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Abstract

Ultrasound imagery has been widely used for different medical diagnoses. The purpose of
such technology is to provide a picture of internal body tissue structures to monitor, diagnose,
or treat medical conditions. Unlike X-rays and other radiographic scanning systems, ultra-
sound scanning is non-intrusive and has no side effects. Hence it is repeatedly used through-
out pregnancy to identify potential abnormalities associated with the first trimesters of
pregnancy, especially the risk of miscarriage. In addition, it is also one of the most crucial

considerations during the assessment of a variety of ovarian tumours.

It is critical to acknowledge that the quality of a medical diagnosis based on manual meas-
urements can be influenced by the inconsistency of the measurements obtained by different
gynaecologists, and indeed even by the same gynaecologist (i.e. inter- and intra-observer
variabilities). Advances in image processing technology and the emergence of machine
learning as a tool for image analysis have significantly increased the potential of developing

automated tools for the enhancement of diagnostic accuracy in general.

The overall aim of this thesis is to develop and test the performance of novel automated
machine learning solutions that analyse B-mode ultrasound images of the Gestational Sac
(GS) and the ovary to detect and classify gynaecological anomalies that have health impli-
cations for women. This thesis particularly addresses the segmentation problem of the GS
during pregnancy, which is an essential step of automatic diagnostic systems. Accordingly,
the research investigations reported in this thesis has been primarily concerned with the de-
velopment of novel and automatic tools for segmenting a given region of interest, before
turning our attention to the feature extraction step to help determine the most discriminating
parameters for the identification of abnormality during pregnancy. This work has great deal
of synergy with ovarian tumour diagnostic systems, and we shall accordingly illustrate these

synergies.

We have evaluated various traditional segmentation techniques to highlight the factors that
influence the associated performance and the shortcomings. Based on the evaluation, we
proposed a hybrid solution that combines wavelet-based enhancement and a simple threshold
with object detection model to locate the region of interest (GS), which is less complicated

problem than locating ovarian tumour masses. Identifying the causes of the limitations of




the threshold-based Ultrasound ovarian scan segmentation, provided convincing arguments

to the investigation innovative machine learning based trainable segmentation solutions.

The machine learning approach (Neural Network (NN) and Support Vector Machine (SVM))
for segmentation and object detection has been used in different applications, i.e. face detec-
tion. This thesis demonstrates the suitability of this approach for ultrasound image segmen-
tation. We designed an effective multi-level segmentation of the Gestational and Yolk Sacs
using texture-based trainable models for pregnancy assessment from ultrasound images. To
avoid the over and under-segmentation problems resulting from trainable segmentation, we
further tweaked this approach in two ways:1) a trainable Region growing scheme, and 2) an
object detection model based on the Cascade model. The thesis also demonstrates that com-
bining this approach with the watershed transform helps successfully segmentation of
unilocular and multilocular cysts from ultrasound images of ovarian tumours, which is es-
sential for identifying tumour type. Finally, and to demonstrate the effectiveness of the pro-
posed segmentation techniques, different texture-based features were extraction to identify
the abnormality for both a pregnancy and ovarian tumour. The thesis argues that machine
learning diagnosis using texture features has great potential to capture the signs of abnor-
malities in US images for both pregnancy and ovarian tumour. Experimental results on ovary
ultrasound images (for both Miscarriage and Ovarian cases) demonstrate the effectiveness
of the proposal solutions in producing accurate measurements as well as identify the abnor-

mal cases in early stage.
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Chapter 1. Introduction

Medical imaging techniques include a variety of modalities such as ultrasound (US), Magnetic
Resonance (MR), conventional X-Ray, computer tomography (CT scan), etc. These techniques
are based on result of scanning tissues, organs and bones using, respectively, ultrasound waves,
X-ray radiation, and magnetic and radio waves that passes through the body parts for medical
examination. The outcome are images that clinicians and radiologist can use to assess and di-

agnose abnormalities, if any, and decide the nature of treatments.

Ultrasound imaging is arguably the most commonly deployed medical image modality, and
has been used for over half a century. Due to its safe and non-intrusive nature, this imaging
modality is frequently used in the field of gynaecology, particularly during the period of preg-
nancy for checking the baby’s growth (Michailovich and Tannenbaum 2006). Much of the
existing research has shown that ultrasound imaging has little or no obvious negative effects
on child hearing, cancers and birth weight (Torloni, et al. 2009). With ultrasound imaging tech-
nology, the evaluation of gestation within the first three months of pregnancy usually help
confirm the presence and the number of the pregnancies, together with the location and well-
being of the embryo. Ultrasound scan of the ovary is also used as a powerful non-intrusive tool
for examining suspicious masses for gynaecological abnormalities including early diagnosis of
ovarian cancer. This thesis is generally concerned with the analysis of ultrasound images for
both problem domains aiming to exploit advanced machine learning technologies to provide
innovative solutions for the growing challenges to the healthcare systems. Our reported re-
search activities are more focussed on the analysis of US scan images of the gestational sac for
diagnosing miscarriages, but will also report on implications of those investigations for the

analysis of US scan images of ovarian tumours for signs of malignancy.

1.1 The Specific Research Problem Under Investigation

Pregnant women are routinely examined in the first trimester of pregnancy and an ultrasound
scan of the ovary is used as an initial assessment of the state of pregnancy. This scan is meant
to examine the Gestational Sac (GS), in two scanning planes (sagittal and transverse planes).
The first element of test is to measure the size of the GS as an indicator of its state of health.
The Mean Sac Diameter (MSD) of the GS is generated from three diameters measured in the
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sagittal and transverse planes (See Figure 1-1-A). MSD is a frequently used measure of the GS
size, indicating if the early pregnancy is normal or at risk of miscarriage (empty large GS with
MSD > 25mm. See Chapter 2 for more details). Currently, in clinics and hospitals, GS meas-

urements are done manually by the ultrasound scan operator.

KCS-9-0/08 MI'10  QCCH [PAU Gynoe US'
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A) MSD measurements for the pregnancy case B) Ovarian tumour mass

Figure 1-1: Shows the manual measurement for both pregnancy and ovarian tumour: A) shows the
MSD measurement for sagittal and transverse planes and B) ovarian tumour mass includes multi-
locular cyst

Another closely related topic of research in the gynaecology field is that of the accurate and
early diagnosis of ovarian cancer. According to the first prospective study in (Braem, et al.
2012), multiple miscarriages are also associated with an increased risk of ovarian cancer. Nev-
ertheless, detecting ovarian cancer in early and treatable stages still remains an arduous task
(NHS 2015), and hence has attracted a lot of attention from researchers in different disciplines.
A B-mode ultrasound imaging can depict morphological features including unilocular or mul-
tilocular cysts, presence of fluid, solid tissues, internal wall structures, papillary projections
and acoustic shadows. A superimposed Doppler image on top of a B-mode image reveals blood
flow information within tumour areas, offering additional assistance in tumour diagnosis. The
results of combining these different types of information enable clinicians to determine the
seriousness of the tumour (Sayasneh, et al. 2015) (Sayasneh, et al. 2016). Figure 1-1-B shows

ovarian tumour mass includes multilocular cyst.

Therefore, we are interested in common procedures needed for the analysis of ultrasound im-
ages for both problem domains. Although the primary focus of our research is the analysis of
US scan images of the gestational sac for diagnosing miscarriages, the outcome of such re-
search will also be tested for its impact on the analysis of US scan images of ovarian tumours

for signs of malignancy.




The most common task in both areas of research is the segmentation of the Region of Interest
(ROI). In the case of pregnancy, this relates to the automatic detection of the GS, whereas in
the case of other gynaecological abnormality diagnosis, including ovarian tumour, it is con-

cerned with detecting the suspicious masses.

Manual segmentation of the ROI in these cases is conducted by well-trained gynaecologist and
radiologists. Manual segmentation may involve multiple subjective measurement decisions
that will increase the possibility of inter- and intra-observer errors. Errors in judging miscar-
riage cases in early pregnancy and ovarian tumour can have severe consequences in terms of
both missed opportunities (false negatives) and false alarms (false positives). In particular,
some clinical practitioners have argued strongly for intolerance towards ‘false alarms’ (Bourne
2016) (Abdallah, Daemen and Guha, et al. 2011). Therefore, developing automatic solutions
add value in terms of speeding up the process of analysis and reducing intra- and inter-observer

variation problems.

Recent advances in machine learning is an incentive to automate this process for the sac of
enhancing efficiency of US scan image analysis and reducing the burden on healthcare systems.
Automatic medical image analysis, in general, is hindered by a variety of factors relating to the
nature of imaging modality as well as the variation of the quality of scan images which in turn
present difficult technical challenges (MclInerney, et al. 2002). For ultrasound images, although
various techniques have been developed for segmenting ROI and a lot of progress has been
made (Meiburger, Acharya and Molinari 2017), the existing solutions are still hindered by se-
vere technical difficulties (at least until now). These challenges can be summarised as follows:

o The shapes of soft tissues inside the human body are not only complex but also highly
variable due to different displacements of the human body when the image is acquired.

e The ROI may be of an irregular shape. The irregularity of the ROI makes the filtering
of non-ROI objects based on geometry features extremely difficult.

e Ultrasound images tend to be low in contrast, with blurry boundaries to the different
objects present (Noble and Boukerroui 2006). The pixel intensity values in the bound-
ary region are quite similar, which makes it difficult to identify the precise border be-
tween the ROI and the background (Over-segmentation problem), even for trained hu-
man operator. Traditional boundary-finding algorithms based on gradient information
will fail in such cases.

e Inhomogeneity within the ROI means that it may contain areas of different textures

within its boundary. Such inhomogeneity within the ROI itself may in some confusion
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between the actual ROI and its background areas outside the ROI, causing a problem
known as “under-segmentation”, i.e., parts of the ROI are considered to be the back-
ground and are thus erroneously excluded from the final segmentation results.

e Like many other types of medical images, ultrasound images are inevitably noisy. Cer-
tain noise types are multiplicative in nature, making them hard to remove using con-
ventional filters. On the other hand, it is highly likely that a selected filter not only
removes the noise but also crucial details of the image that may be distinct for the object
within the image.

e Shadow is a frequent phenomenon occurring in ultrasound images. In the problem do-
mains of our research interest, shadows frequently occur in the images of benign tu-
mours. Unfortunately, shadows are normally of irregular shape, and they usually lay
across the ROI and its background, making the task of segmentation even more com-

plicated.

Traditional approaches to automatic segmentation i.e. threshold, watershed transform, region
growing, and edge detection-based techniques are adversely affected by a number of factors
including quality of the ultrasound image, poor and blurred ROI border. Based on the evalua-
tions and investigations, we found that those factors have made the segmentation task difficult
due to three problems1) missing the correct ROI, 2) over- segmentation and 3) under-segmen-
tation. Therefore, our investigations explore the alternative ways of using trainable approaches

in machine learning to determine gynaecological anomalies, thus supplementing domain expert

diagnostic decisions.

The next step in automatic imaged-based diagnostics relates to feature extraction and the use
of appropriate classification tools to determine the nature of the relevant abnormality. Two type
of features have been extracted in this step, first, the morphological features (automated the
existing manual measurement i.e. MSD measurements). Second, image texture features of the
segmented ROI such as the LBP features. The texture of ultrasound images has been carried
out in many types of research to characterise the echo-texture of B-mode images quantitatively.
The principles of analysing the texture of B-mode ultrasound imaging are, if disease procedures
affect the structure of the tissue, the tissue will reflect a changed in ultrasound signal, which
will give different texture features value to the normal tissue (Morris 1988). Based on that, it
is expected that texture features derived from abnormal and normal tissues will be different.
Therefore, this work will be focused on two points to identify the miscarriage cases in early

stages based on the texture information. First, extracted the texture features from ultrasound
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images of GS offer any values for diagnosis of miscarriage cases besides MSD. Second, can
such feature vectors help in confirming MC cases (MSD>25mm), i.e. offering any added value.
Two references points of diagnosis ground truth have been used: (a) Diagnosis on presented

scan, and (b) ultimate diagnose.

Finally, those features are fed into the classifier to identify the abnormality of the miscarriage
as well as the ovarian tumour type. The success or failure of automatic segmentation could
have significant impact on reliability of automatic decisions. The choice of the appropriate
classifiers is influenced by many factors including the dimensionality of the features, the size
of available samples, as well as robustness against variations in feature/image quality. Gener-
ally, image/feature quality is dealt with by image enhancement and de-noising procedures. In
general, Ultrasound images suffer from speckle noise and most researchers use blanket speckle
de-noising, but we shall test the usefulness of such an approach and develop an adaptive alter-

native. We shall use different classifiers for different tasks.

1.2 Research Aim and Objectives

The overall aim of this thesis is to develop and test the performance of novel automated ma-
chine learning solutions that analyse B-mode ultrasound images of the GS and the ovary to
detect and classify gynaecological anomalies that have health implications for women. In the
context of a Computer-aided diagnosis (CAD) system that explained in detail in chapter 2 (see
section 2-1), the research specifically focusses on a particularly crucial and difficult step in this
system: segmentation of ROI. The relevant research questions are (a) whether it is feasible to
automatically segment the ROI for accurate measurements of morphological features from the
input images, and what the limitations with the existing methods are, and (b) whether the seg-
mented ROISs are effective for detecting miscarriage cases and for identifying benign and ma-
lignant ovarian tumours. To address these research questions, the following research objectives
have been set:

1. Investigating the problems and difficulties in segmenting the GS and Yolk Sac (YS) from
B-mode ultrasound images, and developing automated methods for effectively locating
and measuring the GS and YS. Successful outcomes of this aspect of research will lead to
the development of a fully automated solution for measuring GS and Y sizes and conse-
quently making correct predictions about the state of pregnancy (miscarriage case (MC)
versus pregnancy of unknown viability (PUV)). The technical challenges faced by this

aspect of the research is the problem of over- and under-segmentation of ROIs (see section
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1-1). We are particularly interested in trainable approaches for segmentation rather than

the more conventional threshold-based solutions.
2. Investigating the suitability of the developed and tested solutions for Objective 1 in another
problem domain, i.e., segmentation of ovarian tumour masses from B-mode ultrasound im-

ages, and developing more advanced solutions in overcoming limitations of the previous

solutions for extracting tumour masses. Ovarian tumour structures are known as being more
complex due to the similarity between the textures of the ROI and those for the background
area of the image. This complexity leads to difficulties in isolating the correct tumour areas.
We are again particularly interested in using trainable approaches to solving difficult cases
and combining these trainable approaches with more conventional region-growth methods.
Despite the anticipated difficulties, successful outcomes of this aspect of research can be

used to evaluate the extent to which the underlying principles can be of assistance in solving

another complex problem in a completely different domain of application, and to make
significant progress towards automated solutions for ovarian mass diagnosis.

3. Investigating the effects of speckle noise in B-mode ultrasound images towards accurate

segmentation of ROI and correct classification of gynaecological anomalies, and develop-

ing effective solutions to suppress this type of noise so as to improve segmentation and

p—

diagnosis accuracy. The effective isolation of the speckle noise and reduction of its levels |
using appropriate filtering techniques and approaches is important in enhancing the input I
ultrasound images without losing key features. We are particularly interested in adaptive |
filtering solutions that can determine how much noise suppression should be applied to n
different local regions of the image. Successful outcomes may further improve the out- |
comes of the previous two objectives, providing a better understanding of the effect of de-

noising speckle noise.

4. Evaluating the effectiveness, and the extent of the effectiveness, of all proposed solutions i
within a CAD system context by (a) identifying miscarriage cases during the early stages
of pregnancy based on both morphological features and texture features, and (b) classifying ‘

benign and malignant ovarian tumours. In other words, the effectiveness of the proposed

solutions can only become meaningful in the CAD system context of decision making. In
the evaluation work (a), we are particularly interested in knowing if the texture features

extracted from the successfully segmented GS can offer any additional diagnostic value to

identifying cases of miscarriage in addition to known morphological features such as MSD.
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It is necessary to emphasise the importance of the segmentation step in a CAD system. Effec-
tive segmentation of ROI is crucial for the automation and diagnostic accuracy of the CAD
system. Successful segmentation should facilitate the complete automation of the CAD system
(Shan 2011), which in turn minimizes the effects of the operator-dependent nature inherent to
ultrasound imaging (Hwang, et al. 2005), and further makes the diagnosis process reproducible.
The accuracy of segmentation is essential to extracting crucial geometry and texture features
within the boundary of the segmented ROI to discriminate abnormalities from normal cases
(Shan 2011).

1.3 Research Methodology

As described in Section 1.2, the main aim of this thesis is the automated diagnosis of gynaeco-
logical anomalies. Although the current research focusses on the issue of ROI segmentation, it
will also be concerned with various aspects of computer vision and machine learning. Any
proposed ROI segmentation methods will be tested and evaluated against the CAD system
framework. In other words, the research is not only about how closely the segmented ROIs
match the actual objects of interest but is also about the extent to which ROI segmentation
results affect the outcome of the final diagnosis. It is for this reason that we need to reiterate

our research focusses throughout a CAD workflow, from start to end.

1.3.1 Positioning the Research within a CAD System Workflow

Figure 1-2 positions this research within the context of a CAD system. This research on the
segmentation of ROI serves two purposes: first, the segmented ROI is automatically deter-
mined to obtain morphological features such as the MSD of the GS size during early pregnancy,
and further whether a given cyst is unilocular or multilocular; these features may then be used
for diagnosis. This form of computer-aided diagnosis is called CAD1 in Figure 1-2. Second,
the segmented ROI is passed to the next step of a fully automated CAD system, i.e., feature
extraction, to obtain image-based texture features for classification. This route is called CAD2,

as shown in Figure 1-2.

Usually, ultrasound images are corrupted by random noise during data acquisition. Such noise
can make the segmentation task extremely difficult. For this reason, image processing filters
should be applied to remove such noise and artefacts, after which the images are enhanced to
highlight the ROI in terms of its border and/or the texture inside its borders. The research pre-

sented in this thesis also considers the issue of noise removal for more accurate segmentation




of the ROI, which will influence the extraction of effective features and, eventually, more ac-

curate diagnosis results.

Various traditional methods, such as thresholding, region growing, etc., are available for seg-
menting ROI. As mentioned in Section 1.1, it has well been recognised in the literature that
automatic segmentation of ultrasound images is a complex, challenging and domain-specific
task, and still an open problem for research. This is precisely the focal point of this research;
we attempt to demonstrate that automatic segmentation, when using more sophisticated meth-
ods, is feasible and will hence expand the understanding of the topic beyond the scope of the

current state-of-the-art.
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Figure 1-2: Positioning of the Research in a CAD System




Both automatic diagnosis, using image-based texture features, and manual diagnosis, using
morphological features, rely on the accurate segmentation of the ROI. The more accurate the
segmented ROI is, the more precise the features so extracted. Unfortunately, there is no solid
ground truth to be used as a reference against which to test the precision of the extracted fea-
tures, particularly the morphological features of the segmented ROI. The manual measurement
results cannot be used as the ground truth because of intra- and inter-observer variations. Alt-
hough the automatic determination of the segmented ROI must be correlated with an observer’s
manual measurements, the best way of testing the effectiveness of such measurements is to

refer to the accuracy rates in classification.

The final classification step is, in fact, not really within the scope of this research. However,
the classification step serves as an excellent means of evaluation of this process by demonstrat-
ing the effectiveness — or otherwise — of the automated segmentation of ROIs. For simplicity,
only binary classification is considered for separating normality from abnormality in this re-

search.
1.3.2 Main Research Focuses

Figure 1-3 outlines the main area and topics of this research in detail. At the pre-processing
stage, besides some simple image preparation work such as trimming away the area outside the
fan region, the main focus of the investigation is about how to suppress the speckle noise and
enhance the image while retaining the salient tissue boundaries within the bounds of the image.

The aim is to accurately locate structural boundaries and the positions of any structures.

In this research, the trainable approach to ROI segmentation using machine learning techniques
is of particular interest. This is based on the hypothesis that the conventional threshold-based
methods may be unable to deal with various uncertainties in ROI boundary regions, and hence
only a trainable approach that builds a classification model to separate pixels inside the ROI
from those outside might be considered feasible, provided the training examples are sufficient.
The thesis will investigate the limitations of threshold-based methods, develop a trainable
method for segmentation, and then compare with the threshold-based methods and verify if the
original hypothesis is valid.

The principle of a basic trainable ROI detection algorithm is to scan through the same image
many times, each time with a new detection window of fixed size. Even if an image should

contain one or more RO, it is obvious that an excessively large number of the evaluated sub-

windows will be negatives (i.e., non-ROI). Furthermore, the sizes and shapes of the ROIs are
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different from one image to another, making it difficult to capture the genuine ROI though the
use of a fixed-size window. This research will also investigate trainable object detection tech-

niques to further enhance the performance of the basic trainable segmentation methods.

It must be acknowledged that ROI segmentation can be a complex process. One round of seg-
mentation based on any method may not deliver the correct ROI due to similarities between
the actual ROI and certain regions in the background area of the ultrasound image, creating
false positive ROIs. This may well be a characteristic that is specific to ultrasound images, and
that not observed for other types of medical imaging. Therefore, some forms of post-processing
after an initial ROI segmentation may be unavoidable. In this post-processing step, novel solu-
tions need to be developed to reduce the number of false positives found by using additional
texture information of both the ROI and the background, by estimating ROI borders more pre-
cisely and using geometric properties of ROIs and non-ROIs. We acknowledge the utility in
this regard of prior knowledge about the application domains in developing solutions to solve
specific problems with the applications. At the same time, we also attempt to limit the use of
such knowledge in order to maintain the generality and applicability of the proposed solutions

across different application domains.
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1.4 Evaluation Issues

Testing the performance of any automatic pattern recognition, segmentation and medical diag-
nostic scheme relies heavily on the choice of dataset(s) and the use of appropriate evaluation
protocols. It is therefore essential that the sources of such datasets are recognised in terms of
their credibility and relevance to the current work. We obtain two data collections for the two
problem domains in this research, both of which are from reputable and established institutions.
All patients signed a written informed consent form to allow the use, and analysis of their data
for research purposes. Every study needs an ethical approval by a recognized body or an insti-

tution. This study, in particular, is approved by the School of Science & Medicine of the Uni-

versity of Buckingham.
1.4.1 Static B-mode Ultrasound Images of Gestational and Yolk Sacs

The images taken during the study were taken at different times during the pregnancy in the
first trimester. Dr Jessica labelled the collected images in the Early Pregnancy Units. The
collections were made in the UK between 17/6/2013 to 16/6/2014 and kept at the Imperial
College Healthcare Trust in London. In order to ensure confidentially was obtained, all the

identities of the participants were removed from the stored images.

The images were obtained at different times from different machines in three batches. The first
batch was in a collection of 94 ultrasound images of which 79 of them were from PUV cases
while the remaining 15 images were of the known cases of miscarriage. The second batch of
sample datasets collected independently had a total of 90 images of which 78 were PUV cases
while the rest were cases of known miscarriage. An empty GS was included in all the images
of the first two batches. Third batch includes 15 images and these images have a YS inside the
GS. Unfortunately, for batch three we did not get the labels. Table 1-1 summarises the details
of the three batches of data.

Table 1-1: Data Collection for the Early Pregnancy Application

 Classname  No.ofImages  No. of Images | No."afimagé;‘%“ Total |
(based on Presented Scan) = (First Batch) = (Second Batch) (Third Batch) E i
PUV 79 78 - (57 |

MC (Miscarriage) | 15 12 ¥ : 27 ;
Total 94 90 15 | 199
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For the images in Batches 1 and 2, each image consists of two views of a GS from the sagittal
and transverse planes. All the images in the two batches are provided with GS diameter meas-

urements (d1, d2, d3) and the MSD values in the same Excel file.

Pregnancy was confirmed via a two-stage procedure. Once a pregnancy test produced a positive
result, a scan was taken, especially if the pregnant woman reported pain in the abdomen or any
bleeding, as well as to check for any irregularities. The results of the ultrasound scans were
used to inform the preliminary diagnosis. In the PUV and miscarriage cases sampled in this
study, pregnancy was determined based primarily (present diagnosis) on the MSD of the GS.
In the case of miscarriage, no additional scan was carried out, but if a miscarriage was not
confirmed, further testing was undertaken after a further fourteen days (ultimate diagnosis),
including a blood analysis. In our approach, we will use the two steps as ground truth to inves-
tigate the effect of the texture features in both cases. Table 1-2 lists the two kinds of labels for
the images. It also shows that numerous cases initially classified as PUV were subsequently

reclassified as miscarriage cases, but some images do not have the ultimate diagnosis label.

Table 1-2: Present Scan Diagnosis vs Ultimate Diagnosis

Class name Diagnosis on presented scan Ultimate diagnosis
Not Miscarriage 157 . 30
Miscarriage = i) D B R (]

Total TSR T N A 131

1.4.2 Static B-mode Ultrasound Images of Ovarian Tumours

The images used in the study were results of the ultrasound scans conducted on women who
participated in the International Ovarian Tumor Analysis (IOTA) studies (Dirk Timmerman
1999). These images were mainly ovarian tumours. The participants of this study were women
who had undergone surgical removal of the tumours between November 2005 to November
2013 and had known the histological diagnosis. This was the inclusion criterion used for the
study. Ethical considerations were taken into account in seeking permission and this included
a written in-formed consent form that allows the collected information to be used for research
purposes and data analysis. Permission has also sought the University of Buckingham’s School
of Science & Medicine. Which granted the researchers and ethical approval to conduct the

study.
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From the IOTA database, a total of 187 US images were retrieved from the results of 177
anonymous patients (Astraia software gmbh, Germany). This database was accessed at the Gy-
naecological Ultrasonography Department of Campus Gasthuisberg, KU Leuven, Belgium. In
this case, for 10 patients, there were an additional 10 images with another representative ROI.
This reflected the final histopathology. The image mainly majored on the surgically removed
tumours and presented them in form of a 2D B-mode scan by ultrasound. Among the 187 ul-
trasound images, 112 of the images were from the benign tumours while the rest were malig-
nant tumours. Each of the used images was selected by Dr Jeoren Kaijser of the KU Leuven

Hospital and gave a clear representation of the final histopathology.

1.5 Thesis Contributions

The following is a summary of the main contributions achieved in this research to overcome
the limitations of existing ultrasound segmentation techniques (in miscarriage and ovarian

cases).

1. Developing a new approach to automatically segment the GS from a static B-mode image
by exploiting its geometric features for early identification of miscarriage cases. To accu-
rately locate the GS, the proposed solution uses wavelet transform to suppress the speckle

noise by eliminating the high-frequency sub-bands and thus prepare enhanced images. This

was followed by a trainable segmentation step to locate the GS through the following stages.

First, an initial thresholding is used to binarize the image, followed by filtering unwanted
objects based on their circularity, size and greyscale mean. A Region Growing technique
was then applied in post-processing to finally identify the GS.

2. Surveying and evaluating different speckle noise filtering techniques reported in the litera-
ture to enhance ultrasound images such as the Wavelet transform filter, and the Median
filter. We illustrate and analyse the effects of the filters on the segmentation and the feature
extraction stages.

3. Proposing a novel multi-level trainable segmentation method to achieve three objectives:
1) segmenting and measuring the GS; 2) automatically identifying the stage of pregnancy;
and 3) segmenting and measuring the YS. The first-level segmentation employs a trainable
segmentation technique based on the histogram of oriented gradients to segment the GS
and estimate its size. This is followed by the automatic identification of the stage of preg-

nancy based on histogram analysis of the content of the segmented GS. The second-level
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segmentation is used thereafter to detect the Y'S and extract its relevant size measurements.
A trained neural network classifier is employed to perform the segmentation for both levels.

4. Proposing a new solution to segmenting ovarian masses automatically from ultrasound im-
ages. Initially, the method uses a trainable segmentation procedure and a trained neural
network classifier to accurately identify the positions of any masses and cysts. The borders
of the masses can then be appraised using a watershed transform.

5. Proposing a new Trainable Region Growing model to enhance the traditional RG using
texture features and ANN.

6. Developing a hybrid trainable model to segment the ovarian tumour mass by combining
the Cascade model with the trainable segmentation method in order to address the over-
segmentation problem.

7. Using machine learning as a new abnormality signature to complement the MSD-based
decision to identify the miscarriage cases from the PUV. The new signature was based on
training commonly used texture features within the segmented ROI to be used as a model
for diagnostics.

8. Proposing a new adaptive model to enhance the segmented ovarian ultrasound image and
reduce the overlap between the texture feature for benign and malignant tissue. This work

has been joint done with Mr.Dhurgham Al-Karawi.

1.6 Thesis Layout

The rest of the thesis is organised as follows.

Chapter 2: This chapter presents background information about medical imaging, ultrasound
scan images, and detailed information about miscarriage and ovarian tumours. In addition, it

gives a technical background of different image processing techniques related to this research.

Chapter 3: This chapter reviews the existing work in the literature on extracting regions of
interest in medical ultrasound images of ovaries in relation to pregnancy and ovarian tumours.

Additionally, an evaluation of methods used to evaluate the proposed methods will be given.

Chapter 4: In this chapter, we first evaluate existing speckle noise reduction techniques and
identify the best filter for both segmentation and identification; traditional segmentation meth-
ods will then be evaluated. Based on this evaluation, we propose a new segmentation method
that includes a number of stages to extract the ROI. This algorithm has been applied to extract

the GS from the ultrasound image.
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Chapter 5: Effective multi-level segmentation of the gestational and YS using texture-based
trainable models to tackle limitations that faced previous algorithms are proposed in chapter 3.
These limitations are presented at the beginning of this chapter. Furthermore, we have used the
trainable segmentation and watershed transform to identify unilocular and multilocular cysts

from ultrasound images of ovarian tumours.

Chapter 6: This chapter proposed solution in terms of enhancing the region growing, as based
on the neural network classifier and texture features, and justifies why this enhancement is
necessary. Then, a method is proposed to improve the trainable segmentation and make it suit-
able for the ovarian tumour cases that show similarities between the texture of the ROI and the

background.

Chapter 7: Evaluate the effectiveness of texture-based feature vectors from ultrasound images
in identifying miscarriage cases in early pregnancies, as well as propose an adaptive speckle
noise model to reduce the speckle noise present in ovarian ultrasound images to enhance the

texture feature and reduce the overlap between malignant and benign tissues.

Chapter 8: Concludes the thesis with a summary of the major findings of this research and

highlights potential future research directions.
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Chapter 2. Medical and Computational Background

This chapter is devoted first to describing the basic background of medical imaging and prob-
lem domains. It will then briefly introduce various types of ultrasound imaging systems and
describe their importance in detecting and diagnosing gynaecological abnormalities and dis-
eases. The chapter will then present an overview of technical knowledge in image processing
and machine learning, and provide a general and broad review of the current technological
development for the problem domains that are relevant to this research. Overall, this chapter
serves as a primer for the understanding of the thesis work. Although, references to relevant
literature are provided throughout this chapter to support the specific information provided,
more detailed reviews of recent start-of-the-art developments for our specific research objec-
tives will be given in the next chapter and whenever needed in each later key chapter as intro-
ductions to our own proposed solutions to each specific problem. Readers who are familiar

with the problem domains, medical image processing and machine learning can skip this chap-

ter.

2.1 Medical Imaging and Medical Image Analysis: An Overview

Medical imaging refers to technologies that are used to view the human body in order to mon-
itor, diagnose, or treat medical conditions (Bushberg, et al. 2002) (Dhawan 2011). The main
goal is to provide an internal picture of bodily structures in a way which is as non-invasive as
possible (WiseGeek. 2013). Medical imaging has become one of the most common methods
for medical laboratory tests, and has been undergoing a revolution over the past decade that
has shown rapid development, greater accuracy, and increasingly less invasive devices (Kasban,
El-Bendary and Salama 2015).

The basic concept of a medical imaging system is shown in Figure 2-1. It consists of a source
of energy that can penetrate the human body at one end and a sensor that can receive signals at
the other. The energy is passed through the body, where it is absorbed or attenuated at differing
levels according to, for instance, the densities of the tissues and atomic species it encounters,
creating signals that are detected by special detectors or sensors compatible with the energy
source. The detected signals are then mathematically manipulated to create an image in two or
three dimensions (Kasban, El-Bendary and Salama 2015).
17
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Figure 2-1: The basic concept of a medical imaging system (Kasban, El-Bendary and Salama

2015).

Medical imaging is performed in various modalities that are characterised by the source of
energy. Commonly used modalities include MRI, CT, and ultrasound, (Sharma and Aggarwal
2010). While each type of imaging modality has its different uses, it is not always the case that
one kind of imaging is better than another. Which type of medical image modality should be
used depends on the medical condition and diagnosis besides the nature of the examined body
organ/tissue. Figure 2-2 illustrates some of the various types of available and widely used med-
ical imaging devices and the images they produce. While some devices such as US and MR
capture images of soft tissues and fluids, others such as X-ray depict hard tissue and bone
structures. So, all image modalities have their own strengths and limitations. No single medical
image modality can deliver all the details required for diagnosis and treatment of clinical con-
ditions (Bushberg, et al. 2002) (Dhawan 2011). Most, if not all, of the image modalities men-
tioned above are already in practical use in almost all medical centres and hospitals. The growth
of such technology has been extensive over the last few decades and has furthered our compre-

hension of disease aetiology, progression and effective treatment.

Medical Image
Modalities

Figure 2-2: Examples of different types of medical images
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The medical imaging systems that are used to help the associated expert to make a correct
diagnosis have been significantly improved over the years. Until recently, medical images were
examined solely by radiologists and clinicians for a better determination of patient’s injuries,
state of pregnancy, or better understanding of exhibited abnormal symptoms. However, relying
entirely on human experts to carry out such intensive analysis and diagnosis tasks is adding
huge and growing burden on the healthcare system and greatly limits and undermine the ability
to efficiently make appropriate, accurate decisions. First, access to well-trained human medical
experts with appropriate skills and expeﬁence are extremely limited in both developed and
developing countries. Appropriate training is extremely costly and takes long times. Second,
subjective decision-making may often result in inter— and intra—observer differences in the de-
cision outcomes. Inter—observer differences represent the different outcomes achieved by dif-
ferent observers when scrutinizing the same subject matter, whereas intra—observer differences
refer to the different outcomes the same observer makes when scrutinizing the same subject
matter repeatedly. Diagnostic errors do not only result in adverse impact on patients health/life
but are becoming the subject of growing litigations that result in depleting healthcare systems
finances. Both types of inconsistent decision making can be greatly reduced by the adoption of
automatic or semi-automatic machine-based systems known as computer-aided diagnosis
(CAD) systems. This approach not only help reduce the pressure on healthcare services but can
greatly benefit from using advanced computer vision and machine learning technologies

(Otoum 2013). Figure 2-3 outlines the major steps of a typical image processing CAD.

Input Image Diagnosis Outcome
|
v it

i | Pre-processing || Segmentation || Feature Extraction |[,| Classification
i
L

Figure 2-3: Block diagram of the major steps of CAD

As shown in Figure 2-3, a typical CAD system consists of three or four major processing steps.
The pre-processing step suppresses or removes random noises from the input image that was
included during the data acquisition and enhances the image by highlighting the image details
to enable extraction of useful features from the image at a later time. This step often requires
the use of suitable and sophisticated image processing functions to achieve the set objective.

After pre-processing, some form of image segmentation is normally performed to take out the
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relevant area of the image, known as the region of interest (ROI). This is because not all parts
of a given input image are of interest; keeping the irrelevant parts in an image can affect the
performance of the system at some later step. This step also requires sophisticated solutions
based on computer vision and machine learning techniques because of the technical challenges
encountered when the border of such a ROI is difficult to identify. The feature extraction step
processes the segmented ROI image to extract quantitative descriptive data details that reflect
the characteristics of the organ that the ROI depicts. The technical challenges at this step are to
find useful features whilst at the same time limiting their number as appropriate. The final step
in a CAD system is to use the features extracted from the various training images to build an
effective model of classification for separating normal cases from medical anomalies of various
stages and types. This step requires the use of machine learning techniques, particularly suita-
ble supervised learning techniques, in building such an effective classification model. With
machine intelligent solutions, a typical CAD system aims to address two major issues: observer
limitations in relation to constrained human visual perception, fatigue or distraction, and lim-
ited knowledge and experience, and the complexity of the clinical cases where structures of

medical anomalies overlap with structures of healthy cases (Lemaitre, et al. 2015).

2.2 Ultrasound Imaging for Gynaecological abnormality detection

Among medical imaging modalities, the ultrasound image is currently one of the most im-
portant, widely used, and multipurpose imaging modalities in medicine. The most common use
of ultrasound imaging system is in detecting gynaecological abnormalities (Geirsson and
Busby-Earle 1991) (Chan and Perlas 2011). An ultrasound is a “cyclic sound pressure with a
frequency greater than the upper limit of human hearing (20 kHz)” (Ambedkar 2012). An
ultrasound scan is used to create images of soft tissue structures, such as the gallbladder, ovary,
liver, kidneys, pancreas, bladder, and other organs and parts of the body. Images on ultrasound
are produced using a small probe that is in contact with the body through a water-based gel.
This hand-held probe transmits sound waves into the body, and then collects data based on the
intensity of the reflected echoes. This data is then interpreted by the machine to display a

grayscale image.

In this thesis, we focus on the diagnosis of abnormalities in the major parts of the female re-
productive system: first, miscarriage identification based on 2D B-mode ultrasound imaging of

the gestational sac and, second, ovarian tumour diagnosis based on 2D B-mode ultrasound

20

P —




images of the ovary. For this reason, we need to know about abnormalities of ovarian tumours

and the gestational sac.
2.2.1 Early Pregnancy and Miscarriage

A regular pregnancy takes 40 (+ 2) weeks. The first indicator of pregnancy is the absence of
the menstrual period. Pregnancy tests, which are conventionally conducted using a urine sam-
ple, capitalise on the presence or absence of human chorionic gonadotropin (HCG) (Doubilet,
et al. 2013). In situations where pregnancy tests of this kind yield positive results, an initial
scan may be conducted to identify the GS’s age and, based on this, to calculate the birth date.
As can be seen in Figure 2-4, the structural anatomical elements of early pregnancy are as
follows: (i) the GS is the first visible structure in the very early stages of pregnancy (Figure
2-4-B); and (ii) the yolk sac is a ring-shaped structure, which is the first structure to be identi-
fied within the GS (see Figure 2-4-C) (Nebraska 2013). An embryo will be seen along with the
yolk sac, which will develop foetal heart activity. Failure to identify foetal heartbeat in an em-
bryo that measures more than 7 mm in length is diagnostic of miscarriage (Nebraska 2013).
Figure 2-4-D shows the embryo attached to the YS inside the GS. The initial structural element
that is observable inside the GS is the YS. At the point where the MSD of the GS is 5-6 mm,
the YS can often be observed by employing trans-vaginal ultrasound (UIDELINE 2005).

Figure 2-4: Examples of ultrasound images taken at the very beginning of a pregnancy until devel-
oping the embryo (A) The anatomical structures of the early pregnancy: A) Gestational sac, (GS),
B) Crown-rump length (CRL) of the embryo, C) Amniotic sac and D) Yolk sac

Statistical evidence reveals that a range of complications can occur during pregnancy, the most
prevalent of which is a miscarriage. In the UK, miscarriages figure reach nearly a quarter of a
million each year (Khazendar, Al-Assam, et al. 2014) (Khazendar, Farren, et al. 2015). As
reported in (Giakoumelou, et al. 2015), around 20% of all pregnancies are miscarried prior to
24 weeks, and the majority of these occur in the first trimester (namely, within 12 weeks of

conception).
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Gestational assessments conducted over the course of the first-trimester focus on the confirma-
tion of fundamental details regarding the pregnancy, including its location, viability, and
whether it is a twin (or higher order) pregnancy. An assessment of the dimensions of the GS
and the YS provide information about the probable gestational age of early pregnancy, where
such assessments are also valuable in diagnosing miscarriage (Preisler, et al. 2015). The mean
sac diameter (MSD) is generated from three diameters measured in the sagittal and transverse
planes (Ectopic pregnancy and miscarriage: diagnosis and initial management 2012). As the

pregnancy develops, the YS and foetus form, and their size and growth, along with the growth

of the GS, become indicators of wellbeing.

Different studies have considered that miscarriage should be declared based on different cut-
off values for MSD within the range of 13-25 mm (Bourne 2016) (Levi, Lyons and Lindsay
1990). As displayed below, the most up-to-date limits for miscarriage diagnosis can be defined
as (miscarriage identification cut-offs according to the NICE guidelines):

o Mean gestational sac diameter (MSD) of > 25 mm with no obvious foetal pole.

e Mean sac diameter of (GS) of > 25 and no embryo defined in YS.
In cases where an MSD of an empty GS greater than 25 mm is observed, a diagnosis of mis-
carriage can be safely made (Preisler, et al. 2015). If the MSD is less than 25 mm, a scan must
be repeated after two weeks. If the contents of the GS have not changed at this repeat scan, a
diagnosis of miscarriage can also be made. If a GS contains a YS and/or measurable foetus,
but foetal heart activity is not present, a repeat scan is recommended after one to two weeks
before a diagnosis of miscarriage can be made. Indicators (but not diagnostic criteria) of mis-
carriage include a smaller GS (or foetus) than anticipated, as based on the last menstrual period

or an enlarged yolk sac. Clearly, accurate measurements of the GS and YS sizes are vital.

2.2.2 Ovarian Cancer

Cancer starts when the cells in a part of the human body start to multiply in an out of control
manner. There are more than 100 types of cancer, including ovarian cancer (Cancer stats key
facts 2011). Ovarian cancer specifically refers to cancer cells starting from the ovary (cancer
cells from other parts of the body can also invade the ovary but are not considered to be ovarian
in nature). Symptoms of ovarian carcinoma do not appear until an advanced stage, and there-

fore ovarian cancer is known as the "silent killer". Over 7,400 women in the UK are diagnosed

with ovarian cancer each year (Cancer Research UK 2015). Ovarian cancer in the UK is the
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sixth most common carcinoma in females after bowel, breast, lung and womb cancer (Cancer

Research UK 2015) (American cancer society 2014).

Ovarian cancer is one of the more common forms of cancer, particularly in the post-menopause
population of women, and has the highest mortality rate of all gynaecologic cancers (Jeong,
Outwater and Kang 2000) (Fishman, et al. 2005). To date, the lack of specific associated symp-
toms has been the leading cause of death (Berek and Bast Jr 2003). The most important factor
in treating this “silent killer’ is to accurately characterise and determine the state, the stage and
even the type of ovarian tumour present. Correct classification is necessary to prevent unnec-
essary procedures, such as surgery, for those patients with benign masses, and to follow an

optimal treatment route for those with malignant masses.

Ultrasound imaging has become the most widely used method to identify and distinguish tu-
mour state (i.e., malignant from benign) and distinguish tumour types. A B-mode ultrasound
imaging can depict morphological features including unilocular or multilocular cysts, presence
of fluid, solid tissues, internal wall structures, papillary projections and acoustic shadows. A
superimposed Doppler image on top of a B-mode image reveals blood flow information within
tumour areas, offering additional assistance in tumour diagnosis. The results of combining
these different types of information enable clinicians to determine the seriousness of the im-
aged mass (Sayasneh, et al. 2015) (Sayasneh, et al. 2016). To gain a more accurate classifica-
tion of tumour types, researchers from the International Ovarian Tumour Analysis (IOTA)
group have created a series of model systems utilising sonography and other patient infor-
mation including Risk of Malignancy Index (RMI), Simple Rules, Logistic Regression models
(LR1 and LR2), and the most recent ADNEX risk model (Van Calster, et al. 2014). However,
all these models have their own, different levels of accuracy, and which are still considered to

be inferior to the expert opinion and decisions of the appropriate domain expert (Kaijser 2015).,

The Assessment of Different NEoplasias in the adneXa (ADNEX) model has recently been
developed by the IOTA group scientists. This model is able to differentiate between early and
late stage (II-IV) primary cancers, secondary metastatic cancers, borderline tumours and be-
nign tumours. The ADNEX model is based on six ultrasound parameters and three clinical
parameters that offer risk calculation with and without CA125. The six ultrasound parameters
used in the ADNEX model are lesion diameter in mm, solid tissue proportion, number of pa-
pillary projections, number of cysts (10 or more, yes or no), the presence or absence of acoustic
shadows and the presence or absence of ascites (Van Calster, et al. 2014). Validation of the

model was achieved using parameters collected by experienced ultrasound clinicians with a
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special interest in gynaecological ultrasonography, and who were equivalent in experience and
knowledge to UK radiology consultants (Education and Practical Standards Committee, Euro-
pean Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB)). The benefit
of this model is that it allows for effective patient triage due to its ability to identify tumour
type. As such, patients can be rapidly assessed and assigned to the most suitable management
pathways for their tumour type, whether that is surgery, conservative follow-up or treatment at
a specialist cancer unit. However, it is also beneficial to be able to identify the tumour malig-
nancy sub-type as less aggressive treatment options are available for early-stage ovarian can-
cers and borderline ovarian tumours, the significance being that less aggressive treatment often
allows younger women to retain their fertility. Identification of metastatic ovarian cancers

should, nevertheless, be treated in the same manner as primary cancer (Van Calster, et al. 2014)
(Sayasneh, et al. 2016).

To date, the image parameters that are vital to the diagnosis models for both miscarriage and
ovarian cancer diagnoses, working properly are extracted from the ultrasound image manually
by the gynaecologists. The inter- and intra-variations of the manual measurements can be a
source of misdiagnosis with the obvious dire consequences. Therefore, the objective of this
research is to locate the ROI and extract the measurements for those particular parameters au-

tomatically.

2.3 Computational Background

Medical images can be segmented and annotated either manually or automatically to charac-
terise specific parts of the images. Although different medical image modalities encapsulate
different features and have different objectives, they share some common problems in their
practical use. In general, medical images may lack visual clarity and contain different types of
noise. To extract useful information from such images, adequate image processing techniques
are needed. In the following subsections, a systematic review of the main image processing

techniques related to this research is given.

2.3.1 Pre-processing (De-noising)

There are various types of noise known to degrade images including: Gaussian noise, frequency
noise, impulsive noise and multiplicative noise (Mateo and Fernandez-Caballero 2009). In ul-
trasound images, the noise content is multiplicative and non-Gaussian in nature. A model of

multiplicative noise (Wu, Zhu and Xie 2013) (C. P. Loizou 2005) is given by:
JGi,j) =10, )) * NG, J) (2-1)
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where the noisy image J is the product of the original image I and the non-Gaussian Noise N,

where (i , j) represents the location of an image pixel.

Ultrasound imaging suffer from a specific noise type known as speckle noise, which is some-
what different from the above reasonably well understood noise types. It is due to reflection
and scattering of sound waves within the tissue (see Figure 2-5). In this figure, we can see
clearly the effect of the speckle noise on an object of interest. Speckle noise degrades tissue
texture, decreases the visibility of small amounts of contrast and resolution, and makes contin-
uous structures appear discontinuous (C. P. Loizou 2005). Speckle noise is generally more
difficult to remove than additive noise because the intensity of the noise varies with pixel in-
tensity in the image. Therefore, it is primary factors such as the above that limit the effective
application of image processing and image analysis. Accordingly, speckle de-noising will be

investigated in this thesis.

The main purposes of reducing speckle noise in the medical ultrasound image are to improve
the contrast between objects within the image with clearer borders such that the human inter-
pretation of the image content becomes easier. Speckle noise reduction can also serve the pur-
pose of pre-processing the image for automatic image processing tasks such as image segmen-

tation for ROIs (Tamilkudimagal and Kalpana 2011).

Figure 2-5: Illustrate the effect of speckle noise

In general, noise removal is a challenging task that is dealt with using a variety of spatial and
frequency domain filtering. In the spatial domain, statistics order filters (e.g. mean, median,
maximum, minimum, adaptive median, Harmonic and geometric means) are commonly used
to deal with some or all of the above types of noise, but the problem remain a challenge in the

case of severe level of noise. In fact, experience reveals that Speckle noise removal is far more

challenges for such approaches.
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Speckle noise in ultrasound images had been studied since the 1970s when investigators de-
scribed its statistical and fundamental properties (Abrahim, et al. 2012). In the literature, sev-
eral methods have been used to reduce the effects of speckle noise on ultrasound images (Sudha,
Suresh and Sukanesh 2009) (Karthikeyan and Chandrasekar 2011) (Mateo and Fernandez-
Caballero 2009) (Abrahim, et al. 2012) (Rabbani, et al. 2008) (Gai, et al. 2018) (Garg and
Khandelwal 2018). All these studies were based on two approaches currently being adopted
within research into speckle noise reduction. One speckle filtering method consists of a window
(N*N) to cover each pixel with the neighbourhood and applies a mathematical calculation to
determine the value of the central pixel; this process moves the image over each pixel in the
image, whilst the other uses the entire image, i.e., the Fourier transform filter works through
its application to the whole image. Many of the techniques that can be found in the existing
literature describing speckle noise reduction involve the use of filters such as the median filter,

Wavelet transform filter, Fourier transform, etc. We shall now describe and summarise the use

of these filters.

The Median Filter

Median filter is a nonlinear filter that is used in the spatial domain of an image. The applica-
bility of medial filter has been recognized due to its significant value in supressing the impul-
sive noise. The medial filtering is used as an effective pot-filtering technique to reduce speckles.
This filtering technique applies a median intensity with suitable sized and shaped region de-
noted by W;; surrounding the pixel (i, )) of interest, which acts as the output pixel value. This
application assists in eliminating the presence of impulsive artefacts in the pixels, which is
below half of the region size [|W;;|| (Chen, Broschat and Flynn 1996). (Loupas, McDicken and
Allan 1989) has proposed a new technique that can ease the speckle noise. An adaptive
weighted median filter is used in this method and is used based on the pixel’s weighting coef-
ficient in the window. The value of weighting coefficient in appearing many times as the weight
when estimating the median affects every pixel. Thus, if there are similar weights, this method
acts in a similar way like the typical median filter. However, when the weights are not the same,
the median decreases from the centre of the window to the outer limits and the details as well
as image edges are less altered. Similarly, there will be elimination of less noise when using
the method. Therefore, compromising the image preserving and supressing noise reflects
weight choice. As a result, the characteristics of an image within the window allow for the
algorithm to adapt the weights and this occurs for every step involved in image processing. The
local statistical analysis thus determines the image characteristics (Loupas, McDicken and
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Allan 1989) (Mateo and Fernandez-Caballero 2009) (Anqing 2010) (Mateo and Fernandez-
Caballero 2009).

The Wavelet Transform

An example of frequency domain transformations is the Wavelet transform (WT). WT repre-
sents an input signal as a family of orthonormal wavelet bases on a single wavelet function,
referred to as the mother wavelet, through repetitive translations. WT involves using filters in
the transformation. The most notable and widely used cases are the Daubechies (DB) family
of filters such as db2 (also known as the Haar filter), db4, db6, and db8 of length 2, 4, 6 and 8,
respectively (AL-Hassan 2014). Using wavelet and scaling functions, the WT method can
break down an image into four different frequency bands. The first step of the decomposition
stage is where the input image is decomposed into four different sub-bands, called the HH
(high-high), HL(high-low), LH (low-high) and LL (low-low) sub-bands. Each sub-band shows
the information of the image on a different plane. For example, the HH shows diagonal infor-
mation, HL shows the horizontal information, LH sub-band shows the vertical information,
and the LL provides the low-frequency information. The next step of the decomposition pro-

cess includes further division of the LL sub-band (Kumar, Dutta and Lehana 2013).

WT has been successfully used for image processing and analysis, including reducing the ul-
trasound speckling effect. In fact, WT is the preferred method for reducing speckle as it can
efficiently identify and isolate redundant information. There are two basic approaches currently
being adopted in research into the speckle noise reduction using WT:

o Eliminating certain high frequencies. When an input ultrasound image is decomposed
by using WT, the LH, HL and HH sub-bands contain the image’s high frequencies.
Setting the coefficients within the sub-bands to zero when the image is reconstructed
by performing the inverse of the wavelet transform can reduce the speckle noise effect.
However, reducing the high frequency in such a way does not mean that all speckle
noise in the ultrasound image is eliminated, and some of the information of the ultra-
sound image may also be lost (Mateo and Fernandez-Caballero 2009).

e Eliminating certain high frequencies at a threshold. This type of technique is similar to

the first type, but instead of totally removing high frequency elements, a threshold for

each frequency sub-band is computed. Only the frequencies above the threshold are

removed in the inverse process of reconstruction. This technique has been applied in
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various studies such as (C. P. Loizou, et al. 2005) (Karthikeyan and Chandrasekar 2011)
and (Rabbani, et al. 2008).

Fourier Filtering

It is a type of filtering that is mainly based on the theories of Fourier transform. It is associated
with the analyses of a signal into its spectral frequency elements. It converts the signal from
time or spatial domain into a frequency domain. During transformation, the sum of sines and
cosines of multiple frequencies multiplied by a different coffeicient is expressed as any
function that periodically repeats itself. This is termed as the Fourier series (we would now be
able to call this aggregate a Fourier series) (Mateo and Fernandez-Caballero 2009). The most
important characteristics of these representation is that can allow us to return or recovered the
information from Fourier domain to the original domain without losing information by taking
the inverse process. The main purpose of the Fourier transform filter is to reduce and minimize
any high-frequency elements. We will consider Butterworth and Homomorphic filter as a
Fourier filter. In this work, Butterworth filter will be used as the Fourier filter and will be used
to smooth this cut off and remove Gibbs effect and the excessive reduction of high frequency

image details without losing noise elimination capacity.

The concept of the Homomorphic filter is to change multiplicative noise to additive noise,
trailed by a utilization of a low-pass filter, which intends to lessen the additive noise. The ho-
momorphic filter is regularly utilized as it is anything but difficult to execute and generally
viable. Homomorphic filtering is accomplished by figuring the FFT of the logarithmically com-
pacted image, utilizing a homomorphic filter to de-spot the clamour and lastly, applying the
reverse FET to make the de-speckled image (C. P. Loizou, et al. 2005) (Mateo and Fernandez-
Caballero 2009).

(Mateo and Fernandez-Caballero 2009) has compared the speckle noise algorithms that we
have explained above. US image used in the comparison is one for a kidney. From the US
image, they generated the noisy image by applying the speckle noise filter on the noisy image.
They then compared the results obtained with quality ones produced from the Fourier filter.
With these results, they argued that the best quality images are only obtained through Fourier
filters. Although the other filters have been found to be able to improve in quality, they have
been found not to produce to the quality of the Fourier filter. The use of Fourier filter is also
simple compared to other filters since it only takes in one parameter. Wavelet filtering has also
not been recommended by many studies to be used in US images. This is because wavelet

se. Wavelet also eliminates bands that make the white
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dots appear hence distorting the quality of the image. This shows that homomorphic filters can

only be used with the Fourier filter but not useful when used with other filters.

Wiener filter

This is a linear filter that is mainly applied adaptively to an image. It is mainly tailored to the
local image variance. The filter does a little smoothing when the variance is large and performs
more smoothing where the variance is small (Kaur and Singh 2010) (Patidar, et al. 2010). This
approach has been found to produce more improved results than the linear filters (Kaur and
Singh 2010). The use of this filter preserves the edges and other parts of images with high

frequency since it is more selective when compared to the linear filters. The only drawback of

the Wiener filter when compared to the linear filter is that it requires more computational power.

Most of the previous work has been aimed at reducing the amount of speckle noise in the US
image. Reducing the speckle noise may be very important but it is not guaranteed for the pro-
duction of accurate image segments. This is because speckle noise is not the only factor that
affects the accuracy of image segmentation. One of the objectives of this work is, therefore, to
evaluate different filters and recommend one that can reduce speckle noise and at the same

time highlight the ROI for the image segmentation task.
2.3.2 Image Segmentation

Image quality mainly affects the US image segmentation. A low-quality image will not be able
to show all the properties of the image that are necessary for a successful segmentation. The
components that make the image produce low-quality include; shadows, speckles, attenuation
and drop out of signals of the image. This may lead to loss of image boundaries due to missing

boundaries due to the orientation dependence of acquisition.

More problems come in due to contrast. The major areas of interest in the image tend to have
low contrast. The main methods of image segmentation that have been applied in the contem-
porary medical practices include; region-based, watershed and thresholding methods and have
proven to be very effective (Stolojescu-crisan and Holban 2013). All these methods exclusively
depend on the intensity of the pixels that make an image in the segmentation process. Another
major method that has also been proven to be very effective in image segmentation is the use
of a Hough transform. This method mainly uses a fixed shape matching feature that enables it
to extract and exploit the required segment of the image object from a particular shape. More

recently, machine learning based methods offer an alternative for segmentation by classifying
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pixels as either inside or outside the ROI. These types of segmentation methods are reviewed
in the following section.

Thresholding

Thresholding is an image segmentation method that is used to segment scalar images. This
method creates a binary partition based on the intensities of the image. First, the value of a
particular intensity is determined and is called a threshold. Secondly, the pixels with intensities
that are greater than the threshold are grouped in one class and those with lower intensity than
the threshold are grouped in one class. Figure 2-6 shows two potential thresholds at the valleys
of the image histogram. The process of determining more than one threshold is called multi-

thresholding.

occurence

intensity

Figure 2-6: Histogram showing three apparent classes

This process is mainly applicable in images whose pixel intensities vary from one structure to
the other. Although automated methods exit, the partitions can be usually generated interac-

tively. The very well-known methods of thresholding include the Otsu method (N. Otsu 1975)
and the use of maximum entropy ( Kapur, Sahoo and Wong 1985).

The method that uses threshold mainly suits images whose structures have different pixel in-
tensities or those whose contrast of the structures vary greatly with the background of those

structures. The process of selecting a threshold to use is usually difficult in cases where the

noise is too much or when the contrast of structures and the background is too low. Generally,

the threshold-based segmentation method was employed as an initial segmentation stage, since

it does not give the desired results in the segmentation process. (F asihi and Mikhael 2016).

Region Growing

This is a method used to extract a particular region of the image and is mainly done based on

a clearly redefined stated criterion. The criteria that are mostly used include; the intensity of
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the information and or the edges of the image. In general, this method requires the seed point
to be manually selected by an operator. The next step involves extracting the pixels that are
connected to the used criterion in some way (Rangayyan 2005). One common criterion may be

to grow a given region to the point where the edge of that image is encountered.

There are a number of disadvantages associated with the region growing method of image seg-
mentation. First, using automatic methods of selecting the point to act as the seed and the num-
ber of seeds provided by the user can sometimes not be enough to assign each pixel to a region.
Secondly, providing the seeds incorrectly such that two seeds that should be on the same region
are incorrectly provided in the algorithm, then two distinct points will be created instead of one
that is required. Lastly, it has been found to be very challenging to carefully select a criterion
such as the texture of a feature or intensity in order to avoid under-segmentation. This challenge
is more intense with images that have inhomogeneity intensity since it is very hard to select the

suitable threshold.
Watershed Transform

This is one of the most popular segmentation methods. This method is obtained from the field
of mathematical morphology (Grau, et al. 2004). This method can be simply described intui-
tively in form of a topographic relief. The height of each point is associated with a grey level
then rain that is gradually falling on the terrain is considered. Watersheds are taken as the lines
that separate the “lakes™ or the catchment basins that form at the edges. The gradient of the
original image is used to calculate the watershed transform in this case. The water catchment

areas are, therefore, located on the high gradient points.

This method has been applied in the medical field as well as other many areas where image
processing services are required. The method has been widely applied due to a number of ad-
vantages over other methods of image segmentation. The major advantage is that it is a simple
intuitive method. It is also fast and can be parallelized to produce complete image segmenta-

tions even when the contrast between the structures and the background is very low. This limits

the need for contour joining.

Another advantage is that many researchers have proposed the use of this technique with the
multistate framework hence provide the advantages of these representations. There are, how-
ever, a number of serious disadvantages associated with this method. The major ones include;
over-segmentation associated with the method. Also, this method of image segmentation is

very sensitive to noise since it works by finding the minimum values of the image which are
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majorly affected by noise. If noise affects a number of these minimums, it will lead to over-

segmentation (Straka, et al. 2003).

Hough Transform

Localisation of geometrical forms in an image can be achieved with the common transform
called the Hough Transform (HT) (V C 1962) (Nixon and Alberto 2012), which is especially
effective in identifying lines, circles and ellipses in binary images. The HT works by plotting
the points of an image from geometric space in accumulator space known as Hough space. An
explanation of circle identification via HT is provided in the following part, since the present

study puts great emphasis on circle identification.

The formula for characterisation of a circle form is:

Ge=ba)A+ (07— yp)2 = r2 (2-2)

The above formula indicates where (x, y) is situated on a circle of radius » and centre point (xo,
o). There are two options for visualisation of this formula, namely, as a locus of points (x, y)
or as a locus of points (xo, yo) with the centre on (x, y) with radius », as shown in (Figure 2-7-

A) and (Figure 2-7-B), respectively.

Figure 2-7: A) Circle located on the parameter plane (xg, yo) and B) transform of the circle to the a
and b space
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The latter option implies that every edge point on the circle could serve as the middle of a new
circle of radius r. A three-dimensional accumulator space is obtained by expanding the char-
acterisation for distinct values of 7 for every edge point (see Figure 2-8). The circle parameters
in the initial image determine the highest number of circle-derived votes produced in an accu-

mulator space.

Figure 2-8: 3D discrete Hough accumulator space (Nixon and Alberto 2012)
Formulation of a solution for the circle parameters requires the use of the circle parametric
form in HT as follows.

X =Xy+rcosé (2-3)
y =Y +7sinf 2-4)
The formulae underpinning the definition of the HT mapping to an accumulator space are:
Yagy =1 o0 = P (URE) (2-5)

Yo =y —T1siné (2-6)

Modelling of certain portions of the mouse body in X-ray images can be achieved by taking

advantage of the fact that the HT can identify a round-shaped object in a binary image.

Learning-based Classification for Segmentation
eeks to partition a feature space derived from the image. It mainly rec-

This is a pattern that s
ata based on known labels (Bezdek, Hall and Clarke 1993). Range

ognizes the patterns using d
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space of any function of the image is called the feature space. The feature with the most inten-
sity is called the are the image intensities themselves. The pixels that have their features asso-

ciated with each other are grouped together until a n-class is obtained (Pham, Xu and Prince
2000). :

The training data are manually segmented and are then used as references in automatically
segmenting new data. Because of this, the classifiers are sometimes referred to as supervised

methods. One simple classifier is a nearest-neighbour classifier where each pixel is classified

in the same class as the training data that have the nearest intensity.

Distinct quantifiable features need to be segmented in cases of standard classifiers. Since the
training data can be labelled, classifiers can transfer these labels to new data provided that
feature space can sufficiently distinguish each label. Unlike threshold methods, no iterative

classifiers are efficient in terms of computation and can, therefore, be applied in multichannel
images.

The major disadvantage associated with classifiers is that spatial modelling cannot be per-
formed. Recent work on this method has, however, addressed this drawback. In the recent work,
the classifier methods have been extended to be able to segment intensity in-homogeneities -
corrupted images (Wells, et al. 1996). The other disadvantage arises from the need to use man-
ual interaction methods in obtaining training data. Sets of training data can be obtained from
the particular images that require to be segmented although this can be tedious and time
consuming. The use of the same training data sets, on the other hand, can lead to biased results
especially when a large data set from a number of scans is used. These biases come in since it

does not take into account any anatomical and physiological variability between different sub-
Jects (Pham, Xu and Prince 2000).

2.3.3 Texture Feature Extraction

Method of extracting features helps in simplifying the amount of data necessary to completely
describe a huge set of data in a more efficient way. In this case, a few details will only be
required to comfortably describe a huge set of data. In order to analyse a set of complex data,
the major issue is to determine the number of variables involved in the problem at hand. The
problem with a large number of variables is that it will require huge computational power to
process and a large amount of memory. This may require a classification algorithm that over

fits training sample used and hence can lead to new poorly generalized samples.
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Extraction of a feature is a method of getting rid of such problems and still being able to de-
scribe data in the most sufficient and accurate way. It mainly uses the visual and texture char-
acteristics of the surface (object under the study). The use of texture in analysis helps in deter-
mining the unique characteristics of a texture that can be used to describe that surface in the
most simple but unique form. The unique characteristics obtained can then be used to accu-
rately segment and classify objects. The use of texture plays a huge role in image analysis and
recognizing patterns but there are still limited architectures that are able to implement the on-
board extraction of texture features (Mohanaiah, Sathyanarayana and GuruKumar 2013). Tex-
ture features that will be used in this research to address two objectives: 1) segmentation; and
2) identify the abnormality in the image. There are a large number of techniques that have been
used for feature extraction based on image texture in a variety of medical image analysis and
these include: the Grey-Level Co-Occurrence Matrix (GLCM), Histograms of Oriented Gradi-
ents (HOG), Local Binary Pattern (LBP), and Fractal Dimension (F D). We shall now describe
each of these types of features.

Grey-Level Co-Occurrence Matrix (GLCM)

Originally developed for classification of satellite and aerial images, the Grey-Level Co-Oc-
currence Matrix (GLCM) technique was among the first to be employed to analyse image tex-
ture, and is still the main technique for texture-based feature extraction. A co-occurrence matrix
is the joint probability occurrence of grey levels i and j for two pixels with a defined spatial
relationship in an image. The spatial correlation between the intensity of two pixels is deter-
mined based on detection of a pixel pair (7, j) separated by a distance (d) in an established
direction angle (6) (Sharma and Singh 2001). Each entry in the GLCM corresponds to a certain
grey level arrangement. Provided that every possible pair of pixels has a specific distance in
four distinct directions, this technique allows the creation of four distinct matrices. Figure 2-9-
A and Figure 2-9-B illustrate the GLCM matrices and their formation (Albregtsen and others
2008) (Mohanaiah, Sathyanarayana and GuruKumar 2013).
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Figure 2-9: GLCM process: A) Spatial relationships of the image pixels in different angles and B)
an example illustrates the formation of a co-occurrence matrix from the grey scale image.

Several possible texture features may be extracted from a GLCM. The following are

summarised in (Albregtsen and others 2008):

Homogeneity, Angular Second Moment (ASM):
ASM = %5 Rz (L)Y @-7)

G present the size of the matrix (GLCM matrix). p(i,j) is a GLCM matrix elements.
ASM is a feature that present the homogeneity of an image. A homogeneous image will
contain only a few grey levels, giving a GLCM with only a few but relatively high
values of p(i, j). Thus, the sum of squares will be high.

Contrast
CONTRAST = 35=5n*{Xiq Xj=a PG li-jl=n 2-8)
Where G is the size of the GLCM matrix. This measure of contrast or local intensity

variation will favour contributions from p(i, j) away from the diagonal, i.e. i # j.

Entropy
ENTROPY = — %{=g %.325 (i, ) % log(p(i,))) 2-9)

Where p(i, j) a GLCM matrix elements. G is the size of the GLCM matrix. Inhomoge-

neous scenes have low first order entropy, while a homogeneous scene has high entropy.

Correlation

=, —_ {l:}}xP(lJ)"(#xxIly} g
CORRELATION = Y0 Xio0—— (2-10)
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Where p(i,j) a GLCM matrix elements. G is the size of the GLCM matrix. Correlation
is a measure of grey level linear dependence between the pixels at the specified posi-

tions relative to each other.

Local Binary Pattern (LBP) (255 bins) and Uniform LBP (58 bins)
Image textures of limited scale can also be examined via LBP. Assuming that the grey level of

a non-specific pixel is g¢ and its value in a small-scale image is substituted with an 8-bit binary

code, then the texture can be found by determining the discrepancy between the selected middle

gc value and those for the neighbouring pixels. The calculation begins with the pixel to the
right of g, and continues in a clockwise direction. In the threshold function, s(x), employed,
difference values that are lower or higher than zero are given values of zero or one, respectively.
The subsequent step involves the creation of the LBP image through the conversion of the
binary codes of zeroes and ones into decimal values (Ojala, Pietikdinen and Harwood, A
comparative study of texture measures with classification based on featured distributions 1996)
(Ojalaa, Pietikainen and Maenpaa 2002) (Pietikainen, et al. 2011). The LBP procedure is
presented in Figure 2-10. The mathematical expression of this feature takes the following form:

_ wp-1 ¥ D i 1 six=0 %
LBPpg = Yb—gs(gp — 9c)2 SE=re | @-11)

ERRD D) (D @)
©
@e@ ey

1-Pix=] with 8 conn=ctad 2- Differance

1*1+1*—2+1*4—+1*8+0*16+0*32+0+64+0*128=15

Maultiply by powers of two and sum

Figure 2-10: LBP Example (Pietikainen, et al. 2011)
The local spatial structure of the image is defined by LBP, which presents the qualities of grey

invariance and rotation invariance.

The identification of similar aspects in local binary patterns is determined according to the

number of transitions between 0 and 1 in the patterns as the primary mechanism of uniform
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LBP. Among the diverse patterns produced by the dominant approach in this regard is the so-
called “uniform” pattern LBPw2p (P represents the pixels proximal to radius R); a local binary
pattern must include no more than two bitwise transitions from 0 to 1 or from 1 to 0 (with the
equivalent bit string being deemed circular). Examples of uniform patterns are 00000000 (0
transitions) and 01111110 (2 transitions), while 11101101 (4 transitions) and 01011011 (6 tran-
sitions) are non-uniform patterns. Every uniform pattern is associated with a different output
label in uniform LBP (see Figure 2-11), whereas just one label is allocated to all the patterns

that are not uniform. Hence, patterns can be mapped based on the number of distinct output
labels (Pietikainen, et al. 2011).

Spot Spot- Flat Line end Edge Corner

Figure 2-11: Different texture primitives detected by LBP (Pietikainen, et al. 2011)

Removal of non-uniform patterns can be justified for several reasons. First of all, uniformity is
exhibited by the majority of local binary patterns in natural images. Secondly, evidence sug-
gests that the stability of uniform patterns is higher, in other words, they have a lower suscep-
tibility to noise (Pietikainen, et al. 2011). Thirdly, the number of potential LBP labels is con-
siderably reduced when only uniform patterns are taken into account, and fewer samples are
needed to reliably estimate their arrangement. Its main applications include textural classifica-
tion, image extraction and face image analysis (Lei, Zhao and Guo 2015) (Pietikainen, et al.
2011).

Histograms of Oriented Gradient (HOG)

Objects in images can be identified with the feature descriptor called a histogram of oriented
gradients (HOG). This method is designed to quantify gradient orientation occurrences in lo-
calised image sections. The underlying principle is that the arrangement of local intensity gra-
dients or edge directions can be used to describe the shape and appearance of a local object,
regardless of accurate data about equivalent gradient or edge positions. The practical applica-
tion involves separating the image window into small spatial areas called cells, each having an

aggregation of a local one-dimensional histogram of gradient directions or edge orientations
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over the cell pixels. The representation is the outcome of the totality of histogram entries. Fur-
thermore, it is advisable that, prior to employing the local responses, they should be contrast-
normalised to improve invariance to illumination, shadowing size (“blocks”) and use of results
to achieve normalisation of every block cell. The normalised descriptor blocks are considered
to be HOG descriptors. The human detection chain is obtained by using a dense, actually over-
lapping, HOG descriptor grid for tiling the detection window as well as employing the com-
bined feature vector (Dalal and Triggs 2005) (Patil, Junnarkar and Gore 2014).

As shown in Figure 2-12, the HOG descriptor extraction algorithm operates through a series of
steps. First, the input image is separated into small interlinked areas (cells), and for each cell a
histogram of gradient directions for the cell pixels is generated.

Stepl: The gradient orientation is used to delineate every cell in angular bins;

Step 2: The weighted gradient is contributed to by the pixel of every cell to its equivalent
angular bin;

Step 3: Neighbouring cells cluster into spatial areas known as blocks, which constitute the
foundation for histogram aggregation and normalisation;

Step 4: The block histogram is the outcome of a histogram group that has been normalised,

and the descriptor is denoted by a block histogram set.
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Figure 2-12: HOG process
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Multi-fractal Dimension Features (FD)

To determine how complex an object shape or texture is, fractal dimension measurements can
be performed in the context of the image analysis paradigm. Fractional dimensions are de-
scribed by a fractal geometry based on a range of approaches, where Hausdorff’s dimension is

one such major fractional dimension. For an object with a Euclidean dimension E, the equation

for calculating the Hausdorff’s fractal dimension Dy is:

. logN
D = lim—E¥©
€—~0 loge™1

2-12)

In the above equation, the quantification of hyper-cubes of dimension D and length € present
within the object is denoted N(€). The box-counting algorithm can be applied to estimate D for
Dyif a binary image is taken as a representation of an object. The algorithm associated with the
2D case unfolds across several steps with no loss of generality. The first step is to partition the
image into a grid comprising squares of size € X €. Subsequently, the number N(¢) of squares
of size € X € containing a minimum of one object pixel is determined. A logN(€) vs. log €1
curve can be formed through parametric variation of €. The last step is the use of a line-fitting
technique, such as least squares fitting, to estimate the curve so formed as approximated to a
straight line. The slope of this line is the fractal dimension FD (Costa, Humpire-Mamani and
Traina 2012).

The box-counting method is used for the binary image, where (Costa, Humpire-Mamani and
Traina 2012) (Alrawi, Sagheer and Ibrahim 2012) argue that a single FD is not sufficient to
describe the case. Therefore, they proposed an effective method to produce a multifractal di-
mension from difference binary images. They created a new method to produce a number of
binary images, and for each binary image the box-counting method has used to calculate the

IHID)

In this research we have used these features for two purposes. First, a texture feature is used
for the segmentation task. For example, in our proposed trainable solutions we will use the
HOG features to segment the image instead of the intensity values. Second, these features have
been used to identify any abnormality in the case in question (pregnancy or ovarian case) to

test the effectiveness of our proposed segmentation solutions.
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2.3.4 Classification

Classification is extensively used in this research. It is a process of mapping data into prede-
fined classes, which includes two stages. The first learning (or training) stage involves gener-
ating a classification model using training data. The second testing phase involves testing the
performance of the classification model using test data. A classification model that has been
implemented and tested properly with satisfactory level of accuracy can then be applied in
practice the data objects with no class labels. In this work, we are particularly interested in two
types of classifiers: support vector machine (SVM) and artificial neural network (ANN) be-
cause both are well established approaches that can handle feature vectors of high dimension-
ality.

ANN Classifier

An ANN is a network of interrelated computational units (nodes) as shown in Figure 2-13.
Each node represents two processing functions: summarisation and transformation. The
summarisation function calculates a weighted sum of its inputs where each input consists of an
input value and its associated weight. A weight wj; normally refers to the multiplicative be-
tween the input node j in the previous layer of the network and the output node I of the current
layer. A transformation function, also known as an activation function, of the node applies a

transformation, normally non-linear, to the result of the summarisation function.

Feature 1 3'6'3
|
Feature2 ! O‘J 5 O
O e
Feature3 ! 05 =)+ OE Class 1
Feature 4 g O‘: 10~ “Oi Class 2
:; ,‘O’.. Output Layer
L0 FirstHidden  Second Hidden
E / Layer Layer
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Input Layer

] 1 j Is the number of input
Figure 2-13: A typical neural network topology. The features- size presen
nodes. The numbtjf of nodes and the hidden layers are determined experimentally. The number of

output nodes detected based on the class number.

The multilayer perceptron networks (MLPs) are neural networks used in pattern recognition

problem. The MLP is a feed-forward neural network with multiple node layers in a directed
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graph. The MLP is recognized as among the ideal techniques for pattern recognition and in
providing an adaptive learning ability. Furthermore, there are evidences that a universal ap-

proximator should have a two-layer backpropagation network with appropriate hidden nodes.

Back-propagation ANN’s such as ones that have been used in this study involve an input layer,
output layer and hidden layers (Zumray Dokur 2002) (Moghaddam and Soltanian-Zadeh 2011).
The Training Phase is a mapping between the input and the output values. By using a learning

algorithm (e.g., generalized delta rule), the mapping procedure is accomplished by adjusting

the value of the weights. The error for the training phase is defined as follows:
1
Ep = 5‘ Ej(tp — Opj)z (2-13)

In this equation, the index p corresponds to single input vectore, the vectors tp is the target and
0, observed output vectors according to the p. In general, the input vector is a vector of features
values (ie LBP or HOG) and the target vector (binary class according to the target tissues),
indicating the class number to which the pixel should be assigned. The error function has used
to calculate the diffrence between the observed and the target vectors. The error can be
minimized by changing the weight w (Moghaddam and Soltanian-Zadeh 2011) (Egmont-
Petersen, de Ridder and Handels 2002). To minimize that error, a gradient descent in E has

implemented by the generalized delta rule as follows:

dE,
prji (0.8 —'a-w_ﬂ‘ (2'14)
which can be rewritten as
Apwji = N6pj0p; (2-15)

Where

e (tpj — opj)f'(netpj) for an output node @-16)
PI7 | f'(nety;) Xk OprWrj for a hidden node

in which net,; = Yk W;jiOpi T 6;, is the total input to node j including a bias term 6; and the
parameter 1 is the learning rate. The output of node j due to input p is thus o,; =

i ivati i i id activation function f(z) =
f,'(netp j) with f the activation function. In the case of a sigmol f(2)

1/(1 - e®). Therefore the 8,; can be rewritten as:
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b = {(tpj G Opj)opj(l oy Opj) for an output node

Opj(l T opj) Dk SpkWy; for a hidden node )

Finally, an additional momentum term can be added to the learning equation resulting in
Apwjiln] = n8,50,; + pa,wy; (2-18)

where [ is the momentum rate At each iteration, the weights are thus modified as follow:
wjiln + 1] = wj;[n] + Apwji [n] (2-19)

After the ANN is adjusted with specific weight values in the training phase, the trained ANN

is used to classify unknown samples.
Support Vector Machine (SVM)

The SVM method was first proposed in 1995 by Vladimir N. Vapnik and Cortes, with the
algorithm later created by Vapnik (Cortes and Vapnik 1995). SVM is a type of non-probabil-
istic binary classifier that have been used in many applications. The basis of this method is that
decision plane, which categorises objects into a positive and negative class, defines decision
boundaries. Figure 2-14 displays an example of the decision plane, where a boundary is shown
between the red colour and black colour. These two colours symbolise two classes. If any object
falls on the left side, it will be classified as red. Similarly, any object that falls on the right side
is classified as black. The line that separates the two classes is referred to as a hyperplane. Two
classes can be separated by many different types of the hyperplane. The optimal separating
hyperplane, as proposed by (Han, Kamber and Pei 2011), is the hyperplane that maximises the
distance between the plane and each class’ closest data point, thus, maximising the separation
of the classes. In Figure 2-14, the optimal separating hyperplane is shown as a blue line. The
features along the boundaries are called “support vectors™. It is the support vectors that are used

to differentiate the two classes. Figure 2-14 presents an overview of the SVM process.
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Figure 2-14: Binary SVM classifier process (Tomar and Agarwal 201 5)

The algorithm to classify a new case start by calculate the score (Sc) of the test case x is based

on the Lagrangian formulation:
Sc(x) =i, a;k(Si,X) + b (2-20)

Where Si is a support vector, a; is the weight of Si, » is the number of support vectors, and k
is a kernel function. In the case of a linear classifier, the kernel function & is simply the inner
product <Si, x> and the bias b. If Sc > 0, then x is classified as positive, otherwise it is classified

as negative.

We close this section by pointing out that ANN is a more effective classifier when we have
sufficient samples to train. This is also true for any classifier, but SVM is suitable when dealing
with high dimensional feature vectors. In this thesis, we use ANN when we have enough train-

ing samples and SVM otherwise.

24 Summary

The background to the various medical and technical issues relevant to the research carried out
in the thesis was given in this chapter to equip the reader with basic understanding of the tools
used in general medical image-based diagnosis. The focus was on the information on the use
of US imaging system for gynaecological diagnosis abnormalities, the specific technical chal-
lenges that will be met in designing effective computer-based solutions for both miscarriage
and tumour classification. The challenges described were limited to image pre-processing
(noise reduction), segmentation methods and the extraction of relevant texture feature. We also
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cribe i i i i
described the various classification techniques used as a last task of using image analysis for

medical di i :
agnostics. In the next chapter we shall review existing work related to this thesis

objectives.

E
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Chapter 3. Literature Review

Having discussed and reviewed the various concepts and image processing/analysis tools that
have been developed for general biomedical imaging application, we now turn our focus on
the existing research conducted in the analysis of US ovary scan in search of gynaecological
abnormalities. In this chapter, we therefore review and describe recent influential work about
our research area of interest. The lesson learnt from last chapter is our motivating guide for this
review to focus on the following main technical tasks: segmentation of ultrasound images for
miscarriage cases and the detection of ovarian tumour classification. We shall also review the
literature on performance measure that are relevant in evaluating the effectiveness of any algo-

rithms to deal with the challenges relevant to our work.

3.1 Ultrasound Image Segmentation for Early Pregnancy Monitoring

There are a number of approaches that have been proposed to segment the ROI in US images
for detecting different types of diseases (Noble and Boukerroui 2006) (Meiburger, Acharya
and Molinari 2017). The research has, however, been very limited in the area of segmentation
for gestational sacs from US images. This section will mainly discuss semi-automated or auto-
mated segmentation algorithms for extracting and measuring the GS and foetal. Table 3-1 sum-

marise the existing methods that have been used to segment the GS and foetal objects.

Table 3-1: Summarise the existing approaches for both GS and foetal segmentation.

Reference LT e T R ; 7Te'él'1;i(']ué P i—NO:Imach“ £ Result i
| ; l
b it - i I S !
(Khazendar, Al- ' Automatic Identification of Early Mis- | semi-automatic ! 68 | There is no eval- |
| Assam, et al. carriage Based on Multiple Features = segmentation ‘ } uation for the |
2014) Extracted from Ultrasound Images | method based on | | segmentation ;
the Otsu threshold. | | stage. |
(Khazendar, Far- = Automatic Identification of Miscar- | Histogram equali- } 184 | R? between the |
ren, et al. 2015) | riage Cases Supported by Decision | zation followed by | | manual and au-
Strength Using Ultrasound Images of ’ the Otsu threshold , § tomatic solution
| the Gestational Sac ; method. | ; =0.98. '
| |
| Semi-automatic i ; '
! approach | ! \
| (David H. Hareva = Automatic Gestational Age Estimation | Gaussian  kernel | 10 1 CRL accuracy =
5016) Based on Crown Rump Length and = followed by the | 60% and MSD |
| | Gestational Sac. | Otsu threshold. ! | accuracy=70%. |
|
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(Ni,etal. 2013) | Leaming based automatic head detec- | AdaBoost model |

' (Supriyanti, et al.

2018)

2011)

(Zhang, ct al
2012)

(Imaduddin, e

al. 2015)

| diameter based on image segmenta-
| tion.

|
x
|
4
|
I

Measuring gestational zig”efénid uterine | set the threshold | Have not men- |
| 5.3%.

manually,
phology
tions and edge de-
tection

mor-

. | Automatic measurement of early ges- ‘ Viola-Jones
| method

| tational sac diameters from one scan
| session

. | Intelligent

measurement of early gestational sac
| in routine ultrasound examination

|
|

|
| |

t | Automatic detection and measurement
of fetal biometrics to determine the
| gestational age

| tion and measurement from fetal ultra-
| sound images via prior knowledge and
| imaging parameters

|
|
|
|
|
|
|
|

|

{
|

scanning: Autoniaterd’[ fhtelligen'tr scan-
standard plane selection and biometric |

ning

Adaboost-Ran-
domize

| Transform

and iterative
randomized
Hough transform

{

opera- |

|
|
|
[
|

i 31 videos

tioned

31 videos

| 300 biparietal |

Hough |

head images

| and 200 femur |

| images

| (Custa;’o,”et al. | Automatic fetal measurements in ul- | -Boosiirig tree clas- |
| trasound Using constrained probabilis- |

|

2007)

(Rhwét, et al |

2013)

(Dahdouh, et al. |
| 2015)

| tic boosting Tree

Automatic assessment of foetal bio-
metric parameter using GVF snakes

|

Segmentation of embryonic and fetal | A
3D ultrasound images based on pixel | strained

' intensity distributions and shape priors |
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Gradient Vector
Force (GVF)

shape
multi-
phase
segmentation

| method

| 426 samples.

| Testing = 177 | . tomatic solu- f

Error value =

|
|

An error of |

0.059 and 0.083 |
for depth and |

length  respec- |
tively
Depth: and |

length (diame- |
ter)  measure-

ments were |
7.5%  £5.0%, |
6.5%  4.6%, |
and 5.5%* |
5.2%, respec- |
tively.

A quite low de- |
tection rate of 44 |
out of 300 im-
ages for the foe-
tal head. A de-
tection error rate
of 18 out of 200

| of the foetal fe-

675 images.
Training= 500
Testing =175

Trairiihg =]', |

| ultrasound im- |
| ages of fetal |

head, 183 of |

| fetalabdomen, |
| and 171 of fe- |

| femur

con- |

level set |

tal

12 images

14 3D images

[ 0.0265 between |

| The average

| 0.8, 0.7, 0.75

mur. A Good
correlation be-
tween the man-
ual and auto- |
matic solution.

The  mean-
signed  differ-
ence  between

the manual and
the automatic
solution= 1.6% |

Average error of |
|
the manual and |

tion.

|
|
|
|
|

Showed the re-
sult as a seg-
mented image.

level of similar-
ity between the
manual and au-
tomatic solution,
sensitivity and
specificity are:




and 0.98, re-
| spectively.

'(Lu, Tan and Automated fetal head detection and |
Floyd 2005) measurement in ultrasound images by | ing and iterative | | detected in 214

iterative randomized Hough transform | randomized out of 217
| Hough transform. | Images.

K-means cluster- | 217 images | The ROI were

Differences be- |
tween the man- |
ual and prosed
: | solution  were
, | 0.12 for BPD |
i { and -0.52 for |
1 , | HC. 3
(Yu, et al. 2008) Fetal abdominal contour extraction | fuzzy means clus- | 150 images Accuracy=
: and measurement in ultrasound im- | tering and iterative 98% .
ages. randomized
‘ Hough transform

|
|
|
|
|
1
|

Mean absolute
| difference=
1.2%

The standard
| deviation
=2.1%.

3.1.1 Thresholding

The effectiveness of the basic thresholding principle is limited for ultrasound images of this
problem domain due to the complexity of the associated images. Therefore, several authors
have combined thresholding with other techniques, such as pre-processing and post-processing,
to avoid a number of the complexities relating to speckle noise and to deal with false positive
ROIs. Based on our research, most of the existing works are semi-automatic or manual in
nature. For example, (Khazendar, Al-Assam, et al. 2014) and (Khazendar, Farren, et al. 2015)
proposed an algorithm to measure the diameters of the GS and use the measurement results and
some other geometry features (such as volume) of the sac to diagnosis miscarriage cases. The
algorithm relies on manually cropped ROI (i.e., GS) from the start. Although the MSD, volume
and perimeter features are measured accurately with satisfactory classification results (an over-
all accuracy of 98% with sensitivity (miscarriage) 97% and specificity (normal) 99% was
reported), the very fact that the GS has to be manually segmented highlights the need for an
automatic segmentation solution rather than solutions for segmentation.
Recent work using the threshold was presented in (David H. Hareva 2016) and (Supriyanti, et
al. 2018). The reported method obtains the Crown-Rump Length (CRL) and MSD values au-
tomatically to determine the age of the foetus. The method uses the Gaussian kernel and a
hump-shaped Gaussian to enhance the image and reduce the effect of speckle noise. Morpho-
logical operators are then used to further consolidate the ROI, and the Otsu thresholding is used

to eventually extract it. On a primary empirical study using only 10 sample ultrasound images,
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the successive calculation of CRL and MSD parameters on the segmented ROIs was, respec-
tively, 60% and 70%. Both the levels of accuracy and the scale of the study were extremely
limited, and the results were only indicative than conclusive. More recently, (Supriyanti, et al.
2018) proposed a method to detect the ROI using template matching. This method takes a
trample from the input image, divides the image into six blocks, and then crops the best window
that can cover the whole object. This process is followed by applying a manually set threshold,
morphology operations and edge detection to eventually determine the ROI. The age of the

pregnancy is estimated using the measured MSD after the ROI cropping. The estimated gesta-

tional age has an error value of up to 5.3%.
3.1.2 Machine Learning-based Segmentation

This approach to segmentation relies on the features describing the microstructure of the tissue
being imaged and is consequently classifying the regions or the pixels of the image into a
different type of classes based on the texture features. The idea of using texture features is
related to the fact that textures depend on statistical patterns of intensity, and hence more inde-
pendent of the imaging system physics. An example of using this approach for automatic seg-
mentation can be found in (Zhanga, et al. 2011) where a solution was proposed to measure the
diameter of the early gestational sac from a 2D ultrasound image video. The solution consists
of four principal stages: training, detection, indexing and measurement. The Viola-Jones
method has been used in the training stage. This method involves two Cascade AdaBoost
classifiers. The two trained classifiers detect candidate GSs at the frame level from a sliding
window over a sequence of a US frame created by any scan session video. Given that detection
outcomes mostly have false positive (Non-GS), an indexing method which utilises local con-
text information about the relative position between anatomies in the image sequence to first
select the frame containing the maximal candidate GSs as the standard plane and then elimi-
nates the false positive GSs. An error of 0.059 and 0.083 for depth and length respectively was
recorded on experiments conducted on 31 videos. This work could arguably be considered the
first attempt at the fully automatic segmentation of GS, showing the promise of a machine

learning-based trainable segmentation approach.

This work has been developed to produce the first completely automatic solution for selecting
a standardized plane for an early gestational sac (SPGS) and performing biometric measure-
ments using real-time 2D ultrasound scan data (Zhang, et al. 2012) where an automatic method

entitled “intelligent scanning” was proposed. The method included a sequence of steps, where,
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first, the Gestational sac is accurately and efficiently located in each ultrasound frame by de-
veloping a course to fine detection framework grounded on the training of two cascade Ada-
Boost classifiers. Second, the Non-SPGS (false positive cases) are automatically removed.
Lastly, a database-guided multiscale normalized cuts algorithm is implemented to produce an
initial segmented image (initial contour). This solution was tested on 31 ultrasound videos
which were retrieved from the results of 31 anonymous patients. The differences between the
manual measurement and the automatic solution with respect to SPGS selection, depth and
length (diameter) measurements were 7.5% =+ 5.0%, 6.5% =+ 4.6%, and 5.5% + 5.2%, respec-

tively.

Another focus in pregnancy US scan is in the automatic trainable segmentation and measure-
ment of foetal biometrics presented in (Imaduddin, et al. 2015). A method to automatically
segment and measure the head circumference (HC) and automatic measurement of femur
length was proposed. The method consists of pre-processing, feature extraction and classifica-
tion stages. The cropping and scaling phases have used as pre-processing to reduce background
noise i.e. the false positive objects from the input ultrasound images. In the feature extraction
stage, a Haar-like four type basis function is used to get the optimal configuration to be used
in the training phase. Lastly, at the classification stage, an Adaboost-Randomize Hough Trans-
form (RHT) method was proposed to segment and measure the foetal head, and an Adaboost-
morphology scheme was employed to detect and measure femur length. The proposed methods
were tested using 300 biparietal head images and 200 femur images. The study showed a quite
low detection rate of 44 out of 300 images for the foetal head, and good measurements of
biparietal HC with a correlation coefficient of 98% and an average error of 0.039 between the
manual measurement ground truth and the automatic measurements. With regards to the detec-
tion and measurement of the foetal femur, a detection error rate of 18 out of 200 ultrasound
images with an average error of 0.101 and a correlation coefficient of 0.763 between the manual
and the automatic measurements was reported. The work actually demonstrates the number of

difficulties inherent to detecting the correct ROI in ultrasound images.

(Ni, et al. 2013) also reported a machine-learning based method to segment the foetal ultra-
sound image followed by detecting the head and measure the circumference of the head of the
foetal. The AdaBoost model based on the Haar-like features has been used, and then, for the
first time, the prior knowledge and online imaging parameters have been used to control the
sliding window-based head detection from US images. Their method can significantly enhance

both speed and detection accuracy. A local phase-based method, which is invasive in the pixel
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intensity changes and the speckle noise in the US images, is used to detect the edge of the head

in the localised image. Lastly, to detect the ellipse of the head contour, an iterative randomized

Hough transform (IRHT) has been used. Experimental results on 675 ultrasound images (500
images for the training phase and 175 for testing phase) demonstrate the effectiveness of the

proposal in producing accurate measurements. Where the mean-signed difference between the

manual and the automatic solution measurements is 2.86 mm (1.6%).

(Gustavo, et al. 2007) proposed a new automated solution that measures the femur lengths (FL)
of foetal femurs from US images and the HC and biparieter (BPD) of the foetal head from the
US images. The proposed solution uses a discriminative constrained probabilistic boosting tree
classifier to identify the ROI from the background. This model has the ability to filter out un-
wanted area. The experimental results confirm that the proposed framework yields automatic
measurements for the FL and the BPD very close to a gynaecologist’s manual measurements

with average error 0.026, without inter- and intra-observer variabilities.
3.1.3 Deformable Model-Based

The deformable models have been widely used in the field of ultrasound image segmentation
for different applications. Deformable model on the definition of internal and external energy
and the evolution of an initial contour until the two energy functions reach a balance. The
deformable model has been used in (Rawat, et al. 2013) for a reliable semi-automatic segmen-
tation scheme to extract and measure the dimension of the GS. The power of this model lies in
employing the Gradient Vector Force (GVF) to deform the initial contour (initial mask) and
grow it to fit the actual border of the ROI. In this work, the proposed model was applied to 12
images, and the authors showed the result as a segmented image to illustrate the accurate seg-

mentation of the proposed method.

3.1.4 Clustering

Clustering is a mathematical technique that aims to partition sets of objects (e.g. image pixels)
into groups sharing some similarity properties called clusters. Given an image, we can use a
clustering algorithm to classify each pixel into a specific group depending on its relevant to our
objective. In theory, image pixels that are in the same cluster should have similar features
and/or properties, while images pixels in different clusters should have highly dissimilar fea-
tures and/or properties. Clustering is an unsupervised learning technique and is one of the most
popular methods used for statistical data analysis in many fields (Clarke 1996). The clustering

method was used in producing the initial segmentation of Rol. In (Dahdouh, et al. 2015), a
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shape constrained multi-phase level set segmentation method is described to segment the 3D
ultrasound images and extract the foetal envelope. The initialization of the process is semi-
automatic segmentation was performed by asking the expert to detect the CRL and using it to
identify the location of the ROL The k- means clustering method was used to produce the initial
segments. Based on the location and the initial segmentation, the whole ROI is extracted and
tested on a database of 14 3D US. The experiment results have demonstrated that proposed
method has its promise in assisting accurate segmentation compared to the manual segmenta-
tion. They have used Dice method to evaluate the closeness between the manual and expert
measurement. The average levels of Dice, similarity, sensitivity and specificity are: 0.8, 0.7,

0.75 and 0.98, respectively.

Another example of using the K-means clustering technique can be found in a work conducted
by (Lu, Tan and Floyd 2005). The objective of this research was to design an automatic solu-
tion to extract and measure the BPD and HC from the US foetal image. New object detection
model has proposed. A K-means clustering method has been used as an initial stage to cluster
each pixel according to intensity value (grey level) to produce a binary image. Because the
foetal skulls are not completely closed, foetal head contours usually contain moderate to large
gaps. An iterative randomized Hough transform (IRHT) was designed to estimate curve for the
large gap. Automatic measurements were considered in relation to manual measurements to
assess the degree to which the proposed system was effective and the differences between them
were 0.12 for BPD and -0.52 for HC.

(Yu, et al. 2008) fuzzy means clustering and IRHT were used to design a method that can help
to segment and measure the foetal abdominal contour from US images. Foetal abdominal cir-
cumference (AC) is an important measurement that can help to identify the abnormality during
antepartum ultrasound monitoring. The fuzzy means as a clustering method is employed to
distinguish clear borders, due to the contour of the abdominal tissues, from poor borders, at-
tributable to the other region. Subsequently, to detect the outer border of the abdominal contour
and produce an initial segmentation and estimation of the AC, the IRHT has used. Finally, the
GVF method is used to fit an ellipse to the real border of the contour of the abnormal borders.

The proposed method has achieved around 98% as accuracy of the segmentation.

32 Ultrasound Image Segmentation for Ovarian Tumour Diagnosis
In ultrasound imaging, ovarian follicles are hypoechoic structures found in the ovary whereas
an ovary is generally obtainable as a medium amount and an identical structure. According to

doctors, it is recommended to know the numeral value of follicles and compute their diameters.
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Follicle walls should also be analysed in the clinics. Sometimes follicles can overlap within an
ultrasound image, thus increasing counting mistakes and making the automatic segmentation
method were considered to be difficult. Furthermore, differences in follicle shape and the pres-
ence of artefacts, particularly if the hyperechoic formation is there on top of the image, add
more challenges to automatic segmentation process. More articles published in the literature

were addressing these challenges. The existing approaches that have been used to segment the

ovarian ROI have been summarized in Table 3-2.

Table 3-2: Summarise the existing approaches for ovarian mass segmentation

‘Reference R e

| Technique | NO.Images | Result }
) o Oy i | | |
' (Padmapriya and Detection of follicles in poly cystic | Enhance the | 12 images The average
Kesavamurthy | ovarian syndrome in ultrasound im- | threshold by using recognition=
2016) ages using morphological operations. | entropy optimizer | | 87.5%.

| followed by the |
morphology oper- |
ation. ,

‘ (Sﬁféhya and Ma- = Follicle detection in o-irar-y' irﬁage usfné | adzipﬁi'e ';)»ar-ti'ciéﬂi ]5§7irrri§igﬁes ’ i’(ecdgnizes all

' heswari 2016) adaptive particle swarm optimization. swarm optimiza- “ follicles ‘
| tion and Otsu | | correctly.
| method. ! ;
, | B e | | |
(Potocnik  and = Automated ovarian follicle segmenta- | Region growing 50 images | Recognition rate 3
Zazula 2000) tion using region growing ‘ ' =78%.
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3.2.1 Thresholding

In this problem domain, due to the complexity of the images, the best threshold is often found
by using an optimization technique such as entropy (Padmapriya and Kesavamurthy 2016) and
swarm optimization (Saranya and Maheswari 2016). In (Padmapriya and Kesavamurthy 2016),
an accurate method of detecting PCOS (Poly Cystic Ovarian Syndrome) is described, which
involves segmentation of follicles from ultrasound images, which included operations such as

image histogram equalization, filtering, thresholding (using the entropy optimizer method),

area opening, closing and merging. Then, the number of follicles is counted and classified as
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PCOS present/PCOS absent. The method was tested on 12 images. The average recognition

rate for all images processed by the proposed method was 87.5%.

In (Saranya and Maheswari 2016), an automatic follicle detection system is proposed using an

Adaptive Particle Swarm Optimization technique that overcomes the challenges in detecting
follicles from the ultrasound ovary images. In this paper, an idea is introduced to optimize the
objective function described by the modified Otsu method using the Particle Swarm Optimiza-
tion (PSO) and proposed Adaptive Particle Swarm Optimization (APSO) methods. The prob-
lem of thresholding is reduced to an optimization problem in order to search for the thresholds
that maximize the between-class variance. This approach is when finding an optimal set of
thresholds with a larger between-class variance than the other approaches. This method was
applied to 158 ovarian images. They discussed the result in two ways: 1) measure some geom-
etry feature and then compare the proposed model measurements with both expert measure-
ments and other existing methods measurements. 2) showing some segmented images. Based

on the result, we can clearly see the effect of the proposed APSO method.

3.2.2 Region growing

Region growing method was employed for the ovary mass segmentation problem (Potocnik
and Zazula 2000). The paper proposed a fully automated recognition system that is mainly
based on three steps. The first step involves the determination of the initial homogenous regions
using two independent procedures. In the first procedure, the initial or original image is
smoothened by an adaptive neighbourhood median filter. The second procedure involves the
calculation of the standard deviation of each pixel based on its neighbourhoods. If the standard
deviation of a pixel does not exceed the threshold H and its grey-level is smaller than the im-
age’s grey-level, then the image is marked as homogenous. The average grey-level controls the
growing through the weighted image gradient that has been newly introduced. Regions that
correspond to the follicles are then extracted. A total of 50 ovarian US images have been used
to test this algorithm. It was found out that the recognition rate was at 78% when this procedure

is used.

The two methods, region growing and thresholding, were found to perform well but they still
need segmentation refinement. The refinement was necessary since thresholding an image will
always include unwanted objects of the image. Morphological operations can, however, be
applied to mitigate this issue or through extraction of the required features from the segmented
objects. The majority of articles found in the literature focussed purely on the follicle inner

border segmentation.
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3.2.3 Watershed Transform

This section focuses on a method proposed by (Krivanek and Sonka 1998) about 20 years ago.
This method is called Watershed transform and is able to segment both the outer and inner
borders of the ovarian follicles. It does this through an approximation of the inner borders of
the ovarian follicles in the study. The approximated inner borders are used to automate the
process of defining the region of interest (ROI). This method was tested using 36 US images
of ovaries. The validation has shown a great relationship between the manually defined area
measurements and the computer-determined ones. While the research presented herein delivers
interesting results and it is a technique that could now be rendered completely automatically,
many advances in finding the inner and outer boundaries of a follicle were found in the recent
literature. Considering another problem domain, that of uterine fibroid segmentation, a consid-
erable amount of literature on accurate fibroid segmentation has been found that describes how
to correctly guide High Intensity Focused Ultrasound (HIFU) treatment. US images show Fibroids
as hypoechoic regions. This poses the problem of dealing with the fact that HIFU guidance
produces low-quality images since they have high signal-to-noise ratio as compared with US

images.
3.2.4 Active Contours

Active contours methods were used extensively in the segmentation process, (Zheng, Liu and
Zhu 2013), (Ni and Yuan 2015) (Ni, et al. 2016). This method, however, requires that the target
area is inserted manually or through the use of sequences of images based on the US image.
(Zhang, et al. 2016) presented a new recent work that is automated completely. The method is
different from those discussed in the literature since it is based on the division of an image into
its superpixels and homogeneous regions which are used to extract the target features. The
method was tested using 50 US images and showed incredible results with the average of the

similarity, TP and the FP were 90.21% , 94.42% and 4.71%, respectively.

3.3 Performance Evaluation methods

As the problems addressed in this thesis are of different in nature, a number of metrics are used
to evaluate the performance of proposed solutions. In this section, the evaluation metrics and
the methods by which they are applied are described. A general understanding of the metrics

is needed before empirical evaluation of the performance of the proposed solutions is under-

taken.
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3.3.1 Using Statistical Methods for Measurement Closeness

In the problem domain of detecting miscarriage in early pregnancy, the effectiveness of ROI
segmentation can be tested by the closeness of the automatic measurements of the ROI to man-

ual measurements on the one hand, and the correlation between the manual and the automatic

measurements on the other hand.
Linear Regression for Correlation

Fitting a regression line helps to characterise how actual and predicted measurements are cor-
related. The correlation between these two measurements can be assessed with the statistical
measure known as coefficient of determination R?, which thus indicates the proximity of the

data to the fitted regression line (The Minitab Blog 2016). The formula for determining R is:

nQxy)-Gx)Xy) )2

RZ — =
(J[112x2— Cx)2nXy2-Cy)2] )

In the formula, x and y denote two variables, while the number of observations is denoted by
n. The actual and predicted measurements are better correlated the higher the R? value is. Alt-
hough it elucidates how two variables are related, R? is not informative about whether or not
the predicted variable has bias. This issue can be dealt with by employing the Angle of Regres-
sion Line (ARL), which sheds light on the character of the correlation between two variables.
In general, automatic and manual measurement values are correlated well if the ARL is about
45°, By contrast, automatic measurement values have bias if the ARL is below or above 45°.
Nevertheless, closeness is not indicated by either correlation or ARL. Despite being indicative
of the manner of correlation between two types of measurement, R* cannot offer information
about the closeness of those measurements or the level of consistency of their values (Bland

and Altman 1986).
The Bland and Altman Method for Closeness

This is a scatter plot method invented by Bland and Altman (B & A) that describes the agree-
ment or disagreement between two measurements measured quantitatively. This method, B&A
is used to calculate the amount of agreement by constructing limits of agreement between
measurements. The differences in the mean and standard deviation of two quantitative meas-
urements are the two major methods of calculating the statistical limits. The scatter plot has
two axes where the Y-axis are used to illustrate the difference between the two paired meas-
urements (A-B) and the X-axis represents the average of these measures ((A+B)/2). That is to
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say, the difference of the paired measurements is plotted against the mean of the two quantita-
tive measurements. The B&A method considers that two measurements are indeed close if 95%
of the data points should lie within = 26 of the mean difference (Bland and Altman 1986). This

is based on the normal distribution theory.
3.3.2 Measures for Classification Accuracy

In the problem domain of segmenting ovarian tumour images for counting the number of fol-
licles, we test the effectiveness of the segmentation through running a complete CAD cycle. In
other words, we want to extract texture features from the segmented ROI, build a classification
model using training examples of the extracted features, and then run tests on test examples
and measure the level of accuracy of the predictive classification model. The classification
model is a classifier that maps the instances from the outcome results to the expected classes.
The classification models can either produce continuous output while others predict discrete
classes of output. The labels {Y, N} are used to distinguish between the actual and the predicted

class. There are four possible outcomes given a classifier:

1- True Positive TP (correctly identified): Sick cases correctly diagnosed
2
3
4- False Negative FN (incorrectly rejected): Sick cases incorrectly identified

False Positive FP (incorrectly identified): Healthy cases incorrectly identified

True Negative TN (correctly rejected): Healthy cases correctly identified

With a set of testing instances and a classifier, a contingency table which is in the form of a
two-by-two confusion matrix can be constructed to represent dispositions of the instances of a

set.

Actual
P N
True Positive False Positive
Y
Redain False Negative True Negative
N
Sensitivity = - (3-2)
TP+FN
TN
o e o = 3_3
Specificity = —— (3-3)

)7/




TP+TN

Adeetinacy = ———0
Y TP+TN+FP+FN

(3-4)
3.4 Summary

Here we completed the review of the background material and existing work that were neces-
sary for our endeavour to design and evaluate solutions to the various tasks to be carried out in
this research product. In the remaining chapters of this thesis we shall follow the roadmap
identified here which consist of designing efficient and highly accurate segmentation of the
region of interest, extracting appropriate texture features to support the segmentation and to be
input into appropriate machine learning diagnostics models, and evaluating the developed

schemes.
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Chapter 4. Conventional approaches to Segmentation of Gesta-
tional Sac

This chapter is mainly concerned with automatic segmentation and measurement of the gesta-
tional sac in relation to the classification of cases of miscarriage in early pregnancy. The con-
tent comes into two parts: the first part seeks to, explore the full potential of threshold-based
segmentation techniques due to their simplicity and ease of implementation; whereas the sec-
ond one aims at, appreciating the problems faced by threshold-based methods and the degrees
of difficulty involved even for this relatively simple application scenario where the ROI (GS)
is much less complicated than ovarian tumour images, and hence identifying the fundamental
limitations of the threshold-based solutions, paving the way for the introduction of more ad-
vanced machine learning-based techniques in segmenting the ROI in more complex ultrasound

images.

Based on the investigation and the review of the current literature, it has been found that speckle
noise is one of the critical factors that can affect the accuracy of segmentation and diagnosis.
Therefore, in this chapter, it is significant to review the more effective filters for suppressing
the speckle noise and enhancing ultrasound images for more effective segmentation of the ROL
Based on the review, we will also focus on use of wavelet transform as a speckle noise filter to
supress noise and highlight the object of interest, which ultimately makes threshold-based seg-
mentation more effective. In addition, there is a focus on the Wiener filter that can help to
reduce speckle noise without too much damage to the important texture information for ma-
chine-based diagnosis. Then evaluating some traditional threshold-based segmentation tech-
niques and highlight factors that influence their performances and shortcomings will be con-
ducted. Based on the evaluation, we further propose a new algorithm to automatically segment
a GS from a static B-mode image by exploiting its geometric characteristics. the effectiveness
of the proposed solution will be evaluated by firstly comparing the automatic size measure-
ments of the segmented GS against the manual measurements, and then integrating the pro-
posed segmentation solution into a classification framework for identifying cases of miscar-

riage and pregnancy of unknown viability (PUV). Test results demonstrate the merits of the

proposed method in segmenting the GS with distinct geometric characteristics with high levels
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of accuracy on the one hand, and the limitations of the proposed algorithm in segmenting im-

ages with complex and confusing geometric characteristics on the other.

The chapter is organised as follows. The problem statement and the challenges to enhancement

and segmentation of ultrasound images are first described in Section 4.1. Section 4.2, will eval-

uate the known speckle noise filters and focus on filters that are suitable for the segmentation

of ROl and for texture feature enhancement. Section 4.3, is concerned with evaluating a number
of existing segmentation methods by applying them to the ultrasound images of GSs. Section
4.4 then presents a threshold-based algorithm for automatic segmentation and measurements
of GSs. The algorithm is later empirically evaluated using a dataset formed from miscarriage
and PUV cases in Section 4.5. The difficulties faced by threshold-based solutions will be dis-

cussed in Section 4.6 before summarising the findings of the work presented in this chapter.

4.1 Problem Statements
This chapter aims to tackle two problems: (a) suppressing speckle noise and (b) automatic seg-
mentation of GSs of various sizes. Both problems involve processing B-mode ultrasound im-

ages.
4.1.1 Speckle Noise Reduction

As we explained in section 2.3.1, ultrasound images are known to be corrupted by a special
type of noise known as speckle noise, as caused by interference from randomly distributed
scattering (Zhu, et al. 2009). Figure 4-1 shows the speckle noise and its effect on ultrasound
images of an ovarian tumour. Speckle noise often has a negative impact on image quality by,
in particular, hiding important details and blurring edges and, therefore, affecting the image
segmentation and other post-processing operations, and may eventually reduce the overall di-
agnostic value of the image (Loizou and Pattichis 2008) (Zhu, et al. 2009).

Speckle noise reduction is a particularly important requirement for automatic processing and
analysis of ultrasound images. However, this type of noise belongs to the multiplicative noise
type. Applying the wrong type of filter, for example those filters suitable for additive noise

reduction, may remove important information that can be helpful to in the identification of

abnormal cases.
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Figure 4-1: Illustration of speckle noise and its effect on an ultrasound image of an ovarian tu-
mour: A) Example of Speckle noise (Dangeti 2003) and B) Ultrasound image of an ovarian tumour
corrupted by speckle noise.

In the context of this thesis, noise removal and image enhancement serve the objective of suc-
cessfully segmenting GS. Therefore, any noise reduction and image enhancement methods
must help to highlight the ROI (GS), remove irrelevant artefacts and eliminate false positive
objects. In this case, a trade-off may have to be made to gain a good outline of the ROI borders,
even at the expense of losing texture information within the ROI. However, in order to extract
useful texture information after the segmentation step to allow for effective diagnosis of the
abnormality (see chapter 7), such a trade-off cannot be easily made; too much useful infor-

mation may be lost, and the accuracy of the diagnosis handicapped.

4.1.2 GS Segmentation

The automatic segmentation of GS refers to the automated process of extracting the GS region
from the image with high precision. Precision, in this context, means that the segmented ROI
should not include irrelevant parts outside, but at the same time should not have any significant
parts of the ROI missing from, the segmented region. Figure 4-2 shows an example of a suc-

cessfully, and precisely, segmented GS. The segmented region is marked by red pixels.

A) Original Image B) Segmented ROI: GS

Figure 4-2: Segmentation of the GS and the ovarian tumour mass: A) the original GS image and
B) segmented image
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The segmented GS region can be used to estimate the discriminating MSD parameter, the value
of which is a critical diagnostic of miscarriage cases (as explained in chapter 2). Currently, the
detection and measurement of the diameters for calculating the MSD for the GS are measured
manually by ultrasound image observers. Here we investigate and develop techniques for the
automatic segmentation of GS to overcome inter- and intra-observer variation. Unfortunately,
successful segmentation is adversely affected by a number of factors including quality of the
image, poor and blurred GS border, and similarity in the textures of the ROI and its background.
Figure 4-3 illustrates these problems. In Figure 4-3-A, due to the presence of noise, the border
region of the ROI is extremely blurred. The blurry effect creates a technical challenge for seg-
mentation methods. Figure 4-3-B shows an area of the image where the boundary of the ROI
is not clearly identifiable, i.e., the pixel values within the boundary and the pixel values outside
the boundary are similar. In Figure 4-3-C, the texture inside the ROI is similar to the texture

outside the ROI, which also causes difficulty in separating the ROI from its background.

A) image quality B) Poor border C) Similarity between the texture

Figure 4-3: Examples of challenges for correct segmentation of the ROI: A) image quality, B) poor
border and C) similarity between the texture of the ROI and the background

4,2 Speckle Noise Filters Evaluation

Image de-noising is a known problem in image processing that is usually resolved by applying
noise filters. Many de-noising filters have been developed for use in both the spatial and fre-
quency domains (Buades, Coll and Morel 2004). From the current literature, it is clear that
different noise filters are used for different purposes such as de-noising the image in order to
highlight the ROI for automatic segmentation, de-noising the image to highlight anatomical
structure inside the ROI and/or facilitating image details for manual diagnosis, and enhancing
the image textures for automatic diagnosis (Malathi and Shanthi 2010) (Thaipanich and Kuo
2010). There is no a specific method or filter that works well for all purposes and for all types
ecause images can be captured by different sonographers with different

of ultrasound image b

levels of experience on different machines with different setups. In this research, we will focus
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on the effective filters that can help ROI segmentation and enhance texture features for diag-

nosis.

In this section, we will first compare four well-reported noise filters: (a) median filter, (b) Fou-
rier Butterworth filter, (c) wavelet transform, and (d) Wiener filter. To evaluate the effective-
ness of the filters, we will use an image with only a small amount of noise in Figure 4-4-A as
the reference image, and the noisy image in Figure 4-4-B which was generated using the
MATLAB imnoise function. The function adds multiplicative noise using the equation /] =
I't n I where 7 is uniformly distributed random noise with a 0 mean and 0.05 variance. The

multiplicative noise added an effect that is essentially identical to the effects seen with speckle

noise.

A) Reference Image B) Noisy Image

Figure 4-4: A) Reference image and B) noisy image for evaluating noise filters
The filters are evaluated by visually inspecting the output images with the filter applied and by
using metrics including mean-square error (MSE), peak signal-to-noise ratio (PSNR) and sig-
nal-to-noise ratio (SNR) to measure image quality when the output images are compared
against the reference image (Mateo and Fernandez-Caballero 2009).

MSE = —— M AN IGm,n) — Im,n)?  (4-1)

il — —
M3 Zn=s 12 (mn)

SNR = 10 X logo BE—"——

“-2)

— 10/ x logye e 4-3)
PSNR = 0910 355
In these expressions, / is the original image and I is the estimation of the original image ob-
tained from a noisy image. The images’ measurements are M X N.

The image quality metrics in Table 4-1 show that image quality degrades as window size in-
creases, suggesting that applying the median filter to a small window size will give a better-

quality image without losing too much important information.
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Table 4-1: Shows the MSE, PSNR and SNR Jor the Median Filter

' Wind‘ow': ~ MSE PSNR SNR |
3 ©0.000772  79.25664  62.90485
5 | 0.001077  77.80678 @ 61.45499
7 0.001434 7656391 |  60.21211 |
9 | 0001797 755851 | 5923331 |

11 0002204  74.69945 5834766
Figure 4-5 presents the images resulting from application of the median filter with different
window sizes. A closer visual inspection of the output images reveals that when the median
filter is used over window sizes of 3x3 and 5x5, respectively, speckle noise is suppressed whilst
at the same time very few of the important texture details of the image are lost. When the
window size increases beyond 5, a blurring effect is introduced into the image, reducing the

degree of contrast and making the border of the ROI unclear.

A) 3x3 window size B) 5x5 window size C) 7x7 window size

D) 9x9 window size E) 11x11 window size

Figure 4-5: Effects of different-sized Median Filters: A) Median 3x3 window size, B) Median 5%5
window size, C) Median 7%7 window size, D) Median 9%9 window size and E) Median 11x11 win-
dow size

The Fourier Butterworth filter is evaluated by setting a sequence of cut-off frequencies. For
this test, the cut-off frequencies were set at 10%, 20%, 30% and 40% respectively. Figure 4-2
presents the image quality metrics whereas Figure 4-6 shows the output images after applying
the filter at the corresponding cut-off threshold.

In general, both the image quality metrics in Table 4-2 and the output images from each differ-
ent frequency cut-off threshold shown in Figure 4-6 depict the same picture. As the cut-off

threshold increases, the image quality improves, and the images are less blurry around the
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edges. However, the contrasts of the output images remain poor unless the cut-off frequency

threshold increases further. In particular, at the 10% cut-off threshold, the ROI has disappeared

into the background. At the cut-off threshold of 40%, the image has the best quality with the

least noise and a more clearly identifiable ROI than the other images.

Table 4-2: Shows the MSE, PSNR and SNR Jfor the Fourier Butterworth filter

Cutoff ~ MSE | PSNR | SNR
10 0.004342 7175402 55.40023
20 | 0.002517 | 74.12171 | 57.76992 '
30 0.001681  75.87434 = 59.52254 .
40 | 0.001235 ‘

| 7721386 | 60.86207 |

(A)Cut-off frequency 10% (B) Cut-off frequency 20%  (C) Cut-off frequency 30% (D) Cut-off frequency 40%

Figure 4-6: Effects of the Fourier Butterworth filter: A) Fourier Butterworth Filter Cut-off: 10; B)
Fourier Butterworth Filter Cut-off: 20; C) Fourier Butterworth Filter Cut-off 30; D) Fourier But-
terworth Filter Cut-off: 40.

The wavelet transform approach, as a noise de-speckling technique, is based on eliminating
bands in a single decomposition level with at least one high-frequency component (HL, LH
and HH) removed (see Figure 4-7 and Table 4-3). Theoretically, these high-frequency bands,
especially the HH band, contain noise. By closely examining the output images, we can see
that in the images with HL and HH bands removed contain additional white spots that are not
in the original image, which represents a deterioration of the quality metric results. On the other
hand, we know that the LH band contains high frequency information representing horizontal
edges, and the image tested has more vertical edges than horizontal (although most of the lines

are diagonal), so if we remove this band, we remove a lot of noise but not much information

relevant to any edges.
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Table 4-3: Shows the MSE, PSNR and SNR for the Wavelet Filter

Level Band | MSE | PSNR | SR |
1 HL 0025807 639983  47.62165 |
1 | LH | 0.025068 | 64.13957 | 47.76292 |
1 | HH | 0026149 6395623  47.57959
1 LH-HH | 0.024836 | 64.17991 | 47.80326

A) Wavelet Sub-band-HL B) Wavelet Sub-band-LH C) Wavelet Sub-band-HH D) Wavelet Sub-band-LH-HH

Figure 4-7: Effect of the Wavelet Transform-Level 2: Effect of the Wavelet Transform-Level 2: A)
Wavelet Sub-band-HL, B) Wavelet Sub-band-LH, C) Wavelet Sub-band-HH and D) Wavelet Sub-
band-LH-HH

The Wiener filter has also been evaluated with different window sizes (3x3, 5x5, 7x7, 9x9 and
11x11). The image quality metrics reported in Table 4-4 confirm that image quality deteriorates
as window size increases in a similar pattern as that seen for the median filter described earlier; i
however, the amount of quality reduction appears to be much less than that for the median filter. J
A close visual inspection of the output images in Figure 4-8 shows that the filtered image with

the (3x3) window size is of good quality, but the output images with larger window sizes still

have ROIs with clear borders, although the texture patterns within the ROI are adversely af-
fected.

Table 4-4: Shows the MSE, PSNR and SNR for the Wiener Filter

“window = MSE | PSNR | SNR

R 0.000648  80.01321 = 63.63656 |
5 | 0.000683 | 79.78409 | 63.40745 |
7 0000755 = 79.35194 | 62.9753
9 | 0000828 & 7894957 | 62.57293 |
1 0000907 7855645 = 62.1798I
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A) wiener Filter (3x3)

C) wiener Filter (7x7)

D) wiener Filter (9x9) E) wiener Filter (11x11)

Figure 4-8: The effect of the Wiener Filter: A) Wiener Filter (3%x3), B) Wiener Filter (5%5), C)
Wiener Filter (7%7), D) Wiener Filter (9%9) and E) Wiener Filter (11x11).

In a comparison of the evaluation results across all four noise filters, the Wiener filter was
found to produce the best image quality, and this may help to improve diagnosis accuracy
through preserving texture features. On the other hand, one can argue that the wavelet trans-
form can help to improve the images for the purposes of segmentation purpose because it helps
to highlight the edge of the ROI.

4.3 Intensity-based Segmentation Techniques

Traditionally, algorithms aiming to separate structures or organs of interest from other regions
(background) utilise distinctive and quantifiable features. Useful features include image inten-
sity distribution in the spatial as well as frequency domains, entropy, and gradient magnitude.
The segmentation procedure aids in looking for the pixels with values within the defined ranges
that are established in the pre-determined thresholds. Manual or automatic selection is an ef-

fective way to choose thresholds that used in the algorithms. In manual selection, theoretical

knowledge and trial experiments that are required to determine the appropriate threshold values.

Trial experiments are needed to combine information from the images and to automatically
find the adaptive threshold values. The Otsu’s method (N. Otsu 1979) is one of the examples
commonly used in obtaining the threshold values with image histogram. Based on the infor-
mation that defines threshold values, it has been confirmed that algorithms have different clas-
sification namely the edge-based, region-based, and hybrid algorithms.

e In edge-based algorithms, the threshold values relate to the edge information and are

used as structured based on their appearances at the edge points. The most common
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examples of edge-based algorithms include the Wavelet transform, Canny edge detec-
tion (a common detection algorithms), the Laplacian edge detection, and the Sobel edge
detection.
Region-based algorithm is where quantifiable features are observed within the structure
and is determined by the appearance as homogenous. The main aim of this type of
algorithm is to look for pixels having the same values. The most common example of
this algorithm is the region growing algorithm.
® The hybrid algorithm mainly combines different cues of images in order to complete
segmentation process. One of the key examples is the watershed that mainly operates
by combining the intensity of images with gradient information and performing seg-
mentation using mathematical morphology.
An ultrasound image with empty GS and ROI is presented in Figure 4-9 (A). Figure 4-9 (B)-
(F) depicts the segmentation results of region growing algorithm, watershed algorithm, Otsu
threshold, Canny and Laplacian edge detections. In relation to the region growing algorithm,
the GS boundary is minted well but there is over-segmentation of the ROI boundary since it
leaks outside. In addition, there is over segmentation problem in the watershed algorithm that
occurs as a result of artefacts and speckling noise. This over-segmentation is evident across
different image areas due to various pixels with local gradient magnitude. When the images
obtained from ultrasounds are affected by the speckling noise as well as intensity of homoge-
neity, over-segmentation also occurs and this is found on the segmentation results of threshold-
based algorithms. The Canny Laplacian algorithms edge detection provides discontinuous
boundaries that result from the different level of grey scale in ultrasound that affects the texture
and the speckle noise. In addition, there are no representations of the spatial relationships of
edge points; therefore the majority of detection boundaries are poorly connected and may ap-
pear incomplete. As indicated in Figure 4-10, similar algorithms have been applied in this work
to obtain the ovarian tumour using the ultrasound image. Similar results were obtained when
compared with the ultrasound images obtained through empty GS. As a consequence, the al-
gorithms, when used alone, are ineffective in segmenting the right ROI. The researchers have
examined and found that algorithms are rarely used alone. Instead, they are effective when
prior knowledge and efficient pre-segmentation is incorporated. Thus, this work proposed an
effective algorithm that can enhance threshold-based segmentation through the combination of

basic segmentation solutions, sophisticated processing techniques for image, and priori domain

knowledge.
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Figure 4-9: A) Ultrasound image of a pregnancy case, B) region growing algorithm, C) watershed
algorithm, D) Otsu threshold, E) Canny edge detection and F) Laplacian edge detection.
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Figure 4-10: A) Ultrasound image of ovarian tumour, B) region growing a!gorithm, C) watershed
algorithm, D) Otsu threshold, E) Canny edge detection and F) Laplacian edge detection.
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44 Proposed Automatic Segmentation Method

Figure 4-11 outlines the processing framework behind the proposed algorithm for segmenting
GS from a static B-mode image and measuring its dimensions to allow identification of cases
of miscarriage. To accurately locate the GS in the image, the proposed solution first uses the
wavelet transform to suppress the speckle noise by eliminating the high-frequency sub-bands
and preparing an enhanced image. This is followed by an initial segmentation step that isolates
the GS through the following stages: first, the mean value is used as a threshold to binarize the
image. This is then followed by filtering out unwanted objects based on their geometric features
according to prior domain knowledge. The region growing algorithm is then applied as a post-

processing step to finally identify the correct GS.

The following subsections explain the details of each stage of the proposed automatic GS seg-

mentation solution.
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Figure 4-11: Fully Automatic Segmentation System
44.1 Image Enhancement

The purposes of this stage are to accurately locate structure boundaries, better visualize the

positions of any structures, and to quantify geometry features. In this work, two-level Haar
wavelet transform is used to suppress the speckle noise. The wavelet transform approach is !
based on eliminating coefficients in the HH2 sub-band (HL2, LH2 and HH2) (See section 4-
6). As described previously, the HH sub-band contains noise, so, if we set the coefficients

?
: : |
within the sub-band to zero, a lot of noise but not much edge-related information can be re- ! |
moved. Figure 4-12 shows two cases of GS ultrasound images. As we can see, the wavelet {

|
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transform can help to set the threshold in a straightforward manner, as well as help reduce the
number of FPs.
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C) Original Image 2 D) Wavelet transform level 2 (using Image 2)

Figure 4-12: The effect of the wavelet transforms: A, C) original images and B, D) wavelet trans- {
form results. “

4.4.2 Initial Image Segmentation

As presented in Section 4.3 and in chapter 3, the existing segmentation techniques, regardless

of being region-based, edge-based, clustering-based, or threshold-based, do not work well on
most ultrasound images because of the huge variations in intensity values from one image to
another. Therefore, we proposed a new hybrid technique based on threshold and geometric

features to segment and extract the regions amongst which the GS is located.

A threshold technique was used to binarize the image because it is the simplest compared with
other segmentation techniques. Nonetheless, this technique of thresholding could be the most
efficient technique for segmentation, particularly in specific applications. Typically, one
threshold value is used to segment an image into objects and background. However, it is com-

mon to use multiple thresholds to segment images into various regions.
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Additionally, thresholds are characterized as either local or global (constant all through the
image) when different thresholds are selected in accordance to the local characteristics of var-
ying areas in the image. In Figure 4-13, a histogram shape of the image was used to determine
the threshold. The figure clearly demonstrates that using threshold is not enough for the
achievement of a segmented image, where in the parts of an object have multiple FP and TP.
Thus, we have suggested for an appropriate method that can be used in identifying the FP and
TP using the Geometry features. The initial segmentation step in this case is to filter out the
non-ROI. Experimental selection was done to choose the values of parameters used in this
initial stage. This selection was done after conducting multiple experiments where different
images with varying GS sizes obtained from the ultrasound were used. This step assists in
promoting the GS structure without altering or losing essential information in the ROI. Suing
the image output from threshold, a morphological opening operation is performed where 6
pixel radius with a disk-shaped structure element was used. This is followed by carrying out
background subtraction operation to isolate foreground objects from the background objects

and this enhances correct detection of GS.

Threshold

Objects

Number of Pixels

Background

! Grey Levels 292

Figure 4-13: Histogram thresholding example
1. Image Binarisation
We have use a simple but effective threshold, which is the mean value of the image. This
threshold is adaptive, as it changes depending on the intensity level of the image. This tech-
nique is not usually sufficient in itself to accurately extract the GS because the quality of the
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segmentation is critical to an accurate measure of the diameters of the GS. By analysing the
threshold outputs, one can identify two limitations, F irstly,

each image has a number of binary
objects near the GS (see Figure 4-14). Secondly,

the binary image occasionally does not contain
the entire area of the GS. Therefore, furthersteps described in the following subsections are
proposed to address these limitations.

A) Original image B) Enhanced image C) Segmented image

Figure 4-14: The FP and TP based on threshold: A) original image - GS ultrasound image B) en-
hanced image using three-level wavelet and C) segmented image (includes FP and TP)

2. Morphological operations over binary image
After applying thresholding to produce a binary image which consists of the GS as a white

region with a large number of other objects, morphology operations were performed to remove

any small objects (see Figure 4-14).

Binary morphology operations are a set of operations that affect the shape or the structure of
an object in a binary image. They are mainly used for post-processing, pre-processing or to
extract a description of objects/regions in an image (Gonzalez and Woods 2017). Dilation and
erosion are considered to be the two basic operations of other binary morphology operations.
Dilation is a process of growing objects in binary images while erosion is a process of thinning
objects in binary images, and both processes are controlled by a structuring element (Soille
2013). Dilation and erosion can be expressed mathematically via the following two formulae,

respectively:
A®B = {z|(B),nA * ¢} @-4)

A © B = {z|(B),NA® # ¢} (4-5)
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Where A is the binary image, A° is the complement of A and (B). is the structure element B
Z

after reflection and translation by z. The dilation of A by B is defined as the set of all displace-
ments z where A and B overlap by at least one element. The erosion of image A by structure

element B is the set of all structuring element origin locations where the translated B has no
overlap with the background of image A.

Two important morphology operations, opening and closing, are defined by combining dilation
and erosion. Opening is an operation that has ability to smooth the contour of an object and
reduces the presence of some small unwanted objects. Opening is simply implemented by ero-
sion followed by dilation. Closing is an operation that closes narrow gaps and fills small holes

to smooth objects. Closing is achieved by dilation followed by erosion (Gonzalez and Woods
2017).

In general, binary morphological operations can perform in a similar manner to spatial filtering.
They can be useful in a pre- and post-processing of a segmented binary mask. Two precautions
should be considered when using such operations. The first one is that they need careful setting
of their parameters (i.e., size and orientation of structure elements in open and close operations)
to give the required result. Furthermore, besides their intended enhancements to certain objects
in the image, other objects might inadvertently be negatively affected by applying those oper-

ations blindly to the whole image.

The values of the parameters used in this stage were selected empirically after a number of
experiments had been carried out using different ultrasound images with different GS sizes,
taking into account the enhancement of the structure of the GS without any simultaneous loss
of important information in the specific ROI. The morphological opening operation is carried
out on the image output from the threshold, using a disk-shaped structure element of a six-pixel
radius, followed by a background subtraction operation to separate out foreground objects from

the background and detect the GS correctly.
3- Filtering our non-Sac objects based on geometry features

The central problem that needs to be addressed at this stage is the fact that upon completion of
the segmentation, irrelevant binary objects (i.e., objects that don’t not represent the GS) still
exist in the binarized image. Therefore, it is necessary for a fully automated system to identify

these objects and consequently remove them. This process of filtration is performed based on

the geometric characteristics of such non-sac objects.
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Our object detection procedure classifies image objects based on their geometric features. The

aim here is to use powerful geometry features to reduce the overlap between the false positives

and true positive. These features support the classifier model in the identification of the correct
ROL. In this model, we have used the following features: object circularity,

object area, object
solidity,

and object mean greyscale value (see Figure 4-15). These features are described as

follows:

1

:

]

Features Objectl | Object2 :

1

Circularity x « :

1

1

Object area x « i

1

1

Solidity x < |

1

1

Object mean of x « !
gravscale value 1
i

1

1

1

Figure 4-15: The features of the filtering out non-sac object step
= Circularity. The circularity of an object is the ratio of the square of the perimeter to
the area:

Per?

Circularity= (4-6)

4xpi*area

Where the perimeter (Per) is the distance around the inner boundary of an object and
the area is the number of pixels inside the object. Because a sac is roughly spherical in
shape with roughly circular projections in ultrasound images and also have a little cir-
cularity value region, sac circularity is a good indicator of the likelihood of whether a

binary object is a true sac or not.

*  Object area. Object area is defined as the number of pixels making up an object. The

object area allows us to distinguish between different regions including sacs, even if

they are small.
»  Solidity: Solidity measures return a scalar specifying the proportion of the area of a

region in pixels to the convex hull area that contains the region. Solidity is computed

as:

Solidity= ——2 — (4-7)

Convex Area

* Object mean of grayscale value. The mean value of the object is the average of each

object based on its grayscale value. The mean of the sac must have a low greyscale
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any non-sac objects.

The proposed object detection model] involves two main stages: first, the training stage, to build

a model based on the training samples; and second, the testing stage to classify the objects.

These stages are explained in more detail in the following subsections.

Training Stage: a number of samples are used to train the SVM classifier. We have used the
previous stage (initial segmentation process) to binarize the image. Several objects have been
extracted from the binary images. To extract the features, we have used the binary mask to
calculate the geometry features then masked the original image to calculate the solidity and the
mean value for the greyscale of each objects. Somewhat subjectively, we have labelled the
features into the positive class and negative class by looking into the objects. Finally, we fed

the extracted features and labels into the SVM classifier (See Figure 4-16).

Geometry features

Negative Class _?D (Area, Circularity)
> SVM
b ' | Mean and solidity
—>| Positive Class [ | for each object by
> . oliite
masking the origi-
nal image.

Figure 4-16: Training stage for filtering out non-GS

Testing stage: the output of the initial segmentation stage is binary image include number of
objects (TP and FP). The aim of this stage is to identify the TP object. To achieve this, our
proposed model scans the image object by object. For each object, four features (circularity,

area, mean and solidity) are extracted. By using the score of the trained SVM model the correct
GS is then identified.
Figure 4-17 illustrates the resulting images from each intermediate step in this initial GS seg-

Mentation stage.
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Figure 4-17: GS segmentation steps: A) original image, B) cropped 70 pixels, C) enhanced image,
D) separated both sides, E) threshold output, F) clean image (morphology operations) and G)filter-
ing out non-GS objects

443 Accurate Sac Segmentation

The output of the previous stages gives an approximate location of the GS. In this stage, this
location is used as a seed mask for other segmentation techniques to obtain the complete sac

(see Figure 4-18). The RG is used in this stage as a post-segmentation technique to extract the

sac with a correct boundary.

a. Gestational Sac b. segmentation output

€. accurate sac segmenlalion

Figure 4-18: Accurate sac segmentation output

Region Growing (RG): the output of the filtering out the non-GS stage is an initial mask. This
mask was used as a start point for the RG. In this stage, a threshold classifies a given pixel
based on the grayscale value of the starting mask with the neighbouring pixels to check the

difference. This difference is used as a value to determine whether the neighbouring pixels
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should be added to the region. The values of the threshold used in this stage to extract the
complete ROI were selected empirically after a number of experiments had been carried out
using different ultrasound images with different texture GSs without losing important infor-

mation from the ROI. The optimal threshold used in this stage is 0.4.

444 Feature Extraction

As previously explained, each image we processed in this study contained two sac images taken
in two planes (sagittal and transverse). The GS in each plane usually appears more elliptical.
Therefore, our system aims to locate the best-fitted ellipse for the segmented GS for each plane.
Major and minor axes are measured based on the ellipse, as shown in Figure 4-19. The GS is
presumably having an ellipsoidal shape in 3D, the three main dimensions of the ellipsoid has
generally been calculated by the minor and major dimension from the sagittal plane and the
major dimension from the transverse plane. The average of the three Dimension is taken as the
MSD (Abdallah, Daemen and Kirk, et al. 201 1).
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Figure 4-19: MSD measurement

4.5 Experiments Result
To test the effectiveness of the proposed solution, we use the dataset containing B-mode ultra-
sound images of GS as described in Chapter One. We evaluated the algorithm’s performance
at each of the three main stages:

e Assess the accuracy of the segmentation

e Compare the automatic measurements with the manual ones generated by a domain

expert.

e Evaluate the accuracy in identifying the miscarriage cases using the MSD feature cal-

culated from the automatic GS size measurements.
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45.1 Segmentation Result

The Human Visual System (HVS) is used to manually calculate the percentage of successful
segmentation of the GS. This is because the size of the available dataset is not particularly large.
In the binarization stage of the solution, we found that the proposed solution successfully lo-

cated the objects, including GS, in 151 out of | 84 images. Therefore, the rate at which the true
GS is located is around 82%.

In the stage in which non-ROI (FP) were filtered out, we found that 137 out of 151 images GSs
accurately detected the TP and 14 images were unsuccessful. Therefore, the GS segmentation
rate for this method is around 90 % (see Table 4-5). To evaluate the proposed model out of the
whole dataset, 137 images out of 184 have segmented correctly, and only these images will use

to evaluate the accuracy in identifying the miscarriage cases.

Table 4-5: Accuracy of the threshold-based segmentation

| Proposed method

'Located the TP besides the FP |~ 151/184 |
B Accuracy | 82.06% |
Success out of 151 | 137/151
Accuracy 1 90.7%
| Successful segmentatidn out of e 137/184

the whole dataset

Accuracy 74.4%.

Figure 4-20 shows some example results for threshold-based segmentation where the first col-
umn presents the original image, the second column presents the initial segmented GS and
other FP objects, and third column presents the true GS after filtering out non-ROI objects. For
illustrative purposes, the results of segmentation for the second and third columns are super-
imposed in green lines on the original image. Figure 4-20-A illustrates that the proposed
method segmented the true GS together with a number of FP objects. The filtering out of non-
ROI also succeeded because of the regularity of the shape of the GS in terms of its circularity
compared to FP objects. Figure 4-20-B illustrates a difficult case, i.e., an ultrasound image with
a very small GS with an irregular shape. In this case, since the initial segmentation results in
too many FP objects of various shapes, the threshold-based checks applied by the post-pro-
cessing stage of the proposed algorithm has failed to recognise the true ROL Figure 4-20-C
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Lt Rt proposed solution, but also highlight the difficulty faced by segmenting ROIs

in ultrasound images.
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ic MSD Measurements

452 Comparing Closeness between Manual and Automat

the automatic measure-

To evaluate the effectiveness of the proposed segmentation algorithm

ments of the GS size, i.e., diameters D1, D2 and D3 are compared with the equivalent manual

Measurements as taken by a domain expert and provided in the ground truth document (See
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Figure 4-21: The manual measurement inside the red rectangle.

Figure 4-22 shows the three diameters obtained from the best-fit ellipse to the GS in two planes:

DI (major) and D2 (minor) of the fitting ellipse for the GS in the image taken in the sagittal |

plane, and D3 (major) of the fitting ellipse for the GS in the image taken in the transverse plane. I

For the experiment, we will use the 137 images that have been segmented correctly by the | ‘f I
L]

[
proposed segmentation algorithm ‘

10 il

Figure 4-22: Pregnancy images with MSD measurements.

As for the first evaluation, we use several regression statistics to show the consistency between
the manual and the automatic measurements through regression and correlation. Figure 4-23
shows the scatter plots for the automated and the manual measurements for D1, D2, D3 and
MSD, respectively. The angle of the regression line is close to 45°, the value of R? and the

values of other indicators in Table 4-6 are very high. All the visualisations and indicators show

the level of consistency between the two kinds of measurements is high. By closely examining
1 the figures in Table 4-6 and the scatter plots, we notice that D2 and D3 show larger variation
3 between the manual and the automatic measurements than D1, for two reasons. First, the irreg-
? ularity of some GS shapes means that the ellipse will not fit the GS precisely, particularly for
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D2. This can be seen in Figure 4-24 (A) and (B) where there is a clear difference between the

best-fitting ellipse and the actual shape of the GS, and hence a greater difference between the
manual and the automatic measurements Second, the manua] measurements of D3 on the trans-
verse plane for the majority of images from the ground truth document refers to the major
diameter of the GS shape in that plane, and hence our automatic measurement of D3 has fol-
lowed the majority convention (as shown in Figure 4-24 (D). However, for some images in
the datasets, the minor diameters have been taken as D3 (See Figure 4-24 (C)), though without
any clear reason. For these images, the automatic measurements of D3 have larger differences

with the manual measurements. It is interesting to note that when we compare the MSDs cal-

culated using the manual and the automatic measurements, respectively, the difference between

them is generally much less than those found for the individual diameters. This means that the

MSD obtained from automatic measurements of the GS size could still be diagnostic of the

empty GS suggesting an instance of miscarriage (see next subsection).
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Figure 4-23: Comparison of manual and automatic MSD measurements for both D1, D2, D3 and
MS.

Table 4-6: Shows the regression statistics for D1, D2, D3 and MSD

Regression Statistics
DI D2 D3 ' MSD
© 0.963189  0.906607 | 0.911783 | 0.979589 |

' Multiple R | |
R Square 0.927733 0.821936 0.831347 | 0.959594
Adjusted R 0.927198 0.820617 | 0.830098 | 0.959295
Square | |
Standard Error ~ 3.185926 3417688 4.021005  1.858828
] Y 137 | 137 | 1371
Observations 137 1737 f 137 | i
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Figure 4-24: Shows the effect of the GS shape on the measurements
However, the correlation and regression analysis we have conducted can only show the strong
consistency between the manual and automatic measurements. The analysis does not indicate
the closeness of the automatic measurements to the manual measurements. For the closeness
analysis, we adopt the Bland Altman analysis method, using closeness indicators such as upper
and lower LOAs. Table 4-7 and Figure 4-24 shows the lower and upper LoA for all measure-

ments.

Table 4-7: Upper and Lower LOA for the Bland Altman analysis for D1, D2, D3 and MSD

D1 | D2 | D3 | MSD |
WpperBOA. | 7500 | 9441 | 8160 | 4951
|

Lower LOA = -4.855 | -4.106 | -8.613 -2.414

The scatter plots in Figure 4-25 clearly show that the majority of measurement differences are
well within the lower and upper LoA; only a few measurement differences are outside the
boundary areas. Among the measurements, D1 and MSD measures have the smallest bounding

area between the lower and upper LoA, indicating strong closeness between the manual and

automatic measurements for these two size parameters.
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Figure 4-25: Altman analysis for manual versus automatic segmentation and measurements for t’ '
[
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4.5.3 Classification Results

Besides comparing the closeness of the two kinds of measurements, we also evaluate the ef-
fectiveness of the proposed segmentation algorithm through classification; namely, we want to
understand if the automatic measurements of the GS based on automatic segmentation can also
lead to good classification results if a GS indicates a miscarriage or PUV. We conduct two

experiments: in the first, we gave PUV and miscarriage cases an equal weight in the training 1 ;

set using a sampling policy that is explained as follows. In each round, we randomly selected

20 PUV images and 20 images of miscarriage cases to form a random sample of examples. For

¢ach random sample dataset of 40 images, we conduct stratified leave-one-out cross-validation,

ie., at each iteration of the cross-validation, we take two images (one from each class) for

testing, and the remaining 38 images are used for training. Once the leave-one-out cross
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validation is completed, the respective averages of overal| aceuracy, sensitivity, and specificity
are reported for the sample dataset. p, order to minimise the random effects of the sample, we
repeat the sampling and the Cross-validation 20 times, and the respective averages of the aver-

ties and average specificities for
nally reported (see Algorithm 4-1).

age accuracies, average sensitivi e,
the cross-validations are fi-

Algorithm 4-1: The experiment protocol 1

Class 1: PUV cases (157 images)

Class 2: Miscarriage (27 images)

RoundNumber =20
For Round= 1 to RoundNumber i ~
Select randomly 20 images from each class.
ForI=1:20

[
I Training Stage: Train the classifier with 38 samples (19 sample from the PUV class ‘

|

and 19 samples from the Miscarriage class). } 3!* |

2 Testing Stage: 2 samples (I PUV sample and 1 Miscarriage sample). i
»

3 Save the predication label.

4 Loop back to select different samples l il
EndI

Calculate the Accuracy, Sensitivity and specificity for each round
End Round

Calculate the Accuracy, Sensitivity and specificity for the whole experiment

In the second experiment, we used a single split testing strategy instead of cross-validation by
randomly selecting 33% from each class (PUV and miscarriage) in the dataset to form a testing
sample, whilst the remaining 66% of each class form a training sample. This was then repeated
for 50 rounds and the average accuracy, sensitivity, and specificity were reported. The reason

for using this testing strategy is to follow a general practice of testing models in medical and

clinical research.
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of 100% and a specificity (PUV) of 949 i the first experiment

. - By contrast, an overall accu-
racy of 99.89% with a sensitivity of 100% and a speci

: ficity of 99.87% was achieved in the
second experiment, as shown in Figure 4-26. The results confirm that giving a higher weight

to the PUV cases compared to the miscarriage cases could give a diagnostic model that was
closer to clinical practice.

S R R -
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97
96
95
94
93
92

91 g i a
Accuracy Sensitivity Specificity

O First Experment 98.7 100 94
D Second Experment 99.89 100 99.87

Figure 4-26: Comparison of miscarriage classification accuracy, sensitivity and specificity based
on MSD.

4.6 Discussion

In this section, we present different discussion areas related to the proposed solutions. First, in
Section 4.4.1, the wavelet transform used as a filter to highlight the ROI and make the threshold
method suitable for the ultrasound image segmentation. This filter was chosen after the inves-
tigation and evaluations for the speckle noise filters in Section 4.2. Based on this investigation,
we argued that the wavelet transform would remove a lot of information that might be im-
portant for other tasks, i.e., texture feature extraction. However, for the segmentation task we
found the wavelet filter useful because it makes the edge of the GS clear and reduced the over-
lap between the texture of the ROI and the background. Different wavelet levels have been
tested to establish in which level of decomposition we can remove the speckle noise, highlight

the ROJ and still maintain the GS image. As shown in Figure 4-27, when the GS is small. We
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can see that the best resulting image is generated at leve] 2 where the contrast between th

i ; n the sac
and background is very high. At leve] 4, however, we noticed that the GS image had almost
frequency bands (HH, HL,
nd can have the same effect

ges.

disappeared. In addition, we tested the fi

Iter by eliminating the high-
LHand HH&HL). Figure 4-27 shows th

at the elimination of any ba
on the images. Similar observations have been made for other ima

|
Sub-Ban:lHEIl{iminated Sub-Band Eliminated Sub-Band Eliminated Sub-Band Eliminated =HH
i =LH

Level 1

Level 2

Level 3

e ol
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-
-
-
-
-
-
-
-
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Figure 4-27: Evaluating the wavelet transform with different levels

l Therefore, the level of the wavelet transform has an effect on the result of the segmentation
l more than the bands. In our dataset, we have two cases: 1) small GS special cases that were
| scanned in the first two weeks; and 2) a large GS. In case of a small object, increasing the
Wwavelet level to more than 3 will make the GS disappear. With a large GS increasing the level
Will help because it makes the GS clear by reducing the FPs, mainly because it will make the
r background texture smooth. F igure 4-28 shows the application of the wavelet filter at level 3

on an ultrasound image with a large GS. We can clearly see how the wavelet transform can

highlight the ROJ.
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A) Original image B) Filtered image

Figure 4-28: The effect of the four-level wavelet transforms when eliminating the HH and HL
bands

Figure 4-29 shows the wavelet transform for two GS images. The first part of the figure is a

blumy image with a small object. By applying the wavelet transforms, we found that the TP

object disappears, though in part 2 the small object disappears as well. Therefore, that filter can

help with images scanned after week 2 of the pregnancy because the GS has sufficient size and
clarity to be distinguished.

D) Filtered Image3

C) Original image2

joi ] s, and B, D) filtered images
Figure 4-29: The effect of the wavelet transforms: A,C) original image )
igure 4-29: The effec
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stage that’s mean the threshold defiantly will not capture the GS. In addition. the overlap prob
lem between the objects is one of the limitations we faced in this

Stage, where in some cases,
the threshold cannot capture the poor GS edge.

Third, the filtering out non-GS objects stage has some limitations related to the geometry fea-

tures, 1.€., the circularity feature might be suitable for most GS images, but for some cases the
circularity feature cannot capture the GS due to the irregularity of its sha

Pe, as shown in Figure
4-30.

Figure 4-30: An irregular GS

Finally, region growing was used as a post-segmentation method to reduce the overlap problem.
The limitations of this algorithm are the threshold used to label the pixels as a GS (or otherwise)
as well as the criteria (pixel intensity) used being insufficient to describe the pixels due to the

variance in the GS intensity.

47 Summary

The aim of this study was to explain the challenges faced in order to enhance and segment the
ultrasound images, followed by a review of the existing methods used to enhance the ultrasound
and identify the best methods by which to improve the accuracy of diagnosis as well as deter-
mine the best filter to highlight the ROI and reduce the number of FPs. In addition, the more

traditional segmentation methods were evaluated by application to the ultrasound images.

This chapter investigated the closely related issues of speckle noise, segmentation and the clas-
sification accuracy of automatic identification of miscarriage cases using ultrasound imagin-g
Systems. The aim of this chapter was to understand the effect of speckle noise on automatic
Segmentation, diagnoses, and to use the knowledge so acquired to design a fully automatic

3 - i i . The seg-
framework for accurate segmentation and classification of early miscarriage cases. T g

) o i i as per-
Mentation was divided into two stages. Firstly, the initial segmentation of the sac was p

: ly, a refinement
formed after removing unwanted objects based on geometric features. Secondly
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Chapter 5. Texture-based Multi-leve] Trainable Segmentation

This chapter is concerned proposed with the segmentation of the ROI in ultrasound scans of
the ovary in relation to the classification of miscarriage and ovarian tumours, although these
two tasks have different objectives as a result of the differences between the GS in pregnancy
and a tumour mass. Regarding to the challenges that we have faced in chapter 4, we shall de-
velop a machine learning-based scheme that is referred to as a trainable segmentation method,

and highlight its advantages over the method proposed in Chapter 4.

The concept of trainable detection and segmentation has been used for various different appli-
cations i.e., content-based image retrieval, face detection, video surveillance, traffic control
systems and medical imaging. The widespread use of this concept motived us to use it to en-
hance the segmentation and address the limitations that we have faced with the solution pro-
posed in chapter 4 (section 4-4). These limitations are: 1) the proposed threshold-based solution
does not locate small RO, especially in cases where the ROI has a similar texture to the back-
ground; 2) does not catch the poor border; and 3) filtering out non-ROI based on geometry

features is ineffective as a solution for irregularly shaped objects as well as small objects.
This chapter presents:

1) An effective multi-level segmentation of GS and YS using texture-based trainable models
for pregnancy assessment. This represents a new approach to automatic segmentation of the
GS and Y from static ultrasound images followed by estimating the MSD of the GS that forms
part of the diagnostic criteria for a miscarriage, where an enlarged YS can also indicate pathol-
ogy. Our approach has an automatic validity check embedded that excludes the images where

the GS cannot be successfully segmented. In practice, this means that certain images still need

the intervention of the gynaecologist.

2) A trainable segmentation and watershed transform for identifying unilocular and multilocu-

lar cysts from ultrasound images of ovarian tumours. A new approach that automatically seg-

ments the ovarian masses and cysts from a static B-mode image was used. Initially, the method

uses a trained neural network classifier to accurately identify the position of the masses and

cysts. After that, the borders of the masses can be estimated using watershed transform.
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Section 5.4 summarizes the chapter.

5.1 Problem Statement
5.1.1 GS Images

In order to extract and measure the MSD of the GS and YS for pregnancy cases automatically,
it is necessary to first segment the ROI from a B-mode ultrasound image. However, the tech-

nical challenges that we have faced with the algorithm proposed in chapter 3 are: 1) artefacts

and noise within the image such as speckling, attenuation, signal dropout and shadows can

make the task extremely complicated (See Figure 5-1). We solved this problem in chapter 3 by
using the wavelet transform to highlight the RO, but we found that when we have a small GS,
or the GS has a texture similar to the background, the wavelet will make the GS disappear
rendering the segmentation task impossible. F igure 5-2-A shows example of a difficult case.
We applied the threshold after pre-processing (see Figure 5-2-B) and can clearly see that the
ROI'has been missed. In addition, we have applied the threshold directly to the image without
pre-processing (see Figure 5-2-C). The true positive has been located, but there are a number
of false positives produced in addition to the ROI. The trainable model (see Figure 5-2-D)
improved the result by reducing the number of false positives, which had a positive effect on
filtering out non-ROI results. The trainable segmentation stage was followed by the filtering
out of non-ROIs to locate the true positive object (ROI). 2) Inhomogeneity of the ROI, which
means that it has different textures, and the ROI may be confused with its surrounding areas,
causing a problem known as “under-segmentation”, i.e., parts of the ROI are not detected. Ap-
plying the traditional RG will result in a problem related to the threshold parameter that pre-
sents the difference between the pixel and its neighbour. In chapter 4, we will address this
problem in detail. 3) The irregularity of the ROI makes the filtering of non-ROI objects based
on geometry features extremely difficult. 4) Poor borders (or lack of a clear border) of the ROI
and similarity between its texture and that of the background will result in “over-segmentation”,
where irrelevant parts of the surrounding areas are taken as parts of the ROI. Due to reasons
mentioned previously, more than one RO, i.e., false positive ROI(s), may often be found,
causing difficulties in determining which the true positive is. Figure 5-1 illustrates the above

problems.
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Figure 5-1: Examples of challenges for correct segmentation of the GS: A) image quality, B) inho-
mogeneous ROI, C) irregular ROI, D) false positive problem, E) poor border and F) Similarity be-
tween the texture of the ROI and the background.

M1l 2t Many's Hospital GIR
L3/3n& T a1 2407.2013 11:27.
Pene

V'B o3 LIRS Y StMery'sHasptel GIR -0/08 Mol St Mary's Hospital GIR
L3737z Tin02 01200 13/37Hz  TIb 01 24072013

' ] i g jginal i B) image binarization
Figure 5-2: An example of a GS image with small ROI: A) {)rtg.mal image, .
blfsed ona thresholdp( wit{ pre-processing), C) image binarization base.d on a threshold (without

pre-processing) and D) image binarization based on a trainable model

5.12  Ovarian Tumour Images

In order to characterise benign or malignant masses and distinguish tumour types, ultrasound
imaging has become the most widely used method in this regard due to its useful imaging

characteristics, which can be grouped into two categories. The first of these is the morpholog-

ical features that are detailed on a B-mode image. These include unilocular and multilocular
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cysts, fluid, lesion diameter

, intern : : )
: al wall sty ucture, papillary projections and acoustic shadows.
The second category is the combined use of Dopp

e ler images to gain blood flow information.
The above enable the clinician to determine the ser;

fiousness of an imaged mass (Sayasneh, et
al. 2015) (Sayasneh, et al. 2016). Identification of

the features affected that can help to identify tumour type

, and acquisition orientation
of low contrast between the ROIs (Noble and Boukerroui 2006). This chapter presents a novel

approach for automatic segmentation of ovarian cysts from static B-mode ultrasound images
that allows the number cysts in the image to be counted to distinguish unilocular from multi-
locular cases, which are strong indicators of the type of the underlying tumour. Figure 5-3

shows two cases of ovarian ultrasound images: A) unilocular case and B) multilocular case.

Figure 5-3: Unilocular and multilocular cysts: A) unilocular case and B) multilocular case

5.2 Proposed 1: Effective Multi-Level Segmentation of the Gestational and
Yolk Sacs Using Texture-based Trainable Models

The mean sac diameter (MSD) of the gestation sac (GS) (see section 2-2-1) forms part of the
diagnostic criteria for a miscarriage, and an enlarged yolk sac (Y'S) can also indicate pathology.

This chapter presents a new approach to automatic segmentation of GS and YS from static

ultrasound images followed by measurement of the MSD for both YS and GS. To achieve this,

the proposed approach involves six steps to segment and measure both the GS and YS. In

Stepl, we locate a set of candidate GSs using a trainable e e
b

d a neural network (NN) classifier. In Step2, we

hi iented gradients (HOG) an :
Istogram of oriented gr: GS objects based on the HOG and local binary

classify each candidate GS into GS or non-
)7/

o ' ahg




rately,

step is the approximate location of the GS. In Step3, the approximate location of the GS is
used as a seed mask for a region growing method to obtain and measure the entire GS. Step4
then automatically identifies the stage of pregnancy based on histogram analysis of the content

of the segmented GS. If the pregnancy test indicates the existence of the YS, Steps is used to
automatically detect and segment the YS. Finally,

in Step6.

the size of the YS is automatically estimated

The main contributions of this Proposal are, first, proposing a multi-level trainable segmenta-
tion for measuring GS and YS from ultrasound images using texture-based models. Second,
filtering out non-sac objects using an object detection mode] based on the texture feature and
SVM classifier. Finally, identifying the stage of pregnancy based on the histogram analysis.

Figure 5-4 provides an overview of the system for the automatic identification of the stage of
pregnancy as well as detecting and measuring the GS and YS from a static B-mode image.

Each step of the framework will be explained in detail in the following sub-sections.

Prazmancy stazs]

(= ptv G2

Stept Srep 2 Sep 3
i : | Filtrinz Out Nen-ROL Ancurats Sec
! Hrlee\:_]Tr;u:aﬁe — bs_;zm’rznze =1 Semantztion for
| GSSegmentzon Fezmess Eztimzting it= Siza
Srep 5 Step6
Second Level Trairzble Estierzting Y'S Sizz |— [0

Szementtion{Yolk Daection)

Figure 5-4: General framework for automatic segmentation

3.2.1 Stepl: First Level Trainable GS Segmentation

The aim of the first level segmentation is to isolate the GS from the rest of the image. The
Process starts with selecting a certain number of images for training purposes. From each train-

ing image, a number of samples, i.e., a small window of square regions of a certain size (e.g.,
2
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5x5), are taken from inside (Class 1) and outside (Class 2) the GS. T

. . 0 achieve this aim, a semi-
automatic tool has implemented to generate the samples. This proc

€SS starts by manually de-

——— e

>,
—_—— )
P>

Original Image

Crop the ROI Manually

»| Generate the Mask I

Generate the training sample randomly from J J |
inside and outside the ROI IJ—- 5
li

l Figure 5-5: Generating the training samples automatically.
| For each window of either class, texture features have been used rather than the pixel intensity.
; A set of the HOG features is extracted (to be described later). The labelled feature vectors
collected from the samples are used to train an ANN classifier (Figure 5-6-A, Training Phase).
Once the training is complete, each image from the testing set is used as an input for the seg-
\ mentation algorithm (Figure 5-6-B, Testing Phase). The algorithm scans the image pixel by
' Pixel. For each pixel, a small square region of the same window size with the pixel as the centre
is constructed, and the HOG feature of the region is extracted and classified by the trained

heural network into two classes “inside GS” or “outside GS”. Once all the pixels of the image
, have been labelled, the “inside pixels” region is taken as the segmented GS.

|

l
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Figure 5-6: First Level Trainable GS Segmentation

|
The histogram of oriented gradients (HOQG) is a feature descriptor that facilitates the identifi- ; : '
cation of objects in digital images. HOG was formulated for the quantification of gradient ori- {
entation occurrences in localized image sections and has been well documented in (Dalal and
Triggs 2005). The process of HOG feature extraction involves taking a window around the
pixels called cells. The mask [-1, 0, 1] is used to compute image gradients. In our adaptation
of this extraction method (see Figure 5-7) for orientation binning, we directly used the gradient
at each image location for the corresponding orientations. The orientation cells are chosen in

- . : . ; ination, shadowing, etc., contrast-
the range of 0-180° with 9 bins. For better invariance to illumina g

normalization of the local histogram is applied.
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Figure 5-7- HOG process
522 Step2: Filtering out non-sac objects using object detection based on texture fea- i
ture and SVM classifier ; |

The central problematic element associated with the Previous step of the process stems from
the fact that after the application of the trainable segmentation, a number of regions tend to

have a texture similar to the sac, i.e., the output will be a set of binary objects representing “sac

candidates”. Consequently, it is necessary for a fully automated system to filter out non-sac

objects.

Our object detection procedure classifies image objects based on the values of texture features.
There are many motivations for using texture features rather than the geometry features of the
object directly. The most commonly acknowledged reasons is that we found that the geometry
features, i.e., circularity and size, are not sufficient to allow the GS to be identified, especially
when we have false positive regions with the same ROI geometry criteria (geometry features
overlapping). Accordingly, our objective here is to find a powerful texture feature with which
to reduce the overlap between the false positive and true positive classes. These features will
support the classifier model to identify the correct ROL. In this model, we have used two fea-
tures, first, the LBP, which maintains robustness to the monotonic grey-scale changes caused,
for example, by variations in illumination. Second, as mentioned earlier, HOG is deployed,
Which tries to capture the shapes of structures in the region by recording gradient information.
One of the advantages of these two features (LBP and HOG) is the production of fixed-length
dimension feature vectors for different size boxes due to the number of bins for the uniform

LBP and number of angles for the HOG. The results presented in Section 5.2.7 confirm the
effectiveness of this fusion (LBP+HOG).

A.Training Phase
To understand the organization or establishment of sac-class and non-sac-class pattern, various

) gt . isti fb
images of an object will be used. The system input will involve an image consisting of boxes

i d. This means
obtained from the GS. During the training phase, data reflecting the GS are neede is m
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G e iminng process is required to be the sac-class (GS) examples and false

positive Will be needed to represent the non-sac-class or the background. A simple tool is

e e tocliak on identifying marks of an object in an image. This assists

in the following subsections.

B. Testing Phase

The output of this First Level Trainable GS Segmentation is a binary image which includes the
GS and some non-GS objects. A rectangle is drawn around the objects, first, to get the edge of
the GS which we strongly believe contains good information for identifying the GS (positive
class) from the negative class and, second, the calculation of the HOG and LBP features has
been simplified. The objective of this method js to detect the correct ROI. Figure 5-8 shows
how the system automatically draws a rectangle around the candidate GS. To get a rectangle
around the binary object according to the XY-axes, the proposed system needs to find the
min/max of all the x and y coordinates. Then, to cover the edge of the region, for the proposed
solution N pixels around the object are included. Based on our observation, N=5 seems optimal

to cover the edge of the GS. Figure 5-9 shows the proposed detector.

(N]'S. '\'|'5) (N|+5'-\:'5.
'(',‘ £A
' it
x= Min x P L
D 7 X
o A l:. candidate GS
= (¥) v L vy Max y \ >
Ye=Miny  {X) candidate GS v ¥y Maxy R o
A-.""". . "'-—-..‘ ) (s ‘n
7 o 5
ArMax x (N,-5. ¥, +5) (N;#5,y 45)

Figure 5-8: Drawing a rectangle around the candidate GS
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Figure 5-9: Filtering out non-regions based on texture features

|
As mentioned previously, we have used the SVM classifier to identify the sac, and from which I |
} there are three possible scenarios as the outcome of this model. First, we will get only one sac. !

Second, we end up with none i.e., no sac can be reliably detected, that is, it can tell us there is
| no true positive case when the First Level Trainable GS Segmentation did not extract the GS.
In this case, our method rejects the image as it cannot be reliably segmented. Third, we will
) end up with more than one candidate sac. In this case, the SVM score used to rank the candidate i

sacs and the candidate with the highest score represents the correct GS. Figure 5-10 shows the

proposal regions from the first level segmentation and the selection of the true positive using |

the proposed detector.
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Figure 5-10: The false positive problem: linel represents the output of the First Level Trainable GS
Segmentation (proposal regions) and the second line shows the output form filtering out non-re-
gions based on texture features.

Finally, three questions related to the Step2 can be raised.

e Why the SVM model as a classifier in Step2?
In Step2 we trained the SVM with two classes (sac and non-sac). Each image has only two GS
and, due to the limited number of images, we do not have enough sacs to train the ANN. In
addition, the SVM score has helped to select the correct GS. By contrast, in Stepl we have
used small window to train the classifier which helped gain a good number of samples from

inside the GS. Based on this strategy, we gained enough data to train the ANN in Step].

e Why the HOG in addition to the LBP?
The HOG features method is based on a gradient image method. Therefore, it captures the
shape of structures in the region by recording information about the edge of the gradient image.
Figure 5-11 shows the gradient image for a case of a GS as well as another object (false positive
object) with a similar gradient structure. Therefore, using the HOG alone is not sufficient to
locate the correct GS. Figure 5-12 shows the LBP of the correct GS and the false positive. We
ture the monotonic greyscale changes as well as the borders that

can see that the LBP can cap

can help to identify the correct GS. Based on our investigation and the results discussed in

section 5.2.7 we can confirm that using the LBP and HOG will help to capture different infor-

mation to reduce the overlap between the true positive regions (GS) and the false positive re-

gions.
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A B

Figure 5-11: Illustration of the gradient image as a part of the HOG: A) original image and B) gra-
dient image

A C

Figure 5-12: LBP for candidate: A) original image, B) LBP for right GS and C) LBP for the false |
positive object ‘

e Why LBP and HOG in step 2 and in stepl just HOG?
The LBP with HOG was not used in stepl for two reasons. F irst, the output of the LBP is a
histogram with 255 or 58 bins. Representing a window with size 5*5 or 7*7 'with this number
of features means the majority will be zeros. Second, as we can sce from Figure 5-11-B that

the HOG based on the gradient image can distinguish the area inside the ROI from the back-

ground.
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3 Step3: ‘
523 ep3: Accurate Sac Segmentation for Estim Tt I
e I

Region growing is used in this st i
€Pp as a post-segmentation technique to extract the sac with the “‘

correct boundary; Figure 5-13 shows the results of this use

Figure 5-13: Shows the result of the region growing: A) original image, B) seed mask and C) Re- i
gion growing result i
il |

To measure the MSD for the GS, as explained earlier, each GS is viewed in two perpendicular i A
planes. The GS usually seems to be more elliptical in its early stages, and hence our system |
attempts to locate the best-fitted ellipse for the segmented GS for each plane. The region props ,‘
function in MATLAB was utilised to fit an ellipse to the GS, which returns four parameters: ‘ ;‘

the major axes, minor axes, centroid and orientation. The GS presumably has an ellipsoidal
of which have been calculated by the minor and major

shape in 3D, the three main dimensions

dimensions from the sagittal plane and the major dimension from the transverse plane. The

average of the three dimensions is taken as the MSD.

524 Step4: Histogram Analysis to Identify the Pregnancy Stage i ‘

This stage aims to establish if the GS is empty or not, i.e., whether it contains a YS. To do this,

g from the GS segmentation step is use

nal image. Histogram analysis is app

: ; 2 d as a mask to locate the
first, the binary image resultin

pixels inside the GS from the origi
determine whether the YS is present.w . '
een them is immediately obvious. Fi

and GS+YS, where the difference betw -
the process used to identify the empty GS from the GS that has a Y'S. |

lied to these pixels to : .
ithin the GS. Figure 5.14 shows the histogram of the GS '
gure 5-15 shows il

106

.




A) Empty GS B) histogram of the empty GS

el ll"

C)GS +YS D) histogram of the empty GS+YS

Figure 5-14: Histograms for both GS and the GS+YS: A) empty GS, B) histogram of the empty GS,
C) GS with the YS and D) histogram of the GS and YS

Consider that the grey level histogram matches with a GS, f (x, y), constituted of light objects
(the YS’s border) superimposed on a dark backdrop (the GS). Furthermore, the configuration
is organized such that the pixels of the object and backdrop display grayscale levels are cate-
gorized into a pair of dominant modes. If this is the case, the immediately discernible method
by which the border of the Y'S can be estimated from the GS involves the selection of a thresh-
old (T) that facilitates the separation of these modes. Consequently, a pixel (x, y) according to

which f (x, y) > T (based on bin frequency) can be designated as a YS border.

Under certain circumstances, when the histogram frequencies of the greyscale values are high

within the GS, it does not necessarily mean there is a Y'S; the frequency simply serves to denote
h frequency greater than T, pixels of the
S image (see Figure 5-15). A post-pro-

rm an object. If not, the GS is considered

ge2).

small noise objects. Consequently, for each bin wit
intensity represented by the bins are located in the G
cessing check is conducted to determine if the pixels fo

to be empty (stagel); otherwise, the GS contains a YS (sta
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Figure 5-15: Histogram analysis to identify stages of pregnancy

5.2.5 Step5: Second Level Trainable Segmentation: Estimating the YS Border

Once the histogram analysis of the area inside the GS establishes the existence of the YS, a

second level trainable segmentation is employed at this step to estimate the YS border. The

main challenge here is that in certain scenarios this border is vague and unclear, which means
that techniques based on the pixel intensity thresholding cannot work satisfactorily. The ma-

chine learning-based approach provides more promise. A pixel feature (in accordance with the

pixel neighbourhood) is used to identify the border pixels. The training phase is implemented

by selecting a window of size 5%5 for each yol
Figure 5-16). The HOG operator is used to extract the te

border YS. The testing phase will process only the pixels that ‘
ous segmentation steps. The output of thi

k boundary and non-boundary in the image (see
xture feature for both border and non-
are inside the GS sac by using

\ s step is a binary GS
the mask generated by the previ

including the GS in white and the YS border in black.
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Figure 5-

16: Selecting samples for the learning phase

|
Once the trainable segmentation has estimated the YS border, a convex hull (to be described ’
later) is employed to facilitate the delineation of the YS from the GS. The rationale for this is ‘
threefold: (i) it facilitates the maintenance of the entire GS and the assessment of the MSD; (ii) ‘ |
it allows just the Y'S’s border to be retained for the Hough transform stage; and (iii) it reduces il
the frequency of objects in conjunction with the likelihood of object circularity, thereby cap- '

turing the YS. Next, all the objects inside the convex hull are used as input to the circular g 3

Hough transform to detect the best circle. il

In Euclidean geometry, a convex set denotes a space for which — regarding each pair of points
inside the space — each point on a straight-line segment connecting point A and point B is
similarly inside the space. As demonstrated in Figure 5-17, a filled-in circle constitutes a con-
vex set whereas an unfilled crescent (or filled-in crescent) does not. In essence, the set (S) is

referred to as convex if for any x1, x2 € S and any 6 with 0 <6 < 1. Consequently, the following

is the case:

ox1+(1—0)x2€C.  (5-1)

Non-convex
Convex

Left. The circle, which includes its boundary

1S. d
Qe shaped set is not convex.

Middle. Right. The kidney
onvex region with the capacity to encompass a prede-

Figure 5-17: simple convex and n
(shown darker), is convex.

A convex hull is the minimal possible ¢

termined set of points. Calculating 2 finite
and it

set convex hull is a central practice in numerous
i i rtant place in the present re-

diseinl: : et ocessing, occupies an 1mpo P ; "

N e YS from the GS. The rationale for this is

i ion of th
search insofar as it facilitates the delineation
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the frequency of objects in conjunction with the likelihood
turing the YS.

of object circularity, thereby cap-

526  Step6: Locating the YS and Measuring its Size

This step aims to identify the YS using some edge generated from the Second Level Trainable
Segmentation. The circle Hough transform is used to estimate the edge of the YS. When several
points residing on the perimeter of a circle have been identified, this method constitutes an
effective way to identify the limits of that circle. The sole point of distinction between this
method and the linear Hough transform is that a circle’s point on the (x, y) plane is translated

into three-dimensional limits, and the expression for the circle is as follows:
r2= (x—a)?+ (y — b)? (5-2)

where a and b represent the circle’s centre coordinates; x and y represent the perimeter coordi-
nates; r is the radius. Based on the assumption that a circle exists in (x and y) space, when the
image coordinates, and the YS’s perimeter points, have been acquired, a circle in the (a and )
parameter space corresponds to every point on its perimeter. The (a and ) space constitutes a
circle accumulation of the input image for a specified radius (») (see Figure 5-18). The critical
piece of information when attempting to identify a circle is the radius, because it determines
the circle dimensions in the (a and b) space. In the case where a circle constructed in the (a and

b) space is not identical in size to the initial circle’s radius, the former will not contact at a

single location. Hence, a suitable radius means that the constructed circles will contact at a

i i i i i ordinates. As-
single location, and this constitutes the centre circle identified in the image co |
principal axes of the circle can

i i e in three dimensions, the two
suming the YS has a circle shap e

. » a
be estimated by the radius (R1) of the circle from the sagittal pl:;neMSD
i the -

circle from the transverse plane. (2*R1+R2)/3) will be taken as
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Figure 5-18: Circle located on the parameter plane x, y, 2) transform the circle to the a and b space
In the context of the Hough circle transform, the discrete transform parameter space [a b 1]
constitutes a three-dimensional matrix. Consequently, the detection of the circle in the input
image simply involves identifying the greatest frequency of circle intersections. The reader can

consult Figure 5-19 for an illustration of the three-dimensional discrete Hough space.

9: Three-dimensional discrete Hough accumulator space

Figure 5-1 L k
g the circles for a certain radius r; in the parameter

The extraction of the YS involves identifyin

yi) which belongs to the contour line of a certain circle.
i

space in accordance with every point (xis
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52.7 Experiments & Results

5.2.7.1 Dataset

The dataset consists of 199 ultrasound images, 184 of which are of an empty GS (157 preg-
i R PUV and 27 miscarriages) and the remaining 15 are GSs with YSs
inside. The images were acquired in three dataset batches, with the first constituting 94 images,

whilst the second comprised 90, and the third pertaining to the 15 with GS and YS. For more
details see section (1-4-1).

5.2.7.2 Experimental protocol

A two-layer back propagation neural network has been used in each of the three trainable seg-
mentation steps (stepl, step2 and step5). In the first step, the network was trained with 500
sample regions obtained from 25 training images. In the second step, we trained the model with
the same number of images as in the previous step by cropping regions manually from the
background and the entire GS. In the third step of the segmentation, the network was trained
with 60 sample regions obtained from three images due to the limited number of images in
batch 3. The cropping and labelling procedures for the training phases in the three steps of the
segmentation were carried out in a semi-automatic fashion, i.e., we developed a simple tool
that allows a user to click on a few landmarks (positive class) in an image to allow it to become
automatically cropped. Negative training data, on the other hand, was gathered by random

sampling from the part of the image that did not contain the object of interest.

It is important to recognise that the features extracted, and the quality of segmentation are di-

rectly influenced by the block size, i.e., the size of the window around the pixel. As shown in

Figure 5-20, when the block size is small, more pixels outside the real region of interest are

. i i jects out-
i i is wi the creation of more irrelevant objec
considered to be “inside” pixels. This will result in

: : T2
side the real object of interest, thus increasing the difficulty of removing those objects later
(Figure 5-20-B). As the block size increases,
be confused as “inside” pixels, and hence, fe

size gets too large, . :
e i resulting in an imprecise classification of the

fewer pixels outside the object of interest would
wer irrelevant objects are created (Figure 5-20-

the possibility that a block contains pixels

of both “inside” and “outside” also increases,
i ure hi
pixel class (Figure 5-20-D)). Hence, to ens .
vation,

be determined carefully. Based on our obser

iti region gro
the decreased the number of false positives and thf; Z
er.

gh-quality segmentation, the block size must
a block size of 7x7 seems optimal due to

wing used as the post-segmenta-

s tion bor
tion method which enhances the segmenta
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Figure 5-20: T, ramab@ Segmentation result: A) original image, B) segmented image with window
size 3x3, C) segmented image with window size 5x5, and D) segmented image with window size 7x7.
The white line represents the [irst step of the segmentation, and the r

To evaluate the power of the texture feature (HOG or LBP), we have used the Receiver Oper-
ating Characteristic (ROC) curve to analyse performance when using the different texture fea-
ture. The ROC curve is used to visualise the performance of the classifier, which is commonly
deployed in medical image decision making and has recently been increasingly utilised in ob-
ject detection research. Figure 5-21 shows the performance of the features that have been used
to detect the sac in the second segmentation step. The area under the curve (AUC) for the LBP
=(.88 and for the HOG = 80%. When we combine the two features (LBP+HOG), the perfor-
mance of the SVM is enhanced (AUC = 92%). Based on this evolution we have used the two

features to detect the sac (enhancing the true positive rate).

0.9
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0.4
0.3
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1
0 : False positive Rate

True Positive Rate (Sensitivity)

G ——LBP+HOG
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1: ROC curve of the object detection model
5-21:

113

Figure




52.7.3 Pregnancy stages identification

= I the cffectivencss of histogram thresholding and histogram thresholding

fillagtediby post-processing in the Proposed method, as explained in Section 5.2.4. Two ex-

periments were conducted: one using histogram thresholding alone, and the other using thresh-
olding followed by post-processing.

Figure 5-22 shows that an overall average accuracy of 85.2% with stage1 identification (empty

GS) of 83.8% and Stage 2 identification (GS &YS) of 100% for can be achieved in the first set

of experiments (histogram threshold) (see Table 5-1).

Table 5-1: Automatic identification of stage of pregnancy based on histogram threshold (first set of
the experiment)

iEmpty GS  GS+YS Total

‘ Tbtalﬂlmage (correct segmented) | 161 15 176
Correct Identification i85 15 150

83.85093 100 85.22727

By contrast, an overall accuracy of 97.7% with stagel identification of 97.5% and stage2 iden-
tification of 100% was achieved in the second experiment (histogram threshold with post-pro-

cessing) (see Table 5-2). The results show that the second method confirms that the threshold
of the histogram is not sufficient to estimate if there is a YS or not.

Table 5-2: Automatic identification of stage of pregnancy based on histogram threshold with post-

processing (second set of the experiment)

"Empty GS | GS+YS  Total |

1 1Ir T 15 176 |

Total Image (correct segmented) 161 i ;
i 157 15

Correct Identification | |

' 97.51553 | 100 | 97.72727 |

114




100 e
1 — =
95 £ ‘
|
90 |
|
85 e
i |
80 [
- BT e
Histogram threshold Histogram threshold with post-processing
O Empty GS Identification O GS+YS Identification i1 Accuracy

Figure 5-22: Stage of pregnancy identification
5.2.7.4 Segmentation Result (Manual vs. Automatic Measurements)
The manual calculation of the proportion of successful GS segmentations was conducted with

the human visual system (HVS). Regarding batch 1 and 2, we compared the performance of

this algorithm with previous work (Table 5-3).

Table 5-3: The accuracy of the proposed system compared with previous work

~ Work rei)_(;rtéaTr; " | Trainable segl?ler;- Th;;—)l:opose‘di
| section 4-4 | tation with Filter- method

| ing out non-ROI

based on Geometry

Accuracy

} features

Located the TP besides the FP 151/184 177/184 177/184
s s ] 82.06% | 96.19% 96.19%

Surccress oﬁt of the first step (initial 137/151 ' 153/177 161/177
segmentation) 7 | ' . ‘
e, 90.7% | 86.44% 90.9% |

Successful segmentation out of the 137/184 | 153/184 161/184

whole dataset A | i
: 74.4%. L 83.15% 87.5%
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tion followed by the filtering out Non-RO] based on geometry features, i.e. circularity and
Ite E : A . 2
I out non-sac (object detection) scenarios. 2) use the trainable segmentation

stage to binarize the image followed by fi

object size, to fi

ltering out non-ROI based on geometry features. In

the first work, the TP was located successful for 153 images out of 184 i.e. 82%. This algorithm

cannot locate the TP objects for 31 images due to two reason a) the wavelet transform has
removed the small objects (small ROI), b) the threshold sometime is not enough to capture the
ROI cases that have poor borders. In the second proposal, we found that the trainable segmen-
tation model can located the TP cases with high accuracy i.e. 96%. An object detection model
based on geometry features have used to filter out Non-ROI for both first and second proposal.
In some cases, the proposed object detection model has failed to identify the correct ROI an
thereby resulting in some false positive cases. Therefore, we have used the texture feature in
the filtering out stage to identify the TP from the FP objects. Table 5-3 shows clearly the

effective of the texture features, where the accuracy increased from 83% to 87%.

Additionally, of the 15 images in the third batch, the GS was segmented accurately in all cases.
Furthermore, the YS segmentation was successful for 14 out of the 15 images, i.e., 93.3% of
the time. To facilitate the provision of a suitable system of assessment regarding the subsequent

phases, each image associated with unsuccessful segmentation of the GS was not included.

Automatic MSD measurements were considered in relation to manual measurements to assess
the degree to which the proposed system was effective. Figure 5-23 provides an indication of
-A illustrates the results of batch 1 and batch 2 (Empty GS); and
¢ batch 3, where the points inside the red ellipse pertain

points are the GS measurements. In view of the ap-

the performance: Figure 5-23
Figure 5-23-B represents the result fo

to the measurement for YS and the other

1 g 1 1 2

markably close to the manual ones ( see Table 5-4). It can also seem reasonable to claim that

oF i urements.
there is no apparent systematic bias to the automatic meas
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Figure 5-23: Comparison between manual and automatic MSD measurements Jfor both Empty GS
and GS+YS: A) Batch 1&2 and B) Batch 3.

Table 5-4: Shows the regression statistics for Batchl, Batch 2 and Batch 3

Vmlieglr"éAs's"i.oAriASVtatisti”cs' e e
Batch 1 & 2 Batch3 |
Multiple R 0976877 |  0.987288 |
R Square 0954289 | 0.974737
Adjusted R Square | 0.954001 | 0.973765
Standard Error 2003857 | 0795361
" Observations '“ R B S

From the R2 value in the scatter plots (Figure 5-23), itis evident that both automatic and manual

measurements are highly correlated. This correlation depends on the range of the true quantity

in the sample; if this is wide, it will be greater than if it is narrow. The Bland Altman procedure

has been used to investigate the real closeness between the manual and automatic measure-

ments. Figure 5-24 illustrates the results for batch 1 and batch 2 (empty GS). Figure 5-25 shows

those for batch 3, where the points inside the red ellipse represent the measurement for YS and

the other points, the GS measurements. Table 5-5 shows the lower and upper LoA for both

-25. In addition, the mean square error
r batch 1 and batch 2 is 3.16, whilst

(MSE) between manual and
Figure 5-24 and Figure 5

automatic measurement is calculated, where el he YS is 1.16)
that for batch 3 is 1.42 (where the MSE for the GS is 1.68 and for the .16).
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le 5-5: Upper and
Tab PP nd Lower L0OA Jor the Bianqg Altman analysis for Batch 1.B atch 2and Batch 3

Batch 1 and Batch 2 | Batch 3
4951058931 | 123707
2414579318 | -1.86085

Upper LOA
Lower LOA

5.2.8 Discussion

Figure 5-26 illustrates the result of each step in the GS and YS segmentation of the pregnancy
stage 2. The aim of the first level of the trainable Segmentation is to capture the GS (see Figure
5-26-B and the second level of the trainable segmentation is to capture the YS (see Figure 5-26-
E). We tried to segment Bothe the GS and YS using the one level trainable model, and as can
be seen in Figure 5-26-D the model cannot capture the poor border of the YS. In addition, we
have trained the model with three classes (Background, inside the GS, and the border of the
YS); as can be seen in Figure 5-27, the three class confuse the model in terms of capturing the

correct ROI due to the similarity between the texture of the YS border and some region in the

background.

Figure 5-26-C shows the result of the filtering out the non-ROI stage. This stage was based on
the trainable texture model to select the correct ROI. In this stage, we have used the texture
features instead of the geometry features as some cases have irregular ROIs, as well as the
geometry features of false positive and the true positive regions being quite similar. Figure

5-28 shows the effective geometry and texture features when filtering out the non-ROL

To measure the diameter of the YS, the YS is inside the GS and each GS is viewed in two

perpendicular planes. The YS is usually more circular during the early stages, and hence our

system aims to locate the best circle for the segmented YS for each plane. The Hough Trans-

which will help to estimate the missing YS border, as

as the diameter for the YS. Figure 5-26-F shows that

form is utilised to fit a circle to the YS
will the radius of the circle have used . Pl e
applying the Hough transform directly will generate a number of circles pertaining to the shap

of the GS. Therefore, we have applied
retained for the Hough transform stage,

with the likelihood of object circularity,

the convex model to allow just the YS’s border to be
and thus reduce the frequency of objects in conjunction

thereby capturing the YS. Figure 5-26 (G) - (I) show

the effect of the convex on the result.
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igure 5-26: GS & YS segmentation steps: A) original image (pregnancy stage 2), B)First Level

Trainable Segmentation, C)filtering out non-sac, D) crop the ROI, E) second level trainable seg-
hole mask, G) the convex mask, H) extract the YS

Hough transform.

mentation, F) circle Hough transform for the w
based on the convex mask and I) circle

n model using three Classes: A) original image and B) seg-

Figure 5-27: Trainable segmentatio £
mented image
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.Figure 5-28: Filtering out non-ROI (texture vs. geomeltry features): A) original image, B) binary
image, C) filtering out non-ROI and D) filtering out non-ROI based on texture features (object de-
tection).

5.3 Proposal 2: Using Trainable Segmentation and Watershed Transform
to Identify Unilocular and Multilocular Cysts from Ultrasound Images

of Ovarian Tumours

Distinguishing ovarian images that have unilocular cysts from the images that have multilocu-

lar cysts is one of the important aspects that can help identify the benign from the malignant.

Therefore, this section presents a new method to segment the ovarian tumour mass followed

by calculating the number of cysts.

Figure 5-29 illustrates the process framework for the proposed method of automatic identifica-

-mode ultrasound images. To accurately locate a cyst within

tion of ovarian cysts from static B
onsists of two main steps. First, the A
g out the initial segmentation. The trainable ANN has used

na NN’s trainable segmentati
a given image, the process ¢ g o

is used to isolate the cyst by carryin
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f

to generate a binary Image by training the System on two classes. Second, the distance trans-

form and watershed transform are employed to estimate the border. The distance transform can

be used as this considers the object shape and interior. The minimum

‘ grey value for each object
is labelled using the application of h-minima (marker-

controlled) (Jung and Kim 2010) and the
border estimation between the overlapped objects is carried out by watershed transform.

il ™ -

v s
Vs

e e e e e e e ), AR e

Euclidean Distance ‘ marker-controlled l |
Transform : l segmentation l

Border Estimation

ty

Trainable Segmentation ——>

A/

Filtering-out non
cyst objects

l — — —A "v" — -

Watershed Transform ‘

Figure 5-29: Identifying unilocular and multilocular cysts from ultrasound Images based on train-
able segmentation and watershed transform

53.1 Trainable Segmentation

- i i morous
Trainable segmentation is intended to separate the region of interest (ROL), i.e., the tu

: ining images,
area, from the rest of the image. This process starts by collecting a number of training imag

c indow of
each of which is then divided into a number of samples. A sample is a small square Win

s m areas
pixels of a particular size, €.g., 5X5, taken either from areas inside (Class 1) or fro

. f L
outside (Class 2) the ROI. A set of HOG features are then extracted from each window, forming

ining, the image to be
of label tors. After completion of the neural network training 3
. B A small window of the same size, e.g., 5X5, Is taken

: : ixel. .
e plxel et feature vector is extracted from the window and

around each central pixel whereby the HOG
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53.2 Cyst Border Estimation

The estimation of the cyst’s border is achieved by using the bi i
trainable segmentation stage as input. It i ibl S o
- 1L 1S possible that two objects ma i
y ! . y overlap (see Figure
5-30). To differentiate the shapes of the individual objects, all connected objects need to be
separated. To accurately estimate the borders of the overlapping objects, this step of the pro
posed method involves a sequence of processing stages, starting from Euclidean distance trans-

form, followed by H-minima, and finally the watershed transforms.

A) Original Image B) Binary Image

Figure 5-30: shows the overlapping between object and the background

s Euclidean distance transform and H-minimum (Marker-control)

To avoid overlap between the objects and estimate their borders, a subsequent process of seg-

mentation is needed after initial image segmentation which is able to detect these aggregates.

Popular methods for aggregate detection and segmentation include the distance transform

method of aggregate associated binary images and watershed transform following the intro-

duction of adequate markers. Binary image distance transform is det
DT (A) is its distance from x to the comp

ermined in the following

- : lement of A:
manner: every pixel x in set A,

DT (A)(X) = min{d(%, y),y € A%} (5-3)

ing that A° is the set of
A binary image’s distance transform is, therefore, calculated by assuming

i t
I-valued pixels; this forms a greyscale image that can

ro
markers have been app
segmentation (Grau, et al. 2004).

hen be segmented using the watershed

priately selected and applied, it has

transform. However, unless the
: onificant over-
been shown that watersheds are pron® to significa

2]
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gated igu (53 5-31 (B)) i
(F r ’ (S h i U
a mg the dlstance transform applled t
tet grey
bei or Vv O generate lle reyscale

the furthest from the hite background n 2y 1 i | ( ) £
It \%Y appear as maxima Despite thi \% r
. 1s, several local maxima

image in Figure 5-31 (C). It can be seen here that the b]
€ blac

also appear as a result of fi
e 11:glulr:z rr;orpholo%y characteristics. By complementing the gre ]
. appe;r asgmie .-31 (1?) Is generated giving a white background, aid )\:\:Zrz
e r:mi-Thls mfathod is described as an inner distance transform
B s . pplied to Figure 5-31 (D) to generate separation between th ;
. : possible to complement the region to be segmented : €
aggregate to obtain adequate external markers. Over-segmentation causes the g e:::::iioffi:e
of the

A 5

C D

-

taf igure 5-31: A) Binary image from overlapping objects, B) complemented binary image, C) dis-
1ce transform of the image in (B), and (D) complemented distance transform. Notice the maxima
and minima indicated by arrows in (C) and (D).

It is possible to use several greyscale morphological functions when setting the inner marker

ative effects of specious minima

gical functions include:

process; this will control the neg prior to the application of the

Watershed transform. These morpholo
pecific points by inserting a

ocal minima at other poin
effective markers are created.

—oo value in a specific posi-

s The imposition of minima at S
ts within the greyscale im-

fion to eliminate the existence of 1
jate points,
the H-minima can be applied to elimi-

reshold.
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nner distance transform,

a depth that isequal t
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The implementation of this method can be completed using a morphological sub-geodesic re-

construction V. of the surface intensity of the image f. h determines the surface increased by

the threshold, and the structuring element that defines the connectivity is D (Soille 2013).

HMINy,p(f) = f(Vp(f + h) (5-4)

Despite this simplistic description, the actual task of determining appropriate H-minima trans-
form thresholds and identification of a suitable place to impose a minimum is complex and
non-trivial. It is easy to misplace the markers, thereby allowing specious minima to remain.
Additionally, regional minima can merge, thereby preventing marker isolation. Through the
analysis, it can be seen that the actual task requires the elimination of specious minima as well
as the minimum in the blob connections. This needs to be done whilst simultaneously main-
taining the isolation of the two minima that reside at the approximate centre of the overlapping
objects that need to be segmented. Figure 5-32 shows the output of the Euclidean distance
transform and H-minimum. Figure 5-32-B shows the binary image and it may be noted that
there is an overlap between the ROI and the background. The distance transform in Figure
5-32-C) is applied to the binary image to highlight the objects and makes the area that links the
objects with the background very poor, which will help to label the real objects. H-minimum

has used to label the objects and ignore the area that connected them with the background (see

Figure 5-32-D).
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Figure 5-32: An illustration of the Euclidean distance transform and H-minimum: A) original im-
age, B) binary image, C) distance transform and D) label the objects (H-minimumy)

5.3.3 Watershed Transform

In order to achieve initial separation between the overlapped objects, this work applies the fast
immersion-based watershed transform on the output of the gradient-weighted distance trans-
form. As illustrated in Figure 5-33, the watershed transform helps to close the border of the
cyst, where Figure 5-33-A shows the output of the previous stage, which is the H-minimum, to
label the object. These labels are used as an initial seed for the watershed transform and, as
based on these seed points, the watershed transform will grow up. Figure 5-33-B shows the

watershed lines that represent the objects’ border. In Figure 5-33-C we have removed the wa-

tershed lines that are not present on the border of the object based on the labelled image A.
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Figure 5-33: An illustration of the watershed transform: A) shows the output of the previous stage
((H-minimumy)), B) the watershed transform output, C) filtering out the lines to get the border only
and D) output mask with clear ROL

534 Results and Discussion
A- Results

To obtain a ground truth to evaluate the effectiveness of our proposal, a domain expert was
asked to manually count the number of cysts in 65 ultrasound images. This was then used as a
ground truth to compare the automatic measurements against. We found that 54 out of 65 im-

ages were accurately segmented and produced the correct number of cysts, whilst 11 images

; = i
produced an incorrect number of cysts. Therefore, the success rate is around 83%. Figure 5-34

i i ion to
shows a more detailed comparison between manual and automatic measurements in relatio

the number of cysts in each ultrasound image. The blue bars of the automatic counting repre-

ber of images that have a correct €
e.. the number of images that have inaccurate cyst

yst count) whereas the
sents the true positive (i.e., the num

red bars represents the false positive G

count),
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Figure 5-34: Cyst counting - Automatic vs. Manual.

B- Discussion

As mentioned previously, this work aims to combines trainable segmentation with the water-

shed transform to binarize the image and reconstruct the missing border. The watershed trans-
method that is used to build the watershed line between
o any noise (Meyer 1994). Therefore, applying

ge would result in over-segmentation

form is a morphological segmentation
objects. This algorithm is extremely sensitive t
the watershed transform directly to the ultrasound ima

(see Figure 5-35). In addition, the limitation of using the trainable segmentation alone to seg-

i cysts have the
ment the ultrasound ovarian tumours is the overlap between the cysts (i.e., tWo cy

defined border between the cysts. To avoid these problems, we

same border) due to the poorly

have a proposed solution that involves three steps:

thod to binarize the image and catch the poor border. The
n me

ary image. The main limit
een cysts (se€ Figure

del which should be ta

I- Trainable segmentatio ations of this stage are, first, in

output of this stage is a bin 5.36-B). Second, it requires a

tw N
some cases we saw overlap be Kken from different cases.

number of samples to train the mo

. 1 ot
2- The distance transform 1S applied
ping area between

he binary image t° highlight the objects in order
e

he objects The marker-control is used to label
the .
to identify the overlap

the main objects in the image-
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A

3- The watershed transform j
I'm is used as g Post-segmentation technique to build a watershed

Figure 5-35: Direct application of the watershed transform to the greyscale image: A ) original im-
age and B) segmented imaged based on the watershed transform

Figure 5-36 shows the experimental results whilst Figure 5-36-A displays a benign mass ROI
and Figure 5-36-B shows that result of the trainable segmentation. The results generated using
border estimation are shown in Figure 5-36-C and F. As such, the proposed algorithm displayed

superior results with accurate boundary outlines and an overall better performance.

inable segmentation, (C) distance
(E) segmented image.

1al image, (B) tra

Figure 5-36: Segmentation result, (A) origir

jni nsform
transform, (D) H-minimda, watershed tra sform,

54 Summary

For this investigation, the closely ass

OCIa i 'th

i from B-mode US scanning images have been
riage

e ; : AR :
respect to automatic identification of mis el 3o i

he image with regards t

the ROI, poor border, false positive objects
€ >

ity of t
¢xamined, It was suggested that the quality © .
I, the irregularity of
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T : hel
Based on our investigations, machine can
Positives, catch poor borders,

samples and the classifier bein

te PR -
traditional segmentation in chapter 3 (0v€

i i d the _
challenges in relation to correct ROI Segmentation background all pose technical

ik

R e it-lovel Ségmentation approach hag been proposed to achieve t
| . 1 i 1I€ve two
objectives: 1- Segmenting the GS and Y, followed by measuring the MSD to identify

instances of miscarriage in the early stages of pregnancy. To achieve this, the proposed

approach involves: A) segmentation and measurement of the GS, B) filtering out non-

sac objects using the texture features and SVM model, (C) accurate sac segmentation
for estimation of size, D) histogram analysis to identify the stage of pregnancy, E) seg-
mentation of the Y'S, and F) locating the YS and measuring its size. The initial segmen-
tation process (A) involves using a trainable segmentation procedure founded on the
histogram of oriented gradients to segment the GS. Then, (B) is about reducing the false
positives and selecting the correct object, for which we have proposed a method based
on the SVM to reduce the number of unwanted objects and detect the ROL. (C) is uti-
lized to mitigate the under-segmentation problem, whereby the region growing method
has been applied, followed by the measuring the MSD. Finally, segmentation (D) iden-
tifies the pregnancy stage by analysis of the histogram of the GS. (E) and (F) are used
to identify the Y'S and determine appropriate size measurements, respectively. A trained
neural network classifier was utilized to perform the segmentation in both A and C. The
SVM classifier is used for object detection by scoring each proposed region with a

class-specific detection. Our work demonstrates that accurate segmentation of the GS

. . : i letely is extremely
in complicated situations is feasible, but solving the problem completely

difficult, if at all possible, when its size is very small. Our approach has a validity check

al
embedded that excludes the images where the GS cannot be successfully segmented. In

certain images still need intervention b .
-mode ultrasound images. This process In-
) The distance trans-

y a gynaecologist.
practice, this means that

Identification of ovarian cysts from static B | ! .
n was used to binarize the image.

cludes: A) trainable segmentatio ¢ border followed by

form with watershed transform wa

calculating the number of the cysts 11 t

s used to estimate the missin

he images.

to avoid several limitation
A well as the training

s i.e., reduce false

interest as
filtering out objects that are not of inte

g used to help to reé
and under-

duce the problems We faced with the more

segmentation).
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Chapter 6. Improvements on Trainable Segment
entation

In the previous chapters, we i
» W€ 1In v
i troduced a multi-level trainable segmentati
s related to : 10n mode
g the ultrasound image segmentation This ch | to address
. chapter is concerned wi
with

improving the trainable i
Segmentation to further address two key limitations f;
ations facing the pro-

posals in chapters 4 and 5. Limitati i
Limitation 1 is the under-segmentation problem of th
e traditional

Region Growing (RG) technique used post-segmentation in section 5.2.3

frasound image has a different texture, and it can be argued that ﬂnd'in. . Th? kit
(threshold) to stop the growth of the RG based on pixel intensity is not sLl:gffailcsi:rlltf1 :) iy
coTrect edge, and, therefore, we cannot get the whole ROI as explained in Sectiono6c?plture' th‘e
tation 2, on the other hand, is related to the similarity between the texture of the b.ac'k' le:
flnd that of the ROI, which will result in an over-segmentation problem where the ROI’sgt::rudne
is nf)t clear. Therefore, classifying the pixels or fixed size window based on their local inforf
mation is not sufficient, as discussed in Section 6.1.2. In this chapter, we address the above

limitations by proposing two possible solutions.

I- Proposal 1: Enhancing the traditional RG using texture features and ANN (Trainable

Region Growing) to address limitation 1.

2- Proposal 2: Hybrid trainable model to identify difficult cases by combining the Cascade

model with the trainable segmentation method proposed in chapter 3 to estimate and

crop the ROI (object detection) of those difficul
The rest of this chapter is organised as follows. In Sectio
that we discovered with, first, the region growing method

second, the proposed trainable segmentation models base

t cases to address limitation 2.

n 6.1 we have described the challenges
that we used post-segmentation and,
d on fixed window size. Section 6.2

presents the proposed solution in terms of enhancing the region growing based on the neural

network classifier and texture features, and justifies why t

tion 6.3 is devoted to our work to improve the trainable se
summarises the work carrie

his enhancement is necessary. Sec-

gmentation to avoid the over-seg-

i in this chapter.
Mentation problem. Section 6.4 d out in this chap

6.1 Problem Statement | a2
und image segmentation are: 1) inhomogeneity 0 the :
blem

The ma; ;
main challenges facing ultraso it
g g mentation”,

Which means the ROI has different t€

i as “under-seg
xtures, causinga pro known
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Cases, the ROI and the background have

€ ROI very difficult (over-segmentation).
s in detail.

a similar texture which makes automatically finding th

The following subsections describe the two limitation

6.1.1 Limitation 1: Under‘segmentaﬁon - Inhomogeneous Region of Interest

Our objective in this chapter s to improve the region growing and make it suitable for the

ultrasound images. In this section, we will explain the RG limitations that we faced in our
previous proposed algorithms.

The key factors influencing the output of the RG are, first, automatic generation of the seed
points or mask (initial segmentation). Second the selection of similarity criteria, where, the
intensity values (either the grayscale scale levels or other measurement that can easily be cal-
culated from the intensity, i.e. texture features) have used as a similarity criterion in the tradi-
tional RG. Third, the stopping rule definition for the RG, i.e., RG should stop growing when

there is no further region that satisfy the similarity criteria and homogeneity to be involved in

that region.

The initial segmentation (seed mask) has been addressed using trainable segmentation (see
chapter 5). Therefore, this section will focus on the selection of the similarity criteria and the

stopping rule that can help to control the growth of the RG.

Figure 6-1 shows the effects of the traditional RG using different ultrasound images. However,
one can notice the under-segmentation problem, i.e., the whole ROI cannot be captured, as

illustrated in Figure 6-1, where the first column represents the original images for different

early stage pregnancy cases and the second column shows the under-segmentation problem

after applying the traditional RG. Based on our investigation,

i in the same ROI due
i are 1) different texture in t
B ; 2) different textures across

has been found that the main

to variation in the GS

ovements,
tissues or the speckle noise that comes from the prop m

. | the RG is not easy.
differents es and. therefore, determining a suitable threshold to contro i y
b ’ n the intensity as a similarity criterion is not suf-

: . based o :
This means that segmenting the ROI ba £ interest. To avoid this problem, a trainable

: : object O
B have en inhomogoneo™® . 2 that can help to control the growth of

i tion 6
region growing model has been proposed in sectl

the region growing.
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Figure 6-1: Inhomogeneous ROI and the effect of the traditional RG
6.1.2 Limitation 2: Over segmentation — no clear object border

Automatic ovarian tumour segmentation is still an open and challenging problem (Sohail, et al.

2010) (Hamid 2011). In fact, a good number of US images in our dataset have made the auto-

matic segmentation of the ovarian tumour a particularly challenging task that might hinder the

feature extraction. Two limitations related to the border (poor and missing border) have been

covered in chapter 5 by proposing a new trainable segmentation model followed by the water-

segmentation stage to segment and calculate the number of cysts. This

shed transform as a post-
ween the texture of the ROI and

algorithm works with images where there is a difference bet |
segmentation that we proposed in

inable
the back . Fi 6-2 shows the effect of the traina
e - n the texture of the ROI and the

il . w a di betwee

chapter 5. These kinds of image show a difference i
m ize window might well work

background. Therefore, a trainable model basedonas all fixed-size window might well wor

effectively.
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Figure 6-2: Trainable segmentation based on fixed block size: A and C are the original images for
different ovarian tumour cases, and B, D represent the segmented images using a trainable model
based on a fixed small-size window.

InFigure 6-3 we have applied the same proposed algorithm on more complex images and ended
up with an over-segmentation problem due to 1) the overlap between the texture of the ROI
and the background, 2) there is no clear border that can help to extract the ROI, 3) the proposed

trainable segmentation model scans the image with a small fixed-size window that are not suit-

able for detecting the edge of the ROI. Figure 6-4 shows the similarity between the ROI and

the background. In this figure, we have taken a
background. The histogram for each window shows t

the two histograms and so it is difficult to build a classi |
we have proposed an adaptive hybrid model

model to deal with both cases

fixed-size window from both the ROI and the
hat there is only a small change between

fier that can distinguish the window

that belongs to the ROI from any others. Therefore,

by combining the model proposed in chapter 5 with the Cascade

gure 6-3) and for which more details are given in section 6-

(cases shown in Figure 6-2 and Fi
5
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Figure 6-3: Ovarian tumour samples show the similarity between the ROI and background and the
over-segmentation problem.

ilarity between the texture of the ROI and the background.

Figure 6-4: The sim
5 del based on Neural Net-

1 l I i l i MO

intensit
i the greyscale in
in thi i ures instead of . ' :
used in this model is that of texture feat ks e - e s o i
s well when W m RO

i we can easily set
in Fi -6 (A). In this case,
n in Figure 6

1. The similarity criterion

y. Using the grey-

scale intensity (traditional RG) work

the same level of the intensity as ¢an be see i
1




,and,
OI can be challenging because using a
: Ségmentation problem, whilst a low threshold leads to an
segmentation problem. Therefore, using the texture features based on block i

colour intensity can help to avoid this problem. g <

high threshold will result in the over-

under-

Trainable Segmentation
Model

Trainable RG

e smooth ROI and B) represents the ROI

th
- A) represents ¢
Figure 6-6: Different cases gfiiE Ro,ﬁitlx )Varian ce intensity.
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On the other hand, the stopping rule (threshold) is op

: e of ST o : o
RG. Therefore, in the proposed trainable RG, the the limitations facing the traditional

as been generated using the train-

- The generated mask will help to

able model (see chapter 5) as an initia] segment (seed mask)
locate the start of the growth of the trainable RG instead of a seed pixel, which reduces com
putational cost. The main steps in the proposed model are illustrated in Figure 6-5. One can

notice that the trainable segmentation will initially produce an output with an under-segmenta-

tion problem. Then, from the mask generated from the trainable segmentation, we set up the

trainable RG to scan the blocks around the mask and label them using the ANN classifier. The

following sections will describe the stages in detail.
6.2.1 Stage 1: Trainable Region Growing Model Building

The process starts by first selecting a certain number of images as training images. From each
training image, a number of samples, i.e., a small window of square regions of a certain size
(e.g., 7x7), are taken from the inside of the ROI (ROI Class) and the border of the ROI (Border
Class) (see Figure 6-7). For each window of either class, a set of HOG texture features are
extracted. The labelled feature vectors collected from all samples are then used to train an ANN

classifier.

OO0

S

o g

j ] del
Figure 6-7: T raining the region growing mo
‘ d in this research involves of one input layer, two

ifier used to control the growth of the trainable

he ANN to train it. The

The back-propagation ANN that has been use
hidden layers and one output layer. That class

RG. The features and the labels of the training
181

samples are feed into t
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aim of the training stage is to find a mapping between the HOG vector features and the sample
labels. This mapping is accomplished by adjusting the value of the we; ghts w
J

; : using the learn-
ing algorithm. In this study,

the i
: i © Input features are a vector of HOG values and the target vector,
“whose dimension is equal to the number of target tissues in the image is binary”, present the

class label to which the block should be labelled. As described above, we should adjust the
Welght Wy first to minimize the error which presents the difference between target and the ob-
- served vector. After adjusting the weights for the neural network, the region growing model is

| ready to work as a segmentation method to label the windows based on the local texture infor-

mation.
; 62.2 Stage2: Test the Trainable Region Growing Model

Once the trainable region growing model is built, each image from the testing set is used as an
input with the seed mask for the trainable region growing model. The seed mask will be used
to detect from where the proposed model should start. After selecting the seed mask automati-
cally, the algorithm scans the image block by block (with an overlapping range) around the
seed mask. For each block, the texture feature of the region is extracted and classified by the
trained region growing model as being inside the RO], or the border of the ROL. If the block is
inside the RO, the central pixel is labelled as inside the ROI; otherwise, it is labelled as the
border of the ROL.

As mentioned, the scanning process starts with the initial mask border. This region keeps grow-
ing till the model has labelled the blocks as ROI and their neighbours are labelled as being
border. The predicate of the model for each block is given by

1 if [ANNG,j) € ROI Class| .
iecate = {0 if|ANN(i,j) € Border Class|

Where ANN (i, j) is the classification result for each block that is a neighbour to the initial

mask. Figure 6-8 shows the whole process for trainable RG. This process starts by intersecting

the initial mask with the original image. That figure starts with the initial segmentation to locate

the ROI, in this stage we have used our proposed model that explained in section 5.2. The

. i iginal i s inp
Hla i sed with the original image a
. £ the ROI. The trainable RG has two

ut for the proposed trainable

RG model. The mask will be used to control the location © Wb
: label the blo .
i . :ned RG will be used to
e T ble RG on a GS ultrasound image.

Figure 6.9 shows the entire process by applying the traina
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Initial segmentation to locate
the ROI

Trained Model ‘
v
Start region growing inside the
ROI
Feature 5"6-5
Feature |
: ROI Pixel ]
> Feature | Clasle
Feature i Clasle Border Pixel q
Py 2 : Hidden
Feature | O Hidden
e Layer Layer
Input

. the irainable RG: A) original image, B and
o

y ; d the training
Figure 6-9: The process of segmenting the GS base e represent the result of

i1 ion (initial mask);
) represent the initial segmentation (init .
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623 Proposal 1: Experimental Protocol, Evaluation and Result
s

623.1 Experimental Protocol

[Ranat o RG was trained with 500 sample regions obtained from 25 training images. 250
smples from each class manually from the border of the GS (class1 ;

) and from the regions
inside the GS.

Itis important to recognize that the features extracted, and the quality of the segmentation, are
directly influenced by the block size, i.e., the size of the window around the pixel. As shown
in Figure 6-10, when the block size is small, more pixels inside the real region of interest are
considered as “outside” pixels. This will result in the creation of more irrelevant objects inside
the real object of interest, increasing the level of difficulty of removing those objects later
(Figure 6-10-B). As the block size increases, pixels inside the object of interest would be re-
moved (Figure 6-10-(C, D)). However, when the block size gets too large, the possibility that
ablock contains pixels of both “inside” and “outside” also increases, which results in an im-
precise classification of the pixel class (Figure 6-10-E). As such, to ensure high-quality seg-

mentation, the block size must be determined carefully. Based on our observation, a block size

of 5x5 or 7x7 seems optimal.

(B) segmented image with win-

' i 7 : jginal image.
Figure 6-10: Trainable RG segmentation result: (4) origina ge, i L s

dow size 3x3, (C) segmented image with window size 5X5, (D) segmented ;’mag
7x7 and (E) segmented image with window size 9x9.
6232 Evaluation and Results

The effectiveness of the proposed method was evalu

following phases: (1) applied the approach on ultrasound i
(3) assess the seg

ated by appropriate examination at the
mages; (2) extract geometry features
mentation precision by comparing

and com i measurements;
pare with manual ural Similarity Index, the Prob-

i Struct
e i ent results with the .
o e he Global Consistency Error

ili i ic and t
bilistic Rand Index, the Variation of Information metri

(Martin, et a1, 2001) (Al-Fahdawi, et al. 2016)-
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The Structural Similarity Index (SST): Measurement of the
petween a segmented image (X) and a ground

segmentation quality assessment algorithm

Structural similarity index (SSI)
~truth image (Y) can be performed based on the
underpmning the SSI. Luminance, contrast and

sructure between X and Y in a local window are the elements subjected to measurement. The
equation for the measurement is: .

SSIM (Z“x#y + C1)
\ . L) (uZ+13) (o2 +a2+cy) (6-2)
Inthe above, the mean intensity and standard deviation of x are denoted by s,

intensity and standard deviation of y are denoted by uy;

while the mean

the covariance measure for x and y is
given by axy, while stability is kept by the small constants C1 = (kiL)* and C, = (k>L)? when the

value of (;lxz 3 ,u,-z) or (x> + 0y?) is close to zero. Furthermore, the dynamic range of the pixel
values (255 for 8-bit grayscale images) is denoted by L, while k; and k> have values of less
than 1. The ki and k2 supplied in this study are set at the default value of 0.04, while L was set
at100. The movement of each pixel across the entire image and in each step of the local meas-
urements is aided by the fact that the local measurements are within the local (8x8) square
window. The calculation of the SSIM is undertaken in the local window and the equation em-
ployed for determining the mean of SSIM (MSSIM) to obtain the general quality measure of

the whole image is:
MSSIM(X,Y) = —%M, SSIM(x,y;)  (6-3)

In the above, the image contents at the i-tA local window are denoted by x; and y;, while the
mumber of local windows within the image is given by M, and the range of the MSSIM is 0-1,

where the higher the value the closer the similarity. The SSIM index map is determined through

Provision of a measurement in the local image quality over space, where the brighter the SSIM

index map the higher the quality of segmentation.

The Probabilistic Rand Index (PRI): Determination of the number of fractions of distinct

i ieved between the
Pixel pairs involves the use of the Probabilistic Rand Index (PRI) and is achieved be

s with harmonious labels by creating an average of the

se 3
e o et human perceptions. The

jati he basis of
gound-truth images to calculate the scale variation on t

imilarity.
fange of PRI values is 0-1, where the higher the value the closer the si

to
o . ic: Measurement of au
% [ rormmation (VOD i stance is commonly under-

matic distances and man-

i vailable in every di
Ul segmentation distances on the basis of data a e Fih

jati Information
Yen with the non-negative metric called Variation of
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el information enable this metric to achjeye determinati
0

g n of the distanc
ersof information. The VOI between the segmented image e between two clus-

! : - (S) and the ground-t i )
is characterised via equation 20. The lower the value of v ground-truth image (S?)

formula for the calculation is:
VOI(S,S") =
In the above, VOI is in the range 0-

OI the closer the similarity is. The

H(S) + H(S") — 21(S,S") (6-4)
=, H denotes the entropy and I denotes the reciprocal

: ion. In this stud 2 : : . :
information Y (S) and (S’ ) give the reciprocal information and its determination

isachieved with the formula:

15,5 = Tfea BiLa PCk k) log 22850 (6.5)

Inthe above, the joint probability distribution function characterised by (S) and (S") is denoted
by P(k, k), the marginal probability distribution function of (S) is given by P(k), while the
marginal probability distribution function of (S”) is given by P(K).

The Global Consistency Error (GCE)

The degree to which visualisation of the segmented image as fine-tuning of the ground-truth
image is possible is indicated by the global consistency error. The segment taking the form of
aseries of pixels indicates the consistency of the segmentations, while the validity of segment
(§)asa subset of segment (S) indicates the location of a pixel within a fine-tuning zone. Under
such circumstances, the value of the local error is zero. By contrast, inconsistent overlapping
ofthe two segments is indicated by the lack of a correlation between those segments. Calcula-

tionof the local refinement error between two segments is achieved based on the formula below:

_ IRGS1PI/RGSPI (66
E(S1,52,p1) = [R(S1pD)I (&)

e two segments are denoted by Si and 5.

Inthe above, set difference is indicated by \, while th

Fora particular pixel (pi), the segments containing pi

i : ) i i t to zero. How-
ndicates the pixel sets. When Si is a fine-tuning of Sz, E(S1, S2, pi) is equivalent to z

i ion 6-6 i d to calculate the
tver, this does not hold true when Sz is a fine-tuning of S1. Equation 6-6 is used to ¢
0-1 and a lower value is preferable.

in SI and S2 are considered and R(S1, pi)

GCE between (S) and (S”). It is in the range

. | 6-7
GCE(S,S’)=i—min{ziE(s,S'.piziEcs.s,po} (6-7)

A- Trainable RG vs Traditional RG T
inable RG performs be
The visu] evaluation of experimental results confirms that the tral

. the difference between the
len the traditional method. Figure 6-11 and Figure 6-12 sHOw/S
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ihat when we use a small threshold, we cannot catch the whol

e region due to the inhomogene-
ous region (under-segmentation problem). By contrast, whe

yill get more pixels from the ROI with less under-

we will get the whole ROI with the over-

N we increased the threshold, we
Ségmentation. When we increase it further,

Segmentation problem. It is clear that the result of the
mainable RG is better than the traditional one, as well as helping us to avoid estimating the

threshold to get the entire ROI.

7 . inable RG
Original image RG T=0.12 RG T=0.14 RG T=0.18 RG T=0.2 Trainable

: : .
Figure 6-11: Region growing vs. trainable region growing model (pregnancy)
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Figure 6-13: Evaluation of the effects of the trainable RG vs. the RG

C- Manual vs. Automatic Measurements
The aim of estimating the GS is to measure the MSD of the GS size. We have used the best-
fiting ellipse for the segmented GS to estimate the MSD for the GS. Figure 6-14 shows the
effect of the trainable RG on the MSD measurements.

d the trainable RG: A and
and D) represent the seg-

our previous algorithm an
trainable segmentation. C_
G trainable Segmentation.

the MSD measurement, i.e., Figure

Figure 6-14: The best fitting ellipse for both
Br €present the segmentation based on our
mentation based on the R

The fitng ellipse for irregular GS will negatively affect

te
HiA shows that the ellipse will not produce an accura
asurement for the MS

MSD for the irregular GS, whilst
D. Therefore, we have meas-
Yeelipse will not produce an accurate me
ed the MSD for the GS by calculating the

: ner and major dimensions for the segmented GS
mine
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Figure 6-15: The best-fitting ellipse for irregular GS, A) measure the MSD based on the ellipse and
B) measure the MSD using the minor and major dimensions for the object.

Automatic MSD measurements were considered in relation to manual measurements to assess
the degree to which the proposed system was effective. Figure 6-16 and Table 6-1 provides an
indication of the performance. In view of the approximately 45° regression line, it can be con-
cluded that the automatic measurements were remarkably close to the manual ones. It also

seems reasonable to claim that there is no apparent systematic bias of the automatic measure-

ments.

Manual Measurments

0
i 20 30 40 5
0

Automatic Measurments

F 6 automati MSD measurements
' 1 mparison etween manual and autor tic
igure 6-16: Co b
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Table 6-1: Shows the Regression Statistics for the MSD

Regression Statistics

Multiple R 0.995416
R Square 0.990853
' Adjusted R Square 0.990795
' Standard Error 0.871962
' Observations 161

The Bland Altman procedure has been used to investigate the closeness between the manual
and automatic measurements (see Figure 6-17). Where the Upper LOA and Lower LOA are -
-2.6 and 0.7 respectively. In addition, the mean square error (MSE) between manual and auto-

matic measurement was calculated, where the MSE changed from 5.19 with previous algo-

rithms to 2.20 when we use the trainable RG.
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The results explained above show that the proposed model can work

with the ultrasound images
and will help to reduce the under-

Segmentation problem. Additionally,

this model can help with
the over-segmentation problem if we train the mode] carefull

y with different samples, includ-
ing those of difficult cases.

To see the effect of the model in general, we tested it with different applications. In Figure
6-18, we tested the new approach on other difficult images, which here were multi-texture

images. We have taken these cases Jjust to show the effects of the trainable RG model on other

applications. These images are extremely hard to segment due to the larger change in the pixels’

grayscales. Figure 6-18 shows the results of both the traditional RG method with a threshold
of 0.2 and the trainable RG.

Trainable
RG

3

] - iln(l e

. i ios. Fi 6-19
Furth the trainable RG has been applied to various challenging scenarios. Figure
ermore, the trai

- les (acute lymphoblastic
shows samples from a dataset of microscopic images of blood samples ( y

i i tiOﬂS ( 3 B’
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Figure 6-19: Microscopic images of blood samples: A) the original images, B) grayscale images, C)
segmented image based on traditional RG using a threshold of 0.2 and D) the trainable RG results.

6.3 Proposal 2: Adaptive model to segment the ovarian mass automati-
cally

The aim of this model is to crop the ROI of ovarian tumours, which will help to extract features
to identify the tumour type (malignant or benign). Based on the challenges faced with the da-
taset (see section 6.1.2) we found that the dataset includes two groups: malignant images
(Group A) tend to show a coarse difference between the ROI and the background, whereas
benign images (Group B) have an indistinct ROI (there is no clear cyst) due to the similarity
between the ROI and background. Figure 6-20 shows the differences between Group A and

Group B. Distinguishing group A from group B can help to, first, identify the tumour type

(benign or malignant) where the images with the clear cyst gives an indication that this case

could be malignant and, second, use a suitable segmentation algorithm to detect the ROI and

identi . Figure 6-21
Use it to extract the geometry and texture features to identify the tumour type. Fig

ol M B,
provides an overview of the system for the automatic identification of Type A and Type B, as

i B- i . The framework
Well as detecting the ROI of the ovarian tumour from a static B-mode ;mlatge'd (:.f B
: enti
consists of a sequence of stages starting from the stage 1 trainable mo eb]o i ; lt)’ g r:em
. : odel to se
from ment or detect the ROI using 1) the trainable m g
group B, then stage 2 to seg e features. This model has

d on textur
the ovarian mass followed by filtering out non-ROIs base

) Object detection model to detect the ovarian mass of

been used to segment image Group A- 2
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image type B by scanning the image with different window sizes

. ; % o Each step of th
will be explained in detail in the following sub-sections b i ik

11000 ~0t

12000

12000

Figure 6-20: Ovarian tumour samples A) Clear ROI (Group A) with its histogram and B) unclear
ROI (Group B) with its histogram
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Stage 1

Calculate the statics measure-
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Skewness & Kurtosis

\7

Find the Histogram [

Train the SVM

Stage 2
Calculate the statics meas-
Find the Histogram P> urements
Skewness & Kurtosis
v
Trained SVM Model [—
Classl (Group A) Class2 (Group B)

! !

Trainable Segmentation Model

Figure 6-21: Adaptive model to crop the ovarian mass automatically

ifi
63.1 Stagel: Identify the cases with solid tumours pased on the SVM classifier

an tumour dataset includes two groups of images (groups A
roup A from group B. The process starts with the

purposes. For each image of either class, a

As mentioned previously, the ovari
and B), The aim of this stage to identify &

. i rainin
stlection of a certain number of images for train g
ss and kurtosis, are extrac

scriminating two ultraso

ted. Extracting feature vectors from

ke und images of the different
the entire image may not be ideal for di
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Figure 6-22: An example of 3x3 blocks with the statics feature extraction

Once the image type (A or B) was identified in the first stage, two models were implemented
to crop the ROI from the ovarian ultrasound image. If we have a clear ROI (Group A), our
proposed trainable model (see chapter 5) was used to label the pixels based on local features

(asexplained in section 5.3). Otherwise, the object detection model was used to crop the ROI.

632 Stage 2: Trainable Segmentation Model

The aim of the first stage is to identify the ovarian image group (A or B). This model has been
implemented to segment the images with clear ROISs (group A). In this stage, we used the al-
gorithm proposed in section 5-3. This al gorithm gives more accurate segmentation than object

detection because it will label each pixel based on the local texture information which will help
to find the shape and the border of the ROI. As explained earlier, that model includes two stages:

i training samples;
Iraining and testing. In the training stage, We selected a number of images az r : g o pth
insi outside the
from these images, we then selected a number of block samples from inside an |
i ve. The HOG feature was used to describe

TH 41 ati
OVarian mass to build two classes, positive and neg

. i i del. In th
each block These features were feed to the ANN classifier to build a trained model. In the

i i d by extractin
lesting stage, the model scans the whole image with fixed-size blocks followed by g
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HOG features. The trained model will labe] the blocks into binary values 0 or 1, to generate a
binary image. Finally, we have used the cyst border estimation technique and watershed trans-

form explained in sections 5.3.3 to estimate the border of the mass

633 Stage 3: Object Detection Model

Images in group B show a great deal of similarity between the ROI and the background; as
additionally, there is no clear border to detect the ROL. Therefore, our triable segmentation
model based on fixed windows will be unable to locate the ROI due to, first, the overlap be-
tween the textures of the two classes inside and outside the ROI and, second, our model has
classified a small window, and the information extracted from the block is not sufficient to
capture the changes between the ROI and background. Third, the size and shape of the tumour
changes from one case to another. Therefore, the Viola and Jones model (Violaand Jones 2001)
(Cascade Model) was used to crop such difficult cases. This model has designed for face de-
tection. The limitations that have faced by this model are: (1) selecting the most effective fea-
tures from a large vector of feature i.e. Harr Feature (2) build weak classifiers, the number of
classifiers based on the number of the selected features. In other word, each classifier is based
on one of the selected features; and (3) construct a strong classifier by boosting the weak clas-

sifiers to.

One of the advantages of this model is that it scans the image with different window sizes, and
this will help to capture the changes between the ROI and the background. On other hand, the
main limitation facing this model with ultrasound images is the number of false positives pro-
duced by the algorithm in addition to the true positive. Figure 6-23 shows the true and false
positives as a result of the Viola and Jones model as applied to an ultrasound image. Therefore,

our objective is to enhance the Viola and Jones model to make it suitable for application to

ultrasound images. We have improved it by add a filtering out stage as a post-segmentation

technique to identify the correct ROI. Figure 6-24 shows the proposed system that consists of

i ing- e.
three stages: the training stage, testing stage and filtering-out stag

itiv r iwo ovarian tumour cases.
ailse ositl esfo ¥
and tIIEf 1 P

Figure 6-23: The true positive
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Figure 6-24: Cascade Object Detector

A- Train the Object Detection Model

, Filtermng out non ROI Object
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The aim of this stage is to build a classifier that can distinguish the true positive area from the

false positive. In our proposed model, we have trained two models, as seen in Figure 5-24.

First, the AdaBoost model was used to detect the true positive object and second SVM to filter

out the non-ROIs produced by the first model. We have used the same training samples for

both models. Those samples have been cropped manually.

The most commonly used Boosting algorithm is the AdaBoost, which has confirmed that com-

i d its effi-
bining weak classifiers helps in establishing a strong classifier. AdaBoost has prove

ciency in combining simple statistical learner

guer generalization error (Viola and Jones 2001).

When using AdaBoost-based approach two ke

i - : ifiers.
Structing strong classifiers using weak classifi

i lass
bining of strong classifiers to develop a boosted ¢

in extractin
®ropped manually and the Harr Features are used in

.
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Here, there are examples of a given m labelled trainj
Ining such as (x| yl) (xm i
A D ’ , ym). In this

oA : €{-1,1}.Oneachroundt=1.. . T,
a distribution Dy is computed as presented in the figure over the examples of m t
of m tra

case, X is representing a feature vector and the labels y;
1

e ! ining. A
gl tagiie sleonthm is used when determining a weak hypothesis x — {—1,1}. The aim of

determining a weak learner is create a hypothesis with low weighted error that is relative to Dy

(see Algorithm 6-1). The final hypothesis H is used to compute the weighted sign developed
after combining the weak hypotheses.

h(x) = sign[ZLl Qs he(x)] (6-8)

Algorithm 6-1: Standard Adboost algorithm (Schapire 2013)

(x1,y1), ..., (xm, ym) where x; € X,y; € {—1,+1}
Initialized: D;(i)= 1/m for I = 1,..,m.

Fort=1,...,T:

o Train weak learner using distribution Dt.
o Get weak hypothesis x — {—1,1}

o Aim: select h; with low weighted error
D.exp(—a;y;ih:(x;))

Dpy1 (D) =

Zy
where Z; is a normalization factor (chosen so that Dt+1 will be a distribu-
tion).

Output the final hypothesis:

ay ht(x)]

ind
"Mﬂ
(oY

h(x) = sign [

B- Test the object detection

Viola-Jones proposed the basic principle of object detection algorithm. According to her prin-

ciple, the detector is used to scan through the image many times with different sizes in every

sean. Despite that an image is expected to have one or more object, it is apparent that negative

results or non-ROI could still be achieved through excessive use of large amount of the evalu-

- . h
ated sub-windows. This comprehension contributes to formulating different problems rather

d be discarded by t
ROI. With such assumption in mind,

he algorithm. This indicates that
than evaluating the ROI and non-ROI shoul

discarding a non-ROI is easier and faster than finding an
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has a key role of determining whether g specific sub

-window is absolutely a non-ROI or is an
ROL When there is a non-ROI sub

~Window in a given stage, the window is discarded immedi-

ately. On the other hand, when a sub-window is characterized as ROI, the sub-window is ex-

tended to the subsequent stage of cascaded classifier. This aligns with the assertion that the

more stages that a given sub-window passes, the higher the chances of containing a ROI sub-

window.

Inasingle stage classifier, accepting more false negative is the common problem when aiming
at reducing the false positive rate. Nevertheless, during the initial stages of staged classifier,
false positives are not the main problem. This is because the subsequent stages are projected to
assist in solving the problem. Therefore, Viola-Jones provided clear recommendations to ac-
cept many false positives during the first stages. Therefore, during the final stages of staged
classifier, minimal false negative cases are expected.

C- Filtering out False Positive cases based on SVM

To avoid false positives, the SVM classifier has been used to identify the correct ROI based on
the LBP texture features, where the SVM was trained using the LBP and HOG features for
both positive and negative training samples (see section 5-2-2). The trained SVM was used as

afilter to reject the false positive cases and keep the true positive (ROI).

634 Proposal 2: Experimental Results

Automatic segmentation of the ROI is not a trivial problem and can be difficult task when the
object of interest and the background share the same texture colour. In this work, we have

proposed an adaptive model to crop the ROL. In general, to evaluate the segmentation methods,

i ic solutions
itis important to have the expert measurements and compare them with the automatic solution

the ovarian tumour
o see the closeness and the correlation. The proposed model was tested on

i have only the
dataset described in section 1.4.2. Unfortunately, for that particular dataset, we y

rt mea
l i i t) and there are no expe .
. e e bjective, which was to identify the

surements as ground truths.

i 0
Therefore, we have used the segmented image for another
res. The texture
o the ROI only. There are a number of papers

tumour based on the texture feature. We

features should be extracted from
Ovarian tumour type based on texture featu

e ROJ to get the specific information related t

' i ian
inthe literature that identify the risk of the ovar
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have selected the work of (Khazendar, et a]. 2015) to compare to because they used the same
dataset 2s that used in this thesis. In (Khazendar, et al, 2015), the authors cropped the RO
manually followed by feature extraction (histogram and LBP) to feed to the SVM classifier to

diagnose the case. We have used the segmented image produced from our model and calculated

the histogram of the greyscale image and LBP texture features to see the closeness between
our model and the identification mode] proposed by (Khazendar, et al. 201 5). Table 6-2 shows
the diagnosis-based manual cropping and automatic cropping of our proposed method. We can
clearly see that the proposed system was remarkably close to the manually cropped samples,
demonstrating that the proposed system has cropped the most important region. Furthermore,
Figure 6-25 and Figure 6-26 show segmented samples from Group A and B, respectively. We
note that the proposed adaptive model can capture the exact border for cases that belong to

group A. On other hand, images from group B have no clear border and therefore the proposed

model estimates and ultimately crops the ROI.

Table 6-2: Diagnostic performance of the Support Vector Machine on images processed using a
Local Binary Pattern operator in the test group when using Radius R =2

Average diagnosis for SVM without | Average diagnosis for SVM & LBP

LBP K
2x2 block Sensitivity Spéciﬁcity Accuracy . Sensitivity Speciﬁcify Accuracy
image ' ‘
Rbl HcArovp[-)ed' BGREE. =i 64 ; . 66 { 75 & ' 72 | 74

65-71] [61-0.68] | [63-69] | [73-77] [71-73] | [73-75)
Manually [ i ' |
ROI cropped 66.45 67.62 | 67.7 72.34 75.23 73.17 .
by Our pro [62-69] [64-71] | [62-68] [70-74] [73-78] [71-78] ‘

posed model
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63.5 Discussion

Weinvestigated the performance of eight different-sized bog subdivisions. Table 6-3 demon
strates the effectiveness of local features over the global one. It shows the accuracy rate ob-
tained by the SVM classifier for each of these eight different subdivision schemes. We notice

ienificant improvements in t : :
significa p erms of classification accuracy from 88%

for using the whole
image to over 94%

for most of the blocking schemes attempted, and thereby confirmed that
local features can capture more information relevant to distinguishing Group A from Group B.
The optimal accuracy of 94% is achieved for the 5x5 blocking scheme, but the figure also
shows that using more blocks does not always help in capturing more relevant information. In

fact, when we have 8x8 blocks, the extracted features might become too localised, and thus the

overall accuracy deteriorates.

Table 6-3: The effectiveness of local Sfeatures over global ones

Whole | 2x2  13x3 | 4x4 [ 5x5 | 6x6 | 7x7 [ 8x8
‘ [ i
Image . f i | |
Accuracy 88.8% 88.3% | 87.3% @ 89.4% 94.01% 91.3% 87.1%  82.54%

(Group A) i J j i {

Class 2: Unclear 86.38% 87.5% | 85.89% @ 88.48% |
ROI (Group B)

Class1: Clear ROI = 91.26%  89.18% | 88.75% ' 90.41% | 95.73% | 92.44% | 87.9 | 83.9%
i
92.4% | 90.23% | 86.4 | 81.1%

There are number of limitations that we have faced with the proposed model, i.e., in stage 1 we
have some cases which had a clear border but were classified as Group B (see Figure 6-27).
The main reason for getting a false positive is due to the texture of the ROI for those cases
having a texture similar to the background. Therefore, the statics features (skewness and kur-

i les t
tosis) failed to identify it as belonging to group A, as well there not being enough samples to

cover al| cases.

tage 1

e i
Figure 6-27: Examples of the false positive Jfor

159

B

—————



_aa B .

n addition, there are some cases that show a high similarj

] ty between the RO and i
area (see Figure 6-28). These cases are exceedingly diffic and surrounding

Figure 6-28: Examples of difficult cases.

Finally, another limitation facing the proposed system is the filtering out stages incorrectly
identified the ROI for filtering, which we strongly believe is due to with the limited number of

samples available, and therefore that we cannot cover all cases.

64 Summary

This chapter describes two approaches to enhance the trainable segmentation. First, for the
trainable RG approach to enhance segmentation quality, we argued that RG based on intensity
or homogeneity was feasible. Failure of the system was either due to the threshold being un-
suitable for some of the images, or due to poor image quality. The proposed method is unique
in comparison to previously reported methods because it performs a complex image segmen-
tation process based on texture feature using an artificial neural network. This process was
helpful in image regions with poor image quality. Comparison between the trainable RG ap-

T tation
proach and the traditional RG showed excellent agreement. In addition, accurate segmentati

Sin tween the
inthe proposed and the new approach are very similar. Less agrecment was found be
ity images.
ttinable RG and manual tracing for areas calculated from poor quality imag

ian tumour images. The
Second, we have proposed an adaptive model to segment the ovarian g

i inable model to identify
framework consists of a sequence of steps starting from stage 1, traina

i des two models: 1)
Group A from B. then stage 2 to segment and detect the ROIL. Stage 2 includes

° lowed by filtering out non-ROI
i :dentify the ROI fol
Rinable mode] to label the blocks and identity Bliatie fon s A

inable model
based o texture features. The pr oposed traina y scanning the image with different

i i eBb
Object detection model to detect the ROIs of image typ
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window sizes. This framework helps to crop the ROI for diff

demonstrate the effectiveness of the Proposal in producing acc

those achieved by manual Segmentation,

cult cases. Experimental results

urate detection comparable with
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Chapter 7. Texture-based Analysis of Ultrasound Images in Gy-
naecology

In the previous chapters we developed a multi-leve] trainable schemes to segment ROI in US

scans of the ovary, with particular interest in the gestation sac for pregnancy assessment and

tumour masses for cancer diagnostics. Pregnancy assessment is usually based on determining
the MSD of the GS, and accordingly we devised an automatic algorithm to determine the MSD
from the segmented GS and used the medical expert criteria to identify miscarriage cases from
PUVs. This was particularly successful in that there was a high correlation with the decisions
made by the medics using these US scan images. However, comparison of our scheme’s deci-
sions with the ground truth provided by the hospital revealed that the MSD-based initial diag-
nosis agreement with the ultimate diagnosis was quite high when the computed MSD sits com-
fortably within the medically practiced criteria. However, as the computed MSD deviate from
the ‘comfort’ zone, disagreements with the ground truth started to increase. This raised the new
challenge of the search for other image-based indicators beyond the MSD that could be used
with some machine learning schemes to complement the MSD-based decision. This chapter
was devoted to such an attempt, and we shall demonstrate that machine learning using texture-
based features can result in improved identification of miscarriage cases from the early stage

US images.

As mentioned previously, the objective of the previous chapters was to extract the object of

interest from the ovarian tumour images followed by measure feature, 1.e. geometry features

(existing expert measurement) and texture features (i.e., LBP). The texture features can be used

3 new sign to support the expert decision. Based on our investigation and the literature re-

view, we found that speckle noise is one of the critical factors that can affect the accuracy of

i trainabl
diagnosis. Therefore, this chapter is concerned with a proposed approach based on a trainable

i i , 1) trainable
model for ultrasound speckle suppression. This approach includes two stages, 1)

i i h ckle noise.
model to identify the complexity of the speckle noise, and 2) filtering out the spe

i i discuss our motivation for
The rest of this chapter is organised as follows: in section 7.1, we

tion of miscarriage cases in early pregnancy as well as
catl

8oing beyond the MSD-based identifi

discussing the effect of the speckle nois

the diagnosis of ovarian tumours. Section 7.2
e on
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rises the work carried out in this chapter.

71 Problem statement

71.1 Miscarriage identification with/without MSD pParameters

Once a pregnancy test produces a positive result, a scan is conducted, especially if the pregnant

woman reports pain in the abdomen or there is bleeding, as well as when there is a history of

any miscarriage. The results of such an ultrasound scan are used to inform the preliminary
diagnosis. Gynaecologists use the MSD of the GS, manually measured from a US scan image
of the ovary, as an effective benchmark for distinguishing MC from PUV. Different studies
have considered that miscarriage should be declared based on different cut-off values for mean
gestational sac diameter (MSD) within the range of 16-25 mm (Bourne 2016), where the Amer-
ican College of Radiology guidelines used a cut-off value of 16 mm as the threshold on which
tomake a decision. By contrast, the Royal College of Obstetricians and Gynaecologists of the

United Kingdom uses 25 mm.

In the first scan (present scan), the Gynaecologist will use a cut-off value to identify the case
as a miscarriage or PUV. In case of miscarriage, no additional scan is carried out, but if a
miscarriage is not confirmed, testing is repeated after fourteen days, including an ultrasound
scan and blood test (ultimate diagnosis). In our approach, we will use the two tests (present

scan and ultimate diagnosis) as the ground truth to investigate the effects of the texture features.

The present study employed a total of 184 ultrasound images. Based on MSD (present scan),
157 images were labelled as PUV and 27 as miscarriage. Table 7-1 indicates that, in the ulti-

mate diagnosis, numerous cases initially classified as PUV were subsequently reclassified as

miscarriage, whereas a few cases lacked diagnosis labels (9 images; lost to follow-up, 44 im-

the dataset.
ages without description) where all these cases were excluded from

Table 7-1: The number of images in each diagnosis

Diagnosis on presented scan Ultimate diagnosis

Class name
7 30
Not Miscarriage 15 ;
27 101 ,
Mi iage
iscarriag ; e
8
Total 1
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values for diagnosis of miscarriage cases besides MSD Second

ly, can such feature vectors help

omzn e G cases| (MSD > 25mm), i.e., offering any added value. Two reference points

of diagnosis ground truth have been used: (a) diagnosis on the presented scan, and (b) ultimate

diagnose.

The texture of ultrasound images has been considered in various types of research in order to

characterise the echo-texture of B-mode images quantitatively. The principles of analysing the

texture of B-mode ultrasound images are if disease procedures affect the structure of the tissue,
the tissue will reflect a change in ultrasound signal, which will give different valued texture
features to normal tissue (Morris 1988). Based on this, it is expected that texture features de-
rived from cancerous and normal tissues will be different. Therefore, this work will focus on
using ultrasound pregnancy images to determine five distinct features, namely, uniform local
binary pattern (ULBP), fractal dimension (FD), a histogram of orientation gradient (HOG), and
the Gary-Level Co-Occurrence Matrix (GLCM), enabling the extraction and collation of a

number of features.
112 The impact of the speckle noise on the ovarian tumour identification

The complexity to identifying speckle noise (speckle noise level) is an important section in the
selecting of the type of filtering which is necessary to enhance the ultrasound image, i.e., the
image with the brighter region after applied speckle noise will present a magnified view, and
greater random variations in pixel intensity are observed. On the other hand, when this type of
noise is present in a darker area in the image, the random variation observed will be not high

compared to the same observation in the brighter regions. Therefore, this kind of noise is signal

dependent and distorts the image in large magnitude. In this chapter, we propose a new ap-

. - t
proach based on the trainable model to identify the speckle noise levels with the subsequen

application of a suitable filter.

i Fi I is clear, and this
Figure 7-1 shows three types of thee ovarian ultrasound image. First, the ROl is ¢ ;
m i texture representing
type of i age has reduced levels of speckle noise. Second, the ROI has aff: i }:] e
im ix of the firsta
reflection off the solid tissues. The third represents 1 ages that are a mix f

types,
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Figure 7-1: Ovarian tumour samples illustrating the
(not solid); (B) high level of speckle noise (solid texture);

and not solid)

speckle noise level: A) Low-level speckle noise
(C) combination of the two levels (solid

De-noising and enhancing the ultrasound images of an ovarian tumour helps 1) experts to im-
prove their diagnosis by highlighting the anatomical information 2) to enhance the texture fea-
ture to reduce the overlap between the benign and malignant class. The general requirements
for removing artefacts in ultrasound images are to suppress speckle noise as much as possible
without affecting the anatomical information. We have proposed two models to reduce the

speckle noise based on both global and local information.

12 Machine Learning for Early Miscarriage Identification

A model for automatic identification of miscarriage cases is proposed. The proposed CAD
technique for such identification has been shown in Figure 7-2 in form of a block diagram. The
CAD technique mainly consists of a classification system whose function is to predict the class
label (miscarriage or PUV) of a test image based on a neural network classifier determined by
alearning system.

As mentioned previously, each image is presented in two planes (sagittal and transverse). The
framework consists of a sequence of steps starting from ROI detection. This is followed by a

feature extraction technique to extract the features of the ROI for each plane. In the classifica-

tion stage, we trained the system based on two datasets (sagittal and transverse). Therefore, we

9 tw
have two neural networks, one for the sagittal and the other for the transverse plane. The two

neural networks will be used to classify the testing image.
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Figure 7-2: Texture-based analysis for miscarriage identification in early pregnancy

72.1 ROI Detection

In the previous chapters, we have proposed methods to segment the GS and extract the MSD
from the segmented GS. This method has helped us in two ways, the first using the location of
the segmented GS to crop the ROI which includes the GS with the edge and a small part of the
surrounding area, whilst the second uses the measured MSD as an indicator to confirm miscar-

riage cases that have MSD > 25.

122 Feature extraction

The clinical description of data in terms of image texture had been done originally. In our
example, the PUV images are expected to have a homogeneous distribution while the MC im-

ages, on the other hand, are expected to have an assorted grey-level distribution. In mathemat-

ics, in order to improve the final results, a blind set of texture-based features are selected from

SN . ; indicates
several reference articles. The quantitative attribute of image texture indi
t. as visualized in the image, is structured. In the context

how smooth the

surface geometry is and how the objec . I tiall
of image processing, texture refers to the manner in which the pixel grey levels are spatially

distributed in an image or a particular target area.

ab: ] l. . f . l

lly be dete
tensities) of B-mode images. Texture features can usually . ¥
features is the main goal of te

dpproaches. Outlining a series of texture

rmined through a number of

xture analysis. These
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texture analysis that are available, the LBP, uniform LBP (Gangeh, et al 2016) (Ojalaa
Pietikainen and Maenpaa 2002) (Aramendia-Vidaurreta V 2016), HOG (Dalal and Triggs

2005), GLCM (Albregtsen and others 2008) (Mohanaiah, Sathyanarayana and GuruKumar |

2013) and Fractal Dimension (Costa, Humpire-Mamani and Traina 2012) (Alrawi, Sagheer and

Ibrahim 2012) were employed in this study. Moreover, MSD measurement is also proposed as

asignificant clinical feature in miscarriage discrimination.
723 Classification Strategies and Experiments Result

As explained previously, the dataset was labelled based on two reference points of diagnosis
ground truth: (a) diagnosis on the presented scan, and (b) ultimate diagnosis. The Backpropa- ¢
gation ANN has been used as a classifier to identify the Miscarriage cases from the PUV for

both present and ultimate diagnoses. In the following points we are going to explain the exper-

iments that have been tried to test the proposed model.

a) Diagnosis on presented scan: three test options have been tried to test the features in this '

section are:

——

* Option One — Using the provided testing set: use the whole of the first batch as fraining and
the whole of the second batch as testing examples. (Problem: class imbalanced)

* Option Two — Using samples of balanced classes: first merge the two batches and then take
a stratified random sample of balanced classes (25 PUV and 25 MC). Then use a percentage
split for each sample (60% as training (50% training, 10% validation) and 40% as testing).

Repeat the sampling and the classification process 30 times.

ini amples and the second
* Option Three: Taking the first batch as the data source for training examp

: ini i les of
batch as the data source for testing examples, sampling for training and testing examples

balanced classes. Repeat the sampling and the classification process 30 times

itivi ificity usin
Figure 7-3 sh the measured averages of overall accuracy, sensitivity and specificity g
-3 shows

the first option. We can see that the LBP texture feature has some diagnostic value in separating
MC from PUV. By contrast, HOG, GLCM an
and high specificity for other features are Ver

lafge number of PUV cases in the training set.

d FD are much worse than LBP. Low sensitivity

y much due to the small number of MC and a
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Figure 7-3: Results of experiment using option one

Present Scan

3 Daccuracy
| : O Sensitivity :
Y ' | —— [ ; [ Specificty L
- | | |
LBP HOG ' GLCM | . FD
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Figure 7-4 and Figure 7-5 show the results of the experiment using options two and three. We

note that all textural features have some diagnostic value, but that HOG and LBP consistently

show better performance than the other two. We strongly believe that the circularity repre-

sented by the HOG feature of the GS may indicate which class the GS should belong to. On

the other hand, LBP representations of spots, edges, and border regularity may themselves in-

dicate which class the GS should belong to.
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Figure 7-5: Results of experiment using option three

(b) Ultimate diagnose: two test options have been employed to test the features in this section.
Option two and three, as explained in section (a), have used to evaluate the features. We cannot
use option one because some cases lacked diagnosis labels in batch 1. The averages of overall
accuracy, sensitivity and specificity have been measured. The figures below show the results
of the experiment using option two (see Figure 7-6) and three (see Figure 7-7). It may be no-
ticed that many PUV cases become MC when using both cut-off MSDs (16 -25). All textural

features indicate added value in identifying the MC cases, although specificity cannot be guar-

anteed to be 100%. HOG provides more added value than the other measures with ULBP tails
behind.
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. . lagnosis in these cases, but there
are still around 44 cases with MSD where a value of less t

han 16 mm was dia nosed as a
miscarriage. Therefore, the cut- 3

0 :
ff value was not sufficient to obtain the ultimate diagnosis.

The proposed model, as based on texture feature, can help to diagnosis such cases. and the

result demonstrates that the proposed model can confirm miscarriage cases in the first scan

which will help the gynaecologist to support his decision, in addition to the evidence offered

by the MSD measurements.

Due to the limitations of the human eye in discriminating between the various grey levels in an
ultrasound image, it is necessary to conduct a texture analysis in cases where it is important to
discriminate between miscarriage and PUV. Another advantage of texture analysis is that it is

created from the most detailed parts of the ultrasound image, and thus is much more critical

than a visual analysis.

The proposed model has two advantages. First, The classification registers high accuracy, sen-
sitivity and specificity. This means there is a difference between the miscarriage and PUV cases
based on textures features and we can use it as a new sign to support the MSD measurement.
Second, the result has approved that the new sign (texture feature) can help to make an ultimate

diagnosis based on the first scan.

The limitations of the proposed model are: 1) we did not test the system with large number of
samples. where, we have used a dataset acquired from 184 different patients, equal more than
the referenced articles discussed in chapter 3, it can be stated that the larger the number of

images from different patients, the more reliable are the results. 1) we do not have enough cases

of miscarriage in the dataset (Problem: class imbalanced).

13 Speckle Noise Reduction for ovarian ultrasound image

In this section we propose two models to enhance the cropped ovarian ultrasound image and

- i : e two
reduce the overlap between the texture feature for benign and malignant tumours. Thes

models are based on global and local informatio

scribed in detail.

n. In this section, the two models will be de-

Figure 7-8 shows the model proposed for the identification of ovarian tumour type as based on

texture features. The first step involves cropping the
Proposed in chapter 5 has been used. Then, 1n the pre

in thi mework. T
Used to enhance the RO, as per our focus 1n this fra

ROI and, in this step, the adaptive model
-processing step, an adaptive model was

he enhanced ROI was used as

1Al
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model to enhance the ROL. Therefore, the following sections will focus on the proposed speckle

noise reduction model and evaluate it by considering the final result of the SVM
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Figure 7-8: Automatic identification of ovarian tumours based on texture features

73.1 Model 1: speckle noise reduction based on the whole image

As mentioned previously, the complexity associated with identification of speckle noise is an

essential factor in the selection of the type of filter necessary to enhance the ultrasound image.

The proposed model includes two main stages: first, identify the complexity of the speckle

noise; second, apply a filter to reduce the speckle noise (See Figure 7-9).

The process starts by selecting a number of images from t
enwise) for the training stage. The statics measurements, which are skewne
extracted from the histogram of the ultrasound image. Then,
SVM classifier to build a trained model. T
caICUIating the skewness and kurtosis from the histog
0 labe] the testing image as class 1 (black ROI) or class 2 (i
used a filter for the images labelled

the speckle noise filter will remove impo

he two classes (solid texture or oth-
ss and kurtosis, were
we feed these features into the
he testing phase includes processing the image by
ram. The trained SVM model will be used
t has a solid object). We have not

lass 1 due to the class one has smooth area, and because
asc

rtant information. On the other hand, we have used

172



a8 AR

the Wiener filter for the cases labelled class 1. That

Process will help to remove noi
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Figure 7-9: Model 1: speckle noise based on the entire image

132 Model 2: Adaptive speckle noise based on images blocks

Insome cases, the images have two types of the region in the same image: solid and not solid

textures (Figure 7-1-C). In this case, we have built an adaptive model to process the image j
based on blocks. Two phases are used to identify the region with a solid texture. Phase one is ,
training, and phase two is testing. In the training step, the system takes 100 block samples from

class one (solid texture) and 100 block samples from class two (not solid) as input, where the

size of the block is (30 x 30) (see Figure 7-10). Then, the histogram for each individual block :
is found, followed by calculating the statics measurements, skewness and kurtosis, as based (?n

the histogram determined in each instance. These statics measurements have been used to train

apattern classifier to identify the solid texture class from others (not solid class).

ture in out-of-sample images. The proposed model

The testi ims to detect solid tex :
Y d image and uses the trained SVM classifier

slides a fixed size blocks over the input ultrasoun
0 decide which patterns show solidity, or otherwise,

T xtracted to
et of features as in the training phase have been €

in the blocks. for each window, the same

test the trained SVM classifier;

: s to be processed.
the SVM predication determines whether the window need P
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Figure 7-10: Samples to train Model 2

73.3 Experiments and Results

In order to evaluate the effects of the proposed models in this study, the Local Binary Pattern
(LBP) 59 bins and LBP 255 bins have been used. These features are used to identify tumour
type (benign or malignant) (Khazendar, et al. 2015). Therefore, we have used these features to
evaluate our new approaches to pre-processing and enhancement, as extracted from the cropped

ROI from the ovarian ultrasound images and fed to the neural network.

In this study, 242 two-dimensional images of ovarian tumours have been taken from a total of
232 patients. These images consisted of 104 malignant tumours and 138 benign tumours which
were obtained by utilizing the two-dimensional B-mode feature. From each tumour class, 50

images were chosen randomly to give a total sample size of 100, which was particularly im-

portant given that benign tumours outnumbered malignant tumours (138 benign vs. 104 malig-

nant). The randsample function in MATLAB was used for the unsystematic sampling. The

parameters for ANN were set at 60% training (50% training, 10% validation) and 40% testing,

= . . of
and were then used to calculate sensitivity, accuracy and specificity. An average for each

these factors was found over 20 repetitions.

Figure 7-11 and Figure 7-12 show the effects of the two proposed models by using two texture

features, nam ly LBP 59 bins and LBP 255 bins. We have tested both features with and without
t] e

i i s improved the accu-
Pre-processing. We note that pre-pressing based on local information has imp

racy of both feat notably in a model that works Jocally by looking at small regions instead
eatures,
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of looking into the whole image. In this case, all the img

; ges will be used as in ut to Model 2
and each block will process regarding the distributions o Aueiy.

f the histogram.

Four experiments sets have been conducted to show the effecti

) Do e o venees of the proposed model.
First, the LBP of the original Image has been taken (without pre-processing). This experiment

has shown that the uniform LBP (59) gave better result than the traditional LBP where the

accuracy of uniform LBP is 80% and the traditional LBP is 74%. The main reason behind that

is, the uniform LBP has captured the important information that can help to distinguish the
structure and edge of the tumour and ignore the other non-uniform data. Based on these features
and in the second experiment, the winner filter has been applied on the whole data set. As we
can see, the accuracy of the uniform LBP has decreased. The benign tumour has a black region
and this area has less speckle noise. Therefore, applying the winner filter on these regions will
remove a lot of the important information's that can help identify the benign cases. This result
has motived us to build an adaptive model that can help recognize the images with black region
before we send it to the winner filter. In the third experiment, we have used the new proposed
adoptive model to identify the cases with black area automatically from the cases that have rich
textures. The winner filter applied on the image which has rich texture. This model has helped
to identify the cases that have a big area of the reach textures and black area. The reason of
reducing the accuracy of that model in some cases have different regions (rich textures and
black region). Therefore, in the fourth experiment we have enhanced the proposed model to

work with local information, i.e. divide the image into small blocks and see if the blocks need

afiltering process or not. The result has shown that the adoptive model has enhanced the result

for both features (uniform LBP and the LBP).
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Figure 7-11: Evaluation of the performance of Model 1 and Model 2 using uniform LBP (59 bins)
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74 Summary

In summary, this chapter has shown that com

methodology have the capability to ¢ l
[ o nclu

Miscarriage. As shown in the studies, 1t can be co

X MC and PUV. They can
¢Xtra value that has been added in order to discriminate between the

.

v S|

LBP without Pre-
processing
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LBP-with ‘Pre- system based on
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ded that the texture features have some




be used with the MSD in a fusjon scheme. In such cases, it
it a

diagnostic accuracy.

between the MC and the PUV can be really helpful into the organization since it reduces the
need for experts to analyse the collected information. Also, there is high accuracy involved and

minimize Errors in such cases since machines are Jess prone to mistakes compared to humans.

On the other hand, an adaptive model based on global image information has been proposed to

reduce speckle noise in solid texture images. This model will process the whole image by the

global application of the Wiener filter. The advantage of this model is that it is fast and is

entirely suitable for images that have only solid texture. On the other hand, the major limitation
of this model is that it is not suitable for images that have any other kind of texture (solid and
not solid). Therefore, we have proposed a second model which is based on the use of local
information. In this model, we will process the image as blocks. Based on the skewness and
kurtosis measurements, we can decide if the blocks need a filter or otherwise. The experimental

results show that the proposed models have both enhanced the features of the images.
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Chapter 8. Conclusion and Futuye work

The research work conducted for this thesis was designed to automate, u

> sing computer algo-
rithms, the detection of g

gynaecological abnormalities from Ultrasound scans of the ovary. This

is meant to exploit the rapid advances in computer technology to provide tools that assist cli-
nician in making/confirming reliable decisions and thereby mitigating the effect of acute short-
age of adequately skilled staff and in return reduce the growing cost of healthcare. The initial
focus was on diagnosing miscarriage in early pregnancy but it was also implicit that any
knowledge gained from that component of the work needs to be extended to related tasks in
diagnosing ovarian tumour masses into benign and malignant. Identifying the main tasks in
this project was fairly straightforward, but designing and developing computer algorithms to
achieve the objectives of the individual tasks was anything but straightforward. The journey
towards the development and evaluation of efficiently reliable solutions was, nevertheless, very
fruitful and revealed many challenges that are specific to Ultrasound images but can arise in
many other medical imaging modalities. This research project was conducted in collaboration
with prominent UK and European medical experts as part of an effort to eventually develop a
decision support system in this field, and their constant help and advice was instrumental in

achieving the reported solutions.

This chapter highlights the main findings of the research conducted in each of the identified

tasks and draw conclusions and implications for research beyond the stated objectives. Then,

7 i i i work
some of the recommendations, research directions and suggestions to be addressed in future

are outlined in order to further improve the performance and enhance the reliability of the proposed

systems in analysing the ultrasound image images.

8.1 Conclusion

J o0 ovary is u
The use of ultrasound imagery to monitor abnormalities of the ] Y; ; :
n of potential problems in pregnancy anid,the ovaran

e Gestation sack (GS) and the Yoke Sack (YS) inside

biquitous in modern

clinics and is the key for the identificatio
tumour, Dimensional measurements of th
the GS including the MSD of the sac and the r

indj inicions. In
indicators for miscarriage used by clinicions- i P

clative size of the YS are among the diagnostic
ractice, MSD value in certain ranges is used
2

Iso indicate pathology. In
% a criterion for diagnosing miscarriage while enlarged YS can a
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addition, there are different parameters (mentioned in cha

o identify abnormalities in ovarian tumours. Therefore. th

semi-automatic) solutions have been developed for diffe

such algorithms depends very much on how significant t}

age features (e.g. pixel intensity,

e

pter 2) that are used by oncologists

€ objective of the first component of

alysis, and a variety of automatic (or
rent types of images. The success of
1€ variation in the distribution of im-

waveform frequencies, entropy, and their filtered values), and

expectedly their performances are influenced by the nature of the imaging modality and the

objects of interest beside factors influencing image quality.

Existing segmentation methods i.e. threshold, region growing,

watershed transform, and edge

detection techniques have been shown to have limited use for the ultrasound images investi-

gated tasks, due to the challenges associated with these tasks that were highlighted in each

chapter (i.e. quality of the ultrasound, poor border of the ROI and the similarity between the

ROI'and the background). Testing the performance of these existing schemes, confirmed an

important expected conclusion that there is no one method that could work well all the time for

every imaging modality. Therefore, it became necessary to develop some pre- and post—seg-

mentation techniques to avoid the limitations that we faced with existing methods.

Taking into account that speckle noise is widely believed to have an adverse influence on the

performance of the existing methods, and the observed visual characteristics of wavelet trans-

formed US images we developed an automatic segmentation that was based on thresholding

post speckle de-noising in the wavelet domain. Wavelet transforms help visually highlight re-

gions that have more similarity with the GS region and tumour masses, Despite the relatively

high performance, that step resulted in many cases were the scheme detected few additional

1on-ROI object that exhibited similar properties. Moreover, our experiments revealed that

speckle noise filters may remove the sought-a
To remove the additional Non-ROI detected object
model based on regularity geometry features. This procedure
emove the non-GS objects obtain in the previous step. Our evalu
overcome all the limitations and som
/texture features. Therefore, in some €as

identify the correct ROI an thereby resulting in sO

The factors that led to the limitations of that

; ine lea
o complementing this scheme with a machine

.

fter ROI (the GS) when it is relatively small size.
s we have developed an object detection
helped identify the GS object and
ation of this version did not
have similar geome-

odel failed to

e Non-ROI regions and the ROI
es, the proposed object detection m
me false positive cases.

mentation scheme led

version of our automatic seg

rning component to help distinguish between
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learning of the distin-

uishing texture features which works in 2 stages: 1) binaries the image to capture small objects

as well as identify poor borders and 2) filter out Non-ROJ objects depending on the distinguish-

ing texture features.

Although this Was very successful in identifying the sought after ROI, we found that in some

cases it may not succeed always to capture the whole RO] (under-segmentation). This was

finally overcome by adding a region growing as a post-segmentation procedure using texture
features and the ANN (Trainable Region Growing) to extract the whole ROL The trainable

Region Growing method has reduce the under-segmentation problem.

Instead of a one-step general purpose segmentation, we found that the challenge of reliably
segmenting the GS, and identifying the YS inside it, required a multi-level segmentation
method that involve machine learning of certain texture features that at each stage the solution
improves the segmentation by removing irrelevant objects and/or closing the border of the GS.
Whereby at each to extract the ROI from the ovary ultrasound images. The completing of this
task enabled the move to the next task of automatically measuring the MSD of the GS, and

using the computed MSD to diagnose miscarriage in US pregnancy scans.

Having shown that the last version of the trainable segmentation successfully extracts ROIs
(GS, and the Y inside it), it was necessary to demonstrate that our machine training has gen-
erated a model that is at least as good as the trained human clinician in relation to measuring

the MSD. The closeness of the MSD measurements made by the clinicians (i.e. the manual

ground truth) to the MSD values output by our automatic solution demonstrated a strong cor-

telation between the two, and thereby confirmed that machine learning is capable of generating

an automatic scheme that perform as well as trained human.

: i i ities exhibited
Due to the fact that analysis of Ovarian US scan images for diagnosing abnormalities e

ally segmenting these cysts is expected to benefit from
he GS. Unlike the case of pregnancy, where there

nclude more than one cyst. As observed in

by ovarian cysts, the issue of automatic
the above trainable segmentation scheme of' t

is iect. i mour there may 1 : .
one GS object, in the case of tu L et s

: and multilocul .
fapler 5 the pIEHlGh Of Ocee t tumours. Furthermore, at penulti-

; i nd malignan
Used by JOTA to distinguish between benign a et R O Fcion e

. ation we g€
Mate stages of our automated GS trainable segment
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Considering the initial objective of automating the computing the MSD measurements of the
GS and the way machine learning influenced the developed complementary approach for ac-
curate GS and ovarian masses segmentation raised an important question whether we could
exploit further the use of machine learning for diagnostics without relying on ROI measure-
ments. In fact, comparison of the decision made by the proposed method with the ground truth
provided by the expert revealed that the MSD-based initial diagnosis agreement with ultimate
diagnosis was high compared to the diagnosis when the computed MSD sits comfortably within
the medically practiced criteria. This raised a new research question that motivated us to use
machine learning as a new abnormality signature to complement the MSD-based decision. The
new signature was based on training commonly used texture features within the segmented
ROI'to be used as a model for diagnostics. Again, our experimental work confirmed the success
of this approach has demonstrated that the adopted texture feature can be used as a good
indictor to identify the miscarriage in early stage. In fact, these results open the way to search

for other digital image features that could further enhance accuracy and reduce both false pos-

itives and false negatives.

Finally, the way we developed the proposed hybrid multi-stage solutions, together with their
highly successful outcomes presented in the various chapters do not only show the

effectiveness of the proposed models but rather revealed the toughness of the challenges auto-

matically analysing ultrasound images. But we have also established that machine learning

Provides an excellent set of tools to confront these and similar tasks in analysing biomedical

images for diagnostics purposes.

8.2 Future Work

further extended
Achieving such a complex goal requires that the scope of our reported work be fu

ally, future work should be dedicated to the

b idered here. Ide
e posed methods to increase overall ac-

i nt pro
improvement and further development of the current P

i t measurements/indicators
i to extract importan
should continue

Cracy, In addition, the work
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explore the following areas that sti]] need additional work.

82.1 Miscarriage Ultrasound Segmentation

1- As menti i
loned in chapter 2, there are three stages related to pregnancy (Stage 1: empty

GS, Stage 2: YS inside the GS and stage 3: Embryo inside the GS) (See Figure 8-1)
We have only implemented the identification of the stages of pregnancy for both stagc:
I and stage 2 due to the limited number of images available for stage 3. It would be
both interesting and beneficial to investigate the method for all three stages of preg-
nancy. Secondly, the implementation of an effective model to segment, measure and
classify of the embryo ultrasound image (stage 3) would also be beneficial, as this

would help to identify miscarriage in the early stages of pregnancy.

Figure 8-1: Examples of ultrasound images of the very beginning of pregnancy until developing the
embryo (A) gestational sac (B) YS within the GS (C) embryo attached with XS within the GS.

2- Extend the machine learning approach beyond the cases tackled here. This requires
capturing significantly more ultrasound scan images related to miscarriage cases to be

used as considerable training and testing dataset necessary] for bofdingrelisoly and

scalable machine learning tools. Ideally, such a model should enhance TP rates as well

as filter out non-ROIs.

822 Ovarian Tumour Segmentation

We are convinced of the potential of building on the success of using the machinﬁe lieamh.]g
based trainable GS segmentation, for the :dentification of identifying and dis'tingmshl.ng difs
ferent types of ovarian tumours. In fact, in chapter 4 we pr oposed an e.ffectlve aieodtm
determine the nature of cyst locularity. Each type of tumour is characterised by: 1) cyst loca-

2) the presence/absence of acoustic shadows; 3) number of

tions (Unilocular, Multilocular);
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papillary projections; 4) solid tumour (None, small, |
» Small, lar.

ular, Irregular, and Indeterminate) (see Era . ge); and 5) internal wall structure (Reg-
re 8-

St : : -
model to extract these characteristics and use th would be interesting to implement a
em as

\ features wi . : :
types. In particular, we plan to investigate and devel s with which to identify tumour
op

tools, inspired by the achieved success,

erline and malignant cases.

to differentiate between different types of benign, bord
, bor

Fl.gure 8-2: Ovarian tumour signs: A) this type of tumour has clear signs, which are white dots and
lines, B) this case includes acoustic shadows (present), unilocular, non-solid tumour and internal
wall structure (regular), C) this includes multilocular signs and

823 Ultrasound image Segmentation methods in general

1- Extend the applicability of the developed solutions to different diseases, i.e., prostate

cancer and evaluate the effects of these models. Based on the succus of our trainable

multi-level segmentation, we plan to tweak the proposed model to be suitable for the

segmentation of the ROI in different applications.

2- Investigate further features and use the feature selection techniques to produce an ef-

fective trainable segmentation model that can reduce false positives to near zero.
3- The speckle noise and the quality of the ultras
on issue. Therefore, it would

d frequency domains to redu

ound image represent the greatest chal-

- interesting to build an effective
lenge to the segmentati be g

model by using the spatial an ce speckle noise in order to
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ight the RO, Thi
segmentation process €asy and fast.

4- It would be interestin

volume and other parameters.
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