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Abstract 

This thesis aims to contribute to efforts of leveraging deep learning (DL) techniques, 

specifically convolutional neural networks (CNNs), for improved diagnostics of breast 

lesions in ultrasound (US) images with reduced overfitting manifested by the inability to 

generalise models to unseen data. Our investigations focus on data preparation factors that 

influence the performance of CNN models for analysing Breast US (BUS) tumour images. 

These factors include CNN stipulated fixed input image size, adequate US image quality, 

and availability of a sufficiently large dataset of adequately labelled samples with good class-

diversity for training. Current approaches to deal with these factors are focused on image 

resizing, relying on unstandardized manual quality assessment by radiology experts, and 

image augmentation. Most of these solutions rely heavily on knowledge of the natural image 

domain, which differs from US images. The sizes of US tumour region of interest (RoI) are 

influenced by the adopted cropping/segmentation procedure and vary significantly with a 

huge range on both sides of the strictly required input image size for most CNN models. 

Resizing the many tiny RoIs by several factors seriously impacts their quality. Existing 

augmentation schemes are designed to enlarge training sets and increase diversity, but the 

learnt feature patterns by pre-trained CNN models are more relevant to natural images. 

We implemented the bicubic image resizing (BiCubic) method and a Compressed Sensing 

Super Resolution (CSSR) based image resizing known for superior quality resizing methods 

in terms of human perception. Our expert radiologist testified that CSSR-resized images are 

of better quality from the clinical point of view. We tested the performance of several pre-

trained CNN models trained in fine-tuning mode on a database of BUS recorded and labelled 

in one clinical centre, whose RoI images were resized by both methods. All models achieved 

High-to-Excellent diagnostic accuracy, but little or no improvements were noted with the 

CSSR resizing scheme. 

No RoI segmentation was adopted, but optimal cropping of RoI was developed from a set of 

radiologists’ marked lesion border points. We introduced the Convex Hull (CH) lesion 

border RoI that efficiently minimizes the exclusion of lesion pixels and is easy to expand. 

We tested the performance of a few pre-trained CNN models and 2 Handcrafted (HC) 

schemes with various RoI cropping scenarios, including the tumour polygonal shape. We 

expanded CH at different rates, each with 2 padding schemes for the area between the 

surrounding rectangular box and the tumour polygon area: zero padding and tissue padding. 
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While tissue padding of several expanded CH rates had improved performance, zero padding 

of these schemes was marginally lower. Hence, the inclusion of some external tissue 

surrounding the lesion border shows promise for enhancing model performance. However, 

for both padding scenarios, the trained models have very low generalisation when tested on 

two unseen external datasets, confirming the problem of overfitting when the training dataset 

is not large and diverse enough. 

Training the same CNN models with the larger Modelling dataset, compiled by including 

BUS images from 4 other clinical centres, didn’t improve their validation performance but 

significantly improved their generalisation to the two unseen datasets. This improvement 

reflects that the expansion created a more diverse sample of the population resulting in 

reduced overfitting. 

For the challenge of US image quality assessment (IQA), we uncovered the inadequacy of 

existing IQA metrics defined for natural images. We developed a simple Multi Characteristic 

Quality Feature Vector (MCIQ) that captures the spatial distribution of individual IQA 

metrics. MCIQ have shown good tumour class dependency and a high ability to distinguish 

different image modalities and datasets. An innovative version of MCIQ, extracted from 

image convolution with only 6 well-conditioned 5×5 Hadamard filters, successfully aligned 

with our expert radiologist quality labelling of an extremely small set of US images. 

Finally, to address the scarcity of BUS images beyond recording a larger training dataset, 

we investigated several existing conventional image augmentation schemes, including 

Singular Value Decomposition (SVD), besides our innovative Hadamard filters convolution. 

All these schemes improved the model’s ability to generalize to the two unseen datasets but 

with varied levels of improvement. However, these schemes are not specific to US images, 

so it is difficult to determine which causes of overfitting these schemes help mitigate. For 

that, we developed the Tumour Margin Appending (TMA) strategy that combines several 

locally optimal cropping ratios to enlarge the training dataset aiming to alleviate the lack of 

generalization due to variation in RoI cropping practice. It successfully mitigated the lack of 

generalization to unseen datasets for this cause and removed the need to test with many 

unseen datasets. 
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Chapter 1: Introduction 

Breast cancer continues to be a significant global health concern, impacting the lives of 

millions of women worldwide. Early detection and accurate diagnosis are crucial in 

improving patient outcomes and reducing mortality rates associated with this disease, but 

such tasks are increasingly dependent on advances in medicine in general and medical image 

analysis algorithms. While such crucial and critical clinical tasks are becoming more 

intensive and present enormous demands on the healthcare system's stretched resources and 

staffing, the recent giant advances in the fields of Machine Learning (ML) and Deep 

Learning (DL) for computer vision hold great promises of exciting opportunities in support 

of medical diagnostics. Leveraging the benefits of DL models, particularly Convolution 

Neural Networks (CNN), for medical image analysis requires addressing the challenges that 

emanate from the fact that high-performing CNN models are primarily designed for natural 

images that differ significantly from medical images such as ultrasound (US) images. This 

thesis is devoted to dealing with some of these challenges and exploring/developing novel 

image data preparation techniques and quality assessment tools for breast ultrasound (BUS) 

images to improve the efficiency and generalizability of CNN-based breast lesion 

classification. The main premise of this thesis is that addressing the limitations/shortcomings 

of current pre-processing methods for BUS helps improve the performance of the ML models 

for image analysis, particularly CNN-based classification schemes, and reduces variability 

in diagnosis. 

1.1 Background to Thesis Research Project 

BUS scan imaging has emerged as a valuable diagnostic and clinical examination tool that 

complements other radiological breast scan images, such as Mammograms and Magnetic 

Resonance Imaging (MRI) [1]. It offers several advantages, including its non-invasive 

nature, without using ionizing radiation, and the ability to differentiate solid from cystic 

lesions. It plays a vital role in various clinical scenarios, such as distinguishing benign and 

malignant lesions, guiding biopsy procedures, and monitoring treatment response. The real-

time visualization nature of BUS scans enables clinicians/radiologists to assess lesions' 

morphological and vascular features, aiding in speedy and more reliable diagnosis [2]. 

Despite the benefits of BUS imaging, reliable and accurate classification of breast lesions 

remains challenging for clinicians/radiologists in their early stages of training. This is due to 

many factors, including US-specific properties such as often being of low contrast, subjected 
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to the presence of speckle noise, and other artefacts that make distinguishing benign from 

malignant lesions difficult for many early career radiologists. Traditional clinical diagnostic 

process heavily relies on the subjective interpretation of radiologists, whose training 

experience and expertise could be very wide, which can introduce inter- and intra-observer 

variability in outcome decisions and could have variation in subsequent treatment decisions 

[3], [4]. Inter-observer variability refers to differences in the interpretation of US images 

between different US radiologists/examiners, whereby two or more examiners may interpret 

the same US image differently, leading to varying diagnoses. It can occur due to differences 

in experience/expertise and different clinical practices/training that may lead to personal 

biases. Intra-observer variability, on the other hand, refers to differences in the interpretation 

of US images by the same examiner due to fatigue or lack of experience. 

To address these concerns, overcome shortage of clinical expertise, and enhance the 

accuracy of breast (or other organs) lesion classification, there has always been an interest 

in using advances in computer technology, particularly automatic image processing/analysis 

algorithms. The rapid advancement in image technology and increased computational 

powers became a driving force for integrating digital technologies into clinical practices. 

These efforts involved close collaboration between research scientists and medical 

professionals, resulting in some reasonably successful computer-aided diagnostic (CAD) 

systems. Designing most of those early systems relied on extracting carefully chosen 

handcrafted (HC) texture feature vectors and using known mathematical classifiers (e.g., [5], 

[6]). These CAD systems benefited from the growing knowledge of distinguishing natural 

image features established over decades of research investigations in pattern recognition, 

including biometric systems. 

The emergence of DL models of image analysis at the turn of the 21st century, and its 

remarkable success in dealing with very tough computer vision challenges, has led to a 

growing interest in applying DL techniques, particularly CNNs. This interest only started to 

be taken seriously as the success stories of CNN in computer vision accumulated in a 

legendary manner towards the end of the last decade. Coincidentally, the Covid Pandemic 

of the last few years exposed the vulnerability of most healthcare systems worldwide, 

showing stressful difficulties in coping with the unprecedented pressure on already strained 

resources. A huge volume of CNN and HC-ML schemes have been proposed and tested on 

ML-based Covid-19 detection from Chest CT scans and X-Rays, helping open the way, more 

than ever, to leverage the power of CNN and HC models for medical diagnostics. 



3 
 

The astounding success of CNN models in computer vision benefited from many factors 

besides the obvious boost from the tremendous advances in neural networks. These factors 

include the construction of huge datasets of natural images, such as ImageNet, with 100s of 

millions of high-quality images of different classes/objects that could be used to train all 

kinds of sophisticated CNN models [7]. A plethora of increasingly sophisticated CNN 

architectures have been proposed and demonstrated the ability to automatically learn large 

hidden discriminative image features, far beyond the capabilities of humans, with 

remarkable success in various image classification tasks. 

These unrivalled capabilities of CNN models to learn hidden image data features through 

efficient processing of large image datasets raise high hopes for achieving similarly optimal 

success in medical image analysis and diagnostic tasks. Though achievable eventually, these 

benefits must be balanced against the fact that in the health service, digitisation of the 

radiological image data is lagging in constructing sufficiently large databases of radiological 

tumour scan images of standardised quality characteristics with standardised class labelling 

and annotation. This is more so for BUS images and even though such scans are routinely 

conducted in large numbers of clinical centres worldwide every day. Only recently, we 

started to see active research into the segmentation of BUS lesions. Our emphasis on the 

need for a large dataset of standardised quality BUS images with standardised class labelling, 

stems from the notable variation in US prob devices as well as their embedded electronic 

systems that could contribute to worsening Inter- and Intra- observer variations.  

Furthermore, there are no standardised global clinical/radiological practices. Consequently, 

even though a great deal of knowledge has been established on CNN models for image 

analysis and many state-of-the-art CNN architectures are available, leveraging these 

technologies for medical diagnosis from radiological tissue scanning is not straightforward. 

The absence of a sufficiently large dataset of BUS images is the major recognised obstacle 

in training CNN architectures from scratch for diagnostic purposes. CNN models trained 

with a few hundred BUS images recorded in a single clinical centre (or even multiple centres 

that follow similar clinical practices) are not expected to perform well in distinguishing 

benign from malignant tumours, even if scanned from the same centre(s). Moreover, such 

models are expected to suffer from the effect of overfitting (i.e., failure to generalise 

performance to unseen BUS samples recorded in other centres). They are doubtful to be 

robust against image data noise and adversarial attacks. The traditional approach to using 

CNN models for BUS (and medical image) analysis without training from scratch is to select 

a CNN model pre-trained on a large natural image dataset (e.g., subsets of ImageNet [7]) 
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and complement it with an additional retraining process with the BUS in what is known as 

transfer learning mode (preferably the fine-tuning version). However, doing so does not 

avoid the overfitting problem. Failure to generalise the performance of CNN models (in 

transfer learning mode) to unseen data is a known challenge for any CNN models trained 

with a small image dataset other than BUS, but its impact on BUS (and diagnostics of 

medical images in general) is more serious than in other less critical applications. 

At the time of setting up the TenD-Innovation research project, and this thesis was planned, 

significant efforts were dedicated to recording a reasonable-size BUS dataset from medical 

centres that were expected to follow similar clinical practices in relation to this task. To 

initiate TenD research projects, including the one for this thesis, a temporary alternative to 

automatic lesion segmentation was devised. Expert radiologists were asked to mark a 

sufficiently small set of lesion border points to enable a reasonable cropping of the region of 

interest (RoI) to be automated. 

It is not enough to get reasonably large datasets of BUS lesion images, whose boundary is 

marked with a set of points, to retrain a pre-trained CNN architecture with guaranteed good 

performance and avoid overfitting problems, the list of requirements on the CNN training 

image datasets includes (1) the input images being of reasonable quality, (2) providing a 

reasonably good representation of the application population (sample diversity), and (3) 

being of stipulated fixed size. In this thesis, we will demonstrate that each of these 

requirements is a challenge for BUS that need to be addressed prior to retraining any CNN 

model in transfer learning mode. This list raises a number of different challenges, and non-

compliance with is expected to have undesired performance outcomes. The image quality 

issue is challenging to adhere to for US images in the absence of a standard definition of 

image quality compatible with clinical expectations. The 2nd requirement is another 

challenge that reflects the lack of availability of BUS images, which restricts the knowledge 

about the actual BUS population. The fixed-size image requirement is a challenge as a result 

of the fact that tumour size varies depending on how early or late the mass was detected and 

scanned, and it is not a clear class-dependent factor. Resizing the cropped lesion RoI become 

necessary, but the effect of the adopted image resizing procedure on the image quality may 

adversely influence the performance of trained CNN models. These stipulated requirements 

necessitate the adoption of adequate image preparation techniques as a crucial step in 

developing BUS CNN-based classification models that have the desired high level of 

accuracy without suffering from overfitting. The decision to avoid automatic tumour 

segmentation in our TenD projects implied that the RoI size determination needs to use an 
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adequate lesion-cropping procedure. In relation to the RoI size requirement, image data 

preparation tasks consist of image pre-processing that encompasses a range of operations, 

including procedures for lesion cropping, noise reduction, RoI resizing and resolution 

enhancement. While ensuring adherence to the other two requirements, typically involves 

selecting appropriate image augmentation schemes and employing adequate image quality 

assessment (IQA) metrics. Image augmentation schemes are commonly applied through 

image processing procedures. By carefully selecting and optimizing these pre-processing 

steps, the quality and discriminative power of the input data for the CNN can be enhanced, 

leading to improved classification performance [8], [9]. 

Existing approaches to deal with the above BUS preparation tasks are based on using existing 

image preprocessing techniques developed to be suitable for natural images. Moreover, 

relying on natural IQA techniques may not be aligned with radiologist assessment of US 

image quality. In designing reasonably reliable CNN models for BUS lesion classification, 

these observations influence the related investigations conducted in this thesis. Accordingly, 

our research investigations focus on selecting pre-processing and data preparation 

procedures that are specific, as much as possible, to BUS images by examining their impact 

on the classification performance of the adopted CNN models. We seek to enhance breast 

lesion diagnosis's reliability, generalizability, and effectiveness. Although the findings of 

this study contribute to the advancement of CAD systems for breast cancer, it is expected to 

be of use for the analysis of US images for other types of tissues/organs. 

1.2 Thesis Aim and Objectives.  

This thesis addresses a set of research problems and questions that revolve around leveraging 

CNN models for improved diagnostics of breast lesions in US images while mitigating the 

challenges of overfitting as manifested by limited generalization. Here, we state the overall 

aim of the thesis and describe the list of research objectives that together ensure the 

fulfilment of the aimed purpose(s). 

The overall Aim: This thesis aims to develop CNN-based models of BUS image analysis 

that achieve improved tumour diagnostics when trained on a dataset recorded in a 

single/multiple clinical setting while reducing the possibility of overfitting manifested by the 

lack of generalisation to unseen data. 

The main objectives of the conducted research investigations to achieve the stated aim with 

reasonable success were not all set in a coherent manner at the start of my research, but 

evolved with time and were refined with the more knowledge I acquired about existing CNN 
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architectures, their requirements, and about the differences between natural image 

characteristics and US images. At the beginning of my project, the theory of CNN 

technology was maturing, and many CNN architectures designed for natural image analysis 

became available. However, there was limited knowledge and interest in adapting these 

architectures for computer vision tasks involving non-natural images. Accordingly, the thesis 

objectives were developed by first identifying the common CNN requirement factors that 

influence the performance of such models and may contribute to the overfitting problem. 

Our exploratory investigations identified the following (1) the fixed size input RoI images, 

(2) IQA, and (3) training dataset size and diversity. We found that complying with these 

factors is particularly challenging for US images. Accordingly, the research objectives and 

our investigations targeted the following list and their implications: 

1. Determine the extent of variation in lesion RoI sizes of BUS images and how this 

variation influences the performance of different CNN models trained with BUS 

datasets. The statistical distribution of RoI sizes needs to be studied regarding tumour 

class dependency. Furthermore, in the absence of exact RoI segmentation, two image 

processing issues contribute to the performance influence of RoI size: (1) RoI 

cropping practice and (2) the resizing procedure used to comply with the adopted 

CNN model. 

2. Investigate various RoI cropping schemes (followed by the most commonly used 

image resizing procedure) and determine if there is a near-optimal cropping scheme 

in terms of the performance of the adopted CNN models. Furthermore, we need to 

determine if the adopted resizing scheme impacts the outcome by repeating this 

investigation using a Compressed Sensing Super Resolution (CSSR) scheme known 

to improve image quality compared to traditional interpolation schemes. 

3. Develop automatic IQA metrics that align with radiologists' subjective assessment of 

BUS image quality. This objective need to benefit from a wealth of knowledge 

established for natural IQA metrics and determine their alignment with the 

radiologists’ subjective assessment of BUS images. 

4. Investigate and develop schemes to enlarge and diversify BUS training datasets. This 

objective may require using a large BUS dataset of recorded samples in multi-clinical 

centres. It should go beyond using image augmentation procedures proposed for 

natural images by considering how radiologists make diagnostic decisions. 

By achieving these objectives and research questions, this thesis is meant to promote the 

stated overall aim of this thesis for improving the efficiency, accuracy, and generalization 
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capabilities of CNN-based BUS lesion classification. The findings and insights gained from 

this research have potential implications for breast cancer diagnosis, patient outcomes, and 

clinical decision support systems development. The planned investigations will undoubtedly 

generate new challenges and opportunities for future research directions towards the 

advancements of DL-based BUS analysis. 

1.3 Contributions of the Thesis 

The thesis presents several contributions aimed at addressing research problems related to 

leveraging CNN models for improved diagnostics of breast lesions in US images while 

tackling challenges of overfitting and limited generalization. These contributions are 

outlined as follows: 

1. Identification of Factors Influencing CNN Performance: Our extensive initial 

investigations gained valuable insights into factors that impact CNN-based BUS 

lesion analysis. These insights have been established by conducting a statistical study 

of the extent of variations in RoI sizes, examining RoI cropping procedures, 

understanding the challenge of scarcity of well-annotated BUS images, and 

attempting to understand the challenge of assessing the quality of BUS images in 

terms of natural image distortion metrics. These findings illustrate that any attempt 

to leverage DL models into any image analysis tasks involving datasets of non-

natural images must begin with a thorough analysis of the specific characteristics of 

these datasets that distinguish them from natural images in relation to the expected 

performance of adopted DL models. 

2. Compressed Sensing Super Resolution (CSSR) Resizing: We utilised our 

developed CSSR resizing algorithm that uses well-structured Hadamard-based 

dictionaries to resize BUS-RoI images and enhance the resolutions. Despite 

improving CNN models’ performance marginally, compared to the BiCubic resizing 

procedure, CSSR improves the perceptual quality of resized RoIs, especially for low-

resolution and degraded RoIs, confirmed by an experienced radiologist. 

3. Convex Hull (CH) Lesion Border Approximation: The CH lesion border RoI 

approximation is an efficient and effective alternative to automatic RoI segmentation, 

that minimizes the exclusion of lesion pixels and facilitates various cropping 

scenarios, contributing to improved model performance. The ease with which CH 

lesions can be expanded, even for highly irregular lesions, is instrumental in 

designing an effective US-specific augmentation technique (see below). 
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4. Optimal Tumour Cropping: This research investigates the determination of 

optimal tumour cropping scenarios for improved CNN model performance. It 

identifies the TumourZ (tightly cropping tumour polygonal shape area with zero 

padding) cropping scenario as optimal, which yields superior performance compared 

to other cropping methods. The findings demonstrate the potential of TumourZ in 

enhancing the accuracy and generalizability of CNN-based breast lesion analysis, 

with improved decision quality supported by Grad-Cam visualization. 

5. Multi-centre versus Single-centre Training Dataset: TenD managed to source 

BUS datasets of nearly 4000 images from five medical centres located in Shanghai. 

Though helpful for achieving the last objective of Section 1.2, not all the images were 

suitable. We compiled a subset of these images by carefully selecting just under 1600 

samples through a comprehensive cleaning process and visual examination. We call 

this BUS dataset the Modelling dataset. We experimentally show that training CNN 

models with this diverse modelling dataset, containing data from multiple clinical 

centres rather than a single clinical centre, significantly improves the generalization 

capabilities of the CNN models. This highlights the importance of multi-centre data 

in reducing the effect of scarcity and improving Data-Diversity for robust CNN-

based breast lesion analysis with reduced overfitting. CNN models trained on a single 

clinical centre dataset have been shown to suffer from severe overfitting and do not 

generalize to unseen data from other sources. 

6. Developing IQA for Medical US images: We demonstrated that most existing IQA 

techniques for natural images are unreliable in assessing the quality of BUS images 

and do not align with radiology experts’ assessments. Instead, we introduced a Multi 

Characteristic Image Quality (MCIQ) feature vector as a tool for US-IQA. The 

MCIQ captures the spatial distribution of different natural image quality metrics, 

reflects a good tumour class dependency, and can distinguish various image sources 

and datasets. MCIQ helps understand the lack of generalization of CNN models to 

unseen datasets. The limitations of MCIQ in alignment with expert radiologist BUS-

IQA were linked to the scarcity of BUS images that were quality labelled by 

radiologists and the absence of established knowledge on distortions other than 

speckle noise. An advanced MCIQ version, developed by utilizing a small set of 6 

well-conditioned 5x5 Hadamard filters for convolution-based US image 

augmentation, has been shown to improve MCIQ performance and its alignment with 

radiologists’ IQA even for a small quality labelled BUS dataset. 
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7. Investigating Image Augmentation Strategies: We explored several image 

augmentation strategies for US images to mitigate the scarcity of labelled data, 

evaluating their impact on model performance and generalizability. These strategies 

encompass the utilization of Hadamard filters convolution, Singular Value 

Decomposition (SVD) techniques, and other conventional augmentation schemes, 

such as flip and rotations. The experimental results show that such augmentation 

schemes effectively enhance the CNN models’ generalizability to external datasets. 

Unfortunately, the success of these augmentation schemes does not provide 

information on the source of generalization failure that they treat. Ensuring success 

against the numerous sources of generalization failure requires testing the trained 

models on many external BUS datasets. 

8. Tumour Margin Appending (TMA) Scheme: We introduce the TMA 

augmentation-like approach to expand small training datasets by combining locally 

optimal cropping ratios (scenarios). This approach is shown to effectively mitigate 

the lack of generalization caused by variations in RoI cropping practices, improving 

the robustness of CNN models for breast lesion analysis in uncontrolled scenarios. 

The above contributions collectively advance the efficiency, accuracy, and generalization 

capabilities of CNN-based breast lesion analysis in US images. The findings of this study 

have implications for improving breast cancer diagnosis, enhancing patient outcomes, and 

guiding the development of clinical decision support systems. Furthermore, the research 

identifies future research directions, emphasizing the significance of data preparation, IQA, 

augmentation techniques, and standardization of image acquisition protocols and datasets in 

the field of DL-based BUS analysis. 

Finally, the various investigations to achieve the above contributions generated the following 

list of publications, and a few more manuscripts are planned for publication later. The list of 

published manuscripts to date are: 

I. T. Hassan, H. Du, and S. Jassim, ‘Enhancing Generalization of CNN Models for 

Breast Lesion Classification from Ultrasound Images’, 2023, Presented at MIUA 

2023 to appear in Frontiers in Medical Technology. 

II. Tahir Hassan, Alaa Al Zoubi, Hongbo Du, and Sabah Jassim "Ultrasound image 

augmentation by tumor margin appending for robust deep learning based breast 

lesion classification", Proc. SPIE 12100, Multimodal Image Exploitation and 

Learning 2022, 1210008 (27 May 2022); https://doi.org/10.1117/12.2618656 
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III. Tahir Hassan, Alaa AlZoubi, Hongbo Du, and Sabah Jassim "Towards optimal 

cropping: breast and liver tumor classification using ultrasound images", Proc. SPIE 

11734, Multimodal Image Exploitation and Learning 2021, 117340G (12 April 

2021); https://doi.org/10.1117/12.2589038 

1.4 Structure of the Thesis 

This thesis consists of 7 chapters, each focusing on specific aspects of CNN-based BUS 

lesion analysis and the associated challenges and objectives. The rest of the thesis is 

organised as follows: 

Chapter 2 provides essential background knowledge and context for understanding the 

research conducted in subsequent chapters. It explores the field of medical image analysis, 

emphasizing the role of CAD in supporting healthcare systems. The chapter also delves into 

the rapidly evolving field of DL and its application to medical image analysis, with a focus 

on CNN models. Additionally, reviewing existing works on CNN-based BUS lesion 

classification. 

Chapter 3 delves into the factors that influence the performance of DL models when applied 

to US tumour scan image analysis, emanating from CNN model requirements of training 

dataset samples. It identifies and describes the nature of the challenges posed by these factors 

that are specific to the BUS training dataset. For each of these factors, existing solutions 

from work on training CNN models on datasets of natural images are explored, and the 

chapter outlines the research strategy to tackle each of these factors. 

Chapter 4 focuses on the critical aspect of lesion cropping in BUS images. We review 

related work, explore tumour border approximation using interpolation methods from a set 

of border points marked by an expert radiologist and identify the CH of these points as a 

simple alternative. The chapter presents the experimental results and performance analysis 

of different cropping scenarios of both CNN models and HC feature schemes. We also 

explore the generalization performance of the developed models when tested on external 

datasets and utilize heatmaps visualization to understand the impact of the cropping scenario 

on decision quality. 

Chapter 5 addresses the challenge of IQA in BUS images. It introduces a novel approach 

called the Multi Characteristic Image Quality (MCIQ) feature vector, which captures the 

spatial distribution of quality metrics and serves as a quality descriptor. The chapter reviews 

existing IQA schemes and presents experimental findings using MCIQ to explain disparities 
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observed in DL generalization results. It also explores the use of MCIQ for other quality-

related applications in BUS image analysis. 

Chapter 6 addresses the scarcity of labelled US images through image augmentation 

techniques. It reviews existing augmentation approaches and introduces novel schemes 

tailored explicitly for BUS images. The chapter investigates their impact on pre-trained CNN 

models' performance and generalization capabilities. Additionally, it introduces the TMA 

strategy, a cropping-based augmentation approach, to expand scarce training datasets and 

enhance generalization capabilities. 

Chapter 7 summarizes the main findings and contributions of the research. It highlights the 

significance of the research problems addressed, outlines the novel techniques and 

methodologies proposed, and emphasizes the improvements achieved in CNN-based BUS 

lesion analysis. The chapter also discusses the practical implications of the research and 

provides insights into future research directions. 
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Chapter 2: Review of Background Knowledge and 

Materials 

In recent years, research activities have intensified toward integrating ML algorithms, 

ranging from HC texture analysis schemes to emerging DL technologies, into the clinical 

practices of breast lesion classification using US tumour scan images. Leveraging advances 

in these technologies is ultimately expected to aid in accurate and efficient early diagnosis 

for improved patient care. 

This chapter provides essential background knowledge and context for understanding the 

key concepts and techniques necessary, relevant to such integration, to comprehend the 

research conducted in the subsequent chapters of this thesis. It begins by exploring the field 

of medical image analysis, highlighting the significance of CAD in supporting healthcare 

systems. The chapter then delves into the rapidly evolving DL as a powerful approach that 

has revolutionized various computer vision domains, including medical image analysis. The 

utilization of pre-trained models and fine-tuning strategies is discussed, emphasizing their 

effectiveness in adapting CNNs for specific tasks for which training CNN models from 

scratch is infeasible, such as BUS lesion classification. The chapter ends with a review of 

existing works on DL for BUS lesion classification. 

2.1 Introduction to Breast Cancer and Ultrasound Imaging 

In this section, we describe the various aspects of the BUS diagnostic efforts in terms of 

general health issues and the involvement of medical image technologies. 

2.1.1 Prevalence, Risk Factors, and Impact on Public Health 

Breast cancer is a prevalent and critical global health issue, affecting millions of individuals 

worldwide, particularly women. It is the most commonly diagnosed cancer among women 

and a leading cause of cancer-related deaths. To effectively fight or manage this killer 

disease, we need to comprehend its prevalence, risk factors, and impact on public healthcare 

systems [10]. The incidence rates of breast cancer vary across different regions globally. 

Still, this variation has to take into account the significant variation in the level of available 

medical care in different parts of the world. In 2020 alone, the World Health Organization 

reported approximately 2.3 million new cases of breast cancer and 685,000 deaths attributed 

to the disease. These staggering numbers underscore the urgent need for effective strategies 

to combat breast cancer and alleviate its burden on public health. 
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Various risk factors contribute to breast cancer development, encompassing genetic and 

environmental factors. Age is a significant risk factor, as the incidence of breast cancer 

increases with advancing age. Family history of breast cancer, particularly among first-

degree relatives, is another factor indicating the relevance of genetic predisposition. Certain 

gene mutations, such as BRCA1 and BRCA2, are associated with an elevated risk of 

developing breast cancer. Hormonal factors, including early onset of menstruation, late 

menopause, and hormone replacement therapy, also contribute to the risk. Lifestyle choices 

that may increase the likelihood of developing breast cancer include an inactive lifestyle, 

unhealthy diet, obesity, excessive alcohol consumption, and long-term use of oral 

contraceptives. Other potential environmental risk factors include exposure to ionizing 

radiation and patients having had previous benign breast conditions [10]. 

Breast cancer profoundly affects the overall quality of life for those diagnosed with the 

disease. Its impact on public health goes far beyond individual patients to their families and 

the community healthcare systems. It places significant financial and staffing burdens on 

healthcare utilization relating to diagnostic tests, treatments, follow-up care, and demands 

on social care. Physical symptoms, treatment side effects, and psychosocial challenges can 

significantly impact patients' well-being and daily functioning. This emotional toll extends 

to their families and caregivers, who provide essential support throughout the journey [11], 

[12]. Figure 2.1 presents a breast cancer tumour. 

Increased public awareness about breast self-examinations, regular clinical breast 

examinations, mammography and US screenings help identify breast cancer at earlier stages 

when treatment options are more effective, yielding improved survival rates. By addressing 

all issues relating to the risk factors and the implications of breast cancer, researchers, 

healthcare professionals, policymakers, and individuals can collaborate to reduce their 

consequential burdens and enhance the overall well-being of society as well as those affected 

by this disease [13]. Next, we shall explain the role of medical imaging in breast cancer early 

detection and diagnosis. 
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      [14] 

2.1.2 Medical Imaging in Breast Cancer Diagnosis 

Medical imaging plays a crucial role in detecting, diagnosing, and monitoring breast cancer 

and other diseases. It aids healthcare clinicians as a vital visual tool to examine internal 

tissue/organ structure, monitor functioning, and detect abnormalities. It provides valuable 

information needed for making accurate assessments and informed decisions regarding 

patient disease diagnosis/management. Among the various imaging modalities available, the 

US has emerged as a vital tool in breast cancer care due to its unique capabilities and 

advantages. US imaging, also known as sonography, utilizes high-frequency sound waves to 

create detailed images of breast tissues. Figure 2.2 displays a typical medical US machine. 

US scanning is a non-invasive, safe, and widely accessible imaging technique that does not 

involve exposure to ionizing radiation. It is particularly suitable for scanning sensitive 

populations, such as pregnant women and young individuals [15]. 

US scanning of the breast for cancer detection is often used to complement other imaging 

modalities, such as mammography. Mammography is a standard screening tool, but it may 

have limitations, especially in dense breast tissue or for individuals with a high risk of 

developing breast cancer. The US can provide additional information, particularly in 

Figure 2.1 Breast Cancer Tumour [14]. 



15 
 

distinguishing between solid masses and fluid-filled cysts. It can help evaluate breast 

abnormalities detected during physical examinations or mammographic screening, aiding in 

early detection [16], [17]. 

 

     [18] 

In addition to detection and diagnosis, US is also valuable in the monitoring and surveillance 

of breast cancer patients. It allows for assessing treatment response, including the evaluation 

of tumour size, vascularity, and changes in the surrounding tissues. Tracking treatment 

progress can benefit from safe serial US examinations to determine the need for additional 

interventions or adjustments in disease management [19]. Furthermore, serial US scans aid 

in evaluating cancer recurrence/metastasis and help identify new suspicious lesions or 

changes in the previously affected areas, i.e., guide further investigations and appropriate 

treatment strategies [20]. 

Enhanced technological advancements and evolving techniques can improve diagnostics 

efforts. For example, Doppler US scans enable the assessment of blood flow within breast 

lesions, providing valuable information about their vascularity and potential disease 

aggressiveness. Other advanced US technologies, such as elastography, can evaluate tissue 

stiffness and aid in characterizing breast lesions [21]. 

Figure 2.2 Medical Ultrasound Machine [18]. 
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In conclusion, US imaging plays a pivotal role in breast cancer detection, diagnosis, and 

monitoring. Its continued advancements hold promise for further enhancing the role of US 

in breast cancer management. 

2.1.3 Advantages and Limitations of US Imaging for Breast Cancer Diagnosis 

US imaging is a valuable tool in breast cancer assessment, offering several advantages that 

make it a relevant and widely used modality in clinical practice. However, it also has certain 

limitations that researchers and healthcare professionals need to consider. Understanding 

these advantages and limitations is essential for optimizing the use of US in breast cancer 

research and patient care. 

One of the key advantages of US imaging is its non-invasive and painless nature. It is a safe 

imaging modality as it does not involve exposure to ionizing radiation. Additionally, US 

allows for dynamic assessment and visualization of the examined tissue or organ in real-

time, providing immediate feedback [22]. 

Another advantage of the US is its excellent soft tissue contrast, which enables the 

differentiation between normal and abnormal breast tissues. It helps identify and characterise 

various breast lesions, such as cysts, solid masses, or benign conditions, aiding in the 

diagnosis and treatment planning [23]. 

US is widely accessible and more cost-effective compared to other imaging modalities, such 

as MRI and CT scans. This accessibility makes it a valuable tool, particularly in resource-

limited settings where availability and cost considerations are important factors [22]. 

However, US imaging also has certain limitations that need to be taken into account. One 

major limitation is its operator dependency, as the quality of the images and interpretation 

can vary based on the skills and experience of the operator. Standardization and ongoing 

training are essential to ensure consistent results to minimize inter-observer variability [24]. 

Compared to other medical imaging modalities such as MRI or CT scans, US images are 

often perceived to have lower image quality. The concept of US image quality is somewhat 

vague and confusing to non-expert observers. This perception arises from differences in 

textural and structural content, which are essential in clinical settings. US images can be 

affected by various factors that contribute to reduced image clarity and diagnostic 

confidence. Speckle noise, caused by the interaction of US waves with tissue structures, can 

obscure fine details and reduce the visibility of subtle features within the image. 

Additionally, US images may exhibit different levels of contrast in different regions, making 

distinguishing between different tissue types or detecting subtle abnormalities difficult. 
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These limitations can hinder the accurate interpretation and analysis of US images, 

potentially impacting the performance of DL models that rely on high-quality input data 

[25]. 

Another limitation of US imaging is its limited tissue penetration and field of view, which 

could result in a partial assessment of the breast tissue and potentially miss lesions in certain 

cases [19]. While the US helps differentiate between cystic and solid lesions, it may have 

limitations in characterizing the nature of solid masses. Additional imaging modalities, such 

as mammography or MRI, may be required for a more comprehensive evaluation and 

accurate diagnosis [19]. Moreover, US imaging cannot efficiently detect or evaluate 

microcalcifications formed by small calcium deposits, often considered a sign of early breast 

cancer. Mammography is the gold standard for detecting microcalcifications [26]. 

It is worth noting that advancements in US technology and image processing techniques 

have been exploited to mitigate some of these limitations, such as speckle noise reduction 

algorithms and contrast enhancement methods. However, the inherent challenges associated 

with US image quality should be considered when developing and evaluating automated 

BUS lesion classification methods. In this thesis, our research focuses on performance-

influencing factors of CNN-based BUS lesion classification, including investigating US-

related concepts of image quality and data scarcity. 

2.2 BUS Lesion Diagnosis: From Manual to Automated Systems 

Traditional breast cancer diagnosis heavily relies on the expertise of radiologists for 

identifying, labelling and classifying breast lesions. Radiologists manually examine and 

analyse US scan images of breast tissues; they look for specific features relevant to signs of 

malignancy or otherwise (e.g., shape, size, echogenicity (the ability to reflect sound waves), 

margin characteristics, and the presence of microcalcifications). Their assessment is 

recorded in BI-RADS (Breast Imaging Reporting and Data System) reports that categorise 

each identified lesion sign indicating the level of suspicion for malignancy [27]. This process 

can be time-consuming, leading to diagnosis and treatment initiation delays. Figure 2.3 

shows a breast tumour scan image, from which it is not feasible for non-specialised observers 

to assess the patient's status credibly accurately. 

 



18 
 

 

However, this manual process is subjective, time-consuming, and prone to inter- and intra-

observer variability [24]. In recent years, there has been a growing interest in leveraging ML 

technologies, including HC feature analysis and CNN, to automate and improve BUS lesion 

diagnosis. The development and deployment of HC feature medical image analysis schemes 

predate even the emergence of the first CNN model just before the turn of the century for 

the analysis of natural images. For both types of schemes, the model consists of two 

components: a feature extraction component and a classification component. Figure 2.4 

presents the general pipeline of both paradigms of ML algorithms for image classification. 

Both types of diagnostic schemes are based on supervised learning, i.e., their training dataset 

samples must be class labelled, and their algorithms learn how to map input samples to their 

labels. HC texture feature analysis relies on extracting certain texture features that are 

engineered by researchers with good working knowledge of image content and processing, 

then training a classifier to learn a mapping between the extracted texture features’ 

representation and the labels of the training samples. CNN models are designed to learn large 

numbers of hidden complex patterns at different scales refined through an elaborate training 

procedure using several convolution layers designed to meet the investigated objectives and 

possibly more accurate diagnostic decisions [28]. The success of both approaches relies on 

having enough training samples reflecting the diversity of the task population distribution. 

Figure 2.3 An Ultrasound Scan Image of a Breast Tumour. 
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Still, CNN models require significantly larger training sets, especially for training from 

scratch. The problem of scarcity of US tumour scan images that are adequately labelled 

according to an adapted standard is a serious challenge to the work of this thesis in relation 

to deploying CNN models for BUS diagnostic tasks. 

 

 

CNN models have demonstrated remarkable capabilities in various image analysis tasks, and 

their potential to enhance the detection/diagnosis of various tumour types by analysing 

medical image scans of their corresponding tissues/organs is gaining remarkable attention 

[22]. Naturally, the widely reported astonishing success levels of CNN models in computer 

vision tasks raise the question about the wisdom/necessity of using HC features schemes 

anymore. Lin et al. in [29] consider this question with respect to the problem of identifying 

the adequacy of contrast-enhanced liver MRIs. They demonstrate that some HC schemes 

perform consistently, in terms of AUC curves, for this application through a range of training 

sample sizes, while CNN was unable to converge with sizes < 100 samples. The adequacy 

of these images relates to the fact that images acquired soon after intravenous contrast 

injection may have insufficient contrast and impaired differentiation between normal liver 

tissue and focal lesions. Lack of contrast and other clinically relevant image quality 

characteristics is another challenge to CNN models for US images we investigate in this 

thesis. In the case of HC schemes, these issues are often dealt with by some image quality 

enhancement procedures (e.g., sharpening, denoising, histogram equalisation, etc.) or by 

quality adaptive schemes, see [30]. Another issue is that the two types of ML schemes handle 

the issue of input image size in different ways. While CNN schemes require all (training and 

testing) images to be of a fixed size, HC schemes deal with input image size variations by 

Figure 2.4 The general pipeline of Machine Learning algorithms for image classification. 
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normalising the extracted features' representation. For US tumour images, RoI image size 

varies within a large range, and resizing seriously impacts the quality of the input images to 

CNN models. 

Instead of looking at these two paradigms as competitors, many researchers have been 

inspired by the variety of benefits from the two paradigms of ML image analysis, proposed 

and investigated generic systems that combine HC features with the features learnt by the 

layers of CNN models, (see, e.g., [31], [32]). In cases where the available training data is 

limited, or the target classification task is specialized, HC features can provide valuable 

insights and improve classification performance, e.g., cancer sign research in BUS lesion 

classification [33], [34]. Moreover, combining HC features with CNNs in a hybrid approach 

can leverage the strengths of both methodologies, leading to enhanced classification 

accuracy and interpretability [35]. During the work of this thesis, we have also conducted 

some pilot work along these lines. 

In summary, we recognise that integrating CNNs into BUS lesion clinical diagnostics has 

great potential for improvement and reliability. However, the transition from radiologist 

diagnosis to CNN automated diagnosis is some way away due to many challenges and 

considerations. The CNN models must be extensively validated on independent datasets to 

ensure their robustness and generalizability [36], [37]. Moreover, most CNN models work 

as black boxes with little or no interpretation of their decisions, thereby limiting trust and 

acceptance by clinicians and the public [38]. Next, we shall describe these 2 image-analysis 

paradigms, highlighting the main structures facilitating their learning aspects. 

2.2.1 Deep Learning and Convolutional Neural Networks 

DL is a subfield of ML in artificial intelligence that focuses on multi-layered artificial neural 

networks. These networks have gained substantial attention and popularity since the turn of 

this century, owing to their remarkable capacity to automatically learn and extract high-level 

features/representations from complex data. The invention of DL algorithms was, and 

continues to be, inspired by established knowledge of the neural organization in the visual 

cortex of living organisms. DL-ML paradigm is often described as an attempt to mimic the 

functioning of the human brain by enabling computers to process and analyse vast amounts 

of data with exceptional accuracy [39]. Figure 2.5 below depicts this popular perception of 

the DL family of algorithms. 
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The DL paradigm has significantly impacted various computational fields through its 

applications since the first scheme LeNet was published in 1998 [40]. Since then, a race has 

ensued to create new CNN models for various challenging image processing/analysis tasks 

like facial recognition, autonomous driving, and video analysis. In this exponentially 

growing field of image analysis, DL has achieved human-level performance in object 

detection, image segmentation, and classification. The transformative potentials of the DL 

paradigm across diverse fields of computer vision application are widely recognised for 

improved results and for driving future advancements in technology and understanding [39]. 

Most of these CNN models have been developed for applications related to natural image 

modalities. Still, in recent years, these successes have been the driving force for leveraging 

their use in the domain of medical image analysis for automating clinical tasks of interpreting 

the content of non-natural scan images obtained by X-ray, CT, MRI, and US machines. By 

extracting/learning intricate features, CNN models are expected to facilitate disease 

detection, diagnosis, and treatment planning, promising results in anatomical structure 

segmentation, abnormality identification, and clinical outcome prediction [28].  Most CNN 

models have the same overall architecture but differ in certain choices of parameters, and 

Figure 2.5 Deep Learning Family. 
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below is a very concise description that applies to the commonly used state-of-the-art CNN 

models. 

The feature extraction component of the various CNN architectures consists of multiple 

interconnected convolutional layers, each serving a distinct purpose in extracting and 

learning application-relevant features. These layers consist of grid-like structures of 

receptive fields, enabling the gradual formation of spatial hierarchies of features, from 

simple local patterns to more global structural patterns. Each convolution layer employs a 

large number of convolution filters/kernels, organised in a number of channels, to be used 

for convolving images and extracting spatial patterns of local data. Post-convolving input 

images, these layers apply other operations, including activation functions, such as the 

Rectified Linear Unit (ReLU), designed to introduce non-linearity characteristics that the 

linear convolutions overlook. The activation functions help create sparse representations of 

the convolved feature maps and some convolution layers, then apply local pooling as a down-

sampling dimension reduction operation before passing it onto the next layer or to the fully 

connected layer (FCL), also known as fully/dense connected neural network, classification 

component. The operations of these convolution layers involve other parameters besides the 

sets of convolution filters, including adding a bias parameter post-convolution besides the 

stride and padding parameters that determine how the convolution kernels scan the input 

image data. Furthermore, filter sizes at different layers can vary from one layer to another, 

and the CNN models differ in their choices of filter sizes as well as the other parameters. 

To facilitate high-level learning and decision-making, the FCLs are employed to integrate 

the extracted/learnt feature maps and capture their semantic relationships in order to map the 

input image onto the label. These layers establish dense connections between all neurons in 

consecutive layers, enabling the network to model complex feature combinations and 

generate final class label predictions. By leveraging weight matrices and activation 

functions, the FCL transforms the extracted/learnt feature maps into outputs corresponding 

to specific classes or regression values. Training CNNs on a sufficiently large training 

dataset of image samples is an elaborate procedure whereby the set of feature maps obtained 

from convolution layers components are passed through the FCLs, with their activation 

functions, to be subjected iteratively to the backpropagation procedure, that adjusts the CNN 

parameters (including the convolution filter weights and FCL weights) according to the 

differences between the predicted and the target decisions. The parameter adjustment uses 

optimization algorithms, such as stochastic gradient descent variants, to minimize a defined 

loss function [28], [41]. 
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2.2.2 Handcrafted Feature-based Image Analysis Schemes 

The HC paradigm of automated ML algorithms grows from decades of computer vision 

research into image processing, pattern recognition, biometrics recognition and digital 

forensics. Much of these efforts rely on identifying local image data patterns (i.e., features) 

associated with notable visual/frequency changes, referred to as changes in texture, that are 

amenable to mathematical formulation. In all these fields, researchers recognised the 

importance of texture features and their statistics. The computer vision literature is awash 

with many different image features that have been manually engineered (i.e., handcrafted).  

The design of HC features often involves finding the right trade-off between accuracy and 

computational efficiency. 

Furthermore, when engineering image HC features, for many image analyses, appropriate 

considerations were given to features that are invariant in certain image operations, such as 

scaling and rotation. HC features for face recognition should be less affected by occlusions 

and variations in pose and illumination. The well-known Scale Invariant Feature Transform 

is used to extract local HC features in digital images by first locating some key landmarks 

and endowing them with quantitative descriptors that are invariant against object rotation 

and scale variations [31]. However, this comes with a high computational cost. 

HC texture features in images are not confined to the spatial domain, but many HC features 

have been extracted from image frequency domains (e.g., Fourier, Gabor and Wavelet) and 

or in many transform domains, e.g., [6], [42]. For detection and classifying Ovarian tumours 

from US ovary scan images, several HC texture-based schemes were developed and tested 

individually and fused groups, with various high success rates. These HC features included 

the Fast Fourier-based Geometric Features, Local Binary Pattern (LBP), Histogram of 

Orientation Gradient (HOG), Gabor filter, Fractal dimension, seven moments features, and 

Gray-Level Co-occurrence Matrix (GLCM) (e.g., see [5], [6], [9], [22], [42]). The emergence 

of the topological data analysis (TDA) paradigm of image analysis [43] provides a new 

texture HC representation. TDA’s persistent homology tool that encapsulates the spatial 

distribution of certain HC feature landmarks (e.g., LBP) has shown a high level of success 

in breast tumour diagnoses from mammogram scan images and US liver tumour scans [44], 

[45]. Recently, the TDA-based HC feature of the Euler Characteristic Curve was used in 

[29], with considerable success in identifying the adequacy of contrast-enhanced liver MR 

images. 
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While DL methods often outperform traditional HC feature-based approaches in medical 

image classification tasks, during the work of this thesis, we used several of the above-

mentioned HC schemes. However, to be brief, we will only describe the 2 most common 

ones: LBP and HOG. We were investigating their effectiveness when dealing with limited-

size dataset US images as a more straightforward and more interpretable ML model. It is 

worth noting that the performance of HOG and LBP-based approaches may not match the 

state-of-the-art achieved by DL models in BUS lesion classification. Next, we shall briefly 

explain them. 

Histogram of Oriented Gradient (HOG) 

HOG-HC image descriptor is computed from the gradient map 𝐺 of a grayscale image 𝑓, by 

representing the partial derivative pair at each pixel position (𝑖, 𝑗), in the polar coordinates: 

(
𝝏𝒇(𝒊, 𝒋)

𝝏𝒙
,
𝝏𝒇(𝒊, 𝒋)

𝝏𝒚
) = (𝒈𝒙(𝒊, 𝒋), 𝒈𝒚(𝒊, 𝒋) 2.1 

𝒈𝒙(𝒊, 𝒋) = 𝒇(𝒊 + 𝟏, 𝒋) − 𝒇(𝒊 − 𝟏, 𝒋) 2.2 

𝒈𝒚(𝒊, 𝒋) = 𝒇(𝒊, 𝒋 + 𝟏) − 𝒇(𝒊, 𝒋 − 𝟏) 2.3 

𝒈(𝒊, 𝒋) = √𝒈𝒙
𝟐(𝒊, 𝒋) + 𝒈𝒚

𝟐(𝒊, 𝒋) 2.4 

𝜽(𝒊, 𝒋) = 𝒂𝒓𝒄𝒕𝒂𝒏⁡(
𝒈𝒚(𝒊, 𝒋)

𝒈𝒙(𝒊, 𝒋)
⁡ 2.5 

 

Here, g𝑥(i, j) and⁡g𝑦(i, j) represent the gradient in horizontal and vertical directions, 

respectively. The polar representation of the Gradient map 𝐺 is given at each point by the 

pair (𝑔, 𝜃) of magnitude and orientation (see, e.g., [46], [47]). 

To quantify the orientation, the [0, 180[ interval is typically divided into 9 equal bins. The 

image is then divided into non-overlapping rectangular blocks of equal size. For each block 

𝑐, a weighted histogram ℎ𝑜𝑔𝑐 is computed by summing the magnitudes of the gradient pixels 

in block 𝑐 that fall within each orientation bin. The computation of the weighted histogram 

ℎ𝑜𝑔𝑐 can be defined as: 

𝒉𝒐𝒈𝑪(𝒌) = ⁡∑{𝒈(𝒊, 𝒋):⁡⁡𝟐𝟎(𝒌 − 𝟏) < 𝜽(𝒊, 𝒋) ≤ 𝟐𝟎𝒌}

(𝒊,𝒋)

 2.6 

After computing the histogram for each block, it is common to normalize the histogram by 

dividing each bin by the sum of the contents of the 9 bins. This normalization ensures that 
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the descriptor is robust to changes in illumination. Finally, the HOG texture feature vector 

of an image 𝑓 is formed by concatenating the histograms ℎ𝑜𝑔c for all blocks. In many 

applications, the image is subdivided into 3×3 equal rectangular blocks, resulting in a HOG 

feature vector of size 81. However, a larger number of blocks, such as 4×4 or 5×5, can also 

be used. 

Local Binary Patterns (LBP) 

LBP is another widely used texture descriptor with applications in various image analysis 

tasks. Initially proposed by Ojala et al. as a method to characterize local texture [48]. LBP 

defines an image transform that operates by associating an 8-bit binary code with each pixel 

in an image based on its order relation to its neighbours. Traditionally, the central pixel in a 

3x3 image patch is compared to its neighbours in a clockwise manner, starting from the top-

left corner. For each neighbour pixel, if it has a value greater than or equal to the central 

pixel, it is assigned the binary 1 and 0 otherwise, resulting in circular 8-bit binary code. The 

LBP-transformed image changes each image pixel value to a new decimal value obtained 

from its 8-bit LBP code using the formula: 

𝑳𝑩𝑷(𝒙𝒄, 𝒚𝒄) = ∑𝒔(𝒊𝒏 − 𝒊𝒄)𝟐
𝒏

𝒏=𝟕

𝒏=𝟎

 2.7 

where 𝑖𝑐 and 𝑖𝑛 are grayscale values of the central and its 8-neighbour pixel, scanned in 

clockwise order from the top left corner, and the function s(x) is defined as: 

𝒔(𝒙) = ⁡ {
𝟏⁡⁡𝒊𝒇⁡𝒙 ≥ 𝟎
𝟎⁡⁡𝒊𝒇⁡𝒙 < 𝟎

 2.8 

To differentiate between groups of LBP codes in terms of their geometric interpretation, the 

8-bit byte is considered as a circular string in a clockwise order starting from the top-left 

corner. The number of transitions between 0 and 1 in the circular string is counted. Uniform 

LBP codes (ULBP), the adopted LBP texture feature in this work, have at most two 

transitions and indicate the presence of corners, end of lines, and other important features. 

Interestingly, in face images, ULBP codes form nearly 90% of all LBP codes [49], [50]. 

There are a total of 58 Uniform LBP codes, with 56 of them having two transitions and two 

codes having no transitions: "00000000" and "11111111". 

Different groups of LBP pixels in an image are used to extract feature vectors. Three 

common feature vectors are LBP56, representing the 56-bin histogram of all the 56 ULBP 

codes with two transitions. ULBP represents the 58-bin histogram of all the Uniform LBP 

codes. LBP59 includes all 58 Uniform LBP codes, with the last bin holding the count of all 
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other LBP codes. We note that other applications use a 256-bin histogram, one bin for each 

of 256 different LBP codes, and this is often referred to as the standard LBP feature vector. 

However, in this work, ULBP is the only adopted LBP feature vector for BUS lesion 

classification. 

For more detail on other relevant texture feature descriptors in this area, including GLCM, 

Gabor and Fractal, we guide the readers to [5], [6], [42]. 

Next, we shall briefly describe the two most commonly used classifiers for HC features that 

we also used in this work. 

Support Vector Machine (SVM) 

SVM is a supervised ML algorithm for classification and regression analysis [51]. It aims to 

find an optimal hyperplane in a high-dimensional feature space that separates different 

classes or groups of data points. SVM operates by maximizing the margin, the distance 

between the hyperplane and the nearest data points from each category. This margin 

maximization allows SVM to handle complex decision boundaries and classify new, unseen 

data points effectively. SVM uses a kernel function to transform the input data into a higher-

dimensional space where linear separation is possible. This transformation enables SVM to 

handle non-linear relationships between features. SVM is known for its ability to handle 

high-dimensional data and its robustness against overfitting. 

k-Nearest Neighbours (kNN) 

kNN is a non-parametric ML algorithm used for classification and regression tasks [51]. It 

operates based on the principle that data points with similar features tend to belong to the 

same class or have similar output values. In kNN, the "k" represents the number of nearest 

neighbours to consider. To classify a new data point, kNN searches for the "k" closest 

training data points in the feature space. The class or value of the new data point is 

determined by the majority vote or averaging of the classes or values of its k nearest 

neighbours. kNN is simple yet effective, as it relies on local information and does not make 

strong assumptions about the underlying data distribution. However, its performance can be 

sensitive to the choice of the number of neighbours (k) and the distance metric used to 

measure similarity between data points. 
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2.3 Building Blocks of CNN Models 

This section describes the standard building blocks of existing CNN models used for image 

analysis and explains their structures and functions within the overall CNN architectures. 

The aim is to highlight the end-to-end process of their learning algorithms. We shall also 

describe and list samples of the CNN models that we used in this thesis. 

2.3.1 Convolutional Layers 

Convolutional layers are fundamental components of Convolutional Neural Networks 

(CNNs) used in computer vision tasks. These layers consist of filters that perform 

convolutions on input images, extracting local features. Convolutions involve sliding the 

filters over the input image and computing dot products between filter weights and image 

pixels. By learning these filter weights through training, convolutional layers can detect 

important visual patterns, such as edges, textures, or shapes, at different spatial locations. 

The output of a convolutional layer is a feature map highlighting the presence of these 

learned features. The use of convolutional layers enables CNNs to effectively capture spatial 

hierarchies and perform tasks such as object detection, segmentation and image 

classification, contributing to advancements in computer vision research and applications 

[41]. 

Mathematically, convolving an input image patch and a same-size filter is defined as follows: 

𝑭(𝒊, 𝒋) =∑ ∑ 𝑰(𝒊 +𝒎, 𝒋 + 𝒏) ∗ 𝑲(𝒎,𝒏)
𝒏𝒎

 2.9 

Where 𝐹(𝑖, 𝑗) represents the value of the convolutional output at position (𝑖, 𝑗), 𝐼(𝑖 + 𝑚, 𝑗 +

𝑛), denotes the pixel value of the input image at position (𝑖 + 𝑚, 𝑗 + 𝑛), and 𝐾(𝑚, 𝑛) 

corresponds to the filter coefficient at position (𝑚, 𝑛). Figure 2.6 visually presents the image 

convolution operation. 
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             [52] 

In addition to the convolution operation, convolutional layers incorporate other parameters, 

such as stride and padding, to control the spatial dimensions of the output feature maps. The 

stride parameter determines the step size at which the filter is moved across the input image. 

A larger stride reduces the spatial resolution of the output feature maps, leading to spatial 

downsampling. Padding is used to preserve spatial dimensions by adding additional border 

pixels to the input image, preventing information loss at the edges.  

2.3.2 Activation Functions 

Activation functions play a critical role in artificial neural networks by introducing non-

linearities to the network's output. These functions are applied to the output of each neuron, 

determining whether the neuron should be activated or not. The activation function 

introduces non-linear transformations to the input data, enabling the network to learn 

complex patterns and make non-linear decisions. Common activation functions include the 

sigmoid function, which maps input values to a bounded range between 0 and 1, and the 

ReLU function, which outputs the input value if it is positive and zero otherwise. Other 

activation functions, such as the hyperbolic tangent (tanh) and SoftMax functions, are also 

used in specific contexts. The choice of activation function impacts the network's ability to 

model complex relationships and affects its learning dynamics. By applying activation 

functions, neural networks can effectively model complex functions and achieve better 

performance in tasks such as detection and classification [41]. Figure 2.7 presents the graph 

of the above-mentioned activation functions. 

Figure 2.6 Image kernel filtering [52]. 
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2.3.3 Pooling Layers 

Pooling layers in convolutional neural networks (CNNs) are utilized to reduce the spatial 

dimensions of the input feature maps, thereby extracting essential information while 

reducing computational complexity. These layers divide the input into non-overlapping or 

overlapping regions and perform an aggregation operation within each region, typically 

maximum or average pooling. By downsampling the feature maps, pooling layers help in 

achieving translation invariance, robustness to small spatial variations, and increased 

computational efficiency. Max pooling selects the maximum value within each pooling 

region, effectively capturing the most salient features. Average pooling computes the 

average value, providing a more smoothed input representation. Pooling layers contribute to 

spatial hierarchies in feature maps, enabling the network to learn increasingly abstract and 

invariant representations of the input data. While pooling layers discard some spatial 

information, they enhance the network's ability to detect and recognize important features, 

improving the network's performance in tasks such as object detection and image 

classification [41]. 

 

Figure 2.7 Various Activation Functions. 
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2.3.4 Fully Connected layers 

FCLs, also known as dense/fully connected neural networks, are a fundamental component 

of DL architectures, including CNN models. Every neuron in a layer is connected to all 

neurons in the preceding layer, allowing information propagation throughout the network. 

These layers are crucial in capturing complex relationships and high-level abstractions in the 

input data. Each neuron in a FCL performs a weighted sum of the inputs, followed by an 

activation function, generating an output contributing to the subsequent layer's computation. 

Their dense connectivity pattern enables the CNN model to learn intricate patterns and 

nonlinear relationships in the data effectively. They output a map of the extracted features 

to the final decision space, making them well-suited for tasks like classification and 

regression. However, FCLs introduce a large number of parameters, which can lead to 

overfitting and increased computational complexity. Regularization techniques, such as 

dropout, are often applied to mitigate these challenges and improve the generalization 

capability of the network [41]. Mathematically, the output of a FCL can be computed as 

follows: 

𝒚 = 𝑾. 𝒙 + 𝒃 2.10 

Where y represents the output vector, W is the weight matrix, x is the input vector, and b is 

the bias vector. The weight matrix W contains the learnable parameters of the layer, and the 

bias vector b allows for shifting the activation function. The number of neurons in a FCL is 

determined by the network architecture design. Each neuron in the layer takes as input the 

outputs of all neurons in the previous layer and applies a non-linear activation function to 

enable learning complex representations and decision boundaries. Figure 2.8 depicts a 

typical structure of a CNN-FCL.  

   [53] 

Figure 2.8 A fully Connected Layer [53]. 
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2.3.5 Samples of state-of-the-art CNN Architectures 

In this section, we provide a brief overview of several prominent CNN architectures 

employed in this work, highlighting their contributions to the field of DL-based image 

analysis. AlexNet (2012), [54], stands as an architecture that showcases deep CNNs' 

potential in image classification with its innovative ReLU activation function and dropout 

regularization, see Figure 2.9. VGG16 and VGG19 (2014), [55], gained recognition for their 

simplicity and effectiveness, employing 3x3 convolutional filters extensively. ResNet18 and 

ResNet50 (2016), [56], introduced skip connections to tackle the challenge of training deeper 

networks to enable the training of highly complex models. Xception model (2016), [57], 

extended the Inception architecture by utilizing depth-wise separable convolutions and 

optimizing parameter usage to facilitate impressive performance with limited training data. 

InceptionV3 (2016), [58], further enhanced performance by incorporating inception modules 

with parallel operations to capture diverse information scales efficiently. DenseNet201 

(2017), [59], adopted innovative connectivity patterns with dense connections, promoting 

feature reuse and gradient flow for improved model performance. Utilizing these diverse 

architectures developed for the analysis of natural images in the research of this thesis allows 

for a comprehensive exploration and evaluation of their effectiveness in the context of BUS 

lesion diagnosis. 

 

 

 

      [60] 

 

Figure 2.9 AlexNet architecture[60] . 
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2.3.6 Pre-trained CNN  model-Transfer Learning and Fine-Tuning Method 

CNN models have a well-established property of being useful for image analysis tasks, even 

with limited data. They can be transferred to different image tasks, even ones different from 

their original purpose. These models were initially designed for analysing millions of natural 

images with numerous classes (e.g., ImageNet [7]). Transfer learning mode and its fine-

tuning version of DL models are designed to retrain a chosen pre-trained CNN model on a 

new image dataset of a different modality (and a number of classes) than the original model 

training dataset. The aim is to adapt an existing pre-trained model to enable analysis of the 

new dataset. Fine-tuning is a training procedure that is more suitable for CNNs to address 

the challenge of having a small and non-representative dataset of the domain population for 

a specific task, such as BUS lesion classification [28]. A simple version of transfer learning 

often freezes the learnable parameters of the convolution layers during the retraining, and 

only the FCL weights are updated during the retraining. On the other hand, the fine-tuning 

version retrains a pre-trained CNN model without freezing any layer/parameter [28]. 

The fine-tuning training procedure can be summarized as follows; see Figure 2.10. 

 

 

Figure 2.10 CNN model fine-tuning process for BUS classification. 
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By fine-tuning the pre-trained CNN models on the BUS dataset, we can benefit from the 

initially learned features while allowing the model to adapt and specialize for the BUS lesion 

classification task. This approach takes advantage of the pre-trained model's knowledge 

while refining the weights to better fit the target dataset. Therefore, fine-tuning is the adopted 

CNN training protocol throughout our work to address the limitations of the small and non-

representative BUS dataset and leverage the knowledge encoded in pre-trained models for 

effective BUS lesion classification. 

2.4 Research Materials 

In this section, we shall present the relevant research materials that I used in my research 

work for this thesis. It includes preparing to form BUS datasets for training/testing CNN 

models and dataset description. We shall also cover the commonly used classification 

performance measures and evaluation protocols for the CNN models. 

2.4.1 Ultrasound Image Datasets 

In the field of DL research, the choice of datasets plays a crucial role in evaluating the 

performance and generalizability of the proposed models. For the experimental work 

conducted in this thesis, defining the datasets used for training, validation, and testing is 

essential. This section provides a sufficiently comprehensive overview of the datasets 

employed, including their characteristics, data collection methods, and relevant pre-

processing steps. 

To facilitate standardised advanced analysis, we used a special approach to determine the 

RoI tumour area in all images without relying on manual/automatic segmentation. 

Experienced radiologists manually marked a sufficient number of lesion boundary points for 

each instance in all the following US breast tumour datasets. These annotated boundary 

points serve a crucial purpose, allowing for precise detection of the lesion's shape and 

location. This information is particularly valuable when considering alternative methods for 

automatic lesion detection and segmentation [22]. Figure 2.11 presents two BUS images 

with corresponding lesion boundary points and class labels from the Renmin dataset, which 

is defined in the next section. Next, we define the BUS datasets used in our investigations. 
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2.4.1.1 Renmin Dataset 

The Renmin dataset is of significant value as the foundational dataset utilized in the 

development of most of the work conducted in this research. It represents a relatively small, 

yet crucial collection of BUS images meticulously gathered at Pudong New District Renmin 

Hospital in Shanghai, China. This dataset serves as one of the training datasets. 

Comprising a balanced distribution of 524 images, the Renmin dataset consists of 262 benign 

and 262 malignant cases. Multiple US machines were employed during the data collection 

process, reflecting the real-world clinical setting. However, it is noteworthy that all images 

were reviewed and labelled by a single experienced radiologist, ensuring consistency and 

reducing potential inter-observer variability. The radiologist carefully examined each image, 

accurately differentiating between benign and malignant lesions based on their expert 

knowledge and expertise, and backed by biopsy tests were performed to confirm the nature 

of each lesion. 

Figure 2.11 Samples of breast ultrasound images from the Renmin dataset. 
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The main disadvantage of using this database for CNN retraining is its relatively small size 

and limited sample diversity, which may result in potentially biased predictions. However, 

it is still valuable for gaining a solid foundation for the development and refinement of 

algorithms, allowing us to explore the capabilities of DL in accurately distinguishing 

between benign and malignant breast lesions after training on a relatively small dataset from 

a single medical centre. 

2.4.1.2 Modelling Dataset 

TenD sourced BUS datasets of nearly 4000 images from five Shanghai medical centres. I 

compiled a subset of these images through a comprehensive cleaning process and visual 

examination. The resulting TenD Modelling dataset comprises 1598 BUS images, 999 

benign and 599 malignant cases. It was meticulously curated by collecting data from the five 

different medical centres in Shanghai, including the renowned Renmin Hospital. Including 

BUS images from multiple medical centres ensures greater diversity in clinical practices, 

imaging protocols, and patient populations. It provides a more representative sample of the 

variations encountered in breast tumour US imaging. This TenD Modelling dataset 

represents a significant advancement compared to the Renmin dataset, offering a larger and 

more diverse collection of BUS images. As the second training dataset in this research, it is 

a valuable resource for training CNN models designed explicitly for BUS lesion 

classification. 

Various US machines were employed throughout the data acquisition process, reflecting the 

real-world clinical setting where different equipment is used across medical centres. 

Additionally, to capture a comprehensive range of expertise and perspectives, images were 

examined and labelled by five experienced radiologists from each medical centre. This 

multi-radiologist approach helps mitigate potential bias and inter-observer variability, 

enhancing the dataset's reliability and the model’s generalizability. Importantly, all labels 

provided by the radiologists are supported by pathology reports, confirming the accuracy of 

the assigned labels. 

The diversity encompassed in the TenD Modelling dataset makes it highly suitable for CNN 

training purposes. It captures the inherent variations in breast tumour US imaging, reflecting 

real-world scenarios and enhancing the CNN models' ability to generalize to unseen data. 

Including a larger number of images, along with the diverse nature of the dataset, contributes 

to developing more robust and reliable CNN models for BUS lesion classification. 
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2.4.1.3 Test1 Dataset 

The Test1 dataset is a valuable external testing dataset, distinct from the five medical centres 

where the Modelling dataset was collected. Testing CNN, or HC features-based ML 

algorithms using the Test1 dataset, provides an independent evaluation of the performance 

of those models trained on either Renmin or Modelling datasets. As for the other datasets, 

this dataset was carefully curated in a hospital located in Shanghai, China, ensuring diversity 

and independence from the training dataset sources. 

Comprising a total of 306 images, the Test1 dataset consists of 189 benign and 117 malignant 

cases. Similar to the Renmin and Modelling datasets, the data collection and preparation 

process for the Test1 dataset follows rigorous protocols. Multiple US machines were 

employed during the data acquisition phase to account for the variability in imaging 

equipment encountered in real-world clinical settings. 

Evaluating the model's performance on independent and previously unseen data provides a 

reliable measure of its effectiveness in real-world scenarios. Including a distinct medical 

centre and radiologist in the data collection process helps eliminate any potential bias or 

overfitting that may arise from using the same sources for training and testing. This 

evaluation contributes to the overall credibility and reliability of the developed models, 

ensuring their applicability and effectiveness in clinical settings. The Test1 dataset represents 

a critical benchmark for evaluating the performance of CNN models and serves as a bridge 

between the training phase and real-world deployment. 

2.4.1.4 BUSI Dataset 

The BUSI dataset is an important external testing dataset in our research, providing an 

opportunity to evaluate the performance of trained CNN models on the TenD 

Renmin/Modelling dataset. The BUSI dataset is a publicly available dataset collected from 

Baheya Hospital for Early Detection and Treatment of Women's Cancer in Cairo, Egypt, in 

2018 [61]. 

The BUSI dataset consists of 780 images, with 487 labelled as benign, 210 as malignant, and 

133 as normal/clear. These images were acquired using the LOGIQ E9 and LOGIQ E9 Agile 

US systems. Each image in the dataset is accompanied by a corresponding label or class, 

indicating the nature of the breast tissue and a mask that facilitates tumour detection and 

segmentation. 

Being focused on the classification of benign and malignant cases, we disregarded the class 

of normal/clear breast images, a total of 133 instances, as it was deemed irrelevant to our 
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research objectives. After this exclusion, a total of 524 images were selected for further 

analysis. Among these, 343 images were labelled benign, while 181 were labelled malignant. 

Any images with severe artefacts, such as lines, annotations, and calibre points, were 

removed from the dataset to ensure data quality and consistency. 

Utilizing the BUSI dataset in our research enables the evaluation of trained CNN models on 

a distinct dataset from a different medical centre in Cairo. By employing this dataset as an 

external testing benchmark, we can assess the generalization and performance of the models 

developed using the TenD Renmin/Modelling dataset. The dataset's origins from a different 

medical centre, the utilization of a distinct US system, and the involvement of other 

radiologists contribute to the overall generalizability and applicability of the trained models 

in real-world scenarios. 

2.4.2 Data Cleaning, Split and Training/Testing Protocol 

In order to ensure data quality and consistency across all the BUS lesion datasets, a 

comprehensive data-cleaning process was conducted. This process involved several steps to 

identify and remove images with severe artefacts, thereby maintaining the integrity of the 

datasets. The following procedure, as explained in Figure 2.12 and depicted in Figure 2.13, 

was employed to clean the datasets:  

 

 

This data-cleaning procedure was applied to all four datasets: Renmin, Modelling, Test1, 

and BUSI. As a result, the datasets were cleansed, ensuring that only good-quality images 

Figure 2.12 Image data cleaning steps. 
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without significant artefacts were included. After the cleaning process, the Renmin and 

Modelling datasets were selected as the training datasets. These datasets were utilized to 

train the CNN models for BUS lesion classification. On the other hand, the Test1 and BUSI 

datasets were designated as external testing datasets. These datasets were used to evaluate 

the performance of the trained models developed using the training datasets. 

A 5-fold cross-validation approach was employed throughout the thesis as the 

training/testing protocol to conduct the experiments consistently and fairly. The training 

dataset was divided into five folds, with one fold reserved as an internal testing dataset and 

the remaining folds used for training and validation in an 80:20 ratio. For each experiment, 

this results in five trained models. During the testing phase, the performance of each model 

was evaluated on the testing datasets. The classification performance metrics, including 

accuracy, sensitivity, specificity, F1-score, and AUC, were computed for each model. The 

average and standard deviation of these metrics were calculated across the five trained 

models, providing a robust assessment of the model's performance. 

 

 

Figure 2.13 The data cleaning bounding box. 
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In the remaining sections, we will present in detail the classification performance metrics 

used in this thesis and discuss their relevance in evaluating the effectiveness of the developed 

CNN models for BUS lesion classification. 

2.4.3 Machine Learning Classification Performance Metrics 

Here, we explain the classification performance metrics used in this research, along with 

their mathematical formulas and advantages to the binary classification of BUS lesions 

(Benign vs. Malignant). First, we define the four key components of the metrics as follows: 

True Positive (TP): In binary classification, TP refers to the number of positive instances 

that are correctly identified as positive by the model. These are the cases where the model 

accurately predicts the presence of the condition or event (Malignant). 

True Negative (TN): TN represents the number of negative instances that are correctly 

identified as negative by the model. These are the cases where the model accurately predicts 

the absence of the condition or event (Benign). 

False Positive (FP): FP indicates the number of negative instances that are incorrectly 

identified as positive by the model. These are the cases where the model incorrectly predicts 

the presence of the condition or event when it is actually absent (Benign predicted as 

Malignant). 

False Negative (FN): FN represents the number of positive instances that are incorrectly 

identified as negative by the model. These are the cases where the model incorrectly predicts 

the absence of the condition or event when it is actually present (Malignant predicted as 

Benign). 

In summary, TP and TN reflect the correct predictions made by the model for positive and 

negative instances, respectively. At the same time, FP and FN represent the incorrect 

predictions made by the model for negative and positive instances, respectively. Next, we 

shall define the five-performance metrics used in our work. 

Accuracy: 

Accuracy measures the overall correctness of the model's predictions by calculating the 

proportion of correctly classified samples out of the total number of samples in the dataset. 

It is a widely used metric in classification tasks. Mathematically, accuracy is computed as: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 2.11 



40 
 

Accuracy provides a general assessment of the model's correctness in predicting both benign 

and malignant BUS lesions. It indicates the model's performance overall, making it a 

valuable metric for evaluating the classifier's effectiveness. 

Sensitivity (Recall): 

Sensitivity, also known as recall or true positive rate, quantifies the model's ability to 

correctly identify positive instances, specifically malignant BUS lesions. It calculates the 

proportion of true positives correctly classified out of the total number of actual positive 

instances. Mathematically, sensitivity is expressed as: 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 2.12 

Sensitivity is particularly crucial in breast cancer diagnosis as it measures the model's ability 

to detect malignant lesions accurately. Higher sensitivity implies a better ability to identify 

true positive cases, minimizing the risk of missing potentially cancerous lesions. 

Specificity: 

Specificity measures the model's ability to correctly identify negative instances, specifically 

benign BUS lesions. It determines the proportion of true negatives correctly classified out of 

the total number of actual negative instances. Mathematically, specificity is defined as: 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 2.13 

Specificity is essential to ensure the accurate identification of benign lesions. A higher 

specificity indicates a better ability to avoid false positive classifications, reducing the risk 

of unnecessary invasive procedures. 

F1-Score: 

The F1-score is a composite metric that combines precision and recall (sensitivity) to provide 

an overall measure of the model's performance. It considers both false positives and false 

negatives and is particularly useful when dealing with imbalanced datasets. Mathematically, 

the F1-score is calculated as: 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐 ∗ 𝑷𝒓𝒆𝒄𝒆𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 2.14 

Where 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 2.15 
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The F1-score offers a balanced measure of the model's performance, considering both 

precision and recall (sensitivity). It is valuable when the dataset exhibits class imbalance, 

such as a higher number of benign cases than malignant ones. 

AUC (Area Under the ROC Curve): 

The AUC is a widely used performance metric that evaluates the model's ability to 

distinguish between positive and negative instances. The Receiver Operating Characteristic 

Curve plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) 

at various classification thresholds. The AUC represents the area under this curve and 

provides an aggregated measure of the model's performance. A higher AUC value indicates 

a better-performing model, while 0.5 represents random classification. See Figure 2.14. The 

AUC metric is advantageous as it assesses the overall discriminatory power of the model. It 

is insensitive to a specific classification threshold and provides a robust evaluation of the 

model's ability to differentiate between benign and malignant BUS lesions. A higher AUC 

implies a better ability to distinguish between the two classes. 

 

 

          [62] 

  

Figure 2.14 Area Under the Curve (AUC) [62]. 
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By utilizing these performance metrics, we can comprehensively evaluate the accuracy, 

sensitivity, specificity, balance between precision and recall, and discriminatory power of 

the CNN models for the binary classification of BUS lesions. Each metric offers unique 

insights into the model's performance and aids in assessing its effectiveness and reliability 

for clinical decision-making. 

2.5 A Review of DL Approaches for BUS Leasion Classification 

In this section, we review several articles relevant to applying DL models for BUS lesion 

classification. The literature offers various approaches for utilizing these models, including 

transfer learning (including fine-tuning version), training from scratch, and combining deep 

features with HC features. We aim to gain insights into their effectiveness in classifying 

lesions in BUS images. 

Byra et al. [63] employed two approaches to transfer learning. In the first approach, the pre-

trained VGG19 was used as a fixed feature extractor. The CNN's architecture was not 

modified, and the network was directly applied to the BUS images. Features were extracted 

from five max pooling layers of the VGG19 model, and these features were then averaged 

and normalized to form the final feature vector. An SVM classifier was then used for 

classification based on these extracted features. In the second approach, the CNN was fine-

tuned using BUS images, and the architecture of the VGG19 model was modified, replacing 

the last layers with custom FC layers suitable for binary classification. The last convolutional 

block and the FCs were fine-tuned while keeping the first four blocks frozen. The fine-tuning 

was performed using the mini-batch stochastic gradient descent with Nesterov update. To 

enhance CNN's ability to recognize colour information, the authors introduced a matching 

layer. The matching layer performed a linear transformation on the grey scale US images, 

converting them into RGB images before feeding them into the pre-trained CNN. The 

parameters of the matching layer were learnt during fine-tuning to optimize the classification 

performance. The results showed that the fine-tuned CNN with the matching layer achieved 

the highest AUC value, outperforming the fixed feature extractor and SVM classifier. 

Additionally, the classification performance of the CNN-based approach was compared to 

the assessments made by four expert radiologists using the BI-RADS categories. The CNN 

exhibited higher AUC values than the radiologists, indicating its potential clinical usefulness 

in breast mass classification. 

Tanaka et al. in [64] employed three CNN models in their study: VGG19, ResNet152, and 

an ensemble network. They fine-tuned these pre-trained models using their dataset of BUS 
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images by modifying the last FCL of the pre-trained models to match the number of classes 

in the dataset and then retraining the models on the BUS images. For classification, the CNN 

models took US images in patches as input. The patches were cropped from different views 

of the breast masses. The CNN models output class probability values for each patch, 

indicating the likelihood of the patch belonging to the benign or malignant class. The view-

level classification was performed by averaging the class probability values from three 

patches cropped from each view, and the class with the highest probability was selected as 

the classified class for that view. The mass-level classification took all the class probability 

values of the patches cropped from all views of a mass and combined them to classify the 

entire mass. The ensemble network further improved the classification performance by 

combining the predictions of both VGG19 and ResNet152. 

Cao et al. [65] proposed a breast lesion classification method using several CNN models. 

They collected a dataset of BUS images with annotations indicating benign or malignant 

lesions. The CNN architectures evaluated include AlexNet, ZFNet, VGG16, GoogLeNet, 

ResNet, and DenseNet. The experiments compared four scenarios: RoI with random 

initialization, RoI with transfer learning, full-size images with random initialization, and full-

size images with transfer learning. The results showed that DenseNet achieves the best 

classification performance on their dataset. The authors concluded that transfer learning from 

the large-scale ImageNet dataset significantly improves classification accuracy for all CNN 

architectures. The study highlighted the potential benefits of using deep CNNs for breast 

lesion classification and demonstrated the importance of selecting appropriate architectures 

and utilizing transfer learning to enhance performance. 

Zeimarani et al. [66] proposed a classification method for breast lesions using specially 

designed CNN architecture that consists of four convolutional layers, followed by two FCLs 

with ReLU activation functions and a SoftMax activation function for binary classification. 

The method involves a few preprocessing steps; the US images were resized to 224x224 

pixels and balanced to ensure equal representation of benign and malignant cases. Zero-

centring and normalization were applied to improve network performance. Image 

augmentation techniques, such as rotation, crops, and flips, were used to increase the training 

dataset size, effectively reducing overfitting. Regularization techniques like L2 

regularization and dropout were applied to the network to further prevent overfitting. 

Different optimizers were evaluated, and Stochastic Gradient Descent with Momentum was 

selected as the candidate optimizer for training the CNN. The results were compared with 

other pre-trained CNN architectures and traditional ML methods. The proposed CNN-based 
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approach performed better than conventional ML methods and pre-trained CNN 

architectures for breast lesion classification in US images. Further improvements were 

planned, including gathering more data and exploring different CNN architectures with more 

hidden layers. 

Wu et al. [67] proposed a classification method for breast lesions using pre-trained CNN 

models in transfer learning, mainly ResNet18 and ResNet50 models pre-trained on the 

ImageNet dataset. Their BUS image dataset consists of 131 images with 109 benign and 22 

malignant lesions. For the un-pre-trained models (ResNet18 and ResNet50), the authors 

directly trained them from scratch on the BUS dataset. In contrast, the first two layers are 

frozen for the pre-trained models to utilize general features extracted from ImageNet. The 

convolutional layers' weights were initialized with pre-training, and the FC layer was 

modified to classify the images into benign or malignant tumours. The results demonstrated 

that the pre-trained transfer learning models, especially ResNet18, outperformed the un-pre-

trained models significantly, and ResNet18 achieved the best performance. 

Daoud et al. [35] proposed a method for BUS lesion classification using deep features 

extracted from a pre-trained VGG19 model and HC texture and morphological features. By 

utilizing a pre-trained VGG19 model, deep features were extracted from the BUS images at 

six different deep feature extraction levels. HC texture and morphological features were 

computed from the BUS images. The deep features extracted from the VGG19 model were 

combined with the HC texture and morphological features. A feature selection algorithm 

was applied to choose the most relevant features from the combined feature set. The selected 

features were used to train an SVM classifier. The study demonstrated that the best 

classification performance is achieved by combining the deep features from all convolution 

blocks of the VGG19 model with HC morphological features. The proposed approach 

outperformed other methods, including fine-tuned VGG19 and HC texture features, and 

showed promising generalization capabilities to other BUS image datasets. 

While most existing approaches select a specific state-of-the-art pre-trained CNN model to 

retrain on a new dataset, a recent approach emerged that uses optimisation-based search to 

design the best performing customised CNN architecture for the given training dataset 

according to user input wish list. This approach led to the development of efficient and 

lightweight CNN models designed explicitly for BUS lesion classification. Mohammed et 

al. [68] proposed a classification method for breast lesion classification from US images 

using the ENAS (Efficient Neural Architecture Search) approach. The ENAS method is 

designed to automatically discover optimal CNN architectures tailored for the task. The 
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method involves two main stages: First, in the architecture Search Stage, the ENAS Micro 

approach was used to search for the best CNN architectures. A subset of their modelling 

dataset, containing both benign and malignant lesion images, was used for this purpose. The 

ENAS controller generates a set of cells, and the optimal cells with the highest validation 

test accuracies were selected to design the final CNN architecture. Second, Training and 

Generalization Evaluation Stage, the selected ENAS CNN models were trained from scratch 

on a balanced modelling dataset. Data augmentation techniques were used to enlarge the 

training set and reduce overfitting. The models' performance was evaluated using 5-fold 

cross-validation on the internal test set and then tested on two external test datasets. To 

reduce generalization errors, three methods were explored, including Reducing Model 

Complexity, Data Augmentation, and Using Unbalanced Data. The authors found that using 

an unbalanced dataset significantly reduces generalization errors in ENAS models. When 

comparing the ENAS-generated models with other existing CNN architectures, ENAS 

models outperformed other CNN models in terms of overall accuracy on both internal and 

external test sets. 

In This thesis, we adopt the CNN fine-tuning approach for BUS lesion classification instead 

of training a CNN from scratch on our limited dataset or transfer learning. Fine-tuning allows 

the pre-trained model to adapt and learn relevant features from our BUS datasets, leveraging 

knowledge from the pre-trained model and improving performance in BUS lesion 

classification tasks. In the next chapter, we shall focus on the deployment of DL models for 

BUS lesion classification and the performance influencing factors in relation to data 

preparation and pre-processing. 
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Chapter 3: Deep Learning for Ultrasound Images - 

Performance Influencing Factors 

Designing ML models for US image analysis is very challenging due to the lack of well-

annotated and diverse training samples and the fact that US images are generally perceived 

as low quality compared to natural images [35]. In this chapter, we shall study the main 

challenges in developing DL models for the analysis of US B-mode scan images that 

radiologists and clinicians use for tumour diagnostic tasks. The performance of such DL 

models is influenced by a variety of factors, including size variation of tumour RoI, other 

tumour-related variations (shape, border clarity, etc.), variation of Radiologist level of 

expertise, variation in deployed US devices, variation of clinical practices by different 

centres, inter- and intra-observer variability, variation of RoI cropping procedures, variation 

of RoI image quality, and the lack of availability of sufficiently large samples of related 

images with standardised labelling. These factors are not independent of each other. For 

example, image quality variation can be influenced by variations in radiologist experience 

and variations in deployed US devices. This chapter focuses on three challenging factors that 

directly stem from image pre-processing requirements stipulated by the architecture of DL 

models for image analysis/classification: RoI size, RoI image quality, and availability of 

samples. Besides describing the nature of these challenges, we shall discuss existing 

solutions and outline our strategy to deal with each. The rest of the thesis is devoted to the 

implementation and analysis of the outcome of this strategy. 

3.1 Deep Learning Requirements on RoI Size - Challenges and Trends 

The architecture of all state-of-the-art DL models for image analysis requires that all input 

images in the training and testing datasets must be of the same size, and different CNN 

models only differ marginally in the image size requirements. To deploy any DL model for 

the analysis of US scan images, all the tumour RoI images need to be resized to the fixed 

architecture stipulated input size. The input images to the CNN architectures investigated in 

this work are expected to be square images of size: (AlexNet_227x227), (VGG16, VGG19, 

ResNet18, ResNet50, DensNet201_224x224), and (Xception, InceptionV3_299x299). 

Unlike the case of developing DL models for natural image analysis, this is a challenging 

requirement when these DL models are used to analyse datasets of US tumour scan images. 

Different patients undergoing US scanning are at different examination stages. Accordingly, 
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the recorded scan images may differ significantly in lesion size, including none for disease-

free patients, and in tumour shape. It is highly unlikely that tumour shapes fit well into square 

boxes. Figure 3.1 below, displays a small sample of BUS scan images, collected in one 

hospital, where each tumour RoI region is marked by a yellow bounding box around it. 

 

The cropped RoIs lesions are of different sizes, and the size variation in our experimental 

datasets is significant. Within the BUS datasets used for our investigations, we found that a 

cropped tumour RoI can be as small as 20x20 pixels and as large as 500x500 pixels. Figure 

3.1 is only a modest illustration of the severity of this challenge facing the use of DL and 

other ML models to classify/analyse US scan images. 

Image resizing is an obvious solution, but it is not harmless and may produce low-quality 

images, especially when the actual RoI is of low resolution (LR) and degraded. Figure 3.1 

also illustrates the variation in RoI image quality/clarity. The variation of the RoI sizes 

influences the quality of resized images obtained by any resizing procedure. In the remaining 

part of this section, we shall first determine the severity of the RoI size variation challenge 

by examining different datasets of US images. Then, we shall present the common practice 

to deal with this problem, describe a different resizing procedure that was developed 

previously at the University of Buckingham, and analyse experimental work we conducted 

to compare the performance of various DL models when using these two different resizing 

solutions. 

 

Figure 3.1 RoI (Yellow bounding boxes) size variation among 6 different BUS tumour images. 
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3.2 RoI Size variation and size normalisation 

Prior to conducting statistical analysis on RoI size distribution in our BUS image datasets, 

we shall first describe the method used to determine the size of an RoI in a BUS image. The 

pipeline for developing/using any ML, including DL and HC features, the model starts with 

pre-processing steps that include manual/automatic procedures for detecting and segmenting 

the RoI (i.e., extracting the sought-after foreground (lesion) from the background). This step 

is designed to enable the representation of the RoI image in a digital form, and it is an 

important part of data preparation. Since the output RoIs have no standardized shape, it is 

customary to draw a rectangular bounding box surrounding the RoI.  In our DL-based 

pipeline for tumour classification, our collaborative partner (TenD-Innovation, China) 

recorded various raw B-mode US scan images for different cancer diseases from different 

hospitals that were recruited over several years. Due to time constraints and the desire to 

produce and test the performance of ML analysis software in a short time, we adopted a non-

automatic detection and segmentation procedure. Figure 3.2 below describes this process. 

 

Figure 3.3 below illustrates this procedure stepwise with an actual breast tumour scan. This 

process is straightforward and produces a good visual representation of the tumour RoI when 

it is of reasonable size with sufficient marked lesion boundary points and/or its tumour 

polygonal boundary is not far from being convex (see Figure 3.1). In the literature, this pre-

processing procedure is referred to as cropping. Chapter 4 is dedicated to investigating RoI 

cropping scenarios and determining optimal cropping for better model classification 

performance in more detail. 

Figure 3.2 Medical US Data Preparation Process. 
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3.2.1 RoI size variation 

This research project is part of a collaborative arrangement between the University of 

Buckingham and the rather new Chinese company (TenD-Innovation). Over the last few 

years, TenD-Innovation gradually established links with several hospitals, mainly in the 

municipality of Shanghai, to record datasets of US scan images of different types of tumour 

tissues/organs. Accordingly, my research investigations initially had access to the dataset 

from the first hospital (Renmin), and only much later, datasets from other hospitals became 

available to us. This section presents the results of several statistical studies conducted for 

our experimental image datasets to illustrate the severity of the RoI size variation challenges. 

We mainly use tumour-area measured by the actual number of pixels inside the tumour 

polygonal shape. We conducted our statistical studies on the four BUS image datasets. 

Figure 3.4 presents the breast tumour-area size distribution for each of the four datasets 

separately. We observe a similar RoI size distribution pattern (negative exponential pattern) 

across different datasets. In all cases, the majority of the tumours are in the range of [0, 

10000] pixels, which we refer to as the range of small-size tumours, but the proportion of 

small-size RoI to the total varies for different datasets ranging from around 37% for Test1 

and BUSI datasets to 50% for the Renmin dataset, then the number of the tumours in larger 

Figure 3.3 Steps of preparing and determining the digital representation of tumour RoI. 
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size ranges decreases gradually. This illustrates the fact that the majority of the tumours in 

the breast datasets are of small sizes and need to be upscaled prior to input into DL models. 

 

 

Next, we computed the corresponding distribution for each tumour class (Benign, 

Malignant) to determine if these distributions are tumour class dependent. Figures 3.5-8 

present the tumour-size distribution for each dataset and their two classes, Benign and 

Malignant, separately. In all four datasets, the Majority of Benign cases are in the range of 

the smallest tumour-size interval [0, 10000] pixels, and this number decreases gradually for 

the larger size ranges similar to the size distribution of the whole dataset. On the other hand, 

the size distribution of Malignant tumours is different from Benign. The majority of the 

tumours are in the range of [10000, 40000] pixels, which shows that the overall size of RoI 

malignant cases is larger than benign cases. Thus, tumour size is relatively class dependent. 
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Figure 3.4 The distribution of tumour-area in pixel for the four BUS datasets. 
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Figure 3.5 The distribution of tumour area in pixel for the Renmin dataset. 
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Figure 3.6 The distribution of tumour area in pixel for the Modelling dataset. 
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Figure 3.7 The distribution of tumour area in pixel for the Test1 dataset. 
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Figure 3.8 The distribution of tumour area in pixel for the BUSI dataset. 
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Now, a fixed RoI size is required for all DL pipelines, and all the RoIs have to be resized 

according to the adopted DL architecture input size. In this case, the tumour area of the 

resized RoIs is required to be approximately in the range [40000, 60000] pixels. All the RoIs 

are to be resized to the required CNN input size, and the above tables show that most of the 

RoIs need to be upscaled as they are smaller than the input size. For the majority of actual 

RoIs (benign and malignant), the tumour area is in the range [0, 10000] pixels which means 

that they need to be significantly upscaled. Image resizing, a commonly required pre-

processing technique, is not harmless, especially when the original resolution is too low. 

In contrast, image downscaling often results in better contrast. Figure 3.9 illustrates this 

assertion: when upscaled a 30x45 RoI tumour into 227x227 (the input size of AlexNet), the 

resulting image is of low quality in that it is severely degraded, blurry, very fuzzy and 

pixelated in places. On the other hand, the downscaled image of a 289x280 RoI tumour 

results in seemingly improved quality. 

 

After resizing, the quality of middle-size RoIs is not expected to differ significantly from 

that of the original RoI images. Now, the fact that the majority of benign cases are in the 

lowest resolution while only 7%-17% of malignant cases fall in this category, the resizing 

will adversely affect the quality of benign cases more than malignant cases. Therefore, after 

cropping all the RoIs and resizing small-size RoIs, there may be a need to improve the quality 

of the resized RoIs by adopting further image pre-processing techniques, including 

Figure 3.9 Resizing two BUS RoIs from 30x45 (A) and 289x280 (B) into 227x227. 
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resolution enhancement, denoising, deblurring and other image enhancement techniques; 

this may help to reduce the distortion caused by size variation and upscaling small-size RoIs 

input to a CNN model. It is worth noting that US image quality is difficult to be measured 

using the quality measures for natural images. Section 3.3 will briefly discuss the image 

quality factor and its influence on the performance of ML in US image analysis.  Next, we 

shall explain the RoI resizing and resolution enhancement techniques. 

3.2.2 RoI size normalization 

Image resizing is the process of upscaling/downscaling an image in which the pixel values 

of the resized image are usually determined by an interpolation method after mapping them 

back to a location in the original image. The resizing techniques are known to produce 

various artefacts, including blurring and aliasing [69]. An alternative method for image 

resizing is the Super Resolution (SR) procedure which exploits the benefits of the 

compressed sensing (CS) paradigm. However, SR is designed to enlarge small natural 

images while maintaining/improving image quality. 

The conventional way for single-image resolution enhancement is interpolation-based 

resizing techniques, including Nearest Neighbour Replacement (NNR), Bilinear 

Interpolation, and Bicubic Interpolation (BiCubic). All these methods start by creating a 

rectangular uniform grid for the resized image and map it onto the original image grid, but 

they differ in how they define the intensity of the resized image pixels. The NNR resizing 

technique is straightforward and simply sets the intensity of each new image pixel to the 

pixel value of the closest neighbour defined by the resizing map. It has a minimum 

computational cost, but when applied to natural images, the resized image is usually blurry 

with aliasing/blocking artefacts [70], [71]. The Bilinear interpolation determines the value 

of the resized image pixels by interpolating in both horizontal and vertical directions as a 

weighted average of the immediate 4 neighbouring pixels, determined by the resizing map. 

The computational cost of the Bilinear method is slightly more than that of the NNR method, 

and for natural images, the resized image is relatively smoother with less aliasing/blocking 

artefact [72]. The BiCubic method produces sharper and better-quality natural images than 

the two previous methods. It again determines the intensity of new pixels by interpolating in 

horizontal and vertical directions. It uses cubic interpolation as a weighted average of the 

nearest weighted 4x4 neighbouring pixels in the original image for a total of 16 pixels. In 

each direction, the 4 neighbouring are at various distances from the resized pixel, and closer 

pixels are given more weights. BiCubic is a balanced combination of image quality and 
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complexity; therefore, it is the adopted image resizing in many imaging software such as 

Photoshop [72]. Due to the significant variation in RoI tumour sizes in US images, it is 

prudent to study the effect on image quality of each of these methods for different classes of 

image size. Figure 3.10 displays the outputs of size 227x227 images when resizing 3 

different sizes of RoI tumour images: small (A), mid-size (B) and large-size (C) tumours. 

 

Figure 3.10 illustrates that in all cases, the BiCubic outperforms the other 2 methods but to 

a lesser extent for the large-size RoIs. As can be seen, the resizing procedure affects the 

quality of the small lesion (A) significantly, while the quality of the mid-size tumour (B) is 

maintained, and for the large-size tumour (C) is even slightly improved. 

Other well-known interpolation-based image resizing techniques include Cubic B-Spline, 

Mitchell-Netravali approximation, Catmull-Rom Interpolation, and Lanczos interpolation. 

These techniques produce good-quality images after resizing comparable to the ones 

produced by BiCubic; however, they are computationally more expensive and less popular. 

For more details, see [73], [74]. 

Figure 3.10 Resizing 3 different size RoI tumour images A, B, and C using 3 interpolation methods. 
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The fact that small-size RoIs are more prevalent than mid and large-size is an incentive to 

investigate the use of the Compressed Sensing Super Resolution (CSSR) technique known 

to maintain/improve the quality of small and degraded images after upscaling [75], [76]. 

3.2.3 Image Super Resolution 

Even for natural images, the quality of resized images by any interpolation-based resizing 

technique is influenced not only by the original image size but also by the quality and the 

amount of information in the image. This is the nature of the interpolation methods as they 

combine the existing frequencies to generate the resized image rather than 

recovering/maintaining high-frequency image parts. However, the high-frequency image 

parts of the LR images can be recovered by using certain transformations like Wavelet and 

Fourier in the frequency domain [77]. Recovering such image information is known as Image 

Restoration, an inverse problem, to recover an assumed high-quality image of the captured 

object/scene from a blurry/degraded noisy one. The restoration process involves modelling 

the distortion/degradation and conducting an inverse technique to recover the undistorted 

image. Inverse and Wiener filters are the conventional ways of image restoration; see [77]. 

SR is an effective image recovery technique to obtain a high resolution (HR) image of good 

quality from a single/multiple degraded LR image(s) of the same scene. It combines image 

registration, interpolation, and restoration in one algorithm [78], [79]. There are several 

methods of implementing SR. For example, the multi-image SR utilizes multiple LR images 

of the same object. The process requires registering and misaligning the LR images and 

combining them into one HR image through fusion/interpolation. Another well-known SR 

method is reference-based SR. It attains a HR image from a LR image while another HR 

image with similar content to the LR image is provided, referred to as the reference image. 

Such a strategy has been shown to work effectively by the recently proposed algorithm of 

“Image Super-Resolution by Neural Texture Transfer” [80]. The fundamental problem for 

our work is the unrealistic requirement of a HR reference image. Recovering a HR image 

from a LR version can also be accomplished via Single Image Super Resolution (SISR) 

techniques. Interpolation-based approaches for image resizing as a SISR do not offer the best 

quality possible because they somehow lose the crisp edges, causing the resized image to be 

blurry. Next, we briefly describe the Mathematical model of SR. 
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3.2.3.1 The Mathematical Model of Super Resolution 

Given a LR (i.e., small size) image(s), SR is meant to recover a HR version of the image by 

adding additional details, modelled as an inverse problem solved by optimization. The main 

assumption of SR is that the small size degraded image(s) is(are) obtained from a 

hypothetically assumed good-quality HR image X by a combined process of Blurring and 

Subsampling, i.e., the observed LR images are simply obtained by the following formula: 

𝒀𝒌 = 𝑺 ∗ 𝑩 ∗ 𝑿 3.1 

 

Where k = 1, 2, 3, …, P, is the number of the LR images. 

Here, we only deal with SISR techniques, i.e., when k =1. In any case, the functions B and 

S represent the point spread function that results in blurring and down-sampling, 

respectively. Traditional solutions of the above-described optimization involve an iterative 

procedure, as explained in Figure 3.11:  

 

In order to avoid divergence and infinite loops when using this iterative procedure, it is 

customary to use a regularization term that enforces certain constraints on the solution, such 

as smoothness or sparsity. This helps to avoid overfitting and produce a more realistic and 

coherent HR image. 

A major challenge is determining an appropriate image degradation/blurring function 

method independent of the capturing conditions/devices. The emergence of CNN image 

analysis models points to a potential method using a set of Gaussian convolution filters to 

generate different blurred versions of any image. Dong et al. [81] proposed the SR-CNN 

model to generate HR images from their LR and degraded counterparts. This approach is 

Figure 3.11 The iterative procedure of Super Resolution problem. 
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outside the current realm of our thesis, but readers interested in related work and follow-ups 

are referred to [82]–[84]. Instead, we shall adopt the CSSR approach. 

3.2.3.2 Compressed Sensing-based Single Image Super Resolution 

Compressed Sensing (CS), also known as sparse recovery, is a signal sampling method that 

maintains the important aspects of data without including significant redundancies. The main 

idea of CS is that high dimensional signals that are sparse (or can be sparsified) can be 

recovered from much lower measurements/samples than the Nyquist-Shannon Sampling 

theory stipulated. In terms of SR, a LR image is assumed to be the output of linear dimension 

reduction applied on a high dimensional super-resolved signal. If the over-complete 

dimension reduction matrix (referred to as the dictionary) satisfies the Restricted Isometry 

Property (RIP), then the CS theory guarantees the recovery of the Super-resolved image. The 

solution by the least square method minimizes the Euclidean norm, but the solution is not 

unique. Enforcing the sparsity constraint enables solving the system, which minimises the 

L^1 norm (i.e., Manhattan norm) by linear programming. The RIP is a necessary condition 

for the unique recovery of the sparse solution [75]. 

CSSR techniques use dictionary learning approaches that have been studied in recent years 

to super-resolve single LR images (see, e.g., [85], [86]). These approaches work in multiple 

steps: (1) overlapping patches of the LR image are densely processed, (2) encode the patches 

using a Low-Resolution Dictionary (LD) to determine the sparse representation of the 

flattened patches with few coefficients, (3) the sparse representations are fed into a High-

Resolution dictionary (HD), used to recover HR patches. The construction and the 

performance of the LD and HD highly depend on the training samples, as the columns of 

such dictionaries are built from a number of LR and HR random patches sampled from the 

training images. 

A useful implementation of the above CS-based SISR approach is the deployment of data-

independent CS-compliant dictionaries. Gaussian matrices have been used as a rich source 

of such dictionaries due to their known blurring effects. For my MSc research project [76], 

I  extensively studied this approach and developed CS dictionaries without training. This 

approach is ideally suitable for our application as our training dataset is relatively small, and 

US images are generally low-quality. It is unrealistic to create dictionaries using US images. 

Our implemented CSSR algorithm process 5x5 image patches, while the overcomplete 

dictionaries are constructed as submatrices of Hadamard matrices of appropriate size due to 
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their orthogonality properties that ensure stable generation of super-resolved images. Next, 

we shall briefly define Hadamard matrices. 

An 𝑛 × 𝑛 matrix H is a Hadamard matrix if it satisfies the condition (𝐻 ∗ 𝐻𝑇 = 𝐻𝑇 ∗ 𝐻 =

𝑛 ∗ 𝐼), when HT is the transpose of H, and I is the identity matrix of size 𝑛 × 𝑛. This means 

that the dot product of any row or column with itself is equal to the order/size of the matrix. 

Square Hadamard matrices have either 1 or -1 entries, and their rows are mutually 

orthogonal. Figure 3.12 presents the three well-known types of Hadamard matrices: 

Sylvester-type, Walsh-Paley, and Walsh of size 16x16. For more detail on Hadamard 

matrices and their generation methods, please see [76], [87]. 

 

There are different approaches to constructing the pair of CS-LD and HD from Hadamard 

matrices, and it is proven that such over-complete dictionaries satisfy the RIP [76]. In the 

current work, the pair of dictionaries are set as a 25x512-HD and a 100x512-LD. We 

construct the pair of LD and HD from Walsh matrices of size 512x512 by selecting the top 

k rows, where k=25 for the HD and k=100 for the LD. The choice of matrices of 512 columns 

is independent of the sizes of the images but is based on the fact that full Hadamard matrices 

are of the order 2𝑚, where m is a positive integer. When used for natural images, this method 

produces a super-resolved image of a desired size with improved/maintained quality from 

an input-degraded LR image, [75], [76]. Our SR procedure works in 6 steps as follows; see 

Figure 3.13. 

Figure 3.12 Binary display of Sylvester type, Walsh-Paley, and Walsh Matrices of size 16×16. 
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Figure 3.14 illustrates the steps of our CS-SISR algorithm, and Figure 3.15 displays its effect 

on a resized RoI. Figure 3.15 shows that the contrast of certain areas in the SR image is 

higher than in the BiCubic enlarged image. The visual appearance of SR images is better 

than BiCubic images, especially for small-size tumours, as testified by an experienced 

radiologist who provided the US images used in the experiments below; he stated that the 

overall contrast of SR images is better, and the tumour boundary is more precise. 

 

 

 

Figure 3.13 The steps of our CS-based SISR procedure. 
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Figure 3.14 CS-based SISR algorithm [75]. 

Figure 3.15 BiCubic vs. SR for resizing a LR BUS image. 
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3.2.3.3 Experimental Classification Results – BiCubic vs. SR 

In this section, we present experimental results to test and compare the impact of BiCubic 

image resizing versus (vs.) SISR using the proposed CS-based algorithm. Although HC-ML 

schemes do not require image resizing and we can deal with size variation by normalising 

the selected HC feature, we shall present the effect of the same level RoI tumour resizing on 

the performance of a few such schemes. For these schemes, there is no constraint on resizing 

all the RoIs into a certain size as CNN architectures. The RoI tumour images are intentionally 

resized into 128x128 for the HC features. In this case, the tumour area post-resizing is 

approximately in the range of [10000, 15000] pixels which is close to the size range of the 

majority of the tumours. Thus, there is no need for significant RoI image upscaling, and the 

quality of the resized RoIs is less affected by the resizing procedure. We use SVM with a 

linear kernel for classification. 

The Renmin dataset is the adopted dataset in these experiments. In the early stages of this 

research project, this was the only dataset made available to us. We conducted performance 

testing on this dataset, post the 2 resizing methods, for a set of DL models as well as 2 HC 

features. In these experiments, the tumour area is cropped using the standard method 

described earlier (See Figure 3.3), as the tissue padded smallest fitted bounding box to the 

tumour area polygonal shape. The RoI boxes were resized for the CNN models according to 

their architecture input size (AlexNet_227x227), (VGG16, VGG19, ResNet18_224x224). 

The experimental results for these two resizing methods are presented in Tables 3.1 and 3.2. 

Table 3.1 Performance of CNNs and HC features on Renmin dataset with BiCubic resizing. 

Renmin 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.92 ± 0.03 0.93 ± 0.05 0.90 ± 0.04 0.92 ± 0.03 0.92 ± 0.03 

VGG16 0.91 ± 0.02 0.91 ± 0.04 0.92 ± 0.06 0.91 ± 0.02 0.91 ± 0.02 

VGG19 0.91 ± 0.02 0.89 ± 0.02 0.94 ± 0.02 0.91 ± 0.02 0.91 ± 0.02 

ResNet18 0.91 ± 0.03 0.91 ± 0.07 0.90 ± 0.02 0.91 ± 0.03 0.91 ± 0.03 

HOG 0.85 ± 0.03 0.86 ± 0.05 0.84 ± 0.03 0.85 ± 0.03 0.85 ± 0.03 

ULBP 0.83 ± 0.04 0.87 ± 0.04 0.79 ± 0.07 0.83 ± 0.03 0.83 ± 0.04 
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Table 3.2 Performance of CNNs and HC features on Renmin dataset with CS-SISR resizing. 

Renmin 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.92 ± 0.03 0.94 ± 0.04 0.91 ± 0.07 0.93 ± 0.03 0.92 ± 0.03 

VGG16 0.91 ± 0.01 0.92 ± 0.04 0.90 ± 0.05 0.91 ± 0.01 0.91 ± 0.01 

VGG19 0.92 ± 0.01 0.92 ± 0.04 0.92 ± 0.03 0.92 ± 0.01 0.92 ± 0.01 

ResNet18 0.91 ± 0.03 0.90 ± 0.08 0.91 ± 0.04 0.90 ± 0.03 0.91 ± 0.03 

HOG 0.82 ±0.02 0.82 ± 0.05 0.82 ± 0.03 0.82 ± 0.02 0.82 ± 0.02 

ULBP 0.85 ± 0.03 0.85 ± 0.04 0.85 ± 0.05 0.85 ± 0.03 0.85 ± 0.03 

 

Overall, all DL models and HC algorithms with both image resizing methods have High-to-

Excellent performances in differentiating benign from malignant cases, with DL schemes 

outperforming the HC feature schemes. For the DL schemes, the overall accuracy is not 

significantly different for the 2 resizing schemes, except that for the VGG19 scheme, the SR 

resizing marginally outperforms the BiCubic scheme. We note that this marginal 

improvement makes VGG19 with SR achieve similar accuracy to AlexNet but with a tighter 

standard deviation. In terms of other performance metrics (Sensitivity, Specificity, and F1-

score), SR results are in marginal improvement by 1% and AlexNet achieves the best 

sensitivity and F1 rates among all DL schemes. Recall that sensitivity is the probability of a 

model predicting Malignant being truly Malignant. ResNet18 architecture performance 

across almost all metrics is stable using either of the resizing techniques. 

In contrast, when using SR resizing, the performance of the HOG scheme is degraded while 

the performance of ULBP is boosted. This may be explained by the fact that ULBP features 

are more linked to image texture landmarks than HOG, and SR is designed to maintain (or 

control degradation) the surroundings of these landmarks. Comparing sensitivity results 

reveals an interesting performance pattern for the two types of ML models. Except for the 

ResNet18, the SR resizing results in a marginal improvement (1%) for the other DL schemes, 

while for the HC feature scheme, the SR yields notable degradation (2%-4%). The picture is 

more mixed for specificity. 

In summary, these experiments indicate that the performance of the various schemes is only 

boosted marginally by applying SR instead of BiCubic. However, a deeper analysis of these 

results may benefit from knowing (1) that SISR is primarily designed to upscale LR single 

images with improved/maintained quality and (2) in all the tumour datasets, most original 

RoIs are small-size images. For this, we looked at the statistics of the predicted decisions for 

each of the tested models and computed the distribution of the misclassified cases. Figures 
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3.16 and 3.17 below display the distribution of RoI tumour size of the misclassified cases 

for each of the above experiments. 

As we explained earlier, the SR resizing technique is effective and improves the quality of 

the resized image when the actual image is of LR and degraded. Moreover, in Section 3.2.1, 

we showed that the majority of the tumours in the Renmin dataset are of LR in the range of 

[0, 10000] pixels. Therefore, the SR resizing technique impacts the quality of the resized 

versions of these images. 

The probability distribution of tumour area-pixel of the misclassified cases, as shown in 

Figures 3.16 and 3.17 for BiCubic vs. SISR, is consistent with the marginal classification 

performance improvement reported in Tables 3.1 and 3.2. The figures show that by applying 

SR instead of BiCubic resizing, the probability of misclassifying a LR tumour image is 

getting lower marginally by approximately 10%. This entirely agrees with the impact of SR 

on LR images in comparison to HR good quality images. Moreover, the sensitivity of most 

of the DL schemes is improved with SR resizing, while clinically high sensitivity is more 

desirable compared to specificity due to the fact that misclassified malignant cases may 

increase fatality rate and could result in a higher cost for NHS due to more litigations. 
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3.3 The Challenge of Ultrasound Image Quality Assessment 

Manually analysing BUS images mainly relies on the operator’s experience level. When US 

devices are deployed for tumour diagnosis, the operator (radiologist) holds the US probe 

with one hand while watching the monitor to establish a proper angle to scan the lesions and 

mark/measure the tumour dimensions. The probe needs to be held steadily in place long 

enough. Only well-trained operators can follow this procedure and determine the suitability 

of tumour-scanned images. This is a sensitive task, and even a minor handshake has a 

noticeable distorting impact on the scanned image and adversely influences the suitability 

for diagnostic predictions by ML schemes. Thus, it is safer to record a video of the 

organ/tissue that could be carefully examined to select the most suitable frame and mark the 

tumour border points afterwards. There are other factors influencing the suitability of US 

scanned images, including variation in acquisition procedures/devices as well as inter/intra 

observer/radiologist variation [65], [88]–[90]. 

Radiologist training worldwide aims to equip the participant with a globally standardised 

knowledge of how to detect RoI tumours using US scanning tools and how to assess image 

suitability. To develop automated ML schemes for US image analysis, it is very important 

to design reliable metrics to assess input US image suitability. In the literature, image quality 
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is used to reflect image suitability for input to ML analysis. This is sensible when dealing 

with natural images. If we adopt existing natural image quality metrics to assess US image 

suitability, we need to compare the sources of degrading US image contents with those of 

natural image contents. Natural images capture objects that the human brain is trained to 

recognise their geometric/structural characteristics that are invariant to size and orientation 

even if the image is reasonably distorted, blurred, with shadows and/or noise. These natural 

image-degrading effects are directly linked to the line of view of the light source, human 

recording skills, the sophistication of the deployed camera, and the distance at which the 

content is captured. US scanners use audio signals emitted on tissues within reasonable 

distances and generate images by the reflected signals. The structure of US scanned tissue is 

influenced by their dynamically changing complex environment as a result of blood (and 

other body liquids) flow and other factors. Note that digital image/video recording cameras 

in deep oceans are subject to analogous uncontrolled environments but to a rather less extent. 

Only well-trained radiologists may be able to recognise relevant US contents of interest (in 

such a dynamic environment) and distinguish image artefacts from tissue aberrations. 

Notwithstanding radiologist skill requirements, the performance of ML models used to 

analyse US images is also influenced by natural image quality characteristics such as 

blurriness, shadows, poor contrast and noise. Therefore, it is sensible to consider using 

natural image quality metrics to assess the suitability of US tumour scan images. US images 

are known to be subject to a special type of noise known as speckle noise. Different US 

devices may cause different levels of Speckle noise. 

Reference-based image quality metrics like Peak-Signal-to-Noise-Ratio (PSNR) [91], 

Structural Similarity Index Measure (SSIM) [92], and Universal Image Quality Index (UIQI) 

[93], [94] are widely used in many natural image processing/analysis applications. Given a 

reference image R and a target image T, both of size 𝑚 × 𝑛 = 𝑁, these metrics are defined 

as follows: 

𝑷𝑺𝑵𝑹(𝑹,𝑻) = 𝟐𝟎 𝒍𝒐𝒈𝟏𝟎(
𝟐𝟓𝟓

√𝑴𝑺𝑬(𝑹, 𝑻)
) 3.2 

Where the Mean Squared Error (MSE) is the average of the squared intensity differences of 

the R and T as: 

𝑴𝑺𝑬(𝑹,𝑻) =
𝟏

𝑵
∑∑(𝑹(𝒊, 𝒋) − 𝑻(𝒊, 𝒋))𝟐

𝒏

𝒋=𝟏

𝒎

𝒊=𝟏

 3.3 
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SSIM is computed as follows: 

𝑺𝑺𝑰𝑴(𝑹,𝑻) = 𝑳(𝑹, 𝑻) ∗ 𝑪(𝑹, 𝑻) ∗ 𝑺(𝑹, 𝑻) 3.4 

Where 

𝑳(𝑹, 𝑻) =
𝟐𝝁𝑹𝝁𝑻 + 𝒄𝟏

𝝁𝑹
𝟐 + 𝝁𝑻

𝟐 + 𝒄𝟏
 3.5 

𝑪(𝑹, 𝑻) =
𝟐𝝈𝑹𝝈𝑻 + 𝒄𝟐

𝝈𝑹
𝟐 + 𝝈𝑻

𝟐 + 𝒄𝟐
 3.6 

𝑺(𝑹, 𝑻) =
𝝈𝑹𝑻 + 𝒄𝟑
𝝈𝑹𝝈𝑻 + 𝒄𝟑

 3.7 

 

For any two images,  L(R,T) is a luminance comparison function that measures the proximity 

of mean luminance (𝜇𝑅 , 𝜇𝑇), C(R,T) is a contrast comparison function that measures the 

proximity of the standard deviations  (𝜎𝑅 , 𝜎𝑇) of their intensity, while 𝑆(𝑅, 𝑇) is the structure 

comparison function that measures the correlation coefficient between the two images, R 

and T. Note that 𝜎𝑅𝑇 is the covariance between R and T. The positive values of the SSIM 

index are in [0,1]. A value of 0 means no correlation between images, and 1 means that R=T. 

The positive constants c1, c2 and c3 are used to avoid a null denominator. 

PSNR and SSIM are widely employed metrics in the field of image and video processing to 

quantitatively evaluate the quality and similarity between original and processed ones. PSNR 

measures the fidelity of a reconstructed or compressed signal by computing the ratio of the 

maximum signal power to the mean squared error between the original and processed 

signals. Higher PSNR values indicate better fidelity. On the other hand, SSIM assesses 

perceptual quality by examining the signals' luminance, contrast, and structural information. 

It quantifies the similarity between signals based on their statistical properties, encompassing 

factors such as brightness, contrast, and structural similarity. Higher SSIM values correspond 

to greater perceptual similarity. Both metrics provide objective assessments of image quality, 

aiding in developing and optimising various image processing algorithms and techniques. 

They are also used to compare the effect of image transformation (such as compression), and 

we do not assume the presence of a transformation model that led to changing a healthy (or 

a benign mass) tissue into a cancerous one. We will not further discuss these metrics. Using 

such techniques to measure any quality distortion in an image requires a good-quality 

reference image. 
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The UIQI is another reference-based image-quality measure defined in terms of the statistical 

parameters of a reference image and a given image. The formula defines it: 

𝑼𝑰𝑸𝑰(𝑹, 𝑻) =
𝟒𝝈𝑹𝑻𝝁𝑹𝝁𝑻

(𝝈𝑹
𝟐 + 𝝈𝑻

𝟐) ∗ (𝝁𝑹
𝟐 + 𝝁𝑻

𝟐)
 3.8 

A simple manipulation and rearrangement of the above formula make UIQI closely similar 

to the SSIM. 

𝑼𝑰𝑸𝑰(𝑹, 𝑻) =
𝝈𝑹𝑻
𝝈𝑹𝝈𝑻

∗
𝟐𝝁𝑹𝝁𝑻

(𝝁𝑹𝟐 + 𝝁𝑻𝟐)
∗

𝟐𝝈𝑹𝝈𝑻

(𝝈𝑹
𝟐 + 𝝈𝑻

𝟐)
 3.9 

The UIQI models the distortion between R and T as a product of three components: loss of 

correlation, luminance distortion and contrast distortion. These three factors of UIQI 

represent quality characterizing measures that reflect human vision system measures of 

distortions between R and T in terms of (1) loss of correlation, (2) luminance distortion, and 

(3) contrast distortion, respectively. The UIQI was modified by adding another factor called 

modified skewness to the other three components [94]. Table 4.3 presents the computed 

PSNR, SSIM, and UIQI with its factors for 4 BUS images, 2 Benign (B1, B2), and 2 

Malignant (M1, M2) when each is used as a reference for the others. All images have the 

same size, having been resized. 

The computed values for the 3 factors (Correlation, Luminance, Contrast) of UIQI for these 

Benign and Malignant images indicate that while no good closeness is detected between any 

two of the images in terms of the correlation factor, all have significant to excellent similarity 

with each other in terms of luminance and contrast in comparison. Yet these images are 

visibly distinct from each other besides being in different classes. 
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Table 3.3 The computed PSNR, SSIM, UIQI and its three components for a selected 4 US images. 

RoIs 

    
PSNR B1 B2 M1 M2 

B1 Inf -34.38 -35.87 -30.58 

B2 -34.38 Inf -37.01 -35.00 

M1 -35.87 -37.01 Inf -35.66 

M2 -30.58 -35.00 -35.66 Inf 

SSIM B1 B2 M1 M2 

B1 1 0.02 -0.01 0.03 

B2 0.02 1 0.05 -0.01 

M1 -0.01 0.05 1 0.02 

M2 0.03 -0.01 0.02 1 

 

Correlation B1 B2 M1 M2 

B1 1 0.39 0.02 0.29 

B2 0.39 1 0.3 0.26 

M1 0.02 0.3 1 0.09 

M2 0.29 0.26 0.09 1 

Luminance B1 B2 M1 M2 

B1 1 0.98 0.95 0.99 

B2 0.98 1 0.88 0.98 

M1 0.95 0.88 1 0.95 

M2 0.99 0.98 0.95 1 

Contrast B1 B2 M1 M2 

B1 1 0.8 0.84 0.99 

B2 0.8 1 0.99 0.82 

M1 0.84 0.99 1 0.85 

M2 0.99 0.82 0.85 1 

UIQI B1 B2 M1 M2 

B1 1 0.31 0.02 0.28 

B2 0.31 1 0.26 0.21 

M1 0.02 0.26 1 0.07 

M2 0.28 0.21 0.07 1 

 

The existing reference-based quality measures are not practical in our domain as there is no 

standardized US image dataset of good-quality images to be used as a reference dataset. 

Therefore, it is difficult to define ground truth quality-labelling for this purpose.  A close 

examination of each of these images reveals that the quality characteristics of Correlation, 

Luminance, and Contrast are not uniformly distributed across different areas of the same 

RoI. To illustrate this assertion, we split the tumour RoI for the 4 images in Table 3.3 and 
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divided each into equal-sized 36 (6x6) blocks. For each image, we calculate the 3 component 

values for cross-referencing each image block with the other 35 blocks. This results in 630 =

36∗35

2
 values for each UIQI component. We then quantize these values into 10 equal bins, as 

shown in Figure 3.18. For the sake of comparison with natural images, we used the same 

procedure on a tightly cropped passport standard face image. 

Figure 3.18 shows that the three quality components are not uniformly distributed across 

different areas of the same image, which is true for different tumour classes and the natural 

face image. For the US images, most of the cross-block correlation indices fall within the 

middle range bins (4-7), which is also observed for the face image. However, for both 

luminance and contrast, most of the cross-block indices are in the upper range of bins (8-10) 

for both image modalities. Comparing the US to the Natural/face image, we find that the top 

cross-block illumination values are 91.75% for the natural image against 43.17% for the US 

images. The face image is well-lit, and the other 8.2% of the cross-block bins (8 and 9) are 

due to the intensity differences between the eyes and the remaining facial features. However, 

the top contrast scores are 34.92% for the face image against 62.54% for the US images.  

The face image is relatively smooth away from the eye’s region, and this explains why 

22.86% of the cross-block contrast scores are in the low half of the bins compared to 0% for 

the US images. 

Besides highlighting the differences between natural and US images in terms of the three 

quality characteristics, the above inspiring observations provide the ingredient for a no-

reference IQA in US image analysis by exploiting the spatial distribution of various quality 

characteristics. The intended technique expands the list of 3 UIQI factors with other 

statistical quality measures to form a self-reference quality feature vector that we developed 

and investigated during our work for this thesis project and is presented in Chapter 5. 
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Figure 3.18 Display of spatial distribution of (Correlation, Luminance, and Contrast) for tumour 

RoIs and a face image. 
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Finally, we note that the various existing image quality metrics are certainly influenced by 

the type of noise present in images. A plethora of procedures have been developed with 

satisfactory/significant success for natural image denoising, depending on the noise type. 

The most successful approach to deal with image degradations (including noise) deals with 

these problems as inverse problems, similar to the discussion we had in the last section on 

SR. To deal with speckle noise, it has been shown that speckle noise on US images produces 

a different noticeable effect on different regions depending on the solidity of the regional 

tissue [6]. The author associated the effect level with regional intensity Skewness and 

Kurtosis parameters, developed an adaptive US denoising scheme, and demonstrated a 

significant performance improvement of their ML models applied to Ovarian cancer [6]. 

3.4 Lack of Training Samples - Solutions 

Another important performance influencing factor in DL-based US image analysis that is 

equally applicable to other medical image modalities is the non-availability of a sufficiently 

large training dataset of well-annotated and good-quality images. The availability of such a 

dataset guarantees an effective learning process which is crucial in training any DL 

architecture [36], [95]. However, designing a DL model for US tumour image analysis is a 

very challenging task due to the lack of publicly available large training datasets [35], [65], 

[66], [96], and some of the publicly available datasets like BUSI is of low quality and some 

of the images in the dataset have sever artefacts and annotations [61]. Unlike medical image 

domains, e.g., natural image analysis, one can find very large datasets such as ImageNet for 

designing efficient and optimal performing DL models [7], [54]. 

Any designed CNN architecture from scratch with the initialized parameters would not 

deliver a good classification performance for any given US image dataset. For the Training 

from Scratch-scenario, the model needs a lot of training with a large enough training dataset 

to efficiently learn class-discriminating from deeply encoded feature maps. Establishing 

such a dataset for a specific form of cancer is a lengthy, expensive, and complicated 

procedure that necessitates several connections and collaborations among radiologists and 

ML experts. Moreover, training a CNN model from scratch is computationally burdensome 

compared to other training protocols and HC feature methods [97]. Therefore, training CNN 

models with our relatively small BUS datasets is not ideal and may lead to model overfitting 

and biases. Although medical images, especially US images, differ significantly from natural 

images, some learned knowledge from natural images is transferable to the medical domain 

[97], [98]. 
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Alternatively, Transfer Learning is frequently employed to address the issue of having a 

small non-representative training/modelling dataset [65]–[67], [89]. In this approach, instead 

of training from scratch, one of the state-of-the-art pre-trained optimally performing CNN 

models is used for transferring the learnt parameters when trained on the very large ImageNet 

dataset. In this approach, the convolutional layers of the pre-trained model are used for 

feature map extraction from the US dataset to be used to update/train the parameters of the 

FCLs for classification. Usually, only the parameters of the last FCL are updated [28]. 

Fine-tuning is a slightly different approach compared to other versions of transfer learning. 

In this approach, again, one of the pre-trained models is adopted; however, the parameters 

of all the layers of this model are updated during the added training on a subset of the 

intended US image dataset [28]. 

In general, training a CNN model from scratch is suitable when the desired dataset is 

sufficiently large to train such a model, and at the same time, enough computational power 

is committed for the training. On the other hand, transfer learning is proved to be effective 

in the case of having a small non-representative dataset for modelling. However, its best 

performance compared to the optimal performance of the pre-trained model is suboptimal. 

Fine-tuning is more suitable in the case of having a relatively small non-representative 

dataset that is quite different from the pre-trained dataset (Medical US compared to Natural 

Images). Therefore, Fine-tuning is the adopted CNN training method throughout our work.  

Researchers have developed image processing techniques to expand a small dataset of 

images by adding their processed versions to create a larger dataset. The main challenge is 

to select several image transforms that output images of the same class as the input images. 

Image Augmentation is a commonly used approach to address the issue of data scarcity. It 

is the process of generating new samples from the available training images using various 

known image operations and algorithms [9], [99], [100]. The classical image augmentation 

techniques in the medical field include simple image manipulations like rotation, horizontal 

and vertical flip, scaling, zooming, translating, shearing, blurring, sharpening, contrast, 

brightness, and noise insertion [96], [100], [101]. Figure 3.19 illustrate some image 

augmentation process. 
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In recent years, artificial image generation has been proposed to expand small image datasets 

into high-volume image datasets that are meant to have the same characteristics as the small 

dataset. DL approaches such as Generative Adversarial Networks (GAN)s are successfully 

used for image augmentation [102]. GANs are utilized to create synthetic US images, which 

help to improve the classification performance of BUS lesions [89], [103]. However, there 

are concerns regarding its suitability in medical image analysis, as synthetic image 

augmentation may further overfit the trained model and expose it to adversarial attacks [104]. 

The reviews conducted for the various components of this thesis project have revealed 

several potential image representations or RoI appending techniques. In this work, we design 

several novel techniques for BUS image augmentation that rely on limited available samples 

to create real versions of the images, similar to how clinical specialists analyse US images 

in their diagnostic assessments. In Chapter 6, we design three approaches for BUS image 

augmentation: one is based on Singular Value Decomposition (SVD) [105], the second one 

is based on image convolution with Hadamard-based filters [76], and the third one is specific 

to BUS images that uses RoI Tumour Margin Appending (TMA) [9]. 

3.5 Conclusion 

In this chapter, we have delved into CNN performance influencing factors that arise from 

their architectural requirements when applied to US tumour scan image analysis. Despite the 

advantages that US imaging offers compared to other medical image modalities, we have 

uncovered significant challenges in designing DL-based US image analysis systems. These 

challenges encompass the variation in RoI sizes, the influence of clinician experience, the 

Figure 3.19 US image augmentation using rotation, mirror, and noise insertion. 
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impact of different US machines and clinical practices, the presence of inter- and intra-

observer variability, the complexities of RoI cropping scenarios, and various image quality 

issues such as speckle noise and low contrast. 

We have established that the extent of RoI size variation within our BUS datasets is a tough 

challenge for meeting the DL model's requirement on fixed-size input images without 

influencing input image quality. We demonstrated that this variation is significant and 

relatively dependent on the lesion class. Specifically, we observed that most benign RoIs 

corresponded to small-size tumours, in contrast to malignant ones. Furthermore, we have 

shown that the resizing procedures employed in RoI preparation have a more noticeable 

effect on the quality of benign cases than malignant ones. 

Another significant challenge we have identified is the perceived low quality of US images. 

Unfortunately, robust and standardized IQA tools are currently unavailable for evaluating 

US images before inputting them into DL systems. This dearth of assessment tools hampers 

developing and deploying effective DL schemes in US imaging. 

Moreover, the scarcity of adequately labelled training image samples remains a primary 

concern in the literature on DL for US image analysis. Acquiring a diverse and well-

annotated dataset is a labour-intensive task, limiting the generalization and robustness of DL 

models. To mitigate this issue, it is imperative to develop specific and effective image 

augmentation techniques tailored to the medical US to expand the datasets. 

In the next chapter, we will investigate the optimal cropping scenario for BUS images and 

explore its impact on the classification performance of DL models and HC feature schemes. 

We aim to further enhance our understanding of the intricacies involved in optimizing image 

cropping techniques for improved DL-based breast tumour classification. 
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Chapter 4: Lesion Shape Cropping from US Images 

The clinical procedure for using medical imaging (in this case, Ultrasound) in assisting 

tumour diagnoses starts by recording an US video scan of the relevant tissue/organ, and an 

experienced radiologist assesses the various frames of the video, identifies the frame that 

best contains the tumour, annotate that frame with some information/parameters related to 

the lesion, its boundary, and other patient-related information. Oncology clinicians, who 

have been trained for several years, examine the patient's US tumour selected frame with a 

focus on the lesion region, being the source of distinguishing features between malignant 

and benign masses, report their diagnoses of the case and advise the patient on the course of 

action. This time-consuming critical task places a high burden on health services/centres and 

requires highly skilled clinicians. In order to develop a ML model that can be used to support 

clinical teams, ideally, it is necessary to carry out all the above preparation steps, including 

the selection of the best US frame, segmenting the lesion and making predictions that can be 

examined together with results of other related medical tests. Segmentation of the lesion is 

either done manually by the radiologist or automatically by a tumour segmentation 

algorithm, and it amounts to cropping the corresponding tumour RoI. Manual tumour 

segmentation is time-consuming, and automatic segmentation is a challenge that we keep 

outside the focus of this project. To compensate for the absence of reliable segmentation, 

TenD radiologists provided information on the suspect masses' boundaries by marking a set 

of lesion boundary points sufficient to determine the location and shape of the tumour. 

In this chapter, we shall consider several strategies for tumour RoI cropping using the marked 

lesion border points without tumour segmentation and investigate their impact on the model 

classification performance for DL and HC feature schemes. In section 4.1, We describe the 

concept of lesion cropping from a computational viewpoint and conduct a literature review 

of related work. Section 4.2 describes potential cropping strategies, while section 4.3 is 

concerned with experimental work on the performance of various DL/HC models 

corresponding to our chosen lesion cropping strategies. Section 4.4 is concerned with the 

generalisation of the developed DL models when tested on external datasets in relation to 

the proposed cropping strategies. Finally, in section 4.5, we use heatmap visualisation to 

understand the performance testing results and the impact of the tumour cropping scenarios 

on DL decision quality. 
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4.1 Introduction and Related Work 

For computational purposes, cropping of a lesion in an US tissue/organ scan image is meant 

to determine its set of disease-relevant pixels. In general, lesion segmentation 

(automatic/manual) meets this requirement, but it is a tough challenge due to many factors, 

including tumour size variation (see section 3.2.1) and the fact that tumour cells do not grow 

uniformly in all directions, resulting in various border irregularities. Cropping strategies are 

expected to be inspired by the way clinicians analyse tumour US images. Experienced 

clinicians make their image-based diagnostic predictions by considering image features 

within the lesion area, including the border as well as the surrounding region, that is deemed 

to convey important disease-related information. However, image features extracted by 

traditional CAD systems often give little or no consideration to the surrounding area, and yet 

cropping strategies depend on the nature of information extracted from the tumour and 

surrounding region of the RoI. 

During clinical tumour analysis, radiology experts complement known disease-relevant 

information (e.g., age, patient’s medical history, genetic profile, and results of disease 

biomarkers tests) by assessing image features/information within the tumour tissue region, 

its border, and the immediate surrounding region. The various image regions are used to 

assess medically known malignancy predictors, usually referred to as signs of tumours 

(Cancer Signs). The lesion interior image texture information helps identify the tumour’s 

internal echogenicity level and solidity, while the border encapsulates information about 

malignancy predictors such as tumour shape and irregularity levels. Image information from 

the periphery of the tumour primarily maintains posterior acoustic echo and lateral acoustic 

shadow [106]. In contrast, most existing automatic US image analysis (HC features and DL) 

algorithms analyse features extracted/learnt from the tumour area within the smallest 

bounding box with little or no consideration to the surrounding region. We shall investigate 

the pros and cons of mimicking the clinical approach by using features from the lesion 

surrounding area. Besides the challenge of determining the lesion's internal region and the 

border with high accuracy, we need to determine the appropriate margin of external tissue 

to be appended. 

Very few articles in the literature address the subject of optimal RoI cropping and identifying 

suitable ratios for tumour margin appending. Cao et al. [65] investigated two case scenarios 

by feeding the whole B-mode BUS image to DL architectures vs. utilizing only the smallest 

RoI bounding box of the tumour area. Testing these two cases does not necessarily yield the 
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best cropping ratio since the entire image has too much background information, whereas 

the tumour RoI is more focused on the lesion site. On the other hand, some studies show that 

feeding an RoI to DL models with too much information from the background lowers model 

decision quality. This is attributed to the irrelevance of some elements of the overall image 

to the examined disease while contributing to the model decision [107]. 

Han et al. [108] studied optimal tumour margin appending for BUS tumour classification 

with DL, where the tumour margin is defined as the distance in pixels between the lesion 

boundary and the cropped rectangle bounding box. They assessed the classification 

performance as the margin increased from 0 to 240 pixels at different thresholds and 

discovered that a tumour margin of 180 pixels provides the highest classification accuracy. 

However, fixing the tumour margin ratio at a specific threshold for all the tumours is not 

ideal, especially considering the tumour size variation found in our breast datasets. For 

example, appending a tumour of size 20x20 with 180 pixels from the tumour periphery will 

add a significant amount of information from the surrounding region compared to the amount 

of image information present in a 20x20 pixel tumour RoI box. Therefore, it is better to 

append the tumour’s margin with a threshold related to the tumour's actual size, and this is 

the approach we follow in our research. Moreover, appending tumour lesions of highly 

irregular border shapes may result in self-intersection [34]. 

Yamakawa et al. [106] investigated the optimal cropping scenario for liver tumour US image 

classification using a newly developed CNN architecture. They set the tumour in the centre 

of a square bounding box of side length L. Although the included figures in the paper display 

fitted ellipses, the text describes the use of a fitting circle of the tumour to determine its 

centre and the maximum diameter D. They determined the ideal cropping scenario by 

including the tumour and a portion of the surrounding region in the cropped RoI bounding 

box. Several ratio values have been tested, including (ratio = 0.1, 0.2, 0.3, …, 1.0, 1.1) to 

crop the tumour with different margin appending ratios, and the classification performance 

has been tested at each threshold. The classification testing results demonstrate that ratio = 

0.6 is ideal and delivers the highest accuracy for US liver tumour classification. For our 

dataset of US tumour scan images, neither an ellipse nor a circle is a fair representation of 

tumour shapes, particularly for irregular tumours. 

It is important to determine an optimal tumour margin appending ratio(s) for better lesion 

classification performance. In this work, besides the conventional way of tumour RoI 

cropping (i.e., using the smallest bounding rectangle box of the tumour polygonal shape), 

we study many scenarios for cropping RoIs using surrounding tissue regions. In the next 
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section, we shall describe various mathematical cropping strategies to propose a 

computationally efficient approach to implement, provide a reasonable approximation of the 

tumour, and is suitable for scaling/margin appending. 

4.2 Cropping Models 

Given a set of marked points, S, on the boundary of a lesion scanned by an US device, 

cropping of the lesion can be made depending on how we use S to determine the lesion 

border mathematically. Common mathematical approaches include (1) interpolating the 

lesion border from the set S, and (2) Curve fitting strategy, whereby one determines the 

border as being the best-fitted curve of the set S. Here, we shall propose an alternative simple 

cropping strategy by using the Convex Hull (CH) of set S, which includes 3 or more of the 

points in S. All these approaches may include external tumour tissues and/or exclude tumour 

tissues either due to computational errors or border point marking errors. 

4.2.1 Lesion Cropping by Interpolations 

The most naïve, but easy to use, interpolation-based cropping strategy would be linear 

interpolation which outputs a polygonal shape whose corners are the points in S. This method 

would be very accurate when the tumour shape is regular. However, suppose the tumour 

shape is highly irregular. In that case, the tumour's polygonal shape misses lesion 

information from areas protruding away from its sides and/or includes non-lesion 

information protruding inward. Moreover, irregular lesions may present a challenge to the 

idea of expanding by margin appending as some parts of the circumference self-intersect 

after expansion resulting in multiple counting of RoI parts. Figure 4.1 below displays regular 

as well as irregular breast tumours with their corresponding lesion boundary points and 

tumour polygonal shape areas. 
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Non-linear interpolation of the border points provides a computationally more demanding 

alternative border approximation method. This approach includes using quadratic or cubic-

spline curves that pass through the points of S. Generally, non-linear interpolating lesion 

border models the border section that passes through two or more points in S by a known 

polynomial equation(s) in the (x,y) values. Higher degree interpolating polynomials require 

more computational power but produce more winding border curves and thus are more useful 

for irregular lesions. For simplicity, polynomials of the same degrees are used to model all 

sections of the border curve, and cubic spline is the most common method. Figure 4.2, below, 

displays the cubic spline interpolated border of the above lesions in red colour on the tumour 

polygonal shape areas using linear interpolation in yellow. 

Figure 4.1 Linear interpolation-based Polygonal lesion shape for (Regular vs. 

Irregular) lesion border. 
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The assumption that different border sections have the same shape may not reflect the way 

tumour tissue cells grow. The curve fitting approach is a commonly used approach for 

approximating lesion border from the set S of radiologist-marked border points. 

4.2.2 Lesion Cropping by Curve Fitting 

Curve fitting strategies may seem similar to nonlinear interpolation, but the fitted curve may 

not pass through each of the points of S, if any. In a 2D US tumour scan, the lesion border 

forms a closed curve and therefore, the most commonly used curves are the closed conic 

sections, i.e., circles and ellipses. The fitted ellipse is widely used because most tumour tissue 

shapes reassemble an elongated closed curve, perhaps with some irregularities and bends. 

The circularity measure of the actual border curve is often used as a useful indicator in the 

classification. However, closed piecewise curves that consist of several curves, such as 

parabolas or Gaussian curves, connect at their ends. Fakher Mohammed, in his PhD thesis 

[34], implemented several non-linear thyroid lesion border interpolations and border 

approximation by curve fitting (e.g. Cubic-Spline interpolations, Ellipse and Gaussian fitting 

approximation). Figure 4.3 below displays the Gaussian curve fitting and the fitted ellipse 

borders for the above breast lesions. 

Figure 4.2 Cubic-spline interpolation-based Polygonal lesion shape, in red colour, 

for (Regular vs. Irregular) lesion border. 
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We observe that the Gaussian/Ellipse curves, being of regular geometry, do not provide good 

lesion border approximation when used for highly irregular lesion borders. However, these 

fitted curves have been deployed as references to measure the level of irregularity of tumour 

lesion border by analysing distance functions defined between the interpolated polygon 

points and the fitted curve [34]. 

4.2.3 Lesion Cropping by Convex Hull 

Following on from the above discussion, we conclude that neither curve fitting nor 

interpolation approaches can approximate the border without the possibility of 

including/excluding image information outside/inside the actual lesion. These undesirable 

effects may be due to significant variations of lesion border clarity and difficulty in choosing 

interpolating/fitting curves; hence, the ideal lesion cropping shape should be (1) minimising 

exclusion of lesion pixels, (2) maximising the inclusion of actual internal and border lesion 

pixels, (3) efficiency of computing the chosen shape, and (4) the ease with which the lesion 

margin can be expanded to facilitate margin feature extraction/learning. 

Figure 4.3 Fitted Gaussian curve and fitted ellipse, in red colour, for Regular vs. 

Irregular lesion border. 
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The Convex Hull (CH) of the set S of radiologist-marked lesion border points, CH(S), is a 

polygonal shape with corners in S and scores well on the above 4 requirements. It covers the 

entire polygonal linear-interpolated tumour tissue and hence can only exclude parts of the 

lesion that protrude far away from the polygonal lesion border. Although it may include 

pixels outside the lesion tissue, the number of these pixels can be reduced by replacing all 

its internal pixels that are outside the polygonal lesion border with zero. Neither the CH nor 

the tumour polygonal shape is perfect in terms of the ideal cropping inclusion/exclusion 

conditions mentioned above. However, the CH shape is efficient to compute and is easy to 

expand by parallel translation of its sides, thereby facilitating the proportional expansion of 

the lesion border points. Moreover, the surrounding lesion box can be easily determined as 

its sides are determined by the 2 pairs of corners of CH(S) furthest away 

horizontally/vertically. Accordingly, we adopt CH(S) as a sensible lesion-cropping shape. 

The standard RoI cropping procedure is to draw the smallest-fitted rectangular box that 

encloses the tumour polygon area after connecting the lesion boundary points in a polygonal 

form established in the order of the marked points, i.e., the linear interpolated lesion 

boundary. The pixel values inside the RoI rectangular box but outside the tumour polygon 

area are set to their original pixel values (i.e., tightly cropped tumour area with tissue 

padding). In this case, the classification decision is based on information mainly from the 

tumour area with little/no consideration of the surrounding region. 

The whole B-mode image contains significant redundancy, including too much background 

and US annotation artefacts that may lead to poor CNN decisions. Also, the idea of margin 

appending the tumour using a fixed ratio without considering the lesion size, especially for 

small-size tumours, results in having some RoIs with too much background compared to 

large-size tumours. Furthermore, approximating the shape of the tumour by a fitted 

circle/ellipse is not quite accurate, especially when the tumour is very irregular. 

The CH of a set of points in a 2D space is a geometric object/shape made up of a unique 

polygon linking the fewest possible points that one may go through without leaving the CH 

area. CH is a convex polygon with a maximum area and minimal circumference 

encompassing all the given points. It has a wide range of applications, including image/object 

detection in pattern recognition applications, e.g., see [109]–[111]. Figure 4.4 illustrates the 

CH of a set of lesion boundary points for the two BUS scan images. It shows that CH(S) of 

the lesion boundary points S covers the whole tumour area while it is a good convex 
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approximation of the actual shape and is suitable for expansion/margin appending. The red 

dots in the second row are the vertices of the determined CH. 

Figure 4.5, below, further illustrates the different tumour border approximations, including 

(A) tumour area polygon, (B) cubic spline border interpolation, (C) Gaussian curve fitting, 

(D) fitted ellipse, and (E) CH lesion border for the two lesions (regular vs. irregular). We 

note that the fitted Gaussian curve and ellipse succeed in approximating the shape of the 

lesions, but they most likely exclude some parts of the lesion area while the CH covers all 

of it. Furthermore, expanding the actual tumour polygonal area may result in self-intersecting 

RoI for all the schemes, while the corresponding CH solves this issue. Also, obtaining a 

polygonal shape inside any ratio expansion of the CH is not difficult. After expanding the 

CH by any ratio, it is easy to draw a polygonal shape inside the CH that is approximately 

Figure 4.4 Steps of forming the CH polygon of a set of lesion boundary points. 



85 
 

proportional to the exact tumour area by the same ratio. In this way, we can reduce the effect 

of the intersecting RoI problem. 

 

Figure 4.5 Tumour shape approximation of 2 lesions: (A) tumour area 

polygon, (B) cubic spline border interpolation, (C) Gaussian curve fitting, (D) 

fitted ellipse, and (E) CH lesion border. 
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Based on the above observations regarding the pros and cons of the above cropping 

strategies, we decided to focus on the CH scheme as our adopted strategy. 

4.2.4 Lesion Margin-appending Scenarios within the Convex Hull Shape 

Whatever method is used to approximate/segment lesion borders in US tumour scanning 

images, we face the question of what values we assign to the pixels outside the approximated 

lesion border and inside the surrounding rectangular box. Moreover, the question extends to 

the region between the CH and the lesion-polygon border for our CH cropping strategy (see 

Figure 4.5 (E). For the various cases, the set of these external pixels to the lesion but inside 

the CH is set to their original tissue pixel values, and the question becomes one about margin-

appending methods. Traditionally, the entire set of pixels in the lesion surrounding area but 

inside the smallest rectangular bounding box is assigned to their original tissue image values. 

We shall call this margin-tissue-padding scenario, which is referred to as the TumourT 

scenario in experimental work. However, for some irregular lesion shapes, the margin is 

significantly larger than the actual lesion. To avoid this undesired situation, we suggest that 

pixels of the entire/subset lesion margin be assigned 0 value, and we call this a margin-0-

padding scenario. In particular, we only consider 2 different 0-padding scenarios: (1) assign 

0 to the entire tumour margin pixels to be referred to as the TumourZ scenario, and (2) assign 

0 to the pixels outside the CH(S) but inside the surrounding box to be referred to as the CHZ 

scenario. 

We note that clinicians examining tumour images may give more consideration to certain 

parts of the lesion border surrounding rather than the entire margin (e.g., regions relating to 

posterior acoustic echo and/or lateral acoustic shadow).  This is an ideal 0-padding scenario, 

but we shall not adopt this scenario due to the unavailability of clinician advice, we do not 

have ground truth for such type RoI cropping. Instead, we shall extend our experiment by 

adopting the approach taken by Yamakawa et al. [106] and test the impact of different 

tumour margin appending ratios in the cropped RoIs on model performance. For this, we 

simply scale up/down the CH(S), with respect to its centroid, by a specified ratio s, to append 

the tumour area with different amounts of surrounding tissue. A new smallest bounding box 

is determined simply by the pairs of CH(S) nodes that are furthest away horizontally and 

vertically, respectively. Again, we have two possible ways of margin appending of the new 

scaled box: (1) original image pixels inside the s scaled box are assigned to their tissue 

values, and (2) original image pixels inside the s scaled box are assigned to 0. We denote the 

first padding scenario as T and the second padding scenario as Z. We selected the scaling 
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ratios from the set {0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0}. Figures 4.6 and 4.7 

illustrate all the above-described tumour cropping scenarios, first using tissue padding 

followed by 0-padding. For consistency, we also include TumourT = CHT, while TumourZ 

⊆⁡CHZ. The cropped RoIs are resized to 227x227, which is the AlexNet input size. 

  

Figure 4.6 Illustrating tissue-padding tumour cropping scenarios for a breast tumour US 

image. 
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Figure 4.7 Illustrating 0-padding tumour cropping scenarios for a breast tumour US 

image. 
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4.3 Performance of DL/HC Models for the Convex Hull Cropping Strategies 

In this section, we shall test the performance of several CNN architectures and HC feature 

schemes when trained and tested on BUS lesion images with the various margin appending 

scenarios. We aim to determine the optimal tumour cropping ratio for model performance. 

In all experiments, we follow the 5-fold cross-validation protocol. We start by using the 

Renmin dataset due to its availability at the time of developing our tumour-cropping 

strategies. Later, we repeat the experiments with the Modelling dataset, which extends the 

Renmin dataset by datasets collected from 4 other Shanghai hospitals. 

4.3.1 Renmin Dataset - Performance Testing 

In this section, the impact of the CH-cropped RoIs with both sets of margin-appending 

strategies is tested on a variety of CNN as well as a few HC feature classification schemes. 

All lesion surrounding box images, post cropping and padding will be resized using the 

BiCubic method in accordance with the tested CNN model requirement. Moreover, the 

images were resized to 128x128 for the HC-feature models. 

4.3.1.1 Performance of CNN models 

At the time of developing our cropping and margin appending strategies, four CNN 

architectures were selected for our experiments: AlexNet, VGG16, VGG19, and ResNet18. 

All models are trained in fine-tuning mode, and the last FCL is replaced to adjust the binary 

classification (Benign, Malignant). The experiments do not aim to compare the performance 

of the various implemented CNN models but rather to estimate the range of their average 

accuracy for each tumour cropping scenario using the 5-fold cross-validation protocol. 

Figure 4.8 below presents the average classification accuracy for the four CNN models with 

the proposed TumourT and RoI CH-scaled cropping scenarios with tissue-padding. 
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For all models, we cannot find significant differences from one cropping ratio to another. 

All DL models achieve accuracy in the range 91% - 92% accuracy with one or more cropping 

ratios. AlexNet achieves the highest accuracy of around 93% at 1.2T and 1.4T cropping 

ratios. The VGG16 achieves the highest accuracy of 92% (slightly outperforming the 

TumourT scenario) at different cropping ratios, including 0.8T, 1.4T, and 2.5T. The other 

two architectures perform differently at different cropping ratios with marginal 

increase/decrease (compared to the TumourT scenario) with the highest accuracy of no more 

than 92%. Overall, there is no clear pattern among the average accuracy of the four models 

at different cropping ratios to indicate the optimal cropping scenario. Therefore, it is hard to 

consider any of these cropping scenarios with tissue padding as the optimal one. However, 

these results indicate that the tissue of regions outside the tumour polygon should not be 

neglected completely. 

Figure 4.9, below, presents the average classification accuracy of the same DL models but 

with the proposed TumourZ and RoI CH cropped scaled scenarios with 0-padding scheme. 
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Figure 4.8 Performance of 4 CNN models for different cropping scenarios – Tissue padding. 
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Unlike the tissue padding scenario, the performance gap between the various cropping ratios 

for each CNN model is not negligible (≥ 5%). All the CNN models with the TumourZ 

cropping scenario outperform all the CHZ scaled ratios. VGG19 architecture achieves the 

highest accuracy of 96% and outperforms other models, followed by VGG16 (95% 

accuracy), and other models’ performance is around 93%. Noticeably, the performance of 

all the models is the lowest at 0.6Z and 0.8Z, confirming the importance of the regions 

immediately surrounding the approximated lesion border from the inside. Except for the 

Resnet18 model, expanding the CHZ at ratios >1 does not lead to noticeable performance 

differences for the other CNN models. This observation refines the last conclusion: the 

regions immediately surrounding the approximated lesion border from the outside are also 

important. However, the results of tissue padding, especially post scaling by ratios >1, 

indicate that the inclusion of some external tumour tissue yields improved performance. 

To have some understanding of this conclusion, we conducted limited experimental work to 

test the performance of two known HC-feature ML schemes on the images prepared 

according to the proposed cropping scenarios. Accordingly, this is not meant to compare the 

performance of these models with that of CNN models. 
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Figure 4.9 Performance of 4 CNN models for different cropping scenarios – Zero padding. 
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4.3.1.2 Performance of Handcrafted Feature Schemes 

In order to see if these padding-related patterns of performance are due to the use of CNN 

models, we repeated the classification experiments with HC models of image analysis. All 

the images/RoIs are converted to grayscale and resized to [128, 128]. The resizing is done 

as a normalization for the HC feature schemes. HOG and ULBP are the selected texture 

features in the experiments, and the SVM with the linear kernel is the adopted classifier. 

Figure 4.10 below presents the average classification performance for the selected HC 

texture features with different RoI cropping scenarios – tissue padding. HOG achieves an 

accuracy of 85% at TumourT and CHT, while its performance drops significantly to 73% 

and 78% at 0.6T and 0.8T respectively. Upscaling the CHT from 1.2T to 2T gradually 

decreases accuracy from 85% to 77%. Then, the accuracy starts to steadily increase with 

larger scaling ratios reaching 84% at 4T. A similar pattern of performance for all scaling 

ratios is achieved for ULBP; the accuracy of ULBP is 83% at TumourT and CHT. In contrast, 

its performance drops at 0.6T, 0.8T, and 1.2T but starts immediately to increase steadily, 

with larger scaling ratios reaching 83% at 4.0T. These results confirm that inside and outside 

lesion border contribute to improved performance, and the continuation of textures into 

larger border surrounding regions help regain performance lost when scaling by ratio <1. 
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Figure 4.10 Performance of handcrafted models for cropping scenarios with Tissue padding. 
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Figure 4.11, below, presents the average accuracy for the same set of texture features but 

this time with zero-padding. There is little difference in the pattern of performance between 

the different extracted HC features across different scaling ratios, but this pattern is 

somewhat different from those in Figure 4.10 when TumourT cropping was used. For the 

TumourZ, both features achieve almost the same accuracy (around 83%) achieved with 

TumourT at and CHZ, while performance with both features drops by about 4% - 5% for the 

0.6Z and 0.8Z scaling only to recover steadily with increased scaling reaching a peak of 89% 

with 1.2Z for HOG and a peak of 86.5% 1.6Z for ULBP. These results show that texture 

features outside the original CH(S) contribute to improved classification accuracy with HC 

feature schemes. 

 

Comparing the results of HC feature schemes with those of CNN models may lead to 

different conclusions on the importance of features/tissues outside the lesion border. While 

the HC feature schemes achieve the highest performance at padding ratios > 1.2. For CNN 

BUS tumour classification, the results show that cropping scenario TumourZ achieve the 

highest performance leading to a simplistic conclusion that no margin appending 

contributes to decision-making. These results are influenced by the reliability of lesion-

marked boundary points. However, the results of HC feature models post scaling by ratios 
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Figure 4.11 Performance of handcrafted models for cropping scenarios with 0-padding. 
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>1 show that it is prudent to include some, but not all, tumour external tissue surrounding 

the lesion border yields improved performance. Such a conclusion requires an in-depth 

analysis of the CNN models' predictions, and heatmaps visualisation may help in this respect. 

But before that, we extend the CNN model experiments by expanding the training dataset. 

4.3.2 Modelling Dataset - Performance Testing 

Having developed the previous cropping scenarios using the Renmin dataset, more US breast 

scan image samples recorded in other hospitals became available. We compiled the 

Modelling dataset that expands the Renmin dataset by adding US breast tumour scanned 

images from 4 other Shanghai hospitals. This provided the opportunity to determine the 

impact of having a larger dataset on the work conducted above, but only on CNN models. 

In this section, all images of the lesion surrounding box were resized (post cropping and 

padding) using the BiCubic method in accordance with the tested CNN model requirement. 

Here, we shall present the results in terms of various performance measures beyond the 

average accuracy, but we shall present the results on the tumour surrounding box for 

TumourT and TumourZ appending strategy without scaling ratios as TumourT is the 

conventional RoI cropping while TumourZ is the optimal cropping scenario for CNN 

models. Table 4.1 presents the average performances of 6 CNN schemes, including AlexNet, 

VGG16, ResNet50, InceptionV3, Xception, and DenseNet201, trained on the Modelling 

dataset using the 5-fold cross-validation protocol. 

Table 4.1 Average validation performance of CNN models for TumourT and TumourZ scenarios. 

TumourT 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.87 ± 0.02 0.79 ± 0.06 0.92 ± 0.02 0.82 ± 0.03 0.86 ± 0.03 

VGG16 0.88 ± 0.01 0.80 ± 0.03 0.92 ± 0.02 0.83 ± 0.02 0.86 ± 0.01 

ResNet50 0.87 ± 0.02 0.81 ± 0.03 0.91 ± 0.03 0.83 ± 0.03 0.86 ± 0.02 

InceptionV3 0.85 ± 0.02 0.79 ± 0.05 0.89 ± 0.03 0.80 ± 0.03 0.84 ± 0.03 

Xception 0.85 ± 0.02 0.80 ± 0.03 0.89 ± 0.03 0.80 ± 0.02 0.84 ± 0.02 

DenseNet201 0.87 ± 0.01 0.78 ± 0.03 0.92 ± 0.03 0.82 ± 0.02 0.85 ± 0.01 

TumourZ 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.88 ± 0.02 0.81 ± 0.05 0.93 ± 0.01 0.84 ± 0.03 0.87 ± 0.02 

VGG16 0.89 ± 0.02 0.84 ± 0.06 0.92 ± 0.02 0.85 ± 0.03 0.88 ± 0.03 

ResNet50 0.87 ± 0.01 0.84 ± 0.03 0.89 ± 0.01 0.83 ± 0.02 0.86 ± 0.02 

InceptionV3 0.87 ± 0.02 0.79 ± 0.03 0.92 ± 0.02 0.82 ± 0.02 0.86 ± 0.02 

Xception 0.87 ± 0.02 0.80 ± 0.05 0.91 ± 0.02 0.82 ± 0.03 0.86 ± 0.02 

DenseNet201 0.89 ± 0.03 0.85 ± 0.04 0.91 ± 0.03 0.85 ± 0.04 0.88 ± 0.03 

 

Surprisingly, these experiments show that training with an expanded dataset does not 

improve the performance of the CNN models. Perhaps this reflects that the expansion did 
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not come from the same source but from different hospitals that might use different devices 

and follow different practices by different radiologists. Unfortunately, we could not expand 

the Renmin dataset with additional samples from the same hospital. On the other hand, these 

results confirmed the marginal increase in performance (around 2%) for all CNN models 

when images cropped with 0-appending (TumourZ) compared to the TumourT strategy. One 

notable observation in both cropping scenario experiments is that the gap between sensitivity 

and specificity is undesirably large. This means that for both cropping scenarios, more 

malignant tumours are misclassified than benign ones. 

4.4 CNN Cropped Lesion Models – Generalization Performance 

In the previous experiments, we determined the optimal cropping ratio for BUS tumour 

classification using DL schemes on the Renmin dataset, which is TumourZ. Here, we shall 

test the impact of the optimal cropping ratio on the trained DL models' capacity for 

generalisation onto the 2 external datasets (Test1 and BUSI) described earlier. Note that the 

Test1 dataset comes from a similar environment to the Modelling dataset, being collected 

from one of the Shanghai hospitals but distinct from those where the modelling dataset was 

collected. Hence, what we call generalisation performance may also be referred to as 

measures of model robustness. 

4.4.1 Generalisation of the Renmin-trained CNN Models 

Here, we used the trained CNN models on the Renmin dataset and tested their performances 

on the Test1 and BUSI datasets, having applied the two cropping scenarios (TumourT vs. 

TumourZ) on their images. The experimental work covers the 4 CNN architectures used in 

section 4.3.1, i.e., AlexNet, VGG16, VGG19, and ResNet18. The next 2 tables display the 

results of these experiments on Test1 with both (TumourT vs. TumourZ), followed by 

performance results on the BUSI dataset with (TumourT vs. TumourZ) scenarios, 

respectively. 

Results in Table 4.2 show that the Renmin-trained CNN models’ performance on the Test1 

dataset drops significantly compared to their validation results, and the drop is much bigger 

for the TumourT scenario. In both cases, decisions by Resnet18 are more or less random. 
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Table 4.2 Classification performance of Renmin-trained CNN models with (TumourT vs. TumourZ) for 

Test1 dataset. 

Test1-TumourT 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.58 ± 0.04 1.00 ± 0.00 0.32 ± 0.07 0.64 ± 0.02 0.66 ± 0.04 

VGG16 0.61 ± 0.04 1.00 ± 0.00 0.37 ± 0.06 0.66 ± 0.02  0.68 ± 0.03 

VGG19 0.66 ± 0.06 1.00 ± 0.00 0.46 ± 0.10 0.70 ± 0.04  0.73 ± 0.05 

ResNet18 0.57 ± 0.06 1.00 ± 0.00 0.30 ± 0.10 0.64 ± 0.03 0.65 ± 0.05 

Test1-TumourZ 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.78 ± 0.03 0.75 ± 0.06 0.79 ± 0.04 0.72 ± 0.04 0.77 ± 0.03 

VGG16 0.76 ± 0.03 0.74 ± 0.10 0.77 ± 0.06 0.70 ± 0.04 0.76 ± 0.03 

VGG19 0.76 ± 0.02 0.74 ± 0.06 0.77 ± 0.03 0.70 ± 0.03 0.75 ± 0.02 

ResNet18 0.62 ± 0.11 0.83 ± 0.05 0.49 ± 0.21 0.63 ± 0.06 0.66 ± 0.08 

 

Results in Table 4.3 also show that the Renmin-trained CNN models' performance on the 

BUSI dataset drops compared to their validation results, and the drop is less significant than 

those in Table 4.2. However, unlike the case of Test1 results, the sensitivity and specificity 

results are far from being balanced. These results again show that the average accuracy 

achieved with the TumourZ scenario is higher than that for the TumourT scenario. In both 

cases, decisions by Resnet18 are marginally better than a random process. 

Table 4.3 Classification performance of Renmin-trained CNN models with (TumourT vs. TumourZ) for 

BUSI dataset. 

BUSI-TumourT 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.71 ± 0.04 0.99 ± 0.01 0.56 ± 0.06 0.70 ± 0.03 0.77 ± 0.03 

VGG16 0.72 ± 0.03 0.99 ± 0.01 0.58 ± 0.05 0.71 ± 0.02 0.78 ± 0.02  

VGG19 0.75 ± 0.02 0.99 ± 0.00 0.63 ± 0.03  0.73 ± 0.02 0.81 ± 0.02 

ResNet18 0.68 ± 0.05 0.98 ± 0.01 0.52 ± 0.08 0.68 ± 0.03 0.75 ± 0.03 

BUSI-TumourZ 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.89 ± 0.03 1.00 ± 0.00 0.84 ± 0.05 0.87 ± 0.03 0.92 ± 0.02 

VGG16 0.78 ± 0.09 1.00 ± 0.00 0.66 ± 0.14 0.76 ± 0.07 0.83 ± 0.07 

VGG19 0.82 ± 0.04 1.00 ± 0.00 0.72 ± 0.06 0.79 ± 0.04 0.86 ± 0.03  

ResNet18 0.66 ± 0.08 1.00 ± 0.00 0.49 ± 0.13 0.68 ± 0.05 0.74 ± 0.06 

 

4.4.2 Generalisation of the Modelling Dataset-trained CNN Models 

Having trained several CNN models in fine-tuning mode using the Modelling dataset 

described earlier, we conducted experiments to test the trained model’s generalisation ability 

on the 2 external datasets (Test1 and BUSI). The same CNN architectures used include 

AlexNet, VGG16, ResNet50, InceptionV3, Xception, and DenseNet201. 
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The experimental results in Table 4.4 show the average performance of the selected CNN 

architectures on the Test1 dataset, using the TumourT and TumourZ, respectively. For both 

margin appending schemes, the average accuracy of all models is above 88%. For TumourT, 

the highest accuracy of 94% was achieved with VGG16, but for TumourZ, the highest 

accuracy of 92% was achieved with Resnet50. Overall, the Sensitivity and Specificity rates 

achieved by all the models, and for both margin-appending strategies, are well balanced and 

ideally, i.e., no noticeable gap between these two metric performances. Other performance 

metrics, including F1-score and AUC, are reasonably high for all the CNN models. Unlike 

the results of the generalisation of the models trained by the Renmin for the Test1 dataset, 

the overall accuracy for the models with TumourZ cropping is marginally lower by a 

maximum of 2% compared to the case of TumourT. 

Table 4.4 Classification performance of the Modelling dataset-trained CNN models with (TumourT vs. 

TumourZ) for Test1 dataset. 

Test1-TumourT 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.93 ± 0.02 0.93 ± 0.04 0.93 ± 0.03 0.91 ± 0.02 0.93 ± 0.02 

VGG16 0.94 ± 0.01 0.93 ± 0.03 0.94 ± 0.02 0.92 ± 0.02 0.93 ± 0.01 

ResNet50 0.92 ± 0.01 0.90 ± 0.04 0.92 ± 0.03 0.89 ± 0.02 0.91 ± 0.02 

InceptionV3 0.89 ± 0.01 0.89 ± 0.05 0.89 ± 0.02 0.86 ± 0.02 0.89 ± 0.02 

Xception 0.89 ± 0.01 0.86 ± 0.04 0.91 ± 0.02 0.86 ± 0.02 0.88 ± 0.02 

DenseNet201 0.92 ± 0.01 0.90 ± 0.04 0.92 ± 0.01 0.89 ± 0.02 0.91 ± 0.02 

Test1-TumourZ 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.91 ± 0.02 0.88 ± 0.06 0.93 ± 0.02 0.88 ± 0.02 0.91 ± 0.02 

VGG16 0.92 ± 0.02 0.91 ± 0.04 0.93 ± 0.02 0.90 ± 0.03 0.92 ± 0.02 

ResNet50 0.92 ± 0.01 0.92 ± 0.02 0.93 ± 0.02 0.90 ± 0.01 0.92 ± 0.01 

InceptionV3 0.90 ± 0.01 0.85 ± 0.06 0.92 ± 0.02 0.86 ± 0.02 0.89 ± 0.02 

Xception 0.88 ± 0.01 0.80 ± 0.04 0.92 ± 0.02 0.83 ± 0.01 0.86 ± 0.01 

DenseNet201 0.92 ± 0.02 0.92 ± 0.04 0.91 ± 0.02 0.90 ± 0.03 0.92 ± 0.02 

 

Table 4.5 shows the generalisation performance of the Modelling dataset-trained CNN 

architectures on the external BUSI dataset for the TumourT and TumourZ appending 

schemes, respectively.  Each and all DL models tested with TumourZ appending outperform 

its testing performance with TumourT appending scenario with a difference in the range (4% 

- 10%). Moreover, the average sensitivity and specificity rates are more balanced with 

TumourZ than with TumourT. For the F1 and AUC scores, the observed gaps between 

TumourZ and TumourT are more/less similar to those observed for the sensitivity and 

specificity scores. 
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Table 4.5 Classification performance of the Modelling dataset-trained CNN models with (TumourT vs. 

TumourZ) for BUSI dataset. 

BUSI-TumourT 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.86 ± 0.01 0.85 ± 0.03 0.86 ± 0.02 0.81 ± 0.01 0.86 ± 0.01 

VGG16 0.86 ± 0.01 0.86 ± 0.04 0.86 ± 0.03 0.81 ± 0.01 0.86 ± 0.01 

ResNet50 0.83 ± 0.01 0.92 ± 0.01 0.79 ± 0.02 0.79 ± 0.01 0.86 ± 0.01 

InceptionV3 0.84 ± 0.00 0.87 ± 0.06 0.83 ± 0.04 0.79 ± 0.01 0.85 ± 0.01 

Xception 0.83 ± 0.00 0.86 ± 0.03 0.82 ± 0.02 0.78 ± 0.01 0.84 ± 0.01 

DenseNet201 0.83 ± 0.02 0.86 ± 0.04 0.82 ± 0.04 0.78 ± 0.02 0.84 ± 0.01 

BUSI-TumourZ 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.90 ± 0.03 0.92 ± 0.04 0.90 ± 0.04 0.87 ± 0.03 0.91 ± 0.02 

VGG16 0.90 ± 0.02 0.93 ± 0.03 0.89 ± 0.02 0.87 ± 0.02 0.91 ± 0.02 

ResNet50 0.89 ± 0.01 0.90 ± 0.04 0.89 ± 0.03 0.85 ± 0.01 0.89 ± 0.01 

InceptionV3 0.90 ± 0.00 0.88 ± 0.07 0.91 ± 0.03 0.85 ± 0.01 0.89 ± 0.02 

Xception 0.93 ± 0.01 0.92 ± 0.02 0.93 ± 0.02 0.90 ± 0.01 0.93 ± 0.01 

DenseNet201 0.87 ± 0.01 0.90 ± 0.04 0.86 ± 0.04 0.83 ± 0.01 0.88 ± 0.01 

 

Comparing the generalisation performances on Test1 with those achieved on BUSI, the 

TumourT scenario reveals a gap of (7% - 9%) in favour of Test1. At the same time, for the 

TumourZ scenario, the gap is not only much smaller in the range (0% - 3%), but the Xception 

model performs 5% more on BUSI than on Test1. These discrepancies in the generalisation 

performance for Test1 vs. BUSI may be partially attributed to the fact that Test1 is a dataset 

of unseen samples collected in another Shanghai municipality hospital, whereby one expects 

that their radiologist may have similar expertise. 

The results in Tables 4.4 and 4.5 indicate somewhat unexpected significant differences in 

the generalisation performances between trained CNNs with the Modelling dataset and those 

trained with the Renmin dataset. What is surprising is that the images in the Renmin dataset 

form more than 32% of the images in the Modelling dataset. Moreover, images in the Test1 

set were recorded in a Shanghai hospital, but none is included in the modelling or the Renmin 

Hospital datasets. The reported differences in the generalisation rates may have been 

impacted by the (1) variations in the deployed US devices, and (2) variations in the border 

marking/cropping strategies practised in the different hospitals. Note that different 

radiologists marked the lesion border in different hospitals. Perhaps we need to have a 

measure that could distinguish the contents of images recorded at Renmin Hospital from 

those recorded at other hospitals. One should not ignore the possibility of variation in the 

progression of malignancy in the images captured in the constituent hospitals. In this case, 

this may be due to the shortcoming of considering tumour diagnosis as a binary 

classification problem. 
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The experimental results in this section show that adopting the TumourZ instead of TumourT 

appending strategy helped to improve the generalization of the CNN models when trained 

with either the relatively small Renmin dataset or the expanded Modelling dataset.  However, 

before making a hasty decision to ignore the entire external tissue surrounding the lesion 

border inside the bounding box, we need to remember that this section's experiments did 

not consider the cropping strategy of scaling the CH(S) by ratios > 1. Remembering the 

discussion we had earlier at the end of Section 4.3.1, it is indeed prudent to advise that the 

inclusion of some, but not all, tumour external tissue surrounding the lesion border yields 

improved performance. However, the determination of the subset(s) of the external tissue 

surrounding the lesion border to improve the performance of DL/HC schemes is a challenge 

that requires clinician advice but is outside the current scope of this thesis research work. 

4.5 Grad-CAM Visualization 

In the above experiments, we found that the TumourZ cropping scenario is optimal for the 

CNN models. This may indicate that the decision made by the various CNN models pays 

little, if any, consideration to the tissue region outside the tumour polygon. Examining this 

assertion requires access to a visualisation tool of the model’s decision heat maps for the two 

cropping scenarios that highlight the significance of tumour regions in terms of their 

contribution to the decisions of the various CNN models. Here, we adopt the Gradient-

weighted Class Activation Mapping (Grad-CAM) visualization tool for this purpose. We use 

it to visually investigate the impact of TumourZ (tightly cropping the tumours with zero 

padding) on the CNN decision in comparison to that of the TumourT cropping scenario. 

Grad-CAM is a visualization technique for DL models, specifically for CNNs. It provides a 

heatmap highlighting the various regions of the input image and colouring them in different 

shades according to the significance of contributions to the model’s decision. Regions that 

contribute most to a particular prediction are coloured dark red. As the amount of red in the 

colouring of other regions decreases, their contribution to the decision gets smaller [112]. 

Grad-CAM has a wide range of applications in various domains; it can provide a way to 

understand the decisions made by black-box models, making it useful for applications where 

transparency and interpretability are essential. In the field of medical image analysis, Grad-

CAM can be used to highlight the regions in a medical image that a DL model uses to make 

a diagnosis or prediction [113]. 

The Grad-CAM method is designed to be model-agnostic. It can be applied to any CNN 

architecture without modification, making it a versatile tool for visualizing and interpreting 
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DL models. It works by using the gradients of the target class, with respect to the feature 

maps in the final convolutional layer of the CNN model, to produce a coarse localization 

map highlighting the important regions in the input image for a given prediction. The 

gradients are averaged over all the feature maps and weighted by the magnitude of activation 

of each feature map to produce a final heatmap. The heatmap is then overlayed on the 

original input image to visually identify the regions that contribute the most to the target 

prediction. This process provides insight into the model's decision-making process by 

identifying the image regions in order of importance when making a prediction  [112]. Ali 

Eskandari, in [38], investigated the Grad-CAM tool and made some modifications to provide 

an understanding of CNN decisions when classifying breast and thyroid lesions in US 

images. 

Here, we use Grad-CAM to construct the heatmaps for the Xception model only when trained 

on the Modelling dataset. We also attempt to understand the impact of the TumourZ 

compared to TumourT on the model decision quality for both external datasets. We 

separately compute the average heatmap scores of true classified and misclassified cases for 

both Benign and Malignant lesions. 

Test1 dataset visualized outputs are presented in Figure 4.12. It shows that for both TumourT 

and TumourZ cropping scenarios, the most important region is in the core of the tumour area 

for the true-classified benign and malignant cases. For the malignant cases, the highest scores 

occurred in the mid-upper tumour area, and the scores are more concentrated compared to 

the benign cases, while for the benign cases, the lesion's most important area is less 

concentrated and slightly shifts to the left side of the lesion. However, the distribution of the 

scores for the misclassified cases significantly differs from that for the true-classified ones; 

the most important areas are concentrated in small regions in different places for benign and 

malignant and also for TumourT vs. TumourZ. The visualization shows that moving from 

the TumourT to the TumourZ cropping scenario does not affect the quality of the CNN 

decision in general, especially for the true classified cases. The CNN model-focused area in 

both cases is the inner area of the tumour. Moreover, the general shape of the GRAD-CAM 

visualization for Benign vs. Malignant is more separable with TumourZ compared to 

TumourT, especially for the true classified cases. 

Figure 4.13 presents the heat map visualization for the BUSI dataset. Again, a similar pattern 

of score distribution to the Test1 dataset is achieved across the two cropping scenarios and 

tumour classes for true-classified and misclassified cases. 
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Both figures (4.12 and 4.13) illustrate that for both scenarios, TumourT and TumourZ, the 

most important areas in decision-making are inside the lesion area, and the quality of the 

decision, in general, is unchanged, especially for the true classified cases. Moreover, the 

general shape of the Grad-CAM visualization for Benign vs. Malignant is more separable 

with TumourZ compared to TumourT. So, the outcome of the visualization from both figures 

for Test1 and BUSI datasets are consistent, and it shows that it is safe to use TumourZ as the 

optimal cropping scenario for the CNN models, which results in better model classification 

performance and generalization, in fact, with better CNN decision quality. 

In conclusion, against all expectations, these heatmaps show that the regions outside the 

lesion are not seriously considered when making decisions. 
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Figure 4.12 Average heatmap scores of true classified and misclassified cases for 

both Benign and Malignant classes by Xception model of Test1 dataset: (TumourT 

vs. TumourZ). 



103 
 

 

 

 

 

Xception 

BUSI 

TumourT 

Xception 

BUSI 

TumourZ 

Figure 4.13 Average heatmap scores of true classified and misclassified cases for 

both Benign and Malignant classes by Xception model of BUSI dataset: (TumourT 

vs. TumourZ). 
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4.6 Conclusion 

In this chapter, our investigations focused on the critical aspect of lesion cropping in BUS 

tumour images. It is a crucial pre-processing technique influencing the performance of DL 

image analysis schemes and their generalization capabilities into unseen external datasets. 

Through our analysis, we have demonstrated the superiority of CH lesion border 

approximation over other border approximation approaches in terms of minimizing the 

exclusion of lesion pixels. This approach not only exhibits computational efficiency but also 

lends itself to easy expansion for margin appending. 

Among the proposed RoI cropping scenarios, our experiments have substantiated TumourZ 

as the optimal cropping scenario for CNN models. At the same time, 1.2Z emerged as the 

optimal tumour cropping scenario for HC feature schemes in terms of model classification 

performance. Moreover, the inclusion of some external tissue surrounding the lesion border, 

as demonstrated by the tissue-padding scenarios, has shown promise in improving model 

performance. However, further investigation is needed to determine the precise external 

tissue regions that should be included in the cropped RoI for better CNN model performance. 

By expanding the Renmin dataset to include images from different hospitals, we observed a 

reduction in model performance during the corresponding 5-fold cross-validation training of 

CNN models. Interestingly, this expansion significantly enhanced the CNN models' 

generalization capabilities on two external datasets. Furthermore, we found that TumourZ 

played a pivotal role in enabling CNN models trained on the Modelling dataset to overcome 

their reduced validation performances and exhibit superior generalization compared to the 

disappointing outcomes observed with Renmin-trained CNN models on the two external 

testing datasets. 

The Grad-CAM visualizations further supported the conclusion that the TumourZ cropping 

scenario provides, if not superior, decision quality comparable to TumourT for CNN models. 

Notably, our findings indicated that DL models focus primarily on the region inside the 

lesion, disregarding the surrounding region in both cropping scenarios. Importantly, 

TumourZ resulted in improved model classification performance, generalization, and better 

CNN decision quality. 

It is worth noting that the significant differences in generalization performances between 

CNN models trained on the Modelling dataset and those trained on the Renmin dataset may 

not be solely attributed to differences in training dataset sizes and diversity. In the next 

chapter, and as part of our broader investigation into performance influencing factors, we 
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delve into the issue of Image Quality to gain further insights and understanding. Overall, 

this chapter has shed light on the crucial role of lesion shape cropping and optimal tumour 

RoI cropping in DL-based BUS tumour image analysis. 
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Chapter 5: A No-reference Multi-Characteristics US 

Image Quality Descriptor 

The primary objective of this chapter’s investigation is to shed light on the significant 

disparities observed in the DL generalization capabilities while using the Renmin dataset as 

the training set in contrast to the larger Modelling multi-centre dataset. At the early stages 

of the TenD project, a high-performing CNN model trained on data from the single medical 

centre (Renmin) was found to perform well-below expectation when tested on another 

centre's data, and the radiologists attributed this to probable dissimilarities in image quality 

between the centres. In Chapter 3, we noted that the concept of quality for US images is 

poorly understood due to not being rigorously investigated. Experienced radiologists learn 

through extensive training to pass judgement on the quality of recorded images. Still, no 

computational model of US image quality has so far been accepted that aligns well with 

experienced radiologists' assessment.  

Guided by the long-established UIQI and other recent IQA schemes, this chapter aims to 

develop an US quality-related feature vector as a descriptor that can be employed to compare 

datasets from different centres. Section 5.1 reviews the reference-based UIQI and several 

no-reference IQA techniques, all proposed for natural images. We use a small BUS image 

dataset of 20 images recorded in 2 different Shanghai hospitals subjectively labelled by an 

experienced radiologist as good images and bad images, respectively, to demonstrate that 

neither UIQI nor other IQA schemes feasibly separate the images in the dataset according to 

the radiologist labelling. Section 5.2 lays the groundwork for proposing a no-reference multi-

characteristic image quality (MCIQ) feature vector to serve as US quality descriptor and 

outline its construction. Section 5.3 presents the experimental findings using MCIQ to 

explain the disparities observed in DL generalization results in Chapter 4. Section 5.4 

presents experimental work for using MCIQ for a variety of other quality-related dataset US 

image applications, e.g., determining the strength of MCIQ in discriminating benign from 

malignant masses in US breast scan images. In Section 5.5, we revisit the pilot study 20-

sample dataset, summarise the limitations of MCIQ in reflecting radiologists’ subjective 

quality assessment of US images, and discuss a potential approach to overcome these 

limitations. Section 5.6 is a summary of the chapter's conclusion. 



107 
 

5.1 Computer-based Measure of Ultrasound Image Quality 

In the clinical setting, the quality of US images is a key descriptor for evaluating the 

performance of ultrasonic imaging devices and ML analysis algorithms. Traditionally, US 

(and other medical) IQA is regarded as a subjective issue, and little attention was paid to 

developing a quantitative IQA. 

5.1.1 Existing Work on Ultrasound Image Quality Assessment 

Normally the quality of recorded US image/video is assessed subjectively by the radiologist 

to select the appropriate frame prior to assessing tumour status. Radiologists have been 

trained for years to acquire knowledge on how to conduct US scans of different 

tissues/organs and select image frames of the RoI that are suitable for the clinical purpose of 

tumour classification. However, our literature review on automatic IQA for US images 

revealed no standardised method for subjective (let alone objective) IQA for this purpose. In 

contrast, several IQA models are known for natural images. Hemmsen et al. [114] point out 

that diagnostic values of US images should guide their improvement. The absence of 

objective IQA methods for US images is used in [114] to propose a framework for alternative 

subjective IQA that includes equipment and methodology for clinical IQ evaluation. 

It is worth noting that the deployment of US imaging for medical diagnostics came much 

later than other modalities, including medical scanning modalities (e.g., X-Rays), and 

understandably went through several safety assessment stages of their use. In this elongated 

process, various medical regulatory and accrediting agencies developed regulation 

requirements for maintaining the high-level performance of the US devices, manufacturers 

set clear specifications, and it is customary to have regular tests of the performance of their 

devices [25], [114]. In this context, US image quality depends on the transducer (probe), the 

device electronics, the pre- and post-processing of transmitted and received signals, as well 

as the fidelity performance of the display monitors [114]. 

Quality assessment procedures have been proposed for B‐mode and Doppler imaging 

systems as part of performance evaluation or quality assurance of US devices to ensure 

patient/operator safety in line with the manufacturer’s recommendations and in compliance 

with regulatory and accreditation agencies [25]. The subjective quality assessment by 

radiologists is expected to feed into such quality assurance procedures to enable timely fault 

detection. Sassaroli et al. [25] describe some of these procedures as part of quality control 

clinical protocols for US imaging and biopsy based on computer-based methods. The various 

quality control tests are not possible to conduct for our task of defining US image quality 
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descriptors; the corresponding computer-based procedures consist of reference-based image 

contrast tests that compare US region images of 2 types of target objects embedded on so-

called phantoms (i.e., materials that have average acoustic properties of soft tissue). These 

tests are based on evaluating statistical parameters of image quality, such as GMF, image 

contrast, CNR, and HCSR.  Detailed descriptions and formulae are given in [25]. 

Developing objective image quality descriptors specific to the US faces a significant 

challenge. This is because relying heavily on existing knowledge of image quality schemes 

for natural images is problematic due to fundamental differences in content, including the 

quantity and distribution of various texture features. The remarkable success of CNN models 

in data/image analysis has sparked efforts to utilize these DL models for acceptable US 

quality assessment, particularly by expert radiologists. Recently, Zhang et al. [115] proposed 

a quantitative study using CNN models for the US IQA measure. Initially, a dataset of BUS 

images was created by degenerating a number of high-quality US images that were pre-

processed and scored by 4 experienced doctors. Then, 478 US images, labelled by averaging 

their scores, were selected for training and testing. Afterwards, a deep CNN network and a 

residual network are obtained to establish the proposed IQA model. They show that the 

CNN-based IQA is feasible and effective, but more work is needed. 

In Chapter 3, we reviewed some commonly deployed automatic reference-based IQA 

metrics to assess the quality of natural images. We found that the various components of the 

UIQI [93], [94] reflect the human brain's recognisable geometric/structural image distortion, 

blurring, the appearance of shadows and the presence of noise. The main challenge to 

directly deploying these descriptors for US images relates to identifying high-quality 

reference images without relying on subjective assessment. The dynamically changing 

micro-environment of human tissue influenced by the flow of blood (and other body liquids) 

means that subjective assessment can only be done by highly experienced radiology experts 

who are trained to recognise US contents of interest (in such a dynamic micro-environment) 

and distinguish artefacts from tissue aberrations. 

Since the early last decade, a variety of no-reference image quality assessments (NRIQA) 

have been proposed but again designed specifically for natural images. NRIQA schemes can 

be categorised in different ways, e.g., in terms of prior awareness (or not) of distortion as 

being rated by human observers. The state-of-the-art of such schemes predicts natural image 

quality without knowledge of distortion type but relies on human opinion scores (subjective 

scores) to enable learning regression-based quality assessment of distorted images, see [116]. 

The spatial Natural Scene Statistics (NSS) model of images initially applies local 
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normalization of the luminance (intensities), where the local means and standard deviations 

are simply obtained by convolving the images with a 3x3 Gaussian filter. The NSS model is 

deemed to measure distortion-caused losses of image naturalness. The main hypothesis of 

the developed NRIQA schemes is that distorted images have certain latent characteristics 

distinguishing them from undistorted ones. These characteristics are based on so-called 

Visual Words extracted from a sufficiently large set of pristine and distorted images. 

Mittal et al. [117] introduced the opinion-aware blind/referenceless image spatial quality 

evaluator (BRISQUE). Unlike reference-based IQA schemes, BRISQUE does not compute 

image fidelity (i.e., distortion-specific features). Instead, it employs the NSS (trained on 

features obtained from a corpus of both natural and distorted images) and relies on human 

judgments of the quality of these images to measure the possible distortion-caused losses of 

naturalness. Figure 1(b) in [117] demonstrates how the loss of naturalness results by 

mapping different natural scene images into different image domain blocks. This is similar 

to our observation in Chapter 3 that the non-uniformity of the spatial distribution of 

illumination/texture in US images distinguishes them from natural images. BRISQUE relies 

on a holistic measure of quality without the need for distortion-specific features. It is suitable 

for various image distortions, including Gaussian blur, JPEG compression, and white noise. 

In [118], the NIQE is, an opinion-unaware and distortion-unaware scheme, developed by the 

BRISQUE’s authors that continued to adopt the NSS model of image naturalness, but it only 

uses the NSS features obtained from a corpus of natural images and removed reliance on the 

awareness of distortion, i.e., NIQE  does not require training on large databases of human 

opinions. Post luminance local normalisation, the image is partitioned into P ×P patches from 

each of which certain NSS features are computed, and only subsets of these patches are used 

to train the proposed IQA scheme. 

In 2015, Venkatanath N et al. [119] developed the PIQUE algorithm that generates a fine-

grained block-level distortion map that mimics human behaviour. Unlike opinion-based 

supervised learning methods, PIQUE attempts to quantify distortion without the need for any 

training data. The model uses cues from the human visual system to quantify distortion. Like 

NIQE, it extracts NSS features from non-overlapping partitioning blocks of fixed size and 

labels them as uniform or nonuniform/spatially active blocks using a threshold of 10%. The 

spatially active blocks are scored for the 2 dominant distortions as a result of compression 

and the presence of noise. 

For all these 3 schemes, lower scores indicate good quality, but higher scores indicate lower 

quality. Clear thresholds are generally unspecified by the proposed schemes but are deemed 
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to be application-dependent. However, in general, the PIQUE score >50 indicates bad 

quality, and <50 shows better quality. MATLAB procedures and source codes for 

implementing these schemes are available in the literature. It is unfeasible to use the 

approaches of these 3 IQA methods for US images due to many factors, including the lack 

of availability of large datasets of pristine US images and lack of awareness of the type of 

distortions of interest in US images. However, Dey et al. [120] recently constructed a feature 

vector by combining the BRISQUE, NIQE, and PIQUE quality scores with image Entropy 

and used it to classify breast tumours from US images. We denote this approach by 

TripleIQA+Entropy. Next, we shall present the shortcomings of using the natural image full 

reference UIQI and the above 3 NRIQA schemes in explaining the subjective assessment of 

a TenD radiologist partner of a small set of 20 BUS images recorded in 2 different Shanghai 

clinical centres. 

5.1.2 Towards No-Reference Objective US IQA Descriptor 

Our aim in developing US image quality descriptor was to find a quantitative scheme that 

can help distinguish, or not, between datasets of US images recorded at different clinical 

centres with the possibility, or not, of generalising CNN model performance when trained in 

one centre to images from other centres. Our approach, presented in the next section, was 

developed in several steps and benefits from the above observations and those in Chapter 3. 

The performance of ML models used for US image classification is also influenced by 

natural image quality distortion characteristics (e.g., blurriness, shadows, poor contrast, and 

noise). Setting aside the absence of a standardised method for subjective quality assessment 

of US images, our objective may benefit from testing the performance of existing full 

reference IQA developed for natural images on US image datasets. On the other hand, we 

also expect to benefit from investigating the performance of some of the known NRIQA 

discussed above on US image datasets. Also, in theory, one may even try to develop a CNN-

based IQA scheme, as done in [115]. Our assertion, shared with [117], is that IQA model 

performance should correlate with expert subjective assessment. Conducting large-scale 

subjective studies relying on skilled radiologists is (and was) unrealistic for our research. 

We initiated our investigations into testing the performance of various components of full 

reference UIQI as well as their product, by forming a pilot dataset of BUS tumour RoI 

images, cropped with the TumourT cropping scenario and each labelled as Good or Bad 

following visual examination by an experienced TenD radiology partner. The pilot dataset 

consists of 10 good quality images: {G_1, G_2, G_3, …, G_10} and 10 poor quality images 
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as (B_1, B_2, B_3, …, B_10). The 3 UIQI components: loss of correlation, luminance 

distortion, and contrast distortion, were computed for pair (X, Y) images in the pilot dataset, 

and obtained scores are presented in Tables 5.1, 5.2, and 5.3, respectively. 

 

Table 5.1 The loss of correlation measure between pairs of Good/Bad images. 

Correlation (1) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

B_1 0.4 0.3 0.2 0.0 -0.2 0.6 0.2 0.6 0.7 -0.1 

B_2 0.1 0.1 0.3 -0.1 0.0 0.6 0.1 0.4 0.4 0.0 

B_3 0.0 0.2 0.2 -0.2 0.1 0.4 0.0 0.3 0.2 0.0 

B_4 0.0 -0.1 0.1 -0.1 0.3 0.1 0.1 0.0 -0.1 -0.1 

B_5 -0.3 -0.1 0.0 -0.1 0.3 -0.2 0.0 -0.4 -0.6 0.0 

B_6 0.1 0.1 -0.1 -0.1 0.1 -0.1 -0.1 0.1 0.2 -0.2 

B_7 0.1 0.1 0.0 -0.2 0.0 0.2 0.0 0.2 0.1 -0.1 

B_8 0.3 0.1 0.2 -0.2 0.1 0.4 0.2 0.4 0.5 -0.1 

B_9 0.5 0.1 0.0 -0.1 -0.3 0.4 0.0 0.5 0.8 -0.1 

B_10 0.2 -0.1 0.2 -0.2 0.1 0.4 0.0 0.2 0.2 -0.1 

Correlation (2) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

G_1 1.0 0.0 0.0 0.0 0.0 0.3 0.1 0.4 0.5 -0.2 

G_2 0.0 1.0 0.1 0.2 -0.2 0.1 0.0 0.1 0.2 0.2 

G_3 0.0 0.1 1.0 0.0 0.0 0.3 0.2 0.2 0.1 0.1 

G_4 0.0 0.2 0.0 1.0 -0.1 -0.1 0.0 -0.1 -0.1 0.2 

G_5 0.0 -0.2 0.0 -0.1 1.0 0.0 0.2 -0.1 -0.2 -0.2 

G_6 0.3 0.1 0.3 -0.1 0.0 1.0 0.2 0.6 0.5 -0.2 

G_7 0.1 0.0 0.2 0.0 0.2 0.2 1.0 0.1 0.0 0.0 

G_8 0.4 0.1 0.2 -0.1 -0.1 0.6 0.1 1.0 0.5 -0.1 

G_9 0.5 0.2 0.1 -0.1 -0.2 0.5 0.0 0.5 1.0 -0.1 

G_10 -0.2 0.2 0.1 0.2 -0.2 -0.2 0.0 -0.1 -0.1 1.0 

Correlation (3) B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_10 

B_1 1.0 0.4 0.3 -0.1 -0.5 0.0 0.2 0.6 0.7 0.2 

B_2 0.4 1.0 0.5 0.2 -0.1 -0.1 0.1 0.4 0.3 0.3 

B_3 0.3 0.5 1.0 0.2 0.1 0.1 0.2 0.2 0.1 0.2 

B_4 -0.1 0.2 0.2 1.0 0.3 -0.1 -0.1 0.1 -0.2 0.2 

B_5 -0.5 -0.1 0.1 0.3 1.0 -0.1 0.0 -0.3 -0.6 0.0 

B_6 0.0 -0.1 0.1 -0.1 -0.1 1.0 0.2 0.1 0.2 -0.1 

B_7 0.2 0.1 0.2 -0.1 0.0 0.2 1.0 0.1 0.1 0.1 

B_8 0.6 0.4 0.2 0.1 -0.3 0.1 0.1 1.0 0.5 0.3 

B_9 0.7 0.3 0.1 -0.2 -0.6 0.2 0.1 0.5 1.0 0.1 

B_10 0.2 0.3 0.2 0.2 0.0 -0.1 0.1 0.3 0.1 1.0 

 

 

Table 5.1 presents the results in three categories: Top: Bad images (Target) vs. Good images 

(Reference), Mid: Good images (Target) vs. Good images (Reference), and Bottom: Bad 

images (Target) vs. Bad images (Reference). The loss of correlation metric's dynamic range 
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is between -1 and 1, with a value of 1 indicating the highest correlation between the images. 

Overall, the results show a low correlation between all pairs of different images in the three 

categories. Therefore, no image is suitable as a reference for the loss of correlation quality 

metric. 

 

Table 5.2 The luminance distortion measure between pairs of Good/Bad images. 

Luminance (1) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

B_1 1.0 0.9 1.0 1.0 1.0 0.7 1.0 0.8 1.0 1.0 

B_2 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.7 1.0 0.9 

B_3 1.0 0.9 1.0 1.0 1.0 0.8 1.0 0.8 0.9 1.0 

B_4 1.0 1.0 1.0 0.9 1.0 0.6 1.0 0.6 1.0 0.9 

B_5 1.0 1.0 1.0 0.9 0.9 0.5 1.0 0.6 1.0 0.9 

B_6 0.9 1.0 0.9 0.9 0.9 0.5 1.0 0.5 1.0 0.8 

B_7 1.0 1.0 1.0 0.9 1.0 0.6 1.0 0.6 1.0 0.9 

B_8 0.9 1.0 0.9 0.8 0.9 0.5 0.9 0.5 1.0 0.8 

B_9 1.0 0.9 1.0 1.0 1.0 0.7 1.0 0.8 1.0 1.0 

B_10 1.0 0.9 1.0 1.0 1.0 0.8 1.0 0.8 0.9 1.0 

Luminance (2) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

G_1 1.0 1.0 1.0 1.0 1.0 0.7 1.0 0.7 1.0 1.0 

G_2 1.0 1.0 1.0 0.9 1.0 0.6 1.0 0.6 1.0 0.9 

G_3 1.0 1.0 1.0 1.0 1.0 0.7 1.0 0.7 1.0 1.0 

G_4 1.0 0.9 1.0 1.0 1.0 0.8 1.0 0.8 0.9 1.0 

G_5 1.0 1.0 1.0 1.0 1.0 0.7 1.0 0.8 1.0 1.0 

G_6 0.7 0.6 0.7 0.8 0.7 1.0 0.7 1.0 0.6 0.8 

G_7 1.0 1.0 1.0 1.0 1.0 0.7 1.0 0.7 1.0 0.9 

G_8 0.7 0.6 0.7 0.8 0.8 1.0 0.7 1.0 0.7 0.9 

G_9 1.0 1.0 1.0 0.9 1.0 0.6 1.0 0.7 1.0 0.9 

G_10 1.0 0.9 1.0 1.0 1.0 0.8 0.9 0.9 0.9 1.0 

Luminance (3) B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_10 

B_1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 1.0 1.0 

B_2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

B_3 1.0 1.0 1.0 0.9 0.9 0.8 0.9 0.8 1.0 1.0 

B_4 0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9 

B_5 0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9 

B_6 0.9 1.0 0.8 1.0 1.0 1.0 1.0 1.0 0.9 0.8 

B_7 0.9 1.0 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9 

B_8 0.9 1.0 0.8 1.0 1.0 1.0 1.0 1.0 0.9 0.8 

B_9 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 1.0 1.0 

B_10 1.0 0.9 1.0 0.9 0.9 0.8 0.9 0.8 1.0 1.0 

 

Table 5.2 shows the scores of the second component of UIQI, luminance distortion, which 

measures the similarity between the mean luminance of two given images, X and Y. Again, 

Table 5.2 is organised in 3 parts as in the case of Table 5.1. This metric has a dynamic range 
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of [0,1], and the ideal value is 1. In the Top section, only when G_6 or G-8 are used 

references, half of the Bad images score < 0.7.  while in the middle table, there are a few 

scores ≤ 0.7, and all scores in the bottom table ≥ 0.8. Accordingly, luminance distortion is 

not a reliable full reference IQA metric for US images and is not in alignment with our 

radiologist's subjective assessment. 

Table 5.3 The contrast distortion measure between pairs of Good/Bad images. 

Contrast (1) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

B_1 0.6 0.8 1.0 0.8 1.0 0.8 1.0 1.0 0.9 1.0 

B_2 0.7 0.8 1.0 0.8 1.0 0.8 1.0 1.0 0.9 1.0 

B_3 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9 1.0 0.9 

B_4 1.0 1.0 0.9 1.0 0.9 1.0 0.8 0.9 1.0 0.9 

B_5 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9 1.0 0.9 

B_6 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9 1.0 0.9 

B_7 0.7 0.9 1.0 0.8 1.0 0.8 1.0 1.0 0.9 1.0 

B_8 0.7 0.9 1.0 0.8 1.0 0.9 1.0 1.0 1.0 1.0 

B_9 0.8 0.9 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 

B_10 0.4 0.6 0.8 0.5 0.8 0.5 0.8 0.8 0.7 0.8 

Contrast (2) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

G_1 1.0 0.9 0.8 1.0 0.7 1.0 0.7 0.8 0.9 0.8 

G_2 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9 1.0 0.9 

G_3 0.8 0.9 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 

G_4 1.0 1.0 0.9 1.0 0.8 1.0 0.8 0.9 0.9 0.9 

G_5 0.7 0.9 1.0 0.8 1.0 0.9 1.0 1.0 1.0 1.0 

G_6 1.0 1.0 0.9 1.0 0.9 1.0 0.8 0.9 1.0 0.9 

G_7 0.7 0.9 1.0 0.8 1.0 0.8 1.0 1.0 1.0 1.0 

G_8 0.8 0.9 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 

G_9 0.9 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 

G_10 0.8 0.9 1.0 0.9 1.0 0.9 1.0 1.0 1.0 1.0 

Contrast (3) B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_10 

B_1 1.0 1.0 0.8 0.8 0.8 0.8 1.0 1.0 1.0 0.9 

B_2 1.0 1.0 0.8 0.8 0.8 0.8 1.0 1.0 1.0 0.9 

B_3 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.6 

B_4 0.8 0.8 1.0 1.0 1.0 1.0 0.8 0.9 0.9 0.5 

B_5 0.8 0.8 1.0 1.0 1.0 1.0 0.8 0.9 0.9 0.6 

B_6 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.6 

B_7 1.0 1.0 0.9 0.8 0.8 0.9 1.0 1.0 1.0 0.9 

B_8 1.0 1.0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.8 

B_9 1.0 1.0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.8 

B_10 0.9 0.9 0.6 0.5 0.6 0.6 0.9 0.8 0.8 1.0 

 

Table 5.3 depicts the results of the contrast distortion component of UIQI. It is also organised 

in 3 parts, as in the case of Table 5.1. The dynamic range of this metric is [0,1], where a 

score nearer to 1 is a good value. Top section scores show that all, except B_10, score high 
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when any of the good images are used for reference. Almost all scores in the other two tables 

> 0.7. Hence, contrast distortion scores do not align with our radiologist's subjective 

decision. 

The UIQI value for a pair of images is obtained by multiplying the three quality factors 

mentioned earlier, as explained in Chapter 3. Table 5.4 shows the computed UIQI values 

organised as before into 3 sections according to the labelling pairs. 

Table 5.4 The computed UIQI measure between pairs of Good/Bad images. 

UIQI (1) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

B_1 0.2 0.2 0.2 0.0 -0.2 0.3 0.2 0.4 0.6 -0.1 

B_2 0.1 0.1 0.3 -0.1 0.0 0.3 0.1 0.3 0.3 0.0 

B_3 0.0 0.2 0.2 -0.2 0.1 0.3 0.0 0.3 0.2 0.0 

B_4 0.0 -0.1 0.1 -0.1 0.2 0.0 0.1 0.0 -0.1 -0.1 

B_5 -0.3 -0.1 0.0 -0.1 0.2 -0.1 0.0 -0.2 -0.6 0.0 

B_6 0.1 0.1 -0.1 -0.1 0.1 0.0 -0.1 0.0 0.2 -0.1 

B_7 0.1 0.1 0.0 -0.1 0.0 0.1 0.0 0.1 0.1 -0.1 

B_8 0.2 0.1 0.2 -0.1 0.1 0.2 0.2 0.2 0.5 0.0 

B_9 0.4 0.1 0.0 -0.1 -0.3 0.3 0.0 0.4 0.8 -0.1 

B_10 0.1 0.0 0.2 -0.1 0.1 0.2 0.0 0.1 0.1 -0.1 

UIQI (2) G_1 G_2 G_3 G_4 G_5 G_6 G_7 G_8 G_9 G_10 

G_1 1.0 0.0 0.0 0.0 0.0 0.2 0.1 0.2 0.4 -0.2 

G_2 0.0 1.0 0.1 0.1 -0.1 0.0 0.0 0.1 0.2 0.1 

G_3 0.0 0.1 1.0 0.0 0.0 0.2 0.2 0.1 0.1 0.1 

G_4 0.0 0.1 0.0 1.0 -0.1 -0.1 0.0 0.0 -0.1 0.2 

G_5 0.0 -0.1 0.0 -0.1 1.0 0.0 0.2 -0.1 -0.2 -0.2 

G_6 0.2 0.0 0.2 -0.1 0.0 1.0 0.1 0.5 0.3 -0.1 

G_7 0.1 0.0 0.2 0.0 0.2 0.1 1.0 0.1 0.0 0.0 

G_8 0.2 0.1 0.1 0.0 -0.1 0.5 0.1 1.0 0.3 -0.1 

G_9 0.4 0.2 0.1 -0.1 -0.2 0.3 0.0 0.3 1.0 -0.1 

G_10 -0.2 0.1 0.1 0.2 -0.2 -0.1 0.0 -0.1 -0.1 1.0 

UIQI (3) B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_10 

B_1 1.0 0.4 0.2 -0.1 -0.4 0.0 0.2 0.5 0.7 0.2 

B_2 0.4 1.0 0.4 0.1 -0.1 -0.1 0.1 0.3 0.3 0.3 

B_3 0.2 0.4 1.0 0.2 0.1 0.1 0.1 0.2 0.1 0.1 

B_4 -0.1 0.1 0.2 1.0 0.3 -0.1 -0.1 0.1 -0.2 0.1 

B_5 -0.4 -0.1 0.1 0.3 1.0 -0.1 0.0 -0.3 -0.5 0.0 

B_6 0.0 -0.1 0.1 -0.1 -0.1 1.0 0.2 0.1 0.2 0.0 

B_7 0.2 0.1 0.1 -0.1 0.0 0.2 1.0 0.1 0.1 0.1 

B_8 0.5 0.3 0.2 0.1 -0.3 0.1 0.1 1.0 0.5 0.2 

B_9 0.7 0.3 0.1 -0.2 -0.5 0.2 0.1 0.5 1.0 0.1 

B_10 0.2 0.3 0.1 0.1 0.0 0.0 0.1 0.2 0.1 1.0 

 

This metric has a dynamic range of [-1,1], with 1 being the best value. All the scores for any 

pair of distinct images are nearer to 0, with the highest score of 0.7 only obtained twice in 
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the bottom table. We conclude that the UIQI is the worst full reference IQA in terms of 

alignment with our radiologist's subjective decision. 

Before we close this section, we conducted experiments to score the quality of the 20 BUS 

tumour scan images in the pilot dataset using the 3 NRIQA (BRISQUE, NIQE, and PIQUE) 

schemes. Recall that these images were recorded in different clinical centres and labelled as 

Good and Bad for clinical classification purposes. 

 

Table 5.5 The three no-reference quality scores of the images (Good and Bad). 

 BRISQUE NIQE PIQE 

G_1 38.0 18.9 48.6 

G_2 37.6 18.9 20.2 

G_3 42.8 18.9 26.3 

G_4 43.2 18.9 60.5 

G_5 36.5 18.9 29.9 

G_6 43.0 18.9 53.3 

G_7 29.6 18.9 33.1 

G_8 41.4 18.9 44.7 

G_9 46.9 18.9 51.0 

G_10 42.5 18.9 37.7 

B_1 47.4 18.9 79.7 

B_2 48.0 18.9 80.9 

B_3 21.0 18.9 31.9 

B_4 16.4 18.9 33.5 

B_5 16.8 18.9 35.2 

B_6 15.1 18.9 31.9 

B_7 30.7 18.9 15.8 

B_8 53.2 18.9 75.3 

B_9 45.7 18.9 75.5 

B_10 46.6 18.9 38.5 

 

None of these criteria applies to our pilot cases, i.e., none is aligned with the subjective 

assessment of our radiology expert. These results also show that none of the 3 no-reference 

IQA descriptors proposed for natural images is suitable for reflecting the subjective 

evaluation of our radiologist in labelling the 20 US images in terms of Good and Bad. 
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5.2 No-reference Multi-Characteristic Image Quality Vector (MCIQ) 

The insightful results and observations discussed in the last section make the task of US-

IQA very challenging and motivated us to think of designing a kind of no-reference US 

quality feature vector descriptor rather than a single score descriptor. In Chapter 3, we noted 

that the visual examination of US images shows that neither luminance nor contrast is 

uniformly distributed across different parts of the same image. Such image characteristics 

are also observed in face images generated by morphing attacks, whereby the artefacts 

generated by such techniques occur in certain areas of the face (e.g., nose and eyes) [121]. 

To some extent, these observations are analogous to the way loss of naturalness in natural 

images was dealt with in [117] using the NSS  model, which also illustrated this effect in a 

seemingly natural image constructed by mapping different natural scene images into 

different blocks. These effects in the case of US images may reflect variation in the scanned 

tissue texture and layout beside the characteristics of the US device prob (transducer). 

It is well known that US images are intrinsically associated with the presence of speckle 

noise, which can adversely impact both image luminance and contrast, and thereby 

compromises the diagnostic potentials of US imaging. Empirical evidence has revealed that 

the impact of speckle noise on US images varies across different regions, contingent upon 

the firmness (i.e., solidity) of the tissue subregions [6]. Therefore, this is a plausible factor 

in creating the observed non-uniformity of luminance and contrast in US images.  Removing 

speckle noise is considered an essential precondition for any tissue characterization 

employing US imaging [122]. To this end, an adaptive speckle US denoising strategy was 

formulated, which was demonstrated to markedly enhance the performance of ML models 

applied to Ovarian cancer [6]. Adaptiveness exploited the non-uniform spatial distribution 

of tissue solidity characteristics which were determined from the US scan images by 

elaborating conditions on block-based intensity Skewness and Kurtosis values. 

The above discussion provides a plausible idea of designing a no-reference assessment image 

quality feature vector for US image analysis by leveraging the spatial distribution of different 

quality attributes. These quality attributes will nevertheless benefit from the Full reference 

IQA scheme UIQI defined for natural images. We note that Islam et al. [94] supplemented 

the UIQI with an additional shape factor computed by the so-called modified skewness. 

Avoiding the use of the natural image NRIQA scores of BRISQUE, NIQE, and PIQUE stems 

from our earlier observed differences between natural images and US images with respect 

to quantity and distribution of various types of texture features. 
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The MCIQ Proposal 

Our proposed no-reference quality feature vector scheme relies on using the three 

components of UIQI but is supplemented by additional statistical quality metrics determined 

by Skewness and Kurtosis. Accordingly, our innovative NRIQA scheme for US images 

outputs a spatio-statistical feature vector, denoted by MCIQ, that integrates Correlation, 

Luminance, Contrast, Skewness, and Kurtosis image quality measures. 

To define the five components of the MCIQ vector, first, we state the five related basic 

statistical parameters. Let 𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} and 𝑦 = ⁡ {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} be two given real-

value grey-pixel sequences representing two equal-size image blocks, then: 

𝒙̅ =
𝟏

𝒏
∑𝒙𝒊

𝒏

𝒊=𝟏

 5.1 

𝝈𝒙
𝟐 =

𝟏

𝒏 − 𝟏
∑(𝒙𝒊 − 𝒙̅)𝟐
𝒏

𝒊=𝟏

 5.2 

𝝈𝒙𝒚 =
𝟏

𝒏 − 𝟏
∑(𝒙𝒊 − 𝒙̅)

𝒏

𝒊=𝟏

(𝒚𝒊 − 𝒚̅) 5.3 

⁡𝒔𝒙 =
∑ (𝒙𝒊 − 𝒙̅)𝟑𝒏
𝒊=𝟏

(𝒏 − 𝟏)(𝝈𝒙)𝟑
 5.4 

𝒌𝒙 =
∑ (𝒙𝒊 − 𝒙)𝟒𝒏
𝒊=𝟏

(𝒏 − 𝟏)(𝝈𝒙)𝟒
 5.5 

 

Where 𝑥̅ represents the mean of 𝑥, 𝜎𝑥
2 represent its variance (𝜎𝑥 is its standard deviation), 

𝜎𝑥𝑦 stands for the covariance of 𝑥 and 𝑦, while 𝑠𝑥 and 𝑘𝑥 represent the skewness and kurtosis 

of 𝑥, respectively. 

The MCIQ feature vector is constructed in the following steps: 

Step 1: Partitioning the input image (a grey-scale image) into 36 same-size rectangular 

blocks. See Figure 5.1. 

Step 2: compute the quality indices of each image block with respect to the other 35 blocks 

in terms of the 5 selected quality indices (Correlation, Luminance, Contrast, Skewness, and 

Kurtosis) defined by the following formulas: 
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𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒙𝒚 =
𝝈𝒙𝒚

𝝈𝒙𝝈𝒚
 5.6 

 

⁡
𝑳𝒖𝒎𝒊𝒏𝒂𝒏𝒄𝒆𝒙𝒚 =

𝟐𝒙⁡̅𝒚̅

(𝒙̅𝟐 + 𝒚̅𝟐)
 5.7 

 

⁡𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕𝒙𝒚 =
𝟐𝝈𝒙𝝈𝒚

(𝝈𝒙𝟐 + 𝝈𝒚𝟐)
 5.8 

 

⁡𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔𝒙𝒚 =
𝟐𝒔𝒙𝒔𝒚

(𝒔𝒙𝟐 + 𝒔𝒚𝟐)
 5.9 

 

𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔𝒙𝒚 =
𝟐𝒌𝒙𝒌𝒚

(𝒌𝒙𝟐 + 𝒌𝒚𝟐)
 5.10 

Step 3: Arrange each of the computed 5 quality indices in a 36×36 symmetric matrix with a 

unit diagonal. The upper right 630 = (36×35)/2 values above the diagonal represent the 

spatial distribution of the corresponding quality index between the partitioned image block 

pairs. We then quantize these 630 indices into 10 equal bins for each quality index and 

produce the 10-bin histogram vector. 

Step 4: Finally, the 50-dimensional MCIQ feature vector is constructed by concatenating 

histogram vectors for 5 quality indices in the order: [Correlation, Luminance, Contrast, 

Skewness, Kurtosis]. 

Figure 5.1 below displays the steps of constructing the MCIQ feature vector for a BUS 

tumour RoI image. 
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In the following 2 sections, we present the results of various experiments to test the 

discriminating power of MCIQ between different US image datasets in relation to different 

purposes. 

5.3 Explaining CNN Generalisation Results by MCIQ Feature Vectors 

Our initially stated purpose of investigating US image quality descriptors was in relation to 

the significant disparities of DL generalization performance as a result of training with 

different datasets. Having developed the no-reference quality feature vector MCIQ, we 

conducted several experiments to test its effectiveness in distinguishing the quality 

descriptor of the four BUS datasets (Renmin, Modelling, Test1, and BUSI) used in the 

previous chapter. 

Figure 5.1 Process of building and extracting MCIQ feature vector. 
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To ensure that all image blocks in the MCIQ procedure contain actual tissue pixel values and 

no image block is affected by zero-padding, the TumourT RoI cropping scenario was 

selected as a standard, and the lesion RoIs were resized to 128x128. The 5-fold cross-

validation training/testing protocol was adopted in all experiments. Various classifiers were 

utilized, including SVM with linear kernel and kNN with k = 1, 3, and 5. The degree of 

classification performance, as determined by using the MCIQ quality components, serves as 

proximity between images in training and testing datasets. Low-performance rates indicate 

the better proximity of the training and testing datasets in terms of the MCIQ quality feature 

vector, and in this case, we expect reasonable generalisation performance. 

5.3.1 MCIQ - Genelaisation Association: (Renmin, Modelling) vs. Test1 

The experiments in this subsection were designed to compare the training datasets, 

specifically Renmin and the Modelling datasets, with the Test1 dataset using the MCIQ 

feature vector. Recall that in the last chapter, we observed a failure to generalise the CNN 

models when training with the Renmin dataset and testing on the external Test1 dataset, in 

contrast to training with the Modelling dataset. The results of these two experiments are 

presented in Table 5.6 below. 

 

Table 5.6 Quality inspection of Renmin/Modelling vs. Test1 using MCIQ. 

Renmin vs. Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.69 ± 0.04 0.59 ± 0.11 0.74 ± 0.05 0.58 ± 0.07 0.67 ± 0.05 

kNN, k=3 0.70 ± 0.02 0.55 ± 0.07 0.79 ± 0.03 0.57 ± 0.04 0.67 ± 0.03 

kNN, k=5 0.70 ± 0.02 0.55 ± 0.06 0.79 ± 0.03 0.58 ± 0.04 0.67 ± 0.02 

Linear-SVM 0.73 ± 0.06 0.52 ± 0.08 0.86 ± 0.05 0.59 ± 0.08 0.69 ± 0.06 

Modelling vs. Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.57 ± 0.03 0.44 ± 0.10 0.64 ± 0.04 0.42 ± 0.07 0.54 ± 0.04 

kNN, k=3 0.57 ± 0.03 0.42 ± 0.04 0.65 ± 0.05 0.42 ± 0.03 0.54 ± 0.03 

kNN, k=5 0.59 ± 0.04 0.39 ± 0.06 0.70 ± 0.05 0.41 ± 0.06 0.54 ± 0.04 

Linear-SVM 0.64 ± 0.02 0.22 ± 0.06 0.89 ± 0.04 0.30 ± 0.06 0.56 ± 0.02 

 

These results reveal that the accuracy of kNNs and SVM classifiers in distinguishing 

between Renmin and Test1 datasets ranges from 69% to 73%, suggesting that these datasets 

differ significantly in terms of MCIQ quality components. Thus, these results explain, to a 

reasonable extent, the failure of CNNs model generalisation when trained on Renmin and 

tested on Test1. In contrast, comparing the Modelling dataset to Test1, kNNs and SVM 

classifiers of MCIQ descriptor exhibit lower accuracy in the range of 57% to 64%, i.e., the 
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Modelling dataset quality is more similar to (and less separable from) Test1. Therefore, DL 

models are more likely to generalize better when trained on the Modelling dataset and tested 

on Test1. The experimental findings in Table 5.5 are consistent with the DL generalization 

results presented in Chapter 4, Table 4.2 and 4.4, where DL models trained on the Modelling 

dataset exhibit high to excellent accuracy when tested on Test1 compared to models trained 

on the Renmin dataset. 

5.3.2 MCIQ - Generalization Association: (Renmin, Modelling) vs. BUSI 

We repeated similar experiments to those conducted in the previous subsection, but we used 

the external BUSI dataset for testing this time. Table 5.7, below, shows that the kNNs and 

SVM classifiers' accuracy in distinguishing between Renmin and BUSI datasets ranges from 

66% to 75%, indicating that these 2 datasets differ in terms of MCIQ. Moreover, the 

dissimilarity level between Renmin and BUSI datasets is somewhat similar to that between 

Renmin and Test1. However, Tables 4.2 and 4.3, in Chapter 4, revealed that DL models 

trained on the Renmin dataset achieve higher generalization performance on the BUSI 

dataset compared to their performance on Test1. This is possibly due to other factors relating 

to image acquisition procedures, US machines, and the level of radiologists' experience. 

In contrast, comparing Modelling and BUSI datasets, the kNNs and SVM classifiers exhibit 

accuracy in the range of 68% to 77%, suggesting that the Modelling dataset MCIQ differs 

more from BUSI than from Test1. Hence, DL models trained on the Modelling dataset are 

more likely to generalize slightly lower when tested on BUSI. This is consistent with the 

results in Chapter 4, Tables 4.4 and 4.5, which showed that training with Modelling had 

higher performance on the Test1 dataset than the BUSI dataset. 

 

Table 5.7 Quality inspection of Renmin/Modelling vs. BUSI using MCIQ. 

Renmin vs. BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.66 ± 0.03 0.67 ± 0.04 0.66 ± 0.02 0.66 ± 0.03 0.66 ± 0.03 

kNN, k=3 0.67 ± 0.02 0.65 ± 0.04 0.69 ± 0.03 0.67 ± 0.03 0.67 ± 0.02 

kNN, k=5 0.69 ± 0.03 0.64 ± 0.03 0.73 ± 0.04 0.67 ± 0.03 0.69 ± 0.03 

Linear-SVM 0.75 ± 0.01 0.71 ± 0.04 0.79 ± 0.03 0.74 ± 0.02 0.75 ± 0.01 

Modelling vs. BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.68 ± 0.03 0.69 ± 0.06 0.68 ± 0.06 0.68 ± 0.03 0.68 ± 0.03 

kNN, k=3 071 ± 0.03 0.69 ± 0.06 0.72 ± 0.04 0.70 ± 0.03 0.71 ± 0.03 

kNN, k=5 0.72 ± 0.03 0.69 ± 0.06 0.75 ± 0.06 0.71 ± 0.04 0.72 ± 0.03 

Linear-SVM 0.77 ± 0.02 0.75 ± 0.05 0.78 ± 0.06 0.76 ± 0.02 0.77 ± 0.02 
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5.3.3 MCIQ Separability Between Images in Renmin and Modelling Datasets 

We close this section by investigating the discriminating power of MCIQ for the Renmin vs. 

the larger Modelling datasets. This experiment was conducted in a balanced way with the 

expectation of providing a further explanation as to why training DL models on these two 

datasets separately have different generalisation behaviours when tested on external testing 

datasets. In line with the previous two sections, lower MCIQ performance indicates that the 

two datasets are closer to each other and vice versa. 

 

Table 5.8 Quality inspection of Renmin vs. Modelling using MCIQ. 

Renmin vs. Modelling 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.38 ± 0.04 0.35 ± 0.05 0.40 ± 0.05 0.36 ± 0.04 0.38 ± 0.04 

kNN, k=3 0.47 ± 0.04 0.47 ± 0.08 0.48 ± 0.03 0.47 ± 0.06 0.47 ± 0.04 

kNN, k=5 0.51 ± 0.03 0.54 ± 0.04 0.48 ± 0.05 0.52 ± 0.03 0.51 ± 0.03 

Linear-SVM 0.60 ± 0.05 0.51 ± 0.07 0.70 ± 0.06 0.56 ± 0.06 0.60 ± 0.05 

 

These results show that the two datasets are not easily separable by MCIQ. Unlike the results 

in Tables 5.6 and 5.7, there is a significant difference between the SVM classifier 

performance and that of the kNN classifier, especially when k = 1. The results of the kNN 

methods indicate that the MCIQ vectors for these two datasets are spread out and clustered 

near each other for a significant number of images. On the other hand, an accuracy of 60% 

obtained with a linear SVM classifier means that many of their clusters for the two datasets 

are separated on different sides of the SVM hyperplane. Note that the much larger size of 

the modelling dataset results in a wider amount of spreading of their MCIQ values. 

In conclusion, the results of all experiments in this section indicate that the discrepancy in 

generalisation results can be attributed to the combined effects of MCIQ feature vectors as 

well as the big difference in the size (and diversity of clinical practises) of the two training 

datasets. Perhaps more investigations and refinements/extensions of MCIQ are needed. 

5.4 Discriminating Power of MCIQ for Other Purposes 

Besides the failure/success of CNN model generalisation, we shall now investigate the 

discriminating power of the proposed MCIQ feature vector. These investigations are 

concerned with questions: (1) Can MCIQ discriminate Benign from Malignant masses for 

samples recorded in the same centre? (2) Can MCIQ distinguish between US images and 

other medical image modalities used for scanning the same tissue? and (3) Can MCIQ 

distinguish BUS datasets from US datasets of other tissue types or Natural Images? 



123 
 

5.4.1 MCIQ - Tumour Class Association: Renmin (Benign vs. Malignant) 

Here, we explore the potential of the MCIQ feature vector as a HC feature for classifying 

benign and malignant cases for the Renmin dataset. We also compare the results with the 

performance of a recent NRIQA feature developed by Dey et al. [120]. We denoted this 

scheme as TripleIQA+Entropy since it creates a quality feature vector descriptor for the 

classification of Benign vs. Malignant from BUS images by concatenating the IQA scores 

of BRISQUE, NIQE, and PIQUE plus Shannon image Entropy value. They reported a 

reasonably significant accuracy of (85.4% with kNN and 91.2% with SVM) trained and 

tested on the BUSI dataset. Tables 5.9 and 5.10 display the results of the experiments 

conducted for the MCIQ and TripleIQA+Entropy for the Renmin dataset, respectively. 

 

Table 5.9 MCIQ classification performance of Benign vs. Malignant (Renmin dataset). 

Benign vs. Malignant 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.76 ± 0.02 0.76 ± 0.03 0.76 ± 0.07 0.76 ± 0.01 0.76 ± 0.02 

kNN, k=3 0.80 ± 0.03 0.80 ± 0.04 0.80 ± 0.08 0.80 ± 0.03 0.80 ± 0.03 

kNN, k=5 0.81 ± 0.05 0.79 ± 0.05 0.82 ± 0.08 0.80 ± 0.05 0.81 ± 0.05 

Linear-SVM 0.84 ± 0.02 0.86 ± 0.05 0.82 ± 0.03 0.85 ± 0.02 0.84 ± 0.02 

 

Table 5.10 TripleIQA+Entropy classification of Benign vs. Malignant (Renmin dataset). 

Benign vs. Malignant 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.76 ± 0.03 0.76 ± 0.06 0.77 ± 0.07 0.76 ± 0.03 0.76 ± 0.03 

kNN, k=3 0.80 ± 0.03 0.80 ± 0.03 0.80 ± 0.06 0.80 ± 0.03 0.80 ± 0.03 

kNN, k=5 0.82 ± 0.03 0.82 ± 0.04 0.82 ± 0.07 0.82 ± 0.03 0.82 ± 0.03 

Linear-SVM 0.83 ± 0.03 0.83 ± 0.04 0.83 ± 0.06 0.83 ± 0.03 0.83 ± 0.03 

 

First, the results in Table 5.9 demonstrate that the MCIQ feature vector is a reliable class-

discriminating tool solely based on the spatial distribution of scores computed without 

reference images. Moreover, the linear SVM can achieve an accuracy of 84% with a good 

balance between sensitivity and specificity (86% vs. 82%). MCIQ performs as well as the 

TripleIQA+Entropy scheme when tested on the Renmin database (Table 5.10). 
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5.4.2 MCIQ - Tissue Type Association: Breast vs. Liver/Bladder 

The objective of this section is to explore the degree of distinguishability between US 

scanning of different tissue types. The proximity of two tissues in terms of their quality 

attributes, such as breast tissues vs. liver or bladder tissues, can impact the potential success 

of DL model generalization if a model is trained on one tissue and tested on another. First, 

we briefly define the two adopted Liver and Bladder US datasets. 

The Liver and Bladder US datasets comprise 420 and 177 images, respectively. These 

images were collected at Pudong New District Renmin Hospital in Shanghai, China, and 

comprise cases of both benign and malignant lesions (Liver: 268 benign and 152 malignant 

cases), (Bladder: 100 benign and 77 malignant cases). The images were acquired using 

different US machines. An experienced radiologist performed the labelling of the images, 

and biopsy tests were conducted to confirm the labels. Furthermore, the radiologists 

manually marked numerous boundary points for each lesion to enable accurate detection of 

the shape and location of the lesions, which serves as an alternative to automatic detection 

and segmentation. 

Table 5.11 presents the outcomes of utilizing kNNs and SVM classifiers to differentiate 

breast tissues from liver and bladder tissues based on the MCIQ feature vector. The findings 

reveal that breast tissue can be distinguished from both liver and bladder tissues with varying 

levels of accuracy, ranging from 71% to 80% for Breast vs. Liver and ranging from 79% to 

85% for Breast vs. Bladder. These outcomes indicate that, generally, breast tissue is more 

separable from Bladder tissue than from liver tissue in terms of MCIQ quality components. 

 

Table 5.11 MCIQ classification performance of US Breast Tissue (Renmin) vs. US Liver/Bladder Tissue. 

Breast vs. Liver 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.71 ± 0.02 0.64 ± 0.05 0.76 ± 0.06 0.66 ± 0.03 0.70 ± 0.02 

kNN, k=3 0.75 ± 0.03 0.64 ± 0.03 0.84 ± 0.04 0.70 ± 0.03 0.74 ± 0.03 

kNN, k=5 0.77 ± 0.03 0.65 ± 0.03 0.86 ± 0.05 0.71 ± 0.03 0.76 ± 0.02 

Linear-SVM 0.80 ± 0.02 0.72 ± 0.03 0.87 ± 0.02 0.76 ± 0.02 0.79 ± 0.02 

Breast vs. Bladder 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.79 ± 0.05 0.46 ± 0.12 0.91 ± 0.04 0.53 ± 0.11 0.68 ± 0.07 

kNN, k=3 0.84 ± 0.02 0.47 ± 0.06 0.96 ± 0.02 0.59 ± 0.05 0.72 ± 0.03 

kNN, k=5 0.83 ± 0.02 0.43 ± 0.08 0.97 ± 0.01 0.56 ± 0.08 0.70 ± 0.04 

Linear-SVM 0.85 ± 0.01 0.50 ± 0.03 0.97 ± 0.02 0.63 ± 0.02 0.74 ± 0.01 
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5.4.3 MCIQ - Image Modality Association (Breast Lesion): US vs. Mammogram 

Here, we explore the degree of distinguishability between different image modalities for the 

same tissue type, i.e., Breast Lesion: US vs. Mammogram. The proximity of two different 

image modalities in terms of their MCIQ quality descriptor can impact the potential success 

of designing generic DL models trained on a given image modality tested on another. 

The widely used mammogram dataset (known as Digital Database for Screening 

Mammography (DDSM) [123]) is utilized to test against our BUS Renmin dataset. DDSM 

constitutes 2620 mammograms in total, in which 559 mammograms were randomly selected 

in our experiments with 302 normal cases and 257 abnormal cases. The results of our MCIQ 

discrimination between the two datasets are shown in Figure 5.12 below. 

 

Table 5.12 MCIQ modality association for breast lesion: US (Renmin) vs. Mammogram (DDSM). 

US vs. Mammogram 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.85 ± 0.01 0.87 ± 0.03 0.84 ± 0.04 0.86 ± 0.01 0.85 ± 0.01 

kNN, k=3 0.88 ± 0.02 0.90 ± 0.03 0.85 ± 0.04 0.88 ± 0.02 0.88 ± 0.02 

kNN, k=5 0.88 ± 0.01 0.91 ± 0.02 0.85 ± 0.03 0.89 ± 0.01 0.88 ± 0.01 

Linear-SVM 0.89 ± 0.01 0.89 ± 0.03 0.89 ± 0.02 0.89 ± 0.02 0.89 ± 0.01 

 

It can be observed that the performance of the classifiers varies with different values of k 

and the type of classifier used. The highest accuracy achieved was 0.89 ± 0.01 using the 

Linear SVM classifier. The results show that increasing the value of k for the kNN classifier 

improves the classifier's performance in terms of accuracy, sensitivity, specificity, F1-score, 

and AUC. However, the performance improvement was insignificant for k values greater 

than 3. The Linear SVM classifier consistently outperformed the kNN classifier in terms of 

accuracy and other performance measures, indicating that the linear SVM classifier is a more 

effective classifier for this particular dataset. 

The results demonstrate that the spatial distribution of the MCIQ components in these two 

image datasets is significantly different, and any of the chosen classifiers can successfully 

separate them. This implies that DL models trained on US images may not be directly 

generalized to mammogram images without additional training. 
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5.4.4 MCIQ Domain Association: US Breast Tissue vs. Face Images 

This section aims to examine how different US tissue scan images are from Natural images 

in terms of the distribution of MCIQ components. To this end, we utilize the Renmin US 

breast dataset and a commonly used natural image dataset of face photos. These two datasets 

belong to distinct domains, namely, the medical and natural images domains. First, we 

briefly describe the face image dataset. 

We merged two well-known face image databases, usually used in relation to biometric-

based face recognition, to create one dataset of 169 genuine face images. The contributing 

Databases are  (1) the AMSL face dataset (102 images), which is available online, free upon 

request [124], and (2) the Utrecht face dataset (67 images) [125]. 

Table 5.13 reports the performance of kNNs and SVM classifiers in distinguishing the 

Renmin dataset from the face dataset based on the MCIQ feature vector extracted from all 

images. The outcomes reveal that the breast RoIs can be easily distinguished from face 

images, achieving a classification accuracy of 100% with balanced specificity and sensitivity 

rated. The results demonstrate that the spatial distribution of the MCIQ components in these 

two different modality image datasets are significantly different, and any of the chosen 

classifiers can successfully separate them. 

 

Table 5.13 MCIQ classification performance of US (Renmin) vs. Face dataset. 

US vs. Face Images 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.01 

kNN, k=3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

kNN, k=5 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Linear-SVM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

 

5.5 Limitations of MCIQ and Potential Remedies 

Any unbiased assessment of experimental results presented in the last two sections should 

find that while the MCIQ had a satisfactory success in partially explaining the lack of 

generalisation of CNN models trained with a relatively small set of US images recorded in 

a single clinical centre, it was more successful in distinguishing image datasets recorded for 

different purposes using different image modalities and/or tissues. In considering the pros 

and cons of the adopted approach in developing the no-reference image quality MCIQ 

feature vectors, instead of a single score, one has to remember the main obstacle of US image 

scarcity besides the absence of established knowledge on the sort of distortions (other than 
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Speckle noise) in US images as well as the difficulty in getting expert assessment/labelling 

of US image quality. Here, we shall discuss the link between MCIQ performance with that 

of expert quality assessment and consider ways of overcoming some of MCIQ's limitations. 

5.5.1 MCIQ for the Pilot US dataset (Good vs. Bad) 

To investigate ways of overcoming some of MCIQ's limitations, we first revisit the pilot 20 

- samples BUS dataset labelled as Good/Bad to assess the level of its limitation, or otherwise, 

in reflecting the expert assessment. We conducted a simple experiment to determine the 

performance of MCIQ in separating the 20 labelled US images. The results shown in Table 

5.14 confirm that the MCIQ assessment is not aligned well with the expert judgment. 

 

Table 5.14 The pilot dataset, Good vs. Bad using MCIQ. 

Good vs. Bad 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.60 ± 0.14 0.60 ± 0.22 0.60 ± 0.22 0.59 ± 0.14 0.60 ± 0.14 

kNN, k=3 0.40 ± 0.22 0.40 ± 0.22 0.40 ± 0.22 0.40 ± 0.22 0.40 ± 0.22 

kNN, k=5 0.50 ± 0.40 0.50 ± 0.35 0.50 ± 0.50 0.51 ± 0.37 0.50 ± 0.40 

Linear-SVM 0.55 ± 0.37 0.60 ± 0.42 0.50 ± 0.50 0.57 ± 0.37 0.55 ± 0.37 

 

For the sake of comparison, we repeated the above experiment by replacing the MCIQ 

feature vector with the 4-dimensional score vector of the TripleIQA+Entropy described in 

subsection 5.4.1. These results in Table 5.15 show that TripleIQA+Entropy significantly 

outperforms MCIQ and aligns reasonably well with the expert radiology assessment. 

However, the different classifiers perform differently. While the best performing 

TripleIQA+Entropy classifier is kNN with k=3, MCIQ with this classifier performance is 

the lowest, but its highest performing classifier is kNN with k=1. 

 

Table 5.15 The pilot dataset, Good vs. Bad using TripleIQA+Entropy features. 

Good vs. Bad 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.80 ± 0.11 0.80 ± 0.27 0.80 ± 0.27 0.79 ± 0.14 0.80 ± 0.11 

kNN, k=3 0.90 ± 0.14 1.00 ± 0.00 0.80 ± 0.27 0.92 ± 0.11 0.90 ± 0.14 

kNN, k=5 0.70 ± 0.33 0.80 ± 0.27 0.60 ± 0.42 0.74 ± 0.28 0.70 ± 0.33 

Linear-SVM 0.70 ± 0.11 0.70 ± 0.27 0.70 ± 0.27 0.69 ± 0.12 0.70 ± 0.11 

 

Next, we consider modifying the MCIQ to achieve better alignment with the radiologist 

assessments, even for the small pilot dataset. 
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5.5.2 Modified MCIQs for the Pilot (Good and Bad) US Dataset 

The fact that MCIQ is defined by comparing the local block-wise statistical distribution of 

the grey-level intensities provides different possible ways of modifying MCIQ, including:  

1. Extending MCIQ by adding other parameters (i.e., moments) of the grayscale local 

distribution. 

2. Select a spatial image transformation (e.g., LBP transform), compute the transformed 

pixels' local statistical distribution, and construct the MCIQ-like feature vector. 

3. Use an edge detection scheme and extract the slopes of linear edges in each block. 

Use local statistical parameters of slopes to construct an MCIQ-like feature vector. 

However, improving the performance of these schemes for the pilot small Good/Dad dataset 

of US images is unrealistic due to the small size of the dataset. Considering the way CNN 

architecture generates a sufficiently large number of smoothed versions of input images 

using Gaussian filters, we can extend the pilot dataset of Good/Bad images by convolving 

the original images with several randomly selected Gaussian filters. We created 2 pilot image 

datasets by convolving with 6 (and 10) 5x5 Gaussian filters, producing 120 (and 200) 

convolved images, respectively. For each convolved image, we computed the corresponding 

MCIQ feature vector. We conducted the same sets of classification experiments. Table 5.16 

displays the performance of the MCIQ in distinguishing Good from Bad. 

 

Table 5.16 Good vs. Bad using MCIQ post 6(10) Gaussian filters convolution. 

Good vs. Bad (120) 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.78 ± 0.05 0.68 ± 0.07 0.88 ± 0.07 0.76 ± 0.06 0.78 ± 0.05 

kNN, k=3 0.83 ± 0.09 0.78 ± 0.15 0.87 ± 0.10 0.81 ± 0.11 0.83 ± 0.09 

kNN, k=5 0.83 ± 0.08 0.75 ± 0.12 0.90 ± 0.07 0.81 ± 0.09 0.83 ± 0.08 

Linear-SVM 0.80 ± 0.07 0.80 ± 0.10 0.80 ± 0.14 0.80 ± 0.07 0.80 ± 0.07 

Good vs. Bad (200) 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.81 ± 0.05 0.81 ± 0.04 0.81 ± 0.07 0.81 ± 0.05 0.81 ± 0.05 

kNN, k=3 0.82 ± 0.05 0.80 ± 0.04 0.83 ± 0.10 0.81 ± 0.05 0.82 ± 0.05 

kNN, k=5 0.77 ± 0.07 0.70 ± 0.09 0.83 ± 0.14 0.75 ± 0.07 0.77 ± 0.07 

Linear-SVM 0.72 ± 0.06 0.76 ± 0.07 0.67 ± 0.11 0.73 ± 0.05 0.72 ± 0.06 
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Both experiments resulted in significantly improved performance, but increasing the number 

of convolution filters did not lead to better results. For the sake of comparison, we repeated 

the 6 Gaussian convolution filter experiment but using the 4-dimensional 

TripleIQA+Entropy IQA scheme. The results are shown in Table 5.17 below. Surprisingly, 

the performance of this scheme deteriorated significantly with all classifiers. 

 

Table 5.17 Bad vs. Good using TripleIQA+Entropy post 6 Gaussian filters convolution. 

Good vs. Bad (120) 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.60 ± 0.04 0.57 ± 0.14 0.63 ± 0.10 0.58 ± 0.08 0.60 ± 0.04 

kNN, k=3 0.65 ± 0.06 0.67 ± 0.12 0.63 ± 0.14 0.65 ± 0.07 0.65± 0.06 

kNN, k=5 0.62 ± 0.07 0.63 ± 0.21 0.60 ± 0.14 0.61 ± 0.12 0.62 ± 0.07 

Linear-SVM 0.56 ± 0.09 0.58 ± 0.08 0.53 ± 0.24 0.57 ± 0.03 0.56 ± 0.09 

 

While expanding the pilot data set by convolving with Gaussian filters improved the 

alignment of MCIQ with the expert quality labelling significantly, the fact that increasing 

the number of Gaussian filters from 6 to 10 did not make much difference raised the question 

about the possibility of using other types of non-smoothing filters. Based on my own 

previous experience with the orthonormal  Hadamard matrices [76], I considered developing 

filters based on Hadamard matrices. The fact that convolution filters are of size 𝑘 × 𝑘 with 

odd 𝑘 values, suggests building filters using block diagonal matrices, each block of which is 

a Hadamard matrix. The following 6 5x5 Hadamard-based matrices, are formed by block 

diagonal of 1x1, 2x2 and 4x4 Hadamard matrices: 

 

 

Figure 5.2 The 6 5x5 Hadamard-based filters. 
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To expand the pilot dataset via convolution with these 5x5 filters, each cropped RoI image 

in the 20-pilot dataset was convolved with these 6 5x5 Hadamard-based filters and extracted 

the MCIQ feature vector from the convolved images. We call the expanded dataset the 

Hadamard-pilot dataset, consisting of 120 = (60_Good + 60_Bad) US images. The above 

classification experiments, with the MCIQ representations of the Hadamard-pilot dataset, 

were conducted, and the results are shown in Table 5.18 below. The results show the 

excellent alignment of this modified MCIQ with the expert radiologist quality assessment, 

especially by the kNN classifier with k=1, achieving near-optimal discrimination. The other 

kNN classifiers (k = 3, 5) are also doing well but with a wider gap between sensitivity and 

specificity. These results indicate that the MCIQ feature vectors for both classes are spread 

out well in 𝑅50 but not separated from each other. The performance of MCIQ with SVM 

confirms this but indicates that many images in the different classes are separated by the 

SVM hyperplane. 

 

Table 5.18 Good vs. Bad using MCIQ post 6 Hadamard filter convolution.  

Good vs. Bad (120) 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.98 ± 0.04 0.95 ± 0.07 1.00 ± 0.00 0.97 ± 0.04 0.98 ± 0.04 

kNN, k=3 0.89 ± 0.02 0.83 ± 0.06 0.95 ± 0.05 0.88 ± 0.03 0.89 ± 0.02 

kNN, k=5 0.87 ± 0.07 0.80 ± 0.10 0.93 ± 0.07 0.86 ± 0.08 0.87 ± 0.07 

Linear-SVM 0.76 ± 0.09 0.68 ± 0.07 0.83 ± 0.17 0.74 ± 0.08 0.76 ± 0.09 

 

To explain the improved Good vs. Bad separation, post convolution with Hadamard filters 

compared to those obtained with Gaussian filters, we compared the condition numbers of the 

two sets of 6 filters. This explanation is inspired by the research work of a fellow TenD 

researcher who has shown that using ill-conditioned filters in CNN models of US image 

analysis results in performance sensitivity and instability [126]. Table 5.19 shows that the 

Hadamard filters are well-conditioned, but the Gaussian filters are mostly relatively ill-

conditioned. Moreover, all the Hadamard filters are almost orthogonal; hence, using them 

for convolving images preserves the local geometry of the images. 

 

Table 5.19 Comparisons of condition numbers of the Hadamard filters vs. Gaussian ones. 

Condition 

Number 
Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 Filter 6 

Hadamard 1.4 1.4 1.4 2.0 2.0 2.0 

Gaussian 20.0 36.1 10.7 30.2 12.3 21.2 
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For the sake of completeness, we repeated these experiments, but instead of MCIQ, we 

extracted the TripleIQA+Entropy 4-dimensional feature vectors. The results shown below, 

in Table 5.20, show that the Hadamard filters instead of the Gaussian filters resulted in 

significantly improved alignment with the expert quality assessment by the kNN classifiers. 

However, the performance of the SVM classifiers shows that, like the MCIQ, the 

TripleIQA+Entropy feature vectors are spread out reasonably well in 𝑅4 but are not linearly 

separable by the SVM hyperplane. 

 

Table 5.20 Good vs. Bad using TripleIQA+Entropy post 6 Hadamard filter convolution. 

Good vs. Bad (120) 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.78 ± 0.02 0.73 ± 0.11 0.82 ± 0.15 0.76 ± 0.02 0.78 ± 0.02 

kNN, k=3 0.71 ± 0.10 0.72 ± 0.13 0.70 ± 0.14 0.71 ± 0.11 0.71 ± 0.10 

kNN, k=5 0.71 ± 0.06 0.77 ± 0.22 0.65 ± 0.11 0.71 ± 0.11 0.71 ± 0.06 

Linear-SVM 0.48 ± 0.06 0.50 ± 0.12 0.47 ± 0.18 0.49 ± 0.07 0.48 ± 0.06 

 

5.5.3 Performance of Modified MCIQ for Tumour Classification 

The success of using Hadamard-based augmented MCIQ raises a number of points, 

including the use of Hadamard-based convolution as the basis for augmentation to improve 

the performance of CNN models. This will be investigated in the next Chapter, which is 

dedicated to dealing with the problem of scarcity of US images. Here, we close this chapter 

by conducting experiments to test the possibility of using this approach to improve the 

performance of the MCIQ feature vector for tumour classification. For that, we repeated the 

experiment of section 5.4.1 above, both post-convolution with the 6 Hadamard filters as well 

as with the 6 Gaussian filters. The results are shown in Table 5.21 and 5.22, respectively.  

Results of all kNN classifiers confirm that extracting MCIQ from the larger modified 

Renmin database when the cropped images are convolved with the 6 Hadamard filters 

significantly outperforms the cases of extracting MCIQ:  

1. Only from the original Renmin cropped images, see Table 5.9, 

2. From the convolved Renmin cropped RoIs using the 6 Gaussian filters, see Table 

5.22.  

When MCIQ were extracted from the Gaussian convolved images, the performance of all 

classifiers deteriorated in comparison to the results of Table 5.9. Furthermore, convolution 

with both types of filters resulted in lower SVM performance of the MCIQ feature vector 

compared to Table 5.9. 



132 
 

Table 5.21 Benign vs. Malignant (Renmin) using MCIQ post 6 Hadamard filters augmentation. 

Benign vs. Malignant 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.92 ± 0.01 0.91 ± 0.01 0.93 ± 0.02 0.92 ± 0.01 0.92 ± 0.01 

kNN, k=3 0.86 ± 0.02 0.83 ± 0.03 0.89 ± 0.02 0.86 ± 0.02 0.86 ± 0.02 

kNN, k=5 0.83 ± 0.03 0.80 ± 0.04 0.87 ± 0.02 0.83 ± 0.03 0.83 ± 0.03 

Linear-SVM 0.79 ± 0.01 0.81 ± 0.01 0.77 ± 0.02 0.79 ± 0.01 0.79 ± 0.01 

 

Table 5.22 Benign vs. Malignant (Renmin) using MCIQ post 6 Gaussian filters augmentation. 

Benign vs. Malignant 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

kNN, k=1 0.73 ± 0.01 0.70 ± 0.03 0.76 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 

kNN, k=3 0.75 ± 0.02 0.74 ± 0.03 0.77 ± 0.03 0.75 ± 0.02 0.75 ± 0.02 

kNN, k=5 0.77 ± 0.01 0.76 ± 0.02 0.78 ± 0.03 0.76 ± 0.01 0.77 ± 0.01 

Linear-SVM 0.79 ± 0.02 0.80 ± 0.02 0.78 ± 0.03 0.79 ± 0.02 0.79 ± 0.02 

 

We close this section and Chapter 5 by making the following remark that would inspire more 

future work to exploit the benefits of convolution with Hadamard-based filters. 

Closing Remark: Since convolving images with the well-conditioned and almost 

orthogonal Hadamard filters preserve the local geometry of the images, it is hardly surprising 

that they contribute positively to improving the performance of MCIQ when used for 

alignment with expert US-IQA or tumour classification. 

5.6 Conclusion 

Having realised the main difficulties in developing a single score IQA applicable to US 

images that can be used in conjunction with developing CNN models for their analysis, this 

Chapter adopted a simple approach that is based on comparing the various local statistical 

parameters of image pixel values in block-based partitioning to compute the MCIQ feature 

vector of a reasonably small size of 50 coordinates. This approach was motivated by 

observing that, unlike natural digital images, the spatial distributions of the UIQI 

components and speckle noise are not uniform across different parts of US images. The 

MCIQ feature vector encompasses the spatial distribution of 5-characteristic quality metrics: 

Correlation, Luminance, Contrast, Skewness, and Kurtosis. It was practically demonstrated 

that the MCIQ feature vector can be employed as a quality descriptor that helps partially 

clarify why a CNN model trained on a particular dataset may not always be generalizable to 

other unseen datasets. It was shown to have good tumour class dependency and can 

distinguish different image datasets used for various tasks (e.g., distinguishing US scans of 

different tissue types and distinguishing US images from other medical or natural image 
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modalities). We discussed the limitations of MCIQ in relation to alignment with expert 

radiologist assessment of quality, especially in relation to the main obstacles of US image 

scarcity (with standardized radiology experts) besides the absence of established knowledge 

on the sort of distortions (other than Speckle noise) in US images. These considerations 

helped develop an advanced MCIQ version that utilized the convolution by a small set of 

well-conditioned 5x5 Hadamard filters. In the next Chapter, we exploit these results to 

develop a convolution-based augmentation for improved CNN analysis of US images. 
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Chapter 6: Image Augmentation for Deep Learning-

based Breast Ultrasound Diagnosis 

The performance of DL-CNN models for image analysis requires substantial quantities of 

high-quality and adequately-labelled training data to attain optimal performance. However, 

in medical image analysis (particularly for US tumour images), obtaining annotated images 

can be problematic due to the limited availability of samples, the distribution of which 

mimics that of the undetermined population. In Chapter 4, we demonstrated that training pre-

trained CNN schemes on the reasonably large Modelling dataset of diverse samples led to 

robust models that can generalize well to the external testing datasets (Test1 and BUSI). 

However, training the same models on the smaller Renmin dataset yielded disappointingly 

low generalizability to the external datasets. 

Image augmentation is the most commonly practised approach to address the data scarcity 

issue as a means of expanding the dataset by generating new images with some variation in 

their appearances. It is often employed to prevent model overfitting and improve 

generalizability into unseen samples. This Chapter is designed to review existing approaches 

to augment available US image datasets, propose and implement new augmentation schemes 

and compare their impact on the performance of pre-trained CNN models for BUS images. 

These schemes are not dependent on US data contents specifically, but we shall deploy them 

to augment the single medical centre Renmin dataset and evaluate their impact on the 

performance of pre-trained CNN models. We shall also develop a new US-specific approach 

to enlarge BUS training datasets by exploiting the benefits gained from RoI cropping using 

different RoI CH expanded ratios that also mitigate the challenge arising from inter-observer 

errors of lesion cropping [9]. 

In Section 6.1, we discuss the scarcity challenge in obtaining US images for DL-based lesion 

diagnostic tasks and its implications. We also explore existing techniques used to address 

this challenge. Moving on to Section 6.2, we delve into conventional image augmentation 

techniques, both for natural and medical images. In Section 6.3, our focus shifts to 

unconventional image augmentation techniques for US images, which draw on mathematical 

concepts beyond simple image processing-based schemes. We conduct experiments to 

compare the performance of these techniques with other augmentation methods. Section 6.4 

introduces the Tumour Margin Appending (TMA) augmentation-like scheme, explicitly 
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designed for CNN-based BUS diagnostics. We present the results of experiments conducted 

to assess its effectiveness. Section 5.5 provides a summary of the chapter's key conclusions. 

6.1 Data Scarcity in Ultrasound Lesion Images - Introduction. 

The challenge of data scarcity for using CNN models to analyse US lesion scan images 

doesn’t seem to relate to the unavailability of US images when tens of thousands of 

hospitals/clinics worldwide daily conduct numerous US scanning of patients. Trained 

radiologists examine US scan images, and the patient's health status is determined and 

followed up by certain medical treatments/procedures. However, the digitisation of health 

records is lagging behind in many countries and even in those countries that embraced digital 

health, the process is yet to mature and lacks standardisation. In practice, there are only a 

few national databases and warehouses of US images that are indexed and annotated with 

the appropriate medical assessment in a globally agreed standardised format. The absence of 

standardisation can cause inconsistency in image acquisition due to many factors, including 

variation in image scanning procedures, diverse scanning devices, and to some extent, 

diversity of radiologists' training expertise. The inconsistency is often manifested by image 

characteristics in relation to variable resolution, contrast, and noise levels. Furthermore, the 

scarcity challenge is rightly compounded by ethical and privacy requirements for access to 

adequate databases. 

One might ask, was this scarcity not as challenging for developing HC feature-based CAD 

models to analyse US scan images? It is certainly as serious, if not more acute, challenge but 

several factors may have helped, including the fact that performance expectation was not as 

ambitious as that from CNN models. Moreover, the emergence of several different types of 

image texture features that could be extracted in different transformed domains, including 

frequency ones, as well as the development of several classifiers, facilitated the use of multi-

classifier fusion and ensemble schemes for improved performance. Indeed, at Buckingham, 

several such schemes were developed for diagnosing tumours from US scans of different 

tissues/organs, e.g., [5], [6], [22], [42], [126]. 

Our investigations so far indicate that the main consequences of data scarcity of US tumour 

images include reduced model performance, manifested by lower accuracy besides 

unacceptable rates of sensitivity or specificity. When trained with a limited dataset, CNN 

models may struggle to learn the underlying patterns and features that distinguish between 

malignant and benign breast lesions accurately. This limitation can result in misdiagnosis, 

leading to unnecessary biopsies or delayed treatment, negatively impacting patient 
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outcomes. Another consequence of data scarcity is model overfitting. In the absence of 

sufficient data, CNN models may memorize the limited dataset, resulting in poor 

generalization to unseen data. As a result, the CNN model's performance may appear high 

on the training set but fail to perform well on new, unseen data. 

What makes data scarcity a more serious issue for CNN deployment is probably engrained 

in how CNN schemes learn discriminating image features. Although using pre-trained CNN 

models in fine-tuning mode on a number of US images results in learning many hidden 

feature patterns, but the additional training results in changing the CNN parameters to fit the 

training samples. However, the fact that the training US images do not form a reflective 

independent and identically distributed sample of the unknown population results in a lack 

of generalisation, as demonstrated, in Chapter 4, when we retrained several state-of-the-art 

pre-trained CNN models with not-so-small US images recorded in a single clinic (Renmin 

Hospital, Shanghai). The effects of the scarcity issue for medical image analysis using CNN 

models may be less drastic if trained on heterogeneous image datasets collected from 

different clinic centres. By training on heterogeneous datasets, DL models learn different 

hidden patterns of common features and patterns across a wider range of images can lead to 

better performance on unseen data, as we have demonstrated in Chapter 4 when we trained 

the state-of-the-art CNNs in fine-tuning mode on the Modelling BUS dataset collected from 

multiple clinics. Training a CNN model on a heterogeneous dataset can additionally help to 

ensure that the model is more broadly applicable to different patient populations and imaging 

devices. However, this may still depend on the number of available training US images. 

Many data scarcity mitigating techniques have emerged for natural and medical images, the 

obvious of which suggest enlarging the training dataset, referred to as Data Augmentation. 

A larger training dataset provides more feature patterns for the model to learn from and could 

contribute to improving its ability to generalize to new unseen data as long as the additional 

patterns add to more diversity. This is particularly important in medical image analysis, 

where the underlying patterns may be subtle and difficult to learn from a small dataset. 

Accordingly, US data scarcity mitigating techniques benefit from focusing on more diverse 

feature learning rather than enlarging the dataset. These ideas may rely on choosing CNN 

architectures for which learning could benefit from the nature of US image content. 

Several techniques have been proposed to enhance the performance of DL models in image 

analysis by focusing on the model's architecture itself, in addition to image augmentation 

techniques. Functional solutions such as dropout regularization [127], batch normalization 

[128], and transfer learning have been developed to enable the use of DL models on smaller 
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datasets [129], [130]. Dropout regularization forces the network to learn more robust features 

by zeroing out the activation values of randomly chosen neurons during training. Batch 

normalization normalizes the set of activations in a layer to subtract the batch mean from 

each activation and divide it by the batch standard deviation. Transfer learning involves 

training a network on a large dataset, such as ImageNet [7], and then using those weights as 

initial weights in a new classification task. 

Other alternative approaches to augmentation include the Zero-shot and One-shot algorithms 

that have been proposed to overcome training models with extremely limited data [131], 

[132]. Zero-shot learning involves training a model on a set of data that is distinct from the 

task to which the model will eventually be applied. The model learns a relationship between 

the training data and the task and then applies this knowledge to classify new examples. On 

the other hand, one-shot learning uses a small set of examples to classify new samples by 

training a distance function that maps the inputs to the correct output. These methods are 

useful when obtaining large amounts of labelled data is difficult or impractical and can be 

applied in various domains such as natural language processing, computer vision, and speech 

recognition. Knowledge of these overfitting solutions will inform readers about other 

existing tools/techniques [133]. 

Unlike the above-mentioned techniques, Data Augmentation tackles the problem of 

overfitting and generalizability in DL by modifying the training dataset. The underlying idea 

is that by introducing variations and new instances into the dataset, the CNN architecture 

can capture previously undiscovered feature patterns that would not have been learned solely 

from the original dataset during training. This approach aims to enhance the model's ability 

to generalize and perform better on unseen data. The viability of any augmentation scheme 

for any dataset should not be measured solely by the size of the dataset post-augmentation. 

The success of any augmentation scheme for a given CNN architecture should be evaluated 

in terms of the performance rates (accuracy, specificity and sensitivity) when testing unseen 

external data. A serious factor influencing the success of an augmentation scheme for a given 

dataset is related to the possibility of confusing the membership of the different classes as a 

result of the augmentation algorithm. Note that rotating 6 may produce a 9 for character 

recognition. Shorten and Khohgoftaar [99] surveyed several easy-to-implement image 

augmentation techniques using geometric image processing transformations for natural 

images, referring to this problem as the safety of post-augmentation labelling. 

Caution has been urged to explore non-augmentation methods, when possible, to alleviate 

the burden of US image scarcity for BUS classification using DL. Zhu et al. [105] utilized 
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CNNs to develop an automated system for classifying breast and thyroid lesions in US 

images by training with datasets of diverse US images collected from multiple clinical 

centres. They proposed a generic DL framework that could be applied to larger datasets 

collected from diverse patient populations across different centres. The study compared the 

performance of the proposed models with that of radiologists and analysed the relationship 

between correct classification outcomes and regions of input RoI images. Additionally, the 

authors investigated the known US characteristics shared by thyroid and breast lesions, such 

as shape ratio, hypo-echogenicity, and ill-defined margins. Overall, this study has significant 

implications for improving the early detection and treatment of breast and thyroid cancers. 

In the next section, we review and categorise existing image augmentation techniques, 

highlighting their applicability to US tumour image datasets in light of the above discussion. 

6.2 A Review of Existing Image Augmentation Techniques 

Over the years, many different image augmentation schemes have been proposed and used 

for different machine-learning models of computer vision tasks. There are many ways of 

categorising these techniques. For example, Shorten and Khohgoftaar [99] categorised 

existing augmentation schemes as Data Warping augmentations and Oversampling schemes 

that are not mutually exclusive. Here, we shall use a simple categorisation as Conventional   

(via Image processing procedures), Synthetic (using generative Neural Networks), and 

Spectral (using eigenvalue/singular value analysis) schemes. Not all techniques may be 

appropriate for every dataset or task, so it is important to carefully consider which techniques 

are most suitable for the problem at hand. 

6.2.1 Conventional Augmentation Techniques 

These schemes include applying geometric operations such as Rotation and 

Horizontal/Vertical flips [134]–[136]; noise addition of different variances into the training 

data [137], [138]; kernel filtering such as sharpening and blurring [139], [140]; photometric 

colour transforms [141], [142]. For other schemes in this category, see [99], but these are 

chosen for ease of implementation for US images. Some of these schemes may result in 

unsafe labelling, as mentioned above. In such cases, computationally expensive refinement 

of post-augmentation labels becomes necessary. Noise addition has different effects on 

natural images than on US images due to the dominance of texture features in US images. 

The above techniques can be combined in various ways to create a diverse set of training 

data for DL models. In fact, the current very generic approach to augment image datasets is 
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to several affine mapping of original images using a combination of geometric, colour jitters, 

image cropping and translation [102]. 

Tirindelli et al. [143] proposed a novel data augmentation approach for medical US imaging 

that uses well-known image processing concepts. The authors introduced a set of physics-

inspired transformations, including deformation, reverb, and Signal-to-Noise Ratio, that can 

be applied to US B-mode images for data augmentation. These techniques are intended to 

align with the physics of the US and avoid generating images that radiologists may deem to 

be unrealistic. The proposed augmentations were used to enlarge a new US spine dataset for 

bone segmentation and classification. The results show that deformations & reverberation-

based US augmentation slightly outperform classical augmentation but argue for further 

research into anatomically realistic US augmentations for training generalizable CNNs. 

6.2.2 Synthetic Augmentation Techniques 

Several popular generative DL tools have emerged for image/data augmentation in recent 

years. The most popular approach is the Generative Adversarial Networks (GANs). GANs 

are a type of DL model consisting of two neural networks: a generator network and a 

discriminator network. The generator network creates synthetic data meant to resemble 

samples in a target domain, while the discriminator is trained to differentiate between the 

synthetic data and the target data. Synthetic data are created iteratively by the generator, 

starting with a given sample data and repeatedly computing a new data version by adding a 

random noise signal to it, passing it on to the discriminator network that will determine the 

needed adjustment, and the generator updates the currently held data until it is 

indistinguishable from real domain samples. GANs are highly effective at data augmentation 

for better training DL models with improved model performance [144]–[146]. 

Variational Autoencoders (VAEs) are another type of neural network architecture suitable 

for data augmentation. It has 2 components: an encoder and a decoder. It differs from GAN 

in that the encoder maps input data samples to a lower-dimensional latent space while the 

decoder uses the latent vector to reconstruct the original data sample. During training, VAEs 

optimize reconstruction loss (determining the closeness of reconstructed data from the latent 

space) as well as KL divergence (between the distribution of the latent space and a standard 

normal distribution). Once the VAE is trained, it can be used to generate new data samples 

by sampling from the latent space and decoding the samples into the original data domain. 

Overall, VAEs are powerful for data augmentation because they can generate new data 



140 
 

samples that are similar to the original data but with small variations, which can help improve 

the robustness of ML models [147]. 

Both GAN and VAE can be used to generate any type of data and images. Al-Dhabyani et 

al. [89] investigated the classification of breast masses and explored a generative approach 

for augmenting US images. They proposed a GAN-based image augmentation technique, 

DAGAN, that creates authentic, high-quality images from scratch. The effectiveness of 

various DL models for breast mass classification using US images was assessed in terms of 

accuracy post-augmentation, concluding that DAGAN has the potential to enhance the 

precision and efficiency of breast cancer diagnosis. 

Another type of image augmentation suitable for US images is the Style Transfer technique 

based on neural networks to transfer one image's style onto another image's content. It 

employs pre-trained CNNs to extract content and style features from input images. The 

content features are compared between the content image and the generated image, ensuring 

content preservation, while the style features are represented by the Gram matrices of the 

feature maps and matched with those of the style image, facilitating the transfer of style. By 

iteratively optimizing the generated image to minimize a weighted sum of content and style 

losses, using techniques like gradient descent, the network creates a final output that merges 

the content of one image with the stylistic elements of another, enabling applications ranging 

from artistic rendering to visual effects. This can be useful for data augmentation because it 

allows us to generate new images with similar content to the original images in a dataset 

considered to be scarce for CNN model analysis. Overall, style transfer is a powerful data 

augmentation tool because it allows us to generate new images that have similar content to 

the original images but with different styles, which can help improve the diversity and 

robustness of ML models [102]. Again, this interesting approach is used mostly for natural 

image augmentation. However, one can envisage its use for augmentation of medical images, 

e.g., a style transfer network trained on CT scans and US scans of lungs could be used to 

transfer lung CT images onto lung US scan images. 

In this work, we decided not to use generative neural network image augmentation due to 

several concerns. While GAN-based techniques offer a promising approach to mitigate the 

challenges posed by the scarcity of US medical images, their application introduces specific 

issues, particularly for medical imaging. Notably, the occurrence of vanishing gradients and 

mode collapsing has been observed, leading to limitations in generating diverse and high-

quality augmentations [148], [149]. It is essential to acknowledge that the perception of 

image quality in US images differs from that in natural images, as established in Chapter 4. 
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Additionally, maintaining synchronization between the generator and discriminator in GAN 

neural networks can be challenging, particularly concerning the symmetry and alignment of 

these networks [100]. The relatively small size of available ultrasound datasets further 

complicates the training of intricate models. Moreover, GAN-based methods demand 

substantial computational resources, resulting in prolonged processing times on devices with 

limited capabilities. There are valid concerns regarding the reliability and credibility of 

GAN-based augmentation in diagnostic tasks, with potential contributions to overfitting and 

emphasizing the susceptibility of CNN models trained on GAN-generated images to 

adversarial attacks [104]. 

6.2.3 Spectral-based Augmentation Techniques 

Spectral analysis of image datasets has been employed to generate a representation of natural 

images. This is achieved by transforming the images' coordinate system through projection 

onto a new vector space of the same dimension/resolution. The coordinate axes in this space 

are arranged based on the descending order of variances of the original image pixels away 

from the average of the dataset images. There are various spectral analysis methods, 

including Principal Component Analysis (PCA), Independent Component Analysis, and 

Random Projections. These methods have been used for face biometrics, dimension 

reduction, and CSSR (see, e.g., [75], [76], [150], [151]). These spectral image-based 

projections can be used for image augmentation through the generation of new images by 

manipulating the spectral bases. Recently, PCA has been used to propose a novel image 

augmentation technique based on a random permutation of coefficients of within-class most 

significant axis post PCA projection of an image dataset. A custom CNN was trained on the 

augmented surrogate images obtained from the CIFAR-10 image dataset and was shown to 

improve classification accuracy and ambiguity [152]. 

In general, the success of spectral-based augmentation schemes, such as PCA, requires 

sufficient diversity of the available samples and a good random population sample. Although 

this is the main challenge for US images, such approaches can achieve relative success. 

Indeed, one of our proposed innovative augmentation schemes that uses a random 

projection-based approach will be presented and tested in section 6.3. 

A closely related approach to PCA augmentation is spectral-based augmentation that relies 

on each image's Singular Value Decomposition (SVD), considered as a matrix, and 

manipulates the SVD factors by tiny changes to form a new image. Later, in section 6.3, we 

give more details on the SVD augmentation and its impact on the performance of pre-trained 
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CNN models for BUS image analysis. The geometric methods, including flipping and 

rotation, alter the image geometry by mapping individual pixel values to new destinations, 

while SVD generates new images with similar features as the original ones but with 

somewhat different quality due to SVD degradation/compression. 

Ahmed et al. [68] discussed the challenges of generalization in ENAS-based CNN models 

for breast lesion classification from US images. The paper investigates the effectiveness of 

various techniques, including reducing model complexity, data augmentation, and the use of 

unbalanced training sets to overcome generalization errors. It was shown that SVD plus 

geometric augmentation reduces ENAS model overfitting and performs better. 

Finally, we note that appending cropped RoIs with different proportions of surrounding 

tissue, as discussed in Chapter 4, provides a mitigating solution for the US scarcity images 

by providing multiple genuine versions of the dataset images without modifying the content 

of the RoI regions. This is analogous to image augmentation and is consistent with the way 

radiologists assess US tumour images. We shall present this method in section 6.4. 

6.3 Mathematically Inspired Augmentation Techniques for BUS 

Here, we first describe two mathematically inspired augmentation schemes that we 

developed and implemented as a solution to the scarcity problem of our TenD BUS datasets 

in relation to using pre-trained CNN models for diagnostic purposes. We shall then present 

the results of experimental investigations to determine the effects of these augmentation 

techniques as well as the conventional flip and rotation (Flip&Rot) augmentation, on the 

classification of BUS lesions using DL models in comparison with no augmentation. 

6.3.1 SVD-based Image Augmentation 

This approach is a Spectral-based augmentation scheme that, unlike PCA-based 

augmentation, analyses each image spectrally on its own and generates several copies of the 

same image. During my early study program and together with my supervisors, I contributed 

to the development of such a scheme that was later combined with geometric augmentation 

and appeared later in [68], [105]. 

SVD is a widely used matrix factorization technique in linear algebra, and it has important 

applications in signal/image processing, data analysis, and ML [76]. It is an essential tool for 

understanding the underlying structure of matrices in terms of the geometric profile of their 

columns and rows. Mathematically, given an m×n matrix A, SVD decomposes A into the 

product of three matrices as follows: A = U Σ VT where U is an m×m orthogonal matrix, Σ 

is an m×n diagonal matrix with non-negative real entries, and V is an n×n orthogonal matrix. 
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The superscript T denotes the transpose of the obtained simply by turning each column into 

a row in the same order. The non-zero entries of the diagonal matrix Σ are called the singular 

values of A, and they are arranged in decreasing order along the diagonal, so that the first 

singular value represents the most important information in the matrix A. The columns of U 

and V are called the left and right singular vectors of A, respectively, and they form 

orthonormal bases for the row and column spaces of A. In other words, SVD decomposes A 

into a sum of rank-one matrices, where each rank-one matrix is the outer product of a left 

singular vector, a singular value, and a right singular vector. The larger the singular value, 

the more important the corresponding singular vector is in the decomposition [153]. 

SVD has many important properties: It provides a complete characterization of matrix A, 

including its rank, null space, and range. It is a unique decomposition, meaning that the left 

and right singular vectors and the singular values are unique up to a sign and a permutation. 

It is robust to noise and rounding errors, making it useful in numerical computations. 

For US image augmentation, we consider each image as an m×n matrix and apply SVD 

analysis of this matrix. This allows us to approximate the original matrix A by truncating the 

SVD at a certain rank, which can significantly reduce the dimensionality of the original 

matrix while preserving most of its important information. However, SVD image 

compression/dimension reduction affects the quality of the reconstructed image. In our work, 

each image in the training dataset is augmented with 4 SVD approximated images using the 

top (most important) 50, 40, 30, and 20 Singular values, see Figure 6.1. 

Instead of invoking this compression approach, other SVD-based versions of any image can 

be generated by simple perturbations of some of the singular values that keeps their order 

along the diagonal matrix Σ. For example, if Σ = Diag(σ1, σ2 , σ3 , ..., σn), then replacing 

several σi‘s with σi+ɛi for some small ɛi values that keep the order of the new singular values 

and reconstructing the image, will generate as many versions as needed. However, this 

approach has not been implemented due to the fact that the experiments conducted are meant 

to be a proof of concept. 
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6.3.2 Hadamard-based Kernel Image Augmentation 

This proposed augmentation scheme is inspired by the concept of the compressed sensing 

paradigm, discussed in Chapter 3, which is based on the sparse representation of an image 

using features formed by non-trivial linear combinations of pixels. This approach for 

augmentation does not benefit directly from using compressed sensing that is designed to 

extract a global sparse representation of the images, but instead, we propose to construct 

several small RIP-based k×k matrices to transform images with such filters. Besides many 

other matrices that facilitate compressed sensing of images, Hadamard matrices are well-

known as perfect candidate matrices that provide a rich pool for the selection of RIP matrices 

(see, [76], [87]), but do not directly fit the characteristics of convolution filters that are of 

small odd order square matrices. Hadamard matrices are usually of size (2n×2n), and our 

required filters need to be k×k matrices with a relatively small, odd number k. We simply 

generalise the process of modifying our MCIQ feature vectors, in Chapter 5, and construct 

our filters using block-diagonals of a mix of Hadamard matrices of sizes 1×1, 2×2, 4×4, …, 

etc. In the last Chapter, we created the 6 (5×5) filters, displayed in Figure 5.2, by different 

Figure 6.1 SVD-based US image augmentation via reduced number of singular values. 
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block-diagonals of 1×1, and (2×2 or 4×4) Hadamard matrices. Similarly, one can create 

Hadamard-based kernel filters of sizes 3×3, 7×7, and 11×11. 

 

 

Figure 6.2 Hadamard filter US image augmentation. 



146 
 

Our block-diagonal method can be used for constructing many more Hadamard-based 

convolution filters of size beyond 5x5, but to demonstrate their benefits, we limit our 

Hadamard-based augmentation to the use of the 6 (5×5) Hadamard-based filters of Chapter 

5. These filters are well-conditioned by design (condition numbers ≤2), see Table 5.19, and 

their choice for convolution-based augmentation is influenced by the fact that their action on 

image patches is not sensitive to tolerable perturbation of pixel values. Gaussian filters can 

be used, but we need to select a set of well-conditioned filters. With these 6 Hadamard-based 

filters, we enlarge the Renmin training dataset size by 7 folds. For each image from the 

training dataset, we add a new image by convolving the original tightly cropped tumour ROI 

bounding box with zero padding (i.e., TumourZ) with each of these 6 filters, as shown in 

Figure 6.2. 

6.3.3 Augmentation Experimental Work 

In this section, we present the results of our experimental work that aimed to test the 

performance of the same 4 state-of-the-art pre-trained CNN models on the augmented 

Renmin dataset of BUS tumour scan images using the above two augmentation schemes 

(SVD and Hadamard). For comparison, we also test the performance of the Flip&Rot 

conventional augmentation scheme. In all these experiments, we shall also test the 

performance of each of these schemes on the unseen datasets Test1 and BUSI. As before, 

we shall follow the 5-fold cross-validation protocol to retrain the various pre-trained CNN 

models on each augmented Renmin dataset in the fine-tuned version of the transfer learning 

mode. Although retraining these and other pre-trained CNN models on the larger multi-

centre BUS Modelling dataset did not suffer from the lack of generalization to the above 

external datasets, we also repeated the augmentation experiments for the Modelling dataset, 

which led to marginal changes to their performances on the external dataset. The results are 

not presented here but are available in Appendix A. 

We shall now present the performance of each of the above-mentioned augmentation 

schemes separately and discuss their generalization performance with the external datasets 

compared to the results obtained in Chapter 4 with no augmentation. But later, we end the 

section by comparing the performance of these augmentation schemes against each other, 

recommending means of exploiting these schemes. But before we do all these, and for the 

sake of comparison, below in Table 6.1, we present a replica of the performance results of 

the 4 pre-trained CNN models without augmentation on the external datasets. 
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Table 6.1 Performance of the CNN models retrained on un-augmented Renmin dataset. 

Validation 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.94 ± 0.04 0.94 ± 0.07 0.93 ± 0.04 0.93 ± 0.04 0.94 ± 0.04 

VGG16 0.95 ± 0.04 0.94 ± 0.07 0.96 ± 0.01 0.95 ± 0.04 0.96 ± 0.04 

VGG19 0.95 ± 0.04 0.94 ± 0.06 0.95 ± 0.03 0.95 ± 0.04 0.95 ± 0.07 

ResNet18 0.92 ± 0.02 0.90 ± 0.06 0.95 ± 0.05 0.92 ± 0.03 0.93 ± 0.05 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.78 ± 0.03 0.75 ± 0.06 0.79 ± 0.04 0.72 ± 0.04 0.77 ± 0.03 

VGG16 0.76 ± 0.03 0.74 ± 0.10 0.77 ± 0.06 0.70 ± 0.04 0.76 ± 0.03 

VGG19 0.76 ± 0.02 0.74 ± 0.06 0.77 ± 0.03 0.70 ± 0.03 0.75 ± 0.02 

ResNet18 0.62 ± 0.11 0.83 ± 0.05 0.49 ± 0.21 0.63 ± 0.06 0.66 ± 0.08 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.89 ± 0.03 1.00 ± 0.00 0.84 ± 0.05 0.87 ± 0.03 0.92 ± 0.02 

VGG16 0.78 ± 0.09 1.00 ± 0.00 0.66 ± 0.14 0.76 ± 0.07 0.83 ± 0.07 

VGG19 0.82 ± 0.04 1.00 ± 0.00 0.72 ± 0.06 0.79 ± 0.04 0.86 ± 0.03 

ResNet18 0.66 ± 0.08 1.00 ± 0.00 0.49 ± 0.13 0.68 ± 0.05 0.74 ± 0.06 

 

6.3.3.1 Performance of the Flip&Rot Augmentation Scheme 

The version of the Flip&Rot augmentation implemented here enlarges the Renmin dataset 

by a factor of 5, whereby 4 additional images are generated from each training dataset image 

using rotation 90o, 180o, 270o, and a vertical flip, (see Chapter 3, Figure 3.19). Table 6.2 

below displays the outcome from our experiments when the pre-trained schemes were 

retrained on the enlarged Renmin dataset post-augmentation with our Flip&Rot scheme. 

 

Table 6.2 Generalisation of pre-trained CNNs retrained with Flip&Rot -augmented Renmin dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.78 ± 0.00 0.71 ± 0.04 0.82 ± 0.02 0.71 ± 0.01 0.76 ± 0.01 

VGG16 0.76 ± 0.03 0.66 ± 0.03 0.82 ± 0.06 0.68 ± 0.02 0.74 ± 0.02 

VGG19 0.77 ± 0.02 0.66 ± 0.04 0.83 ± 0.04 0.68 ± 0.02 0.75 ± 0.01 

ResNet18 0.70 ± 0.03 0.75 ± 0.10 0.67 ± 0.09 0.66 ± 0.02 0.71 ± 0.02 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.87 ± 0.01 0.99 ± 0.00 0.81 ± 0.02 0.84 ± 0.01 0.90 ± 0.01 

VGG16 0.86 ± 0.05 1.00 ± 0.00 0.79 ± 0.08 0.84 ± 0.05 0.90 ± 0.04 

VGG19 0.89 ± 0.03 1.00 ± 0.00 0.84 ± 0.04 0.87 ± 0.03 0.92 ± 0.02 

ResNet18 0.76 ± 0.07 1.00 ± 0.01 0.63 ± 0.11 0.74 ± 0.06 0.81 ± 0.05 

 

Generally, these results show that augmenting the training dataset using our Flip&Rot 

scheme has a slightly different effect when tested with two sets.  For the Test1 dataset, the 

overall accuracy has only improved significantly (by about 8%) for the Resnet18 model. For 
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the other CNN models, the same accuracy rate was maintained or improved marginally by 

1% for VGG19. Interestingly, the specificity rates for all the CNN models improved by more 

than a marginal increase, while the sensitivity rates deteriorated by more than marginal 

percentages (4% to 8%). This is somewhat not encouraging from the medical point of view 

in the benefits of fewer Benign cases being misclassified are lost by getting more 

misclassified Malignant cases. 

For the BUSI dataset, except for the AlexNet model, the overall accuracy has improved 

significantly (by about 7% to 10%). For AlexNet, the accuracy deteriorated by 2%.  

Interestingly, the specificity rates for all the CNN models improved by more than a marginal 

increase while the sensitivity rates remained at their optimal rates achieved without 

augmentation. Thus, the improved accuracy is entirely the result of the improved specificity 

rate, i.e., fewer benign cases are misclassified while no more malignant cases are 

misclassified. From the medical point of view, this is a welcome improved performance, 

unlike the case of the Test1 dataset. These discrepancies in the medical effects of this 

augmentation between Test1 and BUSI datasets may be explained by the fact established in 

Chapter 5 (Tables 5.6 and 5.7) that the BUSI dataset is less separable from Renmin than the 

Test1 dataset in terms of the MCIQ quality assessment feature vector. 

6.3.3.2 Performance of the SVD-based Image Augmentation Scheme 

First, we point out that we only implemented the SVD augmentation using the SVD- 

compression approach by eliminating different percentages of singular values rather than 

applying minor changes to some randomly selected singular values. As a result, the Renmin 

dataset was enlarged 5 folds. Table 6.3 below displays the outcome from our experiments 

when the pre-trained CNN schemes were retrained on the enlarged Renmin dataset post-

augmentation with this restricted SVD augmentation scheme. 

These results show that, like the case of using the Flip&Rot augmentation, augmenting the 

training dataset using the SVD-based scheme impacts the generalization performance 

differently when tested with the two external sets. For the Test1 dataset, the overall accuracy 

has improved for all models but only significantly (by 11%) for the Resnet18 model, which 

is 3% more than that with the Flip&Rot. For the other CNN models, the improvement was 

less than significant 2%, which is again better than the Flip&Rot. Similarly, the specificity 

rates for all the CNN models improved by different rates, with a minimum of 3% for VGG19 

to a maximum of 19% for Resnet18. The specificity rate of AlexNet increased by a 

noticeable 7%, while VGG16 increased by more than the marginal rate of 5%. On the other 
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hand, the sensitivity rates deteriorated for AlexNet and Resnet18 by 2% and for VGG16 by 

5% while the sensitivity rate improved by 2% for VGG19. From the medical point of view, 

these results are more encouraging than the case of Flip&Rot. Not all benefits of lower false 

positive misclassified benign masses have been lost completely. In fact, VGG19 also had 

lower false negative misclassified malignant masses. 

 

Table 6.3 Generalisation of pre-trained CNNs retrained with SVD-Augmented Renmin dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.80 ± 0.01 0.73 ± 0.04 0.84 ± 0.02 0.73 ± 0.02 0.78 ± 0.01 

VGG16 0.78 ± 0.01 0.69 ± 0.04 0.84 ± 0.03 0.71 ± 0.02 0.76 ± 0.01 

VGG19 0.78 ± 0.02 0.76 ± 0.02 0.80 ± 0.02 0.73 ± 0.02 0.78 ± 0.02 

ResNet18 0.73 ± 0.05 0.81 ± 0.11 0.68 ± 0.13 0.69 ± 0.03 0.74 ± 0.03 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.90 ± 0.02 0.99 ± 0.00 0.85 ± 0.03 0.87 ± 0.02 0.92 ± 0.01 

VGG16 0.90 ± 0.02 1.00 ± 0.00 0.86 ± 0.03 0.88 ± 0.02 0.93 ± 0.01 

VGG19 0.89 ± 0.03 1.00 ± 0.00 0.83 ± 0.04 0.86 ± 0.03 0.91 ± 0.02 

ResNet18 0.79 ± 0.09 1.00 ± 0.00 0.67 ± 0.13 0.77 ± 0.07 0.84 ± 0.07 

 

For the BUSI dataset, the overall accuracy has improved for all models. Only AlexNet 

accuracy increased marginally by 1%; all other models improved significantly (7% for 

VGG19, 12% for VGG16 and 13% for Resnet18). Interestingly, the specificity rates for all 

except for AlexNet improved by significant rates of (20% for VGG16, 11% for VGG19, and 

18% for ResNet18) but marginally by 1% for AlexNet. On the other hand, the sensitivity 

rates were maintained at their optimal rates achieved without augmentation except for 

AlexNet, which marginally deteriorated by only 1%. Thus, the improved accuracy results 

entirely from the improved specificity rate, i.e., fewer false positive benign misclassified 

masses, while no more malignant cases are misclassified. From the medical point of view, 

this is a welcome improved performance compared to the case of the Test1 dataset. Again, 

these discrepancies in the medical effects of this augmentation between Test1 and BUSI 

datasets may be explained by their different level of separability from Renmin in terms of 

the MCIQ quality assessment feature vector. 
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6.3.3.3 Performance of the Hadamard-based Image Augmentation Scheme 

The Hadamard-based kernel filtering technique was used for augmentation to increase the 

size of the Renmin dataset. Again, we remember that implementing the Hadamard-based 

augmentation uses only 6 Hadamard-based 5x5 matrices, which enlarges the Renmin dataset 

by 7 folds. Table 6.4 presents the experimental results when the pre-trained CNN schemes 

were retrained on the enlarged Renmin dataset post-Hadamard-based augmentation. 

 

Table 6.4 Generalisation of pre-trained CNNs retrained with Hadamard-Augmented Renmin dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 078 ± 0.01 0.70 ± 0.05 0.83 ± 0.04 0.71 ± 0.01 0.76 ± 0.01 

VGG16 0.78 ± 0.02 0.66 ± 0.02 0.85 ± 0.02 0.69 ± 0.02 0.76 ± 0.02 

VGG19 0.77 ± 0.01 0.74 ± 0.03 0.79 ± 0.03 0.71 ± 0.02 0.76 ± 0.01 

ResNet18 0.77 ± 0.01 0.81 ± 0.04 0.74 ± 0.03 0.73 ± 0.01 0.78 ± 0.01 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.90 ± 0.03 0.99 ± 0.00 0.85 ± 0.05 0.88 ± 0.03 0.92 ± 0.02 

VGG16 0.92 ± 0.02 1.00 ± 0.00 0.88 ± 0.03 0.90 ± 0.02 0.94 ± 0.01 

VGG19 0.88 ± 0.03 1.00 ± 0.00 0.81 ± 0.04 0.85 ± 0.03 0.90 ± 0.02 

ResNet18 0.83 ± 0.05 0.99 ± 0.00 0.74 ± 0.08 0.80 ± 0.05 0.86 ± 0.04 

 

These results seem to follow similar patterns of improvements/deterioration of performances 

on the external datasets with slight modifications. For the Test1 dataset, the overall accuracy 

has improved marginally (1% to 2%) for the first 3 models but is significantly improved (by 

15%) for the Resnet18 model, which is 7% more than with the Flip&Rot and 4% more than 

that of the SVD augmentation. The specificity rates for all the CNN models improved 

compared to no augmentation, but the improvement for AlexNet and VGG16 are marginally 

better than that of the Flip&Rot and reasonably similar to SVD augmentation. For VGG19, 

specificity rates deteriorated by 4% (1%) when compared to Flip&Rot (SVD) 

augmentations. However, the specificity rate for Resnet18 has improved significantly by 

25%, which is 6% to 7% more than the improvements achieved by the other 2 augmentation 

schemes. Interestingly, the improved specificity rates were achieved at the expense of 

deteriorated sensitivity rates, except for VGG19. From the medical point of view, these 

results are not as good as those achieved by SVD augmentation. 

For the BUSI dataset, the overall accuracy has improved for all models. Only AlexNet 

accuracy increased marginally by 1%; all other models improved significantly (14% for 

VGG16, 6% for VGG19 and 17% for Resnet18). In relation to the other 2 augmentation 

schemes, only VGG19 is marginally outperformed when retrained with the Hadamard 
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augmentation by 1%. The specificity rates with Hadamard Augmentation outperform the 

SVD scheme by 2% for VGG16 and 7% for Resnet18. AlexNet performs equally with 

Hadamard and SVD augmentation, but Flip&Rot augmentation yields the lowest rate among 

the 3 augmentation schemes. Again, the sensitivity rates were maintained at their optimal 

rates achieved without augmentation except for AlexNet and Resnet, which marginally 

deteriorated by only 1%. Consequently, like the other augmentation schemes, the improved 

accuracy is the result of the improved specificity rate, i.e., fewer false positive benign 

misclassified masses while no/few more malignant cases are misclassified. From a medical 

point of view, this is a welcome improved performance compared to the Test1 dataset. Again, 

these discrepancies in the medical effects of this augmentation between Test1 and BUSI 

datasets may be explained by their different level of separability from Renmin in terms of 

the MCIQ quality assessment feature vector. In Chapter 5, we have shown that using the 

above 6 Hadamard matrices greatly improved MCIQ separability between two small 

datasets, with quality labels assessed by a radiologist, that were highly inseparable by MCIQ. 

Discussion: 

The experimental results of the above augmentation schemes for different pre-trained CNN 

models reveal that their impact on the generalisation is generally positive, with different 

levels of improvement ranging from modest to significant. Moreover, each scheme's 

improvement level varies for different unseen datasets. Although, the generalisation of the 

various CNN schemes without augmentation, as discussed in Chapter 4, was equally 

different for the 2 unseen datasets. For all the schemes, we raised the possibility of attributing 

the differences in their improved generalisation rates to their different level of separability 

from Renmin in terms of the MCIQ quality assessment feature vector. These results raise an 

important question about the validity of claiming that augmentation improves 

generalisability and makes the scheme less overfit. How many more unseen datasets must 

be tested to support such a claim? In the final section, we propose a potential scheme to 

mitigate the scarcity challenge for US images without changing the RoI image data content. 

 

 

 

 



152 
 

6.4 Mitigating BUS Data Scarcity by Margin Appending Schemes 

All the above augmentation schemes as well as those in the literature, are equally applicable 

to any image modality and not specific to US diagnostic images. Several reasons necessitate 

the design of specific scarcity mitigating schemes that are suitable for using DL models for 

US tumour image analysis. First, while class discriminating features learnt by DL schemes 

are based on hidden patterns of image data within the tumour RoI, radiologists are trained to 

look out for the presence of certain tumour signs from various parts of RoI as well as its 

surrounding tissues. Secondly, the failure of generalisation performance of pre-trained CNN 

models for US image analysis to unseen data is often attributed to many factors, including 

the lack of standardised cropping procedures and labelling due to variation in radiologist 

experience and variation in US devices. In Chapter 4, we investigated the issue of optimal 

RoI cropping. We tested a few cropping schemes by extending the CH of a set of lesion 

boundary points marked by radiologists. The results show that certain CH expanding ratios 

improved accuracy. 

Moreover, it is possible to have unseen data with different tumour margin ratios due to 

possible errors in the manual/automatic detection/segmentation. This provides the primary 

motivation for the proposal, in this section, of training DL algorithms with datasets that 

combine the various cropping ratios. This approach in enlarging the training datasets in a 

comparable manner to the above augmentation schemes but without manipulating the 

original RoI images helps reduce the impact of inaccurate cropping on trained model 

performances when tested on unseen datasets. 

This solution aims to overcome the generalizability issues of pre-trained CNN models caused 

by variations in RoI cropping. In particular, we propose a novel data-sampling approach 

called the Tumour Margin Appending (TMA) scheme, which builds upon the previously 

proposed tumour cropping scenarios with Zero-padding discussed in Chapter 4. The 

emphasis of this technique is to retrain DL models that are resilient to different tumour-

cropping ratios/methods employed at various medical centres. It also serves as a regularizer 

to reduce model overfitting when tested on unseen datasets obtained by an unknown tumour 

cropping procedure [9]. 
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6.4.1 Optimal Tumour Cropping in Uncontrolled Scenario – Revisited 

In Chapter 4, we discussed the issue of lesion cropping as an alternative to the challenge of 

automatic RoI segmentation, and to avoid expensive and error-prone manual segmentation, 

experienced radiologists marked a relatively small set of lesion boundary points for each US 

image. Linearly interpolating neighbouring boundary points results in a polygonal RoI 

shape, and the tightly circumscribed horizontal-vertical bounding box with zero padding is 

referred to as the TumourZ cropping scenario. To facilitate the inclusion of tissue data 

outside the polygonal RoI shape, we found that expanding this polygon at constant ratios 

leads to self-intersection for irregular polygonal shapes. Instead, we constructed the CH of 

the boundary points, resulting in what we called the CH-based cropping scenario, denoted 

by CHZ, after zero-padding its surrounding box. Since expanding tumour CH shape at 

different ratios does not suffer from self-intersection, we created several CH expanded 

cropping scenarios, denoted by αZ, using several expansion ratios α in the set {0,6, 0.8, 1, 

1.2, 1.4, …, 2, 2.5, 3, 3.5, 4}. 
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Figure 6.3 Performance of VGG19 trained and tested with cropping at the same ratio (Renmin). 
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After cropping at each of these ratios, we trained and tested several pre-trained CNN models 

in fine-tuning mode on the Renmin dataset. The averages of the 5-fold cross-validation 

accuracies achieved with VGG19 are displayed in Figure 6.3. The best-performing cropping 

scenario is TumourZ (96%), but all the others achieve accuracies in the range between 90% 

and 93%. 

The above results show that pre-trained CNN models retrained on different single tumour 

margin cropping ratios and tested against the same margin appending ratio perform 

comparably well. In real-world applications, it may not be possible to guarantee testing will 

be carried out with the same standard RoI cropping ratio adopted during the creation of the 

CNN model. Moreover, in the absence of a reliable and efficient automatic segmentation of 

the tumour boundary, the cropping process becomes error-prone due to several factors. In 

turn, it becomes a source of lack of generalizability of models retrained with data from a 

standardized clinical setting. This raises the question of whether there is a cropping scenario 

that has an optimal performance over several cropping scenarios. For that, we conducted a 

new set of experiments to retrain the VGG19 model with each single cropping ratio but tested 

with RoIs cropped at all the proposed different ratios (uncontrolled scenario). We determined 

the performances of each of the corresponding models on the entire Renmin dataset. Figures 

6.4 and 6.5 display subsets of these results, each displaying the performance of 3 cropping 

ratios. For full results, see Appendix B. 

A close examination of these results shows that except for the TumourZ cropping scheme, 

the performance of the VGG19 model trained with any other cropping ratio maintains a 

reasonable performance when tested on data cropped with nearby ratios. However, the 

performance deteriorates when training with a single cropping ratio but testing with images 

cropped with far away ratios. This has also been shown to be true for other pre-trained CNN 

models (see [9]). These results motivate combining RoI images obtained with several 

cropping ratios to enlarge the training set to mitigate the US scarcity challenge. 
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Figure 6.4 Performance of VGG19 trained with one cropping ratio and tested on all the ratios. 

Figure 6.5 Performance of VGG19 trained with one cropping ratio and tested on all the ratios. 
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6.4.2 BUS Augmentation Using Tumour Margin Appending Schemes 

The idea of training DL models with a single optimal margin appending ratio is impractical 

and cannot be guaranteed in real-world medical applications due to several factors. While it 

is possible to standardize the tumour margin ratio of the training dataset collected in a clinical 

setting that uses a controlled standard cropping scheme, it cannot be ensured for unseen 

datasets from different clinical centres. Moreover, the results in Figures 6.4 and 6.5 

demonstrated that no single cropping scenario has optimal performance for a wide range of 

cropping ratios on its own. Still, several ratios exhibit locally optimal performance over a 

narrow range of ratios. Here, we explore the advantages of combining multiple locally 

optimal ratios to address the generalization issue caused by the scarcity of training datasets 

collected from a single clinic with a controlled RoI cropping procedure, such as the Renmin 

dataset. Our goal is to overcome this limitation and enhance the generalization capabilities 

of the models through the combination of these ratios. We propose the following US image 

augmentation-like 4-step process to retrain pre-trained CNN models and test their 

performance as follows: 

 

 

We conducted experiments by implementing this proposed process with each of the subsets: 

A = (TumorZ + CHZ); A = (TumorZ + CHZ + 1.2Z);  A = (TumorZ + CHZ + 1.2Z + 1.4Z); 

A= (TumorZ + CHZ + 1.2Z + 1.4Z + 1.6Z); and A = (TumorZ + 1.2Z + 1.6Z), Figure 6.7, 

below, displays the results of all these experiments besides that of no augmentation. 

 

Figure 6.6 Tumour Margin Appending steps to train/test CNN models.  
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These results demonstrate that compared to no margin appending, all the TMA configuration 

schemes yield improved classification performance within a longer range of ratios than their 

individual components, and few of these schemes do that in a stable style. In short, TMA 

augmentation configurations can increase tolerance to significant RoI cropping errors that 

may happen for various reasons. The best-performing sample augmentation scheme was 

found to be (TumorZ + CHZ + 1.2Z + 1.4Z + 1.6Z), but the shorter configuration (TumorZ 

+ 1.2Z + 1.6Z) has almost similar but marginally lower performance throughout the full 

range. For practical reasons, keeping the configuration at a reasonable size is recommended. 

However, increasing the number of augmentation ratios within the suggested range may 

provide sufficient data samples to build CNN models from scratch. In this case, besides 

enabling tolerance to cropping errors, such schemes learn additional hidden patterns of 

features from different surrounding regions that clinicians often rely on to generate 

supporting evidence for their decisions regarding signs of malignancy. However, more 

sophisticated schemes of inclusion of surrounding regions would be necessary to avoid 

relying on irrelevant or performance-decreasing information. 

Determining the impact of these schemes on generalisability by testing performance on any 

external dataset is not necessary unless for datasets of US images that practice cropping in 
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Figure 6.7 Performance of VGG19 trained with TMA augmented datasets. 
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significantly outside these ranges. In fact, if a dataset practices erroneous cropping at ratios 

with these reasonable ranges, then the failure of a CNN model to generalise to such a 

database cannot be attributed to this issue. The 2 external datasets, Test1 and BUSI, have 

been cropped in a similar way to that of the Renmin dataset. 

This investigation highlights that CNN models trained using sample augmentation at 

multiple ratios are robust against various cropping scenarios that may occur in different 

hospitals. These schemes act as a regularizer to reduce some, but not all, causes of overfitting 

that relate to cropping errors and to some extent, remove the necessity of optimal tumour 

segmentation. 

6.5 Conclusion 

In this chapter, we investigated the challenge of US data scarcity, identified in Chapter 3, as 

an important factor influencing the performance of pre-trained CNN models when retrained 

with US tumour images. In the literature, this factor is usually considered a source of 

overfitting and image augmentation techniques are promoted as reasonably successful 

mitigating solutions. We found a significant number of image augmentation schemes in the 

literature and added two novel augmentation schemes. Most of these schemes, including the 

use of GAN networks, generate new image versions by image transformation/manipulation. 

It was shown that our simplified/limited versions of the schemes (SVD and Hadamard), 

along with the conventional Flip&Rot scheme, effectively enhanced the model's 

generalization capability to the two external datasets. However, the extent of improvement 

varied across different CNN architectures and differed for the two datasets. More 

importantly, since none of these schemes is specific to US images, it is difficult to determine 

which causes of lack of generalization these augmentation schemes helped mitigate. Chapter 

4's investigation into determining optimal RoI tumour cropping inspired this Chapter's 

research. We aimed to enhance CNN learning by emulating the learning process of trainee 

radiologists who analyse various regions within the RoI, including its border and 

surrounding areas, to identify signs of tumour malignancy. We devised the TMA strategy to 

address the challenge of limited data and variations in RoI cropping practices. This strategy 

combines multiple locally optimal cropping ratios to expand scarce US training datasets and 

improve generalization capabilities. It does not only address the scarcity issue specific to US 

data but also distinguishes itself from other augmentation schemes by effectively mitigating 

a specific cause of low generalization to unseen datasets without the need to test on a large 

number of external datasets. 
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Chapter 7: Conclusion and Future Research 

Challenges 

Breast cancer remains a critical global health concern, demanding accurate diagnosis and 

early detection to enhance patients' treatment and quality of life. Significant advancements 

in medical sciences have helped improve patients' survival, especially for early detected 

cases. The acute shortage of well-trained radiologists and oncology clinicians that most 

healthcare systems suffer from, besides the vast cost implications, is becoming an obstacle 

to benefiting from the related significant advances in medicine. The considerable advances 

in ML algorithms for computer vision, particularly the recent exciting success of Deep 

Learning, are attracting significant interest as a supporting analytical tool for tumour 

diagnostics from medical image scans. In this thesis, we aimed to contribute to global 

research activities for leveraging DL techniques, particularly CNNs, for the automatic and 

reliable classification of breast lesions in US images. We faced many serious challenges in 

developing such schemes, many of which may be attributed to differences between the 

content and structure of US images and those of natural image datasets with which most 

existing CNN models have been trained. However, other challenges emanate from the 

critical nature of medical diagnostics compared to many computer vision classification tasks. 

The most critical challenges include (1) the difficulty of interpreting CNN decisions, (2) the 

problem of overfitting that relates to training a ML model with data from a given clinical 

setting and failure to generalise its performance to unseen data recorded in other clinical 

settings, and (3) robustness against adversarial/natural image data perturbation. Our 

investigations were concerned with the second challenge of overfitting and focused on issues 

relating to the nature/properties of BUS datasets in terms of CNN model requirements on the 

size of the training dataset, class sample diversity, and adequacy of input image quality. The 

level of adherence to these requirements influences the performance of any CNN models 

developed for BUS and is also strongly impacted by the specificity of US images compared 

to natural images. Training well-performing CNN models from scratch requires considerably 

large training datasets well beyond the availability of credibly labelled BUS datasets. We 

adopted the fine-tuning process to retrain CNN models pre-trained with natural images. 

Section 7.1 will present the main conclusions from the last 4 Chapters. Our investigations 

also generated many pilot research projects indirectly related to the thesis objectives and 

raised future challenges described in Section 7.2. 
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7.1 Main Conclusions 

Our initial exploration of the fields of ML for image analysis revealed several US-specific 

factors that impact tumour diagnostics decisions. Besides the scarcity of reliably labelled US 

tumour scan images, these factors include considerable variation in RoI sizes within both 

benign and malignant masses, inter- and intra-observer variability due to differences in 

clinician expertise and diversity of deployed US devices that, in turn, result in different 

clinical practices in cropping RoIs as well as different image quality associated with the level 

of tolerated speckle noise and contrast level. Acquiring a diverse and well-annotated US 

tumour training image dataset is widely acknowledged as an essential requirement, even for 

retraining state-of-the-art pre-trained CNNs, for ensuring good performing models that are 

generalisable to unseen data and robust against adversarial/natural data tampering. 

We discovered that the extent of RoI size variation within BUS datasets is significant and 

poses a tough challenge for meeting the fixed-size input image requirements of DL models 

without compromising image quality. We also found that variation of RoI size occurs in both 

classes, although benign cases are often smaller than most malignant cases. This discrepancy 

adversely affects the quality of benign cases when using conventional resizing techniques 

like BiCubic. To address this issue, we adopted a CSSR resizing procedure known to 

improve the natural image quality of degraded low-resolution. While CSSR marginally 

enhanced the performance of CNN models and reduced the probability of misclassifying 

benign cases by 10%, it also improved the perceptual quality of resized RoIs, as confirmed 

by an experienced radiologist. The marginality of improved performance due to using CSSR 

instead of BiCubic raised questions about the suitability of using human-perceived image 

quality metrics that are suitable for assessing the quality of natural images for evaluating the 

quality of US images. In fact, our literature review highlighted an anomaly between the 

perceived low quality of medical US images and the lack of robust and standardized IQA 

tools for US images. This issue needs more investigations to understand the nature of US 

image distortion. 

To determine the impact of the significant variation of the distribution of US RoI tumour 

sizes on the performance of the various pre-trained CNN models, it was essential to adopt 

standardised RoI lesion cropping schemes. This was necessitated by the fact that only a set 

of RoI boundary points were labelled by the radiologist instead of time-consuming 

manual/automatic segmentation. The construction of the CH of the lesion border marked 

points, besides being computationally efficient and easy to expand, helped minimise the 
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exclusion of lesion pixels compared to other methods. It also facilitated several cropping 

schemes via parallel expansion and different scenarios of padding the region between the 

surrounding rectangular box and the tumour polygonal area. Tissue padding of several 

expanded CH schemes (e.g., the 1.2T obtained by expanding CH by 1.2 times) led to 

improved performance but only marginally compared to the zero padding of these schemes. 

Among the proposed RoI cropping/padding scenarios, the TumourZ RoI scheme emerged as 

the optimal choice for CNN model performance, which also performed well for HC feature 

schemes. From these experiments, one can conclude the reasonable potential/promise of 

enhanced model performance by the inclusion of some RoI external tissue pixels in the 

immediate surroundings of the lesion border. However, for both padding scenarios, the 

trained models on the Renmin dataset have low to very low generalisation when tested on 

the 2 unseen datasets, i.e., we have an instance of overfitting. 

The training set is neither large enough, nor its samples are adequately diverse being 

recorded in a single clinical centre. To test if using a BUS dataset recorded in a single clinical 

centre accounts fully for the overfitting of the models, we repeated the experiments by 

training the pre-trained CNN models with the reasonably larger multi-centre Modelling 

dataset that includes the above-recorded BUS images, besides samples recorded in 4 

additional clinical centres. The results confirmed that the TumourZ scenario maintained the 

validation performance but yielded superior generalization for the 2 unseen datasets. The 

Grad-CAM visualization tool further supported the decision quality of TumourZ in that the 

decisions were more reliant on the data in the tumour interior region. 

Having discovered that most IQA metrics designed for natural images fail to assess medical 

US images effectively, we investigated methods to address this problem by developing tools 

tailored explicitly for BUS images. Visual examination of many typical US images revealed 

that the distribution of illumination and contrast across different US regions vary 

significantly compared to good quality natural images. We thus opted to calculate the 

correlation between local statistical parameters across US image bocks to design a Multi 

Characteristic Image Quality feature vector (MCIQ) that captures the spatial distribution of 

existing quality metrics. The MCIQ demonstrated good tumour class dependency and a 

significant ability to distinguish different image sources and datasets. Unfortunately, the 

MCIQ assessment did not align with the binary quality assessment of a small dataset labelled 

by an expert radiologist as Good and Bad images. We then developed an advanced version 

of MCIQ simply by utilizing image convolutions with a small set of well-conditioned 

Hadamard filters, which resolved the above misalignment problem. It has helped overcome 
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limitations arising from the scarcity of quality-standardized radiology expert-labelled US 

images and the limited knowledge of distortions in US images. 

We finally re-investigated the impact of the scarcity of US images on the performance of the 

pre-trained CNN models, but instead of using the multi-centre data expansion, we explored 

various image augmentation techniques with the Renmin training dataset. We examined the 

effect of several commonly used conventional augmentations, including Flip&Rot and 

spectral-based augmentation using a limited version of SVD. Inspired by the success of the 

Hadamard-based modification of MCIQ, we utilized it for designing an effective image 

augmentation scheme. All these schemes are equally applicable to images of any modality. 

The experimental results demonstrated that these augmentation approaches improved the 

generalization of the various pre-trained CNN models to the 2 external datasets. However, 

these welcome successes are not explainable, and it is unclear what causes of overfitting 

these schemes help overcome. There are several reasons that necessitate the design of 

specific scarcity mitigating schemes that are suitable for enabling the use of DL models for 

US tumour image analysis. In fact, there is no guarantee that these schemes could work with 

other than these two external datasets. The earlier results that demonstrated the success of 

certain CH expanded cropping schemes did maintain good performance for nearby CH 

expanded cropped RoIs provided the main motivation to propose a novel data-sampling 

approach called the Tumour Margin Appending (TMA) scheme to enlarge small training 

datasets by including a combination of the various cropping ratios. This method is specific 

to US tumour images and distinct from other augmentation schemes. It relies on image data 

from the surrounding regions of the RoI, which radiologists usually use in their diagnostic 

decisions. The corresponding experimental results showed that TMA effectively mitigated 

the lack of generalization. It helped CNN models to be robust against various cropping 

scenarios when testing unseen samples with unknown RoI cropping schemes. 

In conclusion, our research has showcased the potential of CNN models to enhance the 

classification of breast lesions in US images and avoid certain causes of model overfitting. 

By investigating factors such as RoI size normalization, resolution enhancement, optimal 

lesion cropping, and image augmentation, we have provided valuable insights and 

methodologies to improve CNN-based classification systems' accuracy and generalization 

capabilities. Our findings underscore the importance of addressing challenges related to RoI 

size variation, US-IQA, and scarcity of US images for pre-trained CNN models. 
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7.2 Future Research Challenges 

The insights and methodologies presented in this thesis serve as a foundation for future 

research and advancements in applying DL techniques to BUS analysis. While conducting 

our investigations, and in light of rapid advancement in AI applications into computer vision, 

we also investigated several issues and topics linked to the task of using CNN for BUS but 

not strictly specific to the objectives of this thesis. Furthermore, several mathematical 

challenges naturally arose during the life of this thesis that could have more relevance to 

image/data analysis beyond the objectives of this thesis. These include issues with the need 

for size-adaptive CS tools for resizing images to appropriate fixed resolutions. The results 

of some of these additional investigations are not included in the previous chapters but open 

the way for new research projects targeting US image analysis, with more emphasis on the 

content and semantics of US images, not only for breast tumours. Below, we shall list these 

proposed projects and the obtained results, together with hints on the intended future 

approaches. 

7.2.1 Hybridisation of Multiple HC and Pre-trained CNN Models 

The concept of Hybrid ML models of data/image analysis relates to combining/fusing 

several ML models designed to solve a classification problem for improved performance or 

exploit the individual models' complementarity. The fusing of several HC texture features 

for pattern recognition has been very popular for a long time [6]. Combined deep features 

from a pre-trained VGG19 model with HC texture and morphological features in [35] have 

also been recently proposed for BUS tumour classification. 

This proposed future project is designed to select a few HC texture feature classification 

schemes and a few pre-trained CNN models, and we investigate methods of combining them 

for improved classification and generalization ability, including: 

 

 

Figure 7.1 The proposed feature hybridisation methods. 
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These suggestions benefit from 2 investigations that we carried out during the thesis project; 

the first was initially aimed to determine what kind of image texture features are learnt by 

the pre-trained CNN models, while the second was a pilot study to fuse decisions of the pre-

trained CNN models using their output scores. Next, we describe these two investigations. 

7.2.1.1 Empowering Handcrafted texture features by CNN convolution filters 

Explaining CNN models’ predictions is an essential reassuring element for deploying such 

models in medical image analysis. Identifying image statistical/textural features learnt by 

CNN architectures during training helps develop visualization tools for explaining their 

decisions. The most relevant features are those recognisable by the Human Vision System 

(HVS). This investigation was concerned with determining if CNN models learn HVS image 

texture features from BUS images. 

We started by investigating the effect of the various convolution layers steps, of AlexNet 

architecture in fine-tuning mode, on selected statistical/textural features, including Mean, 

Variance, Entropy, HOG, GLCM, and ULBP, applied to BUS images. Each step of the 

convolution layers results in changing the various statistical/textural features depending on 

the entries of the layers’ filters. For each of the selected textural/statistical features, we 

follow the same approach to create a feature map at each step of each of the convolutional 

layers by concatenating the extracted features from each version of the convolved image 

(i.e., from each channel of the extracted activation for the corresponding layer). Figure 7.2, 

below, illustrates the construction of these feature maps. 

 

 

Figure 7.2 Texture Feature Augmentation with Random Filters. 
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We adopted the AlexNet CNN architecture due to its simplicity, but these could be repeated 

for any CNN architecture. At each step of each convolutional layer, the output feature maps 

were fed into the linear SVM classifier, and the performance of the selected HC feature maps 

was determined in accordance with the 5-fold cross-validation protocol. The experimental 

accuracies presented below are the averages of test accuracy in the 5 folds experiments. 

Table 7.1, below, displays the experimental results for the 6 image statistical and textural 

descriptors. We also include the classification results when we used AlexNet for 

classification at the bottom of the table. In this case, and before passing to the FCL, each 

input image is represented by a feature map constructed by concatenating flattened matrices 

output from the last convolution layer. The Input layer is simply the performance of the 

selected textural/statistical descriptor extracted from the original images prior to input into 

the chosen CNN model. 

 

Table 7.1 Classification of Several HC texture features post-convolution with fine-tuned AlexNet. 

AlexNet # Channels Mean Variance Entropy HOG GLCM ULBP 

Input Layer 1 50% 51% 49% 85% 76% 84% 

conv1 96 70% 90% 91% 89% 89% 89% 

relu1 96 90% 90% 91% 91% 90% 90% 

norm1 96 90% 90% 91% 91% 89% 89% 

pool1 96 91% 90% 91% 91% 90% 89% 

conv2 256 90% 93% 90% 92% 92% 92% 

relu2 256 92% 93% 91% 92% 92% 91% 

norm2 256 93% 93% 90% 91% 92% 91% 

pool2 256 93% 93% 89% 92% 91% 91% 

conv3 384 91% 95% 92% 91% 93% 90% 

relu3 384 94% 94% 91% 90% 93% 92% 

conv4 384 93% 94% 91% 90% 91% 89% 

relu4 384 93% 93% 92% 91% 94% 91% 

conv5 256 94% 94% 93% 90% 92% 90% 

relu5 256 93% 95% 94% 91% 94% 92% 

pool5 256 94% 94% 92% 91% 91% 90% 

AlexNet  93% 93% 93% 93% 93% 93% 

 

At the input layer, the feature vectors perform differently; the performance of the statistical 

ones is random, around 50%, which means these 1-dimensional feature vectors do not have 

any discriminating power to classify benign tumours from malignant cases. However, soon 

after convolving the images with the convolutions of the first layer, they all acquire good to 

high discriminating power. In contrast, the other texture features already have reasonably 

good accuracy (85% for HOG, 76% for GLCM, and 84% for ULBP) at the Input Layer. 
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Generally, the table shows that the discriminating power of all the HC schemes started to 

improve as one progresses successively through the following layers. 

We found no significant difference between the performance of the features extracted from 

the pre-trained AlexNet's last convolution layer compared to the fine-tuned AlexNet. These 

results raise strong doubts if the decisions of the fine-tuned AlexNet for the BUS images are 

informed by the extracted HC features. This justifies our conclusion that CNN models may 

not learn HSV-recognised textural/statistical features. 

These experiments also show that augmenting (i.e., concatenating) such HC 

statistical/texture features post-convolution produces higher dimensional feature maps that 

boost discrimination power, especially in the case of using single statistic parameters.  In 

short, convolution empowers even the least class-discriminating HC features. The widely 

accepted assertion that decisions of HC statistical/texture image analysis schemes are 

amenable to interpretation justifies their use to interpret the decisions of the CNN models. 

7.2.1.2 Incremental Fusion of CNN Models 

The other component of the hybridisation project is motivated by a pilot study we conducted 

to mimic the commonly adopted approach of fusing HC classification schemes for improved 

performance. There are several ways to extract and combine deep features from several CNN 

models. The most decision-relevant feature in CNN models is the 2-D variable scores 

outcome of their last FCL that encapsulates all the discriminating power. Thus, we opted for 

the score level fusion as the easiest to implement regardless of the individual CNN model 

architectures. In the pilot study, we trained the 6 well-known state-of-the-art CNN models 

(AlexNet, VGG16, ResNet50, InceptionV3, Xception, and DensNet201) on the modelling 

dataset and tested them on the 2 external testing datasets: Test1 and BUSI. We experimented 

with the extracted score features for 6 incrementally fused CNN models as follows: 

1) AlexNet, (2-D) 

2) AlexNet, VGG16- (4-D) 

3) AlexNet, VGG16, ResNet50 - (6-D) 

4) AlexNet, VGG16, ResNet50, InceptionV3- (8-D) 

5) AlexNet, VGG16, ResNet50, InceptionV3, Xception - (10-D) 

6) AlexNet, VGG16, ResNet50, InceptionV3, Xception, DensNet201 - (12-D) 

 

In each case, the concatenated 2-D score features of the constituent CNN models are trained 

with the SVM cubic kernel classifier and tested on both external datasets. Table 7.2 presents 
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the experimental results, which demonstrate the success of this fusion approach. For both 

external datasets, the 4th fused DL achieves the highest classification performance of 96% 

for Test1 and 93% for BUSI datasets. By no means this is the only fused combination that 

achieves optimal performance. 

 

Table 7.2 Classification performance of the deep fused features with Cubic SVM. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

1 0.78 ± 0.26 0.85 ± 0.09 0.74 ± 0.41 0.79 ± 0.17 0.80 ± 0.21 

2 0.93 ± 0.00 0.95 ± 0.00 0.91 ± 0.00 0.91 ± 0.00 0.93 ± 0.00 

3 0.95 ± 0.00 0.96 ± 0.00 0.94 ± 0.00 0.93 ± 0.00 0.95 ± 0.00 

4 0.96 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.94 ± 0.00 0.96 ± 0.00 

5 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.00 0.94 ± 0.00 0.96 ± 0.00 

6 0.96 ± 0.00 0.95 ± 0.00 0.96 ± 0.00 0.94 ± 0.00 0.96 ± 0.00 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

1 0.75 ± 0.32 0.83 ± 0.19 0.70 ± 0.39 0.74 ± 0.25 0.77 ± 0.28 

2 0.90 ± 0.00 0.95 ± 0.00 0.87 ± 0.00 0.87 ± 0.00 0.91 ± 0.00 

3 0.91 ± 0.00 0.93 ± 0.00 0.90 ± 0.00 0.88 ± 0.00 0.92 ± 0.00 

4 0.93 ± 0.00 0.93 ± 0.01 0.93 ± 0.00 0.90 ± 0.00 0.93 ± 0.00 

5 0.93 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.90 ± 0.00 0.93 ± 0.00 

6 0.93 ± 0.00 0.92 ± 0.00 0.93 ± 0.00 0.89 ± 0.00 0.92 ± 0.00 

 

One of the shortcomings of the above approach is that training 4 or more large CNN models 

is computationally expensive. In the future, we aim to design lightweight CNN models on 

the augmented datasets and fuse their decision scores to achieve similar performance 

improvements. Moreover, this opens the door for further feature fusion and diversification 

using deep and HC feature schemes. 

7.2.2 Optimal Cropping – Revisited 

In Chapter 4, we identified the TumourZ cropping scenario as optimal RoI 

cropping/appending that helped improve the generalization of CNN models. However, this 

cropping scenario does not include any posterior tumour regions that encapsulate tumour 

class discriminating signatures. According to BI-RADS, there are breast tumour posterior 

signs that indicate the level of suspicion for malignancy [154]. The posterior feature 

describes the echogenicity (intensity) effects of the posterior area, i.e., the area immediately 

underneath the lesion. The posterior area may also encapsulate enhancement, shadowing, 

combined echo, or no posterior; see Figure 7.3. 

Enhancement is detected when the posterior area appears brighter than the adjacent areas, 

while shadowing is manifested by the posterior area appearing darker than the adjacent areas. 
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In an US tumour image, we may have a combined posterior when there is more than one 

posterior or no posterior when the echogenicity is similar to the adjacent areas. Shadowing 

and enhancement are the most critical features of breast lesions as they are generally 

accepted as signs of highly suspicious malignancy and benignity, respectively [154], [155]. 

 

 

 

Figure 7.3 The four types of tumour posterior features 

Figure 7.4 A breast tumour with its posterior region 
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In the future, instead of only upscaling tumour CH in all directions (i.e., appending the 

tumour area all around equally), we shall attempt to include the important posterior regions 

in the cropped RoI TumourZ to empower the class-discriminating features. However, we 

need RoI ground truth to do that, which an experienced radiologist can provide. In this case, 

the targeted posterior area can be included in the cropped RoI to complement the TumourZ 

scenario, see Figure 7.4. 

7.2.3 Extending MCIQ for US-IQA Aligned with Expert Quality Labelling 

Several possible directions exist to expand the current work on the MCIQ feature vector. 

One such approach can be made by expanding the Hadamard-based augmentation to include 

different size Hadamard-based filters (7x7, 11x11, and 15x15). But another possibility is 

extending the 50 coordinates of MCIQ by using the block-wise distributions of other HC 

texture features from the original or convolved images. It is important to make this image 

quality more specific to US images. 
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Appendix A 

Here, we present the results of the experimentation we conducted, but not presented in 

Chapter 6. The experiments aimed at evaluating the performance of the 6 state-of-the-art 

pre-trained CNN models on the augmented Modelling dataset of BUS tumour scan images. 

We employed augmentation techniques, including Flip&Rot, SVD, and Hadamard, and 

assessed the models' performance on the unseen datasets Test1 and BUSI. We remind the 

reader that the findings from our Chapter 4 experimental analysis indicate that the retraining 

of the 6 pre-trained CNN models using the BUS Modelling dataset successfully mitigated 

concerns regarding their generalization capability to external datasets. After augmenting the 

Modelling dataset, we observed minor variations in their performance on these external 

datasets. Detailed results are presented in Tables 7.3, 7.4, and 7.5 for the Flip&Rot, SVD, 

and Hadamard augmentation techniques, respectively. 

 

Table 7.3 Generalisation of pre-trained CNNs retrained with Flip&Rot-Augmented Modelling dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.91 ± 0.01 0.90 ± 0.06 0.92 ± 0.03 0.89 ± 0.02 0.91 ± 0.02 

VGG16 0.90 ± 0.02 0.93 ± 0.02 0.89 ± 0.04 0.88 ± 0.02 0.91 ± 0.01 

ResNet50 0.89 ± 0.01 0.89 ± 0.03 0.89 ± 0.01 0.86 ± 0.02 0.89 ± 0.01 

InceptionV3 0.90 ± 0.01 0.90 ± 0.03 0.89 ± 0.01 0.87 ± 0.02 0.90 ± 0.02 

Xception 0.86 ± 0.02 0.80 ± 0.05 0.90 ± 0.02 0.81 ± 0.02 0.85 ± 0.02 

DenseNet201 0.88 ± 0.01 0.86 ± 0.03 0.89 ± 0.02 0.84 ± 0.01 0.88 ± 0.01 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.89 ± 0.03 0.94 ± 0.03 0.86 ± 0.04 0.86 ± 0.03 0.90 ± 0.02 

VGG16 0.87 ± 0.02 0.86 ± 0.02 0.87 ± 0.03 0.82 ± 0.02 0.86 ± 0.01 

ResNet50 0.87 ± 0.01 0.86 ± 0.06 0.88 ± 0.03 0.83 ± 0.02 0.87 ± 0.02 

InceptionV3 0.88 ± 0.01 0.86 ± 0.03 0.90 ± 0.01 0.84 ± 0.02 0.88 ± 0.02 

Xception 0.91 ± 0.01 0.93 ± 0.02 0.90 ± 0.02 0.88 ± 0.01 0.92 ± 0.01 

DenseNet201 0.86 ± 0.02 0.86 ± 0.04 0.86 ± 0.04 0.81 ± 0.03 0.86 ± 0.02 
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Table 7.4 Generalisation of pre-trained CNNs retrained with SVD-Augmented Modelling dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.92 ± 0.02 0.89 ± 0.03 0.94 ± 0.03 0.90 ± 0.02 0.92 ± 0.02 

VGG16 0.92 ± 0.01 0.92 ± 0.04 0.92 ± 0.03 0.90 ± 0.01 0.92 ± 0.01 

ResNet50 0.92 ± 0.02 0.92 ± 0.04 0.93 ± 0.01 0.90 ± 0.02 0.92 ± 0.02 

InceptionV3 0.91 ± 0.01 0.89 ± 0.03 0.92 ± 0.02 0.88 ± 0.01 0.91 ± 0.01 

Xception 0.85 ± 0.02 0.75 ± 0.04 0.91 ± 0.03 0.79 ± 0.02 0.83 ± 0.02 

DenseNet201 0.91 ± 0.01 0.91 ± 0.05 0.91 ± 0.02 0.89 ± 0.02 0.91 ± 0.02 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.91 ± 0.01 0.95 ± 0.02 0.89 ± 0.02 0.88 ± 0.01 0.92 ± 0.01 

VGG16 0.88 ± 0.02 0.90 ± 0.02 0.87 ± 0.04 0.84 ± 0.02 0.89 ± 0.02 

ResNet50 0.89 ± 0.02 0.92 ± 0.02 0.88 ± 0.02 0.86 ± 0.02 0.90 ± 0.02 

InceptionV3 0.90 ± 0.02 0.90 ± 0.04 0.91 ± 0.02 0.87 ± 0.02 0.90 ± 0.02 

Xception 0.93 ± 0.00 0.92 ± 0.02 0.94 ± 0.01 0.90 ± 0.01 0.93 ± 0.00 

DenseNet201 0.88 ± 0.02 0.89 ± 0.04 0.87 ± 0.05 0.83 ± 0.02 0.88 ± 0.01 

 

Table 7.5 Generalisation of pre-trained CNNs retrained with Hadamard-Augmented Modelling dataset. 

Test1 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.93 ± 0.01 0.92 ± 0.02 0.94 ± 0.01 0.91 ± 0.01 0.93 ± 0.01 

VGG16 0.93 ± 0.01 0.93 ± 0.04 0.92 ± 0.01 0.90 ± 0.02 0.93 ± 0.02 

ResNet50 0.93 ± 0.01 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.02 0.93 ± 0.01 

InceptionV3 0.92 ± 0.02 0.90 ± 0.05 0.93 ± 0.01 0.90 ± 0.03 0.92 ± 0.02 

Xception 0.88 ± 0.01 0.84 ± 0.03 0.91 ± 0.00 0.84 ± 0.02 0.87 ± 0.02 

DenseNet201 0.93 ± 0.01 0.93 ± 0.05 0.93 ± 0.02 0.91 ± 0.02 0.93 ± 0.02 

BUSI 
Accuracy Sensitivity Specificity F1-score AUC 

AVG ± STD AVG ± STD AVG ± STD AVG ± STD AVG ± STD 

AlexNet 0.91 ± 0.01 0.93 ± 0.02 0.89 ± 0.02 0.87 ± 0.02 0.91 ± 0.01 

VGG16 0.88 ± 0.03 0.90 ± 0.03 0.87 ± 0.03 0.84 ± 0.04 0.88 ± 0.03 

ResNet50 0.88 ± 0.00 0.91 ± 0.02 0.85 ± 0.01 0.84 ± 0.00 0.88 ± 0.00 

InceptionV3 0.92 ± 0.01 0.92 ± 0.02 0.92 ± 0.01 0.88 ± 0.01 0.92 ± 0.01 

Xception 0.90 ± 0.00 0.93 ± 0.02 0.89 ± 0.01 0.87 ± 0.01 0.91 ± 0.01 

DenseNet201 0.88 ± 0.01 0.86 ± 0.05 0.89 ± 0.02 0.84 ± 0.02 0.88 ± 0.02 
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Appendix B 

This appendix compliments the experiments conducted in Chapter 6 on TMA schemes. 

Figures 7.5-8 present the full results for the experiments of retraining the VGG19 model with 

each single cropping ratio but tested with RoIs cropped at all the proposed different ratios. 

Figure 7.9, below, displays the full results of TMA augmentation scenarios besides that of 

no augmentation. 
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Figure 7.5 Performance of VGG19 trained with one cropping ratio and tested on all the ratios. 
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Figure 7.6 Performance of VGG19 trained with one cropping ratio and tested on all the ratios. 

Figure 7.7 Performance of VGG19 trained with one cropping ratio and tested on all the ratios. 
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