lance using neural networks”. In: International Journal of Web Information Systems

ahead-of-print (2023).

[292] Anagha Deshpande and Krishna Warhade. “SADY: Student Activity Detection Us-

ing YOLO-based Deep Learning Approach.” In: International Journal on Advanced

Science, Engineering & Information Technology 13.4 (2023).

[293] M Sunil Suthar and PS Nithya Darisini. “Comparative analysis of Human Activ-

ity Recognition and object detection”. In: Journal of Physics: Conference Series.

Vol. 1716. 1. IOP Publishing. 2020, p. 012054.

[294] Gilder Lucy and Clarke Jennifer. How many violent attacks and sexual assaults

on women are there? 2022. url: https://www.bbc.co.uk/news/explainers-

56365412.

[295] Grahame Allen and Harding Megan. Research Briefing, Knife crime statistics. 2021.

url: https://commonslibrary.parliament.uk/research-briefings/sn04304/.

[296] BBC. Plymouth shooting: Jake Davison was licensed gun holder. 2021. url: https:

//www.bbc.co.uk/news/uk-england-devon-58197414.amp.

[297] Shaw Danny. Ten charts on the rise of knife crime in England and Wales. 2019.

url: https://www.bbc.co.uk/news/uk-42749089.

[298] Scarff Brent. Understanding Backpropagation A visual derivation of the equations

that allow neural networks to learn. 2018. url: https://towardsdatascience.

com/understanding-backpropagation-abcc509ca9d0.

[299] Hongqing Fang et al. “Human activity recognition based on feature selection in

smart home using back-propagation algorithm”. In: ISA transactions 53.5 (2014),

pp. 1629–1638.

210

https://www.bbc.co.uk/news/explainers-56365412
https://www.bbc.co.uk/news/explainers-56365412
https://commonslibrary.parliament.uk/research-briefings/sn04304/
https://www.bbc.co.uk/news/uk-england-devon-58197414.amp
https://www.bbc.co.uk/news/uk-england-devon-58197414.amp
https://www.bbc.co.uk/news/uk-42749089
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0
https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0


[300] Rajarshi Guha, David T Stanton, and Peter C Jurs. “Interpreting computational

neural network quantitative structure- activity relationship models: A detailed in-

terpretation of the weights and biases”. In: Journal of chemical information and

modeling 45.4 (2005), pp. 1109–1121.

[301] Le Dung and Makoto Mizukawa. “A pattern recognition neural network using many

sets of weights and biases”. In: 2007 International Symposium on Computational

Intelligence in Robotics and Automation. IEEE. 2007, pp. 285–290.

[302] Grzegorz Dudek. “Generating random weights and biases in feedforward neural

networks with random hidden nodes”. In: Information sciences 481 (2019), pp. 33–

56.

[303] Nadia Oukrich et al. “Activity recognition using back-propagation algorithm and

minimum redundancy feature selection method”. In: 2016 4th IEEE international

colloquium on information science and technology (CiSt). IEEE. 2016, pp. 818–823.

[304] Adna Sengto and Thurdsak Leauhatong. “Human falling detection algorithm us-

ing back propagation neural network”. In: The 5th 2012 Biomedical Engineering

International Conference. IEEE. 2012, pp. 1–5.

[305] Girma A. Part-1: Convolutional Neural Network in a Nutshell. 2019. url: https:

//abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-

nutshell-89f81a329ec3.

[306] Muhamad Yani, Irawan Budhi, and Setiningsih Casi. “Application of transfer learn-

ing using convolutional neural network method for early detection of terry’s nail”. In:

Journal of Physics: Conference Series. Vol. 1201. 1. IOP Publishing. 2019, p. 012052.

[307] Ahsen Tahir et al. “Hrnn4f: Hybrid deep random neural network for multi-channel

fall activity detection”. In: Probability in the Engineering and Informational Sci-

ences 35.1 (2021), pp. 37–50.

[308] Ernest Jeczmionek and Piotr A Kowalski. “Flattening layer pruning in convolutional

neural networks”. In: Symmetry 13.7 (2021), p. 1147.

211

https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3


[309] Letizia Gionfrida et al. “A 3dcnn-lstm multi-class temporal segmentation for hand

gesture recognition”. In: Electronics 11.15 (2022), p. 2427.

[310] VL Helen Josephine, AP Nirmala, and Vijaya Lakshmi Alluri. “Impact of hidden

dense layers in convolutional neural network to enhance performance of classification

model”. In: IOP Conference Series: Materials Science and Engineering. Vol. 1131.

1. IOP Publishing. 2021, p. 012007.

[311] Francisco M Castro et al. “Multimodal feature fusion for CNN-based gait recogni-

tion: an empirical comparison”. In: Neural Computing and Applications 32 (2020),

pp. 14173–14193.

[312] Qiuyu Zhu et al. “Improving classification performance of softmax loss function

based on scalable batch-normalization”. In: Applied Sciences 10.8 (2020), p. 2950.

[313] Shmueli Boaz. Multi-Class Metrics Made Simple, Part I: Precision and Recall. 2019.

url: ]:%20https://towardsdatascience.com/multi-class-metrics-made-

simple-part-i-precision-and-recall-9250280bddc2.

[314] Margherita Grandini, Enrico Bagli, and Giorgio Visani. “Metrics for multi-class

classification: an overview”. In: arXiv preprint arXiv:2008.05756 (2020).

[315] Xue Ying. “An overview of overfitting and its solutions”. In: Journal of physics:

Conference series. Vol. 1168. IOP Publishing. 2019, p. 022022.

[316] Amir Ghasemian, Homa Hosseinmardi, and Aaron Clauset. “Evaluating overfit and

underfit in models of network community structure”. In: IEEE Transactions on

Knowledge and Data Engineering 32.9 (2019), pp. 1722–1735.

[317] H Jabbar and Rafiqul Zaman Khan. “Methods to avoid over-fitting and under-

fitting in supervised machine learning (comparative study)”. In: Computer Science,

Communication and Instrumentation Devices 70.10.3850 (2015), pp. 978–981.

[318] Charmi Jobanputra, Jatna Bavishi, and Nishant Doshi. “Human activity recogni-

tion: A survey”. In: Procedia Computer Science 155 (2019), pp. 698–703.

212

]:%20https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2
]:%20https://towardsdatascience.com/multi-class-metrics-made-simple-part-i-precision-and-recall-9250280bddc2


[319] Chris Ellis et al. “Exploring the trade-off between accuracy and observational la-

tency in action recognition”. In: International Journal of Computer Vision 101

(2013), pp. 420–436.

[320] Ce Li et al. “Memory attention networks for skeleton-based action recognition”.

In: IEEE Transactions on Neural Networks and Learning Systems 33.9 (2021),

pp. 4800–4814.

[321] Valeria Andreieva and Nadiya Shvai. “Generalization of cross-entropy loss function

for image classification”. In: (2020).

[322] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals

of operations research 134 (2005), pp. 19–67.

[323] Nan Cui. “Applying gradient descent in convolutional neural networks”. In: Journal

of Physics: Conference Series. Vol. 1004. IOP Publishing. 2018, p. 012027.

[324] Mohamed Mostafa Soliman et al. “Violence recognition from videos using deep learn-

ing techniques”. In: 2019 Ninth International Conference on Intelligent Computing

and Information Systems (ICICIS). IEEE. 2019, pp. 80–85.

[325] Tal Hassner, Yossi Itcher, and Orit Kliper-Gross. “Violent flows: Real-time detection

of violent crowd behavior”. In: 2012 IEEE computer society conference on computer

vision and pattern recognition workshops. IEEE. 2012, pp. 1–6.

[326] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Computer

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-

12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740–755.

[327] Waqas Sultani, Chen Chen, and Mubarak Shah. “Real-world anomaly detection in

surveillance videos”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2018, pp. 6479–6488.

[328] Peng Wu et al. “Not only look, but also listen: Learning multimodal violence de-

tection under weak supervision”. In: Computer Vision–ECCV 2020: 16th Euro-

213



pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16.

Springer. 2020, pp. 322–339.

[329] Yuxin Peng, Yunzhen Zhao, and Junchao Zhang. “Two-stream collaborative learn-

ing with spatial-temporal attention for video classification”. In: IEEE Transactions

on Circuits and Systems for Video Technology 29.3 (2018), pp. 773–786.

[330] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A dataset of

101 human actions classes from videos in the wild”. In: arXiv preprint arXiv:1212.0402

(2012).

[331] AppleInc. iMovie, Turn your videos into movie magic. 2023. url: https://www.

apple.com/uk/imovie/.

[332] Ji Li et al. “Efficient violence detection using 3d convolutional neural networks”.

In: 2019 16th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS). IEEE. 2019, pp. 1–8.

214

https://www.apple.com/uk/imovie/
https://www.apple.com/uk/imovie/


Appendix

1 Overview of the Demographic Influence of Violence

Further investigations determine whether the act of violence had a more significant impact

on ethnic backgrounds, age, and the variations in the categories of attacks to pinpoint its

severity. The author [11] presented current data as 69% of homicide victims circumventing

specific ethnic groups in 2021, but 98% of the victims were of black descendants with

fluctuations during the 2019 period. The analysis highlighted the Asian-India community

at 8% to demonstrate the effects of violence and its 3% impact on other ethnic groups. The

statistics proved that violence is not partial to one specific group. Although most homicide

victims were white, the black ratings depicted an act of victimisation as its average rate was

six times higher and four times higher for the other groups. The demographic influence

held no significant relation to homicide, and the socioeconomic indicators across other

ethnic groups showed no impact. The focus emphasises how violence perpetuates as the

rate of homicide increases drastically across the demographic groups over the period March

2015–2021, regardless of age, in Figure 1.1 below. The author [11] above reports showed

that violence is predominant in the age group between 16-64 for 74% of the victims when

amalgamating the ethnic groups, thus validating the signs of violence as a scourge on

society.
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1.1 Appendix: Overview of Categories/Weapons Influence

Relating to the previous analysis on the impact of violence per demographic grouping,

it was necessary to understand the categories of violence and the instruments used as

the target objects of interest for the current research objective. Authors’ [294], [11], and

[295] reported rising homicides relative to the use of bladed objects and how the classes of

instruments were specific to a category of violence. The rationale for presenting the analysis

on such objects emphasises the rise in the use of bladed instruments and its category of

violent attacks from March 2014-2015-2021 in 1 and 2 in Figure 1.2.

Figure 1.1: Appendix: Victims %: Age-Ethnicity, England/Wales, March 2011-2021.

The data substantiated the significance of such weapons within the classes of violence

relative to the investigations. Using bladed objects or weapons adds value during the

developmental stages to specify the duration and confirmation of the attack from its in-

ception to its end. The previous notion proved the significance of its presence in violence

and validated such objects as features of interest for the current research in Figure 1.2

graphs 1 and 2. Observations presented other statistics emphasising the impact of the loss

of human life in [296] because of violence across the UK and the world. The data in [297]
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proved that violence is drastically increasing, with the murder tolls significantly targeting

women, children, senior citizens, and the innocent over the years with limited preventative

mediums.

Figure 1.2: Appendix: Sharp Object Offences Escalates In The UK, March 2011-2021.

2 Overview of YOLOv5 Processing

With the fundamental understanding of YOLOv5 input-output processing operations, fur-

ther analysis introduced violent data at the input stage in Figure 2.14 to begin the training

operations. The data undergoes a series of feed-forward convolutional procedures towards

the backbone’s first and second bottleneck CSPL layers. These generate feature map repre-

sentations of objects of interest from images of a 416x416 scale. Classification demonstrated

in [33] occurs by inputting pre-processed image data into an artificial intelligence model in

a feed-forward manner to generate values that indicate distinct features of violent action

objects utilising a series of processing layers.
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2.1 Appendix: Overview of YOLOv5 Activity Recognition Layers

Authors’ [80] and [298] mentioned that YOLOv5’s learning strategy employs multiple kernel

filers that compute weights (modifying parameter values assigned to computing nodes) and

biases to track and analyse the proficiency of the output values through back-propagation

(backwards and forward passing of data) and parameter fine-tuning. The weighted values

discussed in [299] are applied to regulate the input signal’s accuracy path, which moves

from one neuron to the next during the processing. This feature reflects values allocated

to specific connections amidst the neurological nodes within the architecture [300]. The

network’s biases represent a surplus of computational values that formulate relationships

emphasised in [301] amidst processing parameters. During the operations, the model gen-

erates an output identical to [302] regardless of the numerical denomination of the input

value. The model’s back-propagating operations accentuated in [303] helped solve output-

weighted error values relating to regions of interest in the image scenery. According to [298],

such outputs are processed backwards through the fully connected nodes to determine the

influencing path as the output. Authors’ [304] mentioned that identifying the latter allows

the computation to influence the final output’s strength or fine-tune the connections to

achieve the highest prediction results.

2.2 Appendix: Overview of 3DCNN Processing Layers.

The breakdown of 3DCNN’s operations commence by presenting a summary of operations

from (A)-(F) as follows.

(A) 9 Convolutional (Conv3d) Layers: The layer enhances class feature associations

of 3D objects across spatiotemporal boundaries relative to its optical flow in each im-

age during its generalisation operations. Its layered processing conveyed 3-dimensional

kernel filters that operate in an (x, y, and z) direction relative to a stride of one in a

218



three-dimensional sphere.

(A) Its convolutional operations discussed in [120] produced a cube-like tensor, activation,

and feature map that provides additional object details, which denote edges and

demarcations for other layers.

(B) 4 Activation layers (Act): The RELU (Rectified Linear Unite) activation func-

tion discussed in [104] consists of a piece-wise linear operation that outputs the input

directly if it is positive. Otherwise, its processing produces a zero output. Its pro-

cessing detailed in [90] accelerated the training phases of the network by increasing

non-linearity in the input data to remove all black attributes from the violent activity

features and retain only those that represent positive values.

(C) 4 Max-Pooling Layers: The layer down-samples the resolutions of the feature map

and tensor utilising a mathematical computation to control the dimensionality of the

activation block (feature map block) at the feature level. Author’s [305] confirmed

its operational and efficacy enhancements during the training stages.

(D) 3 Dropout Layers: The layer regulates the violent activity data output to reduce

over-fitting by randomly dropping computing neurons at this stage to force the oper-

ations to generate more robust results. The operations prevent interconnecting neu-

rons from promoting computational dependency on high-computing neurons [306].

The approach in [307] suggested slight modifications with a dropout parameter that

forces the model to learn violent human actions independently and encourages less

processing complexity when handling unseen data.

(E) 1 Flatten Layer: The layer conforms multidimensional output from convolution into

a 1-dimensional vector consisting of a string or row of values as a 1-dimension tensor.

This computation emphasised in [308] and [309] is designated before the dense layers

as it anticipates data in a 1-dimensional format and retains all values in the tensor

relative to the violent object features for classification.
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(F) Dense Fully Interconnected Layers: The layer further extracts high-level violent

activity feature details and maps such attributes of the convolutional layers with

probability scores into the correct labels with a Soft-Max function [104] and [310].

The purpose of the Soft-Max function discussed in [311] and [312] assigns score prob-

abilities that equate to a 1 or 0 to the violent actions feature labels. That insinuates

the ratio of its accuracy and the confidence of the model’s classification operations.

2.3 Appendix: Evaluating Binary/Multi-Class Classification Models

The evaluation concept demonstrates the approach taken to evaluate the potential of arti-

ficial intelligence models. The discussions in this section demonstrate the confusion matrix

computations and how it applies to establish accuracy in a binary classification (two-class)

model.

2.3.1 Appendix: Overview of Table 2.4.1 Metrics/Evaluation Measures:

At this level, examples of the evaluation metrics projected the viability of object detection

and activity recognition towards violence. It is necessary to comprehend the available

metrics that evaluate convolution operations. The ubiquitous metrics below produce results

in various contexts. The evaluation metrics are as follows.

Estimators Processing Description

TP Recall/True Positive Rate predictions that are Correct or True
TN True Negative rate predictions that are NOT Correct and it is True
FP False Positive rate predictions that are NOT True

FN False Negative predictions that are NOT Correct and it is NOT True

Table 2.1: Appendix: Confusion Matrix Performance Evaluation Logic.

220



Figure 1.3: Appendix: An Illustration of Confusion-Matrix (CM) Binary Operations

2.3.2 Appendix: Summary of Confusion Matrix Multi-Class Manual Process:

In this section, a projection of the confusion matrix operations emphasises the idea of

its processing compared to binary classification. Each column of the confusion matrix

depicts an instance of the predicted class, where each row highlights outputs as accurate

predictions. A perfect classification operation generates values only on the diagonal plane

to indicate that the model accurately categorised each class of the test data samples with

a 100% proficiency rating. However, the diagonally projected values described in [141]

represent the operation’s actual performance, and the vertical values starting from the

top and bottom of each positive centre value represent false positive instances. Each

prediction on the horizontal plane indicates false negative values, and the vertical values

indicate false positive output. The processing formulates a cross. Every instance external

to this crossing represents actual negative values [313]. The multi-classification operations

depicted in Figure 1.4 reflect an accuracy colour bar indicator. The bar outlined in [314]

insinuates the threshold degree of accuracy where dark colours suggest high performance.
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The illustration presented an overview of the logic circumventing its accuracy towards

computing all instances. The confusion matrix demonstrates output that reflects the proper

labels of the classes and the actual prediction of objects (knife, stick, ball, gun) from the

model’s perspective.

Figure 1.4: Appendix: Confusion Matrix (CM) Multi-Class Processing Source: [141].

2.3.3 Appendix: Overview of Confusion Matrix TP, TN, FP, FN Process:

Table 2.2 and Table 2.3 present a visual perspective to simplify the computation of overall

performance manually to fortify the reader’s perspective. At this stage, the data proved

that the weapon gun attained the highest performance of 28, followed by ball 25 and stick

23. At the lower end of the spectrum is a knife at 19. Knife attained the highest TN at

79, followed by ball at 75, stick at 73 and gun at 70. In this instance, the model attained

the highest FPs for the stick at 5 and 1 misclassification for the ball. The table also

demonstrates computational deficiency as the stick FN prediction is at 5, along with the

ball at one as a crucial systematic error in judgment. These predictions are NOT Correct,

and it is NOT TRUE. The understanding provides insight into the criticality of the
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proposed pre-empted logic in Chapters’ 4, 5 and 6 when considering the misclassification

of violence relative to human life.

Class TP TN FP FN
1 Knife: = 19 (23+0+0+0+25+0+2+1+28) 79 (0+0+0) 0 (3+0+0) 3
2 Stick: = 23 (19+0+0+25+0+1+28+0+0) 73 (3+0+2) 5 (0+0+0) 0
3 Ball: = 25 (19+3+0+23+28+0+0+0+2) 75 (0+0+1) 1 (0+0+0) 0
4 Gun: = 28 (19+3+0+0+23+0+0+0+25) 70 (0+0+0) 0 (0+2+1) 3

Table 2.2: Appendix: Confusion Matrix Manual Computation.

Kinfe Stick Ball Gun

TP 19 23 25 28

TN 79 73 75 70

FP 0 5 1 0

FN 3 0 0 3

Table 2.3: Appendix: Overview of the CM Multi-Classification Results.

Table 2.3 Manual Overview of the confusion matrix Overall Accuracy (OA). Compu-

tation:

Sum All Values = 19 + 23 + 25 + 28 + 3 + 0 + 0 + 0 + 0 + 0 + 2 + 1 + 0 + 0 + 0 + 0 = 101

Sum All Diagonal Values = 19 + 23 + 25 + 28 = 95

OA =
95

101
= 0.94

2.4 Appendix: Summary: Good Fit, Over-fitting/Under-fitting Issues:

To understand the evaluation processing, concerns linked to over-fitting and under-fitting

as significant concerns are defined during the developmental stages to disclose processing

effectiveness. Figure 1.5 below presented a case of over-fitting to demonstrate a scenario
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where the model learns the features of the training data in a fashion that appeared efficient.

The operation discussed in [315] and [316] specified that its processing proved superb to

that point it cannot infer substantial predictions results on new data, thus increasing

generalisation errors. The illustration depicts the initial start of the training processing in

blue at a high loss, gradually settling closer to zero. However, due to the data’s complexity,

the values gradually ascend as the epoch iterations increase.

Figure 1.5: Appendix: Graphical Representation of Over-fitting Classification.

2.4.1 Appendix: Summary of Classification Issues: (Under-fitting):

With an understanding of over-fitting in [317], a representation of an under-fitting scenario

outlined its context in Figure 1.1 in models (a)-(b). The illustration portrays the framework

processing deficiencies, primarily when integrating small dataset volumes during training.

Instances reflecting distinct separations of the training in blue and validation curve in
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orange suggest abnormal processing. As a result of the previously mentioned issues, the

operation produced a small number of low error values that impacted the gradual curvature

of the graphical representations. Author’s [318] interpreted such instance as an insignificant

operation. The processing described in [161] demonstrates its starting point from the left

highest value and ending at the right lowest value for every epoch iteration during training.

Bridging the knowledge gap concerning iteration meant that the epoch iteration reflects

the total repetitions of forward and backward passes of all training data in one cycle during

training.

Figure 1.6: Appendix: Model (A)/(B) under-fitting Classification Operations.

2.4.2 Appendix: Summary of Convolution Performance Issues/a Good Fit:

A well-fitted operation demonstrates the model’s loss and accuracy values as a smooth

output per each iteration of the epoch cycle displayed in Figure 1.7. The loss values outlined

in [160] represent the summations of error values that measure the overall performance of

(how good or bad) the model’s processing abilities. An insignificant result dispenses high

error values, causing the loss value to have a similar effect to a fluctuation of the accuracy

output. The latter issue described by [319] implies that the operations did not attain

optimality with a low classification result. Understanding how the loss values impact the
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overall performance is critical. The idea fortified by [320] insinuates that the lower the loss

values, the better the performance result relative to the previously mentioned cross entropy

approach for classification and regression application. The loss function performance in

Figure 1.7: Appendix: Graphical View of Good Data Fitting Operations.

Figure 1.7 encourages learning as per [321] by employing a gradient descent technique

to evaluate the loss results details. The strategy outlined in [322] alters the architecture’s

processing parameters accordingly. Author [323] ’s operations present a smooth descending

graphical curve as a nuance of the training performance blue in colour, which is always

relatively higher than the validation result in orange. The outcome occurs because the

operation utilises data already processed during the training stages. With an understanding

of processing issues and their ability to impact operations negatively, further investigations

into the literature provided available approaches to promote efficiency.
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3 The Methodology

Further analysis of the datasets, such as Real-life violent situations with 2000 samples,

provided a ratio balanced between violent and non-violent human actions. Its contents in

[324] reflect samples conveying similarity in environments and poor resolution, with few

files of significance regarding stabbing patterns. Violent Flows disclosed by [325] consists

of 246 videos of crowd behaviour accumulated via YouTube. Their dataset incorporates ex-

cessively noisy background image sceneries with a few suitable samples of stabbing actions.

Microsoft COCO dataset explored by [326] consists of 91 object classes and 2.5 million la-

belled instances in 328k images. Their dataset contains objects that bear no significance

towards the current task.

Regarding [327], the UCF-Crime dataset repository comprises 128 hours of untrimmed

real-world surveillance videos with 13 realistic actions, excluding stabbing altercations.

LIRIS dataset for action recognition explored by [231] and [232] contains 55,298 images of

non-violent activity data with 828 actions excluding violent actions. XD-Violence in [328]

comprises 4754 untrimmed videos relevant to shooting and fighting, excluding stabbing

actions. UCF101 dataset outlined in [329], [330], and [245] entails 13,320-video samples

sourced from YouTube with 101-categories of human actions exceeding 27-hours. This

dataset has a fixed frame rate of 25-FPS (frames per second) and a resolution of 320×240

with a few stabbing samples. All sources contained actual samples from a neutral action

perspective; however, they lack relevant violent actions representing essential primitive

stages (pre-start) of stabbing scenarios.

3.1 Appendix: YOLOv5 Action Recognition Data Grouping Summary

Conforming the data into frame sequences to meet the architectural specifications of

YOLOv5’s design is astronomically essential. If this aspect is not satisfied, the new raw

data increases the complexity of the model’s processing capabilities and harms the pro-
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-cessing. The Hand-Break tool [35] batch processed RWVAD1st data simultaneously to refine its contents to a specific

size ratio. The operation transforms large volumes of image codecs and resolutions to an acceptable ratio, removing

unwanted elements in the data in batches. iMovie software processing tool conforms and enhances RWVAD1st

attributes via cropping, resizing, flipping, and deleting unwanted frames. The method employed [246]’s blob analysis

augmentation tools, which generated surplus data by altering its orientations boasting RWVAD1st’s dataset volume.

Keeping in line with YOLOv5’s by-frame training operations, a manual data cleaning approach extracted 3662 frames

from 160 videos previously mentioned at 30 fps (frames per second) comprising 1831-violent and 1831-non-violent

samples to facilitate training and the proposed objectives in research questions 2 and 3 in 1.2. Aligning RWVAD1st

concepts with research questions 1, 2, and 3 in 1.2 ensures the operations consider the activity’s life cycle, artefacts,

start, middle, and end duration for efficiency. The data orientation strategy applied evaluated YOLOv5’s processing

effectiveness. The concept illustrated in Figure 3.1 depict an example of actions portrayed in RWVAD1st for impact

experiments in Section 4.

Figure 3.1: Appendix: Stabbing Sequences from its Start, Middle and End.

228



3.2 Appendix: Overview of 3DCNN Dataset Grouping for Activity Recognition

The rationale behind acquiring a new volume of data was to train the model on new variations of violence to enhance

its operations and encourage robust results. Further investigations into social media sources accumulated 100-stabbing

samples conveying action similarities. Our neutral samples highlighted in Table 3.1 derived from [245] at a 15-second

# Class Label 3DCNN Class Label Description

non-violent(neutral) Generic Category: Indication of normal human actions

0 Cutting-in-Kitchen (C) Indications of food preparation in a kitchen as a neutral class

1 Nun-chucks (N) Indications of individual/s using nun-chuck alone in a non-violent manner

2 Fencing (Fe) Actions relative to the fencing sport/ For Action Similarity experiments

3 Sumo-wrestling (Su) Similarity relative to the wrestling sport

4 Walk-with-dog (W) Actions relative to person/s walking dog/s

5 Knitting (K) Actions relative to person/s sitting/ knitting

Violent Classes Generic Category: 1 vs 1, many vs 1, 1 vs many, group violence

6 Fighting (Fi) Striking with arms/legs to cause harm / For Action Similarity Experiments

7 Beating (B) Striking with object to cause bodily harm

8 Shooting (Sh) Utilising projectile weapon/s to cause human endangerment

9 Stabbing (St) Utilising bladed/sharpened instrument/s to cause bodily harm

Table 3.1: 3DCNN Activity Recognition Subclass Description.

maximum duration with a frame rate of 25fps (frames per second) and an image dimensionality of 320x240. In UCF,

each class folder contained an imbalance of samples. A manual selection comprising 40 samples per class, including

the new raw data, facilitated 3DCNN’s processing standards. Following YOLOv5’s pre-processing initiatives, it main-

tained data consistency utilising [35] and [331]. That operation standardises the raw samples to a dimensionality of

320x240, formulating the new RWVAD2nd dataset of 560 samples for the 3DCNN’s processing. 3DCNN classification
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differs by representing violent class labels instead of blob objects, which generate probability scores as a final output.

Therefore, applying blob analysis to determine regions of interest in the image scenery is not viable for activity

recognition at this stage. During development, omitting data samples conveying unrealistic violent activity relative

to acting and movie scenes reduced the high risks of false positives during 3DCNN’s processing.

# Criteria Required YOLOv5 Dataset Enhancement Description

1 Images per class greater than 1500 Number of images per class recommended

2 Instances per class greater than 10000 Labelled objects per class recommended

3 Image variety
Different: times of day, seasons, weather, lighting, angles,
sources

4 Label consistency All instances/classes in images must be labelled

5 Label accuracy
Limited spacing between object and its bounding box.
No objects should be missing a label.

6 Background image support
Images with no ROI objects: Reduces False Positives (FP).
The author recommends about 0-10%.
No labels are required for background images

7 Epochs 300 epochs for training

8 Image size Native resolution of image size = 414 x 414 & 640 x 640

9 Batch size Largest batch-size hardware allows

10 Hyper-parameters Default options embedded in script file hyp.scratch.yaml

Table 3.2: YOLOv5 Activity Recognition Enhancement Standards.

3.3 Appendix: Overview of Yolov5 Operational Standards to Promote Robust Processing

YOLOv5’s architecture required explicit standards and dataset reinforcements to encourage robust results. Table 3.2

’s enhancement standards aligned RWVAD1st’s dataset with [108] ’s precepts to encourage efficiency. Following the
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dataset enhancements, it was necessary to incorporate [246] ’s blob analysis tools to conform

RWVAD1st’s file structure criterion to each image’s desired object output format. Its

output structure entails (.txt) files containing the identification of the subclass object value

(the object’s centre reflecting x, y, width, and height) as coordinates for each object’s

location in the scenery of every image in the root processing folder. For example, one

violent image processed via Robo-Flow produces several objects of interest. This operation

generates a single (.txt) file with details representing the coordinates of each blob per

object and image. After blob analysis, each image contains several labelled sub-classes to

signify the identity, presence and location of blob objects. Those coordinates constitute the

object-class, x, y, width(w), height(h) in Table 3.3 as a nuance of a Stabbing01.jpg

Subclass ID X Y W H

7 0.716797 0.295833 0.316406 0.847222

3 0.487109 0.579167 0.355469 0.858333

9 0.568709 0.769832 0.767667 0.219496

14 0.659803 0.353554 0.878912 0.989821

2 0.320312 0.340625 0.695833 0.966667

6 0.516797 0.495833 0.316406 0.847222

8 0.887109 0.679167 0.355469 0.958333

10 0.212111 0.532211 0.455667 0.598223

4 0.120312 0.395833 0.340625 0.766667

1 0.316797 0.295833 0.316406 0.747222

11 0.206090 0.436787 0.214309 0.902121

13 0.100834 0.766761 0.673443 0.455359

0 0.287109 0.779167 0.355469 0.858333

15 0.870415 0.888892 0.457671 0.655586

5 0.720312 0.795833 0.340625 0.766667

Table 3.3: 3DCNN Activity Recognition Subclass Description.

image after blob analysis operations. YOLOv5’s root folder directory path facilitates all

program scripts constituting its object detection framework. The collaborative process-

ing effort of the scripts executed vital instructions from a hierarchy directory tree path
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illustrated in Figure 1.2. Without the processing order, the significance of the model’s

core operations is futile. YOLOv5 root folder relies on library packages to interconnect its

processing to assist the architecture in generating desired results. Table 3.4 defined the con-

tents of each folder and provided a means of identifying scripting and package integration

error prompts during development. Exploring multiple versions of YOLOv5 frameworks

Figure 1.2: Appendix: Overview of YOLOv5’s Directory Tree-Path.

via transfer learning initiatives utilising Microsoft benchmark COCO dataset provided

the means to satisfy the research objectives. A redirection of YOLOv5 processing weight

parameters from COCO’s dataset towards RWVAD1st promoted processing efficacy. Each

file specified by [108] contained 16 adjacent frames representing the class of activity and

duration specifications, which endured a resizing operation to facilitate the input height and

width conditions at 416x416x3x16. Regulating performance incorporated the finetuning of

YOLOv5’s hyper-parameter options reflecting a batch size of 16 and 32, an epoch of 32 and

300 to observe model superiority relative to research question-5 in Section 1.2.1. Retaining

YOLOv5’s default transfer learning on Microsoft COCOs running a requirements.txt script

from the repository folder via the hardware terminal improved the library updates and

model training. The operations investigated data containing pre-processing and without
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pre-processing with and without background image enhancements to satisfy research questions 1 to 3 and 5 in

Section 1.2.1.

# Folder YOLOv5 Root Folder Contents Description

1 YOLOv5 Main directory folder containing all files

2 Datasets All training and validation data

3 Coco128 kept the naming convention and swapped its data with the VRWA dataset

4 Images Specified to differentiate between the validation and test data

5 Train The data files used for training

6 Images All images sectioned for the training operations e.g. (Stab01.jpg. . . n/ Fencing01.jpg. . . n)

7 Labels All blob labels specified in the training images e.g. (Stab01.txt. . . n/ Fencing01.txt. . . n)

8 Validation Data used for cross validation to guide the learning/ inference (Stab05.jpg. . . n/ Fencing03.jpg. . . n)

9 Images All images sectioned for the validation operations (Stab05.jpg. . . n/ Fencing03.jpg. . . n)

10 Labels All blob labels specified in the validation images (Stab05.txt. . . n/ Fencing03.txt. . . n)

11 yolov5 All model configuration/processing files (.PY, .YAML, .TXT, .CSV)

12 3dcnnframes Stores the same 3dcnn inference image data for inference processing with yolov5

13 Data Additional .YAML files for finetuning options

14 Model All yolov5 architectures (nano, small, medium, large & extra-large)

15 Runs Training and inference results dispensed from processing

16 Output Yolov5 output results for the proposal fusion concept

17 Weights The pretrained weights for the models specified in #14

18 Utils Metric logging files and data loading/ processing scripts

Table 3.4: YOLOv5 Folder Contents Definition.

3.3.1 Appendix: Overview of Yolov5 Activity Recognition Operations

At this level, the concept of YOLOv5 as object detection using static unrelated action images compared to YOLOv5m

as activity recognition utilising a sequence of frames as video input provides a clear distinction between models. Ad-
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hering to configuration standards specified in Table 3.2 onwards aids in promoting option consistency and processing

efficiency. Object detection and Activity recognition follow the same stages. The difference between the detection

models is that activity recognition utilised a series of frames during input, which conveys the target actions and

object detection utilised static unrelated images at the input level. Activity recognition operations entail feeding a

sequence of image frames demonstrated in Figure 1.3 and Figure 1.4 at the input stage to determine the classification

results of the data. Contrarily, the concept of object detection depicted in Figure 1.5 and Figure 1.6 utilised the same

convolutional operations. However, the data at the input stage convey no interrelations or relationship in velocity,

acceleration or trajectory when establishing the object of interest in the scenery of each static image.

Figure 1.3: Appendix: YOLOv5 Activity Recognition Processing.
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Figure 1.4: Appendix: YOLOv5 as Activity Recognition Input.

Figure 1.5: Appendix: YOLOv5 as Object Detection.
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Figure 1.6: Appendix: YOLOv5 as Object Detection Input.

3.4 Appendix: Overview of 3DCNN Standards for Robust Processing

3DCNN requires a root directory path defined in Figure 1.7 to facilitate processing efficiency, which executes its

computations utilising various library packages. Like YOLOv5, each folder in the 3DCNN file root path has a

distinct function. Table 3.5 projects the contents of the 3DCNN root folder to fortify the notion of its purpose during

processing. 3DCNN utilising transfer learning initiatives detailed in Section 2.6 in the report elaborates on the UCF

dataset during the training procedures. A redirection of 3DCNN processing weight parameters from UCF towards

RWVAD2nd video data, sampled 12-adjacent frames representing the CoAT (Class of Activity Template) aided

satisfying research questions 1 and 4 in Section 1.2. 3DCNN’s image height and width input conditions encompass

320x240x12x3. Its hyper-parameter performance options reflect a batch size of 130, an epoch of 32 and 90, and a depth

of 12 to regulate the size of its tensor block output, which encourages optimal performance. Further investigations

into data containing pre-processing, without pre-processing, with and without background image enhancements dis-
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-closed model superiority towards satisfying research questions 2, 3, and 5 in Section 1.2.

Figure 1.7: Appendix: YOLOv5 as Object Detection Input.

# Item 3DCNN Root Folder Contents Description

1 3DCNN Root configuration folders, stores 3DCNN’s script and data files

2 Dataset Contains all violent and non-violent sectioned folders of data

3 3dccn-results Stores the output results from the operations

4 3dcnn.py Consist of the 3DCNN’s architecture configurations

5 Video3d.py Consist of video handling and frame extraction scripts

6 Npzfiles.py Loads/saves data to a .NPZ format for accessibility operations

Table 3.5: 3DCNN Activity Recognition Folder Contents Description.

4 Appraising YOLOv5 and 3DCNN

A model distinction between object detection and activity recognition operations projected

the need for processing feasibility to enhance one’s understanding further.
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4.1 Appendix: Activity Recognition/Object Detection Input Summary

Figure 4.1 synopsis illustrates object detection utilising 12-static images in simulation(A)

compared to applying sequences of frames across time for activity recognition in simula-

tion(B). Simulation(A) employed 12 random static images at the input stage to demon-

Figure 4.1: Appendix: Rational for Avoiding YOLOv5 Object Detection Simulation(A).

strate the action restrictions from that perspective. Simulation(B) applied a sequence of

12 portraits of actions from video data representing the primitive (pre-empted start) stages

of a stabbing motion. Figure (B)’s processing proved viable for satisfying the first research

question in Section 1.2.

4.2 Appendix: YOLOv5 Activity Recognition Limitation Summary

The approach entails training YOLOv5 on a section of two classes of pre-processed data

from the RWVAD1st dataset. A deliberate application of classes representing action simi-

larity (actions depicting close similarity in characteristics) posed a deliberate plot to chal-
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lenge the model’s true potential to establish its effectiveness. The class selection consists

of the stabbing class projected as violent and a neutral class portrayed by the fencing

sport, with 80 videos. Hyper-parameter options utilising 30 epochs and a batch size of 32

maintained option consistency to regulate classification performance. YOLOv5 operations

commenced with manually extracting action sequences from the 80 samples for training

procedures and configuring the program scripts to process those specified frames. The main

configuration script from the terminal command line initialised the operations. The evi-

dence in Image-1 eradicated its classification limitations by evaluating the stabbing class.

Observations disclosed an anticipated prediction on the stabbing class with two scores,

one at 67% as the highest accuracy. Figure 4.1 Image-2 generated three scores with two

critical misclassifications. The analysis proved that the processing conceded crucial errors

by misidentifying the victim as a stabbing category at 19% and the aggressor’s lower ex-

tremities at 12% accuracy. Image 2 contained one correct prediction of the aggressor at

74% accuracy. Image-3’s prediction peaked just above an average attempt of 57% with no

victim.

Finally, Image 4 displayed an abstract cartoon to challenge the model’s capability. The

evidence disclosed 2-misrepresented predictions proving the model’s partial status during

processing at 20% and 13%. The assessment aligned the deficiency in processing with the

action similarity of the neutral fencing class in Image-5. Image-6’s operations dispensed

no results that fortified the fusion concept regarding YOLOv5’s processing deficiencies.

The operation of 49% on Image-7 validated the model’s consistent challenges with the

complexity of actions conveying attribute similarity. Image-8 produced no results, thus

solidifying the notion of the proposed fusion due to YOLOv5’s sporadic interpretations

between violent and non-violent actions in conditions conveying complex gait patterns.

The analysis projected another scenario with 2-misrepresented predictions validating the

model’s partial operational state at 20% and 1%. The analysis linked the deficiency in

processing to action similarity issues as it struggled to differentiate the neutral fencing class
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in Image-5. The crucial misclassification instance of stabbing at 39% and 20% in a fencing

event demonstrated the critical need for a robust mechanism that efficiently anticipates

lethal actions compared to any other human activity. Though some cases inferred that the

fencing prediction was accurate relative to the stabbing activity’s gesturing and lunging,

the reality of the class categories is that they convey two separate natures. The overall

processing proved detrimental if the model’s operations consistently misidentified authentic

objects of interest in the scenery. Other instances confirmed YOLOv5’s limitations as it

presented no scores for legitimate actions, thus substantiating the proposed fusion concepts.

4.3 Appendix: Overview of 3DCNN Ideal Confusion Matrix Results

To commence the individual (3DCNN without fusion) simulations, the application of 16-

test videos of a balanced class ratio reflecting stabbing and fencing to facilitate the aim and

objectives. However, due to 3DCNN’s construct (utilising entire videos), applying eight

additional test video samples aided in demonstrating proper classification ratios during the

confusion matrix analysis. Adhering to specific 3DCNN standards adds configuration con-

sistency and eradicates biased notions to promote the actual outcome of the model. The

strategic approach bears no impact on training exercises for YOLOv5 processes. Table 4.1

present an example of an ideal confusion matrix classification performance to bridge the

gap in understanding the misclassification rate of 3DCNN actual processing. The example

displayed a perfect classification state of 16-video samples relative to the confusion ma-

trix true positive and accurate negative predictions. Table 4.1 classification performance

insinuated that all classes were correctly classified instances. Out of the 16 videos applied

for testing, eight stabbing and eight fencing were true positives as accurate outcomes in

this scenario. The operations highlight eight videos that are not fencing and eight that are

not stabbing, also as an accurate response. No misclassification rates reflected false posi-

tives and false negatives as a perfect processing operation. The operation measured overall

accuracy to evaluate the classification state of the entire operation. The idea considers the
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accuracy performance of the entire process compared to individual classes. The notion projects the actual performance

of the entire operation. Considering Table 4.1, the highlights on 3DCNN deficiency in Table 4.2 nuance further

indicated that violent generic categories and stabbing sub-classes occurred, which partially predicted the accuracy

of scenario. False negatives convey a crucial state of the operations. Its impact directly affects the prevention of

lethal scenarios and the loss of human life. In the case of the false positives, the evidence showed five instances: three

misrepresentations for fencing and two for stabbing. These instances signified that the model predicted actions that

Rating Fencing Stabbing Confusion Matrix Description

True Positives TP 8 8 Predictions are Actually True

True Negatives TN 8 8 Predictions NOT True

False Positives FP 0 0
Predictions NOT True but Actually Predicted to be True
(It is ok if this is misclassified)

False Negatives FN 0 0
Predictions True but, Actually Predicted to be False
(Not ok if this is misclassified)

Table 4.1: Appendix Example of an Ideal Confusion Matrix Classification State

Rating Fencing Stabbing Confusion Matrix Description

True Positives TP 6 5 Predictions are Actually True

True Negatives TN 5 6 Predictions NOT True

False Positives FP 3 2
Predictions NOT True but Actually Predicted to be True
(It is ok if this is misclassified)

False Negatives FN 2 3
Predictions True but, Actually Predicted to be False
(Not ok if this is misclassified)

Table 4.2: Appendix: Rational for Fusion 3DCNN’s Misclassification Break Down.
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were not violent activity or the stabbing subclass. Nevertheless, the model predicts the action to be violent. False

positive instances are less severe than false negatives in the case of violent activity recognition. The model may create

false alerts, but in this instance, it is safer to apply additional support to validate the circumstance of an action to

pre-empt and prevent lethal scenarios. Table 4.2 ratings insinuated that the predicted actions were not a violent

generic class or a subclass stabbing, but the model identified this as violent. The results validated 3DCNN’s unstable

performance in scenarios containing complex action similarity focusing on violence. The deficiency in its processing

validated the proposed fusion technique as a supporting mechanism that produces robust results regardless of the

model’s misclassification state and the complexity of violent human gaits.

4.4 Appendix: Validating 3DCNN Limitations Manually

A manual computation accentuated the true summations of diagonal elements relative to the confusion matrix from

the left top corner to the bottom right, divided by the accuracy to validate the overall performance in Table 4.2 and

Figure 4.2. The idea encompasses a summation of all scores to determine the accuracy generated with a breakdown of

the misclassification rates and a final accuracy score to conclude this section. Figure 4.2 fluctuating scores compared

to Table 4.1 emphasises the importance of attaining the correct result as its impact can adversely affect the overall

predictions, leading to erroneous outcomes exclusively in lethal scenarios. The confusion matrix output projected

the model’s actual non-violent and violent human gaits processing with high posturing similarities at 68% overall

accuracy at this stage. The manual accuracy and overall accuracy operations fortify the concept of the confusion

matrix processing, which is as follows.
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Figure 4.2: Appendix: Unstable 3DCNN Action Similarity Processing Source: [141].

Accuracy Generated = 6 + 5 + 3 + 2 = 16(No. of Test Videos Utilised for Operations))

Overall Accuracy = 6 +
5

16
=

11

16

3DCNN Overall Accuracy = 0.6875

4.5 Appendix: Overview of Experimental Conditions

The strategic experiments satisfied research questions 1-5 in section 1.2.1 to finally justify

the integration of the proposed fusion strategy accentuated in Chapter 5. The experimental

conditions are emphasised in two phases. The notion determined the advantages and
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disadvantages of YOLOv5 in phase-1 and 3DCNN’s classification state in phase-2.

# Conditions Dataset Size Impact Experiment Definition

1
No pre-processing

and NoBackground
Images

Original
Dataset 160
videos 2284

Images

Experiment contains no data
pre-processing or enhancements
or background image support.

2
No pre-processing

and WithBackground
Images

5944
Images

Experiment contains no data
pre-processing or enhancements
but, contains background image
support.

3
With pre-processing
and NoBackground

Images

5944
Images

Experiment contains data
pre-processing enhancements
but, no background image
support.

4
With pre-processing

and With Background
Images

6204
Images

Experiment contains data
pre-processing enhancements
and has background image
support.

Table 4.3: Appendix: Summary of Activity Recognition Impact Experiment Conditions.

4.5.1 Appendix: Phase-1 YOLOv5 Experiment Conditions

YOLOv5 operations consider two forms. The first is the From-Scratch technique, which

trains the model using random weight (designated computational values) and option val-

ues (fine-tuning values). The second approach denotes a pre-trained transfer learning

method, which entails training the YOLOv5 model with parameters attaining benchmark

performance utilising the Microsoft COCO dataset. The rationale behind this evaluation

approach disclosed model superiority to supplement the decision-level strategy during the

proposed fusion’s developmental stages. The notion entail four categories of RWVAD1st

reflecting action similarity, no pre-processing, and pre-processing enhancements as spec-

ified in Table 4.3. RWVAD1st pre-processing contains cropping, resolution altering 5%,

blurring 5%, Gaussian noise (5% salt/pepper), and flipping (right/left).
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4.5.2 Appendix: Phase-1 YOLOv5 Framework Version Selection

YOLOv5 investigations revealed p5 and p6 models that facilitated the research questions’

intricacies during the developmental stages. Author [108] presented p5 and p6 solutions

to handle challenges regarding objects with high acceleration, velocity, and sporadic tra-

jectory. The difference between p5 and p6 is that p5 maintains a kernel processing stride

of 32, while p6 employs a stride of 64 in the output layer. The additional p6 output layer

increases the accuracy of image scales by facilitating significant object predictions from

414x414, 640x640, and 1280x1280 size ranges. The idea focuses on enlarging small objects

of interest during the upscaling of the image size due to the p6’s design. During devel-

opment, up-scaling image sizes create more values for processes, and p6 models increase

the demand for memory resources. The smallest image size reduced processing issues by

bypassing p6 operations as a measure for future processing endeavours. Further inves-

tigations of the YOLOv5 p5 framework disclosed multiple designs that facilitate robust

processing. YOLOv5 nano(n) design facilitates mobile solutions. YOLOv5 small(s) design

superseded the nano version with 7.2 million processing parameters accommodating CPU

inference. YOLOv5 medium(m) design employs 21.2 million parameters and is ideal for

complex datasets. YOLOv5’s large(l) design consists of 46.5 million parameters, which is

superb for detecting smaller objects. However, it encouraged a rapid depletion of memory

resources. Finally, the YOLOv5 extra-large (xl) design applies 86.7 million parameters that

generated the highest accuracy with the slowest processing compared to all other models.

A projection of YOLOv5’s design range demonstrated the scope of its processing capabil-

ities and highlighted the magnitude of the investigations to establish a suitable concept to

facilitate the proposed fusion approach.

4.5.3 Appendix: Phase One Summary of YOLOv5m Experimental Conditions

Because the larger versions of YOLO facilitate high performance and exceed the hardware’s

computational limits, the analysis considered a range of versions to gather insight towards

245



reducing the high risks of generating critical memory latency issues. The task incorporated

12 pre-trained and 12 from-scratch experiments to investigate the research initiatives to

evaluate research questions 1 and 5 in section 1.2.1. The idea disclosed processing feasibility

and superiority by utilising YOLOv5’s nano, small and medium designs. A fine-tuning

procedure maintained option consistency at this level, utilising hyper-parameters values

to reflect a standard batch size of 32, an epoch of 30, classes in Table 3.1, and an image

orientation set at 414x414 relative to [108]’s specifications. Appraising additional models

with 300 epochs maintained a suitable approach for operation consistency. However, the

approach peaked between 30 to 35-epochs. Integrating 32 epochs for 160 video samples with

a split ratio of 80% training, 10% validation and 10% testing fostered high performance

during development. A strict duration (5-15 seconds) through pre-processing increased the

overall processing speed. The previously mentioned performance allowed the context of

violence in two strategies concerning the primitive stages (pre-start) of each scenario.

Strategy-1 separate regions of interest in blob analysis: Separating regions of in-

terest is crucial during blob analysis and training. This separation adversely affected

performance because of the complexity of discerning multiple blobs of interest from

unspecified background regions, which conveyed high acceleration, velocity, and tra-

jectory in the image scenery. The challenge surrounds the classification of minute

objects with rapid trajectories.

Strategy-2 Combined blobs in blob analysis: Separate ROIs were combined during

blob analysis to suggest the pre-empting of violent activity. The idea ensured the

integration of small objects to suggest heterogeneous activity. The approach reduced

the computational resources required for output and the complexity of learning with

fewer important objects for training and classification. Strategy two’s selection re-

duced the complexity of generalisation amidst layers, promoting high outcomes.
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4.5.4 Appendix: Phase-1 3DCNN Framework Version Selection

To define the setup, investigations into 3DCNN multi-level and single-level frameworks proved necessary to fulfil

research questions 4, 5 and 6 in section 1.2.1 utilising the RWVAD2nd dataset. The concept employs 2-levels of

3DCNN consisting of 46 layers fused with hidden layers to attain robust processing and encourage high accuracy

scores. During development, multi-level processing added high risks of extreme flexibility, causing the layers to

exceed the capacity required. Simultaneously, the approach drastically increased the computational parameters

required for processing. The idea increased the rate of over-fitting discussed in [126] with a high increase in biased

results. The analysis strongly suggested avoiding the multi-level approach because of its high over-fitting risks

and its negative impact relative to research question 4 in section 1.2.1. The multi-level architectural limitations

solidified 3DCNN single-level as a feasible processing option for activity recognition. The operations favoured the

3DCNN single-level (3DCNNsl) technique towards classifying the generic status and subclass categories of violent

actions. 3DCNNsl operations achieved this by incorporating multiple feature reusing and element-wise backward

propagation operations, identifying violent patterns reflecting anthropometric anomalies amidst its layers. 3DCNNsl

solidified its status further because of its backward propagation operations to evaluate errors. The procedure entails

applying processing backwards from its output nodes to the input nodes to improve the model’s prediction accuracy.

3DCNNsl spatiotemporal feature extraction technique emphasised in [332] operates by integrating a 3-dimensional

convolution kernel processing objects of interest relative to their height, width, image channels, and depth during

activity recognition.
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4.5.5 Appendix: Phase Two Summary of 3DCNNsl Experimental Conditions

Like YOLOv5m Phase-1, incorporating the identical strategy for 3DCNNsl using the RW-

VAD2nd dataset with additional real-life videos proved necessary to maintain experiment

consistency. The idea deliberately challenges 3DCNNsl regarding research questions 2,

3 and 4 in section 1.2.1. Each category contained 40-balance samples per folder. Each

category contained 40-balance samples per folder. A class strategy of one violent class vs

one neutral class of 80 samples, 2-by-2 of 160 samples, and 4-by-4 of 320 samples assists

in regulating each experiment scenario. Evaluating the multi-class and generic classifica-

tion objectives, focusing on the 2-by-2 classes containing 160 samples proved necessary

to establish effectiveness. The analysis recorded additional results utilising the 1-by-1 80

samples set and the 4-by-4 of 320 samples set. Investigating those objectives risked ex-

ceeding the research developmental life cycle. Observations of 1-by-1 and 4-by-4 objectives

satisfied experiments reflecting the impact of increasing data sample sizes for research

questions 2 and 3 in section 1.2.1. In this instance, the result’s importance is a model

fine-tuning guide towards the proposed fusion concepts. The operations achieved further

efficiency by implementing crucial framework adjustments to adapt 3DCNNsl to recog-

nise sporadic violent patterns via transfer learning and boost robust classification for the

proposed fusion concepts. Modifying the original 3DCNN structure to accommodate 23

layers with a tensor block depth of 12 allowed the model sufficient time to accumulate cru-

cial high-level intricate feature details during processing. A set 50% regularisation in the

drop-out layers reduced processing complications between adjacent layers and promoted

high accuracy. Like YOLOv5m’s setup, utilising a similar cross-validation split procedure

(80%-10%-10%) aided with over-fitting. Regarding 3DCNN’s construct, a notion to in-

crease the hyper-parameter options to 90 epochs, a batch size of 130, a tensor block depth

of 12 for training and 32 videos for testing generated significant operations for analysis.

Additional fine-tuning of the hyperparameters during development aided in validating the

processing of the previously mentioned option values. Following those alterations and fine-
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tuning, YOLOv5m train.py and 3DCNNsl train.py scripts initialised the training, starting

the inference stages utilising their detect.py scripts via the hardware’s command terminal.

4.5.6 Appendix: Phase-2 Summary of Two 3DCNNsl Processing Methods

Method-1 Dataset Categorisation: The section involved re-configuring the original

3dcnn.py script to identify generic violent or non-violent folder categories/sub-classes.

The idea integrated class labelling from the dataset level during training. The concept

in the approach increased 3DCNNsl’s demand for application memory. The notion

forces the model to inflate its simultaneous computational load when analysing sta-

tuses and sub-classes in multiple sub-data folders within sub-folders during input

data-loading operations. The approach reduced data real-time processing speeds,

increasing the ambiguous results during training.

Method-2 Script 3DCNNsl Generic Status Output: Method-2 entailed restructur-

ing the RWVAD2nd dataset to represent one data-store folder and its various sub-

classes compared to specifying 2-generic category folders and their contents in sub-

folders like Method-1. Modifying the main 3dcnn.py script specified probability scores

for each subclass label in only one dataset folder. Applying the generic status and

subclass programming at the output level provided processing efficiency. During

development, Method 2 substantiated its efficiency as it required fewer data pro-

cessing stages and ignored complex data categorisation procedures at the dataset

level. Simultaneously, this improved the 3DCNNsl operational real-time speed with

less dependency on computational resources. Subconsciously, 3DCNNsl lacks the

knowledge of reality regarding complex, violent human actions. However, feeding

significant volumes of violent action videos reflecting such anthropometric patterns,

3DCNNsl learns complex interlacing gaits across spatiotemporal boundaries in a se-

quence of frames. The technique proved efficient when discerning actions conveying

violence. An overview of the following metrics emphasises the approach considered
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to evaluate the effectiveness of the model’s performance.

mAP subscript threshold of 0.5: mAP subscript threshold of 0.5 evaluates ground

truth vs predicted bounding boxes. Higher scores insinuate a more efficient per-

formance. The point of 0.5 denotes predictions above 50%, representing positive

classification scores, and low scores insinuate the opposite.

Precision: It measured the frequency of YOLOv5m’s ability to accurately recognise posi-

tive class occurrences considering all other instances it predicted to be positive. High

scores signify low false positive classification discrepancies.

Recall: Estimated YOLOv5m’s ability to accurately classify positive occurrences regard-

ing all ground truth instances of the dataset. High scores insinuate the model’s low

classification state containing fewer false negatives, and low scores denote insignifi-

cant performance.

Accuracy: Estimated global accuracy of 3DCNN’s classification operations and capability

to predict objects.

4.6 Appendix: Overview of YOLOv5m Result, Analysis

At this point, analysis of the YOLOv5m results demonstrated the fulfilment of the research

objectives in chronological order. The analysis is as follows.

A. Fulfilling Research Question-1 with YOLOv5m: In all simulations, YOLOv5m

demonstrated its ability to recognise violent activity/weapons in CCTV videos above

a threshold of 50%. In Table 4.4, 1 through 8 From-Scratch and pre-trained processing

accentuated all mAP-0.5 scores above the previously mentioned thresholds. Research

question 1’s fulfilment came by achieving the highest performance from #8 pre-

trained experiment 21 with a precision score of 0.85, recall of 0.82 and an mAP-0.5

of 0.85. The results proved that experiment 21 maintained superiority over all other

experiments.
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B. Fulfilling Research Question-2/3 via YOLOv5m pre-trained Operations:

In #3 experiment 6 From-Scratch, an implementation of a dataset size of 2284 im-

ages reflected data modifications with no background image enhancements to satisfy

research questions-2/3 in section 1.2.1. The operations dispensed a precision score of

0.64, a recall of 0.68 and a mAP-0.5 of 0.67. Observations into experiment #1 in Ta-

ble 4.4 utilising the same dataset with background image support increased the data

to 5944 images. Those operations generated a precision score of 0.66, a recall of 0.51

and a mAP-0.5 of 0.53. The results proved that data increments positively affected

the model’s classification state. Contrasting #3 experiment-6 and #1 experiment

18 in the From-Scratch context experienced challenges with background image in-

crements, negatively impacting the model’s performance. Though #1 experiment 18

precision dispensed high results, the model’s recall displayed signs of high false nega-

tive errors, where violent predictions were incorrect, and it was true. Experiment #1

results substantiated that data enhancements positively impacted the model’s classi-

fication state via From-Scratch investigations. Moreover, analysis of #2 experiment

15, compared to experiments #3 and #1, disclosed a depreciation in performance,

which insinuated that the data size increments were not the attribute affecting the

performance. Experiment #2 generated a precision of 0.61, a recall of 0.59 and

a mAP-0.5 of 0.63. Compared to experiment #1, experiment #2 utilised a larger

dataset of 6204 images with pre-processing enhancements in From-Scratch opera-

tions. The evidence proved that the data was not the issue. However, the complexity

of pre-empting violence utilising random weights in From-Scratch procedures proved

volatile. Analysis of #4 From-Scratch experiment insinuated that pre-processing en-

hancements played a significant role during training to promote robust classification

results. The analysis disclosed the highest results for From-Scratch operations on

a dataset size of 5944 images containing pre-processing without background image

support. The operations dispensed a precision score of 0.67, recall of 0.70 and a
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mAP-0.5 of 0.72 that superseded all other From-Scratch operations. The experimen-

tal investigation projected the performance impact when utilising pre-processed data

and no pre-processing (data without modification) via Table 4.4. The assessment

commenced by analysing from scratch first and then from a pre-trained perspective

to emphasise the contrast between both methods via performance. Analysis of From-

Scratch experiments produced inferior results compared to the pre-trained initiatives.

The evidence of Pre-trained operations for #5 experiment, 12 and #8 experiment 21

on a dataset containing 5944 images with no data enhancements confirmed the fulfil-

ment of research questions 2 and 3. The #5 experiment 12 task generated a precision

score of 0.77, recall of 0.72 and a mAP-0.5 of 0.75, which superseded all From-Scratch

operations on every level. In #8 experiment 21, the findings disclosed an increase in

performance in operations utilising an increment in data ratios from 5944 to 6204 im-

ages containing pre-processing and background image support. Observations showed

fluctuations in the processing performance with and without pre-processing and back-

ground images between #6 and #7. The results proved the ability to classify violence

regardless of real-world conditions. The previously mentioned results verified that

pre-trained operations can efficiently recognise violent actions with minimum misclas-

sification challenges by utilising large datasets. The evidence proved that pre-training

methods superseded all from-scratch approaches and validated the completion and

fulfilment of research questions 2 and 3’s initiatives in 1.2.

4.6.1 Appendix: Phase-1 YOLOv5m From-Scratch Confusion Matrix Exp.1/2

At this level, YOLOv5m confusion matrix results provides analysis in Table 4.4 for indi-

vidual class processing performance. Each experiment is aligned with the confusion matrix

results to emphasise the fulfilment of the research questions and accentuate the need for

the proposed fusion operations due to the misclassification rates. The diagonal values

and bar colour coding (darker colours insinuate high performance) per experiment to mea-
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sure the actual performance. Number #1 experiment 18 Figure 4.3 displayed a decline

in predictions exceeding the 50-percentile range and stabbing class scores of 0.62 like #2

experiment 15 via From-Scratch operations. Discussion woboard represented the highest

prediction between violent and neutral classes at 0.88.

Transfer Learning on YOLOv5m Trained From-Scratch Operations (random weights)
# Experiment Model Precision Recall mAP 0.5
1 Exp18 No pre-processing/With Background Dataset Size 5944 images

Exp-18 Medium-FS 0.66 0.51 0.53

2 Exp15 pre-processing/With Background Dataset Size 6204 images
Exp-15 Medium-FS 0.61 0.59 0.63

3 Exp6 No pre-processing/No Background Dataset Size 2284 Images
Exp-6 Medium-FS 0.64 0.68 0.67

4 Exp3 pre-processing/No Background Dataset Size 5944 Images
Exp-3 Medium-FS 0.67 0.70 0.72

Transfer Learning on YOLOv5m Fine-tuned by COCO Dataset pre-trained Operations
5 Exp12 No pre-processing/No Background Dataset Size 5944 images

Exp-12 Medium-PT 0.77 0.72 0.75

6 Exp24 No pre-processing/With Background Images Dataset Size 5944 images
Exp-24 Medium-PT 0.84 0.74 0.79

7 Exp9 pre-processing/No Background Dataset Size 5944 images
Exp-9 Medium-PT 0.83 0.81 0.83

8 Exp21 pre-processing/With Background Dataset Size 6204 images
Exp-21 Medium-PT 0.85 0.82 0.85

Table 4.4: Appendix: YOLOv5m Activity Recognition Impact Results.

Following was discussions ppl at 0.87, discussion wgi at 0.77, and person at 0.62. In this

instance, the From-Scratch models experienced challenges during the generalisation stages

relative to low misclassification ratios in #2 experiment 15 compared to #1 experiment 18.

The individual analysis proved the superiority of #2 experiment 15 over #1 experiment 18

by increasing the sample size and evaluating pre-processing versus no image enhancements.

In #2 experiment 15, six classifications exceeded the 50th percentile ratio. The results on
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neutral classes, discussion wgi at 0.60, discussion woboard at 0.88 like #2 experiment 15, discussions ppl at 0.74,

person at 0.55 with two violent types, knife deployed at 0.67 and stabbing at 0.65. Both #1 experiment 18 and #2

fifteen generated high background image misclassification ratings. From-scratch approaches misinterpreted the true

nature of 30 classes in #1 experiment 18 and 21 in #2 experiment 15. Though #1 experiment 18 precision was

higher than #2 experiment 15 in Table 4.4, the confusion matrix validated the misclassification individually to fulfil

research questions 1, 2 and 3 in 1.2.

Figure 4.3: Appendix: YOLOv5m Confusion Matrix From-Scratch Exp. 1-2).
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4.6.2 Appendix: YOLOv5m Exp.#1 From-Scratch Metric Results

Figure 4.4 accentuated performance for #1 experiment 18 via Table 4.4. The illustration

emphasised the fluctuating precision metric at 0.66 and the recall value at 0.51 and an

accuracy 0.53. The results validated Phase-1 analysis of From-Scratch misclassification in

experiment 1.

Figure 4.4: Appendix: YOLOv5m Impact Results for Exp. 18 From-Scratch.

Figure 4.5: Appendix: YOLOv5m Impact Results for Experiment 15 From-Scratch.
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4.6.3 Appendix: YOLOv5m Exp. #2 From-Scratch Metric Results

Figure 4.5 accentuated #2 experiment 15 performance via Table 4.4. The results displayed

instability via the precision metric at 0.61, recall values at 0.59 and an accuracy at 0.63.

The results validated Phase-1 analysis of From-Scratch confusion matrix in experiment 2.

4.6.4 Appendix: YOLOv5m Exp. #3 From-Scratch Metric Results

Figure 4.6 outlined #6 experiment performances via Table 4.4. The results displayed

unstable precision at 0.64 and recall at 0.68, with an accuracy of 0.67, which validated

Phase-1 From-Scratch confusion matrix in experiment 3.

Figure 4.6: Appendix: YOLOv5m Impact Results for Experiment 6 From-Scratch.

4.6.5 Appendix: YOLOv5m Exp #4 Pre-Processing Metric Results

Figure 4.7 outlined #4 experiment 3 performance via Table 4.4. The previous results

presented an overview of the precision metric at 0.67, recall at 0.70, with an accuracy of

0.72. The results validated Phase-1 From-Scratch classification analysis in experiment 3.

256



Figure 4.7: Appendix: YOLOv5m Impact Results for Experiment 4 From-Scratch.

4.6.6 Appendix: Phase-1 From-Scratch Analysis Exp. 3/4

The results demonstrated significant progress detailed in experiments #3 and #4 as the

highest outcome dispensed in From-Scratch procedures, surpassing all other models. The

model displayed a reduction in false negative and false positive output predictions, which

exceeded the 60% accuracy threshold range with an overall accuracy of 0.72%. In #3

experiment 6 Table 4.4, analysis projected seven classifications above the 50% ratio with

fewer background image misclassification ratings in Figure 4.8. Compared to experiments

1, 2 and 3, 4 ranked highest in performance with no image enhancements. The oper-

ations generated discussion wgi at 0.97, discussion woboard at 100%, discussions ppl at

0.87, item passed at 0.71, person at 0.72 and 1-violent class, stabbing at 0.72. In this

instance, the model appeared unstable with signs of over-fitting utilising smaller datasets

when evaluating #2 experiment 15. The evidence proved that increasing the sample size

impacted the performance positively relative to analysis on experiment #4. Investigations

on #4 revealed the highest From-Scratch ratings with pre-processing enhancements. The

previous experimental approach validated pre-processing to foster performance improve-

ments and fulfilled research questions-1-3, and, 5 in section 1.2.1. Analysis on experiment
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#4 emphasized the fragility of From-Scratch approaches, and those operations misrepre-

sented 28-classes compared to 21 in #3. Though the misclassification processing recorded

higher ratings, #4 ranked higher in performance by generating eight accurate individual

classifications above the 50th percentile. The operations predicted discussion wgi 0.82,

discussion woboard 58%, discussions ppl 0.82, item passed 0.61, person 0.68 and 3-violent

classes, blood at 0.54, knife deployed 0.71 and stabbing at 0.56.

Figure 4.8: Appendix: YOLOv5m Confusion Matrix From-Scratch Exp. 3-4

4.6.7 Appendix: YOLOv5 Phase-1 Pre-trained Results Exp. 5(12)/6(24)

The model’s performance improved significantly, thus exceeding the 70th percentile thresh-

old range. Table 4.4 results suggested the pre-trained model’s superiority over From-

Scratch operations. Nevertheless, the findings projected substantial performance of the

classification rates with stable precision and recall values. The analysis on #5 Exp. 12

projected 7-accurate predictions superseding all From-Scratch experiments with fewer back-
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ground image misclassifications. In this instance, #5 Exp. 12 generated discussion wgi

0.71, discussion woboard 88%, discussions ppl 0.80, person 0.70 as neutral classes and

2-violent classes concerning knife deployed 100% and stabbing 0.64 in Figure 4.9. The op-

erations confirmed research question-1 and 2, as they demonstrated positive results when

no pre-processing and data increments were applied. The investigations validated impact

using a significant volume of data relative to 2284 samples in #3 Exp. 6, compared to

5944 samples in #5 Exp. 12. Although the operations produced significant results, the

pre-trained model demonstrated a deficiency by generating 28-class misrepresentations.

The evaluations on #6 Exp. 24 disclosed an increment in performance using a similar

dataset volume with 8-accurate predictions over #5 Exp. 12, as

Figure 4.9: Appendix: YOLOv5m Confusion Matrix Pre-trained Exp. #5(12)/#6(24).

all predictions exceeded the 60th percentile with 27 misclassifications. The results dis-

closed classes relative to discussion wgi 0.89, discussion woboard 0.97, discussions ppl 0.82,

item passed 0.86, the person 0.75. The evidence showed 3-violent classes, with an increase
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in the stabbing class at 0.70, like #5 Exp. 12 at 0.64, blood0.77 and knife deployed 0.79.

The enhancement idea fulfilled research question-2 in section 1.2.1 as it positively affected

the performance classifications state as demonstrated by lighter colour shades. The results

signified that pre-trained experienced a positive enhancement by integrating background

image support compared to From-Scratch approaches in #1 Exp. 18 and #2 Exp. 15

Table 4.4. The results proved the superiority of pre-trained models over all from-scratch

methods, with a decrease in background false negative and false positive predictions in-

dicative of the lighter-shaded blue.

4.6.8 Appendix: YOLOv5m No. 5 Exp.12 Pre-trained Metric Results

Figure 4.10 highlights ratings for #5 Exp. 12 concerning its performance via Table 4.4.

The results showed the precision metric at 0.77 and the recall at 0.72, with an accuracy

of 0.75. The results projected processing challenges, but provided a smoother graphical

representation of the mAP and metrics.

Figure 4.10: Appendix: YOLOv5m Impact Results for 5# Exp. 12 Pre-Trained.
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4.6.9 Appendix: YOLOv5m No. 6 Exp. 24 Pre-trained Metric Results

Figure 4.11 projected ratings for #6 concerning its performance via Table 4.4. The evidence

displayed the precision metric at 0.84 and the recall at 0.74, with an accuracy of 0.79. Like

Experiment #5’s processing, the operations showed similar characteristics with heavy false

positive classification issues via precision.

Figure 4.11: Appendix: YOLOv5m Impact Results for #6 Exp. 24 Pre-Trained.

4.6.10 Appendix: Phase-1 pre-trained Matrix Results Exp 7(9)/8(21)

The analysis projected the highest overall accuracy performance, superseding all pre-

trained and From-Scratch experiments. The results validated YOLOv5m efficiency by

utilising pre-trained operations in conditions containing pre-processing and background

image supports. At this stage, pre-trained operations #7 and #8 via Figure 4.12 at-

tained the highest performance ratings overall. Though the analysis on #7 disclosed high-

performance ratings validating the metrics in Table 4.4, the confusion matrix projected

signs of processing deficiencies. The findings proved 25-class misrepresentations with five

accurate classifications exceeding the 60th percentile range in #7. The evidence fulfilled

research question-2 in section 1.2.1 as stabbing attained the highest individual rating at
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Figure 4.12: Appendix: YOLOv5m Confusion Matrix pre-trained Exp. #7(9)/#8(21).

0.85 overall. The application of background image enhancements impacted #7 negatively

compared to #6 in Table 4.4. The predictions fulfilled the notions of research question-2 in

section 1.2.1, proving that image enhancement is a critical component moving forward. The

outcomes fortified the idea with discussion woboard at 100%, discussions ppl at 0.80, and

person class 0.62%. The evidence showed that 2-violent categories, knife deployed at 0.89

and stabbing at 0.85, as the highest rating overall, as a performance decline. The operations

experienced a decline in performance with a reduction in accurate classifications. Because

of fluctuating performances, the evidence signified that the model struggled to discern the

true nature of violence. The analysis on #8 via Figure 4.12 disclosed the highest processing

above the 60th percentile overall. The operations projected nine accurate classifications

with reduced background false positives, false negatives and 20 misrepresentations. The

outcomes displayed discussion wgi at 0.97, discussion woboard at 100%, discussions ppl

0.83, item passed 0.79, person 0.72. The 3-violent classes depicted stabbing decreasing to

0.74 compared to #7 0.85, blood 0.62 and knife deployed 0.71. The evaluation proved that
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YOLOv5m experienced stability issues processing stabbing in real-world conditions.

4.6.11 Appendix: YOLOv5m No. 7 Exp. 9 Metrics Results

Figure 4.13 represents #7’s performance via Table 4.4. The results showed the precision

metric at 0.83, recall at 0.81, an accuracy of 0.83, and more fluctuations compared to #6,

proving its deficiency.

Figure 4.13: Appendix: YOLOv5m Impact Results for No. 7 Exp. 9 Pre-Trained.

Figure 4.14: Appendix: YOLOv5m Impact Results for No. #8 Exp. 21 Pre-Trained.
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4.6.12 Appendix: YOLOv5m No. #8 Exp. 21 Pre-trained Metric Results

Finally, Figure 4.14 showed performance for Exp.#8 via Table 4.4. The findings displayed

the precision metric at 0.85 and recall at 0.82, with an accuracy of 0.85. The results pro-

jected a smoother cure, validating the classification notions specified in Phase-1’s analysis

of pre-trained results in #8 Exp. 21.

4.7 Appendix: Overview of 3DCNNsl Result, Analysis

A. Fulfilling Research Question-1 via 3DCNNsl Containing No pre-processing

The evidence proved that the model’s performance fluctuations appeared predomi-

nantly in scenarios that intensified the complexity of violence, regardless of applying

similar neutral classes during development. 3DCNNsl’s results substantiated the clas-

sification proficiency on stabbing against other actions from an overall perspective.

Fluctuating performances via precision and recall insinuated that the model experi-

enced misclassification issues resulting in excessive false negatives and false positives.

High individual accuracy scores for experiments 1-6 in Table 4.5 positively influenced

the overall accuracy. 3DCNNsl’s results are as follows.

4.7.1 Appendix: (A) Phase-2 Fulfilling Research Question 1 via 3DCNNsl No

Pre-processing

In this instance, a projection of experiments 1-6 provides the context of no-processing data

on 32 test samples to fortify the investigations.

4.7.2 Appendix: No. 1 Experiment 17 Results Overview on No pre-processing

Table 4.5 #1 represented an individual accuracy of 0.94, a precision of 0.75 and a recall at

0.38 for the Fighting(Fi) class. For Shooting(Sh), the individual category recorded 0.81, a

precision of 0.57 and a recall of 0.50. The results projected 2-violent classes, which fulfilled

research question-1’s initiative in 1.2. 3DCNNsl dispensed an individual accuracy of Knit-

264



-ting(K) as 0.81, a precision of 0.67 and a recall of 0.75. Walk-with-Dog(W) recorded 0.69 with a precision of 0.58 and

a recall value of 0.88. Though the individual accuracies were above the 60th percentile to the 90th range, the model’s

classification issues occurred because of fluctuating precision just above the 50th percentile with a recall under the

40th percentile range. Observations on 3DCNNsl’s overall accuracy confirmed the false negative and false positive

classification challenges by dispensing a score of 0.63. In this instance, the processing fulfilled research question-1

initiatives in section 1.2 with evidence of high individual scores concerning fighting and shooting.

#1Exp17
Fi Precision Recall Sh Precision Recall K Precision Recall W Precision Recall ACC

0.94 0.75 0.38 0.81 0.57 0.50 0.81 0.67 0.75 0.69 0.58 0.88 0.63

#2 Exp12
B Fi K W

0.75 0.56 0.62 0.81 0.57 0.50 0.88 0.78 0.88 0.88 0.71 0.62 0.66

#3 Exp26
St Fi K W

0.69 0.38 0.38 0.94 0.75 0.38 0.75 0.67 100 0.94 0.88 0.88 0.66

# 4 Exp14
B St K W

0.81 0.73 100 0.88 0.33 0.12 0.81 0.67 0.75 0.94 0.89 100 0.72

# 5 Exp23
Sh St K W
0.81 0.62 0.62 0.94 0.75 0.38 0.88 0.78 0.88 0.81 0.73 100 0.72

# 6 Exp20
Sh B K W
0.94 0.80 0.50 0.94 0.89 100 0.88 0.67 0.50 0.75 0.67 100 0.75

Table 4.5: Appendix: (A) 3DCNNsl Impact Experiment with No Pre-processing.

4.7.3 Appendix: No.1 Exp.17 Projection of Accuracy No pre-processing

In this section, the confusion matrix operations in Figure 4.15 illustrates the overall performance in Table 4.6 and

the actual classifications dispensing 12-critical false negative and 12-false positives. Figure 4.16 graph expressed

processing challenges encountered via experiment #1. In this scenario, the expectation of the graphical curve should

demonstrate a smooth representation of the output values to reflect processing stability. Nevertheless, the fluctuating
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values validated the presence of misclassification during processing.

4.7.4 Appendix: No. 1 Experiment 17 Results Overview on No pre-processing

At this junction, Fighting(Fi) dispensed 0.81 as the highest individual score for violence with a precision of 0.57 and

recall at 0.50. Beating(B) ranked second at 0.75 with a precision metric of 0.56 and a recall of 0.62. Knitting(K) and

Walk-with-Dog(W) as neutral categories recorded 0.88 with fluctuating precision and recall metrics above the 60th

percentile. The operations generated a higher accuracy of 0.66 because of the neutral class outputs and the violent

classes in #1 experiment. Seventeen produced higher ratings proving that raw data with distinct categories and no

pre-processing challenged the model’s discerning capability concatenating the fluctuating precision and recall scores.

Rating TP TN FP FN

Fighting 3 23 1 5

Shooting 4 21 3 4

Knitting 6 17 3 2

WalkwithDog 7 19 5 1

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.6: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 1 Exp.17.
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Figure 4.15: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 1 Exp.17.

Figure 4.16: Appendix: No. 1 Experiment 17 Graphical View of No Pre-processing.
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4.7.5 Appendix: No. 2 Exp.12 Confusion Matrix No Pre-processing Summary

Figure 4.17 confusion matrix illustrates the overall performance and the true classifications status per action in

Table 4.7. The operations produced 11-false positive and 11-critical false negative predictions.

4.7.6 Appendix: No. 2 Exp.12 Projection of Accuracy No Pre-processing

Figure 4.18 graph expressed processing challenges via experiment #2 accuracy output. In this case, the expectation

of the accuracy curve should be a smooth representation of the output values reflecting processing stability.

Rating TP TN FP FN

Beating 5 20 4 3
Fighting 4 21 3 4
Knitting 7 22 2 1
WalkwithDog 5 22 2 3

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.7: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 2 Exp.12.

4.7.7 Appendix: No. 2 Experiment 12 Results Overview on No pre-processing

Experiment #3 dispensed Fighting(Fi) at 0.94 as the highest individual accuracy score for violence with a precision

of 0.75 and a lower recall at 0.38 compared to #2. Stabbing(St) produced 0.69 with a precision value similar to the

fighting class and a low recall at 0.38. The neutral class Walk-with-Dog(W) produced 0.94 with a precision and recall

of 0.88. Knitting(K) ’s processing generated 0.75 with a precision of 0.67 and the highest recall at 100% compared to

#1 and #2. The model’s precision/recall fluctuations resulted in a similar overall accuracy of 0.66 compared to #2.
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Figure 4.17: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 2 Exp.12.

Figure 4.18: Appendix: No. 2 Experiment 12 Graphical Projection of No Pre-processing.

As anticipated, the overall accuracy category was negatively affected because the precision
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reflected high false positives and recall values with multiple false negative classification outcomes. Nevertheless,

individual performance recorded scores above the 60th percentile overall.

4.7.8 Appendix: No. 3 Exp.26 Confusion Matrix No Pre-processing Summary

In this section, Table 4.8 project the confusion matrix processing to illustrate the overall performance and the actual

classification status per action. The operations validated the classification deficiency, producing 11 false positive and

11 critical false negative predictions.

Rating TP TN FP FN

Stabbing 3 19 5 5
Fighting 3 23 1 5
Knitting 8 20 4 0
WalkwithDog 7 23 1 1

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.8: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 3 Exp.26.

4.7.9 Appendix: No. 3 Exp.26 Projection of Accuracy No Pre-processing

Figure 4.19 graph demonstrated several processing challenges via experiment #3 accuracy output. In this case, the

expectation of the accuracy curve should be a smooth representation of the output values; however, the blue line

colour representing the validation operation appeared closer to the accuracy output. Though the graphical output

at this stage demonstrated classification deficiencies, the results insinuated that the model is gradually improving its

classification state.
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Figure 4.19: Appendix: No. 3 Exp.26 Graphical Projection of No Pre-processing.

4.7.10 Appendix: No. 4 Exp.14 Results on No Pre-processing

The individual classes recorded scores above the 80th percentile range, insinuating that category variations increased

the model’s processing complexity via #3 Table 4.5. Beating and stabbing recorded distinct attributes with higher

ratings. The evidence disclosed Stabbing(St) at 0.88 as the highest output at this stage, with a low precision of 0.33

and recall of 0.12 compared to the previous experiments. Beating(B) generated an individual score of 0.81, a precision

of 0.73 and a recall at 100 as evidence of a performance improvement. Regarding neutral classes, Walk-with-Dog(W)

produced 0.94 with a precision score of 0.89 and a recall of 100 over knitting(K). Knitting(K) improved at 0.81 with

a precision of 0.67 and a lower recall at 0.75 compared to #3 Exp. 26 recall at 100. The operations produced a

higher overall accuracy above the 70th percentile at this level. Nevertheless, the operations demonstrated signs of
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classification issues when evaluating the stability of the precision and the recall values.

4.7.11 Appendix: No. 4 Exp.14 Matrix No Pre-processing Summary

At this junction, the confusion matrix via Figure 4.20 emphasised the overall performance and classification status

of Table 4.9 ’s classes. The operations showed signs of improvement. However, the misclassification results via

stabbing’s output at one and beating eight confirmed the model’s limitations. 3DCNNsl produced 11 false positive

and 11 critical false negative predictions overall.

Figure 4.20: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 4 Exp.14.
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4.7.12 Appendix: No. 4 Exp.14 Projection of Accuracy No Pre-processing

Figure 4.21 graph expressed 3DCNNsl’s misclassification limitations via experiment #4 with fluctuating accuracy

outputs. In this case, the expectation of the accuracy curve should be a smooth representation of the output values;

however, the validation operation in blue is closer to the accuracy as it gradually tries to project the desired result.

The graphical output insinuated that the model is steadily improving its classification state.

Rating TP TN FP FN

Beating 8 21 3 0

Stabbing 1 22 2 7

Knitting 6 21 3 2

WalkwithDog 8 23 1 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.9: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 4 Exp.14.

4.7.13 Appendix: No. 5 Exp.23 Results on No Pre-processing

At this level, individual accuracy recorded scores above the 80th percentile threshold. Those ratings proved that

violence containing sections of fighting and beating can increase 3DCNNsl’s learning complexity. The findings project

Stabbing(St) at 0.94 as the highest output, with a higher precision of 0.75 and recall at 0.38 compared to #4 Table 4.5.

Shooting(Sh) generated an individual score of 0.81 with a lower precision metric and recall of 0.62 compared to #4.

The neutral Knitting(K) class increased to 0.88 with a higher precision at 0.78 and a recall at 0.88. Though the
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knitting score superseded Walk-with-Dog(W), the classification showed stability issues with unstable precision and

recall values. The Walk-with-Dog(W) neutral class produced an individual score of 0.81 with a precision of 0.73 and

a recall of 100. The operations generated a similar result compared to #4 Table 4.4 overall accuracy score.

Figure 4.21: Appendix: No. 4 Exp.14 Graphical Projection of No Pre-processing.

4.7.14 Appendix: No. 5 Exp.23 Matrix No Pre-processing Summary

In this section, Figure 4.22 confusion matrix show the overall performance and the actual classification status of

actions in Table 4.10. The operations demonstrated classification deficiency concerning shooting five and stabbing’s

output at 3. In this instance, 3DCNNsl produced nine false positive and nine critical false negative outcomes.
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Figure 4.22: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 5 Exp.23.

4.7.15 Appendix: No. 5 Exp.23 Projection of Accuracy No Pre-processing

Figure 4.23 graph expressed 3DCNNsl’s misclassification limitations via experiment #5 with fluctuating validation

and accuracy scores. The expected graphical outline should reflect a gradual projection of the output values. The

validation operation in blue is closer to the accuracy as it gradually tries to dispense the desired result. The graphical
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output insinuated that the model is continuously improving its classification state.

Rating TP TN FP FN

Shooting 5 21 3 5
Stabbing 3 21 1 5
Knitting 7 22 2 1
WalkwithDog 8 21 3 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.10: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 5 Exp.23.

Figure 4.23: Appendix: No. 5 Exp.3 Graphical Projection of No Pre-processing.
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4.7.16 Appendix: No. 6 Exp.20 Results Overview on No Pre-processing

The model generated the highest overall accuracy score of 0.75 for all experiments containing no pre-processing

enhancements. The Shooting(Sh) individual score increased to 0.94 with a precision of 0.80 and a depreciated recall

of 0.50. The data depicted similar Beating(B) scores with an increased precision score of 0.89 and a recall of 100

for violence. The neutral Knitting(K) class remained at 0.88, with a lower precision at 0.67 and recall at 0.50.

Walk-with-dog(W) generated a lower score of 0.75 with a precision metric of 0.67 and a recall of 100.

4.7.17 Appendix: No. 6 Exp.20 Matrix No Pre-processing Summary

Figure 4.24 confusion matrix illustrated Table 4.11 overall performance and true classification status per action. The

operations demonstrated classification deficiency relative to shooting 4 with an improvement in beating’s output at

eight. In this instance, the model displayed improvement as it produced eight false positive and eight critical false

negative predictions overall.

Rating TP TN FP FN

Shooting 4 23 1 4
Beating 3 21 1 5
Knitting 4 22 2 4
WalkwithDog 8 20 4 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.11: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 6 Exp.20.
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Figure 4.24: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 6 Exp.20.

Figure 4.25: Appendix: No. 6 Exp.20 Graphical Projection of No Pre-processing.
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4.7.18 Appendix: No. 6 Exp.20 Projection of Accuracy No Pre-processing

Figure 4.25 graph expressed 3DCNNsl’s misclassification limitation via experiment #6 with fluctuating validation

and accuracy score outcomes. The expected accuracy curve outline should reflect a smooth representation of the

output. The validation operation in blue is closer to the accuracy as it struggled to project the desired results. The

graphical output insinuated that the model continuously improves its prediction at every stage.

#1 Exp 56
Sh Precision Recall St Precision Recall K Precision Recall W Precision Recall ACC

0.75 0.60 0.75 0.81 0.62 0.62 0.94 0.86 0.75 0.94 0.86 0.75 0.72

#2 Exp 59
St Fi K W

0.81 0.70 0.88 0.88 0.60 0.38 0.94 0.88 0.88 0.81 0.67 0.75 0.72

#3 Exp 50
Fi Sh K W

100 100 0.25 0.94 0.88 0.88 0.94 0.89 100 0.69 0.62 100 0.78

#4 Exp 53
Sh B K W

0.88 0.71 0.62 0.88 0.75 0.67 0.88 0.80 100 0.94 0.88 0.88 0.79

#5 Exp 47
B St K W

0.81 0.70 0.88 0.88 0.71 0.62 100 100 0.88 0.94 0.88 0.88 0.81

#6 Exp 44
B Fi K W

100 100 0.88 0.94 0.86 0.75 0.94 0.88 0.88 0.88 0.80 100 0.88

Table 4.12: Appendix: (B) 3DCNNsl Experiment with Pre-processing Impact Results.

B. Fulfilling Research Question-2/3 Via 3DCNNsl Containing pre-processing: The results demonstrated
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the contrast between operations including no pre-processing and processes that did. Table 4.12 group B

disclosed performance superiority as a critical measure towards the proposed fusion developmental stages. The

analysis projected via experiments 1-6 in the context of pre-processed 32-test samples fortified the research

objectives. Operations at this level provided the opportunity to formulate comparisons using raw data and data

containing pre-processing enhancements to foster robust results. The simulation is as follows.

4.7.19 Appendix: No. 1 Exp.56 Results Overview on Pre-processing

In this group, the findings projected Stabbing(St) individual score at 0.81 as the highest violence class with a precision

and recall at 0.62 in #1 Section-B Table 4.12. Shooting(Sh) generated 0.75 with a precision metric of 0.60 and

a recall of 0.75. In this instance, the model’s performance in the neutral category superseded the violent classes.

Knitting(K) and Walk-with-Dog(W) neutral (non-violent) classes generated scores of 0.94, with a precision of 0.86

and a recall of 0.75. Because of the high-performance ratings, the overall accuracy dispensed a higher score of 0.75

compared to #1, 0.63. The output insinuated that 3DCNNsl produced fewer misrepresentations even though the

individual precision and recall fluctuated above the 60th percentile. The results projected evidence that satisfied

research questions 1 and 2 when evaluating the overall accuracy score of #1.

4.7.20 Appendix: No. 1 Exp.56 Confusion Matrix Pre-processing Summary

Figure 4.26 confusion matrix illustrates the overall performance and the actual classifications in Table 4.13 per

action. The operations showed processing issues for shooting six, improving with beating at 5. The model improved

by nine false positive and nine false negative predictions overall. The scores exceeded 70% but produced lower ratings

compared to # 5 no pre-processing in Section B Table 4.12.
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Rating TP TN FP FN

Shooting 6 20 4 2
Stabbing 5 21 3 3
Knitting 6 12 1 2
WalkwithDog 6 23 1 2

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.13: Appendix: 3DCNNsl Confusion Matrix Pre-processing #1 Exp.56.

Figure 4.26: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 1 Exp.56.
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4.7.21 Appendix: No. 1 Exp.56 Projection of Accuracy Pre-processing

Figure 4.27 graph expressed 3DCNNsl misclassification limitation via experiment #1 in

Section B Table 4.12 with fluctuating validation and accuracy scores. The expected

accuracy curve outline must reflect a gradual descending representation of the output

values. In this case, 3DCNNsl struggled to generate significant results. The graphical

output insinuated that the model continuously improved its classification state at every

stage but suffered from high misclassification ratings.

Figure 4.27: Appendix: No. 1 Experiment 56 Graphical Projection of Pre-processing.

4.7.22 Appendix: No. 2 Exp.59 Results Overview on Pre-processing

Scores on violence increased compared to #1 in Section B Table 4.12 for stabbing

and fighting. Stabbing(St) generated 0.81 with a precision of 0.70 and a recall of 0.88.

Knitting generated 0.94 with higher precision and recall of 0.88 compared to #1. Walk-

with-Dog(W) created a recall of 0.75 with a lower individual score of 0.81 and a precision

of 0.67. The operation generated similarity in #1 via Section B Table 4.12 performance.

The outcome occurred due to similar characteristics between stabbing and fighting.
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4.7.23 Appendix: No. 2 Exp.59 Confusion Matrix Pre-processing Summary

Figure 4.28 confusion matrix illustrates overall performance and the actual classifications

in Table 4.14 results. The operations demonstrated classification deficiency concerning

stabbing at 7 with a reduced fighting output at 3. 3DCNNsl displayed similar results

compared to experiment #1 in Section B Table 4.12. That operation produced nine false

positive and nine critical false negative predictions. The stabbing classifications showed no

improvement due to precision and recall fluctuations. Analysis proved that the complexity

of pre-processed approaches produced weaker outcomes for violent classes. The processing

performance declined for the neutral classes with high misclassification similarities.

Figure 4.28: Appendix: No. 2 Exp.59 Graphical Projection of Pre-processing

4.7.24 Appendix: No. 2 Exp.59 Projection of Accuracy Pre-processing

Figure 4.29 expressed 3DCNNsl’s graphical misclassification limitations via experiment

#2 in Section B Table 4.12. Observation proved that 3DCNNsl struggled to generate

significant representations of output values. The graphical output insinuated that the

model suffered from high misclassification regarding fluctuating precision and recall scores.
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Rating TP TN FP FN

Stabbing 7 21 3 1
Fighting 3 22 2 5
Knitting 7 23 1 1
WalkwithDog 6 21 3 2

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.14: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 2 Exp. 59

4.7.25 Appendix: No. 2 Exp.59 Results Overview on Pre-processing

Violence scores increased because of the distinction in pre-processing between Fighting(Fi) and Shooting(Sh). Fighting

generated 100 with a precision of 100 and a recall of 0.25. Shooting scored higher with 0.94 compared to #1 in Section

B Table 4.12, with higher precision and recall at 0.88. Knitting(K) produced a similar output of 0.94 compared

to #1, with higher precision at 0.89 and recall at 100%. Walk-with-Dog(W) produced a lower score of 0.69 with

a precision of 0.62 and a recall of 100. The results insinuated that pre-processing produced several false negative

outputs linked to the fluctuating precision and recall. Nevertheless, the fluctuation increased, recording an overall

accuracy score of 0.78, substantiating the pre-processing method’s superiority over the no-processing approach.
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Figure 4.29: Appendix: 3DCNNsl Confusion Matrix No Pre-processing No. 2 Exp.59.

4.7.26 Appendix: No. 3 Exp.50 Confusion Matrix Pre-processing Summary

Figure 4.30 illustrates the confusion matrix performance and the actual classification status

in Table 4.15 actions. The operations demonstrated classification improvement on fight-

ing at 100% and shooting at 0.94. The model displayed higher performance compared to

experiment # 2 in Section B Table 4.12. The operations produced seven false positive

and seven critical false negative predictions overall. In this instance, the model improved

its classification performance on the violent and neutral knitting classes. 3DCNNsl in-

creased its misclassification for fighting via the recall and walk-with-dog; however, overall

performance increased to 78% compared to 72% in #2.
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Rating TP TN FP FN

Fighting 2 24 0 6

Shooting 7 23 1 1

Knitting 8 23 1 0

WalkwithDog 8 19 5 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.15: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 3 Exp.50.

Figure 4.30: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 3 Exp.50.
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4.7.27 Appendix: No. 3 Exp.50 Projection of Accuracy Pre-processing

Figure 4.31 expressed high misclassification limitation with intense validation and accu-

racy responses. The outcome occurred because of the dataset’s size, negatively impacting

3DCNNsl operations. The model experienced limited computational outputs to generate

high-performance results. Graphical analysis insinuated that the model suffered from high

misclassification ratings because of the fluctuating precision and recall scores.

Figure 4.31: Appendix: No. 3 Exp.50 Graphical Projection of Pre-processing.

4.7.28 Appendix: No. 4 Exp.53 Results Overview on Pre-processing

3DCNNsl produced a higher overall accuracy score of 0.79 with a decrease in some indi-

vidual scores but stabilised its precision and recall scores above the 60th percentile range.

Shooting(Sh), Beating(B), Knitting(K) and Walk-with-Dog(W)’s precision and recall gen-

erated a similar individual score of 0.88. Precision recorded 0.71 with a recall of 0.62 for

Stabbing(St). Walk-with-Dog(W) produced 0.94, Beating(B) generated a precision of 0.75

with a recall of 0.67 and Knitting(K) recorded a precision of 0.80 and a recall of 100%.

Though individual scores were slightly lower compared to #3 in Section B Table 4.12,
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analysis of precision and recall representations suggested that the 3DCNNsl classification state improved utilising

pre-processing with distinct classes.

4.7.29 Appendix: No. 4 Exp.53 Confusion Matrix Pre-processing Summary

Figure 4.32 illustrates the confusion matrix overall performance in Table 4.16 and the classification status per class.

The operations decreased its classification effectiveness to 0.88 for shooting, beating as violence and neutral class

knitting. 3DCNNsl experienced a decline in performance compared to experiment # 3 in Section B Table 4.12.

The occurrence produced seven false positive and six critical false negative predictions overall. Though 3DCNNsl

depreciated in performance, the overall accuracy climaxed at 0.79. The unstable evaluation metrics proved that

3DCNNsl experienced a classification limitation in both action categories (non-violent/violent).

Rating TP TN FP FN

Shooting 5 23 2 2
Shooting 6 22 2 3
Knitting 8 23 2 0
WalkwithDog 7 24 1 1

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.16: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 4 Exp. 53.

4.7.30 Appendix: No. 4 Exp.53 Projection of Accuracy Pre-processing

Figure 4.33 graphically expressed high misrepresentation because of the fluctuating validation and accuracy outcomes.

The processing occurred because of the dataset size negatively impacting 3DCNNsl operations. The previously

mentioned issues limited the computational output of values to reflect high-performance results. The graphical out-
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-put insinuated that the model suffered high misclassification ratings due to fluctuating

precision and recall scores.

Figure 4.32: Appendix: No. 4 Exp.53 Graphical Projection of Pre-processing.

Figure 4.33: Appendix: No. 4 Exp. 53 Graphical Projection of Pre-processing.
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4.7.31 Appendix: No. 5 Experiment 47 Results Overview on Pre-processing

3DCNNsl dispensed similar results compared to the individual scores projected in experiment #1 in Section B

Table 4.12. Beating(B) produced an individual score of 0.81 with a precision of 0.70 and a recall of 0.88. The focus

class, Stabbing(St), generated the highest individual score of 0.88 compared to all other experiments, with a precision

of 0.71 and a recall of 0.62. The neutral class Knitting(K) generated individual and a precision score of 100% with

a recall of 0.88. Walk-with-Dog(W) dispensed 0.94 with a precision and recall of 0.88. The evaluation proved that

pre-processing improved the classification for the focus stabbing class and the overall accuracy score. The results

increased to 0.81 compared to experiment #1.

Rating TP TN FP FN

Shooting 5 23 2 2
Shooting 6 22 2 3
Knitting 8 23 2 0
WalkwithDog 7 24 1 1

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.17: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 5 Exp. 47.

4.7.32 Appendix: No. 5 Exp.47 Confusion Matrix Pre-processing Summary

Figure 4.34 displays the confusion matrix overall performance in Table 4.17 and the actual classifications per action

category. 3DCNNsl improved its classification with an overall accuracy of 0.81. The operations experienced fluctua-

tions via the precision and recall ratings. Nevertheless, it generated six false positive and six critical false negative

outcomes. The metrics appraisal proved stable; however, the volume of misrepresentations harms the objectives.
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Figure 4.34: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 5 Exp. 47.

Figure 4.35: Appendix: No. 5 Exp.47 Graphical Projection of Pre-processing.
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4.7.33 Appendix: No. 5 Exp.47 Projection of Accuracy Pre-processing

Figure 4.35 graphically expresses high misrepresentation, although the overall accuracy escalated. The operations

proved that the dataset size and the complexity of the selected pre-processing techniques impacted the model’s

processing proficiency. The graphical output depicts high fluctuations in the precision and recall scores.

4.7.34 Appendix: No. 6 Exp.44 Results Overview on Pre-processing

At this pre-processing level, the overall accuracy dispensed the highest score at 0.88 regarding all experiments.

Beating(B) produced 100% for the individual and precision scores with a recall of 0.88 in that order. Fighting(Fi)

dispensed 0.94 with a precision of 0.86 and a recall of 0.75. Knitting(K) generated an individual score of 0.94 with

a precision and recall of 0.88. Like knitting, Walk-with-Dog(W) produced 0.88 with a precision of 0.80 and a recall

of 100%. Experiment #6 pre-processing concepts in Section B Table 4.12 confirmed its superiority on the violent

classes to satisfy research questions 1-5 in section 1.2.1.

4.7.35 Appendix: No. 6 Exp.44 Confusion Matrix Pre-processing Summary

Figure 4.36 displayed a confusion matrix overall performance in Table 4.18 and the actual classifications status per

action. The data disclosed the highest score relative to the overall accuracy of 0.88 compared to all experiments.

3DCNNsl experienced reduced output fluctuations via the precision and recall ratings. The findings projected the

lowest misclassification rate with four false positive and four critical false negative predictions overall. The individual

evaluation metrics proved stable; however, the precision and recall metrics performed above the 75th percentile.
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Figure 4.36: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 6 Exp.44.

Rating TP TN FP FN

Beating 7 24 0 1
Fighting 6 23 1 12
Knitting 7 23 1 1
WalkwithDog 8 21 2 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.18: Appendix: 3DCNNsl Confusion Matrix Pre-processing No. 6 Exp.44.
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4.7.36 Appendix: No. 6 Exp. 43 Projection of Accuracy Pre-processing

Figure 4.37 graphically expressed high misrepresentation even though the overall accuracy

escalated. Although 3DCNNsl attained the highest ratings for violent activity classification,

the dataset size and the complexity of the selected pre-processing techniques impacted the

model’s effectiveness. The graphical output reflected high fluctuations in the precision and

recall scores.

C. Fulfilling Research Question 2/3 via 3DCNNsl using Action Similarity:

At this level, experiments 1-6 in Table 4.19-C project the context of action simi-

larity on 32-test samples to fortify the investigations. The emphasis on the results

projects the theory of raw data without enhancements, data containing pre-processing

enhancements and action similarity to observe optimal possibilities for the proposed

fusion approach. The analysis commenced on experiment #1, which is as follows.

Figure 4.37: Appendix: No. 6 Exp. 44 Graphical Projection of Pre-processing.
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#1 (Ex 92)
St Precision Recall Fi Precision Recall C Precision Recall Fe Precision Recall ACC
0.63 0.40 0.50 0.81 0.50 0.38 0.88 0.78 0.88 0.94 0.86 0.75 0.63

#2 (Ex 86)
Sh B N Fe
100 100 0.25 0.88 0.75 0.75 0.81 0.73 100 0.75 0.64 0.88 0.72

#3 (Ex 77)
B Fi Su Fe
0.88 0.80 100 100 100 0.50 0.81 0.70 0.88 0.81 0.62 0.62 0.75

#4 (Ex 83)
Fi Sh Su N
0.81 0.53 0.76 0.88 0.81 0.88 100 0.56 0.76 0.81 0.80 0.84 0.75

#5 (Ex 89)
Sh St N C
0.81 0.57 0.50 0.69 0.50 0.62 100 100 0.88 100 100 100 0.75

#6 (Ex 80)
B St Fe C
0.81 0.67 0.75 0.88 0.67 0.50 0.94 0.89 100 100 100 100 0.81

Table 4.19: Appendix: (C) 3DCNNsl Impact Experiment with Action Similarity.

4.7.37 Appendix: No. 1 Exp.92 Results Overview on Action Similarity

In Group C, the overall accuracy and stabbing class for action similarity operations gener-

ated a lower score of 0.63 with a precision of 0.40 and recall of 0.50. Fighting(F) dispensed

an individual score of 0.81 with a precision of 0.50 and a recall of 0.38. Experiments #2 and

#3 in Section C Table 4.19 validated the notion that the model experienced processing

challenges when discerning the true nature of violence in action similarity conditions. The

neutral class Cutting-in-kitchen(C) produced an individual score of 0.88 with a higher pre-

cision of 0.78 and recall of 0.88. Fencing(Fe) dispensed an individual score of 0.94 with a

precision of 0.86 with a recall of 0.75. The model demonstrated discerning abilities between

stabbing and fencing above the 60th percentile to satisfy the research objectives. Though

the performance proved promising, the model experienced severe misclassification linked

to fluctuating precision and recall metrics.

4.7.38 Appendix: No. 1 Exp.92 Results Overview on Action Similarity

Figure 4.38 confusion matrix depicted the overall performance in Table 4.20 and the classi-

fication status of its classes. The findings disclosed a reduction in classification proficiency

with an overall accuracy of 0.63. 3DCNNsl experienced intense output fluctuations with

low precision and recall ratings. The evidence depicted increased misclassifications with 12
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false positive and 12 critical false negative predictions overall. Because of the data complexity, the results confirmed

that action similarity is a significant concern for 3DCNNsl at this stage. The evidence showed that stabbing produced

the most misclassifications compared to fencing, cut-in-kitchen and fighting.

Rating TP TN FP FN

Stabbing 4 18 6 4

Fighting 3 23 3 5

Cutt-in-Kitchen 7 22 2 1

Fencing 6 23 1 2

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.20: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 1 Exp.92.

4.7.39 Appendix: No. 1 Exp.92 Projection of Accuracy Action Similarity

Figure 4.39 graphically expressed high misrepresentation results as a direct link to the individual scores and overall

accuracy. Though the model attained high scores for neutral activity classification on fencing, it dispensed stabbing

as the lowest score for all experiments. The graphical output depicted reoccurring fluctuations via precision and

recall scores for violent classes; however, its processing stabilised above the 75th percentile for the neutral classes.

The operation made a significant attempt to generate a smooth representation of its output values, which validated

the model’s processing limitations.
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Figure 4.38: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 1 Exp.92.

Figure 4.39: Appendix: No. 1 Exp.92 Graphical Projection of Action Similarity.
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4.7.40 Appendix: No. 2 Exp.86 Results Overview on Action Similarity

3DCNNsl improved its classification with an overall accuracy of 0.72 and higher individual performance metrics.

Shooting(Sh) via action similarity produced an individual and precision score of 100% each with a recall of 0.25.

Beating(B) dispensed 0.88 with a precision and recall of 0.75 each. The violent actions were evaluated against the

neutral Nun-chuck(N) action at 0.81 with a precision of 0.73 and a recall of 100%. Fencing(Fe) proved challenging

to predict, depreciating from 0.94 in Section C Table 4.19 experiment #1 to 0.75. 3DCNNsl demonstrated high

performance; however, fluctuating precision and recall metrics confirmed that the generalisation challenges persist.

4.7.41 Appendix: No. 2 Exp.86 Confusion Matrix Action Similarity Summary

Figure 4.40 confusion matrix illustrates the overall performance in Table 4.21 and the actual classification status of

the actions. The findings depicted an improvement in classification effectiveness with an overall accuracy of 0.72.

3DCNNsl experienced increased precision and recall, with the lowest recall rating for shooting at 0.25. The analysis

projected a decrease in misclassifications with 6-false positives reflecting high precision scores and 12-critical false

negative predictions directly linked to fluctuating recalls. The findings confirm the theory that actions similarity

Rating TP TN FP FN

Shooting 2 24 0 6
Beating 6 22 2 2
Nun-chucks 8 21 0 3
Fencing 7 20 4 1

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.21: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 2 Exp.86.
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demonstrated little impact on the shooting against the nun-chucks class relative to violence

but depreciated for the neutral samples.

Figure 4.40: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 2 Exp.86.

4.7.42 Appendix: No. 2 Exp.86 Graphical Projection of Action Similarity

Figure 4.41 graphical representation expressed high fluctuations directly linked to the indi-

vidual scores and overall accuracy values. The graphical results demonstrated a significant

drop in validation performance because of the limited quantity and complexity of the data.

4.7.43 Appendix: No. 3 Exp.77 Results Overview on Action Similarity

The violent class Beating(B) projected no improvement as it generated the same score in

Section C Table 4.19 experiment #2 of 0.88 with a precision of 0.80 and a recall of

100%. Fighting(Fi) class also demonstrated improvement as it generated a score of 100%

compared to #1, with a precision of 100% and a recall of 0.50. The neutral class Sumo-
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Figure 4.41: Appendix: No. 2 Exp.86 Graphical Projection of Action Similarity.

wrestling(Su) attained a classification score of 0.81 with a precision of 0.70 and a recall

of 0.88. Like Sumo-wrestling(Su), Fencing(Fe) produced 0.81 with a lower precision and

recall at 0.62 each. 3DCNNsl classification improved with an overall accuracy of 0.75 com-

pared to experiments #1 and #2. Although the findings projected an overall classification

improvement, 3DCNNsl displayed misclassifications for action similarity Group C.

4.7.44 Appendix: No. 3 Exp.77 Confusion Matrix Action Similarity Summary

Figure 4.42 depicts the confusion matrix’s overall performance in Table 4.22 and the clas-

sification status per action. The result demonstrated an improvement in classification

proficiency with an overall accuracy of 0.75. 3DCNNsl experienced increased precision and

recall for violence but decreased for the non-violent neutral samples. The analysis reflected

increased misclassifications with sixteen false positives and ten critical false negative pre-

dictions. The findings suggested prediction improvements, emphasising the distinction of

the true nature of the actions with fewer false negative predictions compared to Section

C Table 4.19 experiment #2. Moreover, conceding high misclassification outcomes
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suggested the insignificance of 3DCNNsl processing at this stage.

Figure 4.42: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 3 Exp.77.

4.7.45 Appendix: Exp.77 Graphical Projection 0f Accuracy Action Similarity

Figure 4.43 graph validated the high fluctuations of the individual and overall accuracy pro-

cessing relative to Figure 4.42. The graph expressed an increase in validation performance,

emphasising processing challenges to distinguish the dissimilarity in the classes.

4.7.46 Appendix: No. 4 Exp.83 Results Overview on Action Similarity

3DCNNsl’s findings displayed no improvement in performance as it regenerated an identical

overall accuracy of 0.75 compared to Section C Table 4.19 experiment #3. The operation

recorded an individual score of 0.81 for Fighting(Fi) with a precision of 0.53 and a recall of

0.76. Shooting(Sh) dispensed an individual and recall score of 0.88, each with a precision
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of 0.81. The neutral Sumo-wrestling(Su) class recorded a higher score of 100% with a lower precision of 0.56 and

recall of 0.76. The Nun-chucks(N) category duplicated the scores once more compared to Section C Table 4.19

experiment #2 with a precision of 0.80 and recall of 0.84. The findings reflected similar characteristics compared to

experiment #4 processing and experiment #3.

Rating TP TN FP FN

Beating 8 22 2 0

Fighting 4 22 8 6

Sumo-Wrestling 7 21 3 1

Fencing 5 21 3 3

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.22: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 3 Exp.77.

4.7.47 Appendix: No. 4 Exp.83 Confusion Matrix Action Similarity Summary

Figure 4.44 confusion matrix illustrates the overall performance in Table 4.23 and the classification status per class.

The operations improved classification effectiveness with an identical overall accuracy score of 0.75, like Section

C Table 4.19 experiment #3. 3DCNNsl experienced intense fluctuations relative to precision and recall. The

findings emphasised reduced misclassifications with eight false positives and eight critical false negative outcomes.

The evidence substantiated the model’s discerning and prediction capability towards the true nature of the actions.

Although 3DCNNsl proved effective, the high fluctuation indicated the need for auxiliary support to encourage more

robust representations.
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Figure 4.43: Appendix: No. 3 Exp. 77 Graphical Projection of Action Similarity.

Figure 4.44: Appendix: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 4
Exp.83.
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Rating TP TN FP FN

Fighting 5 21 3 3
Shooting 5 21 3 3
Sumo-Wrestling 7 22 1 2
Nun-chucks 7 24 1 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.23: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 4 Exp.83.

4.7.48 Appendix: No. 4 Exp.83 Projection of Accuracy Action Similarity

Figure 4.45 graph validated the high fluctuation linked to the individual scores and overall accuracy processing

in Figure 4.44. The graph demonstrated the fluctuated output values as 3DCNNsl struggled to establish class

dissimilarity. Although fighting and sumo-wrestling projected high prediction ratings, the graphical perspective

insinuated the presence of over-fitting challenges in 3DCNNsl processing.

4.7.49 Appendix: Exp.89 Results Overview on Action Similarity

The neutral classes superseded the violent classes, demonstrating identical performance traits like Section C Ta-

ble 4.19 experiment #3 and #4. Nun-chuck(N) recorded an individual and precision score of 100% with a recall

of 0.88. Cutting-in-kitchen(C) dispensed the highest performance at 100% for individual scores, precision and recall

relative to the other actions. Shooting(Sh) dispensed 0.81 with a lower precision of 0.57 and recall at 0.50 versus

Section C Table 4.19 experiment #2. Stabbing(St) attained the second-lowest score at 0.69 with a precision of

0.50 and recalled at 0.62. At this level, 3DCNNsl recorded an overall accuracy score of 0.75, with lower ratings for

the violent class and high ratings for the neutral class. The outcomes confirmed 3DCNNsl’s continued processing
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limitations, displaying severe misclassifications from an individual standpoint.

Figure 4.45: Appendix: No. 4 Exp.83 Graphical Projection of Action Similarity.

Figure 4.46: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 5 Exp.89.

305



4.7.50 Appendix: No. 5 Exp.89 Confusion Matrix Action Similarity Summary

Figure 4.46 confusion matrix illustrates the overall performance in Table 4.24 and the actual classification status per

action. The results presented similarities in the overall accuracy ratings of 0.75 in Section C Table 4.19 experiment

#3 and experiment #4. The model experienced high fluctuation via the precision and recall metrics for the violent

classes and higher performance for the non-violent neutral category. The results projected a decline in false positive

misclassifications at five and eight critical false negative predictions. The analysis accentuated 3DCNNsl’s processing

improvements linked to predictions on the neutral classes from an individual perspective at 100% each. Nevertheless,

the high fluctuations outcomes for the violent classes validated 3DCNNsl classification limitations towards dispensing

more robust values. The complexity stabbing’s score of 0.69 and shooting at 0.81 challenged the model as a direct

link to the nature of the data and the deliberate pre-processing approach integrated to recreate real-world conditions.

Rating TP TN FP FN

Shooting 4 21 3 4
Stabbing 5 19 5 3
Nun-chucks 7 24 1 0
Cutt-in-Kitchen 8 24 0 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.24: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 5 Exp.89.

4.7.51 Appendix: No. 5 Exp.89 Projection of Accuracy Action Similarity

Figure 4.47 graphical representation validated the fluctuating results of individual scores for the violent classes

and the similarity in overall accuracy. The graph expressed 3DCNNsl’s insignificant processing attempt concerning
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validation and accuracy towards discerning action similarity. 3DCNNsl’s processing suggested the presence of over-

fitted operations and a direct need for auxiliary classification support.

Figure 4.47: Appendix: No. 5 Exp.89 Graphical Projection of Action Similarity.

4.7.52 Appendix: No. 6 Exp.80 Results Overview on Action Similarity

The neutral class evidence on Cutting-in-kitchen(C) recorded the highest performance of 100% for the individual

outcomes, precision and recall scores for Section C Table 4.19 experiment #5. Fencing(Fe) dispensed an individual

score of 0.94 with a precision of 0.89 and a recall of 100%. Stabbing(St) recorded the highest score at 0.88 for all

experiments, with a precision of 0.67 and a recall of 0.50. Beating(B) dispensed 0.81 with a precision of 0.67 and a
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recall of 0.75. Although the individual scores fluctuated, this model produced the second-highest overall accuracy

for all experiments. The results insinuated that pre-processing with action similarity conditions can be facilitated

utilising 3DCNNsl with high performance.

4.7.53 Appendix: No. 6 Exp.80 Confusion Matrix Action Similarity Summary

Figure 4.48 confusion matrix illustrates the overall performance in Table 4.25 and the actual classification status per

action. The findings projected an identical overall accuracy rating of 0.81, like Section C Table 4.19 experiment

#5’s outcome. Concerning all experiments, 3DCNNsl experienced high precision and recall fluctuations for the violent

classes and higher performance for the neutral category above the 89th percentile. The data demonstrated a similar

decrease in false positive misclassifications with an output of 5, like Section C Table 4.19 experiment #4 and

7-critical false negative predictions. The results corroborated 3DCNNsl’s prediction accuracy on the neutral classes,

with decreased performance directly linked to the complexity of the violent classes. Moreover, analysis proved that

deliberate pre-processing and action similarity conditions challenged 3DCNNsl’s ability to generate robust ratings

from an individual processing perspective.

Rating TP TN FP FN

Beating 6 21 3 2
Stabbing 4 22 2 4
Fencing 8 23 0 1
Cutt-in-Kitchen 8 24 0 0

Confusion Matrix Description

• TP Predictions Are Actually True

• TN Preds NOT True

• FP Preds NOT True But, Preds True (ok if misclassified)

• FN Preds True But, Preds False (NOT ok if misclassified)

Table 4.25: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 6 Exp.80.
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Figure 4.48: Appendix: 3DCNNsl Confusion Matrix Action Similarity No. 6 Exp.80.

4.7.54 Appendix: No. 6 Exp.80 Projection of Accuracy Action Similarity

Figure 4.49 graphical expression validated the rationale for conceiving fluctuations linked to the violent class individual

scores and similarity in overall accuracy compared to Section C Table 4.19 experiment #5. The data reflected

3DCNNsl insignificant attempt via validation and accuracy towards discerning action similarity. The previously

mentioned results suggested that the model produced another severely over-fitted operation.

309



Figure 4.49: Appendix: No. 6 Exp.80 Graphical Projection of Action Similarity.

4.8 Appendix: 3DCNNsl (A) No Pre-processing/(B) Pre-processing/

(C) Action Similarity Summary

With insight into the operations and results dispensed from 3DCNNsl’s simulations, it is

necessary to outline model superiority to satisfy the research objectives. 3DCNNsl simu-

lations displayed significant performance by applying the entire video as input to generate

significant results. However, it was clear that pre-processing methods outperformed no pre-

processing and action similarity. 3DCNNsl operations produced fewer misclassifications

from an individual perspective with higher overall accuracy outcomes in pre-processing

conditions. Analysing the results in this manner provided crucial insight into process-

ing pre-empting violent activity recognition. Ranking the process emphasised 3DCNNsl’s

operating potential regarding real-world conditions, fortifying its application for the pro-

posed fusion concepts. The ranking procedure relative to the results previously discussed

in Appendix 4.7 is as follows.
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Ranked 1st (B) Pre-processing with the least misclassification errors.

Ranked 2nd (C) Action Similarity compared to (A and B) results.

Ranked 3rd (A) No Pre-processing with the highest misclassification ratings.

4.9 Appendix: Discussions on YOLOv5m/3DCNNsl Performance

At this stage, discussions on both models projected their performance and the issues or anomalies encountered during

development. The approach accentuated solutions to mitigate the issues discussed or minimise the negative impact

experience concerning processing efficiency. The discussions are as follows.

4.9.1 Appendix: Discussions on YOLOv5m Confusion Matrix

Table 4.26 results emphasised pre-trained superiority in Appendix 4.6 but demonstrated high fluctuations from an

individual class perspective. Appendix 4.6 and Table 4.26 provide an overall perspective of the challenge as an

outcome. The findings validated YOLOv5m’s stability and superiority in pre-trained experiment #8 regarding actual

predictions, inaccurate predictions, and overall accuracy. The evidence satisfied research questions 1-3 in section 1.2.1.

The analysis is as follows.
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From-Scratch #1 Exp #2 Exp #3 Exp #4 Exp

Accurate Predictions 4 6 7 8

NOT Accurate 30 21 21 28

Overall Accuracy 0.53 0.63 0.67 0.72

Pre-Trained #5 Exp #6 Exp #7 Exp #8 Exp

Accurate Predictions 7 8 5 9

NOT Accurate 28 27 25 20

Overall Accuracy 0.75 0.79 0.83 0.85

Table 4.26: Appendix: YOLOv5m From-Scratch/Pre-trained Errors

4.9.2 Appendix: Discussions on 3DCNNsl Confusion Matrix

Emphasis on 3DCNNsl processing provided further insight via the confusion matrix accentuating

the superiority of YOLOv5m’s pre-processing operations. In previous discussions via Appendix 4.5’s

conditions and the overview in Table 4.27, stabbing attained the lowest individual score compared

to all other violent classes.

(A) 3DCNNsl No Pre-processing (NP)

# 6 Exp20
Shooting Beating Knitting WalkwithDog Accuracy

0.94 0.94 0.88 0.75
0.75Accurate Predictions 4 8 4 8

NOT Accurate 5 1 6 4

(B) 3DCNNsl Pre-processing (PP)

# 6 Exp44
Beating Fighting Knitting WalkwithDog Accuracy

100 0.94 0.94 0.88
0.88Accurate Predictions 7 6 7 8

NOT Accurate 1 3 2 2

(C) 3DCNNsl Action Similarity (AS)

#6 Exp80
Beating Stabbing Fencing Cutting-in-Kitchen Accuracy

0.81 0.88 0.94 100
0.81Accurate Predictions 6 4 8 8

NOT Accurate 5 6 1 0

Table 4.27: Appendix: Summary of 3DCNNsl NP, PP and AS Misclassification Rate.
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4.9.3 Appendix: Discussions on 3DCNNsl Research Question 1 (A)

The analysis provided crucial insight into data requiring additional modifications to increase/decrease

pre-processing, which facilitated further integration flexibility. The knowledge gain fosters robust

performance during the proposed fusion’s development. The overall accuracy outcomes confirmed

the model processing challenges when interpreting violent stabbings scenarios during classification.

Nevertheless, 3DCNNsl’s evidence proved the effectiveness of individual classification on violent ac-

tions containing no pre-processing support with ratings exceeding the 75th percentile. The analysis

highlighted stabbing at 0.94% as the highest performance rating overall to validate the interpreta-

tion of the 3DCNNsl results and satisfy research question 1 in section 1.2.1.

4.10 Appendix: YOLOv5m/3DCNNsl Fulfilling Research Question 1

(Can violence and weapons be recognised in CCTV data?)

The evaluation of new test data (data the model has not seen in any way) provided an opportunity

to observe accurate perceptions of violence during inference. Regarding analysing the results of

research question 1, the model confirmed the action representation with probability scores, utilising

the Soft-Max function operations in the final processing layer. Its function produces probability

score representations between 1 and 0 to insinuate its confidence in pending violent scenarios. The

evidence emphasised the achievement of violent activity recognition by demonstrating YOLOv5m

predictive capacity previously discussed in Appendix 4.4, Table 4.4 and 3DCNNsl Table 4.5 to

Table 4.19 on each class. Because 3DCNNsl is the state-of-the-art for activity recognition, it was

necessary to thoroughly evaluate its framework to determine the accurate classification of pre-

empting violence given the criticality of human life and preventing these heinous outcomes.

4.11 Appendix: YOLOv5m and 3DCNNsl Fulfilling Research Question

2 (What’s the Impact of Data Modification?)

YOLOv5m with no pre-processing experienced lower performance ratings from an overall accuracy

perspective in From-Scratch at 0.67 in Table 4.4 experiment #3 and pre-trained at 0.75. Contrarily,

high fluctuating scores for individual performance confirmed the presence of misclassifications in
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Appendix 4.4. YOLOv5m pre-processing operations demonstrated higher performance from pre-

trained at 0.85% in Table 4.4 experiment #21 compared to From-Scratch methods at 0.72 #4. In

addition to the 13% increase, the findings revealed high fluctuations with reduced misclassifica-

tions for the individual classes via pre-trained processing. 3DCNNsl via Table 4.5 to Table 4.19

demonstrated similar concepts of applying no pre-processing and pre-processing enhancements.

Experiments containing action similarity acted as a deliberate approach to properly evaluate the

state-of-the-art medium as a direct link to the criticality of human life. Overall accuracy recorded

the highest score for no pre-processing operations via Table 4.5 experiment #6 at 0.75, which

projected high individual class fluctuations in Table 4.19. Moreover, pre-processing in Table 4.12

experiment #6 at 0.88 increased by 15% with continuous fluctuations recorded for the individual

classes. Action similarity operations generated comparisons between stabbing and fencing actions.

The idea forced the model to pre-empt actions containing homogeneous attributes in the context

of pre-processing towards satisfying research question-2 in section 1.2.1. Unlike pre-processing,

action similarity operations maintained their performance above the 81st percentile for individual

classification; nonetheless, its accuracy decreased by 7%.

4.12 Appendix: Fulfilling Research Question 3 (what’s the data impact

if sample increase?)

The concept determines the significance of the model and its capacity to maintain efficiency if the

volume of the data increases or not. The approach disclosed deficient areas requiring modifications

to encourage high-performance results during the proposed fusion development stages. An increase

in the volume of violent data in YOLOv5m operations in Table 4.4 from 2284 via experiment #

3, 5944 via experiment # 6 and 6204 via experiment # 8 assisted in achieving the notion. With

insight into YOLOv5m’s increased performance at this stage, 3DCNNsl evaluations followed in a

similar context with increased option values. Detailed in Appendix 4.11 to Appendix 4.12, an

increment via the option parameters and the class samples from 1 violent class vs one neutral to

four vs four classes acted as additional experiments to evaluate class performance rankings. The

application of multiple experiments (one violent versus one neutral class) evaluated the processing

complexity and 3DCNNsl’s ability to discern attributes from an individual and overall accuracy

perspective to fulfil research question 3. It is crucial to indicate classes that were easier to discern
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and those requiring pre-processing enhancements to promote robust classification results. The idea

evaluated the class complexity impact in groups to simulated real-world conditions by incrementing

the volume of samples and option parameter values. The investigations are as follows.

4.13 Appendix: 3DCNNsl Additional Experiments (4 violent classes vs

4 neutral classes) Summary

The understanding gained from the 1 x 1 experiments, particularly about epoch variations, was

instrumental in projecting the impact of escalating sample sizes and exploring the effects of alter-

ing hyper-parameter values. This understanding was crucial in grasping the actual performance of

the operations. The investigative approach validated performance impact, satisfying the research

objectives. Analysis of one neutral class versus one violent class, two versus two, and four versus

four proved essential for comparisons. Moreover, the rationale behind the additional experiments

emphasised that various investigations were employed to validate the results and fortify the no-

tions. Incrementing the class samples from one violent class discussed previously to determine the

processing impact conditions proved essential to validate the impact of increasing the sample size.

Maintaining configuration and experiment consistency alleviated bias results by integrating all at-

tributes from the previous one versus one and two vs two experiments. The idea applied the insight

to investigate four vs four from an individual class and overall accuracy standpoint. At this stage,

four x four activity classes disclosed the impact status to satisfy research question-3 in section 1.2.1.

4.13.1 Appendix: 3DCNNsl via 90 Epochs in 4x4 (No pre-processing, pre-

processing, Action Similarity)

The experiments reflected performance from an overall accuracy perspective followed by an individ-

ual perspective to satisfy research question-3 in section 1.2.1. Applying hyper-parameter values at

90, 150, and 180 epochs with a batch size of 120, 130, and 140 assisted in maintaining the previous

context. Table 4.28 confirms the positive processing results when increasing the data samples from

an overall accuracy perspective. Although the analysis projected fluctuations via individual clas-

sification, pre-processing proved superior in results. From an individual standpoint, pre-processed

operations dispensed seven classes exceeding the 90th percentile, beating 0.78 in experiment #62
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with no pre-processing and action similarity to validate the approach. With neutral activity classes

between the 84th and 96th percentile, the violent classes proved challenging to discern, demon-

strating fluctuating outcomes between the 65th and 96th percentile. Investigations of experiment

#62 in action similarity determine the actual classification status of violence versus homogeneous

neutral classes. From an individual performance perspective, all violent classes scored lower com-

pared to the neutral non-violent classes. The findings on action similarity in Table 4.28 proved that

3DCNNsl’ experienced challenges processing violence utilising the 90-epoch parameter.

No Pre-processing (NP)

Fi, Sh, St, Be vs K, W, H, Br Exp 29
St Be Fi Sh K W H Br ACC

0.84 0.90 0.96 0.65 0.84 0.96 0.84 0.96 0.50

Pre-processing (PP)

Fi, Sh, St, Be vs K, W, H, Br Exp 62
St Be Fi Sh K W H Br

0.96 0.78 0.90 0.93 0.96 0.93 0.96 0.96 0.71

Action Similarity (AS)

Fi, Sh, St, Be vs C, Fe, Su, N Exp 62
St Be Fi Sh C Fe Su N

0.78 0.84 0.90 0.87 0.96 0.96 0.93 0.93 0.60

Table 4.28: Appendix: 3DCNNsl 3 experiments, 4 vs 4 at 90-Epochs.

4.13.2 Appendix: 3DCNNsl via 150 Epochs in 4x4 (No Pre-processing, Pre-

processing, Action Similarity

Understanding the 90-epoch experiment, using eight classes consisting of a balanced ratio of vio-

lent and non-violent samples, the proficiency evaluation strategy encompassing an increment in the

epoch iteration from 90 to 150, with a smaller batch size 120, proved necessary. The idea satis-

fied research question-3 in section 1.2.1 by evaluating 3DCNNsl’s confidence using suitable hyper-

parameters with a sample increase. Table 4.29’s results fulfilled research question-3 in section 1.2.1

by evaluating the overall accuracy in experiment #30 no pre-processing at 0.63, experiment #63

pre-processing at 0.81 and action similarity at 0.73. Previous results confirmed that applying more
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violent samples and hyper-parameter tuning enhanced the outcome toward the objectives. The

scores exceeded the 81st percentile in experiment #63 individual classification, thus projecting

performance improvement. In this instance, pre-processing operations proved superior, generating

the highest ratings for violence compared to no pre-processing and action similarity, with stabbing

at 0.87. Pre-processing and action similarity concepts significantly improved, generating higher

individual and overall accuracy scores. The results regarding the four versus four class using 150

epochs are as follows.

No Pre-processing (NP)

Fi, Sh, St, Be vs K, W, H, Br Exp 30
St Be Fi Sh K W H Br ACC
1 0.93 0.81 0.90 0.94 0.84 0.84 0.97 0.63

Pre-processing (PP)

Fi, Sh, St, Be vs K, W, H, Br Exp 63
St Be Fi Sh K W H Br

0.87 0.90 1 0.93 0.97 1 0.97 0.97 0.81

Action Similarity (AS)

Fi, Sh, St, Be vs C, Fe, Su, N Exp 63
St Be Fi Sh C Fe Su N

0.87 0.96 1 0.87 1 0.91 88 0.97 0.73

Table 4.29: Appendix: 3DCNNsl 3 experiments, 4 vs 4 at 150-Epochs.

4.13.3 Appendix: 3DCNNsl via 180 Epochs in 4x4 (No Pre-processing, Pre-

processing, Action Similarity)

Analysis of the 150-epoch simulations corroborated the hypothesis that extending the epoch range

to 180 satisfies performance gains regarding both individual and overall accuracy, as evidenced

in Table 4.30. Like Table 4.29’s results, the overall accuracy evaluation solidified the positive

notion of increasing the samples. The operation extended training when comparing Table 4.28

to Table 4.30’s results. At this level, pre-processing projected its superiority despite fluctuating

individual scores. The analysis validated 3DCNNsl significant attempt at classifying the actions

above the 84th percentile range. Table 4.31’s results satisfied the fulfilment of research question-3

in section 1.2.1, which follows.
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No Pre-processing (NP)

Fi, Sh, St, Be vs K, W, H, Br Exp 31
St Be Fi Sh K W H Br ACC
90 0.93 0.84 0.87 0.96 0.93 0.84 1 0.65

Pre-processing (PP)

Fi, Sh, St, Be vs K, W, H, Br Exp 64
St Be Fi Sh K W H Br

0.90 0.93 1 0.84 0.93 1 1 0.96 0.84

Action Similarity (AS)

FFi, Sh, St, Be vs C, Fe, Su, N Exp 64
St Be Fi Sh C Fe Su N

0.87 0.90 93 0.90 1 1 1 0.93 0.75

Table 4.30: Appendix: 3DCNNsl 3 experiments, 4 vs 4 at 180-Epochs.

4.14 Appendix: 3DCNNsl via 180 Epochs in 4x4 (No Pre-processing,

Pre-processing, Action Similarity)

Appreciating the results of 150 epochs in previous discussions, confirmed the research notion by

increasing the epoch range to 180 to observe the performance impact from an individual and overall

accuracy perspective via Table 4.31. Like Table 4.29’s results, the overall accuracy evaluation solidi-

fied the positive notion of increasing the samples; this extended training when comparing Table 4.28

to Table 4.30’s results. At this level, pre-processing confirmed its superiority despite fluctuating

individual scores. The analysis proved that 3DCNNsl demonstrated a significant attempt at clas-

sifying the actions above the 84th percentile range. Table 4.31’s results validated the fulfilment of

research question-3 in section 1.2.1, which follows.

4.15 Appendix: Fulfilling Research Question 4 (No Pre-processing, Pre-

processing, Action Similarity)

Programming facilitated the classification status, leading to script techniques which specify the

generic and subclass classification status for both models in the final processing layers. The dis-

covery of programmable scripts for both YOLOv5m/3DCNNsl negatively impacted the real-time

operations. With insight into the script development, the process incorporated only the generic

and subclass classification features in 3DCNNsl. Ignoring identical script concepts for YOLOv5m

improved the classification of real-time operations significantly, which satisfied research question-4
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No Pre-processing (NP)

Fi, Sh, St, Be vs K, W, H, Br Exp 31
St Be Fi Sh K W H Br ACC
90 0.93 0.84 0.87 0.96 0.93 0.84 1 0.65

Pre-processing (PP)

Fi, Sh, St, Be vs K, W, H, Br Exp 64
St Be Fi Sh K W H Br

0.90 0.93 1 0.84 0.93 1 1 0.96 0.84

Action Similarity (AS)

FFi, Sh, St, Be vs C, Fe, Su, N Exp 64
St Be Fi Sh C Fe Su N

0.87 0.90 93 0.90 1 1 1 0.93 0.75

Table 4.31: Appendix: 3DCNNsl 3 experiments, 4 vs 4 at 180-Epochs.

objectives in section 1.2.1.

4.16 Appendix: Fulfilling Research Question 5 (Can we determine model

superiority between models?)

The artificial intelligence models’ true processing capabilities at this stage projected their classifi-

cation results from a frame-by-frame processing level. Identifying model superiority proved chal-

lenging when one model (3DCNNsl) utilises the entirety of individual test videos to compute its

inference and the other (YOLOv5m) applies frame-by-frame operations. To investigate this notion,

a reconfiguring of 3DCNNsl inference evaluated action classes from a frame-by-frame level utilising

the action similarity condition. Nevertheless, the idea establishes the actual processing power by

implementing action similarity conditions to deliberately challenge the classification because of the

focus on pre-empting violence and saving lives. The findings projected tabulated representations of

the performance results to emphasise YOLOv5m and 3DCNNsl in scenarios conveying homogeneous

and heterogeneous actions in real-world conditions.

4.16.1 Appendix: Overview of Superiority Regarding Processing

Testing the operation’s true processing capabilities by applying configurations to evaluate each

classification from the frame-by-frame level compared to video-level processing examined superi-

ority between YOLOv5m and 3DCNNsl. The approach provided crucial insight towards fulfilling
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research question-5 in section 1.2.1. Initialising the processing scripts simultaneously on ten ex-

clusive test videos proved crucial towards achieving the frame-by-frame outcomes. Adhering to

consistency, integrating a frame extraction script to specifically select 12 frames in alignment with

the class of activity template (CoAT) from each pre-processed video generated the outcomes for

analysis. The method excluded beating, fighting, shooting, cutting-in-kitchen, nun-chucks, sumo-

wrestling, walk-with-dog, and knitting to avoid the risks of exceeding the project’s life cycle. The

idea allowed the investigations to focus on challenging actions (action similarity) utilising stabbing

and fencing for frame-by-frame classification. Opting for the class reduction approach significantly

reduced the analysis required to generate vital suggestive results. The actual performance discloses

the operation’s pros and cons by implementing challenging actions from a frame-by-frame perspec-

tive. Moreover, implementing balanced ratios of violent and non-violent test videos to suggest

5-stabbing and 5-fencing categories reduced bias results. Those videos reflect stabbing8.avi, fenc-

ing11.avi, fencing12.avi, stabbing24.avi, fencing27.avi, fencing32.avi, stabbing37.avi, fencing38.avi,

stabbing48.avi, and stabbing75.avi. The operations generated results for 119 frames, indicating

both models’ processing limitations.

Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

0 stabbing8.avi Stabbing 0.9999702 stabbing 0.883333 stabbing
1 stabbing8.avi Stabbing 0.9999702 stabbing 0.879167 stabbing
2 stabbing8.avi Stabbing 0.9999702 stabbing 0.891667 stabbing
3 stabbing8.avi Stabbing 0.9999702 stabbing 0.883333 stabbing
4 stabbing8.avi Stabbing 0.9999702 stabbing 0.891667 stabbing
5 stabbing8.avi Stabbing 0.9999702 stabbing 0.891667 stabbing
6 stabbing8.avi Stabbing 0.9999702 stabbing 0.883333 stabbing
7 stabbing8.avi Stabbing 0.9999702 stabbing 0.883333 stabbing
8 stabbing8.avi Stabbing 0.9999702 stabbing 0.8875 stabbing
9 stabbing8.avi Stabbing 0.9999702 stabbing 0.891667 stabbing
10 stabbing8.avi Stabbing 0.9999702 stabbing 0.879167 stabbing
11 stabbing8.avi Stabbing 0.9999702 stabbing 0.895833 stabbing

Table 4.32: Appendix: YOLOv5m-3DCNN Correctly Classified Stabbing8.avi.

4.16.2 Appendix: YOLOv5m3DCNNsl Accurate/ Partial Classifications Overview

With insight into the superiority evaluation previously discussed, the approach considered the pro-

cessing of YOLOv5m and 3DCNNsl frame-by-frame action, classifying stabbing8.avi in Table 4.32,
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stabbing48.avi in Table 4.33, and stabbing75.avi in Table 4.34. The analysis disclosed YOLOv5m

efforts towards partially classifying fencing12.avi in Table 4.35 and stabbing37.avi in Table 4.36

with activity unknown outcomes. In contrast, 3DCNNsl correctly distinguished between fencing

and stabbing; however, YOLOv5m’s misclassification via fencing11.avi considered violence only.

Although YOLOv5m avoided misrepresentations by applying activity unknown to suggest that

it cannot recognise the actions displayed, the model generated the correct response due to the

homogeneous nature of fencing and stabbing via Table 4.35 and Table 4.36. The operations expe-

rienced YOLOv5m’s misclassification in stabbing24.avi Table 4.37, fencing32.avi Table 4.38, and

fencing38.avi Table 4.39.

Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

96 stabbing48.avi Stabbing 0.9999722 stabbing 0.958333 stabbing
97 stabbing48.avi Stabbing 0.9999722 stabbing 0.943056 stabbing
98 stabbing48.avi Stabbing 0.9999722 stabbing 0.9375 stabbing
99 stabbing48.avi Stabbing 0.9999722 stabbing 0.956944 stabbing
100 stabbing48.avi Stabbing 0.9999722 stabbing 0.9375 stabbing
101 stabbing48.avi Stabbing 0.9999722 stabbing 0.956944 stabbing
102 stabbing48.avi Stabbing 0.9999722 stabbing 0.938889 stabbing
103 stabbing48.avi Stabbing 0.9999722 stabbing 0.8125 stabbing
104 stabbing48.avi Stabbing 0.9999722 stabbing 0.959722 stabbing
105 stabbing48.avi Stabbing 0.9999722 stabbing 0.929167 stabbing
106 stabbing48.avi Stabbing 0.9999722 stabbing 0.954167 stabbing
107 stabbing48.avi Stabbing 0.9999722 stabbing 0.922222 stabbing

Table 4.33: Appendix: YOLOv5m-3DCNN Correctly Classified Stabbing48.avi.

4.17 Appendix: Summary of 3DCNNsl Misclassifications Perspective

Following the superiority evidence in Appendix 4.16, further evaluations on 3DCNNsl determines

its effectiveness by aligning it with pros and cons. 3DCNNsl misinterpretations on fencing as stab-

bing activity in Table 4.40 proved interesting. Whilst 3DCNNsl appeared accurate as some fencing

actions are homogeneous compared to stabbing, YOLOv5m correctly identified identical attributes

with the label activity unknown. In some cases, the model accurately classified fencing’s actions

regardless of the output of the 3DCNNsl model. YOLOv5m’s robust classification corroborated its

superiority over the state-of-the-art 3DCNNsl; nevertheless, it projected multiple activity unknown

scenarios. The analysis proved that the difference in classification between the models is minute.
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Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

108 stabbing75.avi Stabbing 0.99994826 stabbing 0.943056 stabbing
109 stabbing75.avi Stabbing 0.99994826 stabbing 0.893056 stabbing
110 stabbing75.avi Stabbing 0.99994826 stabbing 0.95 stabbing
111 stabbing75.avi Stabbing 0.99994826 stabbing 0.929167 stabbing
112 stabbing75.avi Stabbing 0.99994826 stabbing 0.825 stabbing
113 stabbing75.avi Stabbing 0.99994826 stabbing 0.940278 stabbing
114 stabbing75.avi Stabbing 0.99994826 stabbing 0.95 stabbing
115 stabbing75.avi Stabbing 0.99994826 stabbing 0.954167 stabbing
116 stabbing75.avi Stabbing 0.99994826 stabbing 0.911111 stabbing
117 stabbing75.avi Stabbing 0.99994826 stabbing 0.893056 stabbing
118 stabbing75.avi Stabbing 0.99994826 stabbing 0.908333 stabbing
119 stabbing75.avi Stabbing 0.99994826 stabbing 0.922222 stabbing

Table 4.34: Appendix: YOLOv5m-3DCNN Correctly Classified Stabbing75.avi.

Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

24 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
25 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
26 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
27 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
28 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
29 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
30 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
31 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
32 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
33 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
34 fencing12.avi Fencing 0.99565816 Activity Unknown 0 fencing
35 fencing12.avi Fencing 0.99565816 fencing 0.708333 fencing

Table 4.35: Appendix: YOLOv5m Partially Classified Fencing12.avi.

Regarding the minute difference mentioned, in terms of life, this difference can be a measure be-

tween non-lethal scenarios and death. With this notion, the thesis proposed the fusion concepts

as a robust tool towards mitigating misclassification challenges attained during action similarity

scenarios regardless of the environmental conditions.

4.18 Appendix: Summary of YOLOv5m Operational Challenges

(A) YOLOv5m Steep Learning Curve Challenge Discussions: The investigations required

substantial time to understand the framework components during development. The process
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fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

72 stabbing37.avi Stabbing 0.9999689 stabbing 0.5625 stabbing
73 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
74 stabbing37.avi Stabbing 0.9999689 stabbing 0.5625 stabbing
75 stabbing37.avi Stabbing 0.9999689 stabbing 0.558333 stabbing
76 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
77 stabbing37.avi Stabbing 0.9999689 stabbing 0.558333 stabbing
78 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
79 stabbing37.avi Stabbing 0.9999689 stabbing 0.470833 stabbing
80 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
81 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
82 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing
83 stabbing37.avi Stabbing 0.9999689 Activity Unknown 0 stabbing

Table 4.36: Appendix: YOLOv5m Partially Classified Stabbing37.avi.

Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

36 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
37 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
38 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
39 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
40 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
41 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
42 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
43 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
44 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
45 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
46 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing
47 stabbing24.avi Stabbing 0.99986625 Activity Unknown 0 stabbing

Table 4.37: Appendix: YOLOv5m misclassified Stabbing24.avi.

considers interpreting behavioural patterns/results during/after processing and solving arti-

ficial intelligence script errors dispensed. YOLOv5m required significant amounts of time to

understand the practical concepts of its application in the context of object detection and its

feasibility towards current activity recognition endeavours.

Solution to (A), YOLOv5m Steep Challenges: The previous challenge in (A) demonstrated

a lesser impact by enrolling on two additional artificial intelligence courses (scripting/development)

to bridge the gaps in understanding and fortify the need for more knowledge regarding prac-

tical experience. Processing investigation strategies via Robo-Flow, Ghit-Hub, Discord and
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Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

60 fencing32.avi Fencing 0.9997483 fencing 0.3 fencing
61 fencing32.avi Fencing 0.9997483 fencing 0.3125 fencing
62 fencing32.avi Fencing 0.9997483 fencing 0.283333 fencing
63 fencing32.avi Fencing 0.9997483 fencing 0.3125 fencing
64 fencing32.avi Fencing 0.9997483 fencing 0.258333 fencing
65 fencing32.avi Fencing 0.9997483 fencing 0.3 fencing
66 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing
67 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing
68 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing
69 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing
70 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing
71 fencing32.avi Fencing 0.9997483 Activity Unknown 0 fencing

Table 4.38: Appendix: YOLOv5m misclassified fencing32.avi.

Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

84 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
85 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
86 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
87 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
88 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
89 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
90 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
91 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
92 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
93 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
94 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing
95 fencing38.avi Fencing 0.9991573 Activity Unknown 0 fencing

Table 4.39: Appendix: YOLOv5m misclassified fencing38.avi.

PyTorch communities provided the means to acquire expertise on unknown systematic errors.

Reducing development time depended exclusively on grasping the fundamental AI concepts

and deploying such ideas to fortify the fusion concept.

(B) Discussions on YOLOv5m Data and Processing Issues: The context of violent data

containing relevance of the pre-start, middle and end attributes in publicly available datasets

proved challenging to obtain. Because applying fake data (movies, acting violent scenes)

during training operations could contribute to erroneous results, a manual acquisition tech-

nique accumulated a significant sample size of raw data reflecting the pre-start attributes of
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Fr# Video 3DPreds 3DScores YoloPreds YoloScores Correct Class

48 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
49 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
50 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
51 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
52 fencing27.avi Stabbing 0.9006899 fencing 0.266667 fencing
53 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
54 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
55 fencing27.avi Stabbing 0.9006899 fencing 0.583333 fencing
56 fencing27.avi Stabbing 0.9006899 fencing 0.266667 fencing
57 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
58 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing
59 fencing27.avi Stabbing 0.9006899 Activity Unknown 0 fencing

Table 4.40: Appendix: 3DCNN misclassified fencing27.avi.

violent scenarios. The acquisition and data pre-processing took considerable time because of

inadequate experience manipulating software for blob analysis and data cleaning. The issue

impacted the project’s overall timeline. The notion stimulated the manual pre-processing of

the data, as most automated options unintentionally introduced unwanted regions of inter-

est for training. Investigations into the applicability of software tools that naturally defined

bounding box regions circumventing the object’s edges proved futile. The previous approach

proved fatal due to the algorithm’s unconscious ability to accumulate undesirable background

elements as the target objects. The pre-processing duration to conform unwanted redundant

frames and extensive file sizes affected research questions 2-3 in section 1.2.1. The issues

surrounding processing encouraged high over-fitting risks, leading to unrealistic results if left

unchecked. Annotating irregular dimensional scales during blob analysis intensified the pro-

cessing challenges. The sporadic contours of the human gait during violence increased the

challenge of specifying bounding box edges for each region of interest per class and per image

frame to suggest the action category.

Solution to (B), YOLOv5m Data and Processing Issues: The data acquisition and pre-processing

challenges were regulated by downloading the relevant raw data samples from YouTube, Face-

book, and other Social Platforms and merging a few samples acquired from publicly available

datasets. Once achieved, a data screen operation confirmed the specificity of the raw data

towards meeting the framework’s standards and the pre-start attributes for investigations.
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Understanding blob analysis software and manipulation is necessary to fashion the appropri-

ate data context relative to experiments. The context of the manual pre-processing approach

provided stability towards reducing the risk of adding unwanted attributes in the image

scenery background during blob analysis. Although the processing proved lengthy, the oper-

ations avoided the risks of training the model with noisy data (containing undesirable details)

that generates unrealistic bias results compared to the automatic blob analysis tools. The

intention is to apply the object’s mask during blob analysis as a future endeavour to mitigate

the irregularity of the human gait issue.

(C) Discussions on YOLOv5m GPU Non-compliance: With a lack of sufficient GPU pro-

cessing, YOLOv5m experienced a computational lag due to the incompatibility of the Py-

Torch platform utilities with the MacBook’s processing hardware. The data increase in-

troduced memory depletion challenges, which affected YOLOv5m’s ability to converge its

training in an acceptable period utilising CPU processing.

Solution to (C), YOLOv5m GPU Non-compliance: A duration assessment task reduced the

lengthy raw video samples containing sporadic violent activity across several sequences from

2-10 minutes to 5-15 seconds per file at a rate of 30fps (frames per second). The original

data extended the training sequence durations and negatively impacted the hardware’s pro-

cessing. By reducing the number of redundant and unwanted frames, the processing avoided

the risks of immobilising the operation with inconclusive and insignificant results. Observa-

tion proved that the model’s computational demand on the hardware exhausted its capacity

when processing image dimensions exceeding ratios of 641x641 during training procedures.

A dimensional assessment approach facilitated the deficiency issues by regulating the data

specifications to 412x412. The approach positively impacted the training operations, reduc-

ing the convergence of the results from 2 weeks to 1.5 hours maximum. Simultaneously, the

approach reduced the computational load, leading to predictions in seconds compared to 2-

72 hours. Although the new hardware contains PyTorch metal performance GPU capability,

some PyTorch packages lack full compatibility with the MacBook’s new silicon processing

chip models. Constant monitoring procedures target the PyTorch 3 support communities

for platform and software upgrades to mitigate the onboard GPU challenge. Though free
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GPU online services exist, their free processing aligns with costly stipulations that could

harm the processing if the services cease during operations due to power failure and ser-

vice provider disconnection disruptions relative to geographical boundaries. Other entities,

such as Google-Collab, stipulated strict timelines for their integration, thus creating an an-

noyance with periodic operating system reassessments and configuration file management

requirements. The issue resulted in the laborious task of commencing the entire scripting

operation at intervals from the start. As a future endeavour, the primary intention is to

target the integration of GPU processing support from online service providers relative to its

interoperability, feasibility, and cost-effectiveness.

(D) YOLOv5m CCTV Sensor Field of View issue: In many instances, the operations expe-

rienced scenarios in which violence evaded the CCTV sensor’s field of view. By impairing the

viewpoint of the CCTV device, the actual status of an attack remained unknown until the

visuals of the actions returned within the device’s view. The challenge affected the severity

of the classification and prolonged the actual status of the activities performed.

Solution to (D), YOLOv5m Field of View Challenge: The operations experienced a min-

imised impact of the field of view challenged by merging the proposed fusion idea with the

new drone technology. Data generation utilising an onboard camera sensor performs the

same prediction tasks as motionless CCTV devices. The idea allows the capture of critical

data for processing through wireless connectivity that accesses the device’s framework con-

trols and stores its data for processing via a mainframe from another geographical location

within the drone’s operating capacity. A proposed strategy of disposing of unwanted data

after convergence drastically reduces the drag on storage resources. The approach maintains

functionality and effectiveness during operations. Although drone technology has disadvan-

tages, its influence does not affect the current proposal. Thus, its feasibility will require

investigation to obtain a suitable approach. The idea of applying innovative drones in this

regard increases the application possibilities, extending its mobility and expanding the scope

of the CCTV sensor device from aerial perspectives. Maximising the peripheral view and

positioning of the sensors ensures that sporadic actions are within sight for classification at

all intervals.
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(E) Discussions on 2 Violent Classes Appose to 8: Because of the stipulated research time-

line, the investigations on the number of violent and non-violent action classes proved critical

to determining the impact of the results. At this stage, the complexity and depth of the

experiments have proven challenging in thoroughly analysing class variations. The previous

issue directly affected the time allocated to explore all specified violent and non-violent action

classes to accentuate and interpret their significance.

Solution to (E), Discussions on 2 Violent Classes Appose to 8: As discussed in E, critical

class input decisions reduce the focus on violent and non-violent classes from eight to two

categories (stabbing and fencing). The rationale analyses the most complex conditions of

action similarity to generate significant results in this domain. By reducing the focus classes,

as previously mentioned, the scope of analysis decreased to allow effective investigations with

contributory results.

(F) Discussions on YOLOv5m Human Dependency issue: Occasionally, YOLOv5m produced

prediction anomalies (unable to discern the status of the action) that escalate system alerts.

Simultaneously, the issue introduces irritations by generating excessive alerts due to misclas-

sifications. Human support is required to assist with the classification anomaly distinction

and provide the correct assessment measures.

Solution to (F), YOLOv5m Human Dependency issue: The system’s configuration automat-

ically escalates alerts to humans if the acceptable number of false positives/predictions alters

as scenarios are life-dependent. In this regard, having a contingency plan incorporating

additional human evaluation support to preserve life is promoted.

4.19 Summary of 3DCNNsl Operational Challenges

Following YOLOv5m operational discussions, the analysis emphasised additional challenges utilising

3DCNNsl during development with clear mitigation strategies. The approach is as follows.

(A) 3DCNN Language Barrier Issue Discussions: The first challenge emerged as a language
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barrier whilst analysing configuration files during model acquisition operations. The config-

uration files written in [118] ’s native language, Mandarin, proved tricky to interpret. Trans-

lating Mandarin during development proved extremely challenging to comprehend because

of language barriers. The issue intensified the challenge of deciphering fundamental stepwise

instructions to modify configuration parameters and reduce error prompts. Even though

Google and MacBook translators were applied, some critical phrases required a more precise

understanding as the instructions were not in the correct context. The issue significantly ex-

tends the timeline for comprehending its processing components thoroughly. An example of

the language barrier issue affected fine-tuning features in the artificial intelligence framework,

causing undecipherable errors.

Solution to (A), 3DCNN Language Barrier Issue: The first issue was mitigated by process-

ing the Mandarin instructions using Google, open-sourced translators and the MacBook Pro

Itranslate software to convert the core text to English. Correcting the misinterpretation

required significant daily devotion to generating an understanding of 3DCNNsl standard

requirements via practical exercises.

(B) Discussions on 3DCNNsl Padding Feature Issues: An outdated padding-valid script mis-

match on two max pool layers emerged during development. The issue drastically reduced

the image sizes beyond the capability of the convolution operations. The computation pro-

cess generated a zero result due to an unfavourable border reduction within the image data.

The issue reduced the image dimensions during generalisation and discarded padded border

element options. As a result, padding-valid limited the model’s capability to discern the

correlated labels, features, and coordinates of the objects of interest.

Solution to (B), 3DCNNsl Padding Feature Issues: Reconfigurations to [118] ’s 3DCNN ap-

proach with additional level support reflecting 23 layers, including two additional max-pooling

levels to encourage layer proficiency during training. Substituting the outdated processing

(padding-valid) and feature limitation with (padding same) encouraged processing effective-

ness. The modification reintroduced padded borders of zeros around the images during

processing to encourage efficient convolution and generate robust results.
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4.20 Summary of Observations and Lessons Learnt

Following the operational discussions for YOLOv5m and 3DCNNsl, this section outlined items

concerning performance, development complexity, and processing constraints. Because YOLOv5m

and 3DCNNsl relied on different operations, applying subcategories to maintain model distinction

towards activity recognition proved effective. The categories itemised as (A) suggest lessons learnt

from the perspective of YOLOv5m, and (B) for the context of 3DCNNsl demonstrate the process-

ing distinctions. Subsequently, positive observations represent items that influenced the model’s

operations, and negative remarks describe the opposite.

(A) Positive Observations and Lessons Learnt Utilising YOLOv5m: Although formidable

for object detection, YOLOv5m proved solid in its processing compared to 3DCNNls for activ-

ity recognition from a knowledge perspective. If more data is applied to enhance 3DCNNsl’s

learning, its framework will likely be less robust. 3DCNNsl projects its outcome consider-

ing the entirety of the video, as opposed to classification from a frame-by-frame basis like

YOLOv5m activity recognition. Analysis favoured YOLOv5m processing over 3DCNNsl be-

cause it considers the frame and not the entire video duration to formulate probability scores.

The thesis proposed achieving enhanced classification by combining activity and weapon arte-

facts to suggest the pre-empting of stabbing. With that notion, additional pre-processing to

enhance inference is crucial towards fortifying performance. A method disclosed during de-

velopment involves CPU boosting by introducing the right packages and platform, applying

standard dimensionalities and pre-processing, and using significant sample sizes of real-world

violent scenarios for training. The possibility of conforming YOLOv5m object detection

to accurately classify the complexity of violence as activity recognition proved a valuable

prospect. The idea reduces the configuration intricacy and encourages acceptable processing

with 3DCNNsl.

Negative Observations on (A), Utilising YOLOv5m: Understanding the intricacies of the

approaches for YOLO required time to accumulate practical experience. Because of its com-

plexity, comprehending most error messages for the given objectives proved highly challeng-

ing. Rapid architecture upgrading counteracted processing challenges affecting older versions,
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thus causing an implementation issue reverting to lower model versions. YOLOv5 faced lim-

itations when classifying specific weapon objects, such as knives conveying high sporadic

trajectory, acceleration, and velocity. During development, the larger versions of YOLOv5

produced higher results. However, when evaluating action similarity with real-world lethal

scenarios, the model required a boost in robustness, thus hindering its classification state.

Because of the high regard for human life, the application of fictitious data proved impractical

as it escalated to over-fitting with unrealistic results. Separately specifying relevant objects

during blob analysis with and without pre-processing support negatively impacted the infer-

ence, thus leading to further issues towards alternative support. Another challenge emerged

when applying CPU processing compared to GPU on differing image dimensionalities. The

impact reduced the performance significantly, and, in several cases, the relevance of its output

proved futile. Selecting incompatible library package updates and support platforms (Ana-

conda, PyCharm, Spyder, MATLAB, Terminal) caused systematic challenges, resulting in

unknown and insoluble errors. With an overview of the issues disclosed during development,

the following discussions emphasised 3DCNNsl’s positive observations.

(B) Positive Observations and Lessons Learnt Utilising 3DCNNsl: Understanding the input-

output processing between the adjacent layers to foster high-level feature learning proved

highly insightful during convolution. Acquiring knowledge on correctly altering the number

of layers in [118]’s frameworks to facilitate the research initiatives proved challenging. Anal-

ysis showed that 3DCNNsl engaged action similarity conditions with high robust accuracy

ratings at the video level, utilising 23 layers compared to [118]’s 16.

Negative Observations on (B), Utilising 3DCNNsl: The magnitude of the research exceeded

the expected analysis threshold. Because of time constraints, the scale of analysis was re-

duced from 8 classes to 2 to alleviate the risks of exceeding the project’s lifecycle. The

current strategy entails continuing analysis as future endeavours and, at this stage, focuses

on two categories for action similarity via stabbing and fencing. During development, ob-

servations disclosed a decline in CPU processing speed, primarily during the integration of

the volume of samples. With insight into YOLOv5m’s processing, a GPU reverting issue

emerged, negatively impacting the training and inference speeds. The endeavour encom-
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passed exploring GPU integration to facilitate future initiatives as an alternative strategy.

Although the operations yield acceptable outcomes using CPU processing, the persistence of

the latency issue poses a high risk where human life is concerned during inference. Another

factor became apparent when scripting generic status classification from the dataset level to

encourage robust performance. However, that approach intensified the configuration com-

plexity to project individual class analysis via the confusion matrix. During development,

analysis showed that 3DCNN without modification lacked robustness in classification from a

frame-by-frame viewpoint because of its design.
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