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Abstract 

This thesis generally investigated various aspects of designing and developing Clinical 

Decision Support Systems (CDSSs), but in particular exploited machine learning techniques 

in supporting medical diagnosis decisions. Having reviewed the fundamental functional 

components of existing modern CDSSs, it shows that most such systems were lacking a trusted 

decision evaluation module that provides reliable information about decision strengths. 

Therefore a refined CDSS system framework was first proposed, which centralises the concept 

of confidence-based classification by coupling eventual decision outcomes with a level of 

decision reliability. Based on measure theory, a unified Decision Score measure of the 

decision reliability was introduced, which combines the decision outcomes in terms of positive 

or negative signs together with the decision strength in percentage values.  

Furthermore, the behaviour of the proposed decision score measure was investigated in 

more complex and diverse feature spaces of high dimensionality, where the challenges of the 

“curse of dimensionality” are encountered. Such challenge was handled by revisiting the 

problem under orthogonal projections of the feature space, and have developed a new measure 

in performing quantified evaluations on the decision score measure, known as the Decision 

Sensitivity measure. The key influencing factors for the sensitivity of decisions were found to 

include not only the dimensionality of the selected features, but also the standard deviation of 

each feature used in the transformed orthogonal space.  

After the basic concept of the decision score measure is established, this thesis further 

extended the uses of the decision score measure in a multiple classifiers setting. This thesis 

first reviewed the principles and rationales behind various well-established information fusion 

schemes and tested their strengths and limitations in adapting the proposed decision score 

measure. Moreover, a correlation-based decision fusion scheme was proposed in maximising 

the potentials of the decision score measure in complex scenarios. Based on the evaluation 

results across different datasets, it proves that fusion schemes improve the robustness of the 

decision models while maintaining a good level of diagnostic accuracy in general.  

As clinical decision making normally faces new unseen cases and unpredictable challenges, 

it is essential to maintain a degree of adaptivity in a CDSS for post-deployment robustness of 

the system. Therefore, the last piece of the research reported in this thesis focused on 

investigating possible ways to refine the CDSS decision scores model in a time-efficient 

manner, spontaneously. In particular, this thesis reviewed several commonly used metrics and 

methods for monitoring and refining prediction models, and further adapted these methods to 

the proposed decision score measure.  
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Chapter 1. Introduction 

 

1.1. Research Background and Problem Description  

Healthcare is an essential service of modern societies. Effective healthcare is critical for 

improving life expectancy and life quality in both developed and developing countries. 

However, according to the newest published data from the Office of National Statistics, 

despite having a 2% drop in the death rate in the UK from 2018 to 2019 (Owen-Williams & 

Cornish, 2020), the year 2018 has hit the highest deaths registered in the history since 1999 

(Patel, 2019). Among all mortalities accounted for recent years, after excluding the influence 

from the recent outbreak of the COVID-19 pandemic, cancer was counted as the most common 

cause of death worldwide (Sung, et al., 2021). A large proportion of cancer fatalities can be 

avoided or at least reduced with timely and effective treatments (Nardin, et al., 2020). Sadly, 

any unexpected pressure added to the healthcare system, such as the recent outbreak of the 

COVID-19 pandemic, causes delays to the treatment and leads to more death inevitably 

(Maringe, et al., 2020).  It is for this reason that researchers throughout the world are 

constantly searching for more timely and easy to implement diagnostic techniques with robust 

accuracy. More timely and precise diagnosis will not only lead to more effective patient 

treatment, but also better prevention of the illness from deterioration, better forms of patient 

management, higher rates of patient survival, and better utilisation of resources. 

 The effectiveness of the diagnosis very much depends on the accurate identification of 

distinctive characteristics of the disease. Besides conventional medical tests such as blood, 

urine tests and X-ray examinations, medical checks using digital imagery devices have 

become commonplace in clinical practices. In the last two decades, technologies such as 

ultrasound, MRI, CT scan have advanced significantly, and these modern imagery devices 

provide information-rich images of different modalities that have greatly assisted the work of 

clinicians. The use of such images has growingly become a necessity need for most, if not all, 

of medical decision making. However, most of the time, radiographers, radiologists, and 

specialists manually examine the images, measure the target objects of interest within the 

images by applying machine functions, and record the readings automatically generated by 

the devices. The effective use of the images and their manually obtained image features very 

much depends on the knowledge, experience, and skills of the image examiner. It is well 

known that the supply of knowledgeable and skilled medical staff (including the image 

examiners) is always limited due to many years of costive training before members of such 

staff become qualified and start practising. According to the most recent clinical workforce 
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report published by NHS Improvement in the UK in February 2016 (NHS Improvement, 2016), 

the shortage of qualified clinical staff has been reported as a great risk factor to public health 

services. Many medical-related occupations including medical radiographers appear 

constantly on the best-needed occupations shortlist issued by the UK government (UK Visas 

and Immigration, 2021).  

 To meet such constant and high demands, computer scientists have been trying to develop 

computer-based software systems to support clinical decision making such as diagnosis, and 

ease the pressure from the demand by speeding up the manual diagnostic process, and/or 

introducing a certain level of automation in processing image characteristics and results of 

other medical tests. In contrast to human domain experts, computer-based systems have many 

advantages in powerful and speedy data processing capabilities. Such strengths are 

particularly useful for a big data environment, which complements the conventional 

exhaustive information filtering process by clinicians. Along with the advances of machine 

learning technology in artificial intelligence, many computer-based approaches have been 

proposed to assist clinical diagnosis in the past two decades (see details in Chapter 2). These 

proposed methods and systems offer great potentials in assisting clinical diagnoses. However, 

the current state-of-art computerised solutions still largely stay within the realm of research 

purpose only. The ultimate effective solution lies in the integration of multiple predictive 

models augmented with knowledge and experiences from domain experts. Clinical Decision 

Support Systems (CDSSs) are set to achieve this goal. 

 Clinical Decision Support Systems (CDSSs) refer to computer-based systems that support 

decision making in clinics. Many types of CDSSs serving different use cases have been 

proposed in the past (Yang , et al., 2009; Tabesh, et al., 2007; Srivastava, et al., 2008; Kothari, 

et al., 2012; Basavanhally, et al., 2010). In recent years, machine learning techniques are 

increasingly deployed in medical diagnosis with promising results. A modern CDSS normally 

contains classification models as its core, but such models have constraints that are worth 

further investigation. Three important issues have not been fully addressed in the existing 

literature, or not fully studied together despite their intertwined natures. The first issue is 

concerned with the outcome of a typical diagnostic classification model, which is normally 

trained on various features extracted from medical images and observations based on medical 

tests using known discrete class labels. A class label can either be a categorical value such as 

benign or malignant (Yang , et al., 2009; Tabesh, et al., 2007) or a description of magnitude 

gradings (Tabesh, et al., 2007; Basavanhally, et al., 2010). In either case, the outcome 

predicted by a trained classification model is mainly the appropriate class label. However, in 

real-life medical applications (and perhaps in other applications as well), predicting the correct 

class label alone is often insufficient without any further support in terms of the level of 
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adequacy in classification when there are vital risk implications of misclassification. For 

example, in a scenario of diagnosing the right type of ovarian tumour, it is important for 

doctors to know whether the tumour is benign or malignant and at the same time how much 

belief they have in that diagnostic decision. In a CDSS, this issue of measuring the level of 

belief becomes even more important given the potential ethical concerns regarding decisions 

made by machines. Unfortunately, most existing work in classification is mainly interested in 

the accuracy of the predicted class label rather than the reliability and strength of individual 

predictions. It must be noted that the decision strength is not the same as decision accuracy. 

The tested accuracy or the predicted confidence interval of a model can only provide a rough 

idea of the model’s general reliability in distinguishing the predefined classes; it does not give 

any indication about the level of certainty of a specific decision. Therefore, evaluating the 

prediction decision strength with a score is within the realm of this research. How such a 

decision score should be defined and how such a score should be used in the input data feature 

space have become research questions of the interest.  

 The second issue is concerned with combining decisions made by multiple classification 

models. This issue is raised first because of a common practice in medical diagnosis. When 

an acute disease with exceptional characteristics occurs to a patient, it is often the case that 

multiple medical domain experts are consulted. Very often it is the consensus decision made 

by a panel of experts that is taken as the final decision. Due to various levels of knowledge 

and experience, such joint decision-making can be very complex without any existing rules to 

follow. In machine learning, although fusion of classification is a well-ploughed field of study, 

most existing fusion schemes are again mainly interested in final class labels and the joint 

decision accuracy (Ren, et al., 2016). The strengths of combined decisions by various 

classifiers are still non-trivial and remain an open question. Besides, practically deployed 

CDSSs in the foreseeable future are very likely to adopt an approach to combine machine 

recommended decisions and human expert decisions due to potential concerns on ethical 

grounds. Given these scenarios, the fusion of decision strengths should also be properly 

studied. In other words, the final decision is again not only just the most appropriate class 

label, but also a “combined” strength score for that decision. 

 The third issue relates to deployment beyond the training and testing stage. In medical 

decision making, it is desirable to continuously improve the decision quality and reliability. A 

medical domain expert does not become an expert only by training. More likely, an expert 

learns much more from his experience of making correct and incorrect decisions in his practice 

of medicine. Similarly, in machine learning, continual learning is the major school of thought 

regarding learning beyond the model development phase (Doorhof, 2018). However, the effect 

of learning beyond the development phase upon decision strength and reliability needs further 
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investigation and understanding. Under certain circumstances, such learning may result in a 

marginal adjustment of decision strength, but under other circumstances, models may need to 

be retrained. The appropriate actions to take need further investigations.  

 All three issues are essential and critical for determining whether a CDSS is truly ready to 

assist medical doctors in making the right decisions.  

 

1.2. Research Aim and Objectives 

The overall aim of this research is to investigate the theory and application of a confidence-

based classification decision-making scheme that underpins a typical CDSS, addressing all 

three issues raised. The term “confidence” here specifically refers to the level of belief in a 

classification decision made about a class label, which should not be confused with the concept 

of the confidence interval of a modelled result. In particular, the thesis is intended to achieve 

the following research objectives: 

● To explore and define a sensible measure of confidence in a classification decision that 

reflects the level of strength of the decision for a specific class outcome, and to represent 

the level of confidence in a classification decision through a meaningful and valid 

decision score that combines the level of confidence and class outcome in a single 

quantity, 

● To explore properties of decision score in low and high dimensional feature spaces 

regarding the level of sensitivity with a classification decision, i.e. how much and in what 

way the decision score was affected by the dimensionality of the feature used, 

● To investigate existing fusion schemes and propose a new correlation-based fusion 

scheme that sensibly combines strengths of decision making from multiple classifiers into 

a final decision score, 

● And to investigate and propose a method for continuously maintaining and refining 

decision scores in the deployment phase to reduce the need for model retraining. 

The background setting of this thesis is the decision-making aspect of a typical CDSS 

concerning the three essential issues raised in Section 1.1. The context of this research is 

outlined in three intertwined and closely relevant areas regarding classification decisions, i.e. 

decision evaluation in assessing the decision strength and reliability of each CDSS decision 

model during the decision-making process, decision optimisation in enhancing the overall 

performance of a single or multiple CDSS decision models, and decision evolution in enabling 

and improving the adaptiveness of CDSS to unforeseen failures through continuous 

adjustment of trained models. Figure 1.1. illustrates a Venn diagram of the three areas. The 
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aim and objectives of this research are set against the intersection (not the union) of the three 

connected areas. The common core is the concept of decision confidence. At the end of this 

research, the investigation from each topic area and the understandings gained are expected to 

consolidate each other and finally contribute to a sophisticated decision-making scheme 

behind CDSS.  

 

Figure 1.1: Context of This Research in a CDSS System Environment 

As shown in Figure 1.1, On the one hand, the evaluation results regarding individual 

features and classifiers contribute towards a better understanding of decision-making, and 

such understanding provides a solid base towards better optimisation of classification models 

and possible fusions of the models. The improved individual and fused models can then be 

continually tested, assessed, and monitored for their performance during the deployment stage 

which in turn may update the evaluation of decision strength according to the online 

performance. On the other hand, the continuous evaluation of the decision performance can 

be seen as cues for continual learnings, which can then be used for determining the appropriate 

occasion for model updates and reconstructions to ensure the robustness of the CDSS decision-

making. Retraining of the models can be triggered if a significant decay in the models’ 

performance is observed. The duplex cycles among these three main areas of interest ensure 

that the CDSS adapts changes actively in the dynamic online environment, leading to a 

gradually maturing and improving CDSS. 

By achieving the objectives listed above, this research is intended to answer the following 

research questions: 

● What is it meant by decision confidence? How is the level of confidence measured into 

a decision score?  
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● What is the basic model for measuring decision confidence? How does the level of 

decision confidence change in low and high dimensional feature spaces? How is decision 

sensitivity controlled in low and high dimensional feature spaces? 

● What is the best way of fusing the decision confidence levels when multiple classifiers 

are making a joint decision? 

● How is the confidence measure adapted to a different type of data in the CDSS? 

● How to make decision models in the CDSS adapting to data of high velocity? 

 

1.3. Research Methodology and Approach Taken 

This research follows the route of literature informed investigation. The main research is based 

on mathematical reasoning and statistical modelling approaches. Although the nature of the 

research is application-oriented, aiming to solve practically encountered issues in real-life 

CDSS, this research is not entirely intended as pure data-driven and experiment-based 

research. Data sets are indeed used to verify, support and constrain the mathematical models 

and schemes developed from sound theories. As indicated by the title of the thesis, Gaussian 

models and Bayesian classifiers play a central role in this research due to their soundness and 

directness in expressing the key concepts and reasoning schemes within this research. 

The data sets to be used for evaluation and verification purposes are well-chosen to ensure 

that (a) the data sets are collected from real-life clinical settings in order to reflect the 

applicability of the research outcomes, (b) the data sets must be of different varieties to reflect 

the clinical reality, and (c) the data sets should be of different dimensionalities from very low 

dimensions to very high dimensions to test and validate the scope of the applicability of the 

derived theoretical models. It is also important that the research recognizes the constraints and 

limitations on the boundaries of the theoretical models. More details on the data sets used will 

be given in each of the key chapters later in the thesis. The data sets are acquired either from 

public domains under certain terms and conditions or from sources through collaborations 

with permissions of use.  

The research application is interested in developing a sophisticated CDSS with a closed 

loop in providing accountable and reliable clinical decisions. In achieving successful 

applications, this research is going to study several fundamental elements including but not 

limited to (a) methods for assessing decision making process, (b) methods for optimising the 

preciseness of the decision made, (c) methods for generalizing information obtained from 

multiple decision makers and (d) methods for renewing rules learned from the past experience. 
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1.4. Ethical Approval 

In this study, we have used two privately owned datasets collected from our collaborated 

partner hospitals and one publicly available dataset acquired from the online open access 

database. The detailed information regarding the three datasets is described in section 2.4.2 

and 5.5.1. All the patient information within the three datasets was anonymised. This research 

and its data use were approved by the School Research and Ethics Committee, School of 

Computing, University of Buckingham, UK. 

 

1.5.  Research Contributions 

Novel contributions achieved from this thesis are outlined as follows: 

● The thesis defines a confidence measure based on posterior probability. The confidence 

is modelled on the basis of the Gaussian mixture model under a Bayesian classification 

framework. This work, in the form of a conference paper entitled “Towards a Confidence-

Centric Classification Based on Gaussian Models and Bayesian Principles”, authored by 

Dongxu Han, Hongbo Du and Sabah Jassim, was published at the 9th York Doctoral 

Symposium on Computer Science and Electronics in November 2016 (Han, et al., 2016), 

and received the best presentation award. 

● The thesis conducts a thorough investigation into the behaviours of the proposed 

confidence measure in a high dimensional space. It evaluates the decision sensitivity of 

the proposed confidence measure in both low and high dimensional feature spaces. This 

work was published as a journal paper entitled “Controlling Sensitivity of Gaussian 

Bayes Predictions based on Eigenvalue Thresholding”, authored by Dongxu Han, 

Hongbo Du and Sabah Jassim, was published at the EAI Endorsed Transactions on 

Industrial Networks and Intelligent Systems, Vol.5, Issue 16 in November 2018 (Han, et 

al., 2018). 

● The thesis adopts several existing fusion schemes for integrating multiple confidence 

measures into a single confidence score. The thesis further proposes a novel correlation-

based classification fusion scheme based on confidence score correlations. 

● The thesis proposes a continual learning scheme in automatic refining the confidence 

level for adapting online classification performances of a trained classification model. 

 

1.6.  Thesis organisation  

The rest of the thesis is organised as follows. Chapter 2 introduces the fundamental 

background knowledge for understanding the theoretical models proposed. It also provides a 
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CDSS context for the main issues addressed by the thesis. Unlike a conventional thesis design, 

the background chapter of this thesis does not include a comprehensive literature review. 

Instead, the review of recent existing works in the literature will be given in each key chapter 

throughout the thesis. By doing so, the existing works in the literature and the topic of 

investigation by a key chapter can be closely coupled for ease of understanding. Chapter 3 

describes the idea of a sound confidence measure for a classification decision, which is further 

embedded into a decision score. The properties of the confidence measure in low dimensional 

feature space are then studied with empirical evidence to verify the soundness of the proposed 

confidence measure. Chapter 4 discusses the integration of the proposed decision score 

measure across different measurable spaces, particularly in high dimensional spaces. Two 

critical factors in decision-making are then investigated. Chapter 5 presents the investigation 

of using confidence measures in a multi-classifier situation. The chapter outlines possible 

approaches to adapt the existing fusion schemes to a confidence-based decision-making 

process, and proposes a novel fusion scheme based on the correlations between classifiers’ 

decision scores. Chapter 6 further investigates possible ways of evolving the proposed 

confidence measure to suit the dynamic online testing environment with spontaneously 

leaning capacity, aiming to produce a much more robust and trustable classification decision 

scheme in the core of a CDSS. 
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Chapter 2. Backgrounds 

 

This chapter is designated to provide background and context for this research. It is against 

this background that the three important issues regarding classification decision making are 

raised. The chapter is divided into three main parts. In the first part, clinical decision support 

systems, as a practical application platform for medical decision making of various kinds, are 

first reviewed. A framework of a clinical decision support system with computer-based 

models at the centre is proposed. After that, some general knowledge regarding supervised 

machine learning is summarised, and the limitations of many existing classification systems 

and models are highlighted. In addition, measure theory, as the main underpinning theory 

behind confidence measure, as well as its various models of measurement are reviewed. In the 

final part of this chapter, the major datasets used for conducting experiments within this thesis 

are introduced, with a detailed explanation of the requirements for selecting these datasets. 

It is worth reiterating that this chapter is not intended as a comprehensive review of 

literature where the most recent developments of existing work in the topic areas of this 

research are surveyed. It has been decided that such a survey will be presented in each key 

chapter of this thesis for close coupling between the existing work and any new work 

developed from this research. This particular chapter only paves the way for the rest of the 

thesis by providing the essential knowledge and understanding for the domain of the research. 

Knowledgeable readers may consider skipping this chapter if needed. 

 

2.1. Clinical Decision Support Systems 

2.1.1. Overview of Concepts and Principles of DSS and CDSS 

The concept of a Decision Support System (DSS) has been first introduced in the early 1960s. 

It refers to a computer system (software, hardware, or hybrid of the two) that is intended to 

bring together data, information, and knowledge from various sources, which also analyse the 

collected information, and facilitate the evaluation of assumptions underlying the use of 

specific models in assisting the organisation to make complex decisions of different kinds 

(Sauter, 1997). In other words, DSS aims at assisting human decision-makers through efficient 

and effective uses of a large volume of data of various kinds. DSS systems should be 

distinguished from many other kinds of enterprise information systems ranging from human-

based information processing and information management systems like a database 

management systems (Shobowale, 2020) to fully automated decision-making systems like 
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autonomous vehicles (Shi, et al., 2021). As shown in Figure 2.1, Sauter (Sauter, 1997) 

illustrates the position of a typical DSS in contrast with the others in a spectrum of various 

kinds of information systems. At the left end of the spectrum are the machine-oriented systems 

which normally provide summary information extracted from well-structured data sets. Such 

systems are not meant to support decision making; decisions are still made by human users 

based on the provided information summary as evidence. At the right end of the spectrum are 

the human-oriented systems that are trying to mimic human decision logics and provide 

potential decision outcomes automatically based on a range of structured and unstructured 

data. A typical DSS is normally positioned between the two extremes and slightly towards the 

human logic side, which relies on structured data sets and may or may not produce human-

like decision outcomes in the end. In other words, DSSs are intended to offer high-level and 

more abstract information or knowledge from structured databases that can be easily 

understood and used by humans to support decision making. 

 

Figure 2.1 DSS in a Spectrum of Various Information Systems (Sauter, 1997) 

In particular, a DSS should possess the following key characteristics (Holsapple & 

Whinston, 1996). First, a DSS should contain knowledge relevant to its stakeholders and 

intended purposes. Universal DSSs suitable for any application purposes do not truly exist. 

Second, a DSS should be capable of acquiring and maintaining knowledge of different kinds. 

Such knowledge should include not only verified information summarised from the collected 

raw data but also descriptive meta-data including hidden patterns discovered from the data. 

Third, a typical DSS, for supporting decision making, should also be capable of presenting 

knowledge in different and comprehensive forms according to user requests so that reasons 

behind decisions taken can be explained and become verifiable by human decision-makers. 

Last but not least, a DSS should be capable of retrieving knowledge and feature information 

from its database or information base for further logical deductions. It should also be capable 

and flexible in inducing new knowledge upon the demands of the decision-makers. Many 

other types of key functionalities have also been proposed (Turban , et al., 2004), but those 

listed earlier appear to be the most essential ones. Furthermore, different types of applications 

where a DSS is deployed must also require their own lists of application relevant functions. 
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Despite the lack of universally-recognised understanding of DSS functions, as a common 

consent, a DSS should provide the user with understandable information that is derived from 

low-level databases to enhance the human decision-making process in dynamic environments. 

With the recent advances of artificial intelligence, particularly machine learning, it is expected 

that more machine learning capabilities will be embedded into modern DSSs to handle 

complex and uncertain scenarios projected by large volumes of various data from multiple 

data sources. 

Public health is always an important element for human well-being, there is a constant and 

urgent need to adapt DSS solutions in benefiting many stakeholders in health. Clinical 

Decision Support System (CDSS) is one type of DSS for health and deployed in clinics. CDSS 

can be generally divided into two main categories: knowledge-based CDSS and non-

knowledge based CDSS (Berner, 2007). A knowledge-based CDSS aims at using computer 

programs to reproduce human logic and mimic the reasoning process of medical experts. The 

systems of this kind are most likely to be based on a set of well-defined rules that specify 

sophisticated and well-established clinical knowledge accumulated from the practice. IOTA 

Simple Rules and SRisk Calculator tool is such an example (Timmerman, et al., 2016). In the 

contrast, a non-knowledge based CDSS is intended to induce high-level knowledge from a 

large amount of practising data using machine learning techniques. Such systems may not 

always have an explicit and standard deductive reasoning process for decision making, instead, 

they rely more on the induced models to estimate outcomes of scenarios and make decisions. 

Depending on the areas of decision concerns, CDSSs can also be tailored and even completely 

developed from scratch for various purposes. Google Health’s diabetic retinopathy screening 

solution can be considered as an attempt on such a CDSS (Gulshan, et al., 2016). 

Based on intended application functionalities, CDSSs can be further classified into the 

following three different categories (Musen, et al., 2013). The first type of CDSS, known as 

the management CDSS, mainly aims for enhancing the speedy information searching 

capability to boost diagnosis accuracy indirectly. Such a system requires a well understood 

clinical knowledge database as the foundation, and then applies effective searching algorithms 

for relevant information and knowledge for quick reviews. There is no standard requirement 

on the style of presenting the knowledge retrieved, which can be either enumeration of 

individual cases or summarised reviews. Domain experts would conduct a clinical diagnosis 

by referring to the knowledge presented by the CDSS (Wagholikar, et al., 2013). Another type 

of CDSS, known as the focusing CDSS, is designed to supersede trained clinician for simple 

and repetitive works, e.g., counting the number of cells in a tissue slice, making the clinician 

work more effectively and efficiently on other tasks that require his/her knowledge and 

reasoning abilities. Such a system is commonly related to image processing, where clinical 
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images are used as input and image summarisations and annotations are produced as output. 

An example of the extracted knowledge may be annotations such as the width and height ratio 

of a lesion area (also known as the Region of Interest) within an input image, which may 

indicate malignancy of the lesion. Such knowledge is then used by the doctors towards the 

final diagnosis of the disease (Doyle, et al., 2012). The third type of CDSSs, commonly known 

as the diagnostic CDSS, acts as a recommendation system that may automatically provide 

diagnostic decisions for human consideration. The automatic decisions can be seen as a 

complement to the clinical decisions made by experts and therefore increase the accuracy of 

the diagnosis. The system is usually built in an architecture where a central data repository 

forms the data kernel, feature extraction functions produce abstract feature information from 

the raw data, and the extracted feature data are fed into trained machine models to predict the 

possible outcome. Although the final knowledge provided may vary from system to system, 

in general, the system should produce an understandable description about the predicted 

circumstances of a given scenario (Srivastava, et al., 2008; Kothari, et al., 2012).  

This research uses diagnostic CDSS as the background context due to the following reasons. 

Firstly, among all relevant decisions in medical and health applications, early and accurate 

diagnosis of a disease has paramount importance, particularly for cancer diagnosis. Secondly, 

the institution where this research is conducted has a long history of collaborating with clinical 

doctors within the UK and abroad with a large amount of accumulated experience which 

provides the convenience for the research outcomes to be verified against the real-life clinical 

practice. Thirdly, although topics within this research scope are also of interest for DSS in 

general, having a too wide scope of application in mind will lead to difficulty in conducting 

empirical studies to verify the soundness of any theorems. Based on those reasons, the CDSSs 

mentioned in this thesis will refer to cancer diagnostic CDSSs in particular. 

 Although accurate and precise diagnosis is always an essential requirement for a CDSS, 

errors do inevitably occur during testing and deployment influencing the performance of the 

CDSS in practice. As a solution, many types of optimisation techniques have been deployed 

to reduce errors and their associated risks. Generally, such optimisations can take place in 

three different stages of a CDSS operation. Pre-phase optimization refers to improving the 

quality of data before they are fed into the CDSS. The goal is to diminish potential errors 

contained in the raw inputs and therefore to make the CDSS yield a more accurate prediction. 

Examples of these techniques can be Welch's t-Test for feature selection (Song, et al., 2007), 

Gabor Filter for image enhancement (Hong, et al., 1998) and Principal Component Analysis 

for Dimension reduction (Wold, 1987), etc. However, the effect of these techniques varies due 

to the complex nature of the error involved, which cause the optimisation being unreliable in 

many circumstances. Therefore, we would like to investigate a more robust optimisation flow 
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to deal with different types of errors dynamically.  

 In-phase optimization focuses on using different decision-making mechanisms to reduce 

overall chances of getting decision errors. Examples can be using Bayesian Networks (Boutell 

& Luo, 2004), random forest (Wang, et al., 2020) or XGBoost (Ogunleye & Wang, 2020) for 

classification accuracy enhancement. However, combining (also called fusing) the knowledge 

between different decision models can be challenging due to a large number of possible 

combinations and their various natures. A set of possible features F and a set of possible 

classification algorithms C would produce 𝐹 × 𝐶 possible classifiers. However, not all of 

them are appreciated since the nature of certain features may not be appropriate to all the 

classifiers. As a result, it would be unreliable and also costly if the final decision outcome is 

summarised among all the possible classifiers in real-time. Therefore, feasible solutions need 

to be proposed for an efficient and effective approach to obtain reliable results while 

minimising the unnecessary and redundant classification efforts, making the diagnosis in real-

time more feasible, robust, and reliable. 

 Post-phase optimization aims at adding additional bias to the final decision outcome to 

reduce any negative eventuality. The optimization algorithms often follow a regression 

approach in transferring the derived in-phase decision into the expected decision, in which the 

parameters are set once trained and hardly changeable, but still are heavily relied on. For 

example, a rigorous threshold on evaluating the reliability of the decision outcome can be used 

to reduce the false classification of miscarriages and hence the unnecessary negative impact 

of odinopoeia on women. Determining and tuning these parameters optimally are always 

critical and challenging to the system performance. So far, this aspect of the system has not 

been properly studied, and further research can lead to more effective schemes for post-phase 

optimization. 

2.1.2. A Proposed Framework for Hybrid Machine Learning and CDSS  

In order to introduce the main topics concerning this research, a proposed framework for a 

hybrid machine learning and expert knowledge-based clinical decision support system is first 

given here. The main components of the proposed system are based on a general understanding 

of existing CDSSs with a specific emphasis on diagnostic decisions. Figure 2.2 shows a block 

diagram of the framework for such a system. At the centre of the system is the central data 

repository that stores various data details including patient demographics such as age and 

gender, descriptive data such as medical history, medical tests conducted such as blood tests, 

heart tests, various modality images like X-ray and ultrasound, extracted features from the 

images like histograms of local binary patterns, geometric features, fractal dimensions, etc. 

The repository pulls the data from different medical centres’ data sources and integrates them 
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together into complete data objects and instances held in their entirety. The schema for the 

data repository must be open in nature so that newly found data details, as well as newly 

identified feature vectors, can be added at any time with ease. An example schema is the 

NoSQL key-value scheme (Sivasubramanian, 2012). The management software maintaining 

the data repository should provide facilities to integrate data, enforce consistency, and upon 

request pull a complete data set in supporting training and testing of machine learning models.  

 

Figure 2.2 Framework Architecture of a Proposed CDSS 

 The machine learning (data mining) function and associated feature extraction functions 

are meant to perform the development of predictive models at the back-end of the system in 

an “off-line” mode. In other words, any training and modelling/remodelling do not interfere 

with the real-time (online) use of the decision-making part of the system. The modelling 

functions apply machine learning and data mining techniques to descriptive and feature data 

to construct the initial predictive models. The models should not only produce a class outcome 

but also an indication of the prediction decision strength. The predictive models should be 

regularly updated with clinical feedback received from the clinical feedback part of the system. 

Therefore, the model’s learning algorithms should be iterative in nature to modify the existing 

models in light of any prediction errors. Therefore, a continual self-learning process needs to 

be embedded to automatically retrain the models to adapt newly appeared data for making the 

diagnosis more accurate. This module can be seen as two individual parts which involve online 

and offline mechanisms respectively. In the offline stage, different kinds of evaluation and 
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optimisation techniques are implemented that targeting at enhancing the features and 

classifiers used for making decisions, as well as amending decision model structures from a 

system efficiency improvement perspective. In the online stage, testing examples that are not 

well understood from the training database would lead to a re-training to the decision network 

to make the system being more adaptive to the unknown occurrences and therefore boost up 

the system performance. 

 The central decision-making unit is the place where the fusion of predictive decisions 

from all existing models takes place, combining decisions made by individual classifiers or 

predictive models (including non-machine learning models and even predictive models in the 

domain experts’ minds based on their extensive experiences) into a final diagnostic decision. 

This unit is the core of the whole decision support system. Strategies for decision support, 

fusion strategies, overall assessment of prediction strength as well as any “post” adjustment 

of weightings for the predictive models according to their performance should be embedded 

into the unit. The unit may deploy a series of steps of evaluations over a period regarding the 

models used for decision making. The final decision together with the response action of the 

decision is eventually sent to the storyboard component. This component is built to match 

evaluation results from the decision-making unit with associated treatment advice which have 

been developed over time according to the effectiveness of the treatments in the past. This 

advice part is editable by the domain experts. In the future, the recordings of treatment history 

and the associated diagnoses can be treated as another source of potential data mining or 

machine learning at another higher level. Both the decision results from the central decision-

making unit and the treatment advice retrieved from the storyboard are presented to the end-

users through a user interface unit. This unit displays the outcomes of the decision support 

system in an easy to understand and interactive manner. The unit may need to pull other related 

information from other data sources. 

2.1.3. Three Key Concerns for this Research  

From the proposed CDSS framework, it is clear that three key issues of central concerns exist 

in the core parts of the CDSS. These are: decision strength, decision fusion, and continual 

learning. Decision strength should reflect the level of confidence of a diagnosis besides the 

class label. This is in fact a common practice in clinics. Doctors always give a diagnostic result 

with some level of confidence. For minor common diseases such as flue where symptoms are 

obvious, a diagnosis comes with a high level of confidence. However, for acute diseases such 

as cancer, most, if not all, diagnoses come with some degree of uncertainty. For some tricky 

cases, even the doctors find them difficult to decide and the prediction outcome is closer to a 

random guess with a low level of confidence. Having a properly defined measure of 
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confidence that accompanies a class outcome decision is not only natural but also realistic and 

may even influence any further decision making such as fusion. 

 Decision fusion is another key issue of concern. It is about combining outcomes of 

individual classifiers or predictive models. Fusion normally offers opportunities for more 

robust outcomes of decisions. Again, decision fusion is very common in medical diagnosis. 

When a doctor encounters some difficulty in diagnosing disease, it is a common practice for 

the doctor to consult other experienced doctors to make a joint decision. In machine learning, 

fusion is also often used, and various fusion schemes like majority voting have been developed. 

However, fusion is not only concerned with how to combine decisions but also how to 

combine the levels of decision confidence from the individual classifiers. The latter is not very 

well researched so far. 

 Continuous learning is also a central issue as well in a CDSS. No predictive models can be 

100% accurate all the time. In fact, doctors quite often make mistakes in diagnoses. It is from 

those mistakes that the doctors accumulate useful experiences and improve their skills and 

their art in medicine. Similarly, a CDSS must also provide the necessary mechanism for 

predictive models to adjust themselves. This can be done through retraining the predictive 

models. However, frequent retraining of the models is very time-consuming (particularly for 

deep learning solutions) on the one hand and may even lead to unstable models on the other. 

This research is intended to investigate how to adjust levels of confidence of the models 

instead of retraining the models, which can save a huge amount of time and maintain the 

stability of the models. 

 

2.2. Machine Learning for Computer-Aided Diagnosis 

2.2.1.   Process Overview 

An important part of a CDSS is a Computer-Aided Diagnosis (CAD) component where 

machine learning, as well as computer vision techniques, may be heavily involved (see the 

offline part of Figure 2.2). This is where a classification decision is made by the machine-

based models in assistance for a hybrid system in the central decision-making component of 

the CDSS. The process behind a CAD follows a sequence of operations for different purposes. 

The sequential process starts with data acquisition where data of a variety of forms such as 

numbers, text descriptions, 2D or even 3D images or video sequences are taken through either 

manual, semi-automatic or even automatic means from various sources such as medical 

centres, clinics, hospitals and health departments. Large health systems such as the patient 

information system of National Health Services (NHS) in the UK (McCracken & Edwards, 
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2017) often pull patient-related data from different medical centres like GP surgery and 

hospitals and share the information among the different parts of the services. With the 

assistance of modern information systems and big data platforms, data from different sources 

can now be integrated, resulting in high dimensional data records describing various aspects 

of patients in their entirety. This powerful data integration offers opportunities to analyse the 

data in different ways for different purposes.  

 Once the data are collected and integrated, the data need to be processed before they are 

used to train predictive models. This is because data may require treatments in order to 

maintain desirable levels of quality in terms of accuracy, precision, completeness, consistency 

and a minimal amount of unnecessary redundancy. Data may also need to be prepared in a 

certain format before any machine learning tools and functions can be applied. Known as pre-

processing, unnecessary noises are removed, missing values may be imputed, samples can be 

taken from a large data population for different roles and/or efficiency, and certain data are 

transformed from one domain to another in order to discover useful and valuable information 

to assist disease diagnosis. 

 Once the data are in a properly prepared form, it is ready to go through the mining step for 

hidden patterns. However, for certain types of unstructured data of large sizes such as text, 

sounds, images and videos, it is not desirable to use the raw data directly for mining due to 

extremely large data sizes and huge amounts of redundancy in data. An operation, known as 

feature extraction after the pre-processing step is applied to extract useful information from 

the raw data and represent it in a concise and well-formatted form. This step can also be seen 

as a transformation that converts the raw data of variable lengths into a more abstract feature 

vector of fixed length. For instance, a 2D greyscale image of any size, i.e., XY pixels, can be 

represented by a histogram (table of frequencies) of 256 bins. An image may go through a 

transformation using local binary patterns (LBP), and then a histogram vector of the resulting 

LBP image is obtained as a representation of the texture feature for the image. More details 

on image feature extraction will be given later. 

The feature data, either extracted or recorded, are then used to develop a classification 

model that maps the descriptive features to the outcome of specific pre-defined classes. 

Normally, there are two phases involved in this step of the process: training (or development) 

and testing (or deployment). In the training phase, a set of training examples with the extracted 

input features together with the known class labels are fed into a supervised machine learning 

algorithm which then builds a model that maps the input features to the appropriate class label. 

Through this training process, the resulting model should perform well as far as the training 

examples are concerned. In the testing phase, one or a collection of testing examples with the 
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known class labels is used to go through the same steps of pre-processing and feature 

extraction as training examples went. Instead of building any new model, the extracted input 

features of the testing examples are fed into the trained model, and the model provides a 

predicted class label for each test example. The predicted class labels for all testing examples 

can then be used to check how accurate the model’s predictions are. When the model is rolled 

out to be used in the field (i.e., being deployed in a real setting), any examples that the model 

is predicting will not have known class labels, and the predicted class labels are taken as the 

labels for such examples. The two phases are outlined in Figure 2.3. 

 

Figure 2.3: Two Phases of Developing, Testing and Deploying a Classification Model 

The final step of the process is to evaluate the efficacy of the developed classification 

models. The evaluation result may determine whether the resulting model can be accepted for 

deployment or a new model needs to be redeveloped. There exist many model performance 

indicators among which the model accuracy is ultimately important, showing if the model is 

effective in the disease diagnosis or not. Accuracy is normally measured by testing the model 

on a set of independently sampled test examples that are well separated from those training 

examples used for developing the model. This is to test whether the model can be generalized 

to unseen testing data records. After all, the model’s real use is to predict unseen data rather 

than re-classify an example that the model was trained from. The common practice of 

measuring accuracy is to measure the following main metrics: 

● True positive rate (TPR): the ratio of the known positive class examples being 

classified correctly as positive. This ratio is also called Recall rate. 

● True negative rate (TNR): the ratio of the known negative class examples being 

classified as negative. 

● False positive rate (FPR): the ratio of the known negative examples being classified 

as positive. 

● False negative rate (FNR): the ratio of the known positive examples being classified 

as negative. 

● Positive precision rate (PPR): the ratio of the known positive class examples to the 

total examples classified as positive. 

● Negative precision rate (NPR): the ratio of the known negative class examples to the 
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total examples classified as negative. 

Note that in medical data analysis, recall rate is also known as sensitivity and TNR is also 

known as specificity. Of course, the intention is to develop models that have high TPR and 

TNR and low FPR and FNR. Other accuracy metrics such as precision, Area Under Curve 

(AUC), F score, etc. can be derived from the basic metrics mentioned earlier. Other 

performance indicators include model training and classification speed, model overfitting, 

model comprehensibility, model maintainability, etc. Some of these indicators will be 

explained when they are used later in the thesis. 

Model evaluation normally follows an evaluation protocol that ensures the separation 

between the training and testing examples unless designated training and testing sets are 

already available. The simplest protocol is known as the single-split where a certain 

percentage of examples from the available data set is used for training and the rest for testing. 

Normal splits used include 2/3 training vs 1/3 testing, 80% training and 20% testing, etc. This 

protocol has the disadvantage that the random factor may affect the performance of the model 

when the testing examples have significant differences from the training ones. To reduce the 

random effect, random sub-sampling is an improvement by randomly repeating the single-

split a certain number of times as a random experiment such as a t-test. The t statistic becomes 

stable when the number of trials becomes high enough. However, this protocol still has its 

disadvantage in that some examples are used as testing examples repeatedly and others may 

have never played the role of testing examples such that there is a chance that the model’s test 

accuracy does not truly reflect the test results from all examples in the data set. That is why a 

more rigorous protocol, known as k-fold cross-validation is widely and commonly used in 

machine learning. The process can be explained as follows. Given a set of examples, the 

samples are firstly random shuffled. The set is then divided into k equal size partitions. Then 

in an iterative process, one partition is held out as the test set and the remaining partitions are 

used for training. Once a model is learnt from the training examples in the remaining partitions, 

the examples in the test partition are used to test the performance of the model. Once the 

iterative process is complete, k models are built and k test accuracies are recorded. The average 

of the test accuracies is then taken as the indicator of any models that are learnt from the data 

collection. In practice, k is often set to 5 or 10. A special case, known as leave-one-out, is the 

situation where k = n, the number of examples in the collection. 

It is worthwhile to note that in medical science and research, a different testing protocol 

from those mentioned above, is often practised. It is often the case that clinical research is 

conducted in one medical centre first. Based on the single split (or hold out) principle, the 

collected data from the centre are split into training and testing examples. Such a test is often 
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known as an internal test. A separate and prepared data set from the same centre can also be 

used to conduct another internal test. The aim of the internal test is to establish that the trained 

model first works well with the data from the same medical centre. After that, a separate data 

set from another medical centre is collected as the test set which is then used to test the model 

accuracy, known as an external test. The purpose of the external test is to examine the 

applicability of the model on data from another different medical centre. Similar to internal 

tests, external tests can also be conducted with data sets from different medical centres. If the 

model continues to perform well, it means the model is generally applicable, showing the 

robustness of the model and the increased scope of applicability of the model. In this research, 

both k-fold cross-validation and single-split protocols are used with justifications. 

In the remaining part of this section, various issues at different stages of the CAD process 

will be raised and discussed briefly. 

2.2.2. Issues in Data Acquisition 

Medical data covers various aspects of patient health. The data tend to be in a variety of forms 

such as text, numbers, hand-written notes, diagrams, images, videos or sound signals. Many 

data can be found with time such as clinical histories, video clips of image frames, etc. Various 

challenges for data processing may exist. First, the dimensionality of data can be extremely 

high due to the various forms that data are represented. For a single patient, the dimensions 

can be in their thousands or hundreds of thousands to cover a range of medical data over time.  

Another biggest issue is data quality. First, the accuracy and precision of data cannot 

always be assured. This is not entirely due to measurement error in data acquisition, but most 

of the time the fuzzy nature of certain measures and medical predictions. For instance, 

describing the margin of a lesion as regular or less regular can be extremely subjective despite 

the availability of established international guidelines such as TI-RADS (Tessler, et al., 2017). 

Measurement of the size of the lesion depends very much on where the radiologist or 

radiographer places the calibre markers on the border of the lesion. Well known as intra-

observer variations, the same doctor measures the same lesion on different occasions will give 

different measurements. On the other hand, known as inter-observer variations, different 

doctors can examine the same medical image and give completely different observations and 

measurement results. This author was involved in a cancer sign detection work where it was 

found that when three doctors give the readings on margin smoothness for thyroid lesions, out 

of 20 ultrasound images, they only agree on 5 images, i.e., 25%. This makes machine learning 

difficult because some of the data are used as class labels. These labels are treated as “ground 

truth” when either a supervised learning algorithm tries to build a classification model, or 

domain-knowledge based algorithms are developed. Yet, such subjectivity in labelling means 
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that these ground truths are not solid but soft, which leads to ill-defined models or algorithms 

which perform unsatisfactorily. 

The precision of measurement may not be sufficient nor consistent across the recordings. 

Body weights may be precise to two digits after the decimal points in some measurements 

while others may be a whole number. Recordings from one medical centre can be taken as 

ordinal categories whereas those from another medical centre can be measured in scales 

numerically. This can be even more so for medical images. While MRI and CT scans provide 

high contrast and sharp images, ultrasound images are blurry by nature due to the presence of 

speckle noises in the images. Indeed, noise in medical data can be a serious problem. Again, 

taking ultrasound images as an example, noise is not only just speckle that makes the image 

poor contrast and not clear, but also man-made artefacts such as calibre markers, measurement 

results like lesion diameters, text such as patient names, black ribbon areas created by 

ultrasound scan actions. For certain analyses and diagnoses, there are regions of the image 

that offer no relevant information to the decision making. For instance, in determining if a 

lesion is malignant or not by examining the internal issues within a lesion, muscle structures, 

bones, and skin in nearby regions are not useful and hence can be considered as noise. 

However, these surrounding structures may have similar patterns of texture, making the 

detection of the true lesion region, known as the region of interest (RoI) extremely difficult. 

It must be said that some medical data can be seen as very sensitive. Collecting such data 

may be prohibited by law or ethical codes of conduct even if they are very useful. Although 

not a technical issue, these issues nevertheless may prevent the collection and acquisition of 

useful information for disease diagnosis, investigation and effective treatment of patients. 

2.2.3. Issues in Pre-processing 

The main purpose of pre-processing is to prepare the acquired data into proper forms and 

overcome the quality issues raised in the previous section if possible. A range of operations 

can be performed in the pre-processing stage. Noises such as speckle noise in ultrasound 

images can be suppressed. As a result, the ultrasound images are enhanced without losing 

important information. For medical images, noise is reduced or filtered by using various filters 

such as median filter, adaptive median filter, wiener filter, bilateral filter and so on. Domain 

knowledge is often used to remove another type of noise, i.e., irrelevant artefacts like those 

mentioned earlier. 

Region of interest may be selected or segmented. In most existing CAD systems, this task 

is performed through manual or semi-automatic means because accurate segmentation of RoI 

is still a very challenging topic of research. Automatic RoI segmentation itself may require 

machine learning solutions. Another operation required specifically for medical image data is 
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image normalisation and enhancement because the images may be generated from imagery 

machines from different manufacturers with different device settings on intensity value ranges, 

frequency ranges, and zooming in/out, etc. Operations such as gamma transformation and 

histogram equalization can be performed for these purposes. 

2.2.4. Issues in Feature Extraction and Feature Extraction Approaches 

As explained before, besides readily available data in categorical and numeric values in a 

record form, many patient data are unstructured in nature such as text, image, diagrams, 

graphics, videos, and sounds. For these unstructured data, representative features are extracted 

from the original raw data using specially designed algorithms. In this research work, feature 

extractions from medical images are of particular interest. In this section, several different 

types of image-based features are explained, and their extraction approaches are outlined. 

The first type of image-based feature is known as a morphological feature. Such features 

refer to signs and amounts known to domain experts and doctors. Examples of morphological 

features include mean sac diameter for gestational sac, area of calcification (micro or macro) 

inside a thyroid nodule, composition of breast lesion in terms of various echogenicity, etc. 

Without CAD systems, doctors normally observe the images and derive descriptions of the 

features based on their knowledge and training experience over the years. Sometimes, they 

rely on manual use of some functions to extract the features like the diameters of a lesion on 

different planes such as sagittal and transverse planes for a gestational sac inside a womb. 

Algorithms are developed to automate the measurement and extraction of such features in 

order to reduce the workload on doctors and avoid inter and intra-observer variations (Ibrahim, 

et al., 2016). Once the features are extracted, they can be used to train a classification model 

to make predictions of a certain disease. The advantage of this type of feature is that the 

features are easily explainable and understood by doctors and can be used to automate 

operations such as writing a clinical review report for a patient. The disadvantage is that the 

classification models built on such features can hardly exceed the level of diagnostic accuracy 

of clinical doctors because the algorithms only extract those known morphological features. 

Another type of feature is more concerned with the image content. Algorithms are 

developed to analyse either the whole image or region of interest within the image from colour 

and intensity of pixels, colour frequencies, regular and repeated changes of intensity values of 

a collection of pixels known as texture, lines, curves and shapes. Such features may have a 

direct mapping to the morphology, but other features may not have such a direct mapping, but 

rather a certain form of pattern conveyed by the image itself. Therefore, some features of this 

kind might not be easy to interpret like the morphological features. In the past two decades, 

many extraction algorithms for image colour, texture and shape features have been developed. 
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The simplest is a histogram of pixel intensity values. Given a greyscale image, a histogram 

can be taken as a table of frequencies of pixel intensity values. The intensity value of image 

pixels is divided into 256 bins, and for each bin (or a specific intensity value) the number of 

pixels or ratio of pixels that have that specific intensity is calculated and stored. Therefore, a 

histogram can be seen as a vector of 256 component values. As for colour images, the 

histogram can be a simple concatenation of the histograms for the three colour channels, 

forming a feature vector of 256×3 = 768 components. Other histogram-based features can 

also be found. For instance, statistic moments such as means, standard deviation, entropy, etc. 

can be further calculated from the histogram, creating a feature vector of much lower 

dimensions, at the expense of losing some information details.  

Another texture feature of an image is local binary patterns (LBP) (Çamlica, et al., 2015). 

By scanning through a 2D greyscale image, under a small sliding window of a certain size, 

e.g., 33 pixels, a central pixel is compared with its neighbouring pixels on their intensity value 

differences, and a sequence of binary bits is formed accordingly as a result of the comparison 

(if a neighbouring pixel has a higher intensity than the central pixel, 1 is assigned to that 

neighbouring pixel; otherwise, 0 is assigned). The sequence is also known as an LBP code. 

Once the scanning is complete, each pixel in the image has a corresponding LBP code. Then 

a histogram of all the LBP codes forms a feature vector: each component of the vector 

represents the frequency of the specific LBP code occurring in the image. Collectively, the 

LBP codes represent texture patterns such as edges, corners, curves, flat plains, etc. Among 

all 256 LBP codes, there is one type of code within which there are two transitions maximum 

between 0 and 1. These LBP codes are known as Uniform LBP (ULBP) which happen much 

more frequently than the other LBP codes. There are 58 possible ULBP codes, which means 

that a default 256-bin LBP feature vector may be replaced by a 58-bin ULBP histogram feature 

vector without losing too much information. An alternative compromise practice is to include 

an extra bin in the histogram feature vector for ULBP codes to represent all non-uniform LBP 

codes, creating a 59-bin histogram feature vector. 

LBP is only one of many types of texture features. Another widely used one is the grey 

level co-occurrence matrix (GLCM) (Nguyen, et al., 2021). Based on certain patterns of 

intensity value differences between two pixels along a specified direction, a GLCM captures 

the frequencies for such patterns to occur in the image. Rather than using the matrix directly 

as a feature vector by flattening, some statistic summary over the frequencies (similar to 

statistic moments) is obtained from a GLCM and used as the feature vector. GLCM feature 

vector represents the frequencies of patterns such as lines, edges and their orientations inside 

an image. Depending on the number of angles involved and the summary moments included, 
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a GLCM feature vector can be of high or even extreme high dimensions. 

2.2.5. Issues over Classifiers Used 

Classification is a well-studied area of machine learning. Many methods of learning a 

classification model from a set of training examples have been developed (Verma, et al., 2017; 

Désir, et al., 2012; Ren, 2012). According to the representation of the model, the existing 

methods can be categorised into main approaches. The k nearest neighbour (kNN) methods 

produce a model in the form of a memory space of selected training examples as templates. 

Using a suitable similarity function, the classifier calculates the degree of similarity from the 

unseen record to each of the templates and finds the k closest neighbours of the unseen record. 

By exercising voting or scoring policy (such as majority voting), the class of the unseen record 

can be determined collectively by the neighbours together. The effectiveness of the classifier 

is determined by the similarity measure, the representativeness of the selected templates and 

the scoring or voting scheme adopted. Another approach for classification is to construct a 

decision tree where internal nodes are the tests on attribute values and leaf nodes are the class 

labels. Making a decision using the classifier is a process of traversing the tree from the root 

towards a leaf. During the traversal, a sequence of tests is conducted on the values of the 

attributes (or feature variables). If an attribute takes a specific value or a range of values, the 

branch concerned in the tree is followed. Decision trees are best suited for categorical variables 

although working also for the continuous variables. A version of the decision tree induction, 

known as Random Forest, is to create a large number of trees constructed out of randomly 

selected training records and variables and then make a joint decision based on majority voting. 

Similar to decision tree induction is a category of methods known as rule-based classifiers 

that produce a sequence of IF..THEN rules, where the appropriate class labels appear in the 

consequent part of a rule, and testing on input variable values or ranges of values, occur in the 

IF part of the rule. Once the classifier tries to assign a class label to an unseen record, the 

variable values of the unseen record have to match the conditions of certain rules. If the 

condition is true, then the class label is then assigned to the unseen record. If not, the next rule 

will be tried until the final default rule is applied to assign a default class to the record. Other 

classification methods include support vector machines (SVM) that fit a hyperplane between 

examples of the known classes for separating one class from another, artificial neural 

networks (ANN) that consists of layers of artificial neurons each of which combines all input 

data values into a single weighted sum and transformed it into another value via an activation 

function over the layers, and statistical models that best capture the value distribution 

characteristics of one class from other. 

Among the existing approaches for classification, one simple and explainable approach is 
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the Bayesian classifier. Based on the Bayesian theorem, the classifier makes a classification 

decision by calculating the probability that an unseen record belongs to each of the pre-defined 

classes. This posterior probability is based on the prior probability of each class occurring in 

the training set and the conditional probabilities of input variables taking certain values given 

the known class label of them. The Naïve Bayes principle assumes that every input variable is 

independent statistically from the other variables, making the estimation of the posterior 

probability the result of products of prior probabilities. The simple but effective framework of 

classification is known for its robustness and decision making without having a large training 

set, a quite useful point for clinical data analysis. Another advantage is that the classification 

decision is probabilistic; only the class label with the highest probability is taken as the final 

output. This characteristic will later be exploited in this research. 

2.2.6. Issues Arising in Evaluation 

In Section 2.2.1, some key performance metrics were described. Aiming at a classification 

model that is sufficiently accurate is an ultimate requirement, specifically in CDSS when 

human life is at stake. However, understanding of model accuracy must be realistic. First, it 

must be said that the tested accuracy, no matter how high it is, does not mean the real accuracy 

of the model in the deployment phase. The concept of confidence interval (CI) is used to 

anticipate the real level of accuracy based on the central limit theorem in statistics (Khalili , 

et al., 2020). Second, it has been noted that many systems of classification are interested in 

the final class label outcomes instead of the degrees of belief in that class prediction. As 

outlined in the introduction chapter, clinical decisions are full of uncertainties. Doctors 

normally predict a likelihood of disease; a prediction of disease with only 50% confidence 

should be less certain and reliable than a prediction of the disease with 95% of confidence. 

Decisions of a class label without confidence are insufficient for risk analysis in clinical 

environments. Accuracy of classification and the level of confidence of the classification are 

two related but different issues. Confidence in classification decisions is one fundamental 

issue to be investigated by this research. 

Accurate and robust classification models must be capable of detecting subtle differences 

between examples of different classes on the one hand and not to be too sensitive on the other. 

The models that fail to tell even big differences in feature values that will separate the different 

classes are called underfit models, which often fail to classify even obvious cases. Some 

models may give completely different class outcomes when there is even a small difference 

in the input feature values between examples of the same class. This can be often caused by 

the overfitting of the model where the model remembers too many specifics of the training 

examples, but fail to recognize the common characteristics between the training and testing 
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data. Models that are overfitting tend to be very sensitive and unstable whereas models that 

are underfitting tend to be idle, inactive, and eventually useless. The issue of model sensitivity 

will also be investigated as the main topic in this research. 

 

2.3. Measure Theory Approach 

As outlined in the research aim and objectives, classification strength plays an essential role 

in a CDSS. Therefore, the proper calculation of such classification strength becomes critical 

for this research. To be shown in detail in Chapter 3 later, there exist various ways for 

calculating classification strengths. However, most existing methods were interested in the 

calculations under specific conditions and assumptions without careful and systematic 

reflection on the space and principles used behind the calculation. This research is intended to 

revisit the calculation of classification strength under a formal setting of measure theory, 

addressing the issue of the soundness of a classification strength measure before considering 

how to measure the decision strength.  

As a characteristic of machine learning in general and supervised learning in particular, the 

population of data under study is mostly unknown. Classifiers can only be learnt from a sample 

or subset of the population. In mathematics, such analysis over a known subset of the 

population is known as the σ-algebra, which the analysis method is commonly referred to as 

a measure and the analysed subset is referred to as the measure space. Measure, measure space 

and σ-algebra lay the foundation of the Measure Theory.   

A measure on a set is a systematic way to assign a number to each suitable subset of that 

set in relates to certain property of the subset measured. Intuitively, a measure can be 

considered as a generalization concept of the property of an object such as the length, area, 

volume and so on. Formally, let X be a set and Σ be a σ-algebra over X. A measure can then 

be defined as a function μ from Σ to the extended numerical space, if it satisfies the following 

properties:  

● Null empty set property: the amount of measurement is 0 for no event, i.e. 

𝜇(∅) = 0 

● Non-negativity property: every event E in Σ is measurable with a non-negative 

outcome, i.e. 

𝜇(𝐸) ≥ 0 

● Countable additivity property for all countable collections {𝐸𝑖}𝑖=1
∞  of pairwise disjoint 
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sets in Σ: the measurement of a whole set is the sum of the measurements of all 

individual events in that set 

 𝜇 (⋃𝐸𝑘

∞

𝑘=1

) = ∑𝜇(𝐸𝑘)

∞

𝑘=1

   

In general, defining a measure can be very difficult to guarantee that all listed axioms above 

on all subsets are upheld. This problem is commonly resolved by defining measures on a 

predefined sub-collection of all subsets, where this sub-collection is also referred to as the 

measurable subsets. Following such a concept, if we define the pair (𝑋, 𝛴𝑋) and (𝑌, 𝛴𝑌) as 

two measurable spaces, the members of 𝛴𝑋 and 𝛴𝑌 as the measurable sets, then a function 

𝑓: 𝑋 → 𝑌 is called measurable if the inverse image is X-measurable for every Y-measurable 

set B ∈ ΣY, i.e., 𝑓−1(𝐵) ∈ 𝛴𝑋. Under such definition, the composition of measurable functions 

is also measurable, making the measurable spaces and measurable functions a category, with 

the measurable spaces as the objects and the set of measurable functions as the identity arrows.  

In the following parts of this section, we are going to review some of the commonly used 

measures with their possible applications in machine learning. 

2.3.1. Counting Measure 

Mathematically, counting measure is one of the most straightforward and simplest ways to 

measure a given set. Because of its simple nature, the counting measure is one of the very few 

measures that can be defined on any given set while still satisfying the axioms of the measure 

theory. However, it is mostly used on countable sets. The counting measure simply returns the 

number of elements in the subset if the subset has a finite number of elements; otherwise, it 

returns ∞ if the subset is infinite. As a formal definition, given any set E in a measurable space 

by taking the σ-algebra 𝛴 of measurable subsets that consist of all subsets of E, the counting 

measure 𝜇𝑐𝑜𝑢𝑛𝑡 on this measurable space (𝐸, 𝛴) is then defined as a positive measure 𝛴 →

[0,∞+) as 

𝜇count(𝐴) = {
|𝐴|   if 𝐴 is finite     

 ∞+  if 𝐴 is infinite 
 

for all 𝐴 ∈ 𝛴, where |𝐴| denotes the cardinality of set A. 

In a clinical setup, counting measures can be widely applied from data preparation (e.g., 

counting the number of red cells in a blood test) to statistical evaluation (counting the sample 

size or a number of observations). More specifically, the counting measure is also commonly 

used in evaluating the strength of the classifier decision making. For example, the k-NN 

classifier utilizes the counting measure for counting the number of nearest neighbours and the 
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decision tree classifier also adopt the counting measure for counting partitions in calculating 

the information gain at different levels of the tree. These measures will be further discussed 

in Section 3.1.2. 

2.3.2. Lebesgue Measure 

Simple measures such as counting measures can offer nice properties over countable sets. 

However, most of the sets in the real world, such as a subset of real numbers, are unfortunately 

uncountable, which limits the usability of the counting measures. For example, the Euclidean 

space is one of the most commonly used vector spaces in linear algebra, which has a finite-

dimensional inner product space over the real numbers, where counting measure is not so 

useful when measuring such a space.  

As a solution, the Lebesgue measure is one of the commonly used measures in measuring 

a subset in n-dimensional Euclidean space. The Lebesgue measure was introduced by utilizing 

the concept where the set of intervals within a real number space is countable. It simply assigns 

the length, area, and volume of Euclidean geometry to the suitable subsets within ℝ1, ℝ2 and 

ℝ3, where the concept further extends to an n-dimensional volume in ℝ𝑛. However, it is worth 

noting that non-measurable sets do exist within the real number space when the set does not 

satisfy the Carathéodory criterion. An example is the Vitali sets, where the Lebesgue σ-algebra 

is strictly contained in the power set of  ℝ (Petrovai, 2019). Therefore, the Lebesgue measure 

is mostly studied in its outer form, referred to as the Lebesgue outer measure. The Lebesgue 

outer measure is defined on a domain which no longer consists of all subsets within the space 

ℝ𝑛. Instead, it is defined on a σ-algebra of subsets within ℝ𝑛. In generall, sets that can be 

assigned a Lebesgue measure are called Lebesgue-measurable, otherwise, not Lebesgue-

measurable. The formal definition of the Lebesgue outer measure is presented as follow: 

Given a subset 𝐸 ⊆ ℝ, with the length of interval I = [a,b] and its length function by ℓ(𝐼) =

𝑏 − 𝑎, the Lebesgue outer measure 𝜆∗(𝐸) can then be defined as an infimum by utilising the 

principle of countable additivity as 

λ∗(𝐸) = inf{∑ ℓ(𝐼𝑘)

∞

𝑘=1

} 

where 𝑘 ∈ ℕ  and 𝐼𝑘 𝑖𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝐸 ⊆ ⋃𝑘=1
∞ 𝐼𝑘 . To fulfil the 

Carathéodory criterion, the measurable set 𝐸 has to satisfy that (Folland, 1999) for every 𝐴 ⊆

𝑅 

𝜆∗(𝐴) = 𝜆∗(𝐴 ∩ 𝐸) + 𝜆∗(𝐴 ∩ 𝐸𝑐) 

For any set in the Lebesgue σ-algebra, its Lebesgue measure is given by its Lebesgue outer 
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measure: 𝜆(𝐸) = 𝜆∗(𝐸). 

The Lebesgue measure has a wide application in machining learning, which is mostly 

involved in analysis within feature dimensions of different kinds. An example can be using 

the Lebesgue measure for measuring the distance from the position of the observation to the 

decision hyperplane in the SVM classifier, which is very important for understanding the bias 

and strength in decision making (this problem will be further discussed in Section 3.1.1 in 

more detail). 

2.3.3. Probability Measure 

As introduced so far, a measure 𝜇 can be used for measuring the designated property of a 

measurable set E in the defined measure space (𝐸, 𝛴), where the counting measure and the 

Lebesgue measure are two such examples. The range of these two measures from 0 to 

𝜇(𝐸) very much depends on the size of the measurable set defined. The problem is that 𝜇(𝐸) 

can be of any positive values within the constraint of the measure defined. The variation in 

the range causes the measured results incomparable across different measurable sets, which 

limits the usability of the measure defined. As a solution, the probability measure is commonly 

used for unifying the range measured across different measurable sets. The fundamental 

difference between a probability measure and the measures introduce previously is that the 

probability measure is defined in the probability space with a total measure of one, i.e., 𝜇(E) 

= 1. More formally, a probability measure is a real-valued function defined on a set of events 

in a probability space while satisfying the essential properties of the measure theory. More 

specifically, the probability measure p must return 0 for the empty set (null empty set property), 

return results within the interval [0, 1] for the none-empty set (non-negativity property) and 

return results of the sum of the probabilities of each disjoint events for the union of them 

(countable additivity property). 

As a probability measure provides a uniform way of measuring sets of different kinds, it has 

various cases of use. One of the common applications is used for Naïve Bayes classifiers, 

which was based on a slightly altered form of the conditional probability measure on the 

intersection of events as: 

𝑝(𝐵 ∣ 𝐴 ) =
𝑝(𝐴 ∩ 𝐵)

𝑝(𝐴)
 

which still satisfies the probability measure requirements as long as 𝜇(𝐴) is not zero (Gray, 

2010) (this problem will be discussed in more detail in Section 3.1.3). 

Fuzzy measures can be sometimes confused with probability measures as both of them involve 

likelihoods of different kinds. However, it is worth noting that not all measures that involve 
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likelihood are probability measures. As a good example, the fuzzy measures do not count as 

a type of probability measure as it does not enforce a total measure of one and the countable 

additivity property is replaced by a set inclusion-based order relation.  

2.3.4. Signed Measure: Measure with Justified Definition 

Finally, it is worthy to mention a special type of measure, known as the signed measure. The 

most special characteristic of such a measure is that it does allow the appearance of negative 

values on the result measured (which disobey the property of non-negativity). The advantage 

of such a measure is obvious as it offers more diversity to the result representation, which in 

many cases contributes to clearer definitions. Nevertheless, it also raises a lot of debates such 

as whether the measure should include infinite values or not (Kesavan, 2019), which requires 

careful design in constraining the measure within the reality. In a formal definition, similar to 

what we have defined for the other measures previously introduced, given a measurable space 

(E, Σ), a signed measure 𝜇± can then be defined as a function as 

𝜇±: Σ → ℝ ∪ {−∞,∞} 

such that 𝜇±(∅) = 0  and 𝜇±(⋃ 𝐸𝑘
∞
𝑘=1 ) = ∑ 𝜇±(𝐸𝑘)

∞
𝑘=1 . That is, the signed measure 

produces results in the range of [−∞,∞] or ] − ∞,∞[ (depends on definition) while still 

satisfying the property of null empty set and countable additivity. For more detailed use cases, 

we will be further discussed in Section 3.3.1. 

 

2.4. Data for Supporting this Research 

As outlined in the research methodology in Section 1.3, besides rigorous modelling, ideas and 

theorems are also to be tested using real-life data sets collected in a clinical setting throughout 

this thesis. This section, therefore, outlines some fundamental requirements for the data sets 

to be used, even in the context of issues with medical data as described in Section 2.2.2.  

2.4.1. Data Requirements 

The data requirements are outlined according to the main properties of the data set. First of 

all, the data sets should have a variety of different sizes in terms of the number of observations 

in each data set. Within the scope of this research, we consider medical centres of different 

scales and aim to have data sets of hundreds or thousands of samples in each set.  

The next relevant data requirement is the dimensionality of the data set. This research is 

interested in both data spaces of low and high dimensions. Therefore, data sets with only a 

few input variables and data sets of more than one thousand input variables are targeted. To 
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satisfy this requirement, we will consider data sets with morphological feature variables (low 

dimensional feature space) and the data sets with extracted texture features from medical 

images (high dimensional feature space). 

In terms of data types of the variables, it is understood that both categorical and numeric 

variables are very likely to be involved in describing medical data in reality. However, in order 

to focus on the main topics of research and avoid going through any process of transforming 

categorical data into numerical ones through encoding schemes and the potential issues 

associated with such encoding, this research work is only concerned with numeric variables, 

namely, the data sets for supporting the research work are data matrices. The spread of data 

should be complete, covering all possible eventualities. 

Data quality is always an issue of concern as outlined in Section 2.2.2. Most existing data 

sets are retrospectively collected and therefore it is impossible to address data quality at the 

point of collection. Therefore, we may have to be realistic in terms of the data used. The first 

point is regarding the given labelling data. The labelling data may appear in two possible ways: 

manually collected measurements given and class labels assigned to the data examples. We 

will select data sets where the labelling data are as solid as possible, the so-called golden 

ground truth. So, either the labels are obtained on the basis of biopsy or assigned by 

experienced domain experts specialized in the relevant medical domain. The second point is 

regarding noises and outliers. Unfortunately, since we have no control over data collection, 

we cannot rule out the existence of noise and outlier data objects which may create difficulty 

for modelling. Having said that, some pre-processing operations may be applied in order to 

reduce the effects of noise and outliers. The third point is about data completeness. This 

research assumes that the given data are complete with values for all input variables and 

possess the associated class labels. The fourth point is regarding data precision, the closeness 

to the true value. We may have to make the assumption that the given data are precisely 

measured and correctly recorded because this research does not involve collecting data 

directly from participating patients. 

Data granularity can be of different levels. Data details can be the same as being given, and 

aggregations of data of various forms can be seen as summarization and further abstraction of 

the given data. Data transformed from one domain to another domain for feature extraction 

purposes are also possible and permitted. 

2.4.2. Selected Data Sets 

With the requirements listed above in mind, we carefully selected two data sets. The first data 

set is of low dimensionality, obtained from the Early Pregnancy Department, NHS Queen 

Charlotte’s and Chelsea Hospital, Imperial College London. The data set is concerned with 
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manual measurements of gestational sac sizes taken by gynaecologists from 2D ultrasound 

images of the womb for detecting signs of miscarriages in the first trimester of early pregnancy. 

The data set was provided in two separate batches. The first batch has 94 measurement records 

together with the known class labels: 15 records of miscarriage (MC) and 79 records of 

Pregnancy of Unknown Viability (PUV), a phrase used for pregnancies not considered as 

miscarriage declared at the point of the ultrasound scan even miscarriage may be declared in 

subsequent scans. The second batch contains 90 measurement records: 11 cases of MC and 79 

cases of PUV. For both batches, three manual measurements of gestational sac sizes, i.e., 

major and minor diameters of the sac taken from the sagittal plane and major diameter of the 

sac taken from the transverse plane. The diameters were recorded by the ultrasound machine 

after the gynaecologist placed calibre markers. The whole data collection also includes a 

derived variable, known as the Mean Sac Diameter (MSD), calculated as the average of the 

three diameters of the sac. This data set is chosen because of its simple morphological features 

and relatively low dimensionality. A clear medical understanding of the features also justifies 

using the data set.  

 

(a)                                        (b) 

Figure 2.4: Gestational Sac in 2D Ultrasound from the Early Pregnancy Dataset  

 (a) sagittal plane (b) transverse plane; major diameters are measured by yellow axis 

Another dataset chosen for the research is the CBIS-DDSM dataset (Lee, et al., 2017) 

obtained from the public domain. The dataset contains 2,620 mammography images of breast 

lesions of two kinds: mass and calcium from the results of pathology reports. The relevant 

regions of interest, i.e., area of a breast lesion, are specified and verified by domain experts. 

From the region of interest mammography images, image-based textures will be extracted, 

which will provide flexibility and freedom to explore decision confidence measures in a high 

dimensional feature space. 

 

(a)                       (b) 

Figure 2.5: ROI Images in Mammogram from the CBIS-DDSM Dataset (a) mass (b) calcium 
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Chapter 3. Measuring Classification Confidence 

 

After providing the context for this research, this chapter is intended as the first key chapter 

to address the core issue of classification confidence. Informally, classification confidence 

refers broadly to the strength and degree of certainty of a classification decision. It is an 

essential requirement for clinical diagnostic decision-making. Although there have been 

various forms of expressing the concept, this chapter provides a formal definition of the 

concept. 

 The chapter is organised as follows. We will first review existing methods in the literature 

for measuring classification strengths. Then the chapter will present a unified and formal 

definition of the concept of classification confidence based on the principle of measure theory. 

Following the definition, the chapter will propose a confidence measure in the probability 

space based on the principles of Gaussian distribution and Bayesian classifiers. The proposed 

confidence measure will then be evaluated with a clean clinical dataset of low dimensionality. 

Comparisons between different settings and modelling techniques will then be presented and 

discussed at the end. 

 

3.1.   A Review on Existing Measures of Certainty on Classification Outcomes 

In recent years, evaluation of classification outcomes has increasingly drawn attention in order 

to satisfy the clinical requirements due to management of risk and obligation to explain. 

Conventional methods for evaluating classification outcomes focus primarily on measuring 

the overall accuracy of the classification model in terms of predicted class labels. The degree 

of certainty for each specific classification decision is often used as a complement of the 

decision rather than the essential focus of the decision-making. Several different measures for 

evaluating the certainty of a classification outcome have been proposed in the past, but most 

of them heavily depend on the nature of the classifier used. In general, the existing methods 

can be categorized into hypothesis-based, information-based or predictor-based measures, 

each of which will be explained in more detail in the following subsections. 

3.1.1. Hypothesis-based Measures 

Hypothesis testing is a well-established method in statistics for scientific research, which is 

primarily interested in the statistical significance regarding the difference between the means 

of two data samples. In principle, any classification problem can also be seen as a statistic 
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problem, which intends to find an approximation of an unknown observation drawn from the 

population with the maximised amount of likelihood to a set of training examples provided. 

In other words, statistical models can be built for samples of each training class to mimic their 

real nature in the whole population. Any example drawn from the population is tested against 

these models to obtain the statistical significance and be accordingly classified. The statistical 

significance can be determined by using different hypothesis testing methods. For example, 

calculating the confidence interval p of a training class sample regarding an unknown test 

feature value 𝑥  by using one-sample location Z-test for a specific class ω𝑖 can be written as:  

                                      𝑝ω𝑖
= ∫

1

√2𝜋
𝑒−

𝑥2

2  𝑑𝑥                                                  (3.1)

𝑥−𝜇ω𝑖
𝜎ω𝑖

−∞

 

where 𝜇 is the sample mean, 𝜎 is the sample standard deviation. We assume the test statistics 

are approximately normally distributed according to the central limit theorem (Filmus, 2010). 

Based on this assumption, the cumulative distribution function is sometimes simplified into a 

measurement based on a scale of Z-score (Khazendar, et al., 2014): 

                                              �̂�ω𝑖
= |
𝑥 − 𝜇ω𝑖

𝜎ω𝑖

|                                                         (3.2) 

where the reliability of the classification result is no longer measured by a numerical 

confidence interval but by a numeric distance based on a scale of standard deviation that 

indicates how much the observation is away from the standard mean. In other words, the 

reliability is inversely proportional to the distance between the observed value and the mean 

of the classified label.  

A similar concept can also be applied to certain types of classifiers such as the Support 

Vector Machine (SVM) classifier that categorises the unknown test examples according to a 

decision hyperplane that best separates the training examples of different classes in the data 

feature space. Unlike the hypothesis testing methods previously introduced where individual 

models are created for each training class sample, the statistical models in SVM are combined 

and being replaced by a decision hyperplane. However, the same principle remains. The level 

of the statistical significance can be measured by calculating the distance 𝐷 from the test 

example to the decision hyperplane (Li, et al., 2002) as 

                                             𝐷(�⃗�) =
|𝑓(�⃗�)|

√𝜐 ⋅ 𝜐
                                                         (3.3) 

where 𝑓 is a function of the decision hyperplane and 𝜐 is a vector perpendicular to f. The 

hyperplane itself is the division plane separating training examples of one class (positive) from 

those of the other class (negative). Therefore, the distance indicates how far away the test 
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example from the hyperplane surface and at the same time how close the test example from 

the sample mean vector of the training examples of one class. The smaller the distance is, the 

closer the test example to this “middle line” lying between the sample means of the two classes, 

indicating lower statistical significance since the test example is equally close to both the 

sample means of the two classes. On the contrary, a large distance refers to a high statistical 

significance since the test example is considerably close to the sample mean of one class but 

further away from the sample mean of another class. However, the application of such a 

method is very much limited due to the difficulty in defining a clear decision boundary, which 

is not always available for all kinds of classifiers. Khazendar et al. introduced a simplified 

method of categorising confidence level into low, medium or high depending on if the test 

example is within the half standard deviation, one standard deviation or more away from the 

hyperplane (Khazendar, et al., 2014). However, the boundaries between the categorical bands 

are determined empirically by a given dataset. 

3.1.2. Information-based Measures 

Information theory was proposed by Claude E. Shannon in 1948 for building reliable 

communication over an unreliable channel (Shannon, 1948), where "information" is referring 

to a set of possible messages. This theory has then been extensively applied in many fields of 

discipline including machine learning in the later years. From the communication perspective, 

the health status of a patient can be seen as a target signal of interest where the signal itself is 

encoded with environmental noises and finally be presented as clinical observations. In this 

context of understanding, CDDS is playing a role of a decoder that tries to recover the original 

signal from the clinical observations received and then presents it as a diagnosis decision. In 

such a “communication”, classifiers are playing a key role in recovering the most amount of 

information from the received inputs and filtering out most of the irrelevancies. The training 

of a classifier in such a circumstance can be seen as a process of maximising the information 

gained over a set of known signals and related observations. The purpose of a classifier is then 

to categorise a group of unknown observations into n partitions, where n is the number of 

classes defined. The information gain 𝛪 is measured by the reduction of uncertainty achieved 

by partitioning the original data set Ω  into subsets of {ω1, … , ω𝑛}, which can be expressed as  

𝛪(ω1, … , ω𝑛) =  𝛨(Ω) − 𝛨(ω1, … , ω𝑛|𝑋)               (3.4) 

where 𝛨 denotes the entropy as a measurement of uncertainty in the data set. The entropy of 

a discrete random variable is calculated as 

                                         𝛨(Ω) = −∑𝑝𝑖 log 𝑝𝑖

𝑘

𝑖=1

                                                  (3.5) 
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where 𝑝𝑖 is referring to the natural expectation of the ith category within the total k categories. 

Therefore, the entropy of a partition can then be presented as 

                                     𝛨(ω1, … , ω𝑛|𝑋) =∑
𝑛𝑖
𝑛
𝛨(ω𝑖|�⃗�𝑖)

𝑘

𝑖=1

                                     (3.6) 

where 
𝑛𝑖

𝑛
 is the weight of the ith partitions in entire n data samples within k partitions.  

Following the same concept, the reliability of a classified label can be measured by the 

amount of information gained at a particular feature vector after applying the classifier. A 

larger amount of information gained indicates a more reliable classification outcome. This 

principle can be applied to many classifiers. The easiest classifier among all to apply would 

be the k-Nearest Neighbour (kNN) classifier. The kNN classifier is relatively straightforward 

in design, which does not require any training in advance. The test example is classified by a 

majority voting among k nearest neighbours within the training dataset, which are identified 

by using distance or similarity functions in succession. In this scenario, as the classifier is 

using a fixed set of training examples, the entropy of the training data set remains constant 

and the classification result would entirely depend on the partitions among the k nearest 

neighbours. Therefore, the certainty of the classified label at a given feature vector �⃗� can be 

measured by using the partition entropy only as 

                            𝛪(ω1, … , ω𝑛|�⃗�) = −∑
𝑛𝑖
𝑘
𝛨(ω𝑖)                                      (3.7)

𝑛

𝑖=1

 

where n is the total number of the class labels, 
𝑛𝑖

𝑘
 refers to the proportion of the ith class among 

the k neighbours and entropy will share a negative correlation to the certainty. The partitional 

entropy calculated in this case is very much dominated by the majorly class, therefore the 

expression above is sometimes used in a simplified linear form (Xue, et al., 2006) as 

 𝛪(ω1, … , ω𝑛|�⃗�) ~ 
𝑛max

𝑘
                   (3.8) 

where 
𝑛𝑚𝑎𝑥

𝑘
 is referring to the proportion of the majority among k nearest neighbour. 

This information-based measure has provided a very clear intention on the strength of 

partitioning the data. However, the calculation of the entropy is dedicated to a finite set of 

discrete random variables, where real-life data are commonly found within the range of real 

numbers. Therefore, supervised discretization techniques are commonly applied to these 

records such as information-based discretization where it categorises the records into 

subfolders with minimised partitional entropy. Although some research has adopted this 

technique with reasonable experiment results (Dai & Xu, 2013), it is still arguable whether 
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this approach is valued since the discretization profoundly changes the information 

distribution within the data set, and therefore alters the nature of the original data.  

3.1.3. Predictor-based Measures  

Conformal Prediction is a theory that was first introduced in statistics and more recently 

brought into machine learning. It determines the level of confidence in new predictions by 

referring to past experiences (Shafer & Vovk, 2008). In this approach, an error probability 𝜀 

is introduced when a classifier is making decisions, and then the level of confidence is 

considered as  1 − 𝜀 , i.e., the probability of correct classifications. Unlike the theories 

introduced previously, conformal prediction allows regressions over a set of real numbers by 

adopting continuous probability models, which provides much broad applicability.  

Modelling the error rate 𝜀 is an essential objective in the conformal prediction framework. 

A variety of probability models has been proposed in relation to the different types of 

classifiers used. This review will summarise the basic models that have been proposed in 

different classifiers in the literature.  

kNN Classifiers 

kNN classifier is a very simple classifier as mentioned in the previous section. Besides 

assessing classification confidence by measuring information gain, the confidence of 

classification by a kNN classifier can also be measured under the conformal prediction 

framework (Wang, et al., 2006). In this approach, P(ω𝑖|�⃗�), as a function regarding {ω𝑖, �⃗�}, 

measures the probability of selecting the class  ω𝑖 from the set of the k neighbours found 

around the test sample �⃗�.  It can be measured by calculating the proportion of the majority 

among k nearest neighbour, i.e., 
𝑛𝑚𝑎𝑥

𝑘
, under the assumption that the difference between the 

distance from each nearest neighbour to the test sample is very small and can be seen as 

identical. The error rate 𝜀 can then be measured as: 

                   𝜀 = ∑ (
𝑘

𝑗
)P(ω𝑖|�⃗�)

𝑗[1 − P(ω𝑖|�⃗�)]
𝑘−𝑗                                  (3.9)

⌊2−1𝑘⌋

𝑗=0

 

However, modelling the error rate 𝜀 by simply following a Bernoulli distribution is too trivial 

and naive. It may fail to determine the precise level of confidence. When k > 1, the distance 

from each nearest neighbour to the test sample may differ significantly from each other. The 

larger the value of k is, the more likely this becomes, and hence toning the probability 

distribution accordingly has to be considered, which very much limits the usage of such a 

method in practice. 
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Naïve Bayes Classifiers 

The Naïve Bayesian probability model is a well-used conditional model that assumes the value 

of each feature is statistically independent. According to the Bayesian theorem (Carlin & Loui, 

2000), the conditional probability P(ω𝑖|�⃗�) of having the predicted classω𝑖  at a particular 

given feature vector �⃗� can be expressed as 

P(ω𝑖|�⃗�) =
P(ω𝑖)P(�⃗�|ω𝑖)

P(𝑥)
          (3.10) 

where P(ω𝑖) is the prior regarding the natural expectation of the classified class,  P(�⃗�|ω𝑖) is 

the posterior regarding the probability of having the observed feature vector �⃗� given that the 

class has been classified as ω𝑖, 𝑃(�⃗�) is the expectation that feature vector �⃗� being observed.  

In more detail, the naïve Bayes predictor assumes an independent relation across the n-

dimensional feature vector  �⃗� = [𝑥1, 𝑥2, … , 𝑥𝑛] where P(�⃗�|ω𝑖) can then be simply calculated 

as 

P(�⃗�|ω𝑖) =∏P(�⃗�𝑘|ω𝑖)                                             (3.11)

𝑛

𝑘=1

 

The form of the probability models would depend on the nature of the data set, which can 

adopt various kinds of statistic models such as Bernoulli, Gaussian or Multinomial, etc. In this 

scenario, the conditional probability  P(ω𝑖|�⃗�) is already indicating the confidence of the 

prediction, where the error rate 𝜀 can then be simply determined as 

𝜀 = 1 − P(ω𝑖|�⃗�)         (3.12) 

HMM Classifiers 

In contrast to the Bayes predictor introduced previously, the Hidden Markov Model (HMM) 

is a classic statistic model that describes the nature of a set of dependent sequential data 

{�⃗�1, … , �⃗�𝑛}. In this model, each of the observed random variables �⃗�𝑖 in the data set would be 

reliant on a hidden variable 𝑧𝑗 that contains hidden information regarding it, i.e., {𝑧𝑗 → �⃗�𝑖}. In 

addition, each hidden variable 𝑧𝑗  is statistically dependent on the previously hidden 

variable 𝑧𝑗−1, i.e., {𝑧𝑗−1 → 𝑧𝑗}. This transitive relationship over multiple sequential data is 

also known as the Markov chain. A good example of this kind of relationship is recognising 

handwritings (Hu, et al., 1996), where each of the individual characters written can be 

considered as the sequential random observations {�⃗�1, … , �⃗�𝑛}, which each of the observed 

feature vectors would relate to an unknown character. In addition, each of these unknown 

characters is expected to be somewhat related to the previous character, e.g., there is more 

likely to observe a vowel after the character “d” instead of consonant based on the convention 
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of English spelling. 

Following this model, by providing a set of sequential observations {�⃗�1, … , �⃗�𝑛} with their 

related hidden variables { 𝑧1, … , 𝑧𝑛 }, a probability 𝑃(�⃗�1, … , �⃗�𝑛, 𝑧1, … , 𝑧𝑛) regarding this 

prediction can then be presented as 

      P(�⃗�1, … , �⃗�𝑛, 𝑧1, … , 𝑧𝑛) = P(𝑧1)P(�⃗�1|𝑧1)∑P(𝑧𝑖|𝑧𝑖−1)P(�⃗�𝑖|𝑧𝑖)    

𝑛

𝑖=2

             (3.13) 

Where 𝑃(𝑧1)𝑃(�⃗�1|𝑧1)  is the conditional probability regarding the first term, 

𝑃(𝑧𝑖|𝑧𝑖−1)𝑃(�⃗�𝑖|𝑧𝑖)  is the probabilities of the following term in relation to the previous 

observations. Like the Bayes predictor introduced earlier, the modelling of the probability 

distributions can take an arbitrary form depending on the nature of the training samples, where 

the error rate 𝜀 can then be determined as   

𝜀 = 1 − 𝑃(�⃗�1, … , �⃗�𝑛, 𝑧1, … , 𝑧𝑛)   (3.14) 

which only applies under the assumption that the input vectors are statistically dependent on 

each other.  

ANN Classifiers 

Artificial neural network (ANN) is a classifier that has been first proposed in the 1940s 

(Papadopoulos, et al., 2007), which has recently drawn more attention due to its promising 

performance based on the growing computational powers. Unlike the other predictor 

introduced previously, ANN classifies labels by summarising the knowledge outputs among 

multiple layers of neurons where the weights attached to the neurons are fine-tuned through a 

backpropagation process. The last layer of the ANN refers to as the output layer, which 

contains n neurons that equals the number of class labels. In the output layer, each neuron 

contains a real value 𝓏ω𝑖 that associates to the specific label ω𝑖; the label with the highest 

associated value will be selected as the final classification decision. Under this framework, 

the bias of the classified label has been already reflected by the neuron in the output layer. 

These biases are normally regulated by a softmax function, which transfers the real number 

outputted into the range of [0,1] based on all the neurons in the output layer as 

𝜎(𝓏ω𝑖|�⃗�) =
𝑒𝓏ω𝑖

∑ 𝑒
𝓏ω𝑗𝑛

𝑗=1

                                                      (3.15) 

As 𝜎(𝓏ω𝑖) already has that matches probability functions, the error rate can then be simply 

defined as  

ε = 1 − 𝜎(𝓏ω𝑖|�⃗�)          (3.16) 
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In summary, different kinds of measurement have been proposed in the past to assess the 

reliability of the classification result based on various types of statistical theories. Measuring 

the reliability of the classification result by calculating the information gain provides solid 

theoretical support to the evaluation. However, the constraint of discrete value has limited the 

usability of this method. As a complement, the hypothesis test allows a regression over a set 

of real numbers, but it is felt that the confidence margin is still being very crude and can be 

very much improved. In addition, conformal prediction provides a very nice framework that 

can be applied to many classifiers for a precise estimation of the reliability of the classification 

result. However, the probability models used for determining the error rate are most likely 

depending on numeric values, which seems still to be short of accurate modelling over nominal 

data.  

Table 3.1 Rule-based Fusion Performance on Miscarriage Dataset 

Classifiers 
Assumption on 

Feature Relationship 
Limitation 

kNN No assumption High computation cost on testing 

Naïve Bayes Independent High requirement on data characteristic 

HMM Associated High requirement on data nature 

ANN Inter-twined Require large data for training 

 

More importantly, as briefed in table 3.1, all of these measures introduced have their own 

assumptions and limitations based on the nature of the classifier used, which lacks a common 

definition under a universal criterion. 

 

3.2. Measure Theory Perspective of Classification Confidence 

In general, the confidence measure defined herein is a measure of the confidence of the 

classification decision made upon a specific given input feature, where the classification 

confidence is a quantitative representation of the strength or certainty under a given 

environment. Let X = {x1 , x2 , … , xn} be a countable set of features that can be extracted from 

the observed object 𝒳, i.e., the patient in our case. The function 
𝐶
: 2𝑋 → ℝ+  regarding the 

score of classification confidence is a measure function because: 

1. 
𝐶
(∅)  = 0, i.e., there is no classification confidence (zero) without providing any 

observed features about the object to be classified; 



41 | Page 

 

2. For all x in X,  
𝐶
(𝑥)  ≥  0, since every feature derived should be measurable, and should 

contribute towards classification outcome greater than at random; 

3. For all countable collections {𝑥𝑖}𝑖=1
∞  of pairwise disjoint sets in X: 

 
𝐶
(⋃𝑥𝑘

∞

𝑘=1

) = ∑ 
𝐶
(𝑥𝑘)

∞

𝑘=1

 

 since the confidence measure of multiple features can be considered as the sum of the 

confidence measure on each individual of them. This definition will be further elaborated 

in more detail in Chapter 5. 

In this context, all the measures reviewed in Section 3.1 can be reinterpreted under this 

universal measure space (𝒳,𝑋, 𝜇𝐶) as defined. These measures can be seen as a countable 

measure in universal space (such as the measure used for KNN classifier), a Lebesgue measure 

in Euclidean space (such as the measure used for SVM classifier) or a probability measure in 

probability space (such as the measure used for HMM classifier), etc. As we have already 

acknowledged, despite the different properties and behaviours of the confidence measures 

proposed in the past, they all share a fundamental principle; any kind of classification problem 

can be seen as a statistical problem that is trying to differentiate the training classes in the 

given measure space. Therefore, we would like to propose a generic confidence measure that 

does not rely on the type of classifier but the nature of the data distributed. 

 

3.3. Proposed Confidence Measure 

3.3.1 Measuring Classification Confidence 

In a typical training data set, examples of the individual classes may be distributed differently 

in the corresponding feature space. Figure 3.1 presents a simplified view of distributions of a 

set of one-dimensional training examples of two classes and provides a conspicuous view of 

the strength of classification for each class. As illustrated by the frequency diagram in Figure 

3.1(a), the two classes are very much distinct from each other when the data feature 𝑥 has a 

value that is below a certain threshold 𝑥𝑎 or above another threshold 𝑥𝑏 due to the lack of 

examples from the opponent classes. However, conflicts of classification occur in a region 

between the two thresholds, where the feature values of the samples of two classes start to 

overlap. At the intersection point of the two curves, the overlapping occurs the most. Therefore, 

the overlapped region should be considered as a “zone of confusion” and the level of 

uncertainty in classifying samples should be maximised when the presences of the two classes 
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are nearly equal. 

 

(a) Frequency Distribution of Feature Values   (b) Probability of a Class over Feature Values 

Figure 3.1 an Illustration of Value Distributions of Examples of 2 Classes 

Based on this observation, it is logical to transfer the frequency-based reasoning as shown in 

Figure 3.1(a) into a probability-based concept as shown in Figure 3.1(b), where the likelihood 

of the presence of different classes is a good indication of the confusion caused in 

classification. As illustrated in the diagram, all the discussed characteristics regarding 

"confusions" are well preserved within a normalised scale. The range between the two 

probability curves on the y-axis indicates the magnitude of the overlapping between the two 

classes, which should be considered as being proportional to the level of decision confidence. 

Therefore, for a given finite set of classes, {ω} = {ω1, ω2, … , ω𝑘}, the level of classification 

confidence 𝜇𝐶 can be presented as: 

𝜇𝐶(ω𝑖|�⃗�) ∝ |P(ω𝑖|�⃗�) − (1 − P(ω𝑖|�⃗�))|                                 (3.17) 

where P(ω𝑖|�⃗�) is the conditional probability of predicting class ω𝑖 based on a given feature 

vector �⃗� and therefore the aggregate probability of predicting into the rest of the classes will 

be 1 − P(ω𝑖|�⃗�) . The second term in the absolute difference in (3.17) is indeed the 

classification error rate 𝜀 for class ω𝑖 at the given data point, which can be simplified as: 

𝜇𝐶(ω𝑖|�⃗�) = |2P(ω𝑖|�⃗�) − 1|                                             (3.18) 

This definition is justified by an assumption that the level of the confidence of the 

classification is directly proportional to the difference of the two probabilities without any 

transition bias, i.e., the gradient is equal to 1. Formula 3.18 motivates the introduction of a 

generalised confidence-centric score function 𝜇𝐷 for the classified label ω𝑖 as: 

𝜇𝐷(ω𝑖|�⃗�) = 2P(ω𝑖|�⃗�) − 1                                              (3.19) 

In this setting, we further transform our original measure into a signed measure, in which the 

sign of the decision score indicates the belonging of the class. A positive value would indicate 

a confirmation of the chosen class ω𝑖  and a negative value indicates a preference of the 

remaining classes. The absolute value of the decision score is the level of confidence in the 
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decision made on the class belongings. 

3.3.2. Modelling Decision Score 

Here we introduce a Gaussian Bayes model for measuring the decision score defined in 

Formula 3.19. According to the Bayesian theorem: 

P(ω𝑖|�⃗�) =
P(�⃗�|ω𝑖)P(ω𝑖)

P(�⃗�)
                                                 (3.20) 

where P(ω𝑖) and 𝑃(�⃗�) are two priors that represent the natural incidence of the class ω𝑖 and 

the expected observation probability of the feature �⃗�, while P(�⃗�|ω𝑖) is known as a posterior 

of the feature �⃗� given that it belongs to the class ω𝑖. However, it is impossible to know exactly 

the priors in real-life scenarios due to uncertainty and randomness in the data population. We, 

therefore, estimate the parameters by using the training dataset.  

Given a sample space  Ω = {[ω
1
],[ω

2
],…,[ω𝑘]}, where [ω𝑖] is the set of all samples that 

belong to the class ω𝑖,  then P(ω𝑖) can be estimated as the proportion of the interested class 

ω𝑖 to the total number of samples, i.e. 

                                              P(ω𝑖) =  
|[ω𝑖]|

|Ω|
                                                               (3.21) 

P(�⃗�) and P(�⃗�|ω𝑖) are the two probability functions describing the distribution of the feature 

�⃗�,  respectively within the overall population and the population of the class ω𝑖.  Our proposed 

scheme assumes that both are Gaussian distributions. First, a simplified model based on a 

single Gaussian distribution is proposed as follows. Given the mean 𝜇 and variance 𝜎2for a 

univariate feature �⃗�, we use the Gaussian probability density function: 

𝒩(𝑥 | 𝜇, 𝜎2) =
1

√2𝜎2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  

for characterizing P(�⃗�) and P(�⃗�|ω𝑖) as: 

{
P(�⃗�) = 𝒩(𝑥 | 𝜇Ω, 𝜎Ω

2)

P(�⃗�|ω𝑖) = 𝒩(𝑥 | 𝜇ω𝑖 , 𝜎ω𝑖
2 )
                                            (3.22) 

In many applications, data features normally exist in a multidimensional space. Therefore, it 

is essential that we expand the previous simple model into a multivariate Gaussian model to 

accommodate multidimensional feature vectors. For a given data set of d dimensions with the 

mean vector 𝜇 and covariance matrix Σ, we simplify the standard Gaussian probability density 

function 𝒩(�⃗� | 𝜇, Σ) as: 

𝒩(�⃗� | 𝜇, Σ) =
1

√2𝜋𝑑|Σ|
𝑒−

(𝑥 − �⃗⃗⃗�) Σ−1 (𝑥 − �⃗⃗⃗�)𝑇

2  
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We derive 𝜇𝑥, Σ𝑥  from  Ω = {ω1, ω2, … , ω𝑘}  and 𝜇ω𝑖 , Σω𝑖  from  ω𝑖 , and then P(𝑥) and 

P(𝑥|ω𝑖) can then be characterized as: 

{
P(�⃗�) = 𝒩(�⃗� | 𝜇Ω, Σ𝛺)

P(�⃗�|ω𝑖) = 𝒩(�⃗� | 𝜇ω𝑖 , Σω𝑖)
                                                (3.23) 

One concern of using a single Gaussian in the modelling is that it may not always be realistic. 

Real-life data may reflect a mixture of multiple Gaussians, each of which has its mean vector 

and covariance matrix. Therefore, we have chosen to further extend the model into a Gaussian 

Mixture Model (GMM). In the mixture model, each sub-Gaussian model has been given a 

parameter set 𝜃 = {𝑊, 𝜇, Σ}, where W represents the weight of each sub-model in the mixture 

and the summation of the weight of all the models should be 1. Therefore, given a sequence 

of K parameter sets {𝜃𝑖=1…𝐾}, i.e., K Gaussian sub-models, we can characterize the mixture 

model as: 

𝒩(�⃗� | 𝜃𝑖=1…𝐾) =∑𝑊𝑖𝒩(�⃗� | 𝜇𝑖, Σ𝑖)

𝐾

𝑖=1

 

Therefore, we are able to derive a parameter set 𝜃ω𝑖 for each class after the relevant class 

set {ω𝑖}. The weight of each set is considered as its proportion in the whole training set, 

i.e., 𝑊𝑖 =
|[ω𝑖]|

|Ω|
, which P(�⃗�) and P(ω1)P(�⃗�|ω𝑖) can then be characterised as: 

{
P(�⃗�) = 𝒩(�⃗� | 𝜃ω𝑖=1…𝑘)

P(ω𝑖)P(�⃗�|ω𝑖) = 𝒩(�⃗� | 𝜃ω𝑖)
                                              (3.24) 

 

3.3.3. Discussion: Decision Score Measure with Gaussian Models  

Although we have proposed using Gaussian for modelling the confidence measure in Section 

3.3.2, the confidence measure can be modelled based on probability models of any arbitrary 

kind. Having said this, the Gaussian models can still be seen as an optimal option for 

modelling confidence. From the definition in Section 3.3.1, 𝜇𝐶 is in fact a measure of the given 

class ω𝑖 at the location �⃗� within the given measure space (𝒳,𝑋, 𝜇𝐶). Known that each class 

should have a feature vector 𝓏 such that P(ω𝑖|𝓏) = max
𝑥∈𝑋

𝐸[ω𝑖|𝑥] , where 𝓏 is then considered 

as the expected feature vector of the given class ω𝑖 in this case, i.e., the truth vector. With 

such understanding, any �⃗� can be considered as 𝓏 + 𝜀, where 𝜀 is the random environmental 

error that has caused the actual reading variate from the truth vector 𝓏. For a fictional example, 

a malignant breast tumour is expected to have n number of micro-calcifications for the most 

of time; where in this case, 𝓏⃗⃗⃗ ⃗ equals to n if we define the number of micro-calcification as a 
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one-dimensional feature vector in describing the malignancy of the breast tumour. As the 

tumour evolves differently through time and also impacts differently on different persons, the 

number of micro-calcification varies up and down naturally, which eventually cause the actual 

reading being away from the expected value 𝓏 by 𝜀 units. Note that it is less likely to have the 

actual reading varying hugely from the expected value 𝓏 but rather close to 𝓏, where the 

likelihood of the observation decays along with the increase in the distance from the expected 

values 𝓏 . This decaying nature follows the principle of Gaussian distributions; the 

observations are more likely distributed around the expected value and are less likely to be 

further away. Following this line of argument, if we define the random environmental error 𝜀 

to follow a Gaussian distribution as {𝜀}~𝒩(𝓏, Σ), i.e., to consider 𝜀 as a type of Gaussian 

noise, 𝑋  must also follow a Gaussian distribution since 𝑋 ≔ {𝓏 + 𝜀}~𝒩(𝓏, Σ) , which 

explained why Gaussian models can be an optimal solution for measuring confidence.  

However, one may argue that {𝜀} might follow distributions of other kinds and therefore 

fundamentally change the nature of modelling. Indeed, if we reconsider the fictional breast 

tumour example provided, the integer nature of the feature derived in fact discretised the 

distribution of the observations; and pathologically many micro-calcifications might merge 

together and result into a visual image that very much like a macro-calcification and distorts 

the original distribution towards the negative side. All of these facts indicate that a Poisson 

distribution may suit better in this case for measuring confidence. However, these facts also 

indicate that the feature we derived is not accurate enough when describing the malignancy of 

the breast tumour. Alternatively, we can derive a better feature that combines the average size 

of the calcifications, the proportion of the calcified area in the whole nodule and their overall 

visibility to overcome the issues mentioned. With such an argument, following the concept of 

the Gaussian process, we can always derive a super feature vector 𝓏 that best represents the 

studied object 𝒳  under a specific high dimensional projection where every individual 

dimension follows a Gaussian distribution. Although we cannot mathematically guarantee that 

𝒳 can always be turned into a Gaussian process, we can certainly approximate them under a 

certain margin of errors. As a matter of fact, many machine learning research works have 

shown that random feature vectors of large dimensionality naturally converge into a Gaussian 

process (Sohl-Dickstein, et al., 2020), providing more ground for using Gaussian for 

modelling the confidence.  

In addition, note that 𝜇𝐶 theoretically has a range of ]0,1[ when it is modelled on Gaussian 

distributions since 𝒩 is always greater than 0 and less than 1. However, 𝒩 may inevitably 

equal to 0 or 1 in practice when the numeric value surpasses the precision of hardware 

representation, which caused the range of 𝜇𝐶  becomes to [0,1]. In this case, any measure 
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between -1 and 1 is reflecting the precise decision score at the given feature reading. A 

measure of 1 is reflecting absolute confidence in the decision made since the sum of the 

likelihood of the opposite classes is equal to 0 in this case. But such value with absolute 

confidence may also imply potential underfitting at the given feature reading, since it indicates 

some classes had very low support around the given domain. Regarding these discussions, a 

potential solution in improving computing precision based on PCA whitening will be 

discussed in Section 4.3.2. Issues regarding potential under fittings are further discussed in 

Section 4.5.2. 

 

3.4. Confidence Measure Evaluation 

3.4.1. Dataset Used  

In evaluating the usefulness of the confidence concept introduced in the previous section, this 

study conducted several experiments using the small early pregnancy dataset as introduced in 

Section 2.4.2. The whole dataset is divided into a training set of 94 examples (15 cases of MC 

and 79 cases of PUV), and a test set of 90 examples (11 cases of MC and 79 cases of PUV). 

This data set is chosen because of its simplicial nature with relatively low dimensionality and 

clear medical understanding, which provides a good start for testing the proposed methods. 

For more details on the dataset, see Section 2.4.2. 

We first trained the proposed decision score model and derived their parameters based on 

the training dataset. We then applied the proposed models on each testing example from the 

test set and measured the decision score for each testing example. As introduced in Section 

3.3, the decision score is within the range of [-1, 1], which can be seen as the decision 

confidence towards [PUV, MC] in this binary class dataset. 

3.4.2. Evaluation of Zones of Confidence 

Figure 3.2 presents the scatterplots of the decision scores against feature values along the 

single MSD dimension. According to the known literature in the related field of medicine, 

25mm in MSD is a well-recognised threshold for separating PUV from miscarriage cases 

(Bourne & Bottomley, 2012). To better illustrate the change of predicted classes as the value 

of MSD increases, we have rescaled the MSD dimension by off-setting (25, 0) as the origin, 

then plotted the related decision score of each feature value in the test set for each model 

accordingly. The corresponding classes of the test examples are marked as a blue triangle 

(PUV) and red cross (MC) respectively. After the rescaling, the 1st, 2nd, 3rd and 4th quadrants 

in each scatterplot indicate the possible classification results, i.e., true positive, false positive, 
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true negative and false negative respectively.  

 

 (a) Scatterplots of the MSD feature vs. decision scores in UG and UGMM situations 

 

 (b) Scatter plot of the feature values vs. decision scores in MG and MGMM situations 

Figure 3.2 Illustration of Classification Confidence (UG: Univariate Single Gaussian on MSD, UGMM: 

Univariate Gaussian Mixture Model on MSD, MG: Multivariate Single Gaussian on three diameters; MGMM: 

Multivariate Gaussian Mixture Model on three diameters) 

 

As shown in Figure 3.2, the confidence measured was very high for MC cases beyond 31mm 

and PUV cases below 16mm, where the zone of confusion covers the range between 16mm 

and 31mm with the maximum confusion close to 25mm. This finding itself is quite interesting 

due to the well-known fact that 16mm was a threshold previously practised in the USA that 

has only recently been revived to 25mm because of concerns of potential false positives 

(Bourne & Bottomley, 2012). This finding indicates that the confidence score does reflect the 

level of confidence in the diagnosis.  

In addition, all the modelled data points were distributed according to a sigmoid pattern, 

which matches our expectation that the confidence would drop dramatically when it 

approaches the confusion point, i.e., the origin in the presented diagrams; otherwise, be stable 

at -1 or 1 when the feature value is outside the “confusion zone”. The scatterplot also shows 

that the use of GMM has resulted in data confusions being moved from the false negative 

region into the false positive region, since it better replicates the actual bias within the dataset. 

Figure 3.2 also shows the scatter plots of decision scores and feature values for multivariate 

situations. In clearly demonstrating the relationship between the decision scores and feature 

vector values, we purposely combined the three diameter components of each feature vector 

into a single average value (in fact MSD), and display the location of the data point along the 
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MSD dimension. At the same time, the decision scores are calculated using the original 3D 

feature vectors themselves. 

Some general observations can be made from the scatterplots in both Figure 3.2 (a) and 3.2 

(b). The confusion zone clearly exists between the two thresholds, and the best fitting curve 

through the confusion zone tends to be close to a sigmoid curve. The use of GMM also tends 

to move confusion cases from the false negative region into the false positive region, and at 

the same time increase the level of classification confidence in the true positive region. 

However, the confidence scores are more scattered in the confusion zone here than the scores 

for a univariate situation (a phenomenon to be further investigated in the next chapter). The 

second scatterplot shows increased cases of misclassification even with a high level of 

confidence.  

In summary, the single Gaussian models tend to have a smoother fit to the sigmoid function, 

which reflected the nature of the proportional relationship between the MSD and the 

classification result. However, the performance of the multivariate Gaussian models shows 

that the data points are eventually made more distinguishable and pushed the classification 

results towards the two extremes, which may lead to the justification for multivariate fusion 

in differentiating classes in highly overlapped feature values. 

3.4.3. Comparing Decision Model with Data Expectation 

As demonstrated in the previous section, the proposed method provides a good indication of 

the range of confidence/confusion. However, does the decision score truly reflect decision 

confidence in real-life practice, and in precision? In fact, this is a very difficult question to 

answer. Unfortunately, such “real-life confidence” is not readily available in the training data 

set most of the time, nor easy to obtain. Even such confidence scores are available, they are 

normally based on subjective judgements by domain experts. Such a subjective judgement 

tends to be inconsistent, a problem known as “intra- and inter-observer variations”. In this 

section, we explore some alternative ways of modelling the “reality” and comparing our 

decision scores with such a modelled reality, and outline the limitations of these approaches.  

One rudimentary solution is to map the decision score to absolute 1 or -1 according to the 

class label given in the training set, i.e., it is assumed that each of the decisions provided was 

made with absolute confidence. With this approach, we can evaluate the experiment result by 

calculating the difference between the projected decision score and the derived decision score 

from the proposed confidence model. This difference is within the range of [0, 2], where 0 

indicates a perfect match, and 2 an absolute conflict between the two decision scores. However, 

this approach is too rudimentary, and the decision score is an oversensitive estimation, which 

does not reflect real expectation (the idea of the decision score sensitivity will be explored in 
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the next chapter). 

We can revisit the definition regarding the proposed confidence measure in Section 3.3.1. 

The measure 𝜇𝐶(ω𝑖|�⃗�) can be seen as a function that reflects the expectation of observing the 

class ω𝑖 at the given feature �⃗�. Therefore, if we collect a rich multiset of observations 𝑋 ∈

�⃗� → 𝑍 where Z indicates the ground truth of the class label, according to the law of large 

numbers (Dinov, et al., 2009), the expectation 𝐸 regarding observing the class ω𝑖 at the given 

feature reading �⃗� can then be estimated as 

𝐸(ω𝑖|�⃗�) =
𝑚𝑋(ω𝑖)

|𝑋|
if |𝑋| ≫ 1                                         (3.25) 

where 𝑚𝑋(ω𝑖) is the multiplicity function of the element ω𝑖 in the multiset 𝑋, defined as 

𝑚𝑋(ω𝑖) ∶=∑𝟏ω𝑖(𝑥)

𝑥∈𝑋

                                                (3.26) 

Following this definition, the expectation of the Decision Score measure 𝑆𝐷  can then be 

calculated as  

𝐸[𝑆𝐷(ω𝑖|�⃗�)] = 𝐸(ω𝑖|�⃗�) − 𝐸(¬ω𝑖|�⃗�)                                   (3.27) 

Consequently, we can derive a difference function Δ(𝑆𝐷 , 𝐸|�⃗�) as an evaluation method to 

compare the decision score we modelled and the real expectation value at the given feature 

point �⃗� as 

Δ(𝑆𝐷, 𝐸|�⃗�) = 𝑆𝐷(ω𝑖|�⃗�) − 𝐸[𝑆𝐷(ω𝑖|�⃗�)]                                (3.28) 

The difference value Δ(𝑆𝐷 , 𝐸|�⃗�) indicates the margin of error between the decision score we 

have modelled and the real expectation, in a range of [-2, 2], which should ideally equal to 0 

if they are very close to the real expectation.  

Unfortunately, obtaining such a large verification multiset X can be very difficult in the 

reality, which only a few individual readings of �⃗�  at a different time can be obtained. 

Nevertheless, we can still estimate the result in a coarse manner by considering errors involved 

during data acquisition and feature extraction. In reality, errors inevitably exist during data 

collection and processing, where each reading in the verification multiset X at �⃗� are eventually 

drawn from {�⃗�} with error ℰ instead of from {�⃗�} only, i.e. 

𝑋 ∈ {�⃗� + 𝜀1, �⃗� + 𝜀2, … , �⃗� + 𝜀𝑛}                                         (3.29) 

In this scenario, different readings can be considered as identical if their difference is within 

the maximum error margin, i.e.  
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𝑋 ∈ {�⃗�} if⋀|�⃗� − 𝑥| < 𝜀max
𝑥∈𝑋

                                             (3.30) 

This condition grants more tolerances in obtaining a rich verification multiset. 

In practice, there are two fundamental types of error occurring during data collection, which 

is systematic error (bias) and random error (accuracy). These two types of error can be affected 

by many factors but are mainly caused by the measuring instruments used and human 

observation error respectively. These errors are further evolved in the feature extraction stage 

of the pattern recognition process. Therefore, we can ideally calculate the theoretical error 

contained in feature reading by understanding how measurements are further used in the 

following experiments. However, data and methods may vary from application to application, 

which made it very difficult in measuring and quantifying the errors encountered. 

Nevertheless, there have been studies that summarized several commonly occurred error types 

in image-based experiments (Goldstein, 2000). In our experiment conducted in Section 3.4.2, 

we have used a human-labelled feature over the digital ultrasound image, which involves two 

major types of errors, as image pixelation error and cursor placement error. As the literature 

proposed (Goldstein, 2000), by combining the two types of errors, three potential error 

margins from ±0.064mm to ±1.8mm can be defined depending on the tolerance margin chosen 

in relating to different levels of uncertainty. Based on this study, we have computed the 

expectation at different feature readings based on the testing set and compared them with the 

decision score we derived from the SGMM model, which the result is shown in Figure 3.3. 

From Figure 3.3, it is clear that the choice of error margin has an impact on the expectation 

computed, in which the range of the confusion zone is proportional to the margin of error. A 

small error margin may lead to under fittings since the number of elements within the margin 

is not satisfying the minimum requirement of the law of large numbers. On the other hand, a 

large error margin leads to a relative vague measure, which may not reflect the expectation at 

the feature reading precisely. In addition to these issues, a precise understanding of the errors 

contained regarding the feature used may not always be available, especially for some of the 

state of art features such as CNN. These defects add difficulties in evaluating the difference 

between our model and true expectation. 
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Figure 3.3 Expectation measured under different error margins 

To avoid these defects, we can revisit the Formula 3.28 defined previously, which can be 

rewritten as 

Δ(𝑆𝐷 , 𝐸|�⃗�) = |𝑋|
−1∑[𝑆𝐷(ω𝑖|�⃗�) − 𝟏ω𝑖(𝑥) + 𝟏¬ω𝑖(𝑥)]

𝑥∈𝑋

                      (3.31) 

That is, the average of the sum of the difference/correction needed between the decision score 

computed and the absolute decision score based on ground truth, which can be easily 

computed on the fly. Following this, as Δ(𝑆𝐷, 𝐸|�⃗�) = 0 indicates a perfect match at �⃗� between 

the two measures, the difference between the two measures must also equal to 0 at any region 

of the feature space if they match perfectly, i.e., for  �⃗�𝑎 , �⃗�𝑏 ∈ {�⃗�} 

∫ Δ(𝑆𝐷 , 𝐸|�⃗�) 𝑑�⃗�
𝑥𝑎

𝑥𝑏

= 0                                                    (3.32) 

This again can be used as an evaluation method over a region, which the precise value can be 

calculated as 

�⃗�𝑎 − �⃗�𝑏
|𝑋|

∑ ∑[𝑆𝐷(ω𝑖|�⃗�𝑖) − 𝟏ω𝑖(𝑥) + 𝟏¬ω𝑖(𝑥)]

𝑥∈𝑋𝑥𝑖∈[𝑥𝑎,𝑥𝑏]

                   (3.33) 

That is, the average amount of difference/correction needed between the decision score 

computed and the absolute decision score based on ground truth within the region. The 

advantage of this measure is that it does not limit the region of interests, which can be as large 

and convenient as we needed in satisfying the law of large numbers. However, it is noticed 

that the measure becomes less representative along with the increase in the range of inspection, 

which sacrifices evaluation preciseness in exchanging expectation accuracy. In balancing the 
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two, we can perform the difference measure as Formula 3.33 over several regions/bins of 

reasonable length when evaluating the performance of a decision model on a validation set. In 

performing such a piece-wise difference measure, it is needed to project the original data into 

a single-dimensional space to ease the computational cost in searching and sampling. That is, 

we are producing a set of projected validation samples {𝑥′} ∈ 𝑋′, then sampling and evaluating 

the decision score model by defining regions/bins on the projected dimensions. Based on this, 

the ith difference measure ∫Δ(i) of k regions/bins can then be calculated as 

∫Δ(𝑖) =∫ Δ(𝑆𝐷 , 𝐸|�⃗�) 𝑑�⃗�
𝑥min
′ +[𝑖(1−s)+s]ℓ

𝑥min
′ +(𝑖−1)(1−s)ℓ

                              (3.34) 

where ℓ  denotes a unit length when dividing the projected space 𝑥𝑚𝑎𝑥
′ − 𝑥𝑚𝑖𝑛

′  into k 

regions/bins with s stride, which calculated as 

ℓ =
𝑥max
′ − 𝑥min

′

[𝑘(1 − 𝑠) + 𝑠]
                                                      (3.35) 

in this definition, the final average of the difference measure among all divided regions/bins 

after disposed of repeated strides can be calculated as 

1

𝑘
∑[∑

(1 − 𝑠)∫ Δ(𝑖)

𝑛

𝜍

𝑛=1

+
[1 − (1 − 𝑠)𝜍] ∫ Δ(𝑖)

𝜍 + 1
]

𝑘

𝑖=1

                      (3.36) 

where 𝜍 denotes the max amount of the strides that can be fitted in a unit length and calculated 

as  

𝜍 = ⌊
1

1 − 𝑠
⌋                                                             (3.37) 

As defined, k and s are the two essential parameters that affect the sampling of the 

validation set during the evaluation. k can be any positive integer, but it is ideal to maximise 

the value of k in obtaining a much precise result while making sure that each of the 

regions/bins has at least a sample size that satisfies the law of large number. On the other hand, 

s can be any real number that is in the range of [0,1[, but it is ideal to have the s being relatively 

small and making (1 − 𝑠)𝜍 = 1 in minimising the computation cost while again satisfying the 

minimum sample size required by the law of large number. 

As a pilot experiment, we have used MSD as the projection method and evaluated the 4 

types of decision score models proposed in this chapter with k = 5 and s = 0.2.  
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Table 3.2 The average reading of the difference measure on different models 

 MGMM SG SGMM MG 

𝛥 -0.1827 0.1007 -0.0939 0.0225 

Stdev 0.2473 0.2115 0.1709 0.1874 

 

The result in Table 3.2 shows that all 4 models had similar variations of the performance over 

the validation set with an average standard deviation around 0.2, which implies that they had 

a similar pattern in reflecting the real expectation of the dataset in different regions. This 

matches what we have observed in Section 3.4.2. In addition to this, MGMM had the worst 

performance with the largest difference of -0.18. This observation again matches the 

conclusion in Section 3.4.2, since we realise MGMM was the most complex model and 

therefore expecting potential under fittings/over fittings on a small training set. A good 

indication of this assumption is shown by the 𝛥 result of SGMM and MG, they all had a 

significantly better result than MGMM despite they share similar principles. SGMM has 

integrated the original 3-dimensional feature into 1-dimensional space, which provides a more 

tolerable degree of freedom to the regression of model parameters. On the other hand, MG has 

combined 2 classes into 1 model in overcoming the lack of training samples on the malignant 

class. These factors very well explained the reason why SGMM and MG significantly 

outperform the MGMM in online testing by reducing the potential underfitting and overfitting 

respectively. However, despite the relatively poor performance on the miscarriage dataset, 

MGMM is believed to be the most potent model when facing complicated features as long as 

the size training sample size is large enough to overcome the underfitting issue, since MGMM 

has the most capability in representing complex distributions in precise. 

 

3.5. Summary 

In this chapter, we have first highlighted the essential needs of measuring the confidence 

of classification in the clinical environment. In fulfilling such needs, we have reviewed a list 

of potential methods for measuring the classification confidence and selected probability 

measure as the solution due to its universality on applications. In further refining the 

probability measure for solving specific requirements for CDSS, we have proposed a generic 

measure, referred to as the confidence measure. This proposed measure was modelled based 

on the Bayesian principle and Gaussian models of four various kinds, which later been 

transferred into a signed measure, referred to as the decision score measure, for a more 



54 | Page 

 

simplified and informative representation. We have debated the applications of the proposed 

method and tested the proposed models on small scale real-world data with limited 

dimensionality. The experiment result showed that all variants of the proposed measure had a 

good reflection on the confidential nature of the experiment dataset used, where the UGM 

showed good fitness to the decision strength and MGMM showed the best discrimination 

power.  

In addition to these findings, we have also proposed several methods that can be used for 

evaluating the fitness of the proposed confidence measure. Initial experiment results have also 

shown the measure’s validity. we have further discovered that the proposed measure tends to 

be more sensitively to feature inputs in high dimensional space. Nevertheless, the 

dimensionality of the experiment dataset was not great enough in proving such an argument. 

Therefore, we will further study the behaviours of the measure proposed in high dimensional 

space, which is the main topic for the next chapter.   
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Chapter 4. Confidence Measures in High Dimension 

 

 

In the previous chapter, we have proposed a generic confidence measure and its use in a signed 

decision score, as well as various forms of modelling the measure for the classification 

decision strength using the Gaussian Bayes principle. The proposed measure was tested on a 

dataset of three-dimensional features and their aggregated one dimensional feature (i.e. MSD) 

for detecting miscarriages. The test results have shown that the measure produces valid 

measurements and supports the known medical findings. However, data sets of such low 

dimensionality are not common in the intended application domain. In medicine and health, 

not only there are data sets with tens or even hundreds of variables representing medical test 

results measured and recorded manually, but also data sets with hundreds or even thousands 

of features that are extracted from medical images automatically by computer algorithms. In 

either case, a dataset can be of very high or extremely high dimensionality. High dimensional 

feature spaces encounter the issue of the “curse of dimensions” (see Section 4.1). Although 

various procedures and algorithms have been proposed to reduce dimensionality as a 

preprocessing step before machine learning, the dimensionality of most features passed into a 

trained classification model remains high. It is very important and necessary to understand 

how the proposed confidence measure behaves in high dimensional feature spaces, and its 

impacts. 

In this chapter, therefore, we extend our investigation into the behaviours of the decision 

score measure introduced in the previous chapter in high dimensional spaces. To facilitate this 

investigation, we will consider data sets of automatically extracted features of high 

dimensionality from medical images. We will focus on two potential issues that affect the 

behaviour of the proposed decision score measure, in the context of singularity and sensitivity. 

These terms are first introduced and investigated rigorously and then illustrated with 

synthesized data. We then propose a solution by projecting the previously proposed 

confidence measure into an iteratively filtered eigenspace. Effects of the proposed method are 

then evaluated with real-life data sets of different dimensionalities through experiments. 

Afterwards, the decision score in high dimensional features is analysed. The result of this 

study together with the conclusions from the previous chapter will be further exploited in the 

proposed fusion schemes to be presented in Chapter 5. 
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4.1. Issues Arise from Curse of Dimensionality  

Curse of dimensionality (Hongbo, 2010) refers to the fact that as the dimensionality of data 

space linearly increases, the amount of search space increases exponentially. Besides the fact 

that the time needed in the data processing increases, data points in a high dimensional space 

become more spread and dispersed, which then distorts the statistical nature of a modelled 

measure. The sparse range of the Euclidian space causes distance measurements and 

regression analysis of various types to become less meaningful. The Hughes phenomenon 

(Hughes, 1968) states a negative relationship between the predictive power of a model and the 

dimensionality of data when the number of training samples is fixed. This is because the lower 

coverage in high dimensional space leads to lower support for the classifier predicted 

outcomes. The smaller a training set is, the worse the impact of the Hughes phenomenon is. 

Consequently, as the data dimensionality increases, the number of training examples has to 

grow exponentially in maintaining model accuracy. Due to difficulties and costs for clinical 

data acquisition, the exponential increase in the demand of training examples can be seen as 

an unrealistic luxury.  

The curse of dimensionality has significant impacts on our proposed decision score 

measure that are manifested in a variety of ways beyond the efficiency of computations. The 

curse of dimension has been dealt with in the literature by a variety of dimension reduction 

techniques such as PCA (Nasution, et al., 2018). Precisions of computation, in relation to the 

covariance matrix associated with the dimension reduction procedure, usually impose certain 

limitations that are mathematically measured by two matrix properties identified as singularity 

and sensitivity. Next, we shall describe these two issues and discuss their impacts. 

4.1.1. Singularity 

The concept of singularity is a major matrix algebra that describes the solvability of a linear 

system Ax=b when A is a square matrix. Such a matrix system has a unique solution if and 

only if A has an inverse or equivalently, i.e., det(A) ≠ 0. If A has no inverse it is said to be 

singular.  

The proposed decision score measure has its root in the Bayesian probability model. Although 

many studies that have adopted the Bayesian approach (such as Naïve Bayes) assume 

conditionally independent features (Wood, et al., 2019), which is not strictly required by the 

Bayesian theorem. However, the covariance matrix Σ calculated from each class must be 

positive semidefinite in the modelling function in Formula 3.23, where positive semi-definite 

matrix refers to a symmetric matrix M with a real number 𝓏𝑇𝑀𝓏 that is positive or zero for 

every nonzero real column vector 𝓏. If the covariance matrix Σ was not positive semi-definite, 
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the terms for |Σ|  and Σ−1  renders the formula computationally undefined. In fact, if the 

determinant |Σ|   is a very small non-zero the computing inverse matrix Σ−1  results in 

underflow, i.e., Σ is computationally singular.  

The covariance matrix of an 𝑛 dimensional dataset is a 𝑛 × 𝑛 matrix whose diagonal terms 

{𝛴𝑖,𝑖} are the ith variances 𝜎𝑖
2 among the n dimensions. The rest of the terms {Σ𝑗,𝑘| 𝑗 ≠ 𝑘} can 

be defined as a linear transformation of the product of the jth and kth standard deviations 

𝜎𝑗𝜎𝑘 among the n dimensions with a gradient of the pair wised Pearson correlation coefficient 

𝑟𝑗,𝑘  , i.e. 

Σ =

[
 
 
 
 
 

𝜎1
2 𝑟2,1𝜎2𝜎1 ⋯ 𝑟𝑛−1,1𝜎𝑛−1𝜎1 𝑟𝑛,1𝜎𝑛𝜎1

𝑟1,2𝜎1𝜎2 𝜎2
2 ⋯ 𝑟𝑛−1,2𝜎𝑛𝜎1 𝑟𝑛,2𝜎𝑛𝜎2

⋮ ⋮ ⋱ ⋮ ⋮
𝑟1,𝑛−1𝜎1𝜎𝑛−1 𝑟2,𝑛−1𝜎2𝜎𝑛−1 ⋯ 𝜎𝑛−1

2 𝑟𝑛,𝑛−1𝜎𝑛𝜎𝑛−1
𝑟1,𝑛𝜎1𝜎𝑛 𝑟2,𝑛𝜎2𝜎𝑛 ⋯ 𝑟𝑛−1,𝑛𝜎𝑛−1𝜎𝑛 𝜎𝑛

2 ]
 
 
 
 
 

 , 𝑟 ∈ (−1,1)  (4.1) 

It is a well-known fact that singularity occurs if there are linear relations of any kind across 

any two or more different dimensions in the training data, i.e., |𝑟𝑗,𝑘| = 1. This is due to the 

fact that correlated vectors have the exact same direction under any projections. Any raw data 

acquired may naturally cause a singularity threat. When dimensionalities are very high, it is 

more likely to contain duplicates on extracted features, yielding a singular Σ. 

4.1.2. Sensitivity 

The sensitivity of a decision model refers to the rate of change in the decision score predicted 

in terms of change in feature values. This statement is very similar to the definition of 

condition numbers (Belsley, et al., 1980), which is a measure of how much the output value 

changes in relation to a small change in the inputs. A large condition number implies a 

significant change in the output with a small change in the input, which refers to as the ill-

conditions. On the contrary, a small condition number implies a minor change in the output 

with a small change in the input, which refers to as the well-conditions. In theory, well-

conditions imply a much predictable and stable outcome of a system, whereas ill-conditions 

imply a much sensitive system. Next, we shall be studying the concept of sensitivity by first 

looking at the definition of the condition number. 

Definition: The condition number of a matrix A is defined as its norm multiplied by the norm 

of its inverse, i.e. 

𝑐𝑜𝑛𝑑(𝐴) = ‖𝐴‖‖𝐴−1‖                                                      (4.2) 

where A is commonly expressed by a non-singular square matrix. Although condition number 

does not limit the type of norm being used for calculation, however, when the conventional 
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Euclidean norm is used, the condition number can be expressed as the ratio of the largest 

singular value of A to the smallest one.   

Condition number has its limitations and may not be very suitable for studying the 

sensitivity of our proposed measures. In our study, complicated functions such as the MGMM 

model usually have nonlinear characteristics, which creates difficulties in applying the 

measure of condition numbers. In addition, computing the condition number of a matrix can 

be much complex in real life where A is neither guaranteed to be non-singular nor being square. 

Although it is still possible to use its pseudo-inverse of such a matrix, the calculation may well 

be complex and limited. Most importantly, the singularity challenges still exist as what we 

have discussed in Section 4.1.1, given that lim
det(𝐴)→0

𝑐𝑜𝑛𝑑(𝐴) =  ∞ . Therefore, we need 

another appropriate type of measure for sensitivity. Known as the decision sensitivity measure, 

it is defined as follows: 

Definition: Given a classification system, let 𝑆𝐷 be its decision score function. The sensitivity 

of this decision score function can be defined as the gradient (i.e., first-order derivate) of 𝑆𝐷 , 

i.e.    

S𝐷′(𝜔𝑖|�⃗�) =  S𝐷(𝜔𝑖|�⃗�)
𝑑S𝐷
𝑑�⃗�

= S𝐷(𝜔𝑖|�⃗�)[ 
𝜕S𝐷
𝜕𝑥1

 , … ,
𝜕S𝐷
𝜕𝑥𝑛

 ]                           (4.3) 

The high decision sensitivity of the systems results in major changes in the predicted decisions 

with respect to a minor change in feature values, which indicates potential overfitting of the 

trained decision model. On the other hand, very low sensitivity results in only marginal 

differences in the decision score as a result of a marginal change in the input feature vectors, 

indicating potential underfitting of the trained model because of its indistinguishable 

classification results. In supervised learning, the modelling of sensitivity heavily depends on 

the training data used and the chosen classifier. As discussed in Chapter 2, for medical 

diagnostic systems, it is important to consider an acceptable application-dependent level of 

sensitivity to have some margin of tolerance to noise (or data errors). 

In general, an ideal classifier is expected to be sensitive enough in distinguishing different 

classes while remaining insensitive among data objects of similar cases. Consequently, the 

decision score model should be sensitive within the confusion zone where decisions over 

different classes are made, but insensitive outside the confusion zone where the belonging of 

classes is more settled (see Section 3.2.1 for the definition of confusion zone). With a proper 

definition, the decision sensitivity measure can be used as a good indicator of the reliability 

of the decision score model.  

The sensitivity of the decision score model at a given feature vector input can be measured 
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using Formula 4.2 in an ideal situation. However, as we discussed in Section 3.4.3, noises 

exist inevitably in any real-life measurements. Therefore, it is reasonable to measure decision 

sensitivity over an interval around the feature vector value readings in practice. If an ideal 

error margin 𝜀 of a feature value reading is introduced, the average decision sensitivity at a 

given feature value point within the error margin can then be measured as the definite integral, 

obtained from Formula 4.3: 

1

2‖𝜀‖
∫ S𝐷′(𝜔𝑖|�⃗�) 𝑑�⃗�  
𝑥+𝜀

𝑥−𝜀

                                                   (4.4) 

which can be simplified to or approximated by 4.4： 

1

2‖𝜀‖
|S𝐷(𝜔𝑖|�⃗� + 𝜀) − S𝐷(𝜔𝑖|�⃗� − 𝜀)|                                      (4.5) 

The decision sensitivity measured in this way has a range of [0, ‖𝜀‖−1]. The decision score 

predicted is considered as certain when the sensitivity measured equals 0 since the model was 

producing consistent estimation within the error margin around the given feature point. On the 

contrary, the decision score predicted is considered as uncertain when the decision sensitivity 

measured equals to ‖𝜀‖−1, since the entire zone of confusion was enclosed within the error 

margin in this case. To avoid cases where the decision sensitivity measurement equals to 

‖𝜀‖−1, we can optimise the decision score model so that the range of the confusion zone is 

wider than the error margin. That is, if we define �⃗�𝑚𝑖𝑛 as the feature reading at the start of the 

confusion zone and �⃗�𝑚𝑎𝑥 as the end of the confusion zone, 

‖�⃗�max − 𝑥min‖ > 2‖𝜀‖                                                    (4.6) 

However, such a requirement may fail in a high dimensional space due to inconsistent 

distribution across different dimensions and potentially overfitted trained models. These 

factors will be further investigated in Section 4.4.2. 

 

4.2. Influencing Factors of Decision Score Measure  

In the previous section, we noted that the singularity issue raises concerns about the 

applicability of our proposed model for the decision score measure in a high dimensional 

feature space. In addition, the potential use of decision sensitivity parameters in assessing our 

decision score model is also highly influenced by the dimensionality of the feature space. 

Therefore, controlling/reducing feature dimensionality becomes necessary for building 

reliable decision score measures.   
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Various methods for selecting or aggregating subsets of highly correlated features (i.e., 

coordinates) into a new set of reduced number of features have been commonly used. However, 

such methods require an in-depth understanding of the correlation among a large number of 

features and hence are deemed infeasible for feature space of significantly high dimensions. 

Unsupervised dimension reduction methods such as Principal Component Analysis (PCA) 

(Nasution, et al., 2018) can be effective alternatives. PCA in fact has been widely used for 

reducing feature dimensionality while keeping the information with the most discriminating 

power. It is used to project data from the original high dimensional space into a new space of 

a selected set of eigenvectors, along which the variance of the data is maximised. The number 

of the eigenvectors to keep depends on the required tolerance of information loss.   

The PCA dimension reduction method is data-dependent. The output projection matrices 

are therefore closely related to the variation of the training sample from the assumed 

probability distribution of the overall infinite data population. Consequently, determining the 

essential influencing factors in relation to the singularity and sensitivity issues highlighted 

above depends on the assumed probability model of the data population. Our general 

assumption here is that the data feature space are sampled from a Multivariate Gaussian Model 

(MGM) with given mean and standard deviation matrices 𝜇 and Σ, as defined in Section 3.3.2.  

As unprocessed features can be highly skewed and hard to observe, it is considerably easier 

for studying the behaviours of MGMs in high dimensional space if we standardise them first. 

To achieve this objective, we need to ensure first that MGMs in any dimensionality is 

standardizable. Let 𝑋~𝒩(𝜇, Σ) for some �⃗⃗� ∈ ℝ𝑛 and Σ be a real 𝑛 × 𝑛 positive semi-definite 

matrix, then there must be a matrix 𝐵 ∈ ℝ𝑛×𝑛 such that  

Z = 𝐵−1(𝑋 − 𝜇)~𝒩(0, 𝐼) 

Here, Z is considered to be a collection of independent standard normal random variables, i.e., 

𝑍 =  {𝑍1…𝑍𝑛} ~ 𝒩(0, 𝐼). Following this, the above expression can be simplified by the 

linear expression 𝑋 = 𝐵𝑍 + 𝜇, which states a linear relationship between the original MGM 

and its standardised version (Do, 2008). In other words, any random variable X with a 

multivariate Gaussian distribution can be interpreted as the result of applying a linear 

transformation 𝑋 = 𝐵𝑍 + 𝜇  to a collection of n independent standard normal random 

variables Z. Therefore, any MGM 𝒩(�⃗�|𝜇, Σ) can be transformed into a product of independent 

Univariate Gaussian Models as 

{
𝒩(�⃗�|𝜇, Σ) = ∏ 𝒩(Λ(�⃗�)𝑖|Λ(𝜇)𝑖 , λ𝑖,𝑖)

dim𝑥

𝑖=1

Λ(�⃗�) = ν−1�⃗�ν 

                                    (4.7) 



61 | Page 

 

where ν is a matrix whose columns are the corresponding right eigenvectors of a diagonal 

matrix of eigenvalues λ of the original covariance matrix Σ so that Σν = νλ.  

As previously shown in Formula 4.1 we can simply present the Σ as a transformation of 

correlated standard deviations. Similarly, λ can also be presented by using standard deviations 

as the eigenvalue and standard deviation are interchangeable. As λ has already been projected 

into an independent (orthogonal) space, the correlation factor 𝑟2 equals to one in the diagonal 

of λ and the equals to zero in the remaining parts. As a result, the diagonal of λ is a set of pure 

variances as 〈𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2〉 with the reminding element in the matrix equals to zero, which 

the Formula 4.3 can then be rewritten as  

{
𝒩(�⃗�|𝜇, 𝑑𝑖𝑎𝑔(𝜆)) = ∏

1

√2𝜋𝜎𝑖
2
𝑒
−
(Λ(�⃗�)𝑖−Λ(�⃗⃗⃗�)𝑖)

2

2𝜎𝑖
2

dim𝑥

𝑖=1

Λ(�⃗�) = ν−1�⃗�ν 

                          (4.8) 

Note that Formula 4.8 always has a maximum reading when �⃗� = 𝜇. At this point, a density 

peak is formed and can be simply computed as: 

∏
1

√2𝜋𝜎𝑖

dim𝑥

𝑖=1

                                                              (4.9) 

Consequently, the range of the density function can be estimated as [0, ∏
1

√2𝜋𝜎𝑖

dim𝑥
𝑖=1 ], which 

implies that the variation of the density value is directly proportional to ∏
1

𝜎𝑖

dim𝑥
𝑖=1  with a 

coefficient of 
1

√2𝜋

dim𝑥
. Also, it should be noted that the product of these eigenvalues has a 

minimum over any non-random matrix, in which the value supposed to be closer to the 

minimum eigenvalues, i.e.,  

|𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛| ≥ |𝜎𝑚𝑖𝑛 − 𝜎𝑚𝑎𝑥𝜎𝑚𝑖𝑛|                               (4.10) 

which implies that the result can be very much dominated by 𝜎𝑚𝑖𝑛 and inversely proportional 

to the variation.  

In summary, we have noticed that the range of the decision score measure depends on the 

dimensionality dim �⃗� and standard deviation values 𝜎𝑖. As the modelling sensitivity reflects 

the range of values in the feature domain, the dimensionality and the modelling variances are 

considered as the two critical factors in controlling the sensitivity of a decision score measure.    

The dimensionality of feature space is expected to have an impact on the discrimination 

power between different classes, and hence affects the sensitivity of a decision score measure. 

The two figures presented below may assist the understanding of the link between 
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dimensionality and model behaviour over individual classes. Figure 4.1(a) shows a pair of 

clearly separated classes modelled in a 2D feature space (x1, x2). However, as shown in Figure 

4.1(b), the projection into one of the two dimensions (x1) lead to significant overlapping of 

the two classes. Nevertheless, dimension reduction can be achieved differently by firstly 

transforming the feature space and then selecting fewer coordinates of the transformed feature 

space.  

  

(a)                                                                   (b) 

Figure 4.1 Probability Models in 2 and 3 Dimensional Space 

The second influencing factor is the standard deviation of the feature used in each 

dimension, where this factor can be highly influenced by dimension reduction procedures. 

PCA outputs the eigenvectors and their associated eigenvalues in descending order, which 

helps the user pruning the dimensions by keeping the projected features with larger 

eigenvalues. Therefore, in studying this second influencing factor, it is essential to understand 

how our proposed decision score measures change along with the change in eigenvalues 

(standard deviations), where we have made some illustrations using a simplified model under 

different conditions. 

    

Figure 4.2 Change in Probability Density Under Different Eigenvalues 
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Figure 4.2 shows how the univariate Gaussian probability density function varies in terms 

of different input values sampled under different standard deviations, where the standard 

deviation is the same as the square root of the eigenvalues under such a setting. From the 

illustration, we can observe that a small eigenvalue leads to a very steep probability 

distribution. The probability density predicted with a small eigenvalue heavily depends on the 

feature value, where it produces extremely high readings around the mean of the distribution, 

but the reading drops dramatically as the feature value moving away from the mean. In other 

words, the model tends to be very sensitive when it was built on small eigenvalues. On the 

contrary, the probability density predicted with a large eigenvalue maintains relatively 

independent to the change of feature value, where it produces very steady readings under a 

wider spectrum. In other words, the model tends to be very insensitive when it was built on 

large eigenvalues. Therefore, as the Gaussian probability model serves a fundamental role in 

our decision score measure, we conclude that the eigenvalues inevitably influences the 

sensitivity of the decision score measure, where the level of sensitivity tends to be inversely 

proportional to the scale of eigenvalue. 

Nevertheless, it is also important to understand that our proposed decision score measure 

does not only involve one Gaussian probability model as illustrated in Figure 4.2, but multiple 

Gaussian probability models with different means and standard deviations. Therefore, we 

further illustrate how decision score measures vary in correspondence to different value inputs 

under different standard deviations in Figure 4.3. To keep the illustration clear, we have 

simplified the setting where only two univariate Gaussian Models representing one class each 

are presented, both variables have the same standard deviation, and their means are 3 units 

away from each other.  

 

Figure 4.3 Change in Decision Score Under Different Eigen Values 

As the figures show, a small eigenvalue causes the decision score measurement to perform 

very much like a step function, where a marginal difference in the input value results in a 
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dramatic change in the score predicted. On the contrary, a large eigenvalue causes the decision 

score measurement to perform very much like a linear function, where the decision score 

changes in a constant manner along with the change in the input values. Therefore, we can 

clearly verify that the sensitivity property was well inherited from Gaussian models into our 

proposed decision score measure. It is worth noting that the behaviour of decision score 

measure very much depends on the properties of each Gaussian model used, which may result 

in slightly different characters than what appears in Figure 4.3. However, the principle of the 

negative relationship between the eigenvalues and the sensitivity of the decision score measure 

remains. 

 

4.3. Mitigating the Constraints of the Influencing Factors 

As mentioned in Section 4.1.1, the potential correlations across different dimensions very 

likely lead to a singular covariance matrix and cause failures in measuring the decision 

confidence. Hence, our ultimate goal is to minimise the potential correlation across different 

feature dimensions for improving the robustness of the decision score measure. As a solution, 

it is sensible to filter (or project) raw features into an altered feature space, which removes or 

replaces the perfectly correlated dimensions and produce a filtered semidefinite positive 

covariance matrix Σ′,  i.e.  

Σ′ = {Σ | |𝑟𝑗,𝑘| ≠ 1}                                                      (4.11) 

Perfectly correlated dimensions rarely occur in real-life data sets. It is more common to have 

a correlation 𝑟𝑗,𝑘 being close to but not exactly equal to 1, which may cause computational 

errors and precision flaws in computerized systems. Therefore, the filtering condition of the 

correlation is better to adopt a threshold 𝜀 ≈ 0 to indicate the maximum error tolerance margin, 

rather than looking for exact matches. Thus, we can reformulate Formula 4.11 as follows: 

Σ′ = {Σ | |𝑟𝑗,𝑘| < 1 − 𝜀}                                                   (4.12) 

 

4.3.1. Correlation-based Filtering of Dimensions by Selection 

A naive solution to the problem can be simply de-selecting the dimensions that correlate to 

the others by using exhaustive searches through all possible combinations of different 

dimensions. This naïve solution can be simply implemented using multivariate linear 

regression analysis, as correlation by definition is nothing but the linear regression fitness of 

one dimension to another. More specifically, the target dimension should be de-selected if the 
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regression fitness is greater than a predefined threshold. With this method, the raw data will 

be filtered by only selecting the associated dimensions that are not considered as perfectly 

correlated (under the tolerance margin 𝜀) to any other dimensions. The result is a pruned 

feature space that guarantees to produce a semi-definite covariance matrix. The advantage of 

such a method is that it has a minimal change to the original features and their meanings. In 

other words, pruning is only made to redundant and replicate dimensions that may have little 

or no effect on class discrimination. In addition, the reduction of dimensionality using this 

method also results in a smoother confidence prediction and diminishes the risk of potential 

misclassifications as the predictions became less sensitive. 

Despite those advantages as mentioned, the computational cost of this method can be a 

huge deficit, especially when the original features are of very high dimensionality. Although 

the computational cost is meant to reduce through the iterations of the deselection process, 

where the best-case complexity can be in the order of Ω (n), the worst-case complexity of the 

solution is still in the order of O(2𝑛−1). More importantly, it is worth noting that regression 

analysis already has a computational cost of at least Ω(n), which the naive solution by feature 

selection will only act as an amplifier of this cost and render the implementation extremely 

inefficient or even infeasible. 

4.3.2. Correlation-based Filtering by Principal Component Analysis 

Although PCA has been primarily used for dimension reduction, it can be adapted for solving 

the singularity issue arising from the covariance matrix. The PCA scheme produces an 

orthogonal linear transformation of the original dataset, which decorrelates any possibly pre-

existing correlations and provide a new coordinate system so that the maximum variation is 

maintained over the least amount of dimensions involved. The PCA transformation is 

conventionally implemented through Eigen Value Decomposition (EVD), but occasionally it 

can also be done using Singular Value Decomposition (SVD). The major difference between 

the two is that the EVD can only be applied to a square matrix but SVD can be applied to any 

rectangular matrix. In the practical application of using PCA for dimension reduction, two 

matrix representations of the data records can be constructed whereby the columns (or the 

rows) are the vector representation of the data samples. Hence, if the dimension of the data 

records is different from the number of samples, then both matrices are rectangular. There are 

two ways of generating square covariance matrices, by multiplying either records matrix by 

its transpose once on its left and once on its right. The SVD is simultaneously applied on the 

two data matrices (after subtracting the computed average vector), while the EVD is applied 

on one of the covariance matrices. Despite the fact that the result between EVD and SVD 

should not differ significantly, we prefer using the SVD method over the EVD method in this 
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research because SVD is more numerically reliable when computed over a symmetric positive 

semi-definite matrix (the covariance matrix) (Datta, 2010). 

More specifically, for SVD, any row data matrix 𝐴  of size 𝑚 × 𝑛  can be uniquely 

represented as 

𝐴 = 𝑈𝑆𝑉𝑇                                                              (4.13) 

where 𝑈 and 𝑉𝑇 are 𝑚 ×𝑚 and 𝑛 × 𝑛 singular vectors respectively, which being orthogonal, 

i.e., 𝑈𝑈𝑇 = 𝐼 and 𝑉𝑇𝑉 = 𝐼; 𝑆 is a matrix with the same size of A that contains zero except 

along its main diagonal for the corresponding singular values. Following this definition, a 

special case appears when 𝑚 > 𝑛, where U becomes a large 𝑚× 𝑛 matrix with the last m − n 

columns being considered as unnecessary fields. In this case, people normally adapt it into an 

economy-sized SVD (MathWorks, 2013), which becomes more memory efficient in real 

practices. In this form, the original U and 𝑆 are pruned by only preserving the first 𝑛 columns, 

which are eventually reduced to  𝑚× 𝑛  and 𝑛 × 𝑛  matrices respectively; 𝑉𝑇  remains the 

same. In the economy-sized SVD, the projected feature vector�⃗�PCA of the original feature 

vector �⃗� can then be simply defined as 

�⃗�PCA =  𝑈�⃗�                                                                 (4.14) 

By the end of the process, �⃗�PCA acts as an independent feature within the orthogonal space. 

Consequently, the potential singularity threat is resolved. Nevertheless, the singularity issue 

can also be solved by projecting the original data into other spaces, as long as the dimensions 

in the projected space are minimally correlated. However, the advantage of using PCA is that 

it produces an independent multivariate Gaussian model as we mentioned in Formula 4.7, 

where the multivariate Gaussian model can be formed as a product of n univariate Gaussian 

models from each projected dimension and therefore reduce computational cost. 

Computing PCA over large matrices can be very expensive in real life. Therefore, an 

iterative approach is normally adopted. One of the most commonly used and well-established 

iterative solutions is the NIPALS-PCA algorithm (Risvik, 2007). However, one important 

issue regarding this algorithm is that the projected features may eventually lose orthogonality 

due to the errors accumulated in each iteration, especially when the data computed has very 

high dimensionality. This problem can be mitigated by applying the Gram-Schmidt 

orthogonalization method to correct the non-orthogonal principal components computed by 

the NIPALS method (Andrecut, 2008). 

Although the dimension reduction schemes suggested above can help mitigate the 

singularity problem, we still need further modifications to reduce the influence from the 

sensitivity issues. As discussed in Section 4.2, the standard deviation 𝜎 plays a very important 
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role in controlling the sensitivity of the decision score measure. We shall next discuss methods 

to deal with this problem.  

4.3.3. Dimension Controlling based on Eigenvalues 

The sensitivity can be controlled by modifying, via pruning, the selection of the eigenvectors 

of the PCA/SVD schemes by considering the respective variance (eigenvalues) 𝜎2 of each 

independent dimension. As we have explained, projected dimensions with large eigenvalues 

provide most of the information and ensure the trained classifier being robust, whereas 

projected dimensions with smaller eigenvalues provide the finest discrimination power and 

contribute to more precise classification (we shall further discuss this comment in Section 4.5). 

To optimise the use of the PCA and resolve the potential sensitivity issue, we first define 

𝜎𝑚𝑖𝑛
2 as the minimum eigenvalue required for computing decision scores in providing the 

essential discrimination power, and define 𝜎𝑚𝑎𝑥
2 as the maximum eigenvalue required for 

computing decision scores with tolerable consistency. With the two parameters defined, the 

independent covariance matrix 𝑆, also known as the singular value matrix in the economy 

SVD, can then be further pruned as 

𝑈′ = {𝑈𝑖  | 𝜎𝑚𝑖𝑛
2 < 𝑆𝑖,𝑖 < 𝜎𝑚𝑎𝑥

2}                                        (4.15) 

By further pruning, any projected dimensions with eigenvalues below the minimum threshold 

are considered invalid as they may produce over sensitive decision score measures. Similarly, 

eigenvalues beyond the maximum threshold are also considered invalid as they are producing 

very general information and may not contribute to any discrimination power. This process 

will not only reduce the dimensionality of the feature used, but also adjust the eigenvalues so 

the optimal sensitivity can be achieved. We shall further test and validate these comments with 

experiments in Section 4.5. 

4.3.4. PCA Whitening 

The whitening transformation, also known as the sphering transformation, is a linear 

transformation that project random variables into a new dimensional space where the new 

covariance of the projected variables is equal to the identity matrix, i.e., uncorrelated and each 

dimension has a variance of 1. The transformation is called "whitening" because it changes 

the input vector into a white noise vector (Mobasseri & Lulu, 2021). 
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Figure 4.4 PCA Transformation and Whitening 

As the Gram-Schmidt PCA already decorrelates the original data, the whitening process in 

this case simply becomes a standardization on the data. The variance of the decorrelated data 

has already been computed in PCA as the eigenvalues 𝑆𝑖,𝑖, which the whitened data vector 

�⃗�PCA white can then be computed as 

�⃗�PCA white =
�⃗�PCA

√𝑑𝑖𝑎𝑔(𝑆)
                                                  (4.16) 

where 𝑑𝑖𝑎𝑔(𝑆) represents the diagonal of the eigenvalue matrix S. 

In principle, the whitening process is not necessary for our study since it does not change 

the topology nature of the data and therefore does not influence the score eventually computed. 

However, it does play an important role in practice since whitening standardizes the 

eigenvalue in each dimension and therefore eases the management. More importantly, it also 

improves the computability of the probability model in practice, since the standardisation 

lowers down the precision requirements when dealing with extremely small numerics.  

Having discussed the various modification of the adopted dimension reduction scheme(s) 

that helped mitigating the singularity and sensitivity problems, now we are in a position to 

formulate the correlation-based filtering task. As discussed in Chapter 3, the continuous 

probability models always yield a measurement of P(𝜔𝑖|�⃗�) in a range of (0,1). Following the 

definition in Section 3.3.2, if we present P(�⃗�)  as a probability mixture model 

∑ P(ω𝑖)P(�⃗�|ω𝑖)
𝑛
𝑖=1 , the conditional probability measure P(ω𝑖|�⃗�) can then be defined as 

P(𝜔𝑖|�⃗�) =
P(ω𝑖)P(�⃗�|ω𝑖)

∑ P(ω𝑖)P(�⃗�|ω𝑖)
𝑛
𝑖=1

                                           (4.17) 

where the conditional probability P(�⃗�|ω𝑖) regarding a feature reading given each class may 

all be very close to 0+ in rare cases. Consequently, formula (3.20) can be reformulated as 

follows: 
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lim
P(�⃗�|ω𝑖)→0

+

P(ω𝑖)P(�⃗�|ω𝑖)

∑ P(ω𝑖)P(�⃗�|ω𝑖)
𝑛
𝑖=1

= 0                                       (4.18) 

However, the real-world computation always suffers from imprecise fraction numbers 

presentation, and hence formula (4.17) may occasionally cause errors due to division by zero. 

In addition, the algorithm may also produce a faulty value of 1 due to the indistinguishable 

difference between the numerator and the denominator. These errors appear more often when 

the projected feature dimensions have very small eigenvalues, as many outliers may frequently 

laying outside the measurable range. With the help from PCA whitening, it enlarges the 

measurable range of the confidence model by scaling up small eigenvalues with multiplication 

operation and scaling down large eigenvalues with division operation. In addition to the 

traditional whitening process, a scaling parameter 𝑟 can be introduced as 

�⃗�𝑃𝐶𝐴 𝑤ℎ𝑖𝑡𝑒
′
=

�⃗�𝑃𝐶𝐴

√𝑟 ⋅ 𝑑𝑖𝑎𝑔(𝑆)
                                      (4.19) 

where the measurable range is inversely proportional to 𝑟. Note, a very small 𝑟 may also cause 

the overflow issue, which again makes the computation becoming invalid in reality. In 

principle, 𝑟 should be set and optimised according to the intended application, however, we 

found that 𝑟 = 1 is considerably a reliable value in general based on experimental experience, 

which provides robust performance while maintaining the simplicity of computations. 

 

4.4. Assessing the Quality of Decision Scoring Measures 

In practice, our proposed decision score measure produces real values in a range of [-1,1], 

which determine the class label and strength of the decision made by referring to the 

distribution learnt from training examples. In our definition, the magnitude of the decision 

strength is proportional to the level of certainty, where great values indicate high certainties 

on classification, and low values indicate uncertain predictions. To assess the quality of 

decision scoring measures, we need to distinguish between class prediction at the training 

stage and at the evaluation stage. In the training phase, decision score models are created by 

maximizing the likelihood of each class, where ideally matched class labels are awarded 

positive values and mismatches are awarded negative values. This strategy can be simply 

assessed by counting the number of positive matches of each class, as an accuracy measure, 

where the ultimate measure equals 100% to indicate ideal adherence to the rules/heuristics 

defining the respective class labels. This kind of assessment can also be applied to the 

validation phase, but 100% accuracy would never be expected in real practice.  
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Despite accuracy can be used for assessing the quality of the decision score model trained, 

it is important to understand that the accuracy measure is a type of discrete measure and does 

not suit the numeric nature of the decision score perfectly. Therefore, it is also important to 

evaluate the strength value of the predicted decision score instead of just the sign of it. As a 

naïve solution, we can assess the strength of the decision scores in the validation phase by first 

dividing the test results into two groups, as the samples that being correctly and incorrectly 

classified. For an ideal classifier, high confidence values in the correctly classified cases and 

low confidence values in the miss-classified cases are to be expected, respectively. This 

desirable trend can be visualized by drawing a histogram of each respective group. As Figure 

4.5 illustrates, the ideal histogram for correctly classified samples should be concentrated at 

the two ends, forming a U-shape curve, whereas the ideal histogram for miss-classified (or 

incorrectly classified) samples should be concentrated in the centre, forming an A-shape curve. 

This is desirable as we want the level of confidence for correctly classified examples as high 

as possible, and the level of confidence for incorrectly classified examples as low as possible. 

By using the visualisation as shown in Figure 4.5, we can gain good understandings of the 

decision score measured. However, the subjectiveness of the evaluation became a major 

deficiency when applying this kind of evaluation protocol in practice. The lack of 

quantification readings during the evaluation made it very difficult to compare results in real 

life, especially when the compared models were being very similar to each other. Therefore, 

we urgently need a method for assessing the strength of the decision score with appropriate 

quantifications, which will be further discussed in this section. 

    

Figure 4.5 Ideal histogram plots of correct and miss-classified decision scores 

4.4.1. Measuring sensitivity of a Decision Score 

In Section 4.1, we highlighted two main influencing factors on any decision score model, i.e., 

the singularity of the covariance matrix and the sensitivity of the decision score function under 

the concept of the rate of change in the decision score measured. The measurement of 

sensitivity can be used as an appropriate tool for decision score quality assessment with some 

adaptations, as the sensitivity partially reflects how the trained decision model reacts to unseen 
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data examples.  

As we have presented in Formula 4.3, sensitivity can be essentially studied by measuring 

the gradient of the decision score function at different feature readings. However, determining 

the exact estimation of a decision score function gradient can be very costly, especially in high 

dimensions. Therefore, in our study, the gradient of the decision score function is calculated 

using the following approximation method: 

𝛻𝑆𝐷 =
     𝑆𝐷(𝜔𝑖|�⃗� + ℎ) − 𝑆𝐷(𝜔𝑖|�⃗�)

‖ℎ‖
                                          (4.20) 

where ℎ is considered to be an extremely small number and has been set to 10−15 in our 

experiments (see Section 5.4). Under such approximation, the decision score function can be 

seen as a black box and the output of which is computed without prior detailed knowledge of 

the functional characteristics. As a result, it does not only decrease the computational cost on 

the calculation, but also improves the adaptability of the sensitivity measure for quality 

assessment. 

For high dimensional feature vectors, the gradients of our proposed decision score 

measures are obtained post projecting the original feature vectors �⃗� into the eigenspace, which 

simplifies the characteristics of the problem. In such a case, the elements {𝑥′1, 𝑥′2, … , 𝑥′𝑛} in 

the projected feature vector �⃗�′ are distributed as a list of independent Gaussian variables in 

the projected orthogonal space. Each of the partial derivatives calculated, under such condition, 

is coming from independent univariate Gaussian variables, and therefore simply expressed by 

the orthogonal Jacobian matrix: 

S𝐷(𝜔𝑖|�⃗�′)
𝜕S𝐷

𝜕�⃗�′
= [

𝜕S𝐷

𝜕𝑥′
1

…
𝜕S𝐷

𝜕𝑥′
𝑛

]                                      (4.21) 

Since we are more interested in the changes of quantities instead of directions when measuring 

sensitivities, it is better to combine the gradient vectors into a scalar by simply taking the inner 

product of the vector with itself as follows: 

∇𝑆𝐷 = [
𝜕S𝐷

𝜕𝑥′
1

…
𝜕S𝐷

𝜕𝑥′
𝑛

] [
𝜕S𝐷

𝜕𝑥′
1

…
𝜕S𝐷

𝜕𝑥′
𝑛

]

𝑇

                             (4.22) 

which is simply the Euclidian norm of the Jacobian matrix. Using such a method, we can then 

easily obtain a set of sensitivity measurements ∇𝒮𝒟 ={∇𝑆𝐷1, ∇𝑆𝐷2, … ∇𝑆𝐷𝑛} for any given 

testing set 𝑋′ ={�⃗⃗�1
′
, �⃗⃗�2

′
, … , �⃗⃗�𝑛

′
}. Since the decision score function 𝑆𝐷 by nature having sigmoid 

characteristics, then its first derivative must follow Gaussian characteristics, where the breadth 

of the Gaussian distribution is a direct reflection of the range of the confusion zones. 
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Consequently, the variance of these sensitivity measurements ∇𝜎2 can then be treated as a 

good reflection of the change in sensitivities at different test readings, defined by: 

∇𝜎2 =
∑ (∇𝑆𝐷𝑖−∇𝒮𝒟̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

𝑛−1
                                               (4.23) 

In practice, the proposed evaluation method will be applied and compared across features of 

different dimensionality. However, the gradients measured in this case is proportional to the 

range and dimensionality of the feature used, where gradients measured from high 

dimensional feature with wider ranges can be higher than the ones measured from low 

dimensional features with narrower ranges. In drawing a fair comparison across features of 

different dimensionality, we have normalised the computed ∇𝜎2 through a transfer function 

in obtaining a coefficient ∇𝑐 regarding the sensitivity measurements of the test set, provided 

by the formula: 

∇𝑐 = √
∇𝜎2

3√dim(𝑥)+∇𝜎2
                                                 (4.24) 

where ∇𝑐  is a real number that has a range of [0,1). As we increase the projection 

dimensionally, the range of calculated scalar values 𝛻𝑆𝐷 changes due to the fact that the score 

function gets steeper and yield a much larger Euclidian distance in the final calculation. 

Therefore, we have introduced another normalization factor 3√dim(�⃗�)  within the 

normalization function, where it is designed to normalize the sensitivity output into 0.5 when 

the variance of each dimension was equal to 1 individually. To highlight, this normalization 

factor is set by following the conventional rule of thumb of normal distributions, but it should 

not be constrained to such value only. Other alternatives are also allowed as long as it is 

proportional to the √dim(�⃗�). With such a measure, the decision score model is considered as 

sensitive to a set of testing samples if ∇𝑐 is close to 1, and be considered as insensitive if ∇𝑐 

is close to 0. 

 

4.5. Empirical Evaluation and Result Analysis 

To evaluate and analyse the effects of dimension reduction on classification sensitivity, we 

conduct experiments on the CBIS-DDSM dataset (Lee, et al., 2017) using PCA-based 

methods. The overview of the data set can be found in Section 2.4. For this study, the 

experiments are conducted on 1,872 images of calcium type tumours that consist of 1,199 

benign cases and 671 malignant cases, as calcium type tumours has relatively more distinctive 

looks that ease the requirement of image enhancement. The mass type of tumour is excluded 
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from the data for this experiment as they require more sophisticated features for classification. 

We have made this pruning to the experiment dataset as our work is more interested in 

discussing the decision score model behaviours than proposing the best feature and building 

very good classifiers. These images have been further randomly organized into 10 individual 

patches to implement a 10-fold cross-validation process. Nevertheless, this random sampling 

process was stratified to ensure the original prior of the dataset remained undistorted. In the 

other words, each of the sampled patches is designed to maintain the same ratio between 

benign and malignant classes, which was set at about 1.78:1 as the initial ratio in the dataset 

before partitioning. 

The well-known Grey Level Co-occurrence Matrix (GLCM) texture-based feature has 

been used in many classification studies about mammography (Majeed, et al., 2013) 

(Elshinawy, et al., 2011). In GLCM, the matrix is computed based on pixel neighbours to 

reflect the frequency of the occurrence of certain patterns, where the pattern can be identified 

in different distances and angles. After the raw data matrix has been computed, statistical 

measurements are normally extracted in forming high-level descriptors with uniform 

dimensions. In this study, we follow the widely used practice as proposed by Haralick 

(Haralick, 1979). The GLCM matrix, in this study, is computed for three different distances 

(1, 2 and 3) and four different angles (0°, 45°, 90°, and 180°). Then 13 statistical moment 

measurements (excluding the maximal correlation coefficient) are extracted from the raw 

matrix, resulting in a feature space of 3 × 4 ×13 = 156 dimensions. 

The model adopted for this study is an MGMM with a Naïve Bayes classification scheme 

for simplicity. Besides, we used the PCA method presented in Section 3.1 to project the 

original data for building the MGMM model into an orthogonal space, which does not only 

ensure the independence requirement of the Naïve Bayes classifier, but also simplified the 

original MGMM into a Univariate Gaussian Mixture Model (UGMM). As the coordinates in 

the orthogonal space are linear combinations of multiple coordinates in the original space, the 

data points in the projected space are therefore reflecting information from multiple 

dimensions, especially when the projected coordinates correspond with large eigenvalues. 

Therefore, modelling each projected dimension with a UGM only is no longer sufficient, 

which is considerably more desirable if we model the projected data points with Univariate 

Gaussian Mixture Models (UGMMs). Consequently, the class models derived from the 

projected multidimensional space are eventually taken as a mixture of UGMMs. However, the 

creation of UGMM on each projected lower dimension can no longer follow the approach 

mentioned in Section 3.3.2 due to the ambiguity of projection from different dimensions. As 

a solution, UGMM on each projected dimension was created by adopting the Expectation-
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Maximization (EM) method (Kumar, et al., 2009), where the threshold of the log-likelihood 

has been set to 10−5. 

4.5.1. Number of Mixtures and Feature Dimensionality 

 

Figure 4.6.  Number of UGMs in the mixture in each projected dimension with different eigenvalues 

In our experiment, we have first investigated the number of UGMs in the mixture on each 

projected dimension in relation to the eigenvalues. The average of the 10 test patches is plotted 

in Figure 4.6, where the error bars are indicating the maximum and minimum readings among 

the 10 test patches. The scatter plot shows a clear positive relationship between the number of 

UGMs in the mixture and their eigenvalues on the dimension projected, where the dimensions 

with larger eigenvalues tend to require more UGs in the mixture to describe the behaviours of 

the class. This does match our expectations since the dimensions with larger eigenvalues tend 

to contain more information and therefore yields a more complex projection. We have further 

observed that the number of UGMs required on the projected dimensions falls significantly as 

the corresponding eigenvalues decrease; however, this trend becomes stabilized after the 

eigenvalue has fallen below 1. This fact can be seen as experimental evidence of the 

“eigenvalue-one criterion”, which states that the projected dimension with an eigenvalue that 

is less than 1 can be dropped due to the relatively small information gain from them (Cardoso 

& Cruz-Almeida, 2016).  

4.5.2. Altering Decision Score Measure Using GLCM Features 

Following this analysis, the overall classification accuracy under different thresholds on 

maximum eigenvalues  𝜎𝑚𝑎𝑥
2 and minimum eigenvalues 𝜎𝑚𝑖𝑛

2, as explained in Formula 4.15, 

are recorded and plotted in Figure 4.7. The scatter points in these plots represent the average 

of the cross-validation results and the error bars reflect the best and worst readings among 

them. The initial seed used for generating the 10-fold random samples was fixed. Therefore, 

the testing environments under different eigenvalue thresholds are identical and comparable.  
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Figure 4.7. GLCM Accuracy in Relation to Different Eigenvalue Thresholds 

As shown in Figure 4.7, thresholding on maximum eigenvalues had a clear and significant 

impact on the overall accuracy, which reached a minimum and remained stable at 10−3.9. This 

rather linear impact was caused by the strong proportional relationship between the scale of 

eigenvalues and the amount of information gained from them. Abandoning dimensions with 

large eigenvalues directly reduces the information gained by the classifier and therefore 

impairs the classification accuracy, the impact of which appears to surpass the ambiguities 

contained within these dimensions. The stabilized reading after the decay indicates that the 

remaining dimensions no longer provide sufficient amounts of additional information to 

support further classifications, causing the predictions to bias one of the classes consistently. 

Furthermore, thresholding on maximum eigenvalues appears to have a consistently large error 

margin. This can be caused by the eigenvalues on the minimum side, as discussed in Formula 

4.10, where small eigenvalues tend to have a more dominating influence on the predictive 

model and therefore making it extremely sensitive. These effects will be further discussed in 

more detail in the next paragraph.  

In contrast to the previous readings, thresholding on minimum eigenvalues had a moderate 

effect in general, whereby accuracy decaying initially, then followed by a steady increase after 

10−6 and finally ending with another significant decrease. The initial decrease in accuracy 

reading is very much understandable since the reduction in dimensionality causes more 

ambiguities in the lower-dimensional subspace. Meanwhile, as we have mentioned in Formula 

4.10, smaller eigenvalues should have more dominant effects compared to large ones. This 

fact is more likely to cause the decision model to be overfitted in the high dimensions. This 

explains the reason for the increase between 10−6  to 10−3.5 , implying that the projected 

dimensions with eigenvalues less than  10−6 can potentially cause classification overfitting. 

Removing these eigenvalues essentially makes the classifier more robust and improves testing 

accuracy. Evidence that supports this argument is the error bars reflected on the scatter plots. 

The error bars remain consistently large at the beginning of the plot and then starts to decrease 

in size along with the increase in accuracy, which indicates that the initial classification results 
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were very sensitive and unstable to different test sets but subsequently become more and more 

robust along with the pruning of dimensions with small eigenvalues. At the end of the plot, 

the continuous pruning of dimensions starts to have an escalating effect on the information 

loss and eventually causes the classifier to predict more errors. This is reflected by the drop in 

accuracy and by the increase in error margins. 

Regarding the sensitivity measurements, the method introduced in Section 3.3 reflects the 

sensitivities of a group of samples, which makes the evaluation results being strongly 

dependent on the testing data. Consequently, it yields a large variation in the test readings. 

Nevertheless, the average reading among the testing patches will still be a good indication of 

the overall sensitivity under different thresholds. The diagrams in Figure 4.8, show that the 

averages of the sensitivity plot have clear negative sigmoid trends on both maximum and 

minimum threshed diagrams, reflecting that our sensitivity function defined matched our 

initial expectation.  

 

Figure 4.8. GLCM sensitivity measurements in relation to different eigenvalue thresholds 

Thresholding on minimum eigenvalues had a clear impact on the classification sensitivity. 

This again reflects our expectation since small eigenvalues tend to generate abrupt MGMM 

decision models that are very distinct from the others, which cause the measurements to be 

susceptible. As the experiment results show, cohering to the observations from Figure 4.7, 

sensitivity decreases significantly in the beginning and then eventually reached a minimum at 

10−6, and finally ended with another drop after 10−1.4. The initial decrease in sensitivity 

essentially demonstrates the reduction in classification overfitting along with the reduction in 

dimensionality, which reached a floor eventually between 10−6 and 10−4 as the robustness of 

classification was established in testing. After a robust classifier is built, further pruning on 

the eigenvalues results in an additional reduction on the information gained from the 

discriminative factors and therefore force the classifier to focus more on the ubiquitous factors. 

On one hand, this helped classifiers gaining better knowledge over comparative factors and 

therefore produce more sensitive predictions. On the other hand, however, this also causes the 

classifier to focus more on much ambiguous features that in return reduce the power of the 
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classifier in discriminating different classes. Finding the best balance between robustness and 

the discrimination power of a classifier is a challenge. The entangled relationship between 

robustness and discriminating power was shown as another positive sigmoid curve between 

10−6  and 10−1.5  on the sensitivity plot, where the classifier remains insensitive in the 

beginning and then transit rapidly to reach another ceiling and being relatively sensitive. This 

showed that the classifier was initially benefited from removing the over discriminative factors 

but soon reached a maximum since the remaining factor starts being more and more 

ambiguous and couldn’t contribute more to the classification. It can be potentially harmful 

when pruning beyond this local maximum, since the remaining factors may not be sufficient 

in discriminating different classes. Such effect can be clearly observed on the diagram as the 

ceiling was only maintained for a short period then followed by a second decrease in 

sensitivity immediately, indicating that the consistent errors made started to cause the 

classifier bias towards one of the classes and therefore led to insensitive predictions. In 

general, the clear drop in sensitivity at the beginning of the scatter plot was an indication of 

possible model overfitting, but the significant change in sensitivity at the end of the plot was 

reflecting possible model underfitting. An ideal threshold should be a value that positions at 

the beginning of the second peak within the plot, where the classifier with pruned dimensions 

maintains the best trade-off between robustness and discrimination power. This ideal threshold 

is observed at 10−3.5 in our experiment. 

Compared to thresholding on minimum eigenvalues, thresholding on maximum 

eigenvalues has shown a much consistent impact on the sensitivity. However, this does not 

imply that thresholding on maximum eigenvalues affects sensitivities similarly. The constant 

reading of extremely sensitive results at the start of the plot was essentially an observation of 

the dominating effects from the lower eigenvalues. The significant decrease in sensitivities 

after 10−1.1  was again caused by the decrease in classification accuracy, where the bias 

generated by classification error eventually yields insensitive predictions. Therefore, 

maintaining minimum eigenvalue unchanged eventually preserve the high sensitivity yield by 

the overfitted prediction models, which cause the effect of thresholding on maximum 

eigenvalues to become less obvious and noticeable. We have again discussed this relation with 

Formula 4.10 as the minimum eigenvalues have a greater impact on the decision outcome than 

the maximum values. 

4.5.3. Altering Decision Score Measure Using LBP Features 

To validate the findings, we have also tested with the Local Binary Pattern (LBP) features, 

which are of a different kind of texture feature from GLCM, on the same dataset. LBP is a 

very popular local texture feature used in computer vision, which re-encodes each central pixel 
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on the original image into one byte binary code depending on the relative contrast of the 

surrounding pixels to the central pixel. The histogram of these embedded codes for the whole 

image becomes a descriptive feature of image texture in 256 dimensions. Unlike the GLCM 

feature, dimensions in the LBP feature extracted are considerably less correlated, since each 

one of them is representing a distinctive pattern of the order relationship between the pixel 

and its 8 neighbouring pixels. We then present our findings in Figure 4.9. 

 

Figure 4.9. LBP accuracy measurements in relation to different eigenvalue thresholds 

As the test result shows and as we expected, the LBP feature extracted has a much lower 

correlation compared to the GLCM feature used previously, where the LBP had a minimum 

eigenvalue at 10-3 compared to the GLCM which had a minimum eigenvalue at 10-13. The LBP 

feature has a relatively worse performance compared to the GLCM feature, achieving only 

77% accuracy in the best case. Nevertheless, here, we are more focused on the overall effects 

of the eigenvalue thresholding but not on the precise accuracy value, despite the accuracy 

being only slightly better than the expectation. In this experiment, we still observe the down-

up-down trend pattern when thresholding the minimum eigenvalues, which further validated 

our expectation. Besides, we have also observed improvement by thresholding maximum 

eigenvalues for the first time. We believe this is due to the less correlated feature extracted 

having weakened the dominance of the small eigenvalues, making the effect of maximum 

eigenvalue thresholding becoming much more observable. As Figure 4.9 shows, thresholding 

on maximum eigenvalues has boosted the average accuracy by 1% but were still relatively 

less effective in comparison to thresholding on minimum eigenvalues. Furthermore, 

thresholding on maximum eigenvalues had consistently large error margins, inherited from 

the small eigenvalues. Both observations again confirmed our expectation on eigenvalue 

thresholding. 

The sensitivity plots of the LBP feature have shown much less variations compared to the 

GLCM features. As Figure 4.10 shows, the sensitivity of the LBP feature remains consistently 

low despite its high dimensionality. This is eventually a reflection of the poor performance of 

LBP feature in classifying breast tumours, which was not sensitive to the variation of input 
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features. However, we are still able to pick up a few valuable information when zooming into 

the charts. As we have highlighted in the plot of thresholding on minimum eigenvalues, the 

sensitivity measure still variates slightly between 10-2.3 to 10-1.2. Within the range, we are able 

to observe an increase in the sensitivity measure, which indicates that thresholding on 

minimum eigenvalues was still able to improve the performance of the classifier by making it 

more sensitive to different feature inputs. In addition, we also observe two peaks at 10-2.05 and 

10-1.94 respectively, which again matched our discoveries with GLCM features but only within 

much smaller ranges. Similar to the same rationale as we have explained in the experiment 

with GLCM features, thresholding on minimum eigenvalues was meant to improve the 

classifier performance and the sensitivity measures started to change at 10-2.3, where all the 

redundant eigenvectors were removed. The change soon reached the maximum and then was 

followed by decaying, that is when the entanglement between dimension reduction and over 

ambiguity start to appear. Following the same principle, as we have discussed in the last 

experiment, the best threshold for the minimum eigenvalues is expected to be found at the 

start of the second peak, which was 10−1.94 in this experiment. As expected, this threshold 

does not only being optimal on the sensitivity plot, but also reflected with more robust 

performance and the best accuracy on the accuracy plot, which again confirmed the clear 

potential of using sensitivity measures for optimising eigenvalue thresholds for classifications.  

 

Figure 4.10. LBP sensitivity measurements in related to different eigenvalue thresholds 

On the other hand side, thresholding on the maximum eigenvalues again showed us inferior 

performance compared to thresholding on minimum eigenvalues. Despite the insensitive 

sensitivity readings, we were still able to see the decaying sensitivity measure along with the 

reduction of dimensionality when zooming into the image. These foundings were again 

confirmed our expectations as we have discussed in the previous experiment. 
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4.6. Further Discussions on Issues and Challenges 

Our preliminary experiments were conducted on controlled variables, where one of the two 

thresholds always remain constant at the maximum/minimum evaluations. However, it is still 

desirable to further test our hypothesis in a fully variable environment to reveal the 

relationship between the two thresholds. In the remaining parts of this chapter, we shall 

highlight and discuss some aspects of the challenges in carrying out these tests. 

4.6.1. Finding Optimal PCA Thresholds 

Tuning the eigenvalue thresholds on both maximum and minimum sides in a consistent 

manner can be challenging due to the different magnitudes of information contained on each 

side. A practical solution in determining the appropriate thresholds may rely on the use of 

Confidence Interval (CI). In statistics, the confidence interval is a type of estimation that 

defines the probability (or likelihood) of observing a certain event within an interval for a 

certain level of confidence (Kragten , 1994). In a two-tails test, the confidence level is always 

bounded with an upper limit and a lower limit, which can be adapted as the minimum and 

maximum thresholds of the given observation on the computed eigenvalues. In practice, a 

probability distribution model can be first created from the eigenvalues observed. The CI 

analysis can then be applied to this distribution. As a result, we should be able to obtain the 

maximum and minimum eigenvalue thresholds as the upper and lower limits of the CI at a 

specified confidence level. In this way, the eigenvalue thresholds can be determined and tuned 

in the context of confidence levels, which became an empirical method depending on the 

environmental requirements. 

However, CI analysis is assuming a normal distribution of the data sample, where the 

symmetric characteristic of the distribution should ease the modelling of the analysis. 

Unfortunately, eigenvalues do not follow a normal distribution. As we observed in Figure 4.6, 

most of the eigenvalues computed are relatively small and the frequency of the observation 

decreases along with the increase of eigenvalues. Therefore, it would be better to define the 

eigenvalue distribution as a positively skewed distribution. Currently, the essential form of the 

eigenvalue distribution has not been fully understood. Most of the theories regarding the 

distribution of eigenvalues can only be supported by inductive approximations and massive 

computing simulations (Pastur & Shcherbina, 2011) (Liu, 2000). As a result, validating the 

method proposed in this section can be too ambitious and infeasible due to the ongoing debates 

on the newly proposed hypothesis. Besides, the unsymmetrical property of the eigenvalue 

distribution causes the computation of the CI to be very difficult. Determination of the 

appropriate CI can only be done through massive computing using the Monte Carlo method 

(Rubinstein & Kroese, 2016) or approximation in controversial kinds (Patil & Kulkarni , 
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2012). Therefore, at the current stage, we continue to recommend thresholding the eigenvalues 

with predefined and constant values. However, approaches based on CI can be further tested 

and validated in the future along with the growing understanding of eigenvalue distributions. 

4.6.2. Open World vs Close World Situations 

Following on the previous discussion on PCA whitening, which is aimed to reduce the effects 

of outliers, regarding computations of the confidence model. The concerning issues are caused 

by deficient coverage of the training samples, which provides no support regarding a specific 

prediction outcome at a certain point in the feature space. 

 

Figure 4.11 Illustration of An Ideal One Dimensional Data Sample 

As Figure 4.11 illustrates, if we define �⃗�𝑚𝑖𝑛 and �⃗�𝑚𝑎𝑥 as the two boundaries with the near-

zero support, then we would be able to derive 

P(�⃗�|ω𝑖) ≈ P(�⃗�)  ≈ 0 if �⃗� ∉ [�⃗�min, �⃗�max]                               (4.25) 

Under a close world assumption where the class labels are limited only to the labels given 

in the training sets, we present the conditional probability measure P(ω𝑖|𝑥) as Formula 3.20, 

where the outlier indeed results as Formula 4.25 in theory. However, under an open-world 

assumption (which will be further discussed in Chapter 6), there can be infinite numbers of 

different classes that cover different perspectives. It is never possible to obtain the complete 

data population to cover the open-world assumption in real life. Therefore, a practical solution 

is to limit the decision score to be undefined if the support from the training sample was too 

low to be defined. Reasonably, the range  [�⃗�min, �⃗�max]  regarding the minimum support 

required for computation can be bounded with a relative significance level 𝛼. The function 

𝑆𝐷 regarding decision score can then the further refined as  

{
S𝐷(𝜔𝑖|�⃗�) = 2P(𝜔𝑖|�⃗�) − 1   if ∫  P(�⃗�|ω𝑖) ∈ [𝛼, 1 − 𝛼]

𝑥

−∞
 

S𝐷(𝜔𝑖|�⃗�) = undefined        else                                              
           (4.26) 
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Note that, checking whether  ∫  P(�⃗�|ω𝑖) ∈ [𝛼, 1 − 𝛼]
𝑥

−∞
 or not can be very costive in real-

world computation especially when �⃗�  has a very high dimension. Therefore, a simplified 

method can be proposed by observing the linear transformation of the original P(�⃗�|ω𝑖). In 

this way, 𝒩(�⃗�|𝜇, Σ) can be dominated by a minimum threshold 

𝜑(�⃗�, 𝜇, Σ) = min
𝑖=1…dim𝑥

𝒩(Λ(�⃗�)𝑖|Λ(𝜇)𝑖 , λ𝑖,𝑖)                            (4.27) 

where it guarantees 𝒩(�⃗�|𝜇, Σ) ≤ 𝜑(�⃗�). Following this, (4.26) can be computed with ease as:  

{
S𝐷(𝜔𝑖|�⃗�) = 2P(𝜔𝑖|�⃗�) − 1   if ∫ 𝜑(�⃗�, 𝜇, Σ) ∈ [𝛼′, 1 − 𝛼′]

𝑥

−∞
 

S𝐷(𝜔𝑖|�⃗�) = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑       else                                                  
           (4.28) 

where 𝛼′ ∝ 𝛼
1

dim �⃗⃗� , since considerably 𝒩(Λ(�⃗�)𝑖|Λ(𝜇)𝑖, λ𝑖,𝑖) ≫ ∏ 𝒩(Λ(�⃗�)𝑖|Λ(𝜇)𝑖, λ𝑖,𝑖)
dim𝑥
𝑖=1  

in real practice when the dimensionality is very high.     

 

4.6.3. Precise Result Analysis in High Dimensional Space 

In Section 3.4.3, we have explained the principle of the “difference to expectation(DiffEx)” 

measurement in detail, which requires choosing a projection method. In this experiment, a 

well-defined projection method such as MSD is not available for the image-based feature we 

derived. Since the “difference to expectation” is theoretically valid in any dimension projected, 

we decide to choose one of the projected PCA dimensions for analysis. Despite the projected 

PCA dimension can be ideally chosen randomly, it is still critical in real practice. The 

eigenvalue of each projected dimension indicates the variance of the data distributed. A 

projection on the dimension with large eigenvalues overspreads the data points, which may 

leave a gap when sampling and cause computational failures. On the contrary, projecting on 

dimensions with very small eigenvalue causes the projected data points to mostly concentrate 

on a small region, which again leads to computational failures. As a solution, following the 

eigenvalue one criterion, we finally decided to project on the PCA dimension that has an 

eigenvalue that is closest to 1, which is believed to be a good balancing threshold when 

choosing the dimension. The DiffEx analysis was conducted with 5 bins and 0.6 strides in 

better achieving the law of large numbers and minimising the possible computation failures. 

In our experiment, the pattern obtained from the DiffEx analysis was highly identical to the 

accuracy measure, which is understandable since the accuracy measure is considered a 

standardised DiffEx measure with 1 bin only. As also expected in Section 3.2, thresholding 

on eigenvalues indeed affects overall accuracy in the experiment. In general, it is expected 

that the accuracy decreases as the dimensionality reduces. However, thresholding minimum 

and maximum eigenvalues have shown more specific behaviours.  
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4.6.4. Eigen Vectors: Criteria, Precisions and Nonuniqueness 

In Section 4.2, we have discussed a potential method in simplifying the MGM into UGM by 

applying linear projections Λ(�⃗�) to the feature vector �⃗�. We have further discussed, in much 

more detail, the method of projecting based on an orthogonal matrix U with SVD in Section 

4.3.2, whereby U consists of the eigenvectors of the input feature set 𝑋 = {�⃗�1, �⃗�2, … , �⃗�𝑛}. 

However, it is worth noting that U by definition is not unique, despite all the possible 

candidates corresponding to the same eigenvalues (but only being seen as different rotation 

on the projection). This nonuniqueness property of eigenvectors may potentially cause 

variations on the computation across different hardware and software platforms depending on 

the use of data type, criteria and algorithm used, which the slight difference in the projections 

can be magnified through later computations and eventually yields contradicting results. This 

issue can be partially resolved by adapting unit eigenvectors during the analysis, however, 

such implementation is rarely found in most of the ready implementations as we are aware of. 

There are many methods that can be applied to improve the precision of the calculation. 

The most common and straightforward solution is to use high precision data types such as the 

“double” or “decimal” in C#. However, it is still possible to have round-up errors and 

underflows when calculating the product of independent probabilities from high dimensional 

UGMs. In addition to infrastructure solutions, numerical solutions such as the loglikelihood 

are also commonly applied in solving potential underflows, especially when multiplying very 

small values. It indeed improves the range of computability, however, the improvement is 

built by trading off the precision of the calculations. We found it has been especially difficult 

in applying the loglikelihood method when the values were partially being very close to 1. 

Apart from the loglikelihood method, we have also tried to apply numerical methods of other 

kinds such as the whitening method introduced in Section 4.3.2 and also calculating the 

fraction arithmetics separately from their significant digits. As also mentioned in Section 4.3.2, 

we have additionally applied the NIPALS method in further improving the precision of the 

projections. 

Despite all the efforts we have tried to improve computation accuracy, inconsistency still 

inevitably exists in the testing result. We have observed marginal differences in the experiment 

results when testing the same proposed method with the built-in libraries in MATLAB and the 

Accord.Net libraries in C#, where both of them were built on well-established functions and 

are commonly used by the communities. However, we did observe a decrease in the level of 

inconsistency along with the pruning of dimensionalities, especially when setting thresholds 

on the minimum eigenvalues. The improvements are possibly caused by the reduction in the 

number of variables involved during the computations, which can be considered as an 
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additional advantage for applying the proposed eigenvalue thresholding method. 

 

4.7. Summary 

In this chapter, we have continued our discussion on measuring the classification confidence 

from the last chapter and brought the problem into a high dimensional space. In the discussion, 

we have raised two important issues, referred to as singularity and sensitivity, which can 

potentially lead to computational and predictive failures when measuring the confidence in 

high dimensional space. In studying these problems, we have utilised the PCA method using 

EVD for decorrelating the original feature space into a simplified space. As a result, the 

projection produced by PCA does not only solve the singularity issue but also highlighted two 

major influencing factors of the sensitivity issue, identified as the dimensionality and the 

eigenvalue of the feature vector. Based on the understanding of the characteristic of our 

proposed confidence measure, we have defined another measure in specifically quantifying 

the sensitivity of the train decision score model, referred to as the decision sensitivity measure.  

We have validated our findings with complex real-world data of high dimensionality. From 

experiments, we indeed found that the sensitivity of the decision score has a positive 

correlation to the feature dimensionality and a negative correlation to the eigenvalue of the 

feature used. In more specific, we found that the decision sensitivity was majorly affected by 

the least eigenvalue of the feature used, which inspired us to apply thresholds on the projected 

feature in adjusting the decision sensitivity. In general, we found that the decision accuracy 

and sensitivity can reach an optimal by adjusting the projected feature with thresholds. 

Although the optimal threshold varying from application to application, it can still be set by 

observing the trends of the change on decision sensitivity, where the ideal threshold of 

minimum eigenvalues should be positioned at the beginning of the second increase of the 

decision sensitivity measured. Despite the solution mentioned, we have not yet finalised the 

best way to adjust the projected eigenfeature, which can be further improved once the 

distribution of eigenvalue is better understood in the future.  

Overall, we did find a potential solution for improving the decision accuracy and sensitivity 

of an individual decision score model. However, it is important to notice that CDSS commonly 

receive features of multiple kinds in real practice, which eventually results in multiple decision 

scores. As each one of them may result in different accuracy and decision sensitivity, it can 

be very challenging to integrate these decision scores predicted into a final decision outcome, 

which is going to be further discussed in the next chapter. 
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Chapter 5. Confidence in Classification Ensemble 

 

In Chapter 3, we have introduced the concept of decision confidence and methods in 

measuring the confidence of a single classifier based on the Gaussian Bayes principle. In 

Chapter 4, we further studied decision sensitivity as an important measure for the fitness of a 

trained classifier. Despite we have suggested several ways in adjusting the performance of a 

single classifier, our experimental results seem to indicate that individual classifiers may have 

different performances and their limitations in reaching a maximal level of performance. Such 

limitations mean that using individual classifiers separately may not be sufficient for 

sophisticated decision making in complex feature spaces. Indeed, decision making for acute 

diseases can become more complicated in a real-world clinical setting. Under such a setting, 

the features of various kinds, such as CT, ultrasonography, blood tests and so on, may be 

extracted simultaneously from multiple image modalities and sources. Challenging cases of 

medical diagnosis are normally resolved by joint efforts from multi-disciplinary teams (MDT) 

where doctors from different departments provide their personal suggestions based on patient 

information they have at hand and then a final consensus across the board is reached. This 

manner of decision making allows the team to have a better understanding of the patient’s 

conditions from different and yet complementary angles, minimising the risk of misdiagnosis.  

A simple and direct approach for integrating the different points of view is to combine or 

concatenate features extracted from different modalities and/or sources into a single feature 

vector followed by training a single classifier. However, as we extensively discussed in the 

previous chapter, the CDSS in this case takes the risk of becoming over sensitive due to the 

high dimensionality of the concatenated feature vector. To tune down such risks, an effective 

alternative is to build base classifiers on individual features separately and then ensemble the 

decisions made by the base classifiers into a final outcome. This approach seems quite 

straightforward, but at the same time raises an interesting question regarding how to combine 

the multiple decision scores made by the base classifiers into the eventual final decision score. 

It can be a challenging task to ensure that the combined final decision score draws a 

comprehensive conclusion together with a properly defined level of confidence regarding such 

a decision.  

In this chapter, we will focus on studying different ways of combining decision scores 

across multiple classification evidence into a single and final decision score. In the first section, 

we will overview the principles and rationale behind the information fusion; explaining why 

and under what conditions that fusing decisions from different sources can improve the overall 
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performance and the robustness of decision making. The second section will survey several 

established fusion schemes that can be potentially adapted for fusing the decision score 

measure proposed in this thesis. The third section will introduce a newly proposed correlation-

based scheme for fusing the decision scores. The performance of the different fusion schemes 

will then be tested, evaluated and compared using multiple datasets. The final section will 

further analyse the performance of the proposed fusion scheme followed by discussions 

regarding further issues with multiple evidence fusion. 

 

5.1.  Principles of Classification Fusion 

5.1.1. Classification Errors 

An important indicator of a CDSS’s matureness is its classifiers’ robustness against potential 

generalization errors. At the core of decision making in CDSS, the performance of trained 

classifiers can be very much influenced by the unpredictable factors encountered in the 

deployment. Studying these causes for classification errors is therefore critical for the success 

of the CDSS.  

According to (Tan, et al., 2019), classification errors are mainly caused by three factors: 

noise, bias and variance. Figure 5.1 uses an analogy of an artillery piece firing at a target to 

illustrate these three causes. Noise refers to the randomness embedded in the data samples that 

leads their values away from the truth. Such randomness might occur with the descriptive 

attribute values as well as the class labels. As illustrated in Figure 5.1, noise in data leads to 

uncertainties around the target class as if the target cannot be observed accurately from a far 

distance, causing the artillery piece only to be able to aim at a range around the target rather 

than precisely on the target. In this analogy, classification confidence can be seen as the 

closeness to the real target; the closer to the target, the higher the confidence level is.  

In data science, noise is often related to the unpredictable environmental interruptions 

made on the feature data that eventually pollute the examples. For instance, an ultrasound 

image may contain inherent speckle noise. Any features extracted from such an image may be 

more or less influenced by the noise. Noise may also occur with class labels. In a typical 

tumour diagnosis situation, rather than labelling the tumour clearly for being benign or 

malignant, doctors normally give a predicted grade of either 3, 4, or 5 to indicate the level of 

likelihood towards being benign or malignant. Grades less or equal to 3 indicate a high chance 

of being benign whereas grades 5 or higher indicate a high chance of being malignant. Grade 

4 is considered as borderline, where finer subgrades are often known as 4a, 4b and 4c are used 

to indicate the likelihood of being benign or malignant. These borderline situations tend to be 
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where different doctors may have different opinions towards the same tumour, creating a 

degree of vagueness towards the real status of the tumour, a source of inter-observer variability. 

A noisy dataset is considerably harder to be classified correctly since the noise may lead to 

unexpected failures due to the uncertainty involved. 

 

Figure 5.1. Classification Errors (Tan, et al., 2019) 

Bias refers to the average distance of the classification result from the real truth, which is 

also known as systematic errors. In Figure 5.1, bias refers to the distance between the 

trajectory falling points and the target on average. The occurrence of bias is usually due to the 

underfitting of the model towards the training data, which cause the decision made to always 

shift towards a particular region from the actual target and lead to misclassification of some 

training examples. Such an odd normally indicates that the training is only focused on parts 

of the knowledge than all the information available. It may also be the case that the provided 

input feature data are insufficient to separate the training examples of different classes. 

Biases can profoundly influence the classification accuracy in the deployment phase and 

should be ideally minimised. However, intentional bias may be added into the classifiers in 

some CDSSs to reduce the negative impacts of certain types of misclassifications. For instance, 

for certain types of tumours such as ovarian masses, doctors prefer classifying them as 

malignant than benign even the classification is a false positive. This is to prevent potential 

delays and missed opportunities for treatment because ovarian cancers are normally known as 

silent killers, meaning that the treatment can be too late if not diagnosed early in good time. 

However, as for thyroid lesions, doctors prefer classifying them as benign than malignant even 

at the risk of false negatives because the malignancy of thyroid lesions develops quite slowly 

due to the envelope of the lesions. Follow-up scans can provide extra opportunities to monitor 

the development. Therefore, an intentional bias towards either the malignant or benign class 

may be introduced in real-life clinics at a preferred false positive or false negative error rate. 

This requirement is quite specific in this particular domain of application compared to the 

classification of ordinary daily objects. 

Variance refers to the sensitivity of the classification results to the test inputs. It is 
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commonly measured by the variance among the output. As the example shown in Figure 5.1, 

the variance is reflected as the difference between the trajectory falling points at a fixed angle. 

Consequently, a high variance eventually leads to a less accurate classifier since it produces a 

broad range of expectations. Variance is usually caused by overfitting of the training data, 

which implies that the classifiers were over-focused on the random noise in the training data 

with highly flexible models and being irrespective of the actual nature of the data. 

In general, the error rate 𝜀 of a classifier x can be seen as the sum of these 3 factors, which 

can be expressed as:  

𝜀(𝑥) = 𝑥𝑏𝑖𝑎𝑠 + 𝑥𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑥𝑛𝑜𝑖𝑠𝑒       (5.1) 

Therefore, reducing these three types of error is the primary objective of classifier optimisation. 

In principle, bias and variance are two independent characteristics of classification errors. 

However, in many cases, they share a degree of negative correlation during the training of 

classifiers (Geman, et al., 1992), which leads to many attempts to balance the two and find the 

best optimal with different techniques (Domingos, 2000; Geurts, 2002). As mentioned 

previously, noise can also profoundly influence classification accuracy, but it can be very hard 

to identify due to its random nature. Often, feature selection or dimension reduction techniques 

can be used to reduce the impact of noise. 

5.1.2. Reducing Error with Classifier Ensembles 

In machine learning, classification accuracy is heavily constrained by the representativeness 

of the training examples. However, it is practically very hard to have a training set that reflects 

all the characteristics of the data at large. Therefore, bias and variance inevitably exist in 

trained classifiers together with random environment noise. Various methods have been 

proposed in the past to reduce the bias and variance contained in the trained classifiers through 

data sampling and classifier training in a more natural manner. 

Bagging (or Bootstrap Aggregating) (Lee, et al., 2018) is an optimisation technique that 

uses repeated sampling to capture the real distribution of the data at large. In this method, the 

training data set has been resampled into several random bootstrap sample subsets that have 

the same size as the original training set but contain duplicates by using sampling with 

replacement. Ideally, each bootstrap sample should roughly contain 63% of the original 

training data, since the probability of the sampling from a sufficiently large training set Ω can 

be seen as: 

lim
|Ω|→∞

1 − (1 − |Ω|−1)|Ω| = 1 − ℯ−1 ≈ 0.632  (5.2) 

By doing so, each bootstrap sample set focuses on different parts of the training data and 

therefore reduce bias and variance contained. Learning algorithms are applied to these 
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bootstrap samples and result in different base classifiers. The ultimate classified label is then 

selected depending on the majority voting by these trained classifiers. However, the success 

of the bagging approach very much depends on the sensitiveness of the classifiers used 

(Grandvalet, 2004); bagging may not improve the classification accuracy significantly with 

relatively stable base classifiers (Büchlmann & Yu , 2002). 

Similarly, Boosting has been proposed as an iterative optimisation technique that also use 

multiple bootstrap samples with replacement to minimise the bias and variance during the 

training of base classifiers. In contrast to bagging, boosting assigns weights to the training 

samples. The bootstrap samples are generated iteratively according to a set of weights instead 

of random sampling, in which the weights are tuned to make the misclassified data being more 

likely to be selected in the next iteration of bootstrap sampling. One of the sophisticated 

boosting approaches are known as Ada Boost (Adaptive Boosting) (Huang, et al., 2019), 

where it tunes the weight  𝑊𝑖
𝑗+1

of each training example in the new boosting round 

dynamically by referring to the expectation of the classifier generated from the previous set 

of bootstrap training samples 𝑋𝑖
𝑗
≡ {(�⃗�1

𝑗
, �̂�1), (�⃗�2

𝑗
, �̂�2), … , (�⃗�𝑛

𝑗
, �̂�𝑛)},  which is calculated as 

𝑊𝑖
𝑗+1

= 
𝑊𝑖
𝑗

𝑁𝑗
× {𝑒

−𝛼𝑗     if 𝓏𝑛
𝑗
= �̂�𝑛

𝑒𝛼𝑗       otherwise
       (5.3) 

where 𝑁𝑗 is a normalization factor to ensure ∑ 𝑊𝑖
𝑗+1𝑛

𝑖=1 = 1, 𝑧𝑛
𝑗
 is the classified label of the 

input feature �⃗�𝑛
𝑗
 that been used to compare with the true class label �̂�𝑛 and 𝛼𝑗 indicates the 

importance of the classifier and is measured as  

𝛼𝑗 =
1

2
ln(

1−𝜀𝑗

𝜀𝑗
)     (5.4) 

where 𝜀𝑗 denote the error rate of the classifier as 

𝜀𝑗 = 
1

𝑛
∑(𝑊𝑖Θ𝑖)

𝑛

𝑖=1

 

Θ = {
 1    if 𝓏𝑗 ≠ �̂�𝑗
 0    otherwise

             (5.5) 

Notice that the weight of each training example is set to 1 as default in the first round of 

boosting and 𝛼𝑗 has a large positive value if the error rate is close to 0 and a large negative 

value if the error rate is close to 1. Although training classifiers can be computationally costly 

in this approach, it allows the classifiers to focus more on the examples that are hard to be 

classified and reduce the classification error significantly. Nevertheless, Boosting can be very 

sensitive to overfitting issues (Freund & Schapire , 1999), and the number of iterations must 
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be carefully controlled for the robustness of testing performance. 

The use of these approaches is under the assumption that we believe combining classifiers 

with different features complements each other and contribute to a more accurate classification 

result. As the outcome of each observation in the bootstrap follows a Bernoulli nature, the 

average error rate 𝜀𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  among all the trained classifiers based on different bootstrap 

samples can then be estimated by a Binominal distribution as: 

                              𝜀ensemble = ∑ [(
𝑁

𝑖
) 𝜀𝑖(1 − 𝜀)𝑁−𝑖]

𝑁

𝑖=⌈2−1𝑁⌉

< 𝜀                               (5.6) 

Clearly, this inequation only holds when 𝜀 is less than 0.5. However, this assumption may not 

always hold since real-world data may contain multiple classes, causing the expectation of 

classification accuracy to easily fall below 0.5. Moreover, it is also acknowledged that the 

ensemble methods work better when the classifiers involved are sensitive, as they capture 

minor perturbations from the training set, which can potentially contribute to finer 

classification results (Tan, et al., 2019). Moreover, the ensemble methods are also known to 

be more suitable when the base classifiers produce variant predictions, as it utilises the 

potential of the joint decision-making process. However, these conditions cannot be always 

met in practice when applying the ensemble methods. Therefore, different strategies for 

combining classifiers need to be investigated in the next section. 

 

5.2. Existing Fusion Schemes for Combining Trained Base Classifiers 

5.2.1. Fusing Decisions with Standardized Probability Measures 

In the previous section, we have introduced some basic concepts about combining multiple 

weak classifiers of different kinds in reducing online classification errors and boosting 

classification accuracy. However, discussions were limited to the classifiers that were trained 

on the same type of feature (by resampling with replacement), which may not be sufficient 

since various kinds of features can be derived from the same object and be used in real practice. 

Different types of features can cause the trained classifiers to be statistically non-identical, 

which naturally creates a bias towards certain classifiers. Therefore, it is essential to unify the 

classifiers of different nature under the same framework for a more precise classification result, 

where conditional probabilities and Bayesian theorem can be used as a solution. 

In a typical classification scheme, any known class label ω𝑖 predicted by a trained classifier 

𝐶 for a given testing observation �⃗� can be associated with a posterior probability P, where the 
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final classified label 𝓏 is nothing but the one that has the highest posterior probability among 

n classes, i.e. 

assign ω𝑖 ⟶ 𝓏 if argmax
𝑖=1…𝑛

 P(ω𝑖|�⃗⃗�, 𝐶)                        (5.7) 

Following the same concept, each class label in a fused classification scheme of multiple 

classifiers can also be associated with a posterior probability, where the ultimate classified 

label will eventually be the one with maximised probability. Therefore, the primary objective 

of a probability-based fusion scheme is to approximate the posterior probability 

𝑃(𝜔𝑖|�⃗�, 𝐶1…𝐶𝑛) in different ways. Some fusion rules have been already proposed in the past 

(Kittler, et al., 1998) and are described next.  

Product Rule 

In an ideal circumstance, each one of the classifiers for fusion should be non-identical. If we 

assume that the classifiers are statistically independent to each other, then the fused posterior 

probability P(ω𝑖|�⃗�, 𝐶1…𝐶𝑛) will simply be the product of the posterior probability 

P(ω𝑖|�⃗�, 𝐶𝑘) among R number of classifiers. Therefore, the fused classification scheme can be 

seen as 

              assign ω𝑖 ⟶ 𝓏 if argmax
𝑖=1…𝑛

∏P(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑘=1

                                      (5.8) 

Summation Rule 

In reality, we can potentially assume that all the posterior probability 𝑃(𝜔𝑖|�⃗�, 𝐶)  are 

modifications based on the prior probability P(ω𝑖), expressed as 

P(ω𝑖|�⃗�, 𝐶) = P(ω𝑖)(1 + Δ𝑖)                              (5.9) 

where 1 + Δ𝑖 is a multiplier that depends on ω𝑖  and Δ𝑖 has a range of [0, 1]. In addition to this 

assumption, when |𝛥𝑖| ≪ 1, we can then simplify the product rule as  

                                  ∏P(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑘=1

~ P(ω𝑖)(1 +∑Δ𝑖𝑘)                                       (5.10)

𝑅

𝑖=𝑖

 

Following this principle, we can then derive our sum rule as 

  assign ω𝑖 ⟶ 𝓏 if argmax
𝑖=1…𝑛

[(1 − 𝑛)P(ω𝑖) +∑P(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑖=𝑖

]                 (5.11) 

Notice that this formula is just a linear approximation of the real likelihood, which is only 

valid when both Δ𝑖 and the number of classifiers R is small. 
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Minimum Rule 

In the rule (5.8), we noticed that the fused likelihood can have the minimum posterior 

probability of one base classifier as its upper ceiling, i.e. 

             ∏P(ω𝑖|�⃗�, 𝐶𝑘)

𝑛

𝑘=1

≤ min
𝑖=1…𝑅

P(ω𝑖|�⃗�, 𝐶𝑘)                                   (5.12) 

Therefore, we can simplify the product rule into the minimum rule by taking the minimum 

posterior probability of a base classifier as “the best estimate”, i.e. 

assign ω𝑖 ⟶ 𝓏 if argmax
𝑘=1…𝑛

min
𝑖=1…𝑅

P(ω𝑖|�⃗�, 𝐶𝑘)          (5.13) 

Maximum Rule 

In rule (5.11), we can further approximate the ∑ P(ω𝑖|�⃗⃗�, 𝐶𝑘)
𝑅
𝑖=𝑖  into R max

𝑘=1…𝑛
P(ω𝑖|�⃗�, 𝐶𝑘) by 

only focusing on the maximum of the posterior probabilities, so we focus on the most plausible 

outcome only, where a max rule can then be derived under the assumption of the equal priors 

as 

assign ω𝑖 ⟶ 𝓏 if argmax
𝑘=1…𝑛

max
𝑖=1…𝑅

P(ω𝑖|�⃗�, 𝐶𝑘)            (5.14) 

Mean Rule 

Using the mean as a representative indication of a dataset is well used in statistics. Similarly, 

we can also fuse different classifiers by taking the average of their posterior probabilities, i.e. 

 assign ω𝑖 ⟶ 𝓏 if argmax
𝑘=1…𝑛

𝑅−1∑P(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑖=𝑖

                            (5.15) 

Median Rule 

In statistics, it is well known that the mean can be heavily influenced by outliers. In contrast, 

using the median as a simplified representation can be seen as a more robust method against 

noise, which the rule (5.15) can then be optimised as 

assign ω𝑖 ⟶ 𝓏 if argmax
𝑘=1…𝑛

med
𝑖=1…𝑅

P(ω𝑖|�⃗�, 𝐶𝑘)                 (5.16) 

Majority Rules 

Majority voting is a well-adapted method for summarising outcomes from different sources. 

A fusion scheme with a simple majority voting rule can be presented as  

assign ω𝑖 ⟶ 𝓏 if argmax
𝑖=1…𝑛

∑Θ𝑖𝑘

𝑅

𝑘=1
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Θ = {
  1    if P(ω𝑖|�⃗�, 𝐶𝑘) =  max

𝑖=1…𝑛
 P(ω𝑖|�⃗�, 𝐶𝑘)

0    otherwise                                   
                                   (5.17) 

These proposed rules have been already studied with experimental data for performance 

analysis (Kittler, et al., 1998). Surprisingly, the sum rule overperformed the others in general, 

despite being based on very strong assumptions. The authors of the paper explained this 

phenomenon by introducing the concept of testing errors. In online testing, the noise of various 

kinds will be inevitably contained in the test sample, where then the posterior probability of 

the classification result �̂� can be seen as the sum of the actual posterior probability and noise 

as: 

P̂(ω𝑖|�⃗⃗�, 𝐶𝑘) = P(ω𝑖|�⃗⃗�, 𝐶𝑘) + 𝜀noise                         (5.18) 

Consequently, by substituting �̂� into the proposed fusion rules, the noise may influence the 

classification accuracy in different magnitude. Taking the product rule that intentionally aims 

at precise modelling as an example, the multiplication scheme was acting as an amplifier that 

increases the uncertainty of the classifier excessively and results in an error rate of  1 +

∑
𝜀noise𝑘𝑖
P(ω𝑖|𝑥,𝐶𝑘)

𝑅
𝑖=𝑖 . On the contrary, the sum rule was relatively robust to the noise since it has a 

nature of strong assumptions, which provides tolerance to a certain extent, and finally 

contribute to an error rate of 1 +
∑ 𝜀noise𝑘𝑖
𝑅
𝑖=𝑖

∑ P(ω𝑖|�⃗�,𝐶𝑘)
𝑅
𝑖=𝑖

. Therefore, we found that the preciseness of the 

modelling on the training data set is inversely proportional to the classification robustness in 

online testing. A precise modelling scheme must sacrifice online accuracy to a certain extent, 

which brought a real question to the research on how a classifier balances between accurate 

modelling and noise tolerance. 

5.2.2. Adopting the Probability-based Rules 

To adopt the fusion rules introduced in the last section for the proposed decision score 

measure, we can simply utilise the probability nature of the measure in deriving similar fusion 

rules in fusing decision scores. We can drive the confidence measure from the decision score 

and use it as a probability measure, then apply the rules. Such adoption can be applied to the 

product, mean and median rules. The rest of the rules are best to be applied on the decision 

scores as they require class labels as a factor of consideration, where maximum and minimum 

rules need to be applied by considering the absolute value of the decision scores. The mean 

and median rules can also be applied to the decision scores directly, which produce the same 

result as if we have applied the rules over the confidence score measure.  

It is also important to note that the confidence measure does not only produce one 

probability measure but instead two for both the positive and negative classes. Therefore, we 
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have proposed a new fusion rule in utilising such nature, referred to as the “Maxima” rule. 

The maxima rule has a principle similar to the maximum rule. The difference is that it does 

not only select the one with the strongest confidence score, but instead select two confidence 

scores from each of the strongest positive and negative confidence scores measured among all 

the models. The decision score is then calculated by using these 2 selected values as the 

positive and negative confidence measured. If we define 𝐴 as a set of all defined classes, the 

maxima rule can then be expressed as 

assign ω𝑖 ⟶ 𝓏 if argmax
𝑘=1…𝑛

{max
𝑖∈𝐴

[P(ω𝑖|�⃗�, 𝐶𝑘) − max
𝑗∈𝐴∩𝑖c

P(ω𝑗|�⃗�, 𝐶𝑘)]}       (5.19) 

5.2.3. Fusing Decisions with Different Priorities 

In addition to the fusion methods introduced in the previous sections, fusion by assigning 

weights to different classifiers is also commonly used in many research works (Guan, et al., 

2017; Tong, et al., 2017; Prasad & Bruce, 2008). This type of method uses weights of different 

kinds to assign different priorities to fuse the outcomes of the base classifiers. The weights, 

therefore, reflect the amount of contribution of each base classifier to the final fused decision 

outcome. In the last decade, many different approaches, such as utilising the accuracy 

measurement obtained from the validation phase, have been proposed for computing such 

weights (Valdovinos, et al., 2005). If we define 𝛼𝑘 as the overall accuracy of the kth classifier 

(decision model), then a naïve accuracy weighted fusion can be written as 

𝑆𝐷
′(ω𝑖|�⃗�, 𝐶1…𝑘) =  𝑅

−1∑ α𝑘 𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑘=1

                         (5.20) 

In the expression above, 𝛼𝑘 is acting as a prior bias to the classifier 𝐶𝑘, which thresholds 

the decision score to the nature expectation based on past experience. Note that, if the bias of 

each decision model is identical to each other, i.e., 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑅, then Formula 5.20 

can be rewritten as  

𝑆𝐷
′(ω𝑖|�⃗�, 𝐶1…𝑘) =  α𝑅

−1∑𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘)

𝑅

𝑘=1

                           (5.21) 

which yields the same decision outcome as the MEAN rule introduced in Formula 5.15 but 

only with different degrees of magnitude. In other words, the MEAN rule can be seen as a 

weighted fusion under the assumption that the accuracies of every decision model are equal 

to 1. In addition to the generic accuracy fusion introduced, the weight can be further refined 

by replacing the accuracy measures with a positive predictive value 𝛼+  and a negative 

predictive value 𝛼− depending on the classification outcome as 
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{
𝑆𝐷

′(ω𝑖|�⃗⃗�, 𝐶1…𝑘) =  𝑅
−1
∑ Θ𝑘𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘)
𝑅
𝑘=1

Θ𝑘 = {
α+𝑘  𝑖𝑓 𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘) > 0

α−𝑘  𝑒𝑙𝑠𝑒                              

                                             (5.22) 

where the weight can be considered as the true positive rate, i.e., the accuracy when predicting 

positive and the decision model classifies the data sample as positive, and the weight can be 

considered as the true negative rate, i.e., the accuracy when predicting negative and the 

decision model classifies the data sample as negative. 

 

5.3. Correlation (Diversity) based Fusion 

In the previous two sections, we have introduced several well-established methods for 

classification fusion. However, these methods were originally designed in providing 

classification labels instead of decision scores, which have made them less suitable for fusing 

continuous decision scores. Despite our attempts to customize them for decision score fusions 

as explained in the previous section, these methods are still not utilising the numeric potential 

of decision scores. Most of the methods introduced previously were simply adding or selecting 

the scores from a set of base classifiers, and rarely has any of them considered the correlations 

between the decision scores to be fused. This fact motivates us to propose a new method that 

considers the Pearson correlations between each pair of the decision scores to be fused. By 

using this correlation-based fusion method, we are not only utilizing the numeric nature of the 

decision score, but also combining global and local information of them. 

In Section 5.2.1, we have introduced the product rule based on the assumption of 

independent predictions by base classifiers. However, correlations may well exist between the 

predictions due to implicit knowledge in common. Indeed, it is well acknowledged that the 

correlations between the predictions from different classifiers may also play a very important 

role in the fusion performance (Srinivas, et al., 2009). In Formula 4.7, we have stated and 

proved that any multivariate Gaussian distribution can be seen as a linear transformation of a 

collection of n independent univariate Gaussian distribution. If we consider a simple case with 

a multivariate Gaussian distribution that contains only 2 dimensions, an equation can then be 

presented as 

𝜆2 − (𝛴1,1
2 + 𝛴2,2

2)𝜆 − (𝑟2 − 1)𝜎1
2𝜎2

2 = 0                             (5.23) 

where λ  is a diagonal matrix of eigenvalues of the original covariance matrix Σ and 𝑟 

representing the Pearson’s correction coefficient between the 2 dimensions, which is 

equivalent to 
Σ1,2

Σ1,1Σ2,2
. In this form, we found that each pair of correlated dimension variables 
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are bounded with a linear coefficient 𝑟2 − 1 and this relationship can be inherited in higher 

dimensions as well, which inspired us to adopt a similar kind of coefficient for a correlation-

based fusion on decision score.  

As an initial design of correlation-based decision score fusion, given a set of decision score 

methods 𝒞 = {𝐶1, 𝐶2, … , 𝐶𝑅} of 𝑅 classifiers, a fusion function 𝑆𝐷
′can be introduced based on 

a set of correlation measurements 𝓇 = {𝑟1,2, 𝑟1,3, … , 𝑟2,3, 𝑟2,4, … , 𝑟𝑘−1,𝑘} regarding each pair of 

the decision models. Two hypotheses regarding 𝑆𝐷
′  are proposed as the guidance of 

correlation-based fusion. 

Hypothesis 1:   

𝑆𝐷
′(ω𝑖|�⃗⃗�, 𝒞, 𝓇 ⊆ {1}) =  𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘=1…𝑅)                             (5.24) 

Hypothesis 1 aims at a special case where all the decision scores generated from each data 

source are fully correlated with each other. In this scenario, each one of the decision scores 

can be simply seen as a linear duplicate of the other, which does not further contribute to the 

final decision making. Therefore, the fused decision score can be sufficiently presented by 

adopting any one of the decision scores. 

Hypothesis 2:  

𝑆𝐷
′(ω𝑖|�⃗⃗�, 𝒞, 𝓇 ⊆ {0}) = ∑ 𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘)

𝑅

𝑘=1

                             (5.25) 

Hypothesis 2 aims at a special case where all the decision scores generated from each data 

source are fully independent to each other. In this scenario, each one of the decision scores 

can be seen as completely irrelevant to the others, which fully complements the final decision 

making. Therefore, the fused decision score can be seen as a summation of all the decision 

scores. 

Following these two generic hypotheses, a general correlation-based fusion function 𝑆𝐷
′ 

can be derived by combining them with the coefficient 𝑟2 − 1 introduced previously as 

𝑆𝐷
′(ω𝑖|�⃗�, 𝒞, 𝓇 ⊆ [0,1]) =   

𝑛−1 {∑ 𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘) −∑ ∑ 𝑟𝑗,𝑘
2 [𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘) + 𝑆𝐷(ω𝑖|�⃗⃗�, 𝐶𝑘)]

𝑅

𝑘=𝑗+1

𝑅

𝑗=1

𝑅

𝑘=1

}            (5.26) 

where ∑ 𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘)
𝑅
𝑘=1  is the decision score under the independent condition and then being 

penalized by 𝑛−1∑ ∑ 𝑟𝑗,𝑘
2 [𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘) + 𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘)]

𝑅
𝑘=𝑗+1

𝑅
𝑗=1  amount based on their 

correlations in each pair of dimensions. In this form, the penalization factor becomes 
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𝑅−1

𝑅
∑ 𝑆𝐷(ω𝑖|�⃗�, 𝐶𝑘)
𝑅
𝑘=1  if all the base classifiers fully correlate to each other and become zero 

if all the base classifiers are being independent to each other, which therefore satisfy both 

hypotheses 1 and 2. 

 

5.4. Experiment Results 

In this section, we intend to test and evaluate the behaviours of different fusion schemes using 

different data sets. For this purpose, we selected two datasets. The first dataset is the 

Miscarriage dataset of low dimensionality and obvious correlations. The second dataset is the 

CBIS-DDSM breast lesion dataset, which is of much higher dimensionality and less obvious 

relationships among the extracted features. Both datasets have been already used for 

evaluation in Chapters 3 and 4 respectively. 

5.4.1. Baseline Performance  

In order to observe the effects of various fusion schemes, we have initially extracted multiple 

descriptive features, built individual classifiers based on each descriptive feature, tested 

individual base classifiers without the use of any fusion schemes, and then use the performance 

of individual classifiers as a baseline benchmark. In addition, we have also recorded the 

performance of a classifier built based on the simple concatenation of these features as a naïve 

fusion scheme benchmark. These results will be compared in the later Sections 5.4.2 - 5.4.4 

in discussing whether fusion methods of different kinds can truly improve the system 

performance or not. 

Table 5.1 Baseline Performance on Miscarriage Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

Gma 91.58 6.66 0.0287 0.0109 

Gmi 93.68 4.15 0.0407 0.0157 

Tma 91.05 6.10 0.0360 0.0065 

F_All 97.89 2.72 0.0190 0.0057 

 

In Chapter 2, we have introduced the miscarriage data set with its three-dimensional feature 

vector containing Gestational Major Diameter (Gma), Gastetional Minor Diameter (Gmi) and 

Transpose Major Diameter (Tma) labelled by sonographer on ultrasound images as the length, 

height and width of a gestational sec. For the fusion experiments, rather than combining them 

into a single MSD measure as we did in Chapter 3, we use these individual measurements as 

separate features extracted from the same input image. The detailed accuracy and sensitivity 
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performance of using each of the individual features are listed in Table 5.1 and compared 

against the concatenated feature vector (F_all) with 10-fold cross-validation. As shown in 

Table 5.1, all three features had similar levels of accuracy that vary from 91.05% to 93.68%. 

Given the quite small number of observations in the dataset, the differences may not be 

statistically significant. Nevertheless, the results in Table 5.1 are indicative at least. Among 

the three base classifiers built on the individual features respectively, the classifier for the Gmi 

feature had the highest average accuracy and the lowest standard deviation, indicating the 

robustness of the base classifier. At the same time, the classifier for the Gmi feature also had 

the highest level of decision sensitivity, demonstrating the feature’s better ability in 

discriminating miscarriage cases compared to the other features. It is not surprising that Gmi 

is the best feature among the three because Gmi primarily defines the shortest diameter of the 

gestational sac, which associates with the volume of the sac most.  

Besides, combining the three features through concatenation has boosted the classifier’s 

accuracy by another 4% while reducing the standard deviation by 1.5%. The increased feature 

dimensionality has enhanced the discrimination power of the classifier, by making it easier to 

find a decision hyperplane for separating two different classes. On the other hand, with the 

features of very low sensitivity scores, fusion by simple feature concatenation has failed to 

improve the modelling sensitivity aspect but made it worse, which further reduced the 

modelling sensitivity by more than 50%. Such a result does not seem to match our expectations. 

As we have discussed in Chapter 4, the increase in dimensionality should lead to an increase 

in the modelling sensitivity, and so the experiment findings contradict that claim. However, it 

is important to notice that the dimensionality change in the experiment conducted was 

relatively marginal, i.e., the dimensionality was only raised from one to three. The sensitivity 

reading might not be benefited significantly from such a small increase in dimensionality. In 

addition to that, the increase in the feature dimensionality has resulted in a narrower coverage 

of the confusion zone, which reduced the likelihood of observing the testing data with fine 

values, which increased the difficulty in measuring sensitivity accurately. 

Not surprisingly, the sensitivities of all individual descriptive features are very low due to 

the very low dimensionality. This matches our expectation as explained in Section 4.2, where 

the degree of sensitivity measure is positively correlated to the level of dimensionality. Despite 

the reasons that we have already discussed in previous chapters, there are multiple 

explanations for the cause of these readings with very low sensitivities. Firstly, it is important 

to know that Gma, Gmi and Tma are simply the same type of measure on the same object but 

from different perspectives, which made them being similar natures with strong associations. 

Therefore, the feature vector we used before and after the concatenation are alike by nature. 

In addition to that, our proposed decision sensitivity measure heavily relies on the test data, 
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where the hit of the readings depends not only on the distribution of the test data, but also the 

breadth of the confusion zone of the trained model. For the miscarriage dataset, the model 

trained was very much like a step function, where it has a very narrow confusion zone with 

sharp changes in values. Therefore, the tested data points rarely hit the confusion zone and 

resulted in very insensitive readings.  

To further study the fusion effects, we conducted another experiment using the larger 

CBIS-DDSM dataset with much higher dimensional features. We extracted the GLCM and 

LBP features from the dataset as we did in the experiments in Chapter 4. We maintained the 

same parameter setting for the GLCM feature extraction, where we derived 13 Haralick’s 

features from the GLCM in three different distances (1, 2 and 3) with four different angles (0°, 

45°, 90°, and 180°), which eventually results in a feature vector of 3 × 4 ×13 = 156 dimensions. 

As for the LBP feature, we also maintained a similar setting for the feature extraction, i.e., 

using a 1-pixel radius without segmentation. However, instead of the 256-bin basic LBP 

histogram feature, we only used the ULBP codes (see Section 2.2.4). This is because the focus 

of this chapter is about the fusion of models built on features of different dimensionalities 

rather than studying decision sensitivity in extremely high dimensional feature space. It is 

commonly known (Satpathy, et al., 2014) that ULBP codes occur more frequently than the 

other LBP codes in an image. We eventually used all 58 ULBP codes plus one bin for all non-

ULBP codes, resulting in a feature vector of 59 dimensions. As explained in Chapter 4, GLCM 

is effective in capturing image global texture patterns whereas LBP is good at capturing local 

texture patterns with a local region of the image. Having both as features will represent the 

texture properties of an image more thoroughly than using just one of them.  

Apart from the two texture features mentioned, we have also extracted the Histogram of 

Gradient (HOG) feature from the dataset as a feature that focuses on regional information, 

such as local edges and contrast, where it extracts magnitude measurement of the distribution 

of intensity changes in different orientations. In this experiment, we measured HOG in 9 

equally spread orientations, a customary method that is commonly used for HOG (Dalal & 

Triggs, 2005). Each image was segmented into a 5×5 cell matrix, where the HOG was 

extracted on a sliding window of 2×2 cells with 1 cell overlap. These extracted features are 

eventually concatenated into a super feature vector of 9×4×4 = 144 dimensions. In the end, 

we have also extracted the global histogram (HIST) feature from the entire image, which 

looked at 8 different statistical moments from the image histogram, which are mean, variance, 

skewness, kurtosis, energy, entropy, max value and max frequency. These 4 extracted features 

have provided us with good coverage from global to local information across different 

dimensionalities, making the dataset capable of testing different fusion methods. After the 

decision models are trained, the minimum and the maximum Eigen thresholds are also 
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optimised on the training set with greedy search. In more detail, we first find the best minimum 

Eigen threshold that produces the highest accuracy without pruning on the maximum side, 

then fix the best minimum Eigen threshold found and find the maximum Eigen threshold 

following the same strategy. 

 

Table 5.2 Baseline Performance on Breast Cancer Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

LBP(59) 72.51% 3.40% 1.000 0.000 

HOG(144) 67.22% 2.68% 0.999 0.000 

GLCM(156) 73.69% 3.82% 1.000 0.000 

HIST(8) 67.43% 2.44% 0.964 0.012 

F_All 69.79% 3.41% 1.000 0.000 

 

As shown in Table 5.2, all features had relatively similar performance in terms of accuracy, 

which vary from 67.22% to 73.69%. Despite these accuracy results were not high, they are 

still considered acceptable as all of them were higher than the expectation of 64.05%. Among 

all the features, GLCM has the best accuracy. This is not a surprise since it has the highest 

dimensionality and higher dimensionality in general offers more discriminating power to 

separate the classes. On the other hand, however, higher dimensionality also brings a higher 

risk of model overfitting, which is unsurprisingly shown by the highest standard deviation of 

the feature compared to the other features. On the contrary, HIST, which has the lowest 

dimensionality, had the lowest standard deviation among all the features extracted. With the 

second-lowest classification accuracy, the experiment results have shown a very good 

validation of our proposed principle, where the classification accuracy is proportional to the 

feature dimensionality and the classification robustness is inversely proportional to the feature 

dimensionality.  

Unlike the previous experiment with the miscarriage dataset, feature concatenation did not 

boost classification accuracy significantly with the CBIS-DDSM dataset. We believe this is 

partially affected by the relatively poor accuracy of individual classifiers, which potentially 

includes a large amount of interference when concatenating them. More importantly, the 

pruning of PCA thresholding on the concatenated features limited the discrimination power 

of the super-dimensional feature concatenated. This is especially harmful when the features 

concatenated are more naturally variant, since it is more difficult in finding representative 

Eigen projection in low dimensions when the input vectors are diverse. Furthermore, it is 

worth noting that the miscarriage dataset had far fewer training examples, which is more likely 
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to overfit after concatenation. All these factors joined together and eventually results in an 

accuracy of 69.79%, which was close to the average performance among the individual 

features concatenated. Nevertheless, the concatenated feature still had a very high standard 

deviation on the test accuracy, which was 3.41% and was only slightly better than the GLCM 

feature. This has again shown the limitation of fusion by concatenation, which does not always 

improve classification accuracy and has risk in over fittings. 

Regarding decision sensitivity, all features extracted were extremely sensitive. HIST was 

the least sensitive feature with a reading of 0.964, which was still very high given that it is 

only an eight-dimensional feature. A plausible explanation can be the suitability of the feature 

extracted. A very important factor of breast calcification analysis is the shape and spatial 

distribution of the calcifications. However, HIST feature does not provide any information 

from such domain, which potentially leads to sensitive (random) predictions. To be noticed, 

the reading of 0 standard deviation of decision sensitivity was simply because the sensitivities 

measured are extremely similar to each other. The actual standard deviation value is expected 

to be a very small value but none zero. After all, feature concatenation still did not improve 

the decision sensitivity, which again showed limitations of such a method.   

The detailed confusion matrices of each feature tested can be found in Appendix A. 

5.4.2. Rule-Based Fusions 

As the first step of evaluating decision score fusion, we first tested the rule-based fusion 

schemes as listed in Section 5.2.1 on the miscarriage dataset with 10-fold cross-validation. 

The results are shown in Table 5.3.  

 

Table 5.3 Rule-based Fusion Performance on Miscarriage Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

product 89.47 5.55 0.0079 0.0061 

sum 96.84 3.68 0.0173 0.0099 

min 86.32 6.66 0.0250 0.0058 

max 97.37 3.72 0.0038 0.0033 

avg 96.84 3.68 0.0092 0.0023 

median 96.32 4.33 0.0183 0.0085 

maxima 97.37 3.72 0.0111 0.0025 

 

As shown in Table 5.3, most of the rule-based fusion schemes have an average accuracy that 
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is generally superior to that of the individual classifiers, where they also had a marginally 

worse accuracy than the concatenation-based fusion result (see Table 5.1). Among the 

schemes, the minimum rule had the worst accuracy and the highest standard deviation, which 

is unsurprising since it considers the decision from the classifier with the weakest confidence 

value. The maximum rule considers the classifier with the strongest confidence value and 

therefore yields the best accuracy. However, it is also important to note that the minimum rule 

has produced the best sensitivity reading among all the tested fusion schemes including feature 

concatenation. Furthermore, as mentioned in Formula 5.12, the minimum rule can be seen as 

a simplification to the product rule since the result of the product rule is very much bound with 

the minimum reading among all the prediction results, which inevitably caused the product 

rule to produce an accuracy reading that being very similar to the minimum rule. However, 

unlike the minimum rule, the product rule scheme has much poorer performance on decision 

sensitivity, which is again understandable since we have already noticed that it can be easily 

affected by environmental noises. To bear evidence for this statement, the summation rule, 

which was marked as the most robust method to environmental noises, had much better 

decision sensitivity and better average accuracy. Despite the advantages and disadvantages 

discussed in Section 5.2.1, the median rule scheme still seems to have the best overall 

performance with fairly good accuracy and enhanced decision sensitivity. It is still the best 

scheme among all the tested schemes even the decision sensitivity of the scheme is lower than 

the individual classifiers and feature concatenation. 

To further study the behaviour of rule-based fusion schemes, we conducted the second 

experiment using the CBIS-DDSM dataset. The test results are shown in Table 5.4.  

 

Table 5.4  Rule-based Fusion Performance on Breast Cancer Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

product 65.40 2.02 0.287 0.190 

sum 73.16 3.62 0.608 0.187 

min 66.90 1.86 0.797 0.081 

max 71.66 3.70 0.136 0.113 

avg 73.16 3.62 0.389 0.076 

median 73.37 3.30 0.471 0.067 

maxima 71.50 3.60 0.522 0.138 

 

Many variations in accuracy across different rule-based fusion schemes can be observed. The 
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sum, average and median rules have a similar performance to that of individual classifiers and 

a marginally better accuracy to the concatenation-based fusion. The minimum rule and 

product rules were again having relatively poor accuracy but at the same time lower standard 

deviations among the 7 rules. It is important to note that all the schemes have an improved 

decision sensitivity reading compared to those of individual base classifiers and that of 

concatenation-based fusion. Nevertheless, the product rule and maximum rule seem to have a 

sensitivity that was overly enhanced towards the minimum side, which can be too insensitive. 

The sum, average and median rules had the most outstanding performance among all the rules 

we have tested, which have improved the overall classification accuracy by almost 4% 

compared to fusion by feature concatenation. The common factors between these three rules 

are that they all looked at the average performance between each classifier rather than only 

considering the strongest or the weakest among the classifiers fused. So, the fusions make the 

final decisions being robust to environmental noises and potential overfitting. As a positive 

reflection, all sum, average and median rules had a much sensible decision sensitivity reading 

comparing to the other fusion methods we have implemented so far. The decision sensitivity 

readings of these three rules were around 0.5 and considerably close to the ideal reading, where 

each of the projected dimensions is expected to follow standard normal distribution on average. 

The median rule had the best overall performance compared to all the fusion rules we have 

tested, which did not only have the best accuracy but also was most close to 0.5 on decision 

sensitivity. However, it is worth mentioning that the median rule still did not overperform the 

best individual classifier, which was the classifier built on GLCM features with an accuracy 

of 73.69%. Nevertheless, the median rule is considerably being better since the difference of 

only 0.3% may not be significant enough in marking the strength or weakness but the decision 

sensitivity was certainly improved greatly. 

5.4.3. Weight-Based Fusions 

We have also tested the weight-based fusion schemes as described in Section 5.2.3. Similarly, 

these schemes were firstly tested on the miscarriage dataset with 10-fold cross-validation and 

the results are shown in Table 5.5.  

 

Table 5.5 Weight Based Fusion Performance on Miscarriage Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

W_Acc 96.84 3.68 0.0083 0.0019 

W_PVs 97.37 3.72 0.0093 0.0018 
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The experiment results in Table 5.5 show that fusion has improved classification accuracy 

overall and also produced more robust classification results. More specifically, both of the 

weight-based fusion methods produce similar results, which increase overall accuracy by at 

least 3% compared to individual base classifiers and further reduce the standard deviation of 

the accuracy to 3.7. The weighted fusion by using PVs has produced slightly superior results 

because the method is more customised at an individual class level instead of overall accuracy, 

and therefore produces a finer result. However, the difference was not significant enough to 

firmly conclude that weight-based fusion by using PVs is better than the benchmark 

performance. Besides, both of the tested weight-based fusion methods also have similar 

decision sensitivity readings. But the decision sensitivity performances were much inferior 

compared to that of individual classifiers only or fusion by feature concatenations.    

As before, we have also tested the weight-based fusions on the CBIS-DDSM dataset, and 

the results are presented in Table 5.6. Both fusion methods by using overall accuracy and 

PPV/NPV as weights have again showed similar accuracy results, which was very close to the 

accuracy performance of individual classifiers and being superior to fusion by feature 

concatenations. In contrary to the previous experiment, the weighted fusion has a slightly 

superior accuracy this time compared to the PPV/NPV weighted fusion. However, the 

difference was still not significant enough to conclude which one is better. The very similar 

outcome between these two methods is due to the almost identical PPV and NPV of the trained 

model, which was 0.8 and 0.77 on average for benign and malignant in respective. The almost 

identical bias causes the adjustment to be marginal and very close to the weights by using 

overall accuracy only. We believe the balanced bias was due to the balanced benign/malignant 

ratio and the automatic feature pruning with PCA thresholding. 

 

Table 5.6 Weight Based Fusion Performance on Breast Cancer Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

W_Acc 73.16 3.39 0.316 0.066 

W_PVs 73.05 3.40 0.391 0.078 

 

 

5.4.4. Proposed Correlation-Based Fusions 

In our next experiment, we evaluate the proposed correlation-based fusion scheme on the two 

selected data sets respectively. In deriving the correlation matrix as required by the proposed 

scheme, we have tested the computed decision score model on the training set and recorded 
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the correlations of the predictions between the base classifiers. Although it is recommended 

to use a separate validation set in deriving the correlation matrix, we decided to use the testing 

set as the validation due to the insufficient number of data examples. The correlation matrix 

is derived without referring to any class labels. The extracted correlation matrices are shown 

in Figure 5.2. 

       

(a) Decision Correlations on Miscarriage Dataset      (b) Decision Correlation on CBIS-DDSM dataset 

Figure 5.2. Correlations Across Decision Scores of Base Classifiers based on Different Extracted Features  

As explained before, the three descriptive feature variables from the miscarriage dataset are 

various diameter measurements of the same object, i.e., the gestational sac, where the sac has 

an oval shape by nature. Consequently, it is expected that the decision scores predicted are 

correlated since the three dimensions of the sac grow proportionally to the size of the sac. 

Indeed, as Figure 5.2 shown, there have been fairly strong correlations exist between the 

decision scores predicted, which was about 0.7. The Gma and Gmi had greater correlations 

compared to the correlations to Tma, which is again understandable since both Gma and Gmi 

were measured from the same plane and Tma was measured from the transpose plane (on 

another image). Based on the correlation matrix measured, the miscarriage data set can be 

very good in testing the performance of the correlation-based fusion method where the 

decision scores predicted were highly correlated.  

Unlike the miscarriage dataset, extracted features in the CBIS-DDSM dataset have shown 

various degrees of decision score correlations when they are used for classification. Among 

the four types of features we have used, the decision scores for the LBP feature and the GLCM 

feature are most correlated with a correlation coefficient of 0.67, which can be considered 

relatively strong. We believe the strong correlation measured was due to both of the features 

are focusing on similar local textures, which caused the classifiers to learn information of 

similar kinds. Comparatively, the HOG feature, which looks at regional features from a more 

global perspective, has much lower decision score correlations than those for LBP and GLCM. 
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However, the HOG feature has a slightly higher decision correlation to the GLCM feature 

than the LBP feature. This may well be because the GLCM feature is using statistic moments 

from the co-occurrence matrix, which made the feature vector focuses less on the local textures 

and hence closer to the HOG feature characteristics. Consequently, the histogram feature, 

which looks at statistical features from an entirely global perspective had the least correlation 

to the other three types of features. In general, the features we extracted can be ranked from 

local to global as LBP, GLCM, HOG and Hist. The measured decision score correlations 

reflect such a corresponding ranking. 

To further develop some understanding of the effect of correlation-based fusion, we plot 

the predicted decision scores against the input feature values on the miscarriage testing set in 

Figure 5.3. Plots (a) and (b) present the trends of the original decision scores, which are based 

on an abstract feature MSD and a multivariate feature respectively. Plots (c) and (d) present 

the trends of the fused decision scores from each feature, which is based on the mean fusion 

rule and the correlation-based fusion scheme respectively. Compared to the original feature, 

the mean fusion scheme has enlarged the confusion zone, which can be considered as a 

compromise to the worst-performing classifier. Interestingly, the correction-based fusion has 

shown a clearer linear trend compared to the others, which reflects that the penalty introduced 

was indeed acting as an orthogonalization/decorrelation method. Furthermore, the correlation-

based fusion has shown remarkably high confidence in classifying miscarriage cases. 

Although a small part of the PUV cases was misclassified with relatively large variations, this 

is tolerable because it may indicate the highlighted PUV cases may eventually evolve into real 

miscarriage cases. 

 

Figure 5.3 Predicted Decision Score at Different Feature Value 

(a) (b) 

(c) (d) 
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We have also evaluated the performance of the correlation-based fusion scheme with 10-

fold cross-validation like we did for the other two kinds of fusion (i.e., simple rules and 

weighted fusions). The test results on the miscarriage data set are shown in Table 5.7. The 

figures show that correlation-based fusion has indeed improved classification accuracy. 

Although the accuracy was slightly worse than the fusion result by feature concatenations, the 

difference in prediction accuracy is not significant enough to conclude such a statement, and 

the decision sensitivity was indeed better than the concatenation-based fusion. In addition, it 

is important to note that the difference in decision score sensitivity can be greater than it looks 

since the sensitivity function follows sigmoid characteristic, which the slope is approaching 

zero when the sensitivity reading is approaching 0 or 1 and therefore the range [0.019, 0.02] 

certainly covers a larger domain than what [0.499,0.5] covers.  

 

Table 5.7 Correlation Based Fusion Performance on Miscarriage Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

r^2 96.84 0.02 3.68 0.01 

 

Finally, the figures in Table 5.8 show that the correlation-based fusion scheme also 

achieves relatively good classification accuracy for the breast cancer dataset. The accuracy 

was significantly higher than the fusion result by feature concatenations but was slightly worse 

than the best base classifier on individual features, i.e., the base classifier for GLCM. However, 

the difference is again quite marginal. More importantly, it is worth noting that the correlation-

based fusion provided a much better decision sensitivity than using any individual classifier 

or fusion by feature concatenation, which greatly refined the highly sensitive decision inputs 

while maintaining good accuracies. 

 

Table 5.8 Correlation Based Fusion Performance on Breast Cancer Dataset 

Features 
Accuracy (%) Decision Sensitivity 

Mean Std Mean Std 

r^2 73.26 3.32 0.799 0.073 

 

5.5. Fusion in Practice: Discussion & Future Refinement 

In Section 5.4, we have evaluated the accuracy and sensitivity of different fusion schemes. 

We have found that fusion, in general, helps in improving the overall accuracy and robustness 
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of the decisions made. However, it is also useful to understand the impact of the fusion on 

individual cases in practice. These kinds of considerations are expected to shed some light on 

how to improve our proposed correlation-based fusion scheme. 

5.5.1. Effect of Fusion in Decision Making: Case Studies 

Although the performances presented in Section 5.4 are informative, it remains interesting to 

understand how and why the predicted decisions change when fusions are applied for 

individual practical cases. Unfortunately, the early pregnancy dataset has a relatively simple 

characteristic and does not provide us with enough distinctive features. Although we did 

extract features of various kinds from the CBIS-DDSM dataset, these image-based texture 

features are difficult to understand from a clinical knowledge point of view. Therefore, we 

will use another dataset with more explainable features specifically for supporting this 

discussion. The dataset was obtained from International Ovarian Tumour Analysis (IOTA) 

Group (Dirk, et al., 2010). Named IOTA Ovarian Dataset in this study, it contains a total of 

242 grayscale 2D ultrasound images. Each image is accompanied by the pathology label. In 

total, there are 138 images of benign and 104 images of malignant masses. Out of the 242 

cases, 239 cases are also accompanied by patient ages, ranging from 14 to 88 years old. Using 

this age descriptor enables us to examine decision fusion on a more meaningful and 

explainable footing.  

We have first built a univariate Gaussian Bayes model on the training set by using the 

patient age as the feature. Figure 5.4 shows the decision score (Y) measured at different ages 

(X) when the trained model is applied to the test examples. A positive measurement indicates 

a prediction of a malignant mass, whereas a negative measurement suggests a prediction of a 

benign mass.  
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Figure 5.4 Change in Decision Score at different age 

The figure shows that the level of malignancy of ovarian masses increases proportionally 

along with the increase of patient age. The prediction of the tumour status flips from benign 

to malignant when the patient age reaches about 58 years old, i.e., towards the end or shortly 

after the period of menopause for most women. Menopause is a natural part of ageing that 

usually occurs between 45 and 55 years of age, with the average age for menopause at 51 in 

the UK (NHS Trust, 2018). Studies have already shown that postmenopausal women are more 

likely to have more invasive tumours than premenopausal women (Moorman, et al., 2008), 

because the function of the ovary decays with the ageing and eventually reaches the minimum 

after menopause (other factors such as the age of pregnancy may also have an impacted). The 

findings from the figure coincide with the known facts very well. Besides, we found that 

decision confidence obtained was much stronger for the young patients (peaked at 0.75 at age 

around 14) than that for the old patients (peaked at 0.35 at the age around 88). As another fact, 

this was mainly caused by the latency of cancer, where cancer normally needs 10–20 years to 

develop, from the initiating event until the disease appeared clinically. These facts have again 

demonstrated the validity of our proposed decision score measure. However, despite the strong 

correlation between the age and decision score, the level of accuracy using the age model is 

not very high (see Table 5.9 later). 

To investigate the fusion of classifiers, we adopted an effective image-based feature 

specifically intended for ovarian messes, known as Fast-Fourier based Geometric Feature 

(FFGF), extracted from the frequency domain of the ultrasound images (Al-karawi, 2019). 

The extraction of the feature is briefly explained as follows. First, the original ultrasound 

image was pre-processed by using an adaptive block-based Wiener filter. The pre-processed 
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image was then converted into the frequency domain by using the Fast-Fourier Transformation 

(FFT) with adjustment on intensity levels. The adjusted FFT spectrum image was then 

binarized using the minimum cross-entropy followed by morphological operations to refine 

the outcome. These processes eventually produce a Boolean mask of elliptical shape at the 

centre of the FFT spectrum image, representing energy change patterns in the original 

ultrasound image. It has been observed that the malignant tumours normally have larger and 

“fatter” elliptical shapes, indicating the spread of energy variations in ultrasound images 

caused by complex compositions of tissue structures within malignant tumours. The benign 

tumours tend to have smaller and “slimmer” elliptical shapes, indicating the uniformity in 

energy spreads. Consequently, the major and minor diameters of the ellipse in the FFT 

spectrum image together with its area form a three-dimensional FFGF feature vector. Based 

on the two kinds of features extracted (age and FFT), decision score models were trained and 

tested with 10-fold cross-validation. The test classification accuracies by the base classifiers 

built on each feature as well as the fusion accuracy of the two classifiers using the mean fusion 

scheme are shown in Table 5.9. 

 

Table 5.9 Test Accuracies on the IOTA Ovarian Dataset 

 AGE FFGF Mean Fusion 

Malignant 48.1% 82.7% 77.9% 

Benign 68.9% 63.0% 71.1% 

All 59.8% 71.5% 74.1% 

 

The test results showed that age alone, with an overall accuracy of 59.8%, was not an 

optimal feature for classifying the malignancy of ovarian tumours. It is worth mentioning that 

the accuracy in classifying malignant (only 48.1%) cases is much lower than that in classifying 

benign cases (68.9%), where the level of accuracy is only marginally higher than a purely 

random guess (E[malignant] = 43%). This is very understandable since it is rather 

irresponsible in classifying the tumour malignancy by only referring to the age of a patient. 

However, age can still be quite effective at classifying benign cases (nearly 12% higher than 

a random guess (E[benign] = 57%) because of the latency as mentioned before. The results 

have also again demonstrated the soundness of our proposed measure of the classification 

confidence, where the confidence is measured very low for the malignant cases but relatively 

high for the benign ones (see Figure 5.4). Compared to the age, the FFGF feature has a much 

better performance with an overall accuracy of 71.5%. The feature is especially good in 

classifying malignant cases with a true positive rate of 82.7%. However, the performance in 

classifying benign cases was still not very satisfactory, poorer than that for the age. It seems 
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that the FFGF features capture more image information on energy variations for the malignant 

cases, which made it much easier in classifying malignant cases than benign cases. By 

combining the decisions made using the mean-rule fusion, we have successfully improved the 

overall accuracy to 74.1%. More importantly, we also have a significant improvement in the 

classification of benign cases up to 71.1%, higher than both classifiers built on age and FFGF 

features separately. Despite a marginal decrease in the accuracy in classifying malignant cases 

by about 5%, the fused decision can be considered as less biased and more robust in classifying 

both classes. These experimental observations have again demonstrated the soundness of the 

fusion approach.  

Finally, as the main interest of this discussion, we have particularly investigated 

decision/classification changes before and after the decision fusion. As reported, the overall 

accuracy of the decision model trained using age and FFGF are 59.8% and 71.5% respectively. 

Among all the decisions made, the two models have 47.7% (114/239) disagreement between 

them. However, this high percentage of disagreement does not mean that all related 

confidences are strong enough to alter the decisions made. In fact, only 15.8% (18/114) of the 

decisions made have been changed after fusing the age model’s predictions with the FFGF 

model’s predictions. Among these altered cases, 66.7% (12/18) show the corrected 

classification outcomes. 

 

                   (a)                                                           (b) 

Figure 5.5 Ultrasound Ovarian Scans of Patients of Different Ages (a) 20 years old (b) 69 years old 

We then purposely select two examples of the ultrasound images of ovarian masses 

involving decision changes before and after the fusion and show them in Figure 5.5. The 

pathology outcome of images (a) and (b) were both benign. However, image (a) has been 

firstly classified as malignant based on the FFGF feature with a decision score of 0.623 but 

changed into -0.046 after applying the mean fusion, correcting the case to benign but with 

very low confidence. This has matched the decision made by the doctor as a borderline case 

(note that the IOTA Ovarian dataset also records the doctor’s predictions besides the pathology 
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result of the tumours). On the contrary, image (b) has been firstly classified as benign using 

the FFGF-based model with a decision score of -0.082 but changed into 0.036 after the mean 

fusion, resulting in a misclassification with very low confidences. It is worth mentioning that 

we presented these two cases to a medical consultant with many years of experience and 

expertise in ovarian mass diagnosis (the meeting was online and took a place on 21st/Jun/2018). 

The consultant commented that he would very much agree with the fusion result for these 

cases by considering the patient age besides the inspection of the ultrasound images in clinical 

practice. 

5.5.2. Refining the Proposed Correlation Fusion Scheme 

In Section 5.3, we have introduced a fusion method based on decision correlations between 

pairs of classifiers. We consider four different scenarios under which information on decision 

correlation can become useful in guiding the right strategy for decision fusion: 

● Scenario 1: fully correlated classification results 

If all classifiers are predicting the same class labels at all times, as the agreed 

classification outcomes among different classifiers are considered as ordinary events, 

fusion should offer no added value in boosting the prediction probability. This is the same 

as what we have introduced in the Formula 5.24. In this scenario, only one of the base 

classifiers should be sufficient for the decision making and saving time for classification. 

● Scenario 2: correlation happens on correct classification outcomes only 

If the base classifiers share a good commonality in the correct classification outcomes, 

but each classifier makes different mistakes, then, it results in a positive correlation in the 

correct classifications and independent misclassifications. In this scenario, we should 

obtain higher confidence if multiple classifiers have the same predictions since matched 

results further enhance the correct predictions.  

● Scenario 3: correlation appears on misclassifications only 

On contrary to Scenario 2, if base classifiers make highly correlated predictions in 

misclassifications, but each classifier produces correct predictions independently, which 

then results in a positive correlation in the miss classifications but being independent in 

the correct classifications. In this scenario, we should reduce the confidence obtained if 

the classifiers yield similar results since correlated predictions tend to become common 

mistakes.  

● Scenario 4: fully independent 
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If all features are nearly complementary, i.e., their overlapping predictions are rare, but 

each of the classifiers can be highly trustable. Then, we should consider each of them as 

an equivalent information source and fuse them in an unbiased way (as introduced in 

Formula 5.25). 

Following the analyses of the different scenarios, our fusion scheme based on the 

correlation between decision scores can be modified or tuned in the manners as summarized 

in Table 5.10.  

Table 5.10 List of Fusion Strategies based on Different Correlation Scenarios 

Fusion 

Scenario 

Correlation Scenario 
Fusion 

method 
Description Correct 

classification 

Miss 

classification 

Match 

Independent Independent None No bias 

Independent Positive Penalty More likely to be wrong 

Positive Independent Reward More likely to be correct 

Positive Positive Max/Min Choose one 

Mismatch 

Independent Independent None No bias 

Independent Positive Reward More likely to be correct 

Positive Independent Penalty More likely to be wrong 

Positive Positive Max/Min Choose one 

As Table 5.10 shows, the fusion outcome of independent classifiers can always be fused 

with mean or product rules, which is the expectation under the independence assumption. On 

the other hand, fusions on correlated classifiers should depend on their relationships. In the 

case where both correct and misclassifications are correlated, the prediction from each 

classifier is considered as potential duplications. In such cases, it is understandable and 

reasonable to take the decision score with the maximum confidence since the highest 

confidence provides the most guarantee on correct classifications. However, it may also be 

good to take the decision score with the minimum confidence, since it is much safer to present 

the worst case. At last, for the classifiers that have different correlations on the correct and 

misclassifications, different penalty and reward schemes as listed in Table 5.10 can be applied 

for tuning the final fusion decision score to an appropriate value. In general, the fusion 

strategy, in this case, should depend on the purpose of applications, which may need more 

discussion in the future. 

Following similar principles, some other researchers have introduced an indicator as a 

weight for tuning the fusion outcomes by using the ratio between recall r and false positive 

rate q of each classifier, where r > q (Pochampally, et al., 2014). However, their method was 

based on a conventional classifier ensemble, which cannot be directly applied to our decision 

score measurements. However, developing a similar method based on decision scores can be 

very interesting and should be further researched in the future. 
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5.6. Summary 

In this chapter, we have first elaborated the reasons behind fusion schemes and how fusion 

may benefit the CDSS by potentially improving the accuracy and robustness of the decision 

made. In more detail, we have summarized two schools of thought for fusing the decision 

scores derived from multiple sources based on probabilistic normalisation or adding additional 

weights. However, these commonly used methods do not suit the nature of the decision score 

measure perfectly. Therefore, we have proposed a correlation-based fusion method in 

maximising the potential of the decision score measure. In the experiment, we found that both 

the median rule and our proposed correlation-based fusion had very good performance under 

different scenarios. We are not certain yet to conclude which one performs the best, but these 

two methods have definitely outperformed the other methods tested. Future research may aim 

at refining the correlation-based fusion according to more specifically defined fusion scenarios 

in bringing up the fitness of the fusion method under different conditions. 

In general, we found that fusing decision scores may or may not always improve classification 

accuracy, but it can certainly improve the decision sensitivity of the CDSS and produce more 

robust predictions. This makes the fusion scheme especially useful after the CDSS has been 

deployed, as it greatly reduces the risk of false diagnosis caused by over/under fittings. 

However, the clinical environment can be very unpredictable and face changes constantly, 

where new variants of diseases can be found from time to time with frequent updates on the 

diagnostic standards and protocols. Despite the fusion can offer a certain level of robustness, 

unfortunately, it still very much works within environments that are similar to the training data 

only, which may not be useful anymore after the testing environment changed. Therefore, it 

is essential to further study on potential methods that refine the trained models after the 

deployment of the CDSS, which will be further discussed in the next chapter. 
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Chapter 6. Maintaining Confidence in Deployment 

 

In previous chapters, we have investigated plausible ways for measuring decision confidence 

under different scenarios. In reality, the clinical environment is constantly facing changes as 

a result of new acute unseen cases encountered, the evolving knowledge and understanding 

gained often result in more effective medical treatments (Park, et al., 2012). As a good 

example, the Coronavirus disease 2019 (COVID-19) was first discovered at the end of 2019 

and soon became a global pandemic. After 2 years of spreading, COVID-19 was evolved into 

many variants from the initial Alpha variant (B.1.1.7) to the latest Omicron variant (B.1.1.529), 

where each one of them had different characteristics and required different treatments 

(Tregoning, et al., 2021). Therefore, being adaptive to unforeseen circumstances plays an 

essential role in a CDDS, which requires the CDSS to be elastic on the diagnostic strategy 

used and be able to make adjustments to the diagnostic strategy in a timely and efficient 

manner. However, one of the shortages of many existing works in classification including the 

previously proposed measures is that the modelling heavily relies on the training set, which 

means the trained model has been built on historical known cases and may well not work for 

any new cases that have never been encountered before. With the increase of such new cases, 

the trained model may eventually become obsolete after a certain period of time. Consequently, 

a self-motivated online learning scheme needs to be introduced to update the model constantly 

after the model deployment.  

● There can be mainly two approaches for accommodating such an adaptation capability 

in CDDS. The most straightforward solution is to perform complete retraining to the 

decision score model using the old training data combined with the new observations. 

However, this retraining process can be very costly and interrupt the routine 

functioning of the model. The interruption is caused by the fact that most of the model 

retraining (particularly deep learning models) is a computationally intensive 

undertaking. An alternative solution is to periodically adjust the functional parameters 

to achieve robust performance with better efficacy. As tuning these parameters is 

comparably a lighter computational burden than retraining the entire model, it 

prevents the system from constantly retraining itself and greatly minimised the 

potential overheads and interruptions involved. However, this alternative cannot 

replace the model retraining completely as simple parameter tuning may not be 

sufficient towards adapting all variants, and hence comprehensive retraining of a 

robust and optimal updated model is still necessary and unavoidable. Therefore, as 
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the final part of this thesis, we will attempt to further investigate the issues 

underpinning the following two main system requirements:   

● How to monitor and assess the system performance regularly to evaluate the reliability 

and usability of the diagnosis strategy and how to apply adjustment schemes 

spontaneously according to the assessment results. 

● How to and when to modify the features and classifiers used to boost up system 

performance according to the nature of the new observations in a cost-effective manner. 

In this chapter, we are going to discuss these two requirements in detail and look at several 

potential solutions for monitoring and altering the decision score measures after the 

deployment. More specifically, the chapter is structured into the following sections. Section 

6.1 introduces several commonly used metrics for monitoring system performance. Section 

6.2 reviews several classical schemes that spontaneously update classification models in 

maintaining the model’s robustness. Based on the understanding of these classical schemes, 

Section 6.3 proposes several plausible schemes for refining the decision score measures 

spontaneously with relevant discussions. Section 6.4 evaluates these proposed schemes 

through an experiment over a specially created dataset that simulates new arriving 

observations over a period of time. Section 6.5 summarises the findings and further analyze 

the findings through discussions. 

 

6.1. Performance Evaluation 

6.1.1. Functional Efficiency  

Functional efficiency refers to the direct cost in performing and completing an operation in 

the CDSS, which can be mainly measured by computational cost and human effort spent. The 

computational cost relies heavily on the efficiency of the decision algorithm and the data 

structure representing and storing the designed model. As a commonly used metric, such time 

complexity can be presented by using the big O notation, which is a mathematical 

measurement that describes the limiting behaviour of a subject when it approaches a particular 

value. If a non-negative function f is defined as the complexity of the decision algorithm of 

any given size of raw data inputs x, then another nonnegative function g can be defined as the 

efficiency measure of the f by using big O notation as 

𝑂[𝑔(𝑥)] = 𝑓(𝑥) 𝑎𝑠 𝑥 → 𝑛   (6.1) 

where 𝑔 asymptotically dominates f at a particular data size 𝑛. That is, the computational cost 

when the size of the data is 𝑛. Consequently, a less efficient decision algorithm shares a 
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high 𝑔(𝑥), which indicates a high cost in computational time and system resources at the given 

the data of size 𝑛. The human effort is the time and labour cost in developing and maintaining 

the CDSS, which is normally defined as PM (Person-Months). The human effort cost in 

system development and maintenance are normally sharing a negative relationship, where a 

mature system ideally expects more effort paid in development but consequently requires less 

effort paid in maintenance.  

These two types of costs mentioned are in fact sensitive and strongly related to the dynamic 

changes in the clinical environment. The expansion of the database due to the continued 

accumulation of the new knowledge obtained can increase the scale of the problem, i.e., 

increase in the value of n, which diminish the functional efficiency of the system and consume 

more resource to refine. Therefore, the functional algorithm f needs to be efficiently designed 

to achieve a tolerable g along with the continued growth of 𝑛. Alternatively, filtering processes 

can be periodically applied to the data in controlling the n within a reasonable size, which 

ensures the functional efficiency g remains a tolerable constant. Furthermore, as mentioned, 

the growth in the scale of the problem can also put a heavy workload on maintaining the 

system, which makes the spontaneous tuning of the modelling parameters more appreciated. 

6.1.2. Diagnosis Accuracy  

In previous chapters, we have already introduced and used accuracy measures for evaluating 

the performance of our proposed measures. Besides, the accuracy measures can also be used 

as a good indication of the potential cost that the CDSS may suffer. Such cost mostly raises 

serious concerns, as inaccurate diagnoses can result in mistreating the patients and potentially 

lead to death in the worst scenario, which naturally weights this factor with the highest 

priorities when evaluating system performance. In most cases, the cost of other criteria (such 

as the functional efficiency we discussed in the last section) can be sacrificed to a certain 

extent to ensure the potential impact from inaccurate diagnosis is minimised.  

Different methods can be used to evaluate the overall decision accuracy, where the most 

common method is to calculate the average classification accuracy regarding the test samples, 

which is calculated by using the total number of the right classified labels divided by the total 

number of test samples. However, certain labels can be more desirable than the others in 

clinical diagnosis to accomplish damage control (as the example given in Section 4.1: bias). 

This kind of bias is not well reflected with simple overall accuracy. Therefore, the true positive 

rate or true negative rate base on the preference of the class label is also commonly used to 

measure the diagnosis accuracy instead of using the overall accuracy, which is calculated by 

focusing on the amount of the right classified desirable labels divided by the total number of 
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the desirable labels. These methods can be used for monitoring the performance of the CDSS 

when encountering new observations in the deployment phase. 

The accuracy measures mentioned above can provide good information on whether a 

trained model is obsolete or not, however, it cannot provide further evidence on whether the 

model can be reusable again in the current environment after minor adjustments. Therefore, it 

is also important to assess the general fitness of the design model to the new observations in 

determining a suitable strategy for refinement. As a solution, the ROC (Receiver Operating 

Characteristic) curve (Matjaž & Zoran, 2011) is commonly used for examing the general 

fitness of a model designed, which is a plot of the true positive rate against the false positive 

rate under different settings. The reliability of the test model can then be determined by the 

AUC (Area Under the ROC Curve) as 

∫ [∫ 𝑓
0

∞

𝑥
(𝑥) ∫ 𝑓

1

∞

𝑥
(𝑥)] 𝑑𝑥

∞

−∞
                  (6.2) 

where 𝑓0 and 𝑓1 are two functions regarding the true positive rate and false positive rate at a 

chosen parameter x respectively. In common understanding, as illustrated in Figure 6.1, the 

test model is considerably least useful when its AUC equals 0.5 and most useful when AUC 

is close to 1. Indeed, when AUC equals 0.5, the model does not show any prediction power to 

the changes in the parameter settings as it always predicts randomly. On the contrary, the 

optimal parameter setting can be selected with ease when AUC equals 1, as a slight change 

can reduce the false positives significantly while maintaining very good accuracy in true 

positive predictions. Therefore, by simply referring to the AUC measure, we can determine 

the appropriate strategy for refining the models, where simple tuning on the parameters can 

be applied when AUC was close to 1 and model retraining or redesigning need to be 

considered when AUC was close to 0.5.  

 
Figure 6.1 Comparing models with different ROC curve 
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6.2. Continual Learning Schemes 

In corresponding to the dynamic changes in the clinical environment, the CDSS needs to adjust 

its decision-making strategy accordingly to ensure the robustness of diagnostic accuracy. 

However, the rapid modification of the prediction model can be extremely costive under many 

circumstances, which shows an essential need for specially designed decision algorithms that 

can cope with the dynamic environment cost-effectively. Researchers have already noticed 

the importance of such a requirement. Various kinds of adaptation have been proposed by 

modifying the conventional classification algorithms in the past. Some of them are reviewed 

in the following subsections. 

6.2.1. The PEBLS Algorithm 

The PEBLS (Parallel Exemplar-Based Learning System) is an adaptive classification scheme 

based on a conventional kNN classifier (Steinbach & Tan, 2009), which assigns an additional 

weight to each training sample. These weights {𝑊1,𝑊2, … ,𝑊𝑛} regarding n training samples 

can tune themselves dynamically according to the result in each validation round and therefore 

accommodate to the complex online environment, which each of the weight 𝑊𝑖  in 

corresponding to the ith training sample is defined as 

𝑊𝑖 = 
𝛵𝑖

𝜏𝑖
           (6.3) 

where 𝜏𝑖 is the total number of the correct classification when using the ith
 training sample as 

a reference and 𝛵𝑖 is the total number of times that the ith
 training sample is referenced as a 

nearest neighbour. Notice that both of the 𝜏 and 𝛵 should be initialized to 1 to avoid division 

by zero error, and the result is always a positive real number. 

Following this, the weighted distance 𝑑′ between two feature point �⃗�𝑚 and �⃗�𝑛 can then be 

defined as  

𝑑′(�⃗�𝑚 , �⃗�𝑛) =  𝑊𝑚𝑊𝑛𝑑(�⃗�𝑚 , �⃗�𝑛)   (6.4) 

which cause the training samples that makes correct predictions being more favoured in the 

future testing rounds and the training samples that often produce errors being punished. Such 

idea can be extended after the model has been deployed and the weights associated with each 

training sample can be continuously adjusted.  
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6.2.2. The ID4 Algorithm  

The ID4 algorithm is a decision tree induction algorithm that shares the same concept as the 

basic ID3 tree-construction algorithm, in which the tree is grown by maximising the 

information gain at each node induced. The deficiency of the conventional ID3 algorithm is 

that the whole structure of the tree has to be reconstructed from the start as a result of any 

modification made to the training set, due to the fact that the information gains overall 

attributes have to be recalculated. As a solution, ID4 algorithm was proposed, which allows 

the induced decision tree to partially replace its branch based on new instances observed 

(Schlimmer & Fisher, 1986).  

The updating cost of the conventional ID3 tree is equivalent to reconstructing a new tree, 

which the cost regarding n training samples(instances) can be defined as 

∑ 𝑎 × 𝑛 = 𝑂(|𝛢|2 × 𝑛)                                                 (6.5)

|𝛢|−𝑑

𝑎=|𝛢|

 

where |𝛢| is the number of attributes and d is the depth of the tree (which cannot exceed |𝐴|). 

In addition, in the worst scenario, a tree may need to be rebuilt after every new observation 

encountered, then the above cost has to repeat itself for n many times, which finally 

accumulates to a cost as  

                                           ∑𝑖 × |𝛢|2 = 𝑂(|𝛢|2 × 𝑛2)

𝑛

𝑖=1

                                           (6.6) 

On the contrary, the ID4 tree only updates the necessary parts of the tree, which the cost is 

only proportional to the square of the number of attributes, which is calculated as 

                                                 ∑|𝛢|2 = 𝑂(|𝛢|2 × 𝑛)

𝑛

𝑖=1

                                                (6.7) 

Therefore, the ID4 algorithm is more cost-effective than the conventional ID3 algorithm due 

to its adaptiveness to small changes. 

 

6.3. Potential Methods for Decision Score Refinement 

6.3.1. One-pass Mean/Variance 

As described in Section 3.3.2, the posteriors in the proposed MGM model are determined by 

a set of mean vectors 𝜇𝜔𝑖 and variance vector �⃗�𝜔𝑖
2
. Retraining on these parameters can be 
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very costly since the computation normally requires iterating through the entire training set 

repeatedly. Alternatively, these parameters can be updated based on the previous result 

efficiently on the fly. The new parameters 𝜇𝜔𝑖
′
and �⃗�𝜔𝑖

2′
can be calculated based on the 

previous parameters 𝜇𝜔𝑖 and �⃗�𝜔𝑖
2
 at a given new reading �⃗�𝜔𝑖 as 

 

{
 
 
 
 

 
 
 
 �⃗⃗�

ω𝑖

′
=  �⃗⃗�

ω𝑖
+ 
(�⃗⃗�
ω𝑖
− �⃗⃗�

ω𝑖
)

𝑛𝑡𝑜𝑡𝑎𝑙

�⃗⃗�ω𝑖
2′
=
Σ(𝑛𝑡𝑜𝑡𝑎𝑙, ω𝑖)′

𝑛𝑡𝑜𝑡𝑎𝑙 − 1

Σ(𝑛, ω𝑖)′ = Σ(𝑛, ω𝑖) + (�⃗⃗�ω𝑖 − �⃗⃗�ω𝑖)(�⃗⃗�ω𝑖 − �⃗⃗�ω𝑖
′
)

Σ(𝑛, ω𝑖) =∑(�⃗⃗�
𝑘ω𝑖

− �⃗⃗�
ω𝑖
)
2

𝑛

𝑘=1

                                      (6.8) 

 

where the algorithm additionally requires to buffer the number of total elements 𝑛𝑡𝑜𝑡𝑎𝑙 and 

the sum of the squared deviation Σ(𝑛, ω𝑖). One of the disadvantages of these solutions is that 

the calculation results are not numeric reliable. The influence of 
(𝑥𝜔𝑖−�⃗⃗⃗�𝜔𝑖)

𝑛𝑡𝑜𝑡𝑎𝑙
 can decrease along 

with the increase of 𝑛𝑡𝑜𝑡𝑎𝑙, where the additional change in each update eventually becomes 

very small as it can be ignored, therefore causing the decision model to be unchanged. This 

“vanishing gradient” phenomenon also often occurs with neural network training, which bears 

some analogy here. In addition to this, the accumulating sum of the squared deviation can be 

a potential cause of the computation overflow. Therefore, this solution in fact does not 

fundamentally solve the refinement issue. All parameters are still required to be retrained after 

a period of refinement. 

6.3.2. Adjustment on Class Priors  

In contrast to the tuning of posterior probabilities, the priors used in the relevant class model 

can also be modified in adapting environmental changes after deployment. Compared to 

tuning posteriors in compromising new observations, changing priors mainly alter the bias 

between different classes in general but not regarding specific classifications. The update of 

priors can be simply presented in a linear form as 

P(ω
𝑖
)′ = {

 𝑚> ⋅ P(ω𝑖) + 𝑐+ if ω𝑖 → 𝑧

 𝑚< ⋅ P(ω𝑖) + 𝑐− else         
                                                            (6.9) 

where m is a constant of reward to the original decision score computed that affects the 

decision score based on its magnitude, where decision scores with higher confidence are 

influenced more heavily compared to the lower ones. Symbol m> denotes a constant that is 
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greater than 1, which amplifies the prior of the targeted class when the classifier made a correct 

prediction. On the contrary, m< denotes a constant that is lower than 1, which attenuated the 

prior of the targeted class when the classifier made an incorrect prediction. c is a constant of 

bias defining the environmental preference of difference. 𝑐+ denotes a positive constant that 

awards the prior of the targeted class when it made a correct prediction and 𝑐− denotes a 

negative constant that penalises the prior of the targeted class when it made an incorrect 

prediction. 

As defined in Formula 6.9, m and c have a dominating effect on the functional output. The 

system can easily be over tuned if the awarding/penalising factors were set too high. 

Meanwhile, the tuning can also be too slow in adapting to the new changes if the 

awarding/penalising factors were set too low. These two parameters must be set up carefully 

in achieving equilibrium of the tuning, which can be a very challenging task.  

 

6.3.3. Transformation Function on Decision Score 

In real-life practice, the relation between the decision score and the final decision strength can 

be more varied due to the external bias involved during the decision making. As an example 

that has been raised many times in this thesis, a doctor may be in favour to diagnose a case as 

malignant more than benign when the confusion occurred in breast lesion identification, since 

such bias provides a safer option to the patient and minimised the potential risks of 

misdiagnosis. Therefore, it is desirable to introduce an intermediate transformation function 

𝑇 between the decision score 𝑆𝐷 and the final decision strength 𝑆𝐷
′  as a hidden factor, which 

maps 𝑆𝐷 ∶ [−1,1] into 𝑆𝐷
′ ∶ [−1,1] as 

𝑆𝐷′(ω𝑧|�⃗⃗�) = 𝒯[𝑆𝐷(ω𝑧|�⃗⃗�)] ∶ [−1,1] ↦ [−1,1]                  (6.10) 

The function 𝒯 can be estimated by applying regressions of any kind once we have collected 

enough data regarding the real facts after the model deployment. Taking linear regression 

model as an example, the transformation function 𝒯 can be presented as: 

𝒯[𝑆𝐷(ω𝑧|�⃗�)] = 𝑚 ⋅ 𝑆𝐷(ω𝑧|�⃗�) + 𝑐                  (6.11) 

where m and c, in this case, are the two constants that represent the transformation rate and 

the external bias respectively. Therefore, given a validation set {�⃗�}  with their expected 

decision score measurement {�̂�}, we can model our unknown parameters in the transformation 

function 𝒯 by minimising their loss as: 

{𝑚, 𝑐|{�⃗�}⟼ {�̂�}} = argmin (∑ |�̂�𝑖 − 𝒯∘𝑆𝐷(�⃗�𝑖)|
|{�⃗�}|
𝑖=1 |{�⃗�}⟼ {�̂�})     (6.12) 
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6.4. Experimental Analysis 

6.4.1. Creating Testing Set Simulating Observations after Deployment 

In this experiment, we have again used the CBIS-DDSM breast tumour data set. Unlike the 

cross-validation based approach that we implemented before, this time we have randomly 

selected 50% of the calcium data as the training set. The remaining 50% of the calcium data 

have been further divided into 15 patches to emulate observations after deployment in a time 

series for testing purposes. In addition, we have purposely chosen another group of mass data 

as unseen abnormalities, as mass tumours have a very different appearance compared to 

calcium tumours. These abnormal data have been mixed with the test patches created in 

simulating unforeseen changes after deployment. The initial proportion of abnormalities was 

set to 2% and then increased accumulatively by 5% in each test patch. In other words, the 

initial test patch contains 2% of unseen examples and increase gradually until the last testing 

patch contains 72%.  

6.4.2. Experiment Result and Analysis 

In the experiment, we have again used the GLCM feature as it has shown promising results in 

the previous experiments. However, we have decided to use a version of GLCM with lower 

dimensionality in making sure that the model can be well trained with the downscaled dataset. 

More specifically, we have derived the 13 Haralick’s features from the GLCM that only in 1-

pixel distance with 45° angle, which results in a relatively low dimensional feature of 13 

dimensions. 

Before testing the model with heavily polluted data as designed in Section 6.4.1, we have 

first tested our linear refining method introduced in Section 6.3.3 with noises that are similar 

to the training sample. In this initial test, both training samples and noise samples are calcium-

type tumours but only with different subtypes (the training examples are round calcium and 

the noise examples are line calcium). Unlike what we did in other experiments where cross-

validation methods were used, it can be slightly difficult to measure the expected performance 

value in this experiment as the testing follows a train/test split protocol. Therefore, we have 

repeated the testing 10 times with different seeds of randomization in making sure that the 

obtained observations were enough in conducting a thorough test. The averages of the testing 

accuracies were recorded and plotted in Figure 6.2. 
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Figure 6.2 Classification accuracy on similar testing samples 

According to Figure 6.2, it appears that the performance of the two trained models start to 

show distinctive differences after the eighth round. As designed, the eighth patch contain 37% 

of noise, which provided us with an initial clue about the proportional threshold that the noise 

may influence the testing results. Overall, the test results showed that models with refinement 

had a slightly better performance compared to the unrefined model on average. However, the 

difference was not significant enough to conclude that the method proposed was effective in 

improving the online classification result, but at least showed that the linear fine-tuning 

method did not degrade but maintained the system performance. On the contrary, the 

performance of the unrefined model showed a clear decaying pattern along with the pass in 

time. 

In the second test, we have maintained the setting on the feature and testing protocol used, 

but changed the testing dataset to a heavily polluted one as described in Section 6.4.1. Again, 

the averages of the testing accuracies were recorded and plotted in Figure 6.3. 

 

Figure 6.3 Classification accuracy on large variated testing samples 
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As shown in Figure 6.3, the two trained models showed much quicker and significant 

differences in their performance compared to the first experiment. The difference appeared 

after the fifth round, which was designed to contain 22% of noise. This is understandable since 

the noise in this experiment was much distinctive and abnormal, which accelerated the 

degradation of the system performance. The refined model overperformed the unmodified 

model clearly in long run. The performance of the unmodified model decreases continuously 

along with the increase in noises, while the refined model remains robust with increasing 

performance.   

In the final experiment, we have upgraded the GLCM features used into three different 

distances (1, 2 and 3) with four different angles (0°, 45°, 90°, and 180°), which results in a 

high dimensional feature vector of 3 × 4 ×13 = 156 dimensions, which is the same as what we 

used in the experiments in the previous chapters. This experiment aims to test the performance 

of the linear refinement method in high dimensional spaces. We have again tested it with the 

heavily polluted dataset under the same testing protocol. The averages of the testing accuracies 

were plotted in Figure 6.4. 

This time, similar to the first experiment, the experiment result shows that the refined 

performance was not significantly different from the unrefined one. A possible explanation 

lay at the nature regression requirement on high dimensional data. As we know, high 

dimensional data essentially requires more data points in fitting the regression line accurately. 

Therefore, it inevitably requires more patches and iterations to refine the model before 

superior performance may appear. It is very likely that Figure 6.4 was only showing the very 

initial stages of the refinement. A piece of good evidence in supporting such an argument is 

that the performance difference appears from the ninth round of the testing, which was far 

later than what the previous experiments found.  

 

Figure 6.4 Classification accuracy on high dimensional data 
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As another interesting observation, the experiment with high dimensional features has 

shown a higher accuracy compared to the experiments built on low dimensional features. This 

again showed that the high dimensionality has provided better discrimination power to the 

classifier compared to low dimensionality, which has been observed repeatedly in many 

experiments of this thesis.  

 

6.5. Discussions 

6.5.1. Using Decision Sensitivity as a Monitoring Metric 

In Section 6.1, we have introduced several metrics for monitoring the performance of CDSS 

after deployment. However, we have not mentioned the measure of decision sensitivity as 

introduced in Section 4.4.2. Similar to classification accuracy, decision sensitivity is also a 

measure of modelling performance derived from a batch of data, where it is a real value 

ranging between 0 and 1 and being most desirable when a mid-range value is maintained. In 

principle, it can monitor how the decision score model reacts to new observations after 

deployment by measuring whether it is still being reasonably sensitive to unseen data. 

However, the proposed sensitivity measure may still be immature yet to be put for 

performance monitoring, and hence why we have not conducted any experimental analysis. 

In Section 4.4.2, we provided a clear definition for the decision sensitivity measure, where 

a measurement of 1 denotes extremely sensitive, indicating potential model overfits whereas 

a measurement of 0 denotes extremely insensitive, indicating potential model underfits. 

Following the definition, observing a sensitivity that was close to 0 or 1 can be a strong 

indication that the model is getting obsolete. However, it is difficult to draw a clear conclusion 

when the measured decision sensitivity was in the middle of the range. Unlike the accuracy 

measure where a higher value is always more desirable than the lower ones, it is hard to argue 

whether a decision sensitivity of 0.6 is more desirable than 0.4 or not. The vague and 

incomparable nature of the decision sensitivity measure caused some major difficulty when 

applying it as a criterion for performance monitoring and model refinement.  

As a practical solution, a margin of tolerance with a lower and an upper bound threshold 

within the decision sensitivity measurement range can be considered. In other words, a model 

can be identified as being obsolete when the decision sensitivity measured was less than 0.05 

or greater than 0.95. Any value measured beyond such margin can be considered as an alert 

for fault, and subsequently triggers further treatments to the model. However, such a solution 

can be quite risky in meeting the punctual and timely requirement for retraining a new 

classification model for CDSS, as the decision score model used can be already very unreliable 
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by the time when the fault alert is triggered and can potentially cause huge damage (such as 

cost of money, dangerous to life, treatment time spent etc.) with the number of false decisions 

already made. 

Besides these concerns, in Section 4.2, we have listed two main factors that influence the 

measurement of decision sensitivity, i.e., the dimensionality of the feature vector used and the 

eigenvalues of it. Unfortunately, both of these two factors are costly to refine and require the 

retraining of the built model. Although in Section 6.3, we introduced three possible methods 

for efficiently refining the decision score model, but the impact of these methods on the 

decision sensitivity remains an open question. Nevertheless, none of these proposed methods 

is expected to impact the decision sensitivity greatly as they do not adjust the feature used in 

the decision score model, which does not impact dimensionally and eigenvalues of the model 

trained and therefore not expect to affect the decision sensitivity very much. Nonetheless, it is 

still interesting to observe how the change in accuracies affects the measurement of decision 

sensitivity. 

Overall, the decision sensitivity can be potentially useful for monitoring the performance 

of models, but only when a better understanding is reached. Based on that, future research 

may lead to proposing a refinement method that does not only consider accuracy but also the 

decision sensitivity during deployment. 

6.5.2. Online Decision Score Refinement by Modifying Priors  

In Section 6.4, we have tested the refinement method proposed in Section 6.3.3 under different 

settings, where preliminary experiments showed a promising result. But unfortunately, we 

were not able to present any result regarding the adjustment-based method proposed in Section 

6.3.2, since experiments failed quickly without showing any readable performance for 

evaluation. More specifically, the adjustment-based method introduced in Section 6.3.2 

requires two sets of predefined parameters 𝑚>/𝑚< and 𝑐+/𝑐− to constantly refine the decision 

score measure according to the performance observed after deployment which expects to 

achieve an optimal equilibrium in long run. However, we have not been able to find such 

equilibrium in our preliminary test. For simplicity of variable control, we have initially tried 

to set 𝑐+/𝑐− to 0 with 𝑚>/𝑚< valued between 1.1-1.7/0.9-0.3. Unfortunately, we found that 

the amount of penalizing/awarding was too large even with 1.1/0.9 and the decision score 

measure has been quickly over tuned to constantly bias one of the classes after the first couple 

of iterations, which makes the experiment result not meaningful. As we have found in the 

preliminary experiment, the selection of parameters can be very critical for adjustment-based 

methods.  

Regarding the selection of variables, parameter optimization has always been a popular 
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study especially when involving data in serials/patches. As a good reference, the training of 

Convolutional Neural Network (CNN) uses a huge amount of data arranged in a list of small 

batches in refining the parameters used in the model. The training uses the Stochastic Gradient 

Descent (SGD) method to update the weight at each node based on the validation outcomes 

of each batch, where the amount of change is based on a predefined hyper-parameter 𝜂 , 

commonly known as the “learning rate”. Through the past decades, many alternatives to the 

SGD method have been proposed but they all follow a similar concept, where the simple 

iterative solution can be expressed as 

𝑤𝑖+1 = 𝑤𝑖 − 𝜂∇𝒬(𝑤𝑖)                                                 (6.13) 

where 𝑤𝑖  denotes the weight at the ith round and ∇𝒬(𝑤𝑖) denotes the amount of changes 

expected to make in meeting the optimal weight for correctly predicting the example at the ith 

round. As we can see, these concepts are very similar to what we have introduced in Section 

6.3.2 and the selection of 𝜂 is again critical for correct modelling. 𝜂 can be determined naively 

through exhaustive trials, but such a solution is of course very costly and undesirable. As a 

common practice, people do sometimes increase the amount of learning rate from batches to 

baches in the training process and then creates a plot of learning rate versus loss. The learning 

rate with minimum loss is then considered as the most optimum value. However, this selected 

value is customised to the training set and may not be suitable after the system has been 

deployed. As the clinical environment changes constantly with a high cost to any potential 

risk (due to the life-critical nature of clinical decisions), most of the optimum learning rates 

found can be too small to adapt to environmental changes swiftly. The method has to be able 

to adjust the decision score measure timely with precision, where ideally the method should 

be able to adjust the amount of updates dynamically in meeting the requirement with the least 

amount of time used. 

There have been many adaptive scheduling techniques being proposed for altering the 

learning rate on the fly, where most of them involve introducing a decaying factor in adjusting 

the learning rate based on time or number of observations (Ge, et al., 2019) (Cao, et al., 2019). 

Ideally, the decaying factor is normally a fraction so the models are gaining less and less to 

the most appeared examples as they should already be very well learned. For CDSS, we can 

alternatively reverse such logic by additionally introducing a decaying factor greater than one 

when the system makes the same misprediction repetitively, so that the model is gaining more 

and more in correcting such a misprediction. This additional solution should be able to correct 

any unforeseen misprediction timely while maintaining precisions on the decision score 

measure. However, our experiment data was not sufficient for expanding on such a study and 

the investigation on optimal parameter refinement methods can be potentially beyond the 
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scope of this thesis. 

 

6.6. Summary 

In this Chapter, we were mainly interested in exploring potential methods for maintaining the 

level of robustness of the decision score measure after the CDSS has been deployed. We have 

first looked at several metrics that can be used for monitoring CDSS performance after 

deployment. Following that, we have gone through multiple methods that can efficiently refine 

themselves in corresponding to newly-arrived observations, which eventually leads to the 

proposal of 3 alternative methods for automatically refining the decision score models after 

the CDSS has been deployed. Unfortunately, some of them did not perform as we expected 

due to the limitation of testing data and research scope.  

Nevertheless, we have still been able to gain some positive knowledge on one of the 

proposed methods, which was based on refining the decision model with linear transformation 

functions. We have tested this method with several experiments in mimicking different 

situations that CDSS may encounter after the deployment. The proposed method has shown 

robust performance in all the experiments conducted. More importantly, the proposed method 

tends not to be sensitive to similar features, which makes the model very unlikely to be over 

tuned in the long run. At the same time, it remains sensitive to data that vastly variated from 

the training examples so it can still correctly react to any faulty prediction in time. We have 

additionally found that the time (iterations) required for the refinement method making a 

positive change can be potentially proportional to the feature dimensionality, where decision 

score measured built on higher dimensional feature essentially requires more time (iterations) 

to refine the model.  
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Chapter 7. Conclusions and Future Work 

 

7.1. Summary of the Undertaken Research Investigations 

The research work as reported in this thesis was designated to investigate various aspects of 

integrating automated Clinical Decision Support Systems (CDSSs). The research aims are 

meant to exploit the tangible and growing benefits of using machine learning techniques in 

modern healthcare systems primarily in support of medical diagnosis. The objective is to 

determine and understand the constraints of modern CDSS models and propose potential 

solutions to these constraints. Having initially conducted a brief review of CDSS background 

and its essential functional elements (Chapter 1), it became clear that optimising the decision-

making module of CDSS cannot rely entirely on prior information obtained during the training 

stage. Instead, there was a need to introduce a different scheme of confidence-centric decision 

making in CDSS. Such a scheme does not only provide an eventual decision outcome, but 

couples the outcome with a level of decision reliability. This way of decision making is 

sensible to doctors, consistent with customary practice in clinics, and hence easier to integrate 

the machine models into the final diagnostic decision-making process within CDSS. 

Confidence of decisions also contributes towards decision explainability, an essential 

requirement in clinical practice (Section 2.1), because the confidence level can be seen as a 

reflection of decision strength. 

After conducting a broad review of existing various measures for decision strengths, the 

thesis proposed a unified confidence measure based on the Gaussian Bayes principle (Chapter 

3). In addition, the proposed measure of confidence is combined into a single decision score 

measure, which does not only reflect the strength of decision making in percentage levels but 

also highlights the decision made with positive or negative signs measure (Section 3.3). Based 

on the decision measure, multiple variants have been tested and compared using a dataset of 

low dimensions and explainable features. The experimental results demonstrated that the 

proposed decision measure worked well in low dimensional features space for classifying 

miscarriage cases (Section 3.4). These results raised the question as to whether this success 

can be extended and generalised into more complex and diverse diagnostic scenarios.  

In particular, our next objective was to investigate the validity of the proposed decision 

score measure in a more sophisticated setting (Chapter 4), where the features involve more 

complex relationships and are of high dimensionality. We have tested the proposed measure 

on a new dataset about breast lesions in mammography that uses complex high dimensional 

features for classification (Section 4.5), but encountered issues due to the well-known 
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challenge of the “curse of dimensionality”. As a solution, we found it can be very useful to 

revisit the problem under orthogonal projections of the original dimension with different levels 

of dimension reduction. This was implemented using the well-studied Principal Component 

Analysis (PCA) method (Section 4.3). Within the projected PCA feature spaces, we have 

thoroughly studied the behaviour of the confidence measure and found that the confidence 

measure is sensitive to the variation of dimension reduction together with the eigenvalues in 

the projected dimension. Visualisation of the behaviour across a sequence of dimension 

reduction levels, has helped develop a new measure, referred to as the decision sensitivity 

measure, that can be used to quantify the behaviour of the confidence measure and can be 

used as an evaluation criterion (Section 4.4).  

After the investigation about measuring the strength of decisions over a single set of 

features, this thesis acknowledged the limitations of a single classifier. Hence, we investigated 

how to measure the combined strength of decision making by multiple classifiers in a joint 

decision-making framework (Chapter 5). We reviewed the principles and rationales behind 

various well-established information fusion schemes, tested their strengths in adapting the 

confidence measure (Section 5.2) within the schemes, and further proposed a correlation-

based scheme for fusing the proposed decision scores (Section 5.3). Performances of these 

fusion schemes were evaluated and compared on the two datasets introduced in the previous 

chapters (Section 5.4).  

The last piece of the research work reported in this thesis aims at optimizing the CDSS 

decision making module in a cost-effective manner post deployment (Chapter 6). In particular, 

it is necessary to understand the effects on decision confidences under unpredictable clinical 

environments, where CDSS face unforeseen changes constantly. As a result, the CDSS is 

required to modify its decision-making module spontaneously, continually and regularly in 

adapting to such an unpredictable environment. Therefore, the thesis further investigated 

possible ways to spontaneously refine the trained models cost-effectively to achieve more 

robust performance. More specifically, the thesis first broadly reviewed several commonly 

used metrics and methods for monitoring and refining models (Section 6.2). Sensible 

adaptations of these methods to adjust our proposed confidence measure are then investigated 

(Section 6.3). Experiments were conducted on a specifically created dataset that emulates time 

serial data using the breast tumour data set used previously in chapters 4 and 5 (Section 6.4). 

 

7.2. Major Contributions and Findings 

In this thesis, we have proposed a special CDDS framework that uses decision strength as a 
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core element throughout the entire design of the CDSS (see Section 2.1). In more specific, the 

proposed framework consists of three major components for measuring the strength of 

decision making, fusing multiple decisions made and updating trained decision-making 

models dynamically, respectively. Such design provides a mutual and robust solution in 

bridging the understanding gap between experimental study and practical application, which 

makes the proposed CDSS fulfilling the obligation to explain. 

In this thesis, we have proposed 4 variant types of models for measuring the strength of the 

decision making (Section 3.3). Overall, these models have shown good performance for 

classification. Besides, all the variants are found to well represent the known clinical facts 

(Section 3.4.2), demonstrating the soundness of adopting the Gaussian Bayes principle for 

modelling classification decision strength. In particular, we found that multivariate Gaussian 

models have more distinguishable powers when performing classifications than the univariate 

Gaussian models. In addition, mixture models also have had a better fit to the expected 

confidence measurement compared to non-mixture models. Both elements combined into a 

strong final belief that the Multivariate Gaussian Mixture Model (MGMM) is the most ideal 

model to be used when building our proposed confidence measure in general.  

We have also found that measuring the strength of decision making in high dimensional 

spaces requires more sophisticated techniques compares to their application in a low 

dimensional space (Section 4.1). We found that the major obstructions of deploying the 

proposed confidence measure under complex scenarios are from two main factors: (a) the 

dimensionality of the feature used, and (b) the standard deviation of the feature used in the 

orthogonal space. Our contribution in dealing with these challenges is the proposed threshold-

based PCA method that allows the confidence measure to alter itself towards more reasonable 

and robust predictions according to the training environment (Section 4.2). More significantly, 

we found that pruning the feature dimensions with very large or small eigenvalues can both 

benefit modelling the confidence measure (Section 4.4). More specifically, pruning the feature 

dimensions with very large eigenvalues helps to reduce the ambiguity of the confidence 

measured and pruning the feature dimensions with very small eigenvalues makes the 

confidence measure more robust. Nevertheless, such a finding has to be constrained within a 

limit to prevent potential damage to the information gained in the confidence measure due to 

over-pruning. In general, we have found that the decision sensitivity follows a down-up-down 

trend when pruning the feature dimensions from the smallest eigenvalue one by one.  

Following such a finding, the ideal threshold of minimum eigenvalues is considered to be 

positioned at the beginning of the second peak (i.e., after the first up and before the second 

down). At such a threshold, the confidence measured maintains the best trade-off between 

robustness and discriminant power. The significance of this multi-faceted contribution can be 
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appreciated, as most of the PCA implementations only consider the efficiency and decision 

accuracy when applying it but rarely consider the implications on the decision confidence. 

The third main contribution of this thesis, is related to fusing confidence measures from 

classifiers built on multiple features, which aims at improving the robustness of the prediction. 

More specifically, we developed a categorisation of 10 different fusion methods in terms of 

three different schools of thought (Section 5.2 – 5.3), covering the traditional rule-based and 

weight-based fusion, plus our newly developed correlation-based fusion. Most of them have 

shown comparable classification accuracy to the best of individual classifiers with superior 

robustness (Section 5.4). In particular, we found that both the median rule scheme and our 

proposed correlation-based scheme had very good performance in all testing scenarios. 

The last but not least of this thesis main contribution is concerned with post-deployment 

diagnostic schemes. In particular, we have proposed three methods that efficiently adapt 

classification confidence in response to newly-arrived observations (Section 6.2). The 

corresponding investigations revealed that the weight-based method essentially requires a 

careful setup when tuning the prior of the Gaussian Bayes model. Setting weight as a constant 

is very likely to over exaggerate the award/penalty and therefore cause the model to constantly 

bias towards one of the classes. Compared to the weight-based method, refining the decision 

model with linear transformation functions have shown more robust performance in our 

experiments under different conditions. Refinement from the transformation-based method 

was not being sensitive to familiar examples but at the same time remaining sensitive to data 

that vastly variated from the training examples, which makes it correct unseen faulty 

prediction on time while also remaining robust to seen examples. We have also found that the 

time (iterations) required for the refinement method making a positive change can be 

potentially proportional to the feature dimensionality, where decision score measured built on 

higher dimensional features essentially requires more time (iterations) to refine the model. 

 

7.3. Future Works 

Our proposed decision score measure is based on Bayesian principles with Gaussian models. 

The Gaussian model is considered to be one of the most universally applicable models as it 

assumes a normal distribution to the observations, which is mostly expected in natural events. 

However, the modelling is not limited to Gaussian form alone, and there are many other 

probability distribution models such as binomial or Poisson distributions, etc. that are also 

applicable (Matthews & Vernon, 2015). But each of these models has its unique 

characteristics, which makes them more suitable under different presumptions. It would be 
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very interesting to explore the behaviours of these models in future research in order to make 

our proposed decision measure system more universally adaptable. 

For our proposed Gaussian Bayes decision score measure, we have specifically studied its 

behaviour in high dimensional space and proposed a threshold-based PCA method for 

optimising the model trained. However, tuning the eigenvalue thresholds on both the 

maximum side and minimum sides in a consistent manner can be challenging due to the 

different magnitudes of information contained on each side. A practical solution in 

determining the appropriate thresholds could rely on the use of Confidence Interval (CI), 

which determines the maximum and minimum eigenvalue thresholds as the upper and lower 

limits of the CI at any confidence level specified. In this form, the eigenvalue thresholds can 

be determined and tuned in the context of confidence levels as an empirical method depending 

on the environmental requirements. However, the unsymmetrical property of the eigenvalue 

distribution causes the computation of the CI to be very difficult. If possible, approaches based 

on CI can be further tested and validated in the future along with the increased understanding 

of eigenvalue distributions.  

Apart from the decision score measure, we have also proposed a decision sensitivity 

measure that helped in evaluating the fitness of the decision score model derived. Following 

the definition, observing a sensitivity that is close to 0 or 1 can be a strong indication that the 

decision score model is less appreciable to the seeing examples. However, it is difficult to 

draw a clear conclusion when the measured decision sensitivity was in the middle of the range. 

The vague and incomparable nature of the decision sensitivity measure made it very difficult 

for using it as a fine metric for performance evaluation. Therefore, the characteristic of our 

proposed decision sensitivity measure would definitely need further studies for contributing 

to better-defined evaluation metrics.  

Additionally, we have introduced a fusion method based on general correlations between 

pairs of classifiers in coping with the decisions made from different features. Despite it has 

shown promising performance in our preliminary tests, we could still further refine it into 

more sophisticated scenarios, where different disciplines can be applied in achieving better 

performance. For example, the fusion outcomes of independent classifiers can always be fused 

with mean or product rules, which is the expectation under the independence assumption. On 

the other hand, fusions on correlated classifiers can depend on their relationships. For the 

classifiers that have different correlations on the correctly classified and misclassified, 

different penalty and reward schemes can be applied for tuning the final fusion decision score 

to an appropriate value. In this case, the fusion strategy should be made dependent on the 

purpose of applications, which may need more investigation in the future. 
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Appendix A 

Detailed Confusion Matrices Regarding Experiments in Section 5.4.1 

 

Table A1. Confusion Matrix of Concatenated Feature Performance on Miscarriage Dataset  

 

F_All 
Truth 

Accuracy 
PUV MISS 

Predict 
PUV 158 3 98.14% 

MISS 1 28 96.55% 

 

Table A2. Confusion Matrix of Gestational Major Feature Performance on Miscarriage Dataset 

 

Gma 
Truth 

Accuracy 
PUV MISS 

Predict 
PUV 154 7 95.65% 

MISS 9 20 68.97% 

 

 Table A3. Confusion Matrix of Gestational Minor Feature Performance on Miscarriage Dataset 

 

Gmi 
Truth 

Accuracy 
PUV MISS 

Predict 
PUV 157 4 97.52% 

MISS 8 21 72.41% 

 

Table A4. Confusion Matrix of Transpose Major Feature Performance on Miscarriage Dataset 

 

Tma 
Truth 

Accuracy 
PUV MISS 

Predict 
PUV 150 11 93.17% 

MISS 6 23 79.31% 

 

Table A5. Confusion Matrix of Concatenated Feature Performance on Breast Cancer Dataset 

 

F_All 
Truth 

Accuracy 
B M 

Predict 
B 864 335 72.06% 

M 230 441 65.72% 
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Table A6. Confusion Matrix of LBP Feature Performance on Breast Cancer Dataset 

 

LBP 
Truth 

Accuracy 
B M 

Predict 
B 928 271 77.40% 

M 243 428 63.79% 

 

Table A7. Confusion Matrix of HOG Feature Performance on Breast Cancer Dataset 

 

HOG 
Truth 

Accuracy 
B M 

Predict 
B 830 369 69.22% 

M 244 427 63.64% 

 

Table A8. Confusion Matrix of GLCM Feature Performance on Breast Cancer Dataset 

 

GLCM 
Truth 

Accuracy 
B M 

Predict 
B 919 280 76.65% 

M 212 459 68.41% 

 

Table A9. Confusion Matrix of Histogram Feature Performance on Breast Cancer Dataset 

 

HIST 
Truth 

Accuracy 
B M 

Predict 
B 775 424 64.64% 

M 185 486 72.43% 

 


