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Abstract 

The focus of this thesis is to investigate solutions that shall enhance the security of 

remote client authentication for mCommerce applications on phones such as 

Smartphones or Tablet-PCs. This thesis details three innovative authentication 

schemes developed during the course of this study. These schemes are based on the 

use of localisation and obfuscation techniques in combination with multi-factor 

authentication to enforce the knowledge of “who, when, where and how” necessary 

for any remote client authentication attempt. Thus, assuring the mCommerce service 

provider about the genuine client as well as ensuring correct capturing and 

processing of the client’s authentication data on the remote phone. The author of this 

thesis believes that these schemes, when developed on commercial mCommerce 

applications, shall enhance the service provider’s trust into the received client data 

and therefore shall encourage more service providers to offer their mCommerce 

services via phone applications to their clients. 

 

The first proposed scheme, called MORE-BAILS, combines multiple authentication 

factors into a One-Time Multi-Factor Biometric Representation (OTMFBR) of a 

client, so to achieve robust, secure, and privacy-preserving client authentication. 

Tests and trials of this scheme proved that it is viable for use in the authentication 

process of any type of mCommerce phone applications. 

The second and third schemes, called oBiometrics and LocAuth respectively, use a 

new obfuscated-interpretation approach to protect the mCommerce application 

against misuse by attackers as well as to ensure the real-time and one-time properties 

of the client’s authentication attempt. The novelty of combining biometric-based 

keys with obfuscated-interpretation tightly binds the correct mCommerce application 

execution to the genuine client. Furthermore, integration of the client’s current 

location and real-time in the LocAuth challenge / response scheme eliminates the 

risk that an attacker can illegitimately re-use previously gathered genuine client 

authentication data in a replay attack. 

 

Based on appropriate criteria, the MORE-BAILS, oBiometrics and LocAuth levels of 

security, user-friendliness and algorithms’ ease-of-implementation are proven in 

experiments and trials on state-of-the-art Android-based Smartphones.  
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1 INTRODUCTION 

Mobile devices / phones with enhanced capabilities, like Smartphones or Tablet-PCs, 

become a major part in everybody’s daily life. All kinds of mCommerce activities, 

including financial banking transactions and online shopping, are nowadays 

performed online via phone applications whilst on the move. 

 

The availability of mCommerce applications on phones creates new challenges in 

protecting these application, and therefore demands secure and reliable remote client 

authentication on the phone, because phones are easily lost or stolen. In this case, an 

attacker has full access to the phone and could illegitimately use the mCommerce 

application, if no application protection exists. 

For the authenticator, the “remote” nature of client-authentication eliminates the 

immediate knowledge of “who, when, where and how” of the client’s authentication 

attempt, which is clearly and automatically defined in office-based, face-to-face 

transactions. I.e. impersonation and other distance attacks (e.g. replay attacks) are 

more likely to happen in mCommerce than in office-based transactions. As a 

consequence, mCommerce service providers (e.g. financial companies) currently 

restrict access to their services via phone applications or they do not offer access to 

their services via phone applications at all. 

 

This research work focuses on “bringing-back” the lost face-to-face features into 

remote client authentication on phones, as well as protecting the application 

execution on the client’s phone. I.e. enhancing the service provider’s trust into the 

remotely received client authentication data by guaranteeing the freshness and 

originality of the provided client data. This research should encourage more service 

providers to offer their mCommerce services via phone applications to their clients. 

 

Integration of the face-to-face features into remote authentication is achieved by a 

tight and secure combination of client specific information (e.g. Biometrics, 

Passwords and phone specific tokens to define the “who”), with real-time (to define 

the “when”), and the client’s current location (to define the “where”) into a One-

Time Multi-Factor Biometric Representation (OTMFBR) of a client. 
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Correctness of the authentication process execution on the client’s phone (to define 

the “how”) is ensured by a software application protection mechanism based on 

biometric (oBiometrics) and location (LocAuth) obfuscated interpretation. 

Obfuscated interpretation ensures correct execution of the authentication application 

and binds the application closely to the genuine client. This shall assure the 

authenticator about correct capturing and processing of the authentication data, as 

well as reduces the risk that an attacker is able to use the mCommerce application, 

even if the attacker is in possession of the genuine client’s phone. 

 

Usability and commercial viability are important aspects for mCommerce 

applications and their market success. Clients will not accept complicated 

authentication solutions in their everyday life. mCommerce service providers will not 

utilise solutions, which development and distribution costs exceed the return on 

investment in terms of added security or increased revenue. To achieve user-

friendliness and commercial viability, all the three schemes proposed in this thesis 

are designed with these issues in mind, i.e. a strong focus towards development and 

deployment costs, flexibility and adaptability as well as user-friendliness suitable for 

current and future generations of phones. 

1.1 Author’s Research Motivation 

I finished my first University degree in Commercial Information Technology from 

The University of Applied Sciences at Wedel in Germany. I chose this degree 

because I was thoroughly fascinated from the interaction of commercial aspects with 

our technological evolving and becoming completely mobile world. Right from the 

time I had the possibility to conduct my own financial transactions (e.g. online 

shopping) on a personal computer; I wanted to understand the technological, security 

and usability implications of these two areas that are more and more becoming one. 

 

During my subsequent MSc studies at Wedel, I was offered an internship position in 

the Applied Computing Department at The University of Buckingham to support the 

research projects Broadwan [1] and SecurePhone [2]. These two projects helped 

streamline my interests in wireless / mobile communication technologies and secure 

authentication for mCommerce applications performed on phones. 
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In Broadwan, I helped to investigate and design new ad-hoc routing protocols for 

mobile devices in Wide Area Networks (WANs). 

The European co-funded project (IST-2002-506883) SecurePhone aimed at realising 

a new mobile communication system enabling biometrically authenticated clients to 

deal m-contracts during a mobile phone call in an easy yet highly dependable and 

secure way. In SecurePhone, I helped to implement the developed algorithms on the 

phone. The SecurePhone prototype was developed on the HTC Qtek 2020 PDA and 

designed in such a way that the complete client authentication process was 

performed on the phone. Once a client was successfully verified, a digital signature 

stored on the phone’s SIM card was released and used to sign the digital contract at 

that moment of authentication time. The digitally signed contract was then sent to the 

other involved contract party. 

Client trails on the SecurePhone prototype showed that client authentication can be 

done in less than one second. This was achieved when solely the feature matching 

was executed on the SIM card’s own processor (Match-On-Card). All other 

authentication steps (e.g. biometric data acquisition and pre-processing) were 

executed during these experiments on the host application processor of the phone. 

The authentication processing time increased to 45 minutes, when all the processing 

was executed by the SIM processor hosted inside the secure SIM card environment. 

The tremendous execution time increase was due to low processing power of the 

SIM card CPU and slow data communication between the SIM CPU / Memory and 

the phone resources. 

Execution of the complete authentication process on the phone is an important aspect 

for the security evaluation of the SecurePhone approach. The authentication system 

security is fully based on the security features of the SIM card. The business partner 

receiving the digitally signed contract has no possibility to check the correctness of 

the signature release. S/he must trust the security mechanisms of the SecurePhone. 

However, if an attacker is able to get hold of the phone, the attacker has full control 

over the phone and SIM card and could eventually break the SecurePhone’s security 

mechanisms and illegitimately sign contracts. 

 

Thinking at the end of my internship about the SecurePhone approach, I identified 

two questions, which answers can be used to tackle the security impacts and to 

ensure secure “on-device” authentication for mCommerce applications: 
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1) Can the risk that an attacker hacks into the “on-device” authentication be 

reduced? I.e. investigate if the complete authentication process execution on the 

phone can be in some way security protected, e.g. by using a secure host 

environment or by protecting the authentication application execution on the 

phone. 

2) Can part of the authentication process as well as the authenticity decision be 

moved from the client’s phone to the authenticator side? I.e. is it possible that the 

client authentication is performed remotely instead of locally on the phone? In 

this scenario, the authenticator does not have to trust the possibly undermined 

client phone. In contrast, the authenticator can base the authenticity decision fully 

on his equipment and authentication algorithms. However, this type of remote 

authentication raises further security concerns, which needed to be carefully 

addressed. For example, the authenticator must be able to check the freshness of 

the received authentication data. If this is not possible, then, for example, an 

attacker could re-use previously gathered genuine client data in a replay attack. 

 

The experiences I have made, the knowledge I have gained and the people I have met 

during this internship at the University of Buckingham clearly showed me my 

interest in academic research. It became obvious to me that I would like to carry on 

my own research in this area of authentication and mobile communication 

technologies. I wanted to clearly and fully understand the underlying principles and 

challenges involved in client authentication as well as find answers to the open 

questions remaining from my internship. I.e. why is the authentication on the 

SecurePhone’s SIM card so slow and is it possible to enhance the security of the 

SecurePhone’s prototype further? 

 

After I finished my MSc degree in Wedel, the University of Buckingham offered me 

a place as a PhD student in the Department of Applied Computing to conduct my 

own research. I was delighted by this offer and the opportunity to contribute to the 

research in secure and reliable client authentication on phones. 

This thesis describes the knowledge I have gained and the achievements and 

contributions I have made during the last three years investigating “Location and 

Obfuscation Techniques for secure client Authentication” (LOTA) in mCommerce 

applications on phones. The “LOTA” acronym will be used in the remainder of this 



 5  

thesis to refer to this research project as a whole. I thoroughly enjoyed these last 

three years and would love to continue my work on LOTA in the future. 

1.2 Research Methodology, Novelties and Achievements 

Important to all mCommerce applications on phones that require secure and reliable 

remote client authentication, LOTA proposes solutions to the following questions: 

1) How to achieve secure, robust, reliable, and user-friendly authentication data 

collection on phones to enhance the correctness of the authenticator’s remotely 

performed authenticity decision? 

2) How to protect the authentication process on the phone against malicious attacks 

(e.g. modification of the authentication process) to ensure the correctness of the 

authentication data collection, processing and transmission? 

Researching these questions for a few months has led to many hypotheses for LOTA. 

Figure 1 shows the undertaken research methodology. 

 

 

Figure 1: Research methodology 

 

1) LOTA started by investigating the literature on authentication techniques, with a 

focus on techniques and authentication factors to secure and enhance remote 

client authentication on phones. Based on the conducted literature investigation, 

LOTA concluded about the important properties of such techniques. The 

literature investigation also formed the criteria to identify and develop efficient 

and secure algorithms for the proposed schemes. 
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2) Literature investigation was followed by design, implementation, trial and 

evaluation of a novel multi-factor authentication scheme (called MORE-BAILS) 

that includes a strong assurance of the client’s current location and real-time. 

3) LOTA has also identified, during the literature survey on authentication that 

malicious modification of the phone hosting the authentication process is a 

critical attack point in remote authentication. To fully understand the impacts and 

the available countermeasures against such modifications, the literature on 

protecting the phone as a host for the authentication process was investigated. 

4) Based on the gained knowledge and the results from the evaluation of the 

investigated methods on secure hosting of the authentication process, novel 

authentication process protection techniques based on biometric and location 

obfuscated software interpretation (oBiometrics and LocAuth) were designed. 

5) Finally, the proposed solutions (MORE-BAILS, oBiometrics, and LocAuth) were 

combined to achieve a host protected, multi-factor remote client authentication 

scheme for mCommerce application on phones. 

 

During the work on LOTA, the following novelties were developed and proposed: 

1)  A novel way (called One-Time Multi-Factor Biometric Representation 

(OTMFBR)) to securely combine multiple authentication factors (e.g. PINs, 

tokens, biometrics, location and time) that allows the authenticator to reliably 

verify the client’s claimed identity and phone, his/her current location as well as 

the freshness of the authentication data and the real-time property of the 

authentication attempt. 

2) Techniques to transfer the client’s actual physical location into another secure 

location-domain. These techniques enable the authenticator to verify the client’s 

claimed location without actually knowing the client’s current physical location, 

i.e. the client’s location privacy is not negatively affected. 

3) Two novel schemes (called oBiometrics and LocAuth) to protect the 

authentication application execution on the phone as well as to ensure the 

freshness of the authentication data. The tight binding of the correct application 

execution to the genuine client eliminates the risk that an attacker can use the 

authentication application even if the attacker steals the genuine client’s phone. 
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In addition to the LOTA work, I had the opportunity to support fellow student 

researchers in their projects. This gave me in return valuable knowledge and 

feedback about practical issues of techniques evaluated and used in LOTA as well as 

new ideas for my own research. I would like to highlight exemplarily two of these 

opportunities and outline, how LOTA benefited from the collaborative work. 

1) The first collaboration was with a colleague working on WiMax / WiFi baseband 

convergence techniques. I supported him in the FPGA chip implementation of his 

proposed method. LOTA benefited from this experience, because it increased my 

understanding of the impacts and requirements of custom chip implementation, 

one method studied and evaluated to secure the authentication process execution 

environment hosted on the phone. 

2) The second collaboration was with a fellow PhD student working on WiFi / 

Bluetooth mesh networks. I was able to implement aspects of his work on the 

Android Smartphone operating system platform. LOTA uses Android as the 

platform to implement and test the proposed solutions. The gathered deep 

understanding of the Android system during this collaborative work helped 

tremendously to perform the practical trials and experiments of LOTA on 

Android Smartphones. 

 

In the space of LOTA, the following papers were published: 

1) Torben Kuseler and Ihsan Alshahib Lami, "Using Geographical Location as an 

Authentication Factor to enhance mCommerce Applications on Smartphones," 

International Journal of Computer Science and Security (IJCSS), vol. 6, no. 4, p. 

10, Aug 2012. 

2) Torben Kuseler and Ihsan Alshahib Lami, "dLocAuth: a dynamic multifactor 

authentication scheme for mCommerce applications using independent location-

based obfuscation," in Mobile Multimedia/Image Processing, Security, and 

Applications 2012, SPIE, Bellingham, WA, Apr 2012. 

3) Torben Kuseler, Ihsan Alshahib Lami, and Hisham Al-Assam, "oBiometrics: A 

Software protection scheme using biometric-based obfuscation," in 2011 African 

Conference on Software Engineering and Applied Computing (ACSEAC), Cape 

Town, South Africa, Sep 2011. 
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4) Torben Kuseler, Hisham Al-Assam, and Ihsan Alshahib Lami, "One Time Multi 

Factor Biometric Representation (OTMFBR) for remote client authentication," 

Published Patent, Number 1109832.4, UK Intellectual Property Office, Jun 2011. 

5) Torben Kuseler, Hisham Al-Assam, Sabah Jassim, and Ihsan Alshahib Lami, 

"Privacy preserving, real-time and location secured biometrics for mCommerce 

authentication," in Mobile Multimedia/Image Processing, Security, and 

Applications 2011, SPIE, vol. 8063, Bellingham, WA, Apr 2011. 

6) Ihsan Alshahib Lami, Torben Kuseler, Hisham Al-Assam, and Sabah Jassim, 

"LocBiometrics: Mobile phone based multifactor biometric authentication with 

time and location assurance," in Proc. 18th Telecommunications Forum (IEEE 

TELFOR 2010), Nov 2010. 

7) Torben Kuseler, Ihsan Alshahib Lami, Sabah Jassim, and Harin Sellahewa, 

"eBiometrics: an enhanced multi-biometrics authentication technique for real-

time remote applications on mobile devices," in Society of Photo-Optical 

Instrumentation Engineers (SPIE) Conference Series, vol. 7708, Apr 2010, pp. 

77080E.1-77080E.9. 

8) Ali Al-Sherbaz, Torben Kuseler, Chris Adams, Roman Marsalek, and Karel 

Povalac, "WiMAX parameters adaptation through a baseband processor using 

discrete particle swarm method," International Journal of Microwave and 

Wireless Technologies, vol. 2, no. 02, pp. 165-171, Apr 2010. 

This paper is a joint publication with colleagues at the University of Brno, Czech 

Republic, as part of the COST RFCSET (IC0803) project [3]. 

1.3 System and Trust Model of Proposed Authentication Schemes 

The three schemes proposed by LOTA (MORE-BAILS in chapter 3, oBiometrics in 

section 5.1, and LocAuth in section 5.2) are based on the following system and trust 

model shown in Figure 2. The main parties of this model are the client, the 

authenticator, the Mobile Network Operator (MNO), and the attacker. The icons used 

in Figure 2 to represent the involved parties will be consistently used in all further 

figures to represent the same party. 
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Figure 2: System and trust model 

 

The system model in Figure 2 involves the following four parties: 

1) The authenticator who offers a remote service or mobile application that 

requires secure authentication of any previously registered client. In 

mCommerce, the authenticator can be a bank, who offers bank account access 

and financial transactions via phones to their registered and enrolled clients. 

2) The client who uses the mobile application typically provided by the 

authenticator on his/her phone to access the services. The client must have a 

previously established business connection with the authenticator and has also 

previously registered and enrolled all required authentication credentials and 

personal information (e.g. passwords and biometrics, cp. section 2.2.2). The 

client uses the GPS receiver on his/her phone to establish his/her current location. 

GPS was chosen in LOTA because of the worldwide availability of the GPS 

system as well as the increasing number of phones that feature a GPS receiver 

(cp. section 2.2.3.1). The cell-ID used in the communication between the client’s 

phone and the mobile network (cp. section 2.2.3.1) is available to the client via 

an Android system call (cp. section 4.3.3.1). 

3) The attacker who illegitimately wants to use the protected service or application. 

LOTA assumes that the attacker has white-box attack capabilities (cp. section 
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4.3.1), i.e. the phone and, as a result, the authentication application on the phone 

is fully available, respectively fully under control of the attacker, because the 

phone was stolen or unintentionally lost by the client. 

4) The cellular Mobile Network Operator (MNO) who services the client’s phone 

and handles the mobile network communication. The MNO also determines the 

client’s current phone location via trilateration during normal operation (cp. 

section 2.2.3.1). The determined phone location and cell-ID used in the 

communication between client and mobile network are communicated to the 

authenticator to be used for independent verification of the client’s claimed 

location. Depending on the system configuration and the established trust and 

required privacy level between client, authenticator and MNO, the physical 

location is either directly forwarded from the MNO to the authenticator or the 

location is prior to communication “protected” by privacy-preserving location 

transformations (cp. section 3.2.2.4). 

 

LOTA assumes the following trust model between these four parties: 

1) The client trusts the authenticator to provide correct functioning mobile 

applications. Furthermore, the client trusts the authenticator to handle all 

previously registered and enrolled sensitive client data (e.g. biometrics) correctly. 

The client also trusts the authenticator to have robust security and privacy 

mechanisms in place. 

2) The client trusts the MNO to handle the mobile communication correctly. 

3) Both, client and authenticator, trust the MNO to determine and report the client’s 

current phone location and the used cell-ID to the authenticator accurately. The 

client also trusts the MNO to protect his/her real physical location before 

transmitting his/her location to the authenticator. 

4) The authenticator does not trust any authentication data received from the client. 

Specially, the authenticator does not trust the client’s claimed location and uses 

the phone location provided by the MNO to independently verify the client’s 

location claim. 

1.4 Thesis Organisation 

The rest of this thesis is organised as follows; Chapter 2 gives an introduction to the 

authentication process. Chapter 2 furthermore outlines the requirements and security 
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aspects, as well as available authentication factors and their limitations for secure 

remote authentication performed on phones. Chapter 3 presents and discusses the 

MORE-BAILS scheme, a user-friendly and secure multi-factor authentication 

scheme designed for mCommerce applications on phones. In chapter 4, three 

approaches to protect the phone environment, hosting the authentication process 

against malicious modifications are reviewed and evaluated. Based on the evaluation 

results, chapter 5 presents and discusses the oBiometrics and LocAuth schemes. 

These schemes protect and guarantee the correct authentication process execution as 

well as real-time of the client’s authentication attempt through obfuscated 

interpretation. Finally, in chapter 6, this thesis concludes and makes 

recommendations towards future work. 
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2 BACKGROUND AND LITERATURE SURVEY 

OF AUTHENTICATION TECHNIQUES 

2.1 The Authentication Process  

Authentication (derived from the Greek word “αυθεντικός” / authentes: real, 

genuine, author) is the process of verifying and acknowledging the claimed 

properties of an entity (Am I whom I claim I am?). Typically, an authentication 

process consists of three stages [4]: 

1) Enrolment stage: Authentication data (also called Authentication Factors (AFs), 

cp. section 2.2) describing a genuine entity (e.g. a physical object such as a 

human client) are enrolled and stored within the authentication system. 

2) Acquisition or presentation stage: Fresh authentication data is collected to verify 

the entity authenticity. 

3) Verification stage: Correctness of the data and claimed properties are verified by 

comparing the enrolled and freshly captured authentication data. Depending on 

the verification result; authenticity of the entity is acknowledged or denied. 

 

Verification is a one-to-one (1-to-1) class problem. This is in contrast to 

identification, which is the process to find an entity in a set of similar entities, i.e. 

identification is a one-to-many (1-to-M) class problem. Successful verification / 

identification follows authorisation. Authorisation ensures that the successful verified 

/ identified client is actually allowed to access certain resources such as applications 

on phones. 

 

LOTA provides solutions for secure remote verification of known and previously 

enrolled clients, which use their phones to perform mCommerce applications. Thus, 

remote client identification will not be addressed by LOTA. “Remote” denotes in 

LOTA all authentication scenarios, in which client and authenticator (i.e. the 

authentication server) are connected through a (potentially unsecured) 

communication link and do not have personal (i.e. face-to-face) contact. “Phone” 

refers in LOTA to all small and portable devices that feature wireless communication 

facilities (e.g. GSM, UMTS, LTE, Bluetooth, or WiFi) as well as enhanced sensors 
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and receivers (e.g. camera, GPS-receiver, touch-pad, accelerometer, etc.). Examples 

of such phones are Smartphones (e.g. iPhone, Android Galaxy Nexus) or tablet-

computers (e.g. iPad or Android / Blackberry-based tablets). 

2.2 Authentication Factors and Multi-Factor Authentication 

During verification, client authentication schemes utilise AFs to verify the client’s 

claimed identity. Multi-factor authentication schemes use more than one AF, 

preferable received via different channels or stored in different places, with the aim 

to make a successful attack on the authentication scheme more difficult for an 

attacker [5]. Instead of relying on a single AF (e.g. password), multi-factor 

authentication schemes require at least two pieces of valid information, e.g. password 

and token. If an attacker is able to get hold of one of these AFs, the attacker still 

requires access to the other AF to get authenticated. AFs can be categorised into 

classic AFs (cp. section 2.2.1) and new AFs (e.g. location, cp. section 2.2.3), which 

were recently proposed. 

2.2.1 Classic Authentication Factors 

Classic AFs can be categorised into three groups [6]: 

1) Knowledge-based, or “something you know”, e.g. password (cp. section 2.2.1.1). 

2) Object-based, or “something you have”, e.g. token (cp. section 2.2.1.2). 

3) Identity-based, or “something you are”, e.g. biometrics (cp. section 2.2.1.3). 

2.2.1.1 Knowledge-based Authentication Factors 

Knowledge-based AFs rely on a memorised piece of information, e.g. Personal 

Identification Number (PIN) or password. Long and random passwords can offer a 

high level of security in authentication systems. However, in practice, clients have 

huge difficulties to memorise random and strong passwords. This often results in the 

use of short passwords that are therefore simpler to guess. Or strong passwords are 

used, but as they are difficult to remember, they are written down or sent by email 

and thus, are available to attackers. Additionally, passwords are often re-used, which 

make cross-application attacks easier [7]. Four to five passwords should be the upper 

limit of not related, regularly used passwords, a client should need to remember [8]. 

However, employees already have to remember up to sixteen different passwords at 

their workplace [9]. 
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"Eavesdropping" and "phishing" are further problems of knowledge-based AFs used 

for the protection of phones. It is likely that a password is "eavesdropped" or that a 

client will enter a password in a “phishing” application on his/her phone believing 

that s/he uses a trustworthy application because: 

1) Stealing a password is easier when it is typed on the phone in a public place than 

espy a password typed on a protected personal computer at home. 

2) Many phone applications require online access to a web resource to work or use 

additional online resources to enhance their services. This leads to an increasing 

number of authentication requests a client has to deal with during the phone 

application usage. Hence, the client’s attention to each single authentication 

request reduces, making it easier for a phishing application to steal a password. 

3) The number of available applications in Smartphone markets (e.g. Apple’s App 

Store or Android’s market) increases with a tremendous speed and clients install 

more of these applications on their phone than they are doing on their personal 

computer at home or in the office, i.e. the risk to install a phishing application is 

higher. 

 

Nevertheless, the use of PINs is the major (and most of the time only) mechanism to 

protect phones. However, only 66% of phones are actually protected by a PIN, 

leaving a third of all phones completely unprotected [10]. In addition, clients who 

use the PIN do not do this properly. 45% never change their PIN, 42% change the 

PIN only once after purchasing the phone, and 36% use the same PIN for more than 

one service [10]. This allows an attacker to get access to other services, if the 

phone’s PIN or another service with the same PIN is successfully undermined (cross-

application attack). 

2.2.1.2 Object-based Authentication Factors 

Object-based AFs, e.g. tokens, rely on physical possessions. An object-based AF has 

the advantage over a knowledge-based AF that clients do not need to memorise 

anything. This eliminates the risk of attackers guessing passwords easily because 

simple passwords are used. However, the main security drawback of physical tokens 

is that, when lost or stolen, the attacker gains unauthorised access. 



 15  

2.2.1.3 Identity-based Authentication Factors 

Identity-based AFs, i.e. Biometrics (derived from the Greek words bios: life and 

metrikos: measure of) rely on the uniqueness of physiological (e.g. fingerprint, facial 

features) or behavioural (e.g. hand-writing, speech) characteristics of a client. 

Biometric-based authentication offers two advantages over the other classic AFs: 

1) A legitimate client does not need to remember or carry anything. 

2) Biometrics verify the de facto client and not only knowledge of a password or 

possession of a token, i.e. the genuine client needs to be present at the biometric 

sensor. This aspect is even more important in remote authentication to assure the 

authenticator about the genuine client performing this authentication request. 

Phones are well suited for biometric-based authentication because they feature 

various sensors to collect any required biometric data, e.g. camera to capture the 

client’s face or microphone to record the client’s voice. However, biometric 

authentication systems are not perfect and their security can also be undermined as 

discussed in the following section 2.2.2. 

2.2.2 Biometric-based Authentication 

Biometric authentication systems can be divided into five main components [11] as 

shown in Figure 3. 

 

 

Figure 3: Overview of a biometric authentication system 
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1) Before a client is able to use a biometric authentication system, s/he has to 

register (enrol) with the authenticator. In this enrolment stage, the authenticator 

collects and processes the biometric data of the client and stores it as a biometric 

template in the authenticator’s database. Biometric authentication systems can 

base upon different modalities, e.g. face [12], voice [13], or gait recognition [14], 

which differ in their accuracy, collectability or acceptability [15]. 

2) Once the client requires authentication, s/he presents his/her biometrics to the 

biometric sensor. The biometric sensor then collects the fresh biometric sample 

of the client. 

3) The fresh biometric sample is handed over to the Biometric Data Processing / 

Feature Extraction (BDP/FE) component. Depending on the biometric 

authentication system configuration, this component may perform various (pre-) 

processing tasks on the collected biometric data to increase the quality of the 

fresh biometric sample, e.g. illumination or pose corrections for face images [16]. 

4) The resultant Biometric Feature Vector (BFV) of the BDP/FE component is input 

to the matcher component, together with the stored biometric template (generated 

during the enrolment in step 1). The matcher component compares the fresh BFV 

against the stored template to verify the client. 

5) If the difference between the fresh BFV and the stored template is below a pre-

defined threshold, then the client is successfully verified and gets access to the 

application. Otherwise, the authentication system denies application access. 

 

Secure, reliable and correct biometric-based authentication requires a comprehensive 

and accurate consideration of a number of elements and tasks. For example: 

1) Secure handling of the client’s sensitive biometric template data must be 

guaranteed. 

2) The authentication system must ensure that the number of clients falsely accepted 

or rejected is reduced to a minimum. These False Acceptance Rate (FAR) and 

False Rejecting Rate (FRR) can be, for example, influenced by the quality of the 

biometric data and the performed (pre-)processing steps, e.g. illumination and 

pose equalisation for face images captured on phones. 

 

Biometric-based authentication systems can be attacked at eight points as shown in 

Figure 4 [17]. 
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Figure 4: Attacks on biometric authentication system 
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biometric sample and the stored template regardless of the actual matching value. 

To circumvent this attack, the correct functioning of the template matcher 

component must be ensured or the component must reside inside a secure 

environment [18]. 

Attack 6. Modify template database: A new biometric template is added to the 

system database, or an already stored template is replaced or removed. To 

circumvent this attack, access to the database must be restricted and security 

protected. 

Attack 7. Modify the template: The stored template is modified during the 

transfer from the system database to the matcher component. To circumvent this 

attack, the communication channel must be protected (e.g. encrypted). 

Attack 8. Override decision: The output of the matcher component is altered. To 

circumvent this attack, the communication channel between the authentication 

system and the application using that biometric authentication system must be 

protected (e.g. encrypted). 

 

As shown in Figure 4, attacks on biometric-based authentication system can be 

classified into two groups [19]: 

1) Attacks against the system components (attacks 1, 3, 5, and 6). The risk of such 

attacks can be reduced by protecting the host environment executing the 

authentication process (cp. chapter 4). 

2) Attacks against the communication channels between the system components 

(attacks 2, 4, 7, and 8). If these communication channels are not secured, an 

attacker can alter the information during transmission or replay previously 

gathered data. The risk of such attacks can be reduced by the integration of 

Location and Time (L&T) to uniquely stamp the data (cp. section 2.2.3.4). 

 

The following are explanations to various biometric functions that are most relevant 

to LOTA, and described for clarity. However, it is not the intention of LOTA to 

develop or propose new biometric-based techniques or enhance existing ones. 

Instead, biometrics are merely used to support LOTA’s main work. 
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2.2.2.1 Discrete Wavelet Transforms for Biometric Feature Extraction 

During client enrolment, biometric features of the client are extracted from the 

captured biometric sample and the resultant client’s BFV (also called biometric 

template) is stored in the authentication system database indexed by the client’s 

identity information (cp. section 2.2.2). 

 

Discrete Wavelet Transforms (DWTs) are used in LOTA to extract the facial features 

of the client [20]. DWTs are a special form of wavelet transforms that provide the 

possibility to efficiently calculate a compact representation of the time and frequency 

domain of the captured client’s face image. Another important property of DWT for 

facial feature extraction is that wavelets fade to zero outside a small interval. This 

provides good localisation properties in frequency and time and make DWTs a 

commonly used technique in various image related application areas, e.g. image 

compression, face localisation or face recognition [21]. 

The compact DWT representation is achieved by decomposing the original image 

into different frequency subbands which can be perfectly reconstructed. DWTs 

decompose the image signal by successive applying high-pass (H) and low-pass (L) 

filtering of the time domain signal. The output of a DWT then contains two 

coefficient groups (cp. Figure 5): 

1) The high-pass filter coefficients, which describe the details of the image. 

2) The low-pass filter coefficients, which describe the image approximation. 

 

 

Figure 5: Pyramid decomposition 
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As shown in Figure 5, at a resolution level of k, the DWT pyramid scheme 

decomposes an image I into 3k+1 subbands (LLk; HLk; LHk; HHk; ... ; HL1; LH1; 

HH1), with LLk being the lowest-pass subband [22]. The subbands LH1 and HL1 

contain finest scale wavelet coefficients that get coarser with LLk being the coarsest. 

The LLk subband is considered as the k-level approximation of I, while HLk, LHk, 

and HHk capture vertical, horizontal and diagonal features of the image. The HLk 

subband represents the horizontal high frequencies (vertical edges) such as the left / 

right boundary of the face (cp. Figure 6). The LHk represents the vertical high 

frequencies (horizontal edges) such as eyes / mouth. Finally, the HHk subband 

represents the diagonal details (high frequencies) in both directions [20]. 

 

 

Figure 6: Example of a wavelet transformed image 

 

Different wavelet filters can be used in the transformation stage of the image, e.g. 

Haar, Daubechie 4, Antonini wavelet filter. These filters differ mainly in their 

computational complexity and in the accuracy provided during authentication [23]. 

LOTA uses the Haar wavelet in all experiments, because of the high efficiency of the 

Haar wavelet computation and the good verification accuracy of Haar [24]. 

 

Local binarisation is then used in LOTA to binarise the extracted facial feature 

coefficients by dividing facial features into 3x3 blocks. Let X={x1, x2, ..., x9} be a 

3x3 block, then the binarised facial features B are calculated according to the 

following formula (1). 
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2.2.2.2 Cancellable Biometrics 

Biometric data is permanently associated with the client. In contrast to PINs or 

tokens, biometric features of the client cannot be replaced or revoked once the 

biometric data is compromised, i.e. a client cannot simply change his/her face or 

fingerprints. To overcome this limitation of biometrics, the concept of cancellable 

biometrics (cBiometrics) based on revocable biometric templates was developed 

[18]. The principle idea of cBiometrics is to transfer the biometric template into 

another secure domain by applying a one-way function. Under the condition that 

applying this one-way function to the enrolled template and the fresh biometric client 

sample preserves the original distances between these two, then matching can be 

performed in the secure domain without affecting the accuracy. cBiometrics offer the 

following advantages [25]: 

1) cBiometrics preserve the client’s privacy because restoring the original biometric 

data is computationally difficult and time-consuming. 

2) cBiometrics prevent cross application matching of the biometric data because 

each application can use a different configuration of the one-way function. 

3) The biometric template can be revoked, if this template is compromised. A new 

template version can be generated using a modified configuration of the one-way 

function. 

 

User-Based Transformations (UBTs) are the most common tools to create revocable-

BFVs. UBTs use transformation keys typically generated from PINs, which are 

assumed secret between client and authenticator, and are agreed at the enrolment 

stage (cp. section 2.2.2) together with the applied UBT. Two types of UBTs are used 

in LOTA: 

1) User-Based Random Projection (UBRP) that uses Secret Orthonormal Matrices 

(SOMs) as a secure transformation for biometric templates to meet the 

revocability property by projecting existing data points into other spaces. SOMs 

ensure that the distances between all data points before and after the 

transformation are preserved [22]. Once a biometric template is compromised, 

this compromised template is revoked and a new template will be generated 

using a different SOM. Typically, UBRP is applied in two stages: 

a) Generate user-based orthonormal n*n matrix A, where n is the size of BFV z. 
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b) Transform the original BVF z to a secure domain using matrix product y=Az. 

2) Password-Based Shuffling (PBS) that uses a value retrieved from a token or 

password-hash as a shuffling key [16]. Figure 7 illustrates a generalised version 

of the PBS algorithm. The algorithm starts by dividing the data into k blocks, 

where k is the size of the shuffling key. 

For i = 1,2,...,k if the bit of key(i) is equal to“1”, then the corresponding BVF 

"data block" is moved to the beginning of the new cBiometrics BVF; otherwise, 

the block is moved to the end. 

 

 

Figure 7: Password-based shuffling 

2.2.2.3 Error Correcting Codes 
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Block 1 Block 7Block 6Block 5Block 4Block 3Block 2

1 101100

Block 1 Block 6Block 3Block 2Block 7Block 5Block 4

Shuffling Key

Data to be shuffled



 23  

these locations will never be exactly the same and need therefore also be error 

corrected prior to verification. 

 

To deal with these two types of fuzzy data (biometrics and location), MORE-BAILS 

selected the Reed-Solomon (RS) ECC [28] to handle the biometric data fuzziness 

(cp. section 3.2.2.2) and the Bose–Chaudhuri–Hocquenghem (BCH) ECC [29] to 

handle the location differences (cp. section 3.2.2.1). 

 

Both, BCH and RS, are linear cyclic block codes, i.e. the input bit-stream to these 

coding schemes is divided into non-overlapping blocks, which are then 

independently encoded. The main difference between these ECCs is that they are 

able to correct a different number of errors depending on the block size and added 

parity-check bits. The BCH(n,k,t) code can correct up to t errors in the input bits k 

(i.e. information symbols) by using the encoded block length n. I.e. the BCH(n,k,t) 

fulfils the following properties [30]: 

1) Block length: n = 2
m

 – 1. 

2) Number of parity-check bits: n - k ≤ m*t. 

3) Minimum distance: dmin ≥ 2*t + 1. 

 

The RS(n,k,t) ECC is a subclass of the BCH(n,k,t) code and has the following 

properties [30]: 

1) Block length: n = q – 1. 

2) Number of parity-check bits: n - k = 2*t. 

3) Minimum distance: dmin = 2*t + 1. 

 

The clearly defined algebraic structure of these ECCs support the implementation of 

efficient (de)coding schemes [30], which makes the BCH and RS Codes widely used 

in biometric authentication [31]. 

2.2.2.4 Biometric-based Keys 

To achieve stronger security mechanisms, biometrics are combined with 

cryptography techniques. The idea is to derive a strong client specific cryptographic 

key from the captured biometric sample. Biometric-based keys are used in 
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oBiometrics (cp. section 5.1) to protect the application on the phone and to achieve a 

tight binding between the client and the correct interpretation of the protected 

application. Generation of biometric-based cryptographic keys can be categorised 

into three approaches [17]: 

1) Key release: The cryptographic key and the biometric data of the client are stored 

as two separate identities at different hosts. The key is released, when an 

authentication attempt of the client is successful. This method is straightforward 

and easy to implement but has two major drawbacks [32]: 

a) Biometric templates are not secure and the matcher component can be 

overridden (cp. section 2.2.2). 

b) Cryptographic keys are not secure because they are not combined with 

biometric data. 

2) Key generation: The cryptographic key is directly derived from the biometric 

data without storing it anywhere. Typically, biometric features are represented as 

a binary string and the robust bits are selected as the key. A drawback is the high 

FRR, which makes the key generation approach impractical [33]. 

3) Key binding: Biometric template and key are combined in such a way which 

makes it computationally infeasible to retrieve the key without previous 

knowledge of the client’s biometric data [17]. 

 

The conceptual steps of biometric key binding are illustrated in Figure 8 [27]. 

oBiometrics uses the biometric key binding approach to construct client specific keys 

from the client’s face that are then used to (de)obfuscate the oBiometrics protected 

application (cp. section 5.1.2). Because biometric data is fuzzy and cryptographic 

keys need to be 100% precise and repeatable every time the key is required, ECCs 

(cp. section 2.2.2.3) are used in steps 4 and 7 in Figure 8 to bridge the gap between 

the fuzziness of biometrics and the preciseness of cryptographic keys. 
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Figure 8: Biometric key binding process 

 

1) At the enrolment stage (key binding stage), a BFV is calculated from the client’s 

provided fresh biometrics (cp. section 2.2.2). 

2) A UBT is applied on the BFV to achieve the biometric revocability (cp. section 

0). 

3) A cryptographic key KC is randomly generated and passed on to the ECC 

encoder. After KC is passed on to the ECC decoder, KC is discarded and will not 

be stored anywhere. 

4) KC is fed into a “key combination” process that uses an ECC encoder to handle 

the fuzziness of the biometrics and combines (XOR) the key with the binary 

representation of the cancellable BVF. 

5) The resultant biometric key KCB is stored as a “biometric lock” in the system 

database. 

ECC Encoding

Binarisation

Reference

Binarisation

User-Based Transformation 

(Revocability / Cancellability)

User-Based Transformation 

(Revocability / Cancellability)

Feature Extraction

Feature Extraction

ECC Decoding

Fresh Sample

 

Biometric Feature Vector (BVF)

Key 

Database
KCB

Biometric Feature Vector (BVF)

 

Key KC

Enrolment stage

(key binding stage)

Authentication stage

(key retrieval stage)

Key KC

Biometric 

Lock: KCB

Discard

Key Binding

Key K’C

Key Retrieval

Correct

fresh sample 

provided
Yes

No

1

6

4
3

2

5

6

87



 26  

6) At the authentication stage (key retrieval stage), the binary BFV is calculated 

using a fresh biometric sample in the same way as described in steps 1 and 2. 

7) The binary BFV is then XORed with the stored biometric lock KCB. The ECC is 

used in the decoding mode to tolerate the biometric fuzziness. 

8) If the ECC decoding is successful (i.e. the difference between the biometric 

reference sample and the freshly provided biometric is within a certain pre-

defined threshold), then the original and correct cryptographic key KC will be 

constructed. Otherwise, if the fresh biometric sample is not within the threshold, 

the retrieval stage produces an incorrect key K’C. 

2.2.3 Location and Time in Remote Authentication 

Classic AFs (cp. section 2.2.1) focus on verifying the client’s claimed identity, i.e. all 

of these classic AFs are employed in the verification stage of the authentication 

process (cp. section 2.1). This focus on verification is acceptable in local 

authentication scenarios (e.g. login to a local computer), but it introduces problems 

for remote authentication, because classic AFs can be, for example, obtained by an 

attacker via man-in-the-middle, Trojans, eavesdropping, and other types of remote 

attacks [5]. L&T aim to overcome these drawbacks of classic AFs and can be 

employed during acquisition as well as verification to re-integrate the missing 

information about the “where and when” of the authentication attempt into remote 

authentication. This reduces for example the possibility of replay attacks, because the 

authentication data is uniquely stamped by L&T information (cp. section 3.2.3). 

 

The following section 2.2.3.1 gives a brief explanation of the main technical aspects 

of localisation techniques for phones. This section is followed by a review of L&T as 

an AF (cp. section 2.2.3.2) and an overview of methods to generate location-based 

keys (cp. section 2.2.3.3), which are required to securely and tightly combine 

location information with other AFs [34]. 

2.2.3.1 Technical Background of Methods to Locate Phones 

Three techniques are commonly used to establish the position of phones [35]: 

1) Global Positioning System (GPS) [36]: GPS-based positioning has become the 

positioning technique mostly used on phones. Nearly all new developed phones 

feature a GPS receiver. GPS positioning is based on the reception of signals 
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continuously transmitted from satellites. These signals contain the precise time 

they were sent, as well as the location of the satellite in orbit. The GPS receiver 

uses the received signals of four or more satellites to calculate the current 

position based on trilateration. Communication between the GPS receiver 

onboard the phone and other phone applications requiring location is done via 

NMEA messages [37]. When outdoors, current GPS receivers onboard phones 

are able to reduce the positional error to few metres [38]. However, GPS requires 

to work a line of sight to the satellites. Because of that, GPS cannot be used (or 

the use is limited and the position becomes imprecise) indoors or in urban areas 

with many high glass-front buildings, where a direct line of sight to the satellites 

is not available. 

2) WiFi Access Points (WiFi APs): WiFi-based positioning uses WiFi APs to 

determine the position of the phone. WiFi APs continuously transmit beacons, 

including an AP identifier, to their surrounding area to inform potential WiFi 

clients, such as a phone, about their existence. Over the last years, several 

databases of APs and their corresponding geographical locations were collected, 

for example by the Skyhook company [39]. The phone can use the received AP 

identifier enclosed in the beacons and these databases, via an internet link, to 

determine the locations of the surrounding APs, by searching the identifier in the 

database. Depending on the number of APs in range, the achieved location 

accuracy of WiFi-based positioning can vary between 10 to 100 metres. WiFi-

based positioning can be used indoors as well as outdoors, as long as the AP 

transmitted beacon can reach the phone. However, the number of available APs 

differs greatly between urban and rural areas, making WiFi-based positioning a 

technique to be mainly used in cities with lots of existing and known APs [38]. 

3) Cellular network: Cellular network based positioning uses trilateration techniques 

to calculate the current phone location [40]. The cellular network is divided into 

cells, in which each cell has a unique identifier, the cell-ID. Depending on the 

trilateration technique used to determine the current phone location (e.g. U-

TDOA [41]) and the cell size, cellular network based positioning accuracy ranges 

between 50 metres to a few kilometres [38]. The MNO continuously determines 

the phone’s location during his normal operation and also knows the cell-ID 

currently used in the communication process between the client’s phone and the 

mobile network (cp. section 1.3). 
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2.2.3.2 Phone Location and GPS Time as Authentication Factors 

L&T were recently introduced as new AFs. Location verification is defined as the 

process in which a client’s claimed location is verified by an authentication server 

[42]. Compared to classic AFs (cp. section 2.2.1), location as an AF introduces 

restrictions and requirements to the authentication system because: 

1) Location of a phone is publicly available knowledge. Therefore, location on its 

own cannot be used to securely and uniquely identify individual clients during 

authentication. Location can be easier gathered by an attacker, then, for example, 

undisclosed password. An attacker could simply follow a client and use the 

knowledge of the client’s whereabouts to get illegitimately authenticated, if 

location is the only AF used. 

2) Integration of location as an AF requires an appropriate key-generation function 

to transfer the physical location into an Information Technology (IT) compatible 

form (i.e. a location-based key, cp. section 2.2.3.3). Utilising an inadequate 

transfer function can result in simple to guess location-based keys. 

3) The number of locations on earth is limited. This restricts the number of possible 

location values to be used as an AF, i.e. the location AF key-space is restricted. 

In contrast, the number of available passwords can be arbitrary increased by the 

increase of the password length. 

Figure 9 [43] shows the maximum number of location-based keys possible on 

earth, if the earth’s surface is divided into a grid of equal-distance squares. For a 

square size of one metre, 5.1*10
14

 different location-based keys can be generated. 

This number is comparable to the number of eight character long passwords (0-

9a-zA-Z) that is 2.2*10
14

. However, depending on the technique used to 

determine the clients location (cp. section 2.2.3.1), the location key-space can be 

much less, because the location determination technique does not achieve such a 

high accuracy. The facts that location is public knowledge (as mentioned in 1) 

and only a small part of the earth is inhabited also reduce the available key-space 

because: 

a) An attacker can assume that a client is in a specific area where the client 

normally lives or works. 

b) It is unlikely that a client is for example in the Antarctic. 
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Figure 9: Maximum number of possible location-based keys 

 

Location as an AF tries to reduce remote attacks, i.e. to stop an attacker from 

claiming to be at a location, where the attacker actually is not [44]. To achieve this, a 

unique identifier (digital signature) can be derived from GPS-based location and real-

time on a Location Signature Sensor (LSS) [45]. The generated digital signature is 

then combined with other digital data in such a way that it stamps the data with L&T 

in a forgery-proof way. The security of the digital signature bases upon the fact that 

bit values of GPS signals change every 20 milliseconds and so the resultant digital 

signature changes accordingly. However, current GPS receivers available on phones 

cannot be used to generate such unique and trusted signatures, because these GPS 

receivers compute longitude and latitude from the received signals straightaway. 

Also, dedicated LSS are required to verify the client’s location signature. This aspect 

prevents that an LSS-based system can be deployed on a large scale, e.g. country 

wide, because this requires installation of thousands of LSSs for verification. Thus, 

the LSS-based system is more suitable for localised areas like company premises. 

 

A similar approach with global availability is Secure Authentication for GPS phone 

Applications (SAGA) [46]. In contrast to other GPS-based systems, SAGA can be 

used to determine the current location using the phone’s onboard GPS receiver as 

well as used to verify the claimed location. Security analyses of SAGA concluded 

that SAGA offers reliable and secure location verification, with the advantage that a 

GPS-based system is available worldwide [47]. However, to perform location 
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verification, the SAGA system also requires additional trusted receivers at several 

known locations that are used to receive reference signals from the GPS satellites. 

This introduces further costs for installation and maintenance of these receivers for 

practical authentication applications on phones. 

 

“Location cross-checking” does not require additional receivers to be installed for 

location verification. Instead, location cross-checking compares the actual location of 

the phone with a pre-agreed set of known points of businesses related to the 

registered client (e.g. an ATM machine) to counter distance attacks [48]. However, 

location cross-checking requires an ongoing phone monitoring to track the current 

location of the phone (to help identify abnormal activities or attacks to the system). 

This ongoing phone monitoring is difficult to maintain as phones might be switched 

off by the client to save energy or might be used outside the traceable area. A further 

downside of location cross-checking is the dependence on the pre-agreed points of 

businesses, which are difficult to define and maintain in mCommerce applications. 

 

“Location proofs” try to overcome the drawbacks of location cross-checking [49]. A 

location proof is a piece of data generated by a stationary sender (e.g. WiFi AP) that 

is then sent to the phone on request. The phone stores the received proof for 

immediate or later use and attaches it to communication messages in the case a 

location proof is required. An advantage of location proofs over location cross-

checking is that the points of businesses must not be defined in advance. However, 

location proofs require trusted stationary senders instead, which should not be easily 

susceptible to manipulation. 

Location proofs are also critical from a client’s privacy point of view [50]. 

Requesting a location proof discloses the client’s identity to the stationary sender, i.e. 

the proof issuer. This information could then, for example, be used to generate a 

location profile of the client. To overcome this problem, the VeriPlace architecture 

[50] includes two separated and trusted entities for managing location and identity 

information of the client. This ensures that client’s location and client’s identity are 

never available at the same time to one entity. 

 

The Privacy-Preserving Location proof Updating System (APPLAUS) does not base 

upon stationary senders to issue location proofs [51]. Instead, other phones in the 
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close neighbourhood serve as location proof issuers and communicate the proof to 

the requestor via Bluetooth in a peer-to-peer approach. The benefit of APPLAUS is 

that no specific network infrastructure or specialised trusted senders are required. 

However, security and reliability of APPLAUS bases completely upon the number 

and trustworthy of the neighbouring phones that issue the location proofs. 

 

Localisation and certification services are used to tag digital content (e.g. photos or 

communication messages) with a location and timestamp DTL-certificate (Data-

Location-Time) [52]. The DTL-certificate enables the receiver of the stamped 

content to verify where the content was originally created. To ensure the producer’s 

privacy, the DTL-certificate does not include any information about the producer’s 

identity. Thus, only T&L of the generated content can be verified by the receiver. 

This is in contrast to location proofs, which aim to identify the location of the client. 

 

Challenge / response One-Time Password (OTP) techniques can be used to reduce 

the risk of replaying previously gathered genuine client data in a remote attack [53]. 

Real-time integration of OTPs into a challenge eliminates that attacker can re-use an 

intercepted challenge at later times (cp. 5.2 for the proposed LocAuth scheme). The 

challenge is only valid for a short time duration (i.e. the “when” is defined). The 

OTP is generated based on the International Mobile Equipment Identity (IMEI) and 

International Mobile Subscriber Identity (IMSI) number of the phone (cp. section 

4.1.1) as well as the current time obtained from the MNO to ensure correct time 

synchronisation between client and authenticator [54]. The generated OTP is then 

used in a symmetric key algorithm to protect the authentication communication with 

the authenticator. However, integration of phone-based identifiers (e.g. IMEI, IMSI) 

should be avoided, because phone-based identifiers are not a secret and can be easier 

guessed than completely random generated identifiers [55]. 

 

Time and Location Based One-Time-Passwords (TLB OTP) utilises the current time 

and the estimated location of the client to calculate a TLB OTP [56]. This TLB OTP 

is then used as a key to decrypt / encrypt all further communication messages 

between client and authenticator. Adding location to classic OTP schemes, which are 

merely time-dependent, strengthens the authentication security, because it is more 
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difficult for an attacker to determine the client’s current location and precise time 

simultaneously [56]. 

To enhance and ensure correctness of the client’s location and future position 

estimation, the client sends periodically update information about the client’s current 

location and movement to the authenticator. Because the client’s location cannot be 

always correctly estimated, a secondary authentication mechanism based on Short 

Message Service (SMS) is integrated into the TLB OTB scheme. However, this fall-

back strategy requires active client involvement to deal with the SMS and hence, 

decreases the user-friendliness. 

2.2.3.3 Location-based Keys 

The geographical location of a client needs to be converted into a different 

representation (i.e. a location-based key) to be securely combined with other AFs. It 

is important that the generated key does not directly relate to the client’s physical 

location (e.g. latitude and longitude values). I.e. a key for any location should not be 

predictable from a known location / key pair. If this property is not satisfied, then: 

1) Large areas of the earth (e.g. Arctic, Antarctic) can be eliminated by an attacker 

from the available key-space area, because it is unlikely that a client is in these 

areas. 

2) The number of keys an attacker needs to try in a brute-force attack reduces 

tremendously, if the client’s location is approximately known. 

 

Figure 10 shows an example of a location conversion function, which does not fulfil 

the two above defined properties. For this function, the relevant geographical area of 

the application is divided into equal-distance squares. Each square is then associated 

with a successive increasing number, which is used as the location-based key. If an 

attacker expects, for example, the client to be inside the area of Buckingham and the 

attacker also knows, that the key “57255” is associated with one part of this area, 

then the attacker can simple try the eight surrounding keys to cover the complete 

Buckingham area. 
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Figure 10: Insufficient function to generate location-based keys 

 

GeoEncryption uses location as a source to generate keys for the encryption of digital 

messages [57]. GeoEncryption extends a classic hybrid cryptographic algorithm with 

a GeoLock functionality to ensure a secure location binding of the digital message. A 

geo-encrypted message can be opened successfully (decrypted) by a receiver, if the 

receiver's actual location is inside the required area. A general GeoLock mapping 

function, based on the estimated Position, Velocity, and Time (PVT) on the recipient 

is used to generate the message encryption and decryption key. However, 

GeoEncryption does not specify a practical and secure PVT mapping function nor 

does it handle support of mobile and moving recipients. 

In the GeoEncryption mobility model, the encrypted message receiver continuously 

updates the sender about his/her current location [58]. The sender then uses this 

information to dynamically adjust the decryption area in which the receiver can 

decrypt the message. 

A practical mapping function for GeoEncryption uses square areas [59]. This 

function was then improved to cover any shape [60]. A problem of these 

GeoEncryption mapping functions is that the generated encryption key merely bases 

upon the geographical coordinates (longitude and latitude values) of the decryption 

area and the used hash function as shown in Figure 11 [59]. As the geographical 
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coordinates of the target region (decryption area) can be estimated by an attacker, if 

the attacker is in close proximity to the recipient, the complete security lies in the 

secrecy of the hash function. If the used hash function is also known to the attacker, 

then the attacker is able to decrypt the message. 

 

 

Figure 11: GeoEncryption key generation function 

 

The practical mapping function for GeoEncryption requires that the recipient’s 

direction of movement is known during encryption of the message to correctly define 

the decryption area [59]. To achieve this, the receiver transmits periodically 

movement updates, which are then used to calculate the correct decryption area. The 

importance of these updates can be seen in the example of Figure 11. The starting 

point of the decryption region is chosen to be at “E04200” and “N91500”, and the 

phone is assumed to travel eastwards (E) in a maximum range of 100 metres (i.e. 

location will be equal to “E04299” after 100 metres). If the client is within the 100 

metres (e.g. at position “E04250 / W91520” as shown in Figure 11), then the same 

key will be generated. However, if the client travels more than 100 metres, a 

different key is produced. For example, travelling 110 metres results in “E04310” 

and hence the “muxed” and hashed values are completely different. A similar 

problem occurs if the direction of the client’s movement is unknown. In this case, the 

phone needs to move only one metre westwards instead of eastwards (i.e. to location 

E04199) to produce a different key. A second drawback of this key generation 

function is that the function does not work always correctly (i.e. produce unique 
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keys), if the target region is near to the equator or the prime meridian. In these cases, 

two different locations can result in the same hash value, because the locations are 

equal distance away from the equator in north-south direction respectively from the 

prime meridian in east-west direction. 

 

The Location-dependent Data Encryption Algorithm (LDEA) introduces a Toleration 

Distance (TD) during encryption of the messages to overcome the receiver’s 

movement uncertainty [61]. The TD shall guarantee that always the same key is 

generated on both sides, if the receiver is within the TD area. LOTA analysed, if 

LDEA can be used to generate location-based keys as required in the proposed 

MORE-BAILS (cp. section 3.2) and LocAuth (cp. section 5.2) schemes. LOTA then 

concluded that LDEA is not able to generate always the correct decryption key even 

if the client is within the defined TD area (cp. section 5.2.1.1). Thus, LDEA cannot 

be used in the proposed MORE-BAILS and LocAuth schemes. 

2.2.3.4 Conclusion on Location and Time in Remote Authentication 

Integration of L&T as AFs into remote authentication systems enhances the security 

of such systems. 

1) Remote attacks can be reduced, because integration of location information into 

the authentication data “grounds” the authentication attempt to a specific place. If 

the client’s location claim is then independently verified, an attacker cannot 

pretend to be at a different place. Independent verification is necessary, because 

the location determined on the phone can be manipulated. For example, the GPS 

receiver of the phone can be manipulated or an IP-address-based location 

determination can be fooled by using a proxy server. 

2) Replay attacks can be reduced, because the authentication data can be uniquely 

stamped with the current time. I.e. an attacker cannot re-use previously gathered 

genuine client authentication data, because of the time-stamp expiry. 

 

LOTA proposes to utilise the already existing MNO cellular network infrastructure 

(cp. section 2.2.3.1) to independently verify the client’s claimed location. This 

minimises the additional costs to set up the required infrastructure of the proposed 

MORE-BAILS (cp. section 3.2) and LocAuth (cp. section 5.2) schemes. This is a 

clear commercial advantage over systems like LSS or SAGA, which require 
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specialised hardware to be installed for verification of the client’s claimed location. 

Also, using the MNO infrastructure ensures that even if the phone is switch off for a 

long time, instant location verification can be performed once the phone is connected 

to the cellular network once again. This eliminates the requirement of continuous 

phone monitoring or establishment of pre-agreed points of sale as required, for 

example, in location cross-checking. In addition, the wide coverage of the cellular 

network minimises the possibility that the phone is outside the area which can be 

monitored. 

 

Independent location verification using the MNO infrastructure also eliminates the 

risk that an attacker can manipulate the location information used for verification, 

because the attack does not have access to the MNO infrastructure. In location 

verification systems, which use for example location proofs or DTL-certificates, 

these proofs / certificates are stored on the client’s phone. This means that the proofs 

/ certificates are available to the client / attacker, because they are stored on the 

phone and thus, are subject to potential manipulation. 

 

Location proofs and DTL-certificates also miss a tight binding between the location 

proof and the client. The generated location proofs can be given away and used by 

others, which could undermine the authentication system security, i.e. an attacker 

could use a stolen location proof to impersonate a genuine client. In the proposed 

MORE-BAILS (cp. section 3.2) and LocAuth (cp. section 5.2) schemes, the 

immediate and tight combination of biometrics (to identify the client) with location 

information minimises this problem. 

 

Systems like APPLAUS may be adequate for low-value services that require a 

location proof, e.g. downloading a digital brochure of a museum for free if the client 

has previously visited the museum. For high-value mCommerce transaction 

authentication, such peer-to-peer architectures do not offer enough security and 

reliability, because the neighbouring phones, which issue the location proofs, cannot 

be fully trusted. Thus, LOTA concluded not to investigate such peer-to-peer systems 

any further. 
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Integration of client’s location into the authentication process raises legitimate 

privacy concerns about the correct use of the client’s location information as, for 

example, addressed in APPLAUS. To overcome these location privacy concerns, 

LOTA proposes to transfer the client’s location into a different, secure domain prior 

to transmission from the MNO to the authenticator (cp. section 3.2.2.4). 

 

To securely combine location information with other AFs used in the authentication 

system, location-based keys need to be generated from the client’s location. LOTA 

uses location-based keys for two purposes: 

1) In MORE-BAILS, the client location is used as an AF. Client’s location is 

binarised and then tightly combined by an XOR-function with the other AFs to 

form the final OTMFBR message (cp. section 3.2.1). 

2) In LocAuth, the location-based obfuscation key is used to protect the challenge / 

response program (cp. section 5.2.1). 

 

To generate secure and reliable location-based keys, LOTA has defined the 

following conditions for a location-based key generation technique: 

1) The location-based keys should be determined completely independent from each 

other, i.e. without the need of any further sending of location information or 

movement direction to establish the same key on the client and authenticator side. 

This condition is required to guarantee that the authenticator can completely 

independently verify and consequently trust the claimed location of the client. 

GeoEncryption does not fulfil this requirement because it needs additional 

information to be sent between sender and receiver to work. Consequently, 

LOTA will not consider GeoEncryption techniques any further to achieve secure 

location-based key generation for the proposed schemes. 

2) The same location-based key needs to be generated within a specified tolerance 

region. This tolerance region is necessary, because the two methods to determine 

and verify the client’s claimed location differ in their accuracy (cp. section 

2.2.3.1). A TD should be used to handle this difference as, for example, 

integrated in LDEA [61]. 

3) All location-based keys outside the tolerance region need to be different to the 

key representing the tolerance region. This condition ensures that the client is 
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actually inside the tolerance region and not at a different place, which might 

produce the same key. 

4) The key-space of the generated location-based keys must be large enough to 

minimise the risk of a brute-force attack (cp. section 2.2.3.2 and Figure 9). 

5) The location-based key should incorporate location information as well as 

further, more secret data. This eliminates the risk that an attacker is able to 

calculate the location-based key correctly, if the attacker knows the client’s 

current whereabouts (cp. Figure 11). To overcome this problem, LOTA uses the 

client’s location with further dynamically changing data (e.g. cell-ID) and secrets 

shared between client and authenticator (e.g. Key-On-Phone (KoP)) to calculate 

the location-based key (cp. section 5.2.1.2). 

2.3 Security Aspects of Remote Authentication 

Remote client authentication based on IT-systems has security deficits compared to 

authentication performed by humans in direct contact, e.g. office-based 

authentication performed by a bank advisor in a branch. The face-to-face aspect of 

the authentication attempt and the personal knowledge of each other are missing. In 

remote authentication, the authenticator has not got automatic knowledge or 

guaranteed information about who, how, where and when of the client. In human / 

office-based authentication, these attributes are clearly and automatically defined, i.e. 

the contract was signed (how) by the known client (who), at that moment in time 

(when), the client was present in the authenticator’s branch (where). 

 

Human / office-based authentication is mainly done through: 

1) Personal knowledge of the client. 

2) Combination of personal client knowledge with other forms of ID (e.g. passport, 

driving license), if the authenticator (e.g. bank advisor) does not know the client 

personally long and well enough to establish the required trustworthy. 

 

Also, office-based authentication focuses mainly on the verification stage (cp. 

section 2.1), i.e. checking the claimed properties (e.g. does the signature on the 

provided document looks like the client’s stored example signature?). Data 

acquisition (e.g. where does the signed document come from?) is of minor relevance 
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in office-based, face-to-face authentication, because the authenticity decision is 

based on the entity properties present to the authenticator at that moment in time. 

 

In the absence of face-to-face contact or clearly defined client’s L&T in remote 

authentication, the authenticator bases his/her decision on the authentication data 

received from the client. Focusing on the verification stage is critical in such remote 

authentication because it introduces attack points on the remote authentication 

system as discussed in the following section 2.3.1. 

2.3.1 Attack Points in Remote Authentication Systems 

In remote authentication systems, the eight attack points of biometric-based 

authentication systems (cp. section 2.2.2) are distributed between the client’s phone 

and the authenticator side. Depending on the computational capabilities of the phone 

and the desired security properties of the authentication system, the authentication 

tasks (e.g. “BDP/FE” or “matching”) can be split in several ways between phone and 

authenticator. For example: 

1) For basic phones, a possible authentication scenario is that the phone captures the 

fresh biometric data via the phone onboard sensors and then sends the captured 

data directly to the authenticator. All other computational intensive tasks are then 

performed by the authenticator. However, this scenario is unusual because most 

of today’s phones have the computational capabilities to perform at least the 

“BDP/FE”. 

2) A more common remote authentication scenario for phones is illustrated in 

Figure 12. In this scenario, data acquisition through the biometric sensor and 

“BDP/FE” are performed on the phone. Matching against the stored template and 

final decision making are then executed on the authenticator side. 

 

Figure 12 also illustrates the possible additional attack points (9 to 13) in such a 

remote authentication system (cp. Figure 4 for the attack points 1 to 8). 
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Figure 12: Attacks on remote authentication system 

 

Attack 9. The component that generates the authentication-data message is 

modified in such a way that it always sends genuine authentication data to the 

authenticator regardless of the actual component input. To circumvent this attack, 

the correct functioning of the component must be ensured or the component must 

reside inside a secure environment. 

Attack 10. The authentication-data message is changed during the wireless 

transmission between client and authenticator. To circumvent this attack, the 

communication channel must be protected (e.g. encrypted). 

Attack 11. The component that extracts the authentication-data message is 

modified in such a way that it always extracts genuine authentication-data 

regardless of the actual component input. To circumvent this attack, the correct 
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functioning of the component must be ensured or the component must reside 

inside a secure environment. 

Attack 12. The component that generates the authentication decision message is 

modified in such a way that it always sends an “access granted” to the client 

regardless of the actual authenticity decision. To circumvent this attack, the 

correct functioning of the component must be ensured or the component must 

reside inside a secure environment. 

Attack 13. The decision message is changed during the wireless transmission 

between authenticator and client. To circumvent this attack, the communication 

channel must be protected (e.g. encrypted). 

 

Attacks on a remote authentication system can be classified into three groups as 

shown in Figure 12: 

1) Attacks against the system components (attacks 1, 3, 5, 6, 9, 11, and 12). 

2) Attacks against the communication channels between the system components 

(attacks 2, 4, 4a, 7, and 8). 

3) Attacks against the communication channels between client and authenticator 

(attacks 10 and 13). 

 

In remote authentication, these authentication system components are distributed 

between the client’s phone and the authenticator, which results in the following 

security impacts: 

1) It is difficult for an attacker to perform attacks 5, 6, 7, 11, and 12, because these 

components reside at the authenticator’s secure host environment. I.e. the 

attacker does not have physical access to these components. The same is true for 

attacks against the component communication channels at the authenticator side 

(i.e. attacks 4a, 7, and 8). 

2) Attacks 1, 3, and 9 can be easier performed by an attacker, because these 

components reside inside the client’s phone (indicated by the dotted rectangle in 

Figure 12). The same is true for attacks against the component communication 

channels at the client’s phone (i.e. attacks 2 and 4). If the client’s phone is lost or 

stolen, then the attacker has full control over these authentication components 

(i.e. over the software of the authentication system and the hardware of the 
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phone). Thus, the attacker’s manipulation capabilities towards the phone 

correspond to the white box attack model (cp. section 4.3.1). 

3) Attack 10 is similar to attack 2, e.g. an attacker replays previously captured 

genuine client data to fool the authentication system (cp. Figure 4). However, 

attacking the communication channel in remote authentication is easier, because 

the attacker does not have to be physically at the sensor of the authentication 

system. In contrast, the attacker can transmit the hacked / replayed 

authentication-data message from anywhere in the world. 

4) Attack 13 is less dangerous compared to attack 10. Manipulating the decision 

message does not directly introduce a security risk to the authentication system. 

Even if an “access denied” message is hacked by an attacker into an “access 

granted” message, the attacker does not have real access to the system. However, 

changing the decision message can be seen as a “Denial of Service” attack to 

genuine clients, if the attacker always changes an “access granted” to an ”access 

denied” message. Hence, stop a genuine client to work with the system. 

 

To tackle the attack possibilities in remote authentication, the following three 

security issues are important and should be carefully addressed in the design of any 

remote authentication system [62]: 

1) How can the client be assured that s/he communicates with the correct 

authenticator to eliminate the risk that an attacker pretends to be a genuine 

authenticator so to collect data for a subsequent replay attack? 

2) How can the data transmissions between client and authenticator be secured to 

hinder an attacker from getting access to the genuine data? 

3) How can the authenticator be assured that the received authentication data is 

representing the genuine client and is actually freshly collected at that moment in 

time? 

 

Several methods were proposed to solve the first two aspects, e.g.: 

1) Mutual authentication using the phone’s camera to assure the client and 

authenticator of each other [63]. 

2) Encrypted communication with SSL certified servers via HTTPS to protect the 

data transmission [64]. 
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The protection challenges for the third aspect are an ongoing research. To establish 

robust techniques to re-integrate the authentication data freshness and to protect the 

authentication process host environment in remote authentication systems using 

phones, the following questions need to be addressed: 

1) How can who (cp. section 2.2.2), where and when (cp. section 2.2.3) 

information, that is clearly defined in office-based authentication, be re-

integrated into remote authentication to assure the authenticator about the 

genuine client and the freshness of the received authentication data? 

2) What technologies are available to secure the authentication process host 

environment on the phone and how can the integrity of the authentication process 

execution on the phone be ensured (i.e. how was the authentication data 

collected, cp. chapter 4)? 

2.3.2 Client Acceptance of Additional Security Measures 

Clients that use their phones for mCommerce applications are aware of possible 

threats and attacks (cp. section 2.3.1) towards these mCommerce applications [65]. 

However, many clients are: 

1) not using the basic security features already available on the phone (e.g. PIN 

protection, cp. section 2.2.1.1), 

2) reluctant to the integration of further security measures [10]. 

 

This conflictive client attitude results from the inconvenience introduced by more 

sophisticated security measures [66]. From a practical point of view, the amount of 

reduced user-friendliness should be smaller than the costs for the client arising from 

an unauthorised, illegitimate application use. Otherwise, additional security measures 

and authentication steps are just seen as an unacceptable and unnecessary overhead 

by the clients. 

 

Application specific security definitions (i.e. the number of integrated AFs, cp. 

section 3.2.3 for the proposed MORE-BAILS scheme) are used to overcome this 

client reservation against additional security measures [66]. The provided security 

level and thus, the usability impact on the client are adjusted to the security 

requirements of the application. 
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3 MORE-BAILS: MULTI-FACTOR ENHANCED 

BIOMETRIC AUTHENTICATION USING 

INDEPENDENT LOCATION SOURCES  

The conducted literature review on remote client authentication techniques for 

phones (cp. chapter 2) concluded that authentication techniques lack the assurance of 

client’s location and real-time. However, this assurance is an important aspect of 

secure and reliable remote client authentication, because it “uniquely grounds” the 

client’s authentication attempt in “space and time”. To overcome these limitations of 

client authentication schemes, the MORE-BAILS algorithm has been implemented in 

a scheme that securely combines: 

1) classic AFs (e.g. Password / PIN and KoP token, cp. section 2.2.1), 

2) freshly captured client biometric data (cp. section 2.2.2), 

3) current phone location and real-time assurance (cp. section 2.2.3). 

 

Therefore, this MORE-BAILS scheme reconstitutes the missing face-to-face features 

of office-based transactions into remote authentication and eliminates replay as well 

as distance attacks (cp. section 2.3.1). MORE-BAILS algorithm can be added to any 

mCommerce application that requires strong and reliable client authentication on 

phones. “MORE-BAILS protected application” denotes in LOTA all mCommerce 

applications that use the MORE-BAILS authentication algorithm. 

 

Development of the MORE-BAILS algorithm and implemented scheme involved 

researchers from two focus teams in the department: 

1) the Authentication Team, 

2) the Wireless Localisation Team. 

In particular, MORE-BAILS was developed with the assistance of Mr. Hisham Al-

Assam (PhD candidate at the University of Buckingham), who provided the 

biometric experimental dataset and configured the BDP/FE component. 

 

The novel MORE-BAILS concept scheme (cp. section 3.1) uses two independent 

localisation sources to verify the client’s claimed location in combination with 
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further AFs to reliable authenticate clients on phones [67]. This MORE-BAILS 

concept scheme was then extended to: 

1) enhance the algorithm security by combining all employed AFs into one binary 

representation that does not leak any useful information to an attacker if any of 

the AF is compromised, 

2) preserve the client’s location privacy. 

 

This security enhanced version of MORE-BAILS is described in more detail, 

including the technical implementation and experimental results, in section 3.2. 

3.1 Concept of MORE-BAILS 

The steps performed on the client side in this MORE-BAILS concept scheme are 

shown in Figure 13. 

 

 

Figure 13: MORE-BAILS concept scheme, client side 

 

1) The MORE-BAILS scheme starts upon a client opens a MORE-BAILS protected 

application on his/her phone. 

2) This application opening triggers a process that captures fresh client biometrics 
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3) The current LC&TC (subscript letter “C” denotes in LOTA data collected or 

generated on the client side, while letter “A” denotes the authenticator side) are 

determined using the phone onboard GPS receiver. LC&TC will be thereby 

extracted from the Global Positioning System Fix Data message generated every 

second by the GPS receiver from the received satellite signals (cp. section 

2.2.3.1). 

4) The client enters his/her personal credentials (e.g. password / PIN). 

5) The client entered credentials and the determined LC&TC are then crypto-hashed 

and afterwards XORed. 

6) The result of XORing credentials and LC&TC is then XORed with the calculated 

BFV of the client to form the One-Time Multi-Factor Biometric Representation 

(OTFMBRC) of the client. 

7) To the resultant OTMFBRC, further information about the phone (KoP) and a 

copy of the fresh LC&TC information is attached to form the MORE-BAILS data-

message. 

8) This MORE-BAILS data-message is then sent to the authenticator using a secure 

wireless communication channel (e.g. SSL protocol over 3G cellular link) for 

verification. 

 

The steps performed by the authenticator to verify the received MORE-BAILS data-

message are shown in Figure 14. 

 

 

Figure 14: MORE-BAILS concept scheme, authenticator side 
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1) The authenticator receives the MORE-BAILS data-message sent by the client. 

2) The authenticator then extracts LC&TC information and OTMFBRC from the 

received MORE-BAILS data-message for verification. 

3) The authenticator ensures that the location of the client is valid by comparing the 

stored pre-agreed geographical areas with the received client’s location LC. If LC 

is not within these pre-agreed areas, then the authentication attempt is rejected. 

This can be considered as a distance attack. 

4) The current location of the client's phone is requested from the MNO to verify 

independently that the phone is actually at the claimed location, i.e. within a pre-

defined threshold (cp. section 2.2.3). If the claimed location cannot be verified, 

then the authentication attempt is rejected. This can be considered as an 

impersonation attack in which the attacker does not know the exact genuine 

client’s current location. 

5) The authenticator uses the stored client data (enrolled biometric template, 

password / PIN hash value) and the crypto-hashed LC&TC information extracted 

from the received MORE-BAILS data-message to calculate an OTMFBRA. 

6) This calculated OTMFBRA is then compared with the received OTMFBRC to 

verify the client’s claimed identity. If this final step is successful, then the 

authentication attempt will be accepted. Otherwise, the rejected authentication 

attempt can be considered as an impersonation attack in which the attacker does 

not know the biometrics and / or the password / PIN of the client. 

 

The XOR-operation is used in MORE-BAILS as shown in Figure 13 and Figure 14 

to combine AFs at several stages, because: 

1) It is impossible to reverse the XOR-operation without the knowledge of at least 

one of the initial XOR argument values. This means that an attacker cannot gain 

any useful information from an eventually intercepted OTMFBRC message. 

2) The XOR-operation is always entirely reversible (which is in contrast for 

example to the AND or OR-operation), if the result and one of the initial 

arguments are available. This XOR-operation property enables the authenticator 

to sequentially verify the combined AFs. 
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In this MORE-BAILS concept scheme, client’s LC&TC information needs to be 

added to the data-message to allow calculation of the OTMFBRA, because: 

1) It is impossible to extract LC&TC information from the OTMFBRC because of the 

applied crypto-hash function. 

2) It is impossible for the authenticator to determine the exact client’s location due 

to the different accuracies of the used localisation techniques on the client and 

authenticator side (cp. section 2.2.3.1). 

 

However, attaching LC&TC information directly to the MORE-BAILS data-message 

introduces security and privacy drawbacks. For example, in the event of an attacker 

intercepting the client's MORE-BAILS data-message, the client's privacy is breached 

as a result of disclosing LC&TC information. Furthermore, the security of this 

MORE-BAILS concept scheme is vulnerable, because the LC&TC based crypto-hash 

key can be obtained from LC&TC information as shown in Figure 13. Therefore, 

capturing OTMFBRC and the LC&TC based crypto-hash key might leak information 

about the biometrics, because the security then relies solely on the complexity of the 

password / PIN-based crypto-hash function. This means that the MORE-BAILS 

concept scheme becomes vulnerable to replay attacks if the attacker knows the 

client’s current whereabouts. 

 

After these security and privacy drawbacks were identified by LOTA, a security 

enhanced version was developed and is detailed in the following section 3.2. 

3.2 Security Enhanced MORE-BAILS 

The security enhanced MORE-BAILS scheme eliminates the drawbacks of the 

MORE-BAILS concept scheme. 

1) It is no longer necessary to attach LC&TC information to the MORE-BAILS data-

message. Instead, LC&TC will become integral parts of the OTMFBR. This 

means that the authenticator does not need to calculate an OTMFBRA for 

comparison with the received OTMFBRC as in the MORE-BAILS concept 

scheme. This enhanced scheme sequentially verifies all AFs of the received 

OTMFBRC and rejects the authentication attempt if any AF cannot be 

successfully verified. 
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2) To deal with the difference between the position accuracy of the two independent 

localisation techniques used, this scheme implementation uses an ECC technique 

(named ECCLoc) to reconcile this location difference within a certain threshold 

area (cp. section 2.2.3.1). A second ECC (named ECCBio) is used to tolerate intra-

class variations of biometric samples (cp. section 2.2.2.3). 

3.2.1 Scheme Overview 

The MORE-BAILS steps executed on the client’s phone are shown in Figure 15. 

 

 

Figure 15: Security enhanced MORE-BAILS scheme, client side 
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2) The timestamp TC is XORed with the KoP. 

3) The resultant output of XORing TC and KoP is then encoded by ECCLoc (cp. 

section 2.2.2.3). 

4) A binary representation of the location LC is produced (cp. section 3.2.2.3). 

5) This LC is fed into a PBS with a PIN-based shuffling key (cp. section 0). 

6) The ECCLoc output (step 3) is then XORed with the shuffled binary 

representation of LC. 

7) The result gets encoded by ECCBio (cp. section 2.2.2.3). 

8) Simultaneously to step 2 and 4, the client’s BFV is extracted from the client’s 

biometrics freshly captured using the phone onboard sensors (cp. section 2.2.2.1). 

9) A UBRP is applied on the extracted BFV (cp. section 0). 

10) The projected BFV is binarised (cp. section 2.2.2.1) to produce a cBiometric 

version of the client’s biometrics (cp. section 0). 

11) The ECCBio output is XORed with the cBiometrics to produce the OTMFBRC. 

12) The OTMFBRC is sent to the authenticator via a wireless communication link. 

 

The MORE-BAILS steps executed by the authenticator are shown in Figure 16. 

 

 

Figure 16: Security enhanced MORE-BAILS scheme, authenticator side 
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1) The received OTMFBRC is XORed with the client’s stored cBiometrics (cp. 

section 0) and decoded by ECCBio (cp. section 2.2.2.3). 

2) Successful ECCBio decoding means authenticity of the client’s provided 

biometrics and PIN due to the applied UBRP as shown in step 9 in Figure 15. 

3) The client’s location LA is obtained via MNO (cp. section 2.2.3.1). 

4) A binary representation of LA is generated (cp. section 3.2.2.3). 

5) The binary representation of LA is shuffled (PBS) based on the stored PIN (cp. 

section 0). 

6) The output of PBS is XORed with the ECCBio decoding output (step 1) and fed 

into the ECCLoc decoding process (cp. section 2.2.2.3). 

7) Successful ECCLoc decoding means that client’s location has been verified 

together with the correct shuffling key. 

8) ECCLoc output is XORed with the stored KoP. If the client has used the correct 

KoP, the timestamp TC used at the client side (step 2 in Figure 15) is retrieved. 

9) TC is compared with the current time. If the time difference is within a pre-

defined threshold, then the retrieved TC passes the liveliness test and the client’s 

authentication attempt will be accepted. 

3.2.2 Experimental Data and Implementation Remarks 

The following subsections explain the chosen implementation and simulation 

configuration details for the location (cp. section 3.2.2.1) and the biometric AF (cp. 

section 3.2.2.2) that were used to test and verify the feasibility and security of the 

MORE-BAILS scheme. Also, proposed algorithms to binarise the locations 

determined by client and MNO (cp. section 3.2.2.3) as well as algorithms to preserve 

the client’s location privacy (cp. section 3.2.2.4) are detailed. Experimental results, 

together with a discussion of these results, are then presented in section 3.2.3. 

3.2.2.1 Location Dataset 

MORE-BAILS tolerates up to 320m difference between the locations provided by 

the used GPS and MNO localisation techniques (cp. section 2.2.3.1). The 320 metres 

are chosen to minimise false rejection of genuine clients and are supported by the 

FCC E-911 directive [68]. 

For the experiments, a location dataset containing 20 measurements in the city of 

London, UK was collected as shown in Table 1. This dataset contains in the “LC”-

column in Table 1 the latitude and longitude values of the client’s location 
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determined by the GPS-receiver onboard an Android HTC-Wildfire Smartphone. 

The corresponding MNO-based location of the client’s phone is shown in column 

“LA” (cp. section 2.2.3.1). The mobile phone tracking service "FollowUs” [69] is 

used in the trials to “simulate” the tasks of the MNO. Direct involvement of a major 

MNO (e.g. British Telecom or Vodafone) requires extensive business negotiations 

and legal work, which is outside the scope of LOTA. Instead, the FollowUs service 

offers a simple to use, immediately available, and accurate way to determine the 

phone location independently via the cellular network. During the trials carried out 

on Android Smartphones (cp. section 4.3.3), FollowUs provided reasonable 

locations. Furthermore, the accuracy of the provided location measurements is 

consistent to MNO-based measurements [70]. 

The “LT”-column represents the geographical location of the serving MNO cell. This 

LT location is required to calculate the binary representation of the two locations (LC 

and LA, cp. section 3.2.2.3) for the ECCLoc comparison. The last two columns show 

the difference between the GPS and MNO determined location in metre and the 

resultant difference in bits after the location binarisation method has been applied. 

 

Table 1: Location measurements 

 
GPS-based 

Location (LC) 

MNO-based 

Location (LA) 

MNO Cell 

Location (LT) 
Distance LC, LA 

 
Lat LC 

(deg) 

Lon LC 

(deg) 

Lat LA 

(deg) 

Lon LA 

(deg) 

Lat C 

(deg) 

Lon C 

(deg) 

Decimal 

(m) 
nBits 

1 51.5042 0.0008 51.5080 -0.0020 51.4978 0.0048 463.8063 14 

2 51.5020 -0.0013 51.4980 -0.0240 51.5016 -0.0193 1633.1882 48 

3 51.4977 0.0076 51.4970 0.0070 51.4979 0.0051 91.6758 2 

4 51.4989 -0.0513 51.4990 -0.0500 51.5027 -0.0563 90.1893 2 

5 51.5143 -0.1486 51.5140 -0.1470 51.5147 -0.1463 117.2180 4 

6 51.5141 -0.1442 51.5120 -0.1470 51.5147 -0.1463 297.6467 9 

7 51.5132 -0.1420 51.5120 -0.1390 51.5125 -0.1395 244.1811 8 

8 51.5105 -0.1427 51.5100 -0.1420 51.5087 -0.1411 76.1176 3 

9 51.5139 -0.1470 51.5120 -0.1470 51.5147 -0.1463 206.2836 5 

10 51.5138 -0.1401 51.5120 -0.1390 51.5125 -0.1395 210.7231 6 

11 51.5137 -0.1381 51.5120 -0.1390 51.5125 -0.1395 196.4461 5 

12 51.5128 -0.1469 51.5140 -0.1471 51.5142 -0.1489 136.3620 4 

13 51.5139 -0.1439 51.5130 -0.1400 51.5142 -0.1489 289.4840 9 

14 51.5138 -0.1428 51.5130 -0.1420 51.5147 -0.1463 107.4662 3 

15 51.5084 -0.1509 51.5090 -0.1510 51.5126 -0.1470 71.9936 3 

16 51.5163 -0.1375 51.5180 -0.1370 51.5125 -0.1395 188.9682 6 

17 51.5076 -0.1510 51.5090 -0.1510 51.5126 -0.1470 154.3240 4 

18 51.5160 -0.1370 51.5180 -0.1370 51.5125 -0.1395 224.2693 6 

19 51.5049 -0.1484 51.5120 -0.1470 51.5126 -0.1470 143.6615 4 

20 51.5161 -0.1382 51.5160 -0.1310 51.5125 -0.1395 238.3377 7 
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Measurements in row 1 and 2 in Table 1 are chosen to be outside the accepted 

maximum distance between the GPS and MNO localisation technique of 320m. 

These two measurements result in 14 (respectively 48) bits difference in the binary 

representation, which will not be accepted in the location verification step 7 of 

Figure 16. All other measurements (3 - 20) are well within the valid distance and 

should be therefore accepted by MORE-BAILS. 

 

The acquired GPS-based location LC on the client side is binarised to produce a 127-

bit location representation (step 3 in Figure 15). The 320m error tolerated is 

equivalent to 10-bit out of 127-bit according to the chosen setting. Therefore, 

BCH(127,64,10) ECC (ECCLoc) was selected to deal with the location accuracy 

differences. This ECCLoc takes an 64-bit input to produce a codeword of size 127, 

and is capable of correcting up to 10-bit errors. The 64-bit input comes from XORing 

the 64-bit KoP with 64-bit representation of time as shown step 2 in Figure 15. 

3.2.2.2 Biometric Dataset 

The face is used as the biometric modality (cp. section 2.2.2) in the MORE-BAILS 

experiments and trials on the phone. The face was chosen because: 

1) Capturing face images is easy due to the wide availability of cameras on phones 

and because it does not require expansive and / or specialised hardware. 

2) Capturing face images is an unobtrusive task that most clients do not have any 

concerns with. In contrast, for example, retina / iris recognition is seen with much 

more reservations by many clients [15]. 

3) Combination of face biometrics with DWT (cp. section 2.2.2.1) to extract the 

face BVF is an efficient and accurate client verification method on phones [23]. 

 

In the experiments, face images from the Extended Yale-B database are used [71]. 

This database has 28 subjects under 9 different poses. Because it can be expected that 

the client is always in frontal pose towards the camera during an authentication 

attempt, only this frontal pose is used. Each of the subjects has 64 images captured 

under different illumination conditions. Hence, the total number of frontal face 

images in the database is 1792. These images are divided into five subsets according 

to the direction of the light-source from the camera axis as shown in Figure 17. 
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Figure 17: Image samples in different illumination subsets 

 

In all experiments, the first three images per subject from subset 1 are selected to 

represent client images captured during enrolment, i.e. these images are stored in the 

authenticator’s database (cp. section 2.2.2). All remaining images are used to 

represent freshly taken client images during an authentication attempt. 

 

Implementation remarks about the used face biometric modality: 

1) The Haar DWT filter (cp. section 2.2.2.1) was selected to extract the facial 

features (step 8 in Figure 15) from these subject images. The used size of the 

facial BFV extracted by DWT is 504-features. 

2) A cancellable version of the client’s BFV is created using UBRP (steps 9 and 10 

in Figure 15). The biometric binarisation produces a 504-bit cancellable face 

representation. After analysing the error patterns of inter- and intra-class 

variations of face images, LOTA concluded that 38% of the binary face BFVs 

needs to be corrected, or 191 out of 504-bits. In other words, if the Hamming 

distance [26] between two binary face BFVs is less than 191, then the two binary 

face BFVs are accepted as belonging to the same client. 

3) To deal with intra-class variations of face samples, the RS(511,129,191) ECC is 

used (step 7 in Figure 15). This ECCBio takes 129 symbols as input to produce a 

codeword of 511 symbols, and therefore corrects up to 191 errors. 

4) The final OTMFBRC is obtained by XORing the codeword output of RS 

encoding with the 511-bit cancellable face binary representation. 

5) At the authenticator side, the corresponding RS(511,129,191) ECCBio (step 1 in 

Figure 16) respectively BCH(127,64,10) ECCLoc decoder (step 6 in Figure 16) are 

used to deal with BFV and location variations. 

Subset 1 Subset 5Subset 4Subset 3Subset 2
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3.2.2.3 Location Binarisation 

MORE-BAILS adopts binarised location information on the client and authenticator 

side to: 

1) Combine the location with the other AFs (e.g. biometrics), which exist in binary 

format. 

2) Calculate the actual distance between the two, independently determined 

locations based on the number of different bits in the generated binary location 

strings. 

 

This binary XOR combination (chosen to integrate two streams of data in several 

stages as shown in steps 2, 6, and 11 in Figure 15) is useful, because it minimises the 

risk that an intercepted OTMFBR leaks any useful information about any of the 

employed AFs. To generate the binary representation of the location, the developed 

MORE-BAILS algorithm uses only longitude and latitude information, represented 

as double values on Android-based phones (cp. section 4.3.3). Altitude is currently 

not used, because the MNO does not provide any information about the altitude of 

the tracked phone. However, once the horizontal location comparison has been 

successful, the altitude supplied by the GPS can be further compared with the client’s 

current location altitude, available from Google earth for example. This feature has 

not been considered in the current algorithm. 

 

The location binarisation algorithm binarises the geographical location (latitude / 

longitude) in such a way that all bits in the resultant binary location string represent 

the same distance, i.e. all bits have the same significance. This is important, because 

the ECCLoc algorithm (cp. step 3 in Figure 15) that deals with the fuzziness of the 

two locations treats all bits in the binary location string equally. I.e. the significance 

of all bits must be the same and every bit difference should reflect the same distance 

between the two locations. 

 

In the location binarisation algorithm, the location of the serving MNO cell is used as 

a reference point, independently available to client and authenticator. The serving 

MNO cell (cell-ID) is known on the client’s phone through the communication 

process. The authenticator will request this cell-ID, in addition to the phone location, 
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from the MNO. The corresponding geographical location is accessible by client and 

authenticator through the MNO by agreement, or by various (publicly available) 

online databases, e.g. Google Mobile Maps [72]. This location reference point is 

required to generate a short binary location string, because the total number of bits to 

represent the location is limited due to the later following XORing with the binarised 

BFV as shown in step 11 in Figure 15. I.e. the BFV length defines the maximum 

length of the binary location string. 

 

On the client and authenticator side, all distances between the client’s phone 

location, and the location of the serving MNO cell are calculated using the 

“Spherical Law of Cosines” (SLC) [73] shown in formula (2). 

 

 
        (   (    )     (    )     (    )     (    )

    (            ))    
(2) 

Where:  lat1, long1 : Latitude and longitude of location one 

lat2, long2 : Latitude and longitude of location two 

R= 6371 : Radius of earth in kilometre 

 

The SLC formula is generally used to calculate distances between two points on a 

sphere [74], e.g. two locations described by their longitude and latitude values on 

earth. The SLC formula was chosen in the LOTA experiments over other possible 

formulas (e.g. Vincenty's formula) to calculate the required distances because: 

1) The SLC formula can be calculated more efficiently on phones than other 

formulas because of its simplicity, 

2) Today’s phone processors offer high enough precision on floating point number 

operations to calculate the SLC formula, 

3) The introduced distance error of the SLC formula is well within the available 

precision of the localisation techniques (cp. section 3.2.2.4), i.e. a more precise 

formula which is, as a result, more complex and time consuming to calculate on 

the phone would not offer any advantage over the chosen SLC formula. 

 

Figure 18 details the steps of the location binarisation algorithm (step 4 in Figure 15) 

performed on the client side. Similar steps are performed by the authenticator to 

binarise the received MNO-based location (step 4 in Figure 16) during verification. 
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Figure 18: Location binarisation algorithm 

 

To clarify the detailed description of the algorithm steps, the following example 

values shown in Table 2 will be used for a client located (latitude, longitude) at the 

University of Buckingham, UK. 

 

Table 2: Example values for location binarisation algorithm 

Name Value Description 

PClat 51.9940 Latitude of phone, determined by client 

PClong -0.9816 Longitude of phone, determined by client 

PAlat 51.9986 Latitude of phone, determined by MNO 

PAlong -0.9776 Longitude of phone, determined by MNO 

SClat 51.9980 Latitude of serving cell 

SClong -0.9697 Longitude of serving cell 

Res 100 Resolution, distance represented by one bit 

MaxDist 1000 Maximum distance between phone and serving cell 

BitsMaxDist 10 Bits required to express MaxDist, i.e. BitsMaxDist = MaxDist / res 
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The location binarisation algorithm performs the following steps to convert a 

geographical location (latitude, longitude values) into a binarised location: 

1) During an initial configuration step (indicated by the dotted rectangle in Figure 

18), a default binary location string (BinStringDefault{X,Y}) is created. This 

BinStringDefault{X,Y} consists of BitsMaxDist “1s” and BitsMaxDist “0s” to represent the 

distance between phone and serving MNO cell on the X-axis (1a) and the same 

number of “1s” and “0s” to represent the distance on the Y-axis (1b) respectively. 

The BinStringDefault{X,Y} will be adjusted in step 6 of this algorithm (i.e. the 

number of “0s” and “1s” will be changed) in accordance to the actual distance 

between phone and serving MNO cell. 

Example: 

The total number of bits required for BinStringDefault{X,Y} is: 

BinStringDefaultX = V * BitsMaxDist = 2 * 10 = 20 bits 

BinStringDefaultY = H * BitsMaxDist = 2 * 10 = 20 bits 

Where 

V expresses if the phone is to the east or west of the serving MNO cell 

H expresses if the phone is to the north or south of the serving MNO cell 

 

By changing the “Res” and “MaxDist” values, the length of the resultant 

BinStringDefault{X,Y} can be adjusted to the requirements of later MORE-BAILS 

functions, i.e. the BinStringDefault{X,Y} length can be tailored to the length of the 

BFV (cp. step 3 in Figure 15). 

Example: 

BinStringDefaultX = 11111111110000000000 

BinStringDefaultY = 11111111110000000000 

2) The binarisation algorithm obtains the phone location latitude and longitude 

values and the currently used cell-ID using the Android Application Framework 

(cp. section 4.3.3.1). 

3) The corresponding geographical location of the serving MNO cell is determined 

using the available online databases. 

4) The distances on the X- (DistXPhone,Cell) and Y-axis (DistYPhone,Cell) between the 

phone and the serving MNO cell are calculated using the SLC formula. 

Example: 

DistXPhone,Cell = SLC(SClat, SClong, SClat, PClong) = -815m 
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DistYPhone,Cell = SLC(SClat, SClong, PClat, SClong) = -446m 

 

The negative values in this example mean that the phone is to the west (X-axis) 

and south (Y-axis) of the serving MNO cell. 

5) The absolute values of the two calculated distances DistXPhone,Cell and 

DistYPhone,Cell are divided by “Res” and the result is rounded up / down to the 

nearest integer. The calculated DistBitsXPhone,Cell (respectively DistBitsYPhone,Cell) 

are the number of bits required to express the distance between phone and 

serving MNO cell. In this example each bit represents 100m. 

Example: 

DistBitsXPhone,Cell = round(abs(DistXPhone,Cell) / Res) = round(815/100) = 8 

DistBitsYPhone,Cell = round(abs(DistYPhone,Cell) / Res) = round(446/100) = 4 

6) BinStringDefault{X,Y} is adjusted to represent the actual distance between phone and 

serving MNO cell. If the value of DistXPhone,Cell is less than 0 (i.e. the phone is to 

the west of the MNO cell), then DistBitsXPhone,Cell “1s” in BinStringDefaultX are 

changed to “0s”. Otherwise, if DistXPhone,Cell is greater or equal to 0, then 

DistBitsXPhone,Cell “0s” in BinStringDefaultX are changed to “1s”. The same 

operation is then performed for the Y-axis. 

Example: 

a) DistXPhone,Cell is -815m and, as a result, eight “1s” will be changed 

BinStringDefaultX to “0s” to represent the actual distance in X expressed by: 

BinStringX = 11000000000000000000 

b) DistYPhone,Cell is -446m, thus four “1s” will be changed to “0s” in 

BinStringDefaultX to represent the actual distance in Y expressed by: 

BinStringY = 11111100000000000000 

7) BinStringX and BinStringY are concatenated to form the binary location string 

“LocBinStringPC“, which represents the actual distance between phone and 

serving MNO cell. 

Example: 

LocBinStringPC = 11000000000000000000 11111100000000000000 

 

The resultant binarised location “LocBinStringPC” is then fed into the PBS as shown 

in step 5 in Figure 16. 
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On the authenticator side, the above algorithm steps are repeated. The difference is 

that the authenticator uses the client’s phone location (PAlat, PAlong) provided by the 

MNO to calculate the corresponding binarised location LocBinStringPA. 

Example: 

LocBinStringPA = 11110000000000000000 11111111111000000000 

 

The actual distance between phone and serving MNO cell represented by 

LocBinStringPC and LocBinStringPA can now be calculated using the XOR-function. 

Example: 

LocBinStringDist = LocBinStringPC   LocBinStringPA 

LocBinStringDist = 00110000000000000000 00000011111000000000 

 

The remaining “1s” in LocBinStringDist multiplied by “Res” represent the distance 

between the GPS-based phone location and the phone location provided by the MNO 

in X and Y respectively. 

Example: 

DistXPC,PA = 2 * Res = 2 * 100m = 200m 

DistYPC,PA = 5 * Res = 5 * 100m = 500m 

 

In MORE-BAILS, ECCLoc (step 6 in Figure 16) deals with the fuzziness of the two 

binarised locations and corrects in the current setup up to 10 bit difference between 

LocBinStringPC and LocBinStringPA. 

3.2.2.4 Privacy Preserving Usage of Location Information 

Introduction of client’s physical location into MORE-BAILS raises "privacy 

concern", i.e. tracking clients’ location without their consent. To overcome this 

concern, LOTA developed methods that preserve the client’s location privacy and, at 

the same time, enable the authenticator to verify the client’s claimed location 

independently [75]. 

 

SOMs (cp. section 0) are used in MORE-BAILS to generate a transformed version of 

any location information to incorporate the location privacy protection. The actual 

location of the client is never disclosed to anybody including the authenticator. The 

client applies the SOM on the obtained GPS-based location prior to the location 
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binarisation process (cp. step 4 in Figure 15). At the authenticator side, every time 

the authenticator requests the client's location from MNO, the MNO responds by 

sending a transformed version of the client’s current location based on the usage of 

the same SOM (cp. step 3 in Figure 16). 

 

To verify the actual distance between the original two locations, applying SOMs 

must preserve this distance. This was proven for the Euclidean distance [76]. 

Although MORE-BAILS uses the SLC formula as distance measure between the two 

geographical locations on earth, the difference between the Euclidean distance and 

the used SLC distance is negligible when dealing with a few hundred metres (cp. 

section 3.2.2.1). 

Simulations showed that the average error introduced by the SOM transformation 

using SLC is about 0.4%, i.e. if the distance between the original two locations is 

100m, then the distance between the two transformed locations will be 100 ± 0.4m. 

The current MORE-BAILS scheme configuration tolerates up to 320m difference 

(cp. section 3.2.2.1). This means that the error introduced by the privacy-preserving 

location authentication is small, just over one metre. 

3.2.3 Results, Discussion and Conclusion on MORE-BAILS 

This section presents the experimental results and discusses the security impacts in 

the cases that one or more of the employed AFs are compromised. The section 

finishes with a conclusion about the proposed MORE-BAILS authentication scheme. 

 

In the current MORE-BAILS scheme, five AFs are used: 

1) Biometrics, as a “something you are” AF that are captured from the client during 

enrolment and stored in the authenticator’s database (cp. section 2.2.2). 

2) PIN, as a “something you know” AF that is agreed between client and 

authenticator and stored in the authenticator’s database (cp. section 2.2.1.1). 

3) KoP, as a “something you have” AF (cp. section 2.2.1.2). The KoP is stored in 

the authenticator’s database and on the phone, e.g. main memory or SIM card. 

It is important that the KoP is a unique, randomly generated key. It is not 

recommended to use already available Mobile Communication Subscriber 

Information (MCSI) as KoP, e.g. the phone’s IMEI number (cp. section 4.1.1). 
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This MCSI is not completely secret and can therefore easier be discovered than a 

randomly generated key [55]. 

4) Location, independently verified via two different localisation techniques (cp. 

section 2.2.3). 

If desired and agreed by client and authenticator, the use of the MORE-BAILS 

protected application can be limited to certain geographical areas. This limitation 

is useful to prevent the application usage from “unusual” locations, because the 

phones was, for example, lost or stolen on holidays. In this case, an attacker 

cannot use the application from Asia, if the application is registered for the UK. 

To use the “area limitation” feature, the authenticator stores the client’s areas of 

operation. “Area limitation” is integrated into MORE-BAILS as an optional 

feature, because it introduces an additional burden and sometimes undesired 

restriction to the client. “Area limitation” can be disabled, if the client: 

a) does not want to be limited in where s/he is able to use the application, 

b) does not accept the additional efforts required to continuously update his/her 

area of operation, because s/he is a frequent traveller. 

5) Time to uniquely stamp the authentication attempt (cp. step 2 in Figure 15). 

 

The MORE-BAILS scheme is designed to achieve the highest possible security. 

However, depending on lower security requirements of some applications, it is 

possible to drop one or more of the MORE-BAILS AFs to minimise the impact on 

the client during the application usage. For example, the KoP value could be used as 

the PIN, too. This releases the client from remembering another PIN, but lowers the 

MORE-BAILS security. However, in all simulated scenarios (see below), all five 

AFs are present in MORE-BAILS. The number of all possible scenarios 

(combinations) of compromising zero, one or more of the MORE-BAILS AFs is 

calculated by formula (3). 

 

 ∑(
 

 
)

 

   

 ∑(
 

 
)

 

   

    (3) 

 

Where:  n=5 : Number of AFs. 

k  : Number of compromised AFs to be simulated. 
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It is not feasible and reasonable to simulate all 32 scenarios, because some of these 

scenarios are only theoretically possible and therefore unlikely to happen in real life. 

For example, if an attacker is able to get hold of a client’s phone, the attacker 

automatically knows the KoP, as well as L&T. Accordingly, it is not reasonable to 

simulate a scenario in which KoP and location (but not time) are compromised AFs. 

Therefore, the following 14 most relevant scenarios are simulated. It is assumed that 

all AFs, which are not compromised, are secure in the scenario. 

Scenario 1) “Comparison scenario” that uses Biometrics only, no other AF is 

employed. This scenario is used to compare the performance achieved by 

biometrics only with the performance of the proposed and evaluated multi-factor 

MORE-BAILS scheme. 

Scenario 2) “All secure”, using all AFs under the assumption that all of them are 

secure and none is compromised. 

Scenario 3) Simulating a scenario where the Biometrics are compromised. 

Scenario 4) Simulating a scenario where the PIN is compromised. 

Scenario 5) Simulating a scenario where the KoP is compromised. This is possible 

when an attacker gets access to the client’s phone where the KoP is stored. 

Scenario 6) Simulating a scenario where Location is compromised. This could 

happen when an attacker is physically close enough to the client or knows the 

client’s current whereabouts. 

Scenario 7) Simulating a scenario where Time is compromised. 

Scenario 8) Simulating a scenario where PIN and KoP are compromised. In this 

scenario, the attacker knows the client’s personal credentials (for example 

through previously successfully employed phishing attacks), but does not know 

the client’s current location. 

Scenario 9) Simulating a scenario where Location and Time are compromised. In 

this scenario, the attacker knows the client’s current whereabouts, but does not 

know the client’s personal credentials. 
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Scenario 10) Simulating a scenario where PIN, KoP, and Location are 

compromised. In this scenario, the attacker knows the personal client credentials 

and also knows or is able to estimate the client’s current location. 

Scenario 11) Simulating a scenario where KoP, Location, and Time are 

compromised. In this scenario, the attack has full access to the phone (because it 

was lost or stolen), but the attacker does not know the client’s personal PIN. 

Scenario 12) Simulating a scenario where PIN, KoP, and Time are compromised. 

In this scenario, the attacker knows the client’s personal credentials and is also 

able to create a valid timestamp. 

Scenario 13) Simulating a scenario where PIN, KoP, Location, and Time are 

compromised. In this scenario, the attacker knows the client’s personal 

credentials and also knows the client’s current whereabouts. 

Scenario 14) Simulating a scenario where all AFs are compromised. This scenario 

is included for completeness. No security can be expected in the case that the 

attacker knows all used AFs. 

 

In the first scenario, the performance of a biometrics only system is evaluated. The 

obtained results are then used to compare the performance of the proposed MORE-

BAILS scheme against the biometrica only system. Additionally, this biometrics 

only scenario result serves as the decision-making basis, which Haar subband (cp. 

section 2.2.2.1) is used in the further scenarios (2 to 14) to represent the biometric 

AF. 

 

Table 3 shows the obtained face recognition accuracy of the biometrics only system, 

in terms of the Equal Error Rates (EERs %) of the four wavelet subbands at the third 

level of decomposition (LL3, HL3, LH3, and HH3), and across all the five subsets of 

the extended Yale-B dataset (cp. section 3.2.2.2). As shown in Table 3, apart from 

subset 3, the LH3 subband achieves better authentication accuracy compared to the 

other subbands. Only in subset 3 the HL3 subband slightly outperforms LH3. 

Consequently, the LH3 subband coefficients are selected to represent the biometric 

AF for the rest of the experiments. 
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Table 3: Face recognition accuracy of biometrics only system 

  LL3 HL3 LH3 HH3 

Subset 1 0.00 0.00 0.00 0.00 

Subset 2 0.90 0.81 0.04 3.36 

Subset 3 1.33 0.41 0.56 0.71 

Subset 4 15.48 14.57 6.06 9.36 

Subset 5 17.15 22.25 4.53 11.36 

 

Table 4 reports the performance of the proposed MORE-BAILS scheme in terms of 

FAR and FRR for the 14 simulated scenarios. 

 

Table 4: MORE-BAILS scheme performance 

 
Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

Simulated scenario 
FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

FAR 

(%) 

FRR 

(%) 

1 Biometrics only 0 0.00 0.04 0.04 0.56 0.56 6.06 6.06 4.53 4.53 

2 All secure 0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

3 
Biometric 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

4 
PIN 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

5 
KoP 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

6 
Location 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

7 
Time 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

8 
PIN & KoP 

compromised 
0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

9 

Location & 

Time 

compromised 

0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

10 

PIN & KoP & 

Location 

compromised 

0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

11 

KoP & Location 

& Time 

compromised 

0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

12 

PIN & KoP & 

Time 

compromised 

0 5.00 0 5.03 0 5.53 0 10.75 0 9.30 

13 

PIN & KoP & 

Location & 

Time 

compromised 

0 5.00 0.038 5.03 0.53 5.53 5.76 10.75 4.30 9.30 

14 
All 

compromised 
95 5.00 94.97 5.03 94.47 5.53 89.25 10.75 90.70 9.30 

 

To correctly evaluate the MORE-BAILS security and obtained performance results, 

it is important to recall the functioning of the MORE-BAILS scheme. At the 
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authenticator side, the MORE-BAILS process goes through three sequential stages 

(cp. Figure 16): 

1) Successful ECCBio decoding (step 1 in Figure 16) authenticates two AFs: 

Biometrics and UBRP-transformation key (i.e. PIN). 

2) Successful ECCLoc decoding (step 6 in Figure 16) authenticates two more AFs: 

Location and shuffling key. 

3) Obtaining fresh and valid time TC (step 9 in Figure 16) authenticates both KoP 

and timestamp. 

 

This MORE-BAILS design offers the following security advantages: 

1) A failure in any of these three stages leads to failure of the entire authentication 

process. This makes the proposed MORE-BAILS scheme secure, because an 

attacker needs to break all employed AFs. This also explains the 0% FAR in all 

scenarios from 2 to 12 in Table 4. I.e. an attacker is unable to compromise the 

MORE-BAILS scheme, even when the attacker has a number of AFs 

compromised. 

2) The proper combination (XORing at three levels: steps 2, 6, and 11 in Figure 15) 

of the AFs to produce the OTMFBR makes the transmitted OTMFBR leak no 

information about the employed individual AFs. This ensures that an attacker 

cannot benefit from a partially successful attack (i.e. the attack has breached 

some of the AFs) for later attacks. 

3) The client’s claimed location is verified via a second, completely independent 

localisation technique on the authenticator side (cp. section 2.2.3.1). This ensures 

that the client cannot forge his/her location. 

4) Integration of GPS real-time into OTMFBR makes the MORE-BAILS scheme 

robust against replay attacks, i.e. intercepted MORE-BAILS data-messages 

cannot be replayed because of the timestamp expiry. 

 

A detailed analysis of Table 4 discloses the following observations: 

1) In the first scenario (face biometrics only) the use of LH3 as an efficient feature 

extraction method has been simulated. The operating point (decision threshold) 

for each subset is selected at the EER, i.e. FAR = FRR. 
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2) From scenario 2 to 12, the proposed MORE-BAILS scheme achieves 0% FARs 

against any attacking attempt even when one or more AFs are compromised. 

Although the MORE-BAILS scheme achieves the same FAR and FRR in all 

scenarios 2 to 12, the scenarios do not offer the same level of security. An 

attacker in scenario 2 “All secure”, for example, needs to guess / fake all AFs. In 

scenario 8, the attacker needs to break only two AFs (PIN and KoP). This means 

that scenario 2 is much more secure compared to scenario 8. This fact illustrates 

that FARs and FRRs on their own are not sufficient enough to evaluate the 

security of multi-factor schemes. Hence, LOTA concluded that other security 

characteristics such as the robustness against attacks (e.g. replay attack) and the 

level of difficulty to break an AF should be taken into consideration. This will be 

further investigated by LOTA. 

3) The FRR of “All secure” and the other scenarios (3 to 14) is higher than the 

biometrics only scenario because of the used location AF. Table 1 shows that two 

genuine locations out of the twenty collected locations will be falsely rejected. 

I.e. 5% of the FAR in all these scenarios (2 to 14) that are using location comes 

from these (out of range) measurements. For example, the FAR in the biometrics 

only scenario is 4.53% in subset 5, i.e. 95.47% of authentication attempts will be 

accepted in this first scenario. 

Location verification (step 6 in Figure 16) takes place after biometric verification 

(step 1 in Figure 16). This means that 5% of the 95.47% will be falsely rejected, 

i.e. the overall FAR of scenarios 2 to 14 will be 9.3%. 

4) The falsely rejected location AF mentioned in 3) also explains the lower FAR in 

scenario 13 (all AFs except biometrics are compromised) compared to the first 

scenario (biometrics only). It can be expected that the FARs in these two 

scenarios are equal. However, the location FRR contributes to a lower FAR in 

scenario 13, because the first two location measurements will be rejected (step 6 

in Figure 16), i.e. the FAR percentage becomes lower. 

5) It is feasible in “All secure” scenario and the other scenarios (3 to 14) especially 

when using two or more secure AFs to get less FRRs. This requires adjusting the 

operating threshold of biometric and / or location AF, e.g. tolerating more than 

191-bit for the face BVF (cp. section 3.2.2.2) or more than 320m for location (cp. 

section 3.2.2.1). However, this adjusted operating threshold results in high FAR 
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when other AFs are compromised. Therefore, the operating threshold of 

biometric / location AF should remain the same when using additional AFs [77]. 

 

To summarise, the MORE-BAILS authentication scheme has been proven to be: 

1) Viable for use in any type of strong client authentication requiring mCommerce 

application, because of the robust and secure verification of the client’s 

authentication data. 

2) User-friendly, because the client only needs to capture his/her face image using 

the phone’s camera and to enter their PIN. All other AFs (KoP, location, and 

time) will be silently and without the need of any further client action determined 

in the background though the MORE-BAILS scheme. 

3) Easy-to-implement, because MORE-BAILS bases on the phone’s onboard 

sensors to capture the client’s biometrics, onboard GPS receiver for location, 

keypad for PIN, and SIM card to securely store the KoP. 

4) Privacy preserving, because of the use of cancellable client biometrics and 

privacy preserving transformation of the client’s location. 
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4 REVIEW OF SECURE AUTHENTICATION 

IMPLEMENTATION ON PHONES 

This chapter describes three possible approaches to securely host and execute the 

authentication process on phones: 

1) Using SIM cards to host authentication activity (cp. section 4.1), 

2) Using custom chips for authentication (cp. section 4.2), 

3) Using software-based protection of authentication process (cp. section 4.3). 

 

Protecting the authentication process host environment is important in remote 

authentication from a security point of view, because: 

1) It guarantees correct capturing and processing of the authentication data on the 

phone and thus, increases the authenticator’s trust in the received client 

authentication data. 

2) It stops attackers from using the authentication application on the phone to get 

illegitimately authenticated. 

 

From a commercial point of view, protecting the host environment becomes even 

more important because: 

1) Number of mCommerce applications that require secure client authentication 

increases. I.e. the protection technique needs to be adaptable to the security 

requirements of these varying mCommerce applications. 

2) Number of clients using mCommerce applications on their phones increases. I.e. 

the protection technique needs to be user-friendly and cost-effective distributable 

to the clients. 

3) Financial damage of successful attacks on mCommerce applications increases, 

because transactions with higher monetary value can be now performed on 

phones. 

 

Each of the three approaches will be discussed based on criteria covering: 
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1) Offered security: Can the approach protect the authentication process execution 

and thus, guarantee the correctness of the execution? I.e. how difficult is it for an 

attacker to circumvent the integrated security mechanism? 

2) Performance: Is it possible to execute the authentication process within a few 

seconds on the phone to guarantee that the client will accept (i.e. not refuse 

because of a long delay) the authentication technique in practical use? 

3) Implementation complexity: Which resources (e.g. equipment and knowledge) 

are required to implement the approach and how complex is the implementation? 

4) Flexibility: Can the authentication system design be changed during 

implementation and be tailored to further phone models? 

5) Availability: Are all components required to implement the approach available 

for the mass-market? 

6) Costs: How much does it cost to implement the approach on the phone and to 

distribute the developed solution to the client? 

 

A literature review was conducted to understand the boundaries of each approach. 

The gained knowledge helped to establish if the approach offers a practical and 

commercial viable solution to secure the authentication process hosting and 

execution. 

4.1 Using SIM Cards to host Authentication Activity 

SIM cards are successfully used for decades to authenticate billions of subscribers to 

the MNO. SIM cards are small and portable, simple and convenient to use and 

familiar to all MNO clients. However, first trials to host the complete authentication 

process on the SecurePhone SIM card resulted in an immense run-time delay, which 

is inacceptable in real-world authentication applications (cp. section 1.1). LOTA 

investigated the technical limitations and security features of SIM cards to establish: 

1) What types of SIM cards are currently available and what are their technical 

capabilities and limitations (cp. section 4.1.1)? 

2) Can the authentication process security be strengthened by SIM cards? I.e.: 

a) Is it viable to perform the complete authentication process on the SIM card? 

b) Is it secure to perform only template matching on the SIM card, i.e. use the 

SIM card mainly as a secure storage device? 



 71  

4.1.1 SIM Cards - Technical Background 

Subscriber Identity Modules (SIMs) are small plastic cards with an embedded 

Integrated Circuit (IC). SIM cards are mainly used in telecommunication areas, 

where SIM cards store information about subscribers for mobile telephone services. 

Each SIM card has a unique IMEI, an Integrated Circuit Card International Identifier 

(ICCID), which identifies the SIM card chip, as well as stores the IMSI and the 

authentication key of the subscriber as part of the MCSI. SIM cards can be 

transferred between phones, which enable clients to switch their mobile network 

subscriptions easily. 

 

SIM cards were designed for the use in the Global System for Mobile 

communications (GSM, 2G) networks (cp. Figure 19). Together with the 

standardisation and commercial availability of the 3
rd

 generation (3G) mobile 

communication service (Universal Mobile Telecommunications System (UMTS)), a 

second generation of SIM cards, the Universal Subscriber Identity Module (USIM) 

was introduced in 2001. These USIM cards feature stronger subscriber authentication 

and encryption algorithms as well as more memory of up to 128 Kilobyte. LOTA 

uses “SIM cards” to denote 2G-SIM and/or 3G-USIM cards in the remainder of this 

thesis. 

 

 

Figure 19: SIM cards in mobile communication 

 

“High-Capacity / High-Density” (HC/HD) SIM cards were announced in 2005 as the 

next generation of SIM cards. HC/HD SIM cards like the MegaSIM (manufactured 
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by M-Systems) or the GalaxSim (by Giesecke & Devrient) offer up to 1 Gigabyte 

memory, a full 32-bit RISC microprocessor architecture, “SecurCore” co-processors 

and various cryptographic algorithms for enhanced security and data access control, 

as well as an advanced Application Programming Interface (API) to develop HC/HD 

SIM card applications [78,79]. HC/HD SIM cards maintain backward compatibility 

to the 3G communication standard, but their main area of operation is expected to be 

4G (Long Term Evolution, LTE). 

4.1.2 Literature Review of SIM Card-based Authentication 

SIM cards are used as a “secure” place to store authentication and client data as well 

as to authenticate the subscriber to the MNO. This literature review focuses on: 

1) Can SIM cards support remote authentication over wireless channels? 

2) Can SIM cards be used to implement more sophisticated, multi-factor 

authentication techniques (cp. section 2.2)? 

3) Can SIM cards securely and reliably host the complete authentication process 

(cp. section 2.3.1)? 

 

SIM cards can be used to enhance authentication and protect mCommerce 

applications as follows [80]: 

1) The subscriber information stored on the SIM card is used to authenticate the 

phone to mCommerce applications [81]. In this approach, the phone becomes a 

mobile payment device that could replace for example credit cards. However, if 

the phone gets lost or stolen, then this approach does not add any security, 

because the attacker could illegitimately use it. I.e. a combination with further 

AFs (similar to the PIN for the credit card) is necessary to prevent unauthorised 

phone usage. 

2) The SIM card stores additional information (e.g. encryption keys or certificates), 

that is then used to protect and authenticate the caller to the MNO or the 

transaction between client and authenticator [82]. Here, the SIM card acts as a 

secure storage device. However, if an attacker is able to read or change sensitive 

information on the SIM card, then authentication security is undermined [83]. 
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These two approaches use the SIM card to store required authentication data and 

hence, support the authentication process performed outside the SIM card. To host 

the complete authentication process, for example, a web-server on a Java SIM card 

can be used [84]. A web application running inside this web-server handles the 

communication and access control between phone and SIM card. The web 

application is based on the Java 2 Micro Edition (J2ME). J2ME is a subset of Java 

designed for embedded systems with limited computational power [79], like SIM 

cards. The Security and Trust Services API of Java SIM cards and the encrypted 

communication between SIM card and phone proved to offer strong security 

mechanism [85]. However, although the J2ME environment simplifies application 

development for SIM cards and offers optimised security related functions, the 

available API to develop complete authentication systems on Java SIM cards is 

limited and not all security features and required computations of authentication 

systems can efficiently be implemented on SIM cards [86]. This is due to the limited 

computational capabilities of these SIM cards and the slow data communication rate 

between the SIM card’s CPU and the phone’s CPU [87]. In SecurePhone, these 

limitations increased authentication time from a few seconds to 45 minutes once the 

complete authentication process was executed on the SIM card. 

 

SIM cards cannot be considered as 100% secure or tamper proof [83]. This is 

because logical, physical, or side channel attacks can be used to read or change 

sensitive data in the protected area of the SIM cards, so to: 

1) clone complete SIM cards [88] for the illegitimate use in more than one phone, 

2) change the subscriber and authentication data stored on the SIM card [89] to 

deceive the MNO, 

3) remove the SIM card lock, e.g. of an iPhone [90], to use the phone with other 

MNOs. 

 

The new generation of HC/HD SIM cards overcomes some of these drawbacks of 

SIM cards. HC/HD SIM cards feature much higher processing-power (up to 1GHz 

processor), larger memory (up to 1Gigabyte), advanced security and encryption 

functions as well as fast data communication based on the Universal Serial Bus 

(USB) architecture or the memory card interface (MultiMediaCard) between HC/HD 

SIM card and phone. This may allow performing the complete authentication process 
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inside the secure HC/HD SIM card environment. However, although several card 

manufactures already announced production of HD/HC SIM cards in 2005/6 [78], no 

HC/HD SIM card has been deployed to the end-consumer phone market thus far for 

the following reasons: 

1) Higher manufacturing costs for HD/HC SIM cards, which are double the costs of 

SIM cards [78]. 

2) Costs to implement the required faster HD/HC SIM card communication 

interface on the phone [79]. 

3) Deployment of new HD/HC SIM cards to existing clients is difficult, because 

billions of SIM cards are already sold and in use worldwide. An exchange of 

these SIM cards to new HC/HD SIM cards is a big logistic challenge and 

introduces further costs [79]. 

4.1.3 Conclusion on SIM Cards to host Authentication Activity 

The use of SIM cards as a secure host to execute the entire authentication process is 

practically limited at this point in time. Further techniques to protect the 

authentication process on the phone are required. 

 

Due to low processing power and slow data exchange rate between SIM card and 

phone, SIM cards are currently mainly used to store subscriber data [91]. The storage 

area offered by SIM cards can support the authentication process. Client credentials 

or cryptographic keys can be stored on the SIM card and integrated as AFs into the 

authentication process, i.e. the SIM card acts as a “secure” storage device. Due to the 

fact that SIM cards are not 100% secure or tamper proof, additional security features 

should be used. MORE-BAILS (cp. section 3.2) combines authentication data stored 

on the SIM card (KoP) with further client specific AFs (e.g. PIN). The KoP ensures, 

together with the employed client specific PIN and location that the used phone 

belongs to the genuine client and thus, helps increasing the mCommerce 

authentication security. 

 

The new generation of HC/HD SIM cards are not yet available for the end-consumer 

market. Once these advanced cards are deployed, they could offer a secure host 

environment to perform the complete authentication process on the card. 
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4.2 Using Custom Chips for Authentication 

LOTA concluded in section 4.1.3 that currently available SIM cards are not a viable 

option to securely host the authentication process. LOTA identified custom chips as a 

second possible option to securely host the authentication process and explored: 

1) What are the technical impacts, e.g. implementation complexity, memory and 

performance, hardware and space requirements of custom chips? 

2) What are the costs for implementation, distribution and integration of custom 

chips into phones? 

3) How does a custom chip for authentication compare to an authentication solution 

implemented in software and executed on the phone’s main processor? 

 

A custom chip is an application-specific hardwired microchip that performs most / 

all relevant tasks of a system within one single chip. Custom chips can be achieved 

by a full-custom chip or a programmable chip [92]. Authentication systems can be 

implemented on full-custom chips or on programmable chips. The chosen type of 

custom chip impacts the financial and human resources required to design and 

manufacture the custom chip [93]. 

 

Custom chips can be used for authentication on phones in two ways: 

1) The custom chip performs all authentication tasks (from BDP/FE to decision 

making) [94]. No other hardware / software component son the phone or external 

authentication resources are used. 

2) The custom chip is used to be part of other components either on the same phone 

(e.g. tasks implemented in software and executed inside the phone’s main 

processor) or on external resources (e.g. remote authentication server) [95]. 

 

The second option is of interest to LOTA, because LOTA provides solutions for 

remote client authentication (i.e. the authenticity decision is done remotely by the 

authenticator). In this option, the custom chip is used to perform the BDP/FE and to 

generate the authentication-data message (cp. Figure 12). I.e. a secure 

implementation of these components in a custom chip can eliminate the attack points 

3, 4, and 9 shown in Figure 12. However, custom chip designs cannot be considered 

as 100% secure or tamper-proof. Beside the implementation errors, which can occur 
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during the complex design and lead to security flaws in the implemented system, 

custom chips are vulnerable to different types of attacks [96]. For example, a fault 

injection attack was used to extract the encryption keys of the Advanced Encryption 

Standard (AES) implementation on current Altera and Xilinx custom chips [97]. This 

attack can be similarly used to modify the BDP/FE component (cp. attack point 3 in 

Figure 12) or overwrite the generated client’s BFV (cp. attack point 4 in Figure 12) 

in biometric-based authentication system (cp. section 2.3.1.) implemented as a 

custom chip. 

 

Beside the fact that custom chips do not offer 100% security, the use of custom chips 

for authentication on phones introduce the following drawbacks [98]: 

1) Integration of the custom chip requires space on the phone’s main board. It also 

requires an interconnection and hence compatibility between the custom chip and 

the rest of the circuitry of the phone platform. This is critical because of the 

limited available space on the phone’s main board. 

2) Design, manufacturing and integration of custom chips for authentication on 

phones involve high costs. 

3) The long and rigid development cycles of custom chips can hamper the update of 

existing or integration of the newest authentication algorithms into the client’s 

phone. 

 

LOTA has therefore concluded that, even if there are custom chip solutions that 

might come to light in the future, then opting for a software-based solution allows 

implementation of these solutions in software with similar gains, more flexibility and 

less costs [98]. 

4.3 Software-based Protection of Authentication Process 

LOTA so far concluded that neither SIM cards (cp. section 4.1.3) nor custom chips 

(cp. section 4.2) are optimal options to enhance security of the authentication process 

execution on phones. LOTA continued with an investigation, how the resources of 

the phone (e.g. processor, memory etc.) can be employed to overcome the identified 

drawbacks of SIM cards and custom chips (e.g. limited processing power, high 

development and integration costs). Using the phone onboard resources has two 

advantages: 
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1) Current and future generations of phones include powerful processors and large 

memory that can be used to implement additional security features. 

2) No additional internal or external hardware is needed. This reduces the overheads 

of implementing authentication techniques on the phone. 

 

Software protection uses the phone onboard resources to secure software against 

illegitimate use or modifications. In remote authentication, software protection can 

further protect the mCommerce application on the phone against misuse. Software 

protection therefore offers two security advantages for applications requiring remote 

authentication: 

1) Such protected applications cannot be used by an attacker even if the phone is 

lost or stolen. 

2) The authenticator will be assured that the authentication software was executed 

correctly on the phone and that the authentication process was not tampered with, 

i.e. the authentication data received from the client was properly calculated on 

the client’s phone. 

 

Investigation of software protection and the experience gained from work on 

SecurePhone led to the conclusion that combining software protection with 

biometrics and location can: 

1) Bind the correct application execution tightly to the genuine client to prevent an 

attacker to use the application even if the phone is stolen. 

2) Verify the proper functioning of the application to ensure correct authentication 

data collection and processing. 

3) Include location to challenge the client in a challenge / response technique to 

ensure freshness and real-time of the authentication attempt. 

4.3.1 Literature Review of Software Protection for Authentication Security 

Since the early 1980s [99], various software protection techniques were proposed 

[100]. These techniques differ in the underlying assumption of the attacker 

capabilities and access to the protected system (attack model) as well as in the aim 

(protection type) of the software protection. Capabilities of an attacker to attack 

protected software can be distinguished into three attack models [101]. Software 
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protection on phones can be within all three models, depending on the usage 

scenario. 

1) Black box model (attacker has only external access to the functionality of the 

software): 

An attacker who remotely tries to take over an mCommerce transaction from a 

client has “black box” access to the transaction and software. This attack can be 

considered as a distance attack without any further internal knowledge of the 

phone and / or used software. 

2) Grey box model (leakage information is available to the attacker): 

An attacker gains additional knowledge about the phone or software used for the 

transaction, which can be used to simplify later attacks. This can be happening, if 

an attacker is in close proximity to the client, whilst the client performs a 

transaction in a public place. 

3) White box model (attacker has full control over software and execution host): 

In the case that the client’s phone is in possession of the attacker (e.g. because the 

phone was stolen), the “white box” model has to be applied. 

 

Beside the attack models, the software protection technique used to secure the 

application on the phone is important. Software protection techniques can be divided 

into three categories, depending on the objective of the protection technique [102]: 

1) Software tamper resistance, to protect against application integrity threats. 

2) Software obfuscation, to avoid reverse engineering. 

3) Software watermarking, to discourage intellectual property theft or prove 

ownership. 

 

LOTA provides solutions to ensure and protect the authentication process integrity 

and correct process execution. Therefore, software tamper resistance (cp. section 

4.3.1.1) and software obfuscation (cp. section 4.3.1.2) techniques are investigated 

and assessed in detail. Watermarking techniques will not be considered any further in 

LOTA. 
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4.3.1.1 Software Tamper Resistance 

Software tamper resistance tries to detect and prevent illegal attempts to modify the 

software [103]. To achieve software tamper resistance, the software application 

contains two additional functions: 

1) A tamper detection function to identify possible attacks. 

2) A tamper response function to organise the countermeasures against an attack. 

 

Tamper detection was formerly based on static check-summing techniques [103]. A 

major drawback of these techniques is that they are simple to locate inside the 

software code, because static check-summing is an unusual operation in software. 

Once an attacker has identified the check-summing segment, this technique can be 

easily bypassed, because the attacker needs to modify only one single-point to avoid 

the check. Dynamic integrity checking techniques try to overcome this drawback of 

static check-summing by eliminating the special code segment [104]. Instead, the 

dynamic integrity checks are spread all over the code and are closely integrated into 

the application operation flow. This makes it more difficult for an attacker to identify 

and remove these code segments. However, dynamic integrity checking techniques 

also introduce new drawbacks. Integration of many code-checking segments adds a 

substantial computational overhead to the software execution and it is more difficult 

to spread the code-checking segments uniformly and unnoticeable over the entire 

code. 

 

Not all tamper detection techniques are suitable and applicable on phones, e.g. 

running on the Android OS, because they require, for example, modifications of the 

binary source code [105], which is not available on Android phones (cp. section 

4.3.3.2). Also, the application byte-code verifier inside the virtual machine (VM, cp. 

section 4.3.3.3) used on these phones restricts the code modifications, which can be 

used in the tamper detection function. Control flow checking of Java applications, 

based on regular expression statements to describe and check valid application flows, 

is not rejected by the byte-code verifier [106]. The additionally required Java 

instructions to implement the regular expression comply with normal application 

statements and thus, are not detected by the byte-code verifier. 
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To overcome software tamper resistance, attackers use reverse-engineering 

techniques as a first step in the attempt to modify the protected application. Software 

reverse-engineering transforms low-level source code into a higher level of 

abstraction [107], e.g. binary code into C source code. Once an application is 

successfully reverse-engineered, the source code can be easier understood and 

subsequently modified. To make reverse-engineering more difficult, software 

obfuscation techniques (cp. section 4.3.1.2) are applied on the software code. 

4.3.1.2 Software Obfuscation 

Software obfuscation transforms a software application into an equivalent application 

that has the same behaviour but is harder to understand and thus, becomes more 

difficult to reverse-engineer. Ideally, software obfuscation behaves similar to public-

key cryptosystems wherein it is more costly to decrypt a message without the key 

(i.e. deobfuscate the application) than it is to encrypt the message (i.e. obfuscate the 

application). However, it is impossible to obfuscate application codes systematically 

and only a few non-reversible (i.e. one-way) obfuscation technique exist [108]. For 

example, layout transformations (e.g. removing the source code format) are one-way 

obfuscation techniques. All obfuscation techniques that change the application 

structure (e.g. introduce additional if / switch branches) are reversible, because they 

have to be reversed during normal application execution to allow the application to 

run. An attacker can perform the same steps to reverse (deobfuscate) the application 

code as performed during the normal run, if the attacker knows these steps. In 

addition, deobfuscation of certain obfuscation techniques is NP-Easy and therefore 

not always a challenge for an attacker [109]. But nevertheless, it is common sense in 

the software protection research community that obfuscation is able to “raise the bar” 

for an attacker substantially, if the obfuscation techniques are implemented properly. 

For example, a layout “identifier renaming” obfuscation technique results in double 

the time needed to understand the real semantics of an application even against 

skilled attackers [110]. 

 

The security added by an obfuscation technique against reverse-engineering depends 

on the following characteristics [111]: 

1) Sophistication / Strength of the obfuscation transformations employed. 

2) Deobfuscation knowledge and experience of the attacker (i.e. the deobfuscator). 
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3) Power of the available deobfuscation algorithms. 

4) Amount of resources (e.g. time, computational power) available to the attacker. 

 

Execution of obfuscated software comes with a trade-of between the added security 

and the run-time overhead introduced by the obfuscation technique. Layout 

obfuscation techniques (e.g. renaming of variable names or removal of formatting) 

do not decrease the run-time efficiency of the obfuscated application when executed 

on the phone. All more complex obfuscation techniques, which are consequently 

more difficult to attack, introduce one or more of the following drawbacks: 

1) Increased application size, i.e. more instructions in the code. 

2) Run-time overhead, i.e. more instructions to execute. 

3) Larger memory requirement, i.e. to store or execute the application. 

 

The practical impact of these drawbacks on the actual execution of the obfuscated 

application depends on the host platform (e.g. the phone) that runs the application. 

Powerful computers are able to handle more complex and computational intensive 

obfuscation techniques than small and constraint phones. In general, the increased 

application size has the least and the additional required memory has the most critical 

impact on the possibility to run an obfuscated application on the intended host 

platform [111]. This impact is even more important on phones, because the available 

memory to execute the application is much smaller compared to the system storage. 

If the phone does not have enough memory to execute (i.e. to deobfuscate) the 

obfuscated application, then the application will not run at all. 

 

As well as these drawbacks, the added security is an important factor to evaluate the 

quality and effectiveness of obfuscation techniques. Software obfuscation techniques 

can be evaluated using the following criteria [112]: 

1) Potency: How much more difficult is it for a skilled human attacker to understand 

the application after obfuscation? 

2) Resilience: How good is the obfuscation technique to withstand deobfuscation 

attempts performed by specialised deobfuscation computer applications? 

3) Execution Cost: How much computational overhead or memory requirements are 

added to the application execution? 
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Similar criteria can be used to evaluate the quality of obfuscation techniques for Java 

[113]. Java is of particular interest to LOTA, because all applications running on 

Android Smartphones are written in Java and then compiled to Dalvik byte-code (cp. 

section 4.3.3). Evaluation models for obfuscation were then extended by the 

integration of the attacker’s aim as a further criterion [114]. Without defining the 

attacker’s aim as well as considering the attack model (cp. section 4.3.1), the 

obfuscation technique cannot be correctly evaluated [115]. 

 

Software obfuscation techniques are categorised into the following groups [112]: 

1) Layout obfuscation techniques, which remove the source code formatting or the 

intended meaning of procedures and variables by changing their names [116]. 

Potency and resilience of these techniques are low, but they introduce no extra 

execution costs. To strengthen potency and resilience of layout obfuscation 

techniques, more advanced renaming techniques like overusing identifier names 

or introduction of illegal names can be used [117]. These advanced techniques 

confuse deobfuscation attempts using de-compiler applications, e.g. Jad – the fast 

Java de-compiler. 

2) Data or operator level obfuscation techniques (e.g. hiding variables in bit-fields, 

splitting / merging variables or conversion of array structures) [118], which have 

a higher potency and resilience. However, these techniques add run-time 

execution overhead, e.g. operator level obfuscation techniques decrease the run-

time performance by up to 40% [119]. 

3) Control flow obfuscations (e.g. adding dead code, additional control layers like 

if- / switch-statements, or modification of function and procedure calls) [120], 

which are the most powerful, yet most expensive, obfuscation techniques. 

Control flow obfuscation techniques decrease the run-time performance by up to 

60% [119]. Inside the group of control flow obfuscations, integration of opaque 

variables achieves the highest potency and resilience, for example based on 

concurrency or exception handling obfuscation [121]. The value of an opaque 

variable is known at obfuscation time, but analytically difficult to determine for 

an attacker during deobfuscation. If opaque variables are combined with 

additional control layers and dead code, then it becomes difficult for an attacker 

to understand the real semantics of the application without knowing the correct 

values of the opaque variables [111]. 



 83  

Dynamic code mutation uses an opaque variable as a seed for a Pseudo-Random 

Number Generator (PRNG) [122]. The PRNG output is then used to control an 

edit script, which dynamically modifies the software instructions during run-time. 

Dynamic code mutation requires that the edit script is integrated as additional 

code into the application. This required integration can be exploited by an 

attacker. The attacker can try to identify the edit script inside the application code 

and remove it. Thus, further obfuscation techniques are required to protect the 

edit script, i.e. the edit-script must be hidden inside the application’s code. 

4.3.1.3 Obfuscated Interpretation 

Obfuscated interpretation also uses an opaque variable to protect any type of 

software interpreted (i.e. executed) on ARM or x86 processors such as the embedded 

processors used in phones [123]. The novelty of obfuscated interpretation is that it 

obfuscates the application interpretation and not the application source code. 

Obfuscated interpretation was implemented in hardware as a Finite State Machine 

(FSM). This FSM “retranslates” the instruction stream of a previously obfuscated 

application into the original instructions during obfuscated interpretation of the 

application as shown in Figure 20 [123]. 

 

 

Figure 20: Concept of obfuscated interpretation 

 

The obfuscated application is "secured and protected" against reverse-engineering, 

because the attacker does not know the deobfuscation transition rules, i.e. how is an 

instruction deobfuscated. It is impossible for an attacker to understand the real 

semantics of the obfuscated application without having these deobfuscation transition 

rules, even if all instructions are available to the attacker. 
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Interpretation (deobfuscation) of an obfuscated instruction is not always the same. 

The result of deobfuscating an instruction depends on the obfuscated instruction and 

on the previous state of the FSM. For example, the first “add” instruction in Figure 

20 is translated into a “sub” instruction, whereas the second “add” instruction is 

translated into a “div” instruction. No static relationship exists between the 

obfuscated and deobfuscated instructions, which makes it impossible to determine 

the next deobfuscated instruction without having the FSM transition rules. 

 

Changing these transition rules is difficult in the hardware-based FSM 

implementation during development. This makes an application update costly and 

inflexible. Also, costs for integration of the FSM into the client’s phone and the FSM 

space requirements on the phone’s platform make the FSM uneconomical and 

complicated if applied to millions of phones. 

 

The FSM requires the injection of dummy instructions into the obfuscated code to 

guarantee correct instruction interpretation regardless of the actual application input. 

Without these dummy instructions, for example, interpretation of branch instructions 

(e.g. if, case) can lead to wrong state transitions depending on the application input. 

These dummy instructions can leak information about the real semantics of the 

application code. This makes attacks easier, because a large number of dummy 

instructions are unusual in software code and thus, easy to identify for an attacker. 

 

The framework for phone software protection [124] attempted to eliminate these 

security and flexibility problems by replacing the hardware-based FSM with a 

Permutation-Based Interpreter (PMI) implemented in software. The PMI allows an 

easier change of the transition rules, and also it does not require specialised 

interpretation hardware or dummy instructions to successfully execute an obfuscated 

application. Instead, the fixed FSM transition rules are replaced by adaptable, one-to-

many mappings described in software, which become auxiliary input parameters 

(AuX) to the PMI as shown in Figure 21 [124]. 

 



 85  

 

Figure 21: Software-based obfuscated interpretation framework 

 

To obfuscate an application, the original application A0 is translated by the 

obfuscator into an obfuscated application version AX. Beside AX, the obfuscator 

returns the auxiliary input AuX (i.e. a one-to-many mapping key) of this obfuscation 

process. These two elements (AX and AuX) are used together with the client’s 

application input I as input parameters to the PMI. The PMI is an extended 

“Conventional Interpreter” that has an additional permutation unit to deobfuscate AX. 

During interpretation of AX, the PMI retranslates the obfuscated application based on 

the current obfuscated instruction (e.g. addition) and the current AuX value (e.g. 2). 

The one-to-many mapping of the PMI can be described by: 

Map(obfuscated Instruction, Value of AuX) Deobfuscated Instruction 

This mapping guarantees that the same obfuscated instruction is mapped into 

different deobfuscated instructions depending on the current value of AuX, e.g.: 

Map(addition, 1)    subtraction 

Map(addition, 2)    division 
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Further mappings   ... 
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the PMI and illegitimate execute the application. However, AuX and mapping rules 

are required in the deobfuscation process if a genuine client wants to use the 

application. Thus, both elements must be stored on the phone and be accessible by 

the PMI. To protect the AuX, it is encrypted with a unique key that is different in all 

PMIs and stored inside the PMI. This unique key further eliminates that an attacker 

can use knowledge gained in an attack to compromise other PMIs, because all PMIs 

use different keys to protect the AuX. To “protect” the mapping rules and the AuX 

encryption key, the PMI needs to be hidden as much as possible, for example by 

integrating the PMI source code inside the Java VM source code [124]. 

4.3.2 Conclusion on Software-based Protection of Authentication Process 

Utilising the resources already available on the phone (e.g. processor, memory) in a 

software-based approach to protection the authentication process has two advantages: 

1) No further costs for development and integration of supporting hardware (e.g. 

SIM card or custom chip) will arise. 

2) Powerful processing resources are already available on today’s phones and can 

be consequently used straightaway. This reduces the time to deploy new versions 

of software-based solutions and simplifies the maintenance process. 

 

mCommerce applications requiring secure authentication benefit from software 

protection. Software protection ensures the integrity and correct execution of the 

application on the phone. Protecting and verifying the software integrity during the 

authentication process execution: 

1) eliminates attacks in which an attacker changes the application behaviour 

illegitimately to the attacker’s advantage to get authenticated (cp. section 2.3.1), 

2) assures the authenticator that the authentication data is correctly collected and 

processed. This increases the authenticator’s trust in the received authentication 

data transmitted by the client and leads to more reliable authentication decisions. 

 

Although tamper resistance and obfuscation techniques cannot fully protect an 

application against all types of attacks executed by highly skilled attackers [125], 

these techniques are able to “raise the bar” substantially and make attacks more 

difficult, time consuming and costly [110]. Layout obfuscation techniques (e.g. 
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identifier renaming) do not have the potency to withstand manual inspections by an 

experienced attacker. However, combining these layout techniques with control flow 

obfuscation techniques as proposed in the oBiometrics scheme [126] (cp. section 5.1) 

introduces a big challenge even for experienced attackers (cp. section 5.1.3). 

 

The oBiometrics scheme uses opaque variables based on biometric generated keys 

(cp. section 2.2.2.4) to tightly bind the obfuscated application to the genuine client 

and thus, make it as difficult as possible for an attacker to bypass or remove the 

protection. Biometric keys are ideal to work similar to opaque variables, because the 

value of a biometric key is known after enrolment of the client, but difficult to 

determine in an attack. In addition to biometric keys, oBiometrics also uses the 

client’s current location to generate location-based keys (cp. section 2.2.3.3) for 

obfuscation. Combination of biometric-based and location-based keys into an opaque 

variable for obfuscation tightly binds the correct application execution to the genuine 

client as well as ensures the current location of the phone. 

 

Obfuscated interpretation implemented in software is used in oBiometrics to 

dynamically modify the application instructions based on the generated keys. In 

oBiometrics, the generated keys operate as the auxiliary input AuX (cp. section 

4.3.1.3). Because these keys are always freshly generated from the client’s provided 

biometrics and the phone’s current location, oBiometrics does not require AuX to be 

stored and protected on the phone. Also, this eliminates that the interpreter and the 

mapping rules must be hidden in oBiometrics as necessary in the PMI [124]. Hiding 

the mapping rules and the interpreter inside the VM, as well as the decryption key for 

AuX inside the PMI is critical. It is critical, because the Java VM is licensed under 

the GNU General Public License [127] and thus, the original VM source code is 

available to everyone. Identifying the PMI inside the VM extracted from the phone is 

easy, because the extracted VM can be compared to an unmodified VM version 

compiled from the original sources to identify any differences. Once the PMI 

instructions are identified inside the VM, these instructions can be de-compiled to 

locate the mapping rules and the auxiliary input AuX decryption key. Thus, hiding 

PMI and the AuX decryption key inside the VM does not provide enough security 

and strength against sophisticated attackers. Instead, it must be seen as “security 

through obscurity”, which contradicts the principles of secure crypto systems [128]. 
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A possibility to prevent the in-detail inspection of the Java VM would be to secure 

(i.e. obfuscate) the complete Java VM. 

 

In oBiometrics, the freshly generated keys eliminate the need to securely store AuX. 

The large key-space of the biometric- and location-based keys also removes the 

requirement to hide the mapping rules. Even if the mapping rules are known by an 

attacker, the attacker is not able to determine the correct deobfuscated instructions 

without having the correct key, i.e. the security of oBiometrics does not base upon 

“security through obscurity”. Instead, oBiometrics security bases upon the large key-

space and huge amount of possible combinations to deobfuscate the application 

instructions. This is important because phones are easily lost or stolen and thus, are 

fully available to an attacker for inspection. I.e. the white box attack model must be 

assumed as the attacker’s capability level (cp. section 4.3.1). 

The proposed oBiometrics scheme introduces only run-time overhead (cp. section 

5.1.2). Neither additional application instructions are needed to obfuscate the 

application, nor is more memory required to execute an oBiometrics protected 

application. This makes oBiometrics a suitable obfuscation technique for phones. 

 

After investigating advantages and disadvantages of SIM cards (cp. section 4.1) and 

custom chips (cp. section 4.2) to host the authentication process, an evaluation of 

security, performance and cost impacts of software protection was performed. Based 

on the presented and discussed results, LOTA concluded that software protection 

utilising the phone onboard resources outperforms the other two possibilities. 

Section 4.3.3 will introduce the Android OS as the technical environment used in the 

software protection trials and experiments. The proposed obfuscated interpretation 

schemes to protect mCommerce applications on phones will be described in detail in 

section 5.1 (oBiometrics) and section 5.2 (LocAuth). 

4.3.3 Experimental Environment for Authentication Software Protection 

The Android OS was selected as the environment to implement the proposed 

schemes and to perform the practical trails and experiments. Android is a software 

stack especially designed for phones and invented by Android Inc. Since 2005, the 

development of Android is driven by Google Inc. and the Open Handset Alliance. 

Android was selected for the following two reasons: 
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1) Android is the Smartphone OS market leader. Android has a total market share of 

more than 50% and it is expected that this market share continues to rise [129]. 

2) The complete Android software stack, including OS, middleware and important 

system and user applications are available as Open Source. Android is distributed 

under the Apache Software License [130] that allows the use, modification and 

further distribution of the licensed software without charges as long as the new 

product is distributed under the same license, too. Because implementation of the 

proposed oBiometrics and LocAuth schemes (cp. sections 5.1 and 5.2) requires 

modifications of the OS (i.e. the Dalvik VM (DVM)), it is essential that the OS 

source code is freely available to perform practical trials. 

4.3.3.1 Android System Architecture 

The Android OS bases upon a modified Linux kernel as shown in Figure 22 [131]. 

Of particular interest for the implementation of the proposed schemes are the 

“Android Runtime” environment including the DVM, the user application layer 

(“Applications”) and the “Application Framework” layer. 

 

 

Figure 22: Android system architecture 
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All system and client applications from the applications layer are interpreted by the 

DVM. The developed MORE-BAILS, oBiometrics and LocAuth applications are 

also client applications and thus, elements of the applications layer after the 

applications have been installed on the phone. To execute these biometric- 

respectively location-obfuscated applications correctly, the functionality of the DVM 

was adapted. The modified DVM source code was then re-compiled and combined 

with the other parts of the Android OS (e.g. Linux Kernel, Libraries) to create a 

complete new system image to be used on the Android emulator and phones for the 

trials. All DVM modifications and application trials were performed on the Android 

Version 2.2 (Codename: Froyo). This was the state-of-the-art Android version when 

the proposed schemes were implemented for the trials. 

 

The Application Framework layer provides an API to various sensors and receivers 

available on the phone, e.g. GPS receiver, camera, or microphone. LOTA uses the 

Application Framework: 

1) To capture the required biometric data (e.g. the client’s face) via camera and 

Hardware Manager. 

2) To determine the current phone location via onboard GPS receiver and Location 

Manager. 

3) To access the used mobile network communication properties (e.g. currently used 

cell-ID) via the Telephony Manager. 

4.3.3.2 Android Application Development 

Android applications are written in Java, which enables Android application 

developers to use the wide range of available Java software development 

environments. It is also possible to include code blocks or libraries written in native 

code (e.g. C or C++) for enhancing the performance of time critical code segments. 

Developed applications are then, in a first step, compiled using standard Java 

compilers to Java byte-code [132]. On the resultant Java byte-code, obfuscations 

techniques like control flow obfuscation [120] can be applied (cp. section 4.3.1.2). 

However, it is not possible to execute this Java byte-code directly inside the Android 

system, because Android uses a specially developed VM to interpret the byte-code, 

the DVM (cp. section 4.3.3.3). This DVM requires different byte-code instructions 

than the Java VM. To generate the required Dalvik instructions from the Java 
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instructions, the Dalvik cross compiler “dx” is used. This “dx” tool translates Java 

byte-code instructions into the correct Dalvik format and creates a number of “dex-

files”, which are the basis for the oBiometrics framework (cp. section 5.1.2). 

 

Android applications are distributed to the clients as Android packages (apk). An 

apk-file contains the generated byte-code dex-files as well as all other required 

resources (e.g. images, sounds, translation files, etc) of the developed application. 

The proposed MORE-BAILS, oBiometrics and LocAuth applications will be 

distributed to the enrolled clients as apk-files, too. Once a client receives one of these 

application packages, s/he has to install it on his/her Android phone using the normal 

installation procedure and the application is immediately ready to use. 

4.3.3.3 Dalvik Virtual Machine 

The DVM is a register-based VM, which interprets the Dalvik byte-code instructions, 

i.e. the DVM executes the client’s application as shown in Figure 23. 

 

 

Figure 23: DVM steps performed during application execution 
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5) If no cached dex-files exist, then the dex-files are extracted from the loaded 

application package and the “dexopt” tool verifies that no faulty byte-code 

sequences are present in any of the extracted dex-files. If a corrupted dex-file is 

identified, then the DVM immediately stops processing this application. The 

client is notified by the Android OS that this application cannot be executed. The 

benefit of this verification step is that no time-consuming verification is 

necessary during the actual application interpretation. This makes the application 

execute faster, because verified dex-files are cached. Thus, only one verification 

task is required for multiple executions of the same application. 

6) The verified dex-files are optimised by the “dexopt” tool. During this 

optimisation step, various tasks are performed to simplify the byte-code 

instructions and subsequently increase the application interpretation speed. For 

example, method calls are replaced with the corresponding index in the method 

table to achieve faster access to the method implementation. 

7) After all dex-files are optimised, they are stored in the OS application cache. 

8) Finally, the DVM interprets the byte-code instructions of the dex-files and 

executes the application. 

 

The byte-code verification carried out by the “dexopt” tool impacts the developed 

oBiometrics and LocAuth schemes. These schemes translate the application’s byte-

code instructions into other instructions during the obfuscation process. To pass the 

DVM verification stage, certain rules to the obfuscation process must be applied, i.e. 

it is not possible to replace instructions randomly (cp. section 5.1.2). A similar 

limitation arises from the optimisation stage. The “dexopt” tool changes certain 

instructions at the optimisation stage for faster application execution as shown in step 

6 of Figure 23. These instructions cannot be used for obfuscation, because they are 

no longer available after optimisation, i.e. in the interpretation stage where 

deobfuscation takes place. Performing deobfuscation prior to verification and 

optimisation to avoid these limitations is not possible due to the caching mechanism. 

If deobfuscation would take place before verification or optimisation, then the 

deobfuscated (i.e. unprotected) version of the application would by cached. This 

would enable an attacker to start and use the application without the need to provide 

fresh credentials for deobfuscation. For this reason, it is important that deobfuscation 

takes place in the last DVM step, the application interpretation.  
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5 OBFUSCATED INTERPRETATION TO 

ENHANCE AUTHENTICATION SECURITY ON 

PHONES 

Section 4.3.2 concluded that software-based protection is the most viable option to 

protect the authentication process execution on the client’s phone. This chapter 

further describes the concept and the prototype implementation details of the 

proposed oBiometrics software protection scheme that will secure the MORE-BAILS 

(cp. section 3.2) process execution. 

 

The MORE-BAILS application will be obfuscated (i.e. protected) by a client specific 

oBiometrics key. This ensures that only the genuine client can execute MORE-

BAILS on his/her phone correctly and thus, reduces the risk that an attacker can 

illegitimately use the MORE-BAILS application. 

5.1 oBiometrics: Biometric-based Software Obfuscation 

oBiometrics combines obfuscated interpretation (cp. section 4.3.1.3) with biometric 

generated keys (cp. section 2.2.2.4) to tightly bind the correct application execution 

to the genuine client. This stops an attacker from illegitimately using an application, 

even if the attacker has full access and control over the phone (white box attack 

model, cp. section 4.3.1). 

 

In remote authentication, oBiometrics assures the authenticator that: 

1) No attacker has tampered with the authentication application on the client’s 

phone. 

2) Authentication data collection and authentication process execution on the phone 

was performed correctly. 
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5.1.1 Concept of the oBiometrics Scheme 

The three steps to protect an application with oBiometrics are shown in Figure 24. 

 

 

Figure 24: Client enrolment, application development and distribution 
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developed, elements (e.g. methods, classes, packages) to be obfuscated can be 

specified. If no elements are specified, then the complete application will be 

obfuscated. Specifying the elements to be obfuscated (i.e. “partial obfuscation”) 

can be necessary because: 

a) Parts of the application may be used as libraries by other applications, which 

are not able to handle obfuscated code. 

b) Elements are often called during application execution and thus, introduce an 

unacceptable computational overhead for deobfuscation (cp. section 5.1.3). 

c) Partial obfuscation allows protection of nothing but the important parts and 

algorithms of an application. This speeds-up the interpretation in applications, 

which do not require complete code protection, because the number of 

necessary deobfuscation steps decreases. 

The developed application is then compiled using standard compilers (e.g. Dalvik 

Java Cross-Compiler for Android) and tested. 

3) In the last step, the application is obfuscated and distributed to the client. The 

original application instructions are substituted (obfuscated) with instructions 

selected on the basis of the client's stored biometric key, which makes the 

obfuscated application uniquely tailored to each client. This client specific, 

biometric-secured obfuscated application is then distributed to the client for 

installation on the client’s phone. 

 

The personal client information is used in two ways in oBiometrics: 

1) The information links the enrolled client with his/her corresponding biometric 

key. The authenticator uses this information to re-obfuscate new or updated 

application versions. Without the client’s biometric key stored in the 

authenticator’s database, the client has to enrol again for each new application 

version. This would be expensive and time-consuming for an authenticator 

offering many applications as well as inconvenient for the client. If the 

obfuscation is a one-off task, because no application updates will be available, 

then the biometric keys do not have to be stored. The client’s biometric data can 

be deleted directly after the obfuscation stage. This is in contrast to other 

biometric-based authentication systems, which always require the secure storage 

of the client’s enrolled biometric template to be compared with the freshly 
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captured biometrics. This storage and comparison of the biometric template is not 

necessary in oBiometrics, because the obfuscated application “becomes the 

biometric template”. The client does not have to worry about his/her sensitive 

biometric data. Because it is not stored at any place, it cannot be passed on or be 

illegitimately used in any way. 

2) The information strengthens the oBiometrics obfuscation key (KeyoBio, cp. 

section 5.1.2). The KeyoBio depends on the biometric generated key as well as the 

unique client identifiers, i.e. two AFs. This offers more security than depending 

on only one AF (e.g. biometrics, cp. section 2.2). 

 

Once a client wants to use an application on the phone, the oBiometrics scheme 

performs the following steps shown in Figure 25. 

 

 

Figure 25: oBiometrics application execution on client's phone 
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second key can be entered directly by the client (knowledge-based AF, e.g. 

password) or they can be retrieved from a storage medium attached to the phone 

(object-based AF, e.g. an attached memory card). It is also possible to combine 

both additional AFs to increase the security even further. In this case, the 

obfuscation key KeyoBio bases upon three AFs. It is not recommended to store the 

object-based AF directly on the phone. If the phone gets lost or stolen, then the 

object-based AF is also lost and does not offer any additional security. 

5) The key combination step passes the generated key on to the application 

interpreter, which performs the obfuscated interpretation. 

5.1.2 oBiometrics Scheme Implementation 

The oBiometrics prototype was implemented and tested on the Android platform (cp. 

section 4.3.3). In order to enable the Android OS to interpret oBiometrics protected 

applications correctly, the source code of the DVM was adapted (cp. section 4.3.3.3) 

to be used for testing and evaluation of the oBiometrics prototype application. 

 

oBiometrics translates the original application byte-code instructions into new 

instructions depending on the obfuscation key KeyoBio. To pass the verification and 

optimisation steps of the DVM (cp. section 4.3.3.3) successfully, it is not possible to 

substitute all byte-code instructions during the obfuscation process. For example, the 

“return-void” instruction cannot be replaced by any other instruction, because this 

instruction is the only instruction without parameters. If the “return-void” instruction 

would be substituted with another instruction that expects one or more parameters, 

the DVM verifier would recognise this error and the application would not be 

executed any further by the DVM. Similarly, byte-code instructions starting with, for 

example, “iget” or “invoke*” cannot be obfuscated. These instructions are 

automatically replaced by the DVM optimiser with other instructions, and thus, are 

not available for deobfuscation at the DVM interpreter phase. For example, methods 

referenced by “invoke*” calls are replaced with the actual memory locations of these 

methods, i.e. the method calls are optimised for static method linking. Table 5 shows 

exemplarily some of the instructions (third column), which cannot be used for 

substitution in the obfuscation stage. For clarity, these instructions are divided into 

groups of similar instructions (columns one and two). The fourth column in Table 5 

outlines why the instruction cannot be used for substitution during obfuscation. 
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Table 5: Instructions not available for oBiometrics obfuscation 

Instruction 

group 
Group Description 

Associated Instruction 

Mnemonics 

Reason why instruction 

cannot be substituted 

return-void 
Return from a method 

without return value 
return-void Detected by verifier 

iget* 

Read field instance of 

kind "*" (e.g. Byte) 

into register 

iget, iget-wide, iget-object, iget-

boolean, iget-short, iget-byte, 

iget-char, iget-short 

Replaced by optimiser 

for static linking 

iput* 

Store register value 

into field instance of 

kind "*" (e.g. Byte) 

iput, iput-wide, iput-object, 

iput-boolean, iput-short, iput-

byte, iput-char, iput-short 

Replaced by optimiser 

for static linking 

invoke* 
Call the specified 

method 

invoke-virtual, invoke-super, 

invoke-direct, invoke-static 

Replaced by optimiser 

for static linking 

invoke*/range 

Call the specified 

method with a range 

of method parameters 

invoke-virtual/range, invoke-

super/range, invoke-

direct/range, invoke-static/range 

Replaced by optimiser 

for static linking 

 

Another restriction on the available instructions for substitution is that instructions 

can be only replaced with other instructions, if and only if these instructions have the 

same general return type as well as the same number and type of parameters. I.e. the 

instructions must belong to the same instruction group. All other substitutions will 

not pass the verification phase of the DVM. Table 6 shows exemplarily four of these 

instruction groups. 

 

Table 6: Selective instruction groups for oBiometrics obfuscation 

Instruction 

Group 
Possible byte-code substitutions 

Number of 

instructions in 

group 

3reg-operations 

add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int, xor-

int, shl-int, shr-int, ushr-int, add-float, sub-float, mul-float, 

div-float, rem-float, add-long, sub-long, mul-long, div-long, 

rem-long, and-long, or-long, xor-long, shl-long, shr-long, 

ushr-long, add-double, sub-double , mul-double, div-double, 

rem-double, cmpl-float, cmpg-float, cmpl-double, cmpg-

double, cmp-long, aget, aget-wide, aget-object, aget-boolean, 

aget-byte, aget-char, aget-short, aput, aput-wide, aput-object, 

aput-boolean, aput-byte, aput-char, aput-short 

51 

2reg-operations 

add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr, 

rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr, shl-

int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr, sub-

float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr, 

neg-int, not-int, neg-long, not-long, neg-float, neg-double, int-

to-long, int-to-float, int-to-double, long-to-int, long-to-float, 

long-to-double, float-to-int, float-to-long, float-to-double, 

double-to-int, double-to-long, double-to-float, int-to-byte, int-

to-char, int-to-short 

37 

2reg-comparison if-eq, if-ne, if-lt, if-ge, if-gt, if-le 6 

1reg-comparison if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez 6 
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The “add-int” instruction in the first “3reg-operations” group can be substituted with 

the other 50 byte-code instructions of this group. In the last row, the “if-eqz” 

instruction can be accordingly translated into all other instructions in the “1reg-

comparision” group. 

 

One theoretically possible technique to circumvent these limitations is to deobfuscate 

the application prior to the DVM verification or optimisation phase. However, this 

would introduce a tremendous security problem, because the DVM caches 

successfully verified and optimised applications (cp. section 4.3.3.3). 

 

Android applications are written in Java, compiled by Java language compilers and 

then converted to Dalvik byte-code by the “dx” tool (cp. section 4.3.3.2). In the 

oBiometrics prototype, Java Annotations are used to define the Java methods and / or 

Java classes that should be obfuscated (cp. section 5.1.1). To obfuscate the byte-code 

instructions in the prototype implementation, the Dalvik source code is first de-

compiled by the smali tool [133]. Figure 26 shows an example of a Java method 

(Figure 26(a)) with an “Obfuscate” annotation and two integer parameters, and the 

resultant Dalvik byte-code (Figure 26(b)) decompiled by smali. 

 

 

Figure 26: Java source code (a) and Dalvik byte-code instructions (b) 

 

During obfuscation, the byte-code instructions (e.g. “add-int” in Figure 26(b)) will be 

substituted based on the client’s specific KeyoBio. Because the number of instructions 

varies from application to application, a substitution key with a fixed length cannot 

be used. Instead, a PRNG with KeyoBio as seed is used to produce a pseudo-random 

bit stream of arbitrary length. Figure 27 shows the obfuscation process for the first 

two byte-code instructions (“add-int”, “if-gez”) of Figure 26(b). 

(a) (b)

.method private doIt(II)I

 .annotation Lbuck/Obf;

   add-int v0, p1, p2

   if-gez v0, :cond_1

   move v0, p1

   :cond_1

   return v0

.end method

@Obfuscate()

int doIt(int a, int b){

  int c = a + b;

  if (c > 0) 

    return c; 

  else

    return a;

}
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Figure 27: Obfuscation process for application byte-code instructions 

 

1) The client specific KeyoBio is extracted from the client information and biometric 

key database and used as a seed to the PRNG. 

2) The first instruction to be obfuscated is “add-int” (cp. Figure 26(b)). “add-int” 

belongs to the “3reg-operations” instruction group (cp. Table 6). The group size 

of this instruction group “3reg-operations” is 51 elements, i.e. 6 bits are required 

from the key stream to select the corresponding obfuscated instruction. The first 

6 bits from the generated key stream are “001110”. “001110” corresponds to 14 

in decimal notation. The “div-float” instruction is at position 14 in the “3reg-

operations” group (with counting starting at 0) and will be used as obfuscated 

instruction to replace the original instruction “add-int”. 

3) The next instruction to be obfuscated is “if-gez”. The “1reg-comparision” group 

of “if-gez” contains 6 elements and thus, requires the next 3 bits (“010”) from the 

PRNG key stream. The resultant obfuscated instruction is “if-ltz”. 

4) This algorithm continues with the following instructions until all application 

instructions are obfuscated. 

 

After all application instructions are obfuscated, the obfuscated byte-code is re-

assembled by the smali tool and the application is then distributed to the client. Upon 

receiving the obfuscated application from the authenticator, the client installs the 

application on the phone. Once the client starts this application, the DVM triggers a 
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process to capture fresh client biometrics. The KeyoBio and the pseudo random bit 

stream are calculated similar to the obfuscation process shown in Figure 27. The 

resultant PRNG output is then used to deobfuscate the byte-code during 

interpretation. Based on the PRNG output and the obfuscated instruction, the original 

instruction is determined by reversing the obfuscation selection rules (cp. Table 6). 

The deobfuscated byte-code is then executed by the DVM interpreter. 

5.1.3 Security / Performance Analysis and Experimental Results 

This section analyses the potency, resilience and execution costs (cp. section 4.3.1.2) 

of the proposed oBiometrics scheme. A single instruction substitution does not create 

a big challenge for an experienced attacker, who manually analyses the application 

instructions in a step by step approach. For example, a Java implementation of a 

“Factorial” function (as shown in Figure 28) results in the byte-code instructions 

shown in Figure 29. 

 

 

Figure 28: Factorial function in Java 

 

 

Figure 29: Byte-code of factorial function: (a) original, (b) obfuscated 

private int fac(int inputVal) {

  int retVal = 1;

  for (int i = 1; i <= inputVal; ++i) {

    retVal *= i;

  }

  return retVal;

}

.method private fac(I)I

 .parameter "inputVal"

 const/4 v1, 0x1

 .local v1, retVal:I

 const/4 v0, 0x1

 .local v0, i:I

 :goto_2

 if-le v0, p1, :cond_5

 return v1

 :cond_5

 mul-int/2addr v1, v0

 add-int/lit8 v0,v0,0x1

 goto :goto_2

.end method

Local

definitions

Loop

Factorial 

multiplication,

loop increment

.method private fac(I)I

 .parameter "inputVal"

 const/4 v1, 0x1

 .local v1, retVal:I

 const/4 v0, 0x1

 .local v0, i:I

 :goto_2

 if-nez v0, p1, :cond_5

 return v1

 :cond_5

 shl-int/2addr v1, v0

 div-int/lit8 v0,v0,0x1

 goto :goto_2

.end method

(a) (b)
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With the knowledge of the method and variable names, the individual elements (e.g. 

variable definitions, loop implementation etc.) of the method can be simply 

identified. If the attacker faces an obfuscated version as shown in Figure 29(b), the 

attacker could recognise the substituted instructions and replace them back to the 

original ones, assuming that the attacker knows the correct implementation of the 

factorial algorithm. However, if obfuscated interpretation is combined with further 

obfuscation techniques, then the analysing and deobfuscation task becomes much 

more complicated even for an experienced attacker. For the example shown in Figure 

29, renaming of variables and methods [117] removes the information required to 

identify the real semantics of the obfuscated byte-code. This increases the potency of 

oBiometrics and makes a manually performed deobfuscation attempt more 

complicated, because the byte-code instructions can describe any algorithm. 

 

Potency of oBiometrics also increases with an increasing number of byte-code 

instructions that can be used for obfuscation, because a manual inspection becomes 

more difficult and time consuming. Table 7 shows exemplarily the total number of 

byte-code instructions of six Android applications and how many of these 

instructions can be theoretically used for obfuscation. 

 

Table 7: Number of instructions available for oBiometrics obfuscation 

Application 

name 
Application origin 

Total 

number of 

instructions 

Number of 

instructions 

available for 

obfuscation 

Percentage of 

instruction 

available for 

obfuscation 

Browser Android system application 23000 14400 63% 

Contacts Android system application 33800 22100 65% 

E-Mail Android system application 99600 67700 68% 

Phone Android system application 42200 25100 59% 

PayPal Market application: finance 60000 38600 64% 

FXCM Mobile Market application: finance 34300 20900 61% 

Average   48817 31467 64% 

 

The first four applications (Browser, Contacts, E-Mail, and Phone) are Android 

system applications available on all Android phones. The remaining two applications 

(PayPal and FXCM Mobile TSII (MarketSimplified Inc)) are two of the “top-free in 

Finance” applications from the Android market. The total number of byte-code 

instructions varies between 23000 (Browser) and 100000 (E-Mail). Between 14000 

and 67000 of these instructions can be theoretically obfuscated. All remaining 
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instructions cannot be used for obfuscation, because substitution of these instructions 

would be identified during the DVM verification or optimisation phase (cp. section 

4.3.3.3). On average, over 60% of the total number of instructions can be used for 

obfuscation. This large number of instructions makes an attack, in which an attacker 

analyses the obfuscated byte-code manually step by step, infeasible or at least very 

time consuming and inefficient. 

 

The large number of available instructions for obfuscation also increases oBiometrics 

resilience. The total number of possible substitution combinations (T) for an 

application can be calculated by formula (4): 

 

 T  ∏  

 

   

 (4) 

 

Where:  N : Number of instruction groups. 

S : Size of instruction group i. 

E : Number of elements of group i in the byte-code. 

 

A method containing ten instructions (five instructions from the “3reg-operations”, 

two instructions from the “2reg-comparision” and three instructions from the “2reg-

operations” group, cp. section 5.1.2) results in: 

T = 51
5
 * 6

2
 * 37

3
 = 6.29*10

14
 

possible combinations. Because Android applications have several thousand byte-

code instructions (cp. Table 7), it is impossible to try all possible combinations. Even 

in a sophisticated, brute-force attack with hundreds of computers, such an attack 

requires years to finish. Furthermore, the obfuscated application and all possible 

deobfuscated versions are still valid applications (in terms of byte-code verification). 

This makes a brute-force attack more difficult, because the attacker cannot be sure, if 

the deobfuscated version is the correct version, i.e. has also the correct semantics. In 

contrast, it is likely that the application will produce a wrong output or crash at some 

point during execution. 

 

Resilience of oBiometrics was also tested with de-compilation and reverse-

engineering tools for Java and Dalvik byte-code, e.g. “undx” or “Dex2Jar”. In 20% 
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of the performed tests, these tools were not able to restore any useful application 

source code from the obfuscated byte-code, because they failed to analyse the 

changed byte-code instruction structure. In the remaining 80%, the tools returned 

some de-compiled source code. However, none of the returned source code 

corresponded to the original semantics of the obfuscated application. I.e. the tools 

failed in 100% of the tests to restore the real application semantics, because de-

compilation tools are not able to understand and verify the semantics of a software 

application. Instead, these tools simply transfer the obfuscated byte-code back into its 

corresponding Java form, without being able to judge on the semantic correctness. A 

human is required to analyse and verify the correctness, which is difficult because of 

the large number of possible deobfuscated versions. 

 

Analysis of the development and execution costs of oBiometrics is divided into two 

aspects: 

1) Time and resources needed by the application provider to generate an 

oBiometrics protected application. 

2) Time and resources needed to execute the protected application on the client’s 

phone. 

 

Protecting applications with oBiometrics follows the standard software development 

cycle (cp. section 5.1.1). No additional time or special resources are needed during 

the application development. The optional specification of the application elements 

to be obfuscated also does not introduce any costs or time delays in the application 

development, because it only requires adding Java annotations to the application. The 

most costly tasks (in terms of required financial resources and time) are client 

enrolment, biometric key generation and byte-code obfuscation. However, as these 

tasks are performed only once and they can be performed automatically, the 

introduced costs can be neglected. Trials showed that obfuscation of thousands of 

byte-code instructions can be achieved in 3 to 5 seconds depending on the overall 

program size and structure. 

On the client’s phone, the required byte-code deobfuscation process adds a further 

step to the application interpretation inside the DVM (cp. Figure 25), which increases 

the overall application execution time. However, because oBiometrics does not 

require that the substitution rules are hidden (cp. section 4.3.2); a substitution table 
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implementation based on a standard vector can be used. This structure has a time 

complexity of O(1) to access an arbitrary element (i.e. the corresponding 

deobfuscated instruction) in the vector. I.e. finding and replacing an obfuscated byte-

code instruction with the original one is achieved in constant time inside the DVM 

interpreter. This re-translation must be performed for all obfuscated instructions “n” 

of the application, i.e. the overall time complexity of oBiometrics is O(n). 

 

oBiometrics also does not add noteworthy memory requirements to the DVM. 

Additionally memory is only needed to store the substitution table. The DVM 

supports up to 256 byte-codes, with currently 218 instructions in use. Each of these 

byte-codes is represented by one byte, thus storing the entire substitution table 

requires less than one kilo-byte memory. 

5.1.4 Conclusion on oBiometrics 

oBiometrics offers a lightweight, yet strong software protection mechanism for 

phones to prevent the illegitimate execution of applications as well as to protect the 

software against reverse-engineering. Trails on the developed Android prototype 

showed that the actual run-time overhead introduced by oBiometrics obfuscated 

interpretation is not noticeable on the client’s phone. The time required to initialise 

the DVM, to load the apk-file and all associated files (images, layout- and 

preference-files, etc.), and finally execute the byte-code instructions takes much 

longer than the time needed for instruction substitutions added by oBiometrics. For 

time critical applications, partial obfuscation can be used to adjust the introduced 

run-time overhead for deobfuscation of the obfuscated byte-code instructions. Also, 

the memory requirement of oBiometrics is insignificant compared to the memory 

required to execute an application. 

 

The software implemented obfuscated interpretation enhances the flexibility of the 

application development and supports application updates. New application versions 

can be instantly obfuscated by the authenticator using the stored client’s obfuscation 

key KeyoBio. Distribution of these application updates is easy, because they can be 

sent to the enrolled client’s by email for example. Application installation on the 

client’s phone is also simple, because the application installation routine offered by 

the phone can be used. 
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Combination of obfuscated interpretation with biometric-based keys tightly binds the 

correct application execution to the genuine client. oBiometrics was particularly 

developed to protect and ensure the correct process execution of mCommerce 

applications requiring strong client authentication. This shall assure the remote 

authenticator that the authentication application was correctly executed and that the 

authentication data was collected and processed accurately on the phone. However, 

oBiometrics is not limited to this application area. Instead, oBiometrics can be used 

to protect all kinds of applications on phones. In addition, oBiometrics can also be 

utilised to protect software applications running on PCs. 

 

Security strength of oBiometrics bases upon the large key space of the client specific 

biometric-based KeyoBio and the large number of instructions available for 

substitution. In combination with further obfuscation techniques (e.g. layout 

obfuscation techniques like renaming, cp. section 4.3.1.2), it becomes difficult for an 

attacker to understand the real semantics of the protected application even if the 

attacker performs an in-depth application analyses manually, i.e. oBiometrics offers a 

high potency. 

 

Reverse-engineering tools also fail in the attempt to restore the original semantics of 

oBiometrics protected applications, because these tools simple re-translate the 

obfuscated instructions into higher level application statements without considering 

the application’s semantics, i.e. oBiometrics offers a high resilience. Because KeyoBio 

is always freshly generated from the client’s provided biometrics, neither the 

permutation rules nor the obfuscation key must be hidden inside the VM. This 

simplifies implementation of the obfuscated interpretation framework on phones and 

eliminates the risk that an attacker can circumvent the protection by identifying the 

deobfuscation rules or the used key in the application code (cp. section 4.3.2). 

5.2 LocAuth: Location-obfuscated Authentication Challenge 

MORE-BAILS achieves strong multi-factor client authentication on phones (cp. 

chapter 3), which correct execution is ensured by oBiometrics (cp. section 5.1). 

LocAuth was designed to be seamlessly combined with MORE-BAILS and 

oBiometrics. LocAuth assures the real-time and one-time property of the MORE-
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BAILS authentication attempt to the authenticator and thus, prevents distance 

attacks, e.g. replay or impersonation attacks (cp. section 2.3.1) [134]. 

LocAuth uses the oBiometrics obfuscated interpretation framework in combination 

with random nonce(s) and location-based keys to generate a location-obfuscated, 

real-time authentication-challenge program (called LocProg). Figure 30 shows how 

an mCommerce application executed on the client’s phone can use MORE-BAILS, 

oBiometrics and LocAuth to achieve robust and secure client authentication. 

 

 

Figure 30: LocAuth combined with oBiometrics and MORE-BAILS 

 

1) The authentication attempt starts on the client side once the client opens the 

MORE-BAILS protected mCommerce application on his/her phone. 

2) After the mCommerce application has started, a KeyoBio is generated from the 

freshly taken client’s biometrics and the provided personal client data to 

deobfuscate the oBiometrics secured mCommerce application. 
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3) If the KeyoBio is correct, then oBiometrics interpretation is successful (dotted 

rectangle in Figure 30) and an authentication request is sent to the authenticator 

using a secure wireless communication channel. 

4) Upon receiving this authentication request, the authenticator requests the client’s 

current phone location and the cell-ID from the MNO (cp. section 2.2.3.1). 

5) A fresh LocProg is then generated and location-obfuscated by a key (Key-LocObf, 

cp. section 5.2.1.2) based on the client’s current location and the cell-ID. 

6) The generated LocProg together with a request to provide fresh MORE-BAILS 

data is then sent from the authenticator to the client. 

7) The mCommerce application on the client's phone receives the fresh LocProg 

and dynamically integrates LocProg into the oBiometrics secured LocAuth 

execution. LocAuth determines the phone’s current location by using the onboard 

GPS receiver. Simultaneously, the currently used cell-ID is identified as well as 

PIN and KoP are retrieved. Then, the key to deobfuscate the received LocProg is 

calculated (Key-LocDeObf, cp. section 5.2.1.2). If the correct Key-LocDeObf is used, 

then the client is able to calculate the correct LocProg result. 

8) MORE-BAILS is executed and the OTMFBR is generated (cp. section 3.2). 

9) The calculated LocProg result is combined with the generated OTMFBR and sent 

to the authenticator. 

10) If verification of the LocProg result and the OTMFBR is successful, then the 

authenticator continues the transaction, otherwise the client’s authentication 

attempt is rejected. 

 

LocProg uses random elements such as nonce(s), dynamic changing values known 

independently to client and authenticator (e.g. cell-ID), personal client data enrolled 

with the authenticator (PIN, KoP) and location as AFs. These AFs are used in the 

following way to enhance LocProg security: 

1) The random elements are unique to each generated LocProg and thus, they are 

used to prevent replay attacks as well as to ensure the one-time and real-time (i.e. 

the response will be accepted by the authenticator within a short time span, e.g. 5 

seconds) property of the LocProg challenge. 

2) The dynamically changing values (cell-ID), together with the enrolled client data 

(PIN, KoP), guarantee that only the genuine client with his/her phone can 

calculate the correct LocProg response, i.e. to prevent impersonation attacks. 
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3) The KoP acts as a “non-visible” AF. Integration of KoP into LocProg eliminates 

the risk that an attacker sitting next to the client in the public is able to steal (i.e. 

to see) all LocProg AFs. Because the KoP will never be exposed to the phone 

screen, an attacker is not able to get hold of the KoP. The other AFs (PIN, 

location) can be theoretically “seen” by an attacker. Either by seeing the client 

entering his/her PIN or by knowing the client’s current location. 

4) The independently verified location eliminates that an attacker can pretend to be 

at a certain place without actually being there, i.e. the client’s actual phone 

location is assured to the authenticator (cp. section 2.2.3.3). 

5) PIN, KoP and cell-ID are used to increase the key-space of the location-based 

Key-LocObf (cp. section 2.2.3.3) and thus, increase the number of different 

LocProg challenges. 

5.2.1 Implementation and Experimental Results 

The feasibility of LocAuth was tested on the Android platform (cp. section 4.3.3). 

Table 8 shows some of the collected location measurement for illustration and 

further explanation of the LocAuth implementation. Entries 1-6 in Table 8 reflect 

real location measurements. Entries 7-8 (shaded) are intentionally added wrong 

control locations to reflect an attack on LocAuth. These control entries should be 

identified and rejected by the authenticator, because the attacker does not use the real 

location of the client’s phone. 

 

Table 8: Location measurements for LocAuth experiments 

  

GPS-based 

Location (LC) 

MNO-based 

Location (LA) 

Distance between 

LC and LA, metre 

(LE) 

Cell-ID 

Lat LC 

(deg) 

Lon LC 

(deg) 

Lat LA 

(deg) 

Lon LA 

(deg) 

PV 

(meter)   

1 51.4977 0.0080 51.4970 0.0070 300 104 53209247 

2 51.5142 -0.1486 51.5140 -0.1470 200 113 48627332 

3 51.5131 -0.1419 51.5120 -0.1390 500 235 48626504 

4 51.5127 -0.1468 51.5140 -0.1470 100 145 48627332 

5 51.5138 -0.1439 51.5130 -0.1400 400 284 55171098 

6 51.5083 -0.1509 51.5090 -0.1510 100 78 48627465 

7 51.5020 -0.0013 51.4980 -0.0100 300 749 53416308 

8 51.4862 0.1105 51.4900 0.1200 300 782 54732850 
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Latitude and longitude values of the client’s phone location determined with the 

onboard GPS receiver are shown in column “LC” in Table 8. Column “LA” shows 

latitude and longitude values determined on the authenticator side via the MNO. 

Column “LA” also shows the Proximity Value (PV) provided by MNO to the 

authenticator. This PV expresses the confidence that the MNO has in its own 

localisation measurements. I.e. the MNO states that the client’s phone is inside a 

circle around the provided location LA with a radius equal to PV. 

 

The localisation error (distance between LC and LA), resultant from the different 

accuracy of the two localisation techniques used (cp. section 2.2.3.1), is shown in 

Column “LE”. This error is between 78 and 284 metres, with an average error of 160 

metres for the genuine measurements (i.e. entries 1-6). The location error of the two 

added control entries is larger (765 metre) and should be identified as attacks. The 

last column shows the “Cell-ID” currently used in the communication process 

between client and MNO (cp. section 2.2.3.1). 

5.2.1.1 LDEA Location-based Key Generation  

Correct interpretation of LocProg on the client’s phone requires the corresponding 

deobfuscation “Key-LocDeObf“ to the obfuscation “Key-LocObf” used by the 

authenticator. 

 

LOTA analysed, if the LDEA location-based key generation approach [61] (cp. 

section 2.2.3.3) can be utilised in LocAuth to generate the (de)obfuscation keys. The 

relevant part of the LDEA location-based key generation process is detailed in Figure 

31. 
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Figure 31: LDEA key generation process 

 

1) The LDEA key generation process starts with the determination of the client’s 

location, i.e. the location in which the client is able to use the deobfuscation key. 

In this example, the University of Buckingham is used as the client’s location 

with its coordinates West 0.99125, and North 51.99573. 

2) The TD is then applied to the determined coordinates. The coordinates are first 

multiplied with the factor FInt = 100000 to become an Integer and afterwards 

divided by the tolerate distance TD (i.e. TD = 25 metre for this example). 

3) The divisor needs to be corrected by a correction factor (CFLong) of 6 for the 

longitude respectively a CFLat of 5.4 for the latitude coordinate for each metre of 

tolerated distance [61]. 

4) The integral part of the result is calculated. 

5) The integral part is binarised. 
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6) One bit is added to the binary value to express north / south respectively east / 

west of the determined coordinates. 

7) The two binary values are combined by the XOR-function. 

8) The XORed binary value is converted back to a decimal form. 

9) The decimal value is hashed (e.g. Secure Hash Algorithm (SHA)) and used as the 

(de)obfuscation key. 

 

Trials of this LDEA key generation process were conducted by LOTA. Based on the 

received trial results, LOTA concluded that the LDEA process does not always 

produce the same key on both sides, even if the receiver is well within the tolerated 

distance area TD. In the example of Figure 31, the client should be able to calculate a 

correct deobfuscation key in a circle of 25 metres (i.e. the TD value) around the used 

location of “W0.99125 / N51.99573”. However, if the client is at location 

“W0.99151 / N51.99573”, which is 17 metres away from the intended location, then 

the integral part of the longitude value is different (“0.99151 * 100000 / (25*6) = 

661.0067”). Thus, the generated deobfuscation key is different. This means that the 

client is not able to calculate the correct deobfuscation key, although the client is 

well inside the used TD of 25 metres. 

 

The authors of LDEA [61] were contacted by LOTA to discuss this. The LDEA 

authors confirmed this LDEA aspect and replied that this might be not a problem in a 

practical scenario, because of the inaccuracy of current GPS receivers. However, this 

uncertainty of the LDEA method is a knock-out criterion for the use in LocAuth. 

LocAuth always requires a correct location-based key generation to calculate the 

correct challenge-response. If the client calculates a wrong key because of the 

method uncertainty, then a genuine client authentication attempt would be incorrectly 

rejected by the authenticator. 

5.2.1.2 LocAuth Location-based Key Generation 

LOTA concluded that the LDEA location-based key generation cannot be used for 

LocAuth, because of the methods uncertainty to always calculate the correct key (cp. 

section 5.2.1.1). Instead, LOTA proposes to use a location grid with size S and a 

unique key (K1 to Kn) associated with every grid intersection to calculate the required 

location-based keys independently by client and authenticator as shown in Figure 32. 
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Figure 32: Location grid for key generation 

 

LA shows the client’s phone location determined by the MNO. The authenticator uses 

the key associated with the nearest grid junction to LA (i.e. K1 in Figure 32) to 

obfuscate LocProg. The client uses the phone’s onboard GPS receiver to determine 

his/her current location (LC) and the same location grid to calculate the 

corresponding LocProg deobfuscation key (i.e. the key associated with the nearest 

grid junction to the GPS-based LC). Because of the accuracy differences of the two 

localisation techniques used (cp. section 2.2.3.1), LA will never be exactly the same 

as LC. Therefore, the authenticator will tolerate a certain localisation error and accept 

an authentication attempt, if the client's location is inside this tolerance area. The 

dotted circle around LA with radius R describes this tolerance area. Two cases must 

be distinguished for the LocProg key calculation: 

1) LA is near a grid intersection (i.e. inside the non-critical area as shown in Figure 

32(a)). In this case, the complete tolerance circle R is within one quadrant (upper-

right in the example of Figure 32(a)) of the grid. Thus, LA and LC will always 

result in the same key (nearest grid junction), if LC is inside the tolerance area. 

2) LA is outside the non-critical area as shown in Figure 32(b). In this case, the 

client might use a different, wrong key (e.g. K3 or K4), because LC is inside the 

gray shaded areas of the tolerance area and thus, is closer to another grid 

intersection. 
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To deal with the problem of wrong key selection in LocAuth, the authenticator will 

accept LocProg results based on more than one key, if the probability        
 

(calculated by Formula (5)) that the client uses the correct key, is smaller than a pre-

defined threshold T. D{X,Y} expresses the distance between LA and the middle of the 

grid in the vertical (DX), respectively horizontal (DY) direction as shown in Figure 

32(b). 

 

    
 |

 
    

  

if location is in non critical area

, i     ,Y  otherwise
 (5) 

 

A probability threshold of T=0.95, a grid size of S=500 metres, and a default 

tolerance distance of R=300 metres is used in the experiments. The 300 metres are 

chosen to minimise false rejection of genuine clients due to the accuracy difference 

of the used localisation techniques (cp. section 2.2.3.1) and are supported by the FCC 

E-911 directive [68]. 

If the MNO returns a high confidence in the measurement (i.e. the PV is smaller than 

the default tolerance distance of 300 metres), then the PV is used as the tolerance 

distance R as shown in Formula (6). 

 

 R   |
proximity

default tolerance

if proximity   default tolerance

otherwise
 (6) 

 

Calculation of the LocProg (de)obfuscation keys is shown in Figure 33. 

 

 

Figure 33: Key generation process for location measurements 

 

KoP

6932546

Grid Junction

Latitude

Grid Junction

Longitude

+51.4997

Multiplexing

+0.0045

+51.4997:537632:53209247:6932546:+0.0045

Cryptographic hash

b10b102e05eade906e40731dfc2bab35

(De)Obfuscation-Key

PIN

537632

Cell-ID

53209247

1

2

3



 115  

1) Latitude and longitude values of the nearest grid intersection are combined (e.g. 

multiplexed) with PIN, KoP and cell-ID. 

2) The combination is cryptographic hashed (e.g. SHA). 

3) The resultant key is then used to (de)obfuscate LocProg. 

 

The cell-ID acts as a dynamic changing value and is used together with PIN and KoP 

to increase the value range of the hash-function input. This increases the LocProg 

key-space and makes it more difficult for an attacker to guess the correct LocProg 

result. Table 9 shows the calculated client (KeyC) respectively authenticator keys 

(KeyA1 to KeyA4) for the eight location measurements of Table 8. 

 

Table 9: Client and authenticator keys 

  PX PY KeyC KeyA1 KeyA2 KeyA3 KeyA4 Key ok? 

1 0.89 0.57 17675 .. 8170a .. d1cc0 .. 17675 .. da280 .. True 

2 0.69 0.89 fa008 .. f66ad .. fa008 .. d1ebb .. b7781 .. True 

3 0.72 0.71 e8a75 .. 44595 .. e8a75 .. 65a63 .. 79ccb .. True 

4 0.89 1.00 f66ad .. f66ad .. fa008 ..     True 

5 0.60 0.89 19baa .. 1375b .. 19baa .. 187a5 .. ce489 .. True 

6 1.00 1.00 d6030 .. d6030 ..       True 

7 0.60 0.61 e6bdf .. 0cb34 .. 198d8 .. 0e007 .. 9599a .. False 

8 0.60 0.79 37f75 .. c727a .. 31e87 .. d9827 .. b376e .. False 

 

The following observations can be made from Table 9: 

1) In row 1, both probability values PX (0.89) and PY (0.57) are below T, i.e. the 

client is near the grid centre. The authenticator will accept the results based on all 

four keys of the grid (KeyA1 to KeyA4). The client actually uses the key 

corresponding to KeyA3 (shaded cell) for the response. 

2) In row 4, probability PX is below and probability PY is above the defined 

threshold T. In this case, the authenticator accepts both keys above the horizontal 

middle line of the grid, i.e. KeyA1 and KeyA2. The client uses in this measurement 

KeyA1. 

3) In row 6, the client location is determined by the MNO inside a non-critical area 

(both probabilities are equal to 1) and only one key is calculated by the 

authenticator. Because the client uses the same key, the client’s response will be 

considered as genuine. 
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4) In the last two control rows (7, 8); the response is not accepted by the 

authenticator because the client is too far away from the claimed location. The 

client’s calculate key does not match any of the authenticator’s keys. 

 

The current implementation of LocAuth deals with the problem of wrong key 

selection by accepting more than one key. An alternative approach to calculate the 

required (de)obfuscation keys is to expend the grid size S until an acceptable FRR 

(i.e. the genuine client selects the wrong key even though the client’s location is 

close enough to LA) is reached. The probability that the client uses the correct key 

depending on grid size S and the tolerated localisation error R (cp. Figure 32(b)) is 

calculate by Formula (7) as shown in Figure 34. 
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Figure 34: Calculation of key probability 

 

If the client’s location is further away than the distance R from the centre of the grid, 

then the client always selects the correct key, i.e. the probability in these two areas 

(dotted rectangles in Figure 34) is equal to 1. If the client is within R, then the correct 

key selection probability varies between 1 (intersection point with dotted rectangles) 

and 0.5 (centre of the grid, i.e. S/2). On average, the probability for these two 

(dashed) areas in Figure 34 is 0.75. 

 

S (Grid size)
S/2

K1 K2
R R

1

0.5

1

0.75 0.75



 117  

Figure 35 shows these probabilities (P-Axis) for grid size values between 500 and 

5000 metres (S-Axis) and accepted localisation errors between 200 and 300 metres 

(R-Axis). 

 

 

Figure 35: Probability of correct key selection on client side 

 

For example, if an FRR of less than 5% is required in an mCommerce application 

and the achievable localisation error R is up to 300 metres, then a grid size S=3000 

metres is necessary. If the localisation error can be reduced to R=200 metres, a grid 

size of S=2000 metres is necessary to achieve the same FRR. This results in more 

available keys, more precise client localisation and therefore higher security. The 

drawback of this approach is that a genuine client can be falsely rejected and that the 

required grid size S is larger compared to the approach used in LocProg. A large grid 

size results in less available grid intersections and thus, less location-based keys. 

This weakens the key strength and increases the risk that an attacker can correctly 

guess the key. 

 

Another possible approach for the key selection problem is to add a small indicator 

to LocProg in the case that the client could select the wrong key. In the case of an 

ambiguous situation, the indicator can specify the correct key to choose. This 

approach handles a smaller grid size compared to the other two approaches, because 

the authenticator needs to calculate and accept only one key. A drawback of this 
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approach is that the key is not completely independently determined on both sides 

because of the sent indicator. This contradicts the properties of secure and 

independent location-based key generation as defined by LOTA (cp. section 2.2.3.4). 

5.2.1.3 LocAuth Prototype Implementation 

The LocAuth prototype was developed and tested on the Android platform (cp. 

section 4.3.3). LocProg is integrated into LocAuth on the “Applications” layer (cp. 

section 4.3.3.1) once the client receives the fresh LocProg from the authenticator 

using the Java code shown in Figure 36. 

 

 

Figure 36: Java code to integrate LocProg 

 

One potential security problem of integrating LocProg on-the-fly into LocAuth is 

that an attacker could try to change LocProg during transmission from the 

authenticator to the client, i.e. the attacker could perform a code injection attack. To 

overcome this problem, the LocProg is digitally signed by the authenticator prior to 

transmission to the client. The LocAuth application verifies the LocProg signature. If 

the signature is correct, then the received LocProg is integrated into LocAuth, 

otherwise rejected. 

 

Java annotations as shown in Figure 37 are used to distinguish between oBiometrics 

byte-code instructions (biometric-obfuscated) and instructions of LocProg (location-

obfuscated) inside the DVM. 

 

 

Figure 37: Java annotations for oBiometrics and LocAuth 

 

The DVM employs the correct deobfuscation key based on the annotation type 

during the application interpretation. An example of a LocProg for Android phones 

based on integer equations is shown in Figure 38. 

 

DexClassLoader cl  = new DexClassLoader(Path2RecLocProg, ..);

Class cClass       = cl.loadClass(ChallengeClassName);

Method cMethod     = cClass.getMethod(challengeMethodName, ..);

Response cResponse = cMethod.invoke(cClass.newInstance());

@Obfuscate(type = “biometric“) for oBiometrics

@Obfuscate(type = “location“) for LocAuth
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Figure 38: Example of LocProg challenge-program for Android phones 

 

1) LocProg contains default integer values (val0, val1 etc.) and default operators 

(op1, op2 etc.). 

2) During generation of a new LocProg, the authenticator replaces these default 

values with: 

a) randomly generated numbers, 

b) client specific numbers. 

The randomly generated numbers (i.e. nonce) ensure the one-time property of 

this LocProg. The client specific numbers ensure that only the genuine client can 

calculate the correct response on his/her phone. For the example shown in Figure 

38, the second and fifth digit of the PIN (getPIN(2, 5)), the KoP token 

(getKoP()), and the digits 1, 6, 7 and 8 of the cell-ID (getCellID(1, 6-8)) are used 

to replace the default values. 

3) The authenticator replaces the default operators with randomly selected operators 

(e.g. add, sub) and calculates the result of this generated LocProg. The result is 

then stored in the authenticator database to be compared with the result received 

from the client during LocAuth verification. 

4) The authenticator obfuscates the selected operators, i.e. the operators are 

substituted with other operators based on Key-LocObf. The resultant obfuscated 

LocProg is then sent to the client. 

Int result = 347 / getCellID("3-5") >> 23 * getKoP() / 21471 <<

                        getPIN("2,5") - 56 + getCellID("1,6-8");

Int result = 347 op1 getCellID("3-5") op2 23 op3 getKoP() op4 21471 op5 

                                getPIN("2,5") op6 56 op7 getCellID("1,6-8");

LocProg is obfuscated by location-based Key-LocObf

Int result = val0 op1 val1 op2 val2 op3 val3 op4 ... opn valn

Authenticator generates one-time, random LocProg

Structure of LocProg1

2

4

Int result = 347 + getCellID("3-5") * 23 | getKoP() - 21471 -

         getPIN("2,5") / 56 & getCellID("1,6-8");

3

Authenticator selects operators and calculates result
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Operator substitutions during obfuscation must be within the same byte-code 

instruction group (e.g. 3reg-operations, cp. Table 6) to pass the verification phase of 

the DVM (cp. section 5.1.2). Because LocProg bases upon integer arithmetic, some 

instructions (e.g. aget, aput) from Table 6 are not used within LocProg as these 

instructions do not represent an arithmetic operation. Another restriction on the 

possible operator substitutions occurs from the fact that LocProg should not “crash” 

during obfuscated interpretation because of an invalid instruction (cp. section 5.2.2). 

To circumvent that LocProg crashes during interpretation, the “3reg-operations” is 

further divided into two subgroups: “3reg-operations-single” and “3reg-operations-

double” instructions as shown in Table 10. Within these defined subgroups, the 

instructions for substitution can be selected as described in section 5.1.2. 

 

Table 10: Instruction groups for LocProg obfuscation 

Instruction Group Possible byte-code substitutions 

Number of 

instructions 

in the group 

3reg-operations-single 

add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int, 

xor-int, shl-int, shr-int, ushr-int, add-float, sub-float, mul-

float, div-float, rem-float, cmpl-float, cmpg-float 

18 

3reg-operations-double 

add-long, sub-long, mul-long, div-long, rem-long, and-

long, or-long, xor-long, shl-long, shr-long, ushr-long, add-

double, sub-double , mul-double, div-double, rem-double, 

cmpl-double, cmpg-double, cmp-long 

19 

 

The LocProg prototype uses Integer arithmetic, i.e. instruction from the “3reg-

operations-single” group shown in Table 10. The possible instruction combinations 

of a LocProg using this “3reg-operations-single” group are 18
n
. 18 is the total 

number of operators in the “3reg-operations-single” group and “n” corresponds to the 

number of operations in LocProg. 

For example, a LocProg as shown in Figure 38 containing seven operations leads to 

18
7
 = 6.12*10

8
 possible combinations for the operator obfuscation.  

 

The byte-code for some parts of an obfuscated LocProg is shown in Figure 39. 
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Figure 39: Byte-code of obfuscated LocProg 

 

1) The LocProg-challenge() method in Figure 39 begins with an obfuscate-

annotation of type “location”, which is required by the DVM interpreter to select 

the correct deobfuscation key. 

2) Cell-ID and PIN are then requested from the Android system (“getCellID()”) 

respectively client (“getPIN()”) via direct function calls. 

3) Determined cell-ID and entered PIN are integrated as integers into the DVM 

interpretation flow (invoke-direct with return type integer “I”). 

4) The result of this LocProg is calculated by executing the arithmetic operations. 

5) The result of the deobfuscated integer calculation is returned by the LocProg-

challenge() method (“return v0”). This result is then used as the LocAuth 

challenge-response and sent from the client’s phone to the authenticator for 

verification. 

5.2.2 Security and Performance Analysis 

LocAuth bases upon six AFs, which are used to generate and obfuscate a LocProg: 

1) Client specific PIN to ensure that only the genuine client can generate the correct 

response, i.e. the PIN acts as a “something you know” AF. 

2) Phone specific KoP to ensure that the genuine client’s phone must be used i.e. the 

phone acts as a “something you have” AF. 

3) Biometrics due to the tight combination of LocAuth with oBiometrics, i.e. 

execution of LocAuth is oBiometrics protected. Biometrics ensures that only the 

genuine client can execute LocAuth, i.e. the biometrics act as a “something you 

are” AF. 

.method private LocProg-challenge()I

  .annotation build Luk/ac/buckingham/Obfuscate; type="location"

  const-string v1, "3-5"

  invoke-direct {p0, v1}, Luk/ac/buckingham/LocObf;

                             ->getCellID(Ljava/lang/String;)I

  

  move-result v1

  div-int/2addr v0, v1

  …

  invoke-direct {p0, v1}, Luk/ac/buckingham/LocObf;

                             ->getPIN(Ljava/lang/String;)I

  ...

  shl-int/2addr v0, v1

  return v0

.end method

1

2

2

3

3

4

4

5
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4) Time due to the integration of randomly generated nonces and the time limit 

within the client has to respond to the LocAuth challenge. Time ensures the one-

time and real-time property of the authentication attempt and thus, eliminates 

replay attacks. 

5) Current cell-ID used in the communication between phone and cellular network. 

The Cell-ID acts as a dynamically changing secret that is known only to the 

authenticator (via MNO request) and the client. 

6) Current location of the client’s phone to ensure that the client is where s/he 

claims to be. Location eliminates distance attacks, because an attacker is not able 

to pretend to be at a different location. 

 

In order to calculate the correct LocProg result, all six AFs must be correctly used. If 

one AF is incorrect, then the wrong LocProg result will be calculated, which will be 

identified by the authenticator during verification. I.e. an attacker needs to breach all 

six AFs simultaneously to get authenticated. 

PIN, KoP, time and cell-ID are used to generate a unique, one-time and client 

specific LocProg. The client’s current location is then used to obfuscate this 

generated LocProg. Because location is not a completely secret AF and thus, cannot 

be considered as 100% secure on its own (cp. section 2.2.3.4); PIN, KoP and cell-ID 

are also integrated into the location-based obfuscation key. This integration serves 

two purposes: 

1) PIN, KoP and cell-ID are more secret AFs than location and thus, it becomes 

more difficult for an attacker to determine all these AFs at the same time to 

successfully deobfuscate LocProg. 

2) PIN, KoP, and cell-ID increase the key-space of the obfuscation key, which 

makes a brute-force attack more difficult. The number of location-based keys is 

limited because of the earth surface and the accuracy of the localisation 

techniques for phones (cp. section 2.2.3). Combination of the client’s location 

with PIN, KoP and cell-ID eliminates this limitation of location-based keys. The 

obfuscation key length can be adjusted to the application security needs by 

changing the length (e.g. a longer KoP) and properties (e.g. integration of special 

characters beside numbers in the PIN) of KoP and PIN. 
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LocProg is designed to terminate the interpretation process correctly at all times. If 

the wrong location-based deobfuscation key is used, then the LocProg interpretation 

will not “crash”, but will instead calculate a wrong result. The “no-crash” property of 

LocAuth is important to eliminate locally performed “try-and-error” attacks. Without 

this “no-crash” property, the attacker can conclude on its own (i.e. without sending 

the result to the authenticator) that the wrong key was used and try other keys until 

LocProg terminates correctly. This reduces the number of challenge-responses and 

thus, makes a “guessing and trying” attack to find the correct LocProg result more 

likely. 

 

The “no-crash” property is implemented in LocProg by using a specially designed, 

Integer-based arithmetic calculation. Integers are defined in Android systems as 

signed 32bit values. Integer arithmetic was selected for the LocProg prototype, 

because these arithmetic operations do not raise an exception once a data-type 

overflow occurs. Instead, application interpretation continuous normally without an 

application crash. 

A data-type overflow can occur, if an incorrect deobfuscation key is used as shown 

in Figure 40. 

 

 

Figure 40: Example of LocProg Integer overflow 

 

1) The received obfuscated LocProg contains a subtraction operation, i.e. a “sub-

int” instruction. The calculated result of this LocProg is 19513, which is inside 

the value range of signed 32bit Integers. 

Result = 85234 – 65721 = 19513

Received obfuscated LocProg

Result = 85234 + 65721 = 150955

Result = 85234 * 65721 = 5601663714

Result with correct de-obfuscated instruction: add-int

Result with incorrect de-obfuscated instruction: mult-int

1

2

3

Result is inside signed 32bit Integer

Result is outside signed 32bit Integer

Result is inside signed 32bit Integer
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2) If the correct deobfuscation key is used, then the “sub-int” instruction will be 

replaced with an “add-int” instruction. The result of 150955 is also within the 

value range of signed 32bit Integers. 

3) The “sub-int” instruction is deobfuscated to a “mult-int” instruction, because the 

wrong deobfuscation key was used. The result would be 5601663714. This value 

is outside the range of signed 32bit Integers (i.e. 2147483647). 

 

On Android phones, no crash happens in the case of a data-type overflow and the 

application interpretation continuous normally. In the example of Figure 40, the 

overflowed value of “5601663714” is converted to “-1306696418”. 

 

The use of signed 32bit Integers in LocProg produces 4.29*10
9
 return values. This 

number of LocProg results is considered by LOTA as sufficient and secure, because 

an attacker cannot determine locally, if the calculated result is correct. The attacker 

always needs to send the result for verification to the authenticator. If the 

authenticator receives a wrong result, the authenticator will immediately reject this 

authentication attempt. This means that the attack has only one chance to guess the 

correct result, i.e. the probability to guess the correct result is 2.33*10
-8

%. 

To increase the number of LocProg results even further and thus, make it more 

difficult for an attacker to guess the correct result, future LocProg versions could use: 

1) Arithmetic equations based on signed 64 bit “Long” values, i.e. 1.84*10
19 

return 

values. 

2) Combine the results of more than one equation into an array structure. 

 

Uniform distribution of the LocProg results (i.e. all results should occur with the 

same probability) is important for the LocAuth security. The results need to be 

uniformly distributed to avoid that an attacker concentrates on results, which occur 

with higher probability. This would simplify a brute-force attack or make guessing 

the correct result easier. LocProg avoids certain combinations of operators and 

values to achieve a uniform result distribution. For example, LocProg avoids the 

following operator and value combinations: 
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1) Several multiplication operations with one value equal to 0. This combination 

always leads to the value of 0 for the multiplications, regardless of the other 

values, i.e. the value 0 has a higher probability to occur as a LocProg result. 

2) “shift-right” and “shift-left” operations are never followed by a large value. This 

leads to a value of 0 (“shift-right”), respectively the minimum / maximum Integer 

(“shift-left”) regardless of the value on the left hand side of the shift-operator. 

 

Execution of LocAuth introduces computational overhead during execution of the 

obfuscated application. Each obfuscated instruction requires additional computing 

cycles to be deobfuscated and then interpreted (cp. section 5.1.3). However, the 

computational overhead introduced by LocAuth is negligible, because the number of 

obfuscated LocProg instructions (i.e. several dozen) is much smaller compared to the 

thousands of byte-code instructions of the mCommerce application. In the trials, and 

in comparison with the time required to acquire and process the other AFs (e.g. 

biometrics), no performance degradation was noticeable once LocAuth was enabled 

in the prototype. 

5.2.3 Conclusion on LocAuth 

LocAuth provides real-time client authentication for mCommerce applications on 

phones. LocAuth challenges remote clients with a randomly generated, one-time, 

location-obfuscated challenge / response program that includes six AFs for robust 

and reliable client authentication. I.e. an attacker needs to breach all six AFs 

simultaneously to get illegitimately authenticated. Furthermore, the use of two 

independent sources to generate the (de)obfuscation key adds strength to the location 

AF of LocAuth. Thus, LocAuth offers qualified level of security tailored to 

mCommerce applications for phones, yet remains practical with minimum overhead. 

 

On the authenticator side, the client’s personal data (e.g. PIN), the client’s current 

phone location and serving cell-ID are integrated into the LocAuth challenge. 

Client’s personal data is directly available from the authenticator’s own database 

after client’s enrolment. Phone location and cell-ID are accessible from the MNO, 

who is constantly determining the phone’s location during normal operation anyway. 

Performed trials showed that generation of a fresh LocProg by the authenticator takes 

about 0.8 seconds. On the client side, the current location and serving cell-ID are 
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accessible without overhead on the phone using the onboard GPS receiver. Client’s 

personal data is retrieved from the phone storage (KoP) and entered by the client 

(PIN). Trials showed furthermore that interpretation of LocProg on the client’s phone 

does not add a noticeable delay to the authentication process. 

 

LocAuth is practical and user-friendly, because the client has to enter only the PIN. 

I.e. the other AFs (e.g. KoP, cell-ID, location) are automatically calculated by 

LocAuth and do not require any additional effort from the client. For the PIN, two 

LocAuth configurations are possible to decrease the required client’s effort further. 

These configurations are: 

1) The same PIN is used for oBiometrics and LocAuth. This configuration 

introduces minimum inconvenience to the client, because the client needs to 

remember and enter only one single PIN. 

2) Different PINs are used for oBiometrics and LocAuth. This configuration is 

recommended, because an attacker needs to know two pieces of information from 

the client to break the authentication system. 

 

LocAuth requires that the client is static or moves only slowly during the 

authentication process. If the client moves too fast (e.g. in a car on a motorway or a 

train), then the client’s location changes too much between obfuscation and 

deobfuscation of LocProg. I.e. the location-based (de)obfuscation keys used by the 

authenticator and client are different. This results in an invalid LocProg response, 

which will not be accepted by the authenticator. Trials showed that the time between 

creation of LocProg by the authenticator and calculation of the LocProg result on the 

phone are about 30 seconds. This means that the client can move at a maximum 

speed of 36 km/h (22 miles per hour), because the LocAuth key generation technique 

is able to handle a location difference of up to 300 metres (cp. section 5.2.1). To 

minimise any delay during execution of the mCommerce application, LocAuth is 

executed before MORE-BAILS (cp. Figure 30). 

 

LocAuth can be used to secure all phone applications that require the assurance of 

client’s location as well as real-time. However, availability of the obfuscated 

interpretation framework on the phone is compulsory to handle the location-

obfuscated LocProg correctly.  
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6 CONCLUSIONS AND FUTURE WORK 

LOTA proposes working solutions to enhance security and reliability of client 

authentication in mCommerce applications that are run on Smartphones. The 

novelties of LOTA centre on the secure and reliable integration of location and real-

time as new authentication factors into established authentication methods based on 

classic authentication factors like PINs, tokens, and biometrics. 

 

In particular, LOTA proposes unique and novel approaches to enhance the security 

of remote client authentication solutions. These approaches are: 

1) Provide solutions that attempt to bring back the face-to-face characteristics (i.e. 

clearly defined “who, where, when and how” of an authentication attempt) of 

office-based authentication into remote authentication performed on the phone. 

2) Provide a method to protect the host environment to securely and correctly 

execute the authentication process on the phone. 

 

These two solutions, when implemented inside any mCommerce application on 

phones will: 

1) Reduce the risk of attacks (e.g. client’s impersonation, message replay or 

distance attacks, in which an attacker claims to be at a certain location to deceive 

the authentication system about the attacker’s real whereabouts) on the 

application due to the integration of multi-factor authentication. 

2) Increase the authenticator’s (i.e. service provider like financial institutes or online 

shop merchants) trust into the received client’s data due to the correct and 

verified execution of the authentication process on the client’s phone. 

 

Consequently, the proposed solutions of LOTA shall help to convince more cloud 

service providers to offer their services via phone applications to their clients. 

 

All proposed novelties and developed schemes were successfully tested and 

evaluated on state-of-the-art Android-based Smartphones. The performed trials 

clearly showed the commercial viability and practicality of the implemented scheme 

algorithms. 
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6.1 Achievements and Novelties 

The first of LOTA’s achievements is a novel MORE-BAILS authentication scheme 

that combines multiple authentication factors into a novel and secure One-Time 

Multi-Factor Biometric Representation (OTMFBR) [135]. This proposed OTMFBR 

representation combines: 

1) Classic authenticator factors like PINs, tokens, and biometrics. PIN and 

biometrics assure the authenticator about the actual client performing this 

authentication attempt. Tokens ensure that the genuine client’s phone is used in 

the attempt. This reduces the risk of impersonation attacks, because the genuine 

client and his/her phone are required to be present during authentication. 

2) New authentication factors like client’s current location, obtained from two 

independent sources, and real-time to assure the authenticator about the freshness 

of the received authentication data and the current geographical position of the 

client. 

The integration of independently verified location information [34] and real-time is a 

second achievement of LOTA and guarantees the one-time property of the OTMFBR 

and thus, reduces the risk of replay or other distance attacks [67]. 

 

The design of the OTMFBR algorithm is arranged in such a way that the overall 

authentication process completely fails, if any of the authentication factors cannot be 

verified. This means that an attacker needs to break all authentication factors to be 

successfully authenticated. Obtained experimental results showed that the MORE-

BAILS scheme can achieve a 0% false acceptance rate even if one or more of the 

authentication factors are successfully compromised by an attacker. This makes the 

OTMFBR a secure representation of the client’s authentication data. Furthermore, 

the designed OTMFBR representation does not leak any useful information about 

any of the authentication factors, if an attacker has undermined one or more of these 

authentication factors. This means that an attacker does not benefit in any way from a 

partially successful attack (i.e. the attacker has breached some of the authentication 

factors). 
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Commercial viability, practicality, usability, and the client’s privacy are also 

important requirements for mCommerce authentication solutions on phones. The 

proposed MORE-BAILS solution is designed to: 

1) Be user-friendly and easy to use for the client during authentication on the phone. 

MORE-BAILS requires only dedicated client actions to captured the fresh 

biometrics and entering the PIN. All other authentication factors are 

automatically determined by MORE-BAILS. 

2) Be cost effectively implemented by the authenticator. A third contribution of 

MORE-BAILS is to use the available phone onboard sensors to capture the 

client’s biometrics, onboard GPS receiver for location, keypad for PIN, and SIM 

card to securely store the KoP, which are then combined to the OTMFBR [135]. 

MORE-BAILS does not require any additional hardware components to be 

integrated into the client’s phone. 

3) Be easily integrated to any phone application and distributed to the clients. 

MORE-BAILS can be attached to any mCommerce phone application and then 

distributed as part of this mCommerce application to the authenticator’s clients.  

4) Maintain the privacy of the client’s location data without loss of security or 

introducing computational overhead on the authenticator or client side. To 

preserve the client’s location privacy, LOTA proposes as a fourth achievement 

two novel techniques to transfer the client’s actual physical location into another 

secure location-domain [75]. These unique transformation algorithms maintain 

the actual distances between client and authenticator determined locations. 

Hence, this enables the authenticator to verify the claimed location without 

knowing the actual current location of the client, i.e. to avoid breaching the 

client’s location privacy. Implementation and experimental evaluation of the 

proposed privacy preserving location transfer techniques showed that the 

required calculations can be achieved in 0.5 seconds on today’s available 

Smartphones, making these techniques commercial viable and practical. 

 

Three approaches to protect the host environment (i.e. the client’s phone) of the 

authentication process against malicious modifications were identified by LOTA as a 

fifth achievement [98]. Protecting the host environment is important in remote 

authentication, because: 
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1) It assures the authenticator about the correct capturing and processing of the 

authentication data on the phone. 

2) It stops attackers from using the authentication application to get illegitimately 

authenticated. 

 

The benefits, drawbacks and strengths of: 

1) using SIM cards to host the authentication process, 

2) using custom chips for authentication, 

3) using software-based protection of the authentication process, 

in terms of security, implied costs, flexibility and viability to deploy on today’s 

phones were investigated. LOTA has concluded as a sixth achievement that 

software-based protection techniques are the most viable option to protect the host 

environment of the authentication process [98]. 

 

A seventh new contribution of LOTA is the proposed software protection framework 

“oBiometrics” algorithm [126]. This framework binds the correct execution of the 

authentication application to the genuine client through biometric-based obfuscated 

interpretation. The oBiometrics algorithm is implemented so that correct 

interpretation of the application on the phone will fail, if the wrong biometric-based 

key is used. This stops any unauthorised use of the application and prevents that an 

attacker is able to use the application. 

Experiments and theoretical analyses of oBiometrics proved that it is difficult for an 

attacker to bypass the oBiometrics protection. I.e. it is not possible to understand the 

real semantics of the obfuscated application without having the correct deobfuscation 

key. Even if an attacker has full access to the phone and to the application code, the 

attacker cannot make sense of the application code. 

 

Even though oBiometrics was developed to protect the authentication process of 

mCommerce applications, oBiometrics can be similarly used to protect all kinds of 

other applications on phones. For example, publishers can use oBiometrics to ensure 

that only their subscribers can use the application to access the latest newspaper on 

their phones. 
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LocAuth, an eight new contribution of LOTA, ensures the real-time and one-time 

property of an authentication attempt by using a location-obfuscated challenge / 

response program [134]. LocAuth can be seamlessly combined with oBiometrics and 

will be used by the authenticator to check in real-time if a genuine client is present at 

the phone. If this is not the case, then the authenticator can immediately restrict 

access to the provided service via the provided application. 

LocAuth requires establishing the same location-based key independently on the 

client and authenticator side for successful (de)obfuscation of the challenge/response 

program. LOTA proved as a ninth contribution that this is not always possible, as 

was claimed by other researchers [61]. To overcome this problem of independent 

location-based key generation, three new approaches to independently generate 

location-based keys have been proposed. Tests and trials proved that these proposed 

approaches minimise the risk of false rejection of genuine clients, yet remain the 

independence of the key generation. 

 

To ensure viability and commerciality of oBiometrics and LocAuth (oB&L), oB&L 

prototypes were tested on state-of-the-art Android-based Smartphones. Experiments 

and trials showed that the introduced overhead by oB&L is insignificant compared to 

the required computational time of the mCommerce application. 

The oB&L prototypes and the adapted code of the Android virtual machine will be 

submitted to the Google Android development software repository to be integrated 

into future versions of the Android operating system. This allows the use of oB&L 

by the general public. 

oB&L prototypes can be straightforward adapted to work with phones using a Java 

virtual machine to execute client applications by redefining the instruction 

substitution groups. This adaption allows, for example, the use of oB&L on 

BlackBerry Smartphones. However, the new Windows 8 operating system, for 

example used on Nokia Smartphones, uses the Windows Run-Time environment to 

execute client applications. To use oB&L on these phones, the obfuscated 

interpretation needs to be executed outside a virtual machine. This aspect has not 

been considered in LOTA. 
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6.2 Future Perspective 

Proposed future work arising from the achievements of LOTA addresses topics in the 

area of biometrics, in particular age recognition and continuous biometric-based 

authentication on phones, as well as software protection. 

1) An in-depth investigation and experiments need to be conducted to establish how 

the strength of oBiometrics can be further enhanced by the incorporation of other 

obfuscation techniques (e.g. opaque variables or control flow obfuscations) and 

how this combination will influence the performance of the oBiometrics 

obfuscation system. It is expected, that these techniques can be used together, 

because the other obfuscation techniques will be applied before the instruction 

substitution of oBiometrics takes place, i.e. the already obfuscated application 

code appears as ordinary code to the oBiometrics code translator. The 

combination should not affect the obfuscated interpretation security, because the 

obfuscated application will be oBiometrics protected. In contrast, the use of 

further obfuscation techniques should enhance the security of oBiometrics, 

because the added obfuscation techniques build a first line of defence against 

application code reverse-engineering. 

In some cases, the number of application instructions increases, because of the 

additional obfuscation technique. The security of oBiometrics benefits from this 

increase, because more instructions are available for substitution. However, the 

oBiometrics performance decreases, because of the computational overhead 

added by the obfuscation technique. It needs to be investigated, how the added 

security compares to the introduced overhead in the oBiometrics scheme. 

2) Despite the fact that HC/HD SIM cards still have not reached the end-consumer 

market, an observation of the further developments in this technological area are 

worthwhile. Once these advanced SIM cards are available for testing, it is 

interesting to investigate, if oBiometrics can be utilised directly on these 

advanced SIM cards. Tight combination of oBiometrics and HC/HD SIM cards 

further raises the bar for an attacker to break the authentication system, because: 

a) oBiometrics is completely executed in a secure environment, 

b) authentication factors like the Key-On-Phone remain fully inside the secure 

SIM card memory and do not need to be transferred into the potential hostile 

processing environment of the phone. 
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3) The oBiometrics and MORE-BAILS prototypes use the biometric face modality 

to securely and reliably identify the genuine client. Integration of continuous 

biometric-based authentication factors can strengthen the real-time and freshness 

guarantee of oBiometrics and MORE-BAILS further. 

Inertial sensors such as accelerometer and gyroscope, which are now available on 

nearly all Smartphones, offer interesting opportunities for the integration of 

continuous authentication. Researchers already proposed techniques to use 

accelerometers on phones for gait recognition [14] or for measurements of pre-

defined and then explicitly performed gestures to identify clients [136]. However, 

using pre-defined gestures that are not directly related to the mCommerce 

authentication process introduce an additional burden to the client, because the 

client has to perform extra actions. 

“Visual” observations of, for example, the holding angle or the typical movement 

of the phone during usage of applications or making phone calls clearly indicated 

differences between clients. These typical movements can be used as a 

continuous authentication factor in oBiometrics and MORE-BAILS to support 

the currently employed authentication factors. This continuous authentication is 

interesting from a usability point of view in particular, because it “comes for 

free” and does not introduce any further burden to the client. 

4) Age recognition aims at estimating the actual age of a person based on, for 

example, his/her recorded voice or captured face. Combination of age recognition 

with oBiometrics could lead to a novel solution to prevent certain software to be 

used by clients of certain age groups. 

Many young children have nowadays their own Smartphone and are also able to 

install any application from the various marketplaces available. However, it is 

often not desired that these young children are able to use all of these available 

applications because of youth endangering contents. An age recognising adaption 

of oBiometrics can be used to ensure that only clients above a certain age group 

are able to use these applications. Verifying the age directly prior to execution of 

the application has a main advantage over verification prior to application 

installation. Children cannot use an application installed on a different (e.g. their 

parents’) phone. This would be possible, if the age is checked only once during 

application installation. 
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