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Abstract— The integration of Digital Twins (DT) and 

Internet of Things (IoT) technologies has emerged with 

significant advancements across various domains. This review 

paper explores the fundamentals of Digital Twins, 

categorizations, state-of-the-art developments, and their 

integration with IoT. It dives into architectural considerations, 

data integration, communications, and analytical insights within 

the concept of using Digital Twins as a framework for IoT 

applications. Recent advancements, challenges and future 

directions are also discussed, highlighting the potential and 

complexities of this combined approach. 
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I. INTRODUCTION  

The convergence of Digital Twins (DTs) and Internet of 
Things (IoT) has brought about transformative possibilities, 
along with challenges, in diverse fields. This article delves 
into the foundations, categorizations, and recent 
advancements of Digital Twins merged with IoT. First, the 
fundamentals of both DT and IoT concepts will be discussed 
with historical background and evolution through time until 
these concepts become mainstream. This also includes 
categorizations and different definitions of these novel 
concepts depending on the field of application. Next, the 
integration scenarios of the two concepts in the current 
research and industry will be explored. Finally, the 
communication and connectivity, data integration and 
modelling as well as analytical insights on current 
developments will be assessed in relation to the use of DTs as 
a framework for IoT applications. The architecture of the 
overall DT and IoT systems needs to be carefully designed and 
developed considering the costs involved, possible problems 
and viable solutions. Hence, the architectural considerations 
of the system development related to DT framework for IoT 
along with challenges and future directions will be discussed 
in this review. 

II. FUNDAMENTALS OF DIGITAL TWINS 

A Digital Twin (DT) is defined as a virtual representation 
of an object, model, or a process, which may or may not 
consist of a physical counterpart [1]. A DT would be 
communicating with its physical twin in a synchronized 
manner to update itself with real-time data or for making 
intelligent decisions acting as an expert decision-making 
system [2]. The origin of DT in operation can be traced back 
to a few decades prior to the origin of the concept itself. The 
DT concept was initially introduced by Micheal Grieves at the 
University of Michigan [3] in 2002. Yet, the usage of virtual 
replicas for physical real-word objects with the intention of 

providing intelligent decisions or predictions existed long 
before that. The first such incident was recorded five decades 
ago, when NASA's Apollo 13 was stranded 210,000 miles 
(about 337962.24 km) away from earth [4]. The 15 simulators 
that were used in training the astronauts and mission 
controllers in every aspect of the mission, including multiple 
failure scenarios were used to simulate the error caused by the 
spacecraft's damage, hence, to figure out the solution with the 
available resources in the actual spacecraft [4]. The concept of 
Digital Twins emerged from this innovative moment.  
Consisting of a life cycle, a DT will be connected to its 
physical twin for capturing data and contextual interaction [2]. 
From time-to-time after the first recorded DT, virtual replicas 
or 3D models of real-world objects were used in simplifying 
complex and expensive tasks if done practically in the 
physical world. 

A. Categorizations of Digital Twins 

Modern day digital twins have a spectrum of 
categorizations depending on the purpose of application, type 
of operation required and the expected outcomes. According 
to Madni et al. [2], Levels of DTs could be categorized by their 
sophistication and maturity by the stages of product life cycle. 
This categorization includes a) Pre-Digital Twin; b) Digital 
Twin; c) Adaptive Digital Twin; and d) Intelligent Digital 
Twin. This categorization involves the state of the virtual 
model, state of the data communication channels between the 
virtual and physic counterparts, operator preferences (i.e., 
ability to learn the preferences of human operators using 
machine learning techniques) and system preferences (i.e., 
ability to predict, plan and operate the system using machine 
learning techniques). 

 A Pre-Digital Twin is a 3D model or a virtual 
representation of a system, an object, or a process before it has 
been implemented in the real world. The goal could be for 
planning a physical twin or mitigating technical risks. At this 
level, the physical twin does not exist, hence there will be no 
data acquisition from the physical twin or use of machine 
learning in operator preferences or system environment. A 
Digital Twin, although this coincides with the general term, 
this classification in [2] to a virtual system which has a 
physical system/twin. Data acquisitions such as data from 
performance, health status, maintenance and batch updates 
related to the life cycle will be considered in this stage. At this 
level of categorization, the system would not have machine 
learning capabilities. The next level of maturity categorization 
is an “Adaptive Digital Twin”. At this maturity level, the 
Digital Twin will comprise of an adaptive user interface which 
will evolve with the physical system. This type of Digital 



 

Twins will have machine learning capability with operator 
preferences and real-time updates. Next, an Intelligent Digital 
Twin is categorized to be the highest level of maturity of a 
Digital Twin, containing all the model sophistication elements 
of previously listed categories plus reinforcement learning 
capability. Data acquisition from the physical twin will consist 
of both batch and real-time updates while the machine 
learning element will consist of operator preferences as well 
as system and environment aspects. Reinforcement Learning 
(RL) is a machine learning paradigm where an agent learns 
how to make decisions by interacting with an environment to 
maximize a reward signal.  

Other categorizations of DTs are based on the application 
domain and the functionality of the specific domain where 
DTs are considered special purpose DTs designed for specific 
applications with application relevant functionality. Examples 
include  the implementation of DTs  for Smart Grids [5], 
testing autonomous vehicles [6], Smart Cities [7] and for 
achieving environmental sustainability goals. Hence, the 
categorization of DTs could be based on their functionality, 
maturity of the model itself, performance, and DT’s overall 
life cycle. In the context of Internet of Things (IoT), all these 
categorization methods and the suitable applicability 
depending on the approach and expected result of the IoT 
application could be considered.   

B. State-of-the-art developments of Digital Twins landscape 

Developments in DTs and their application in a variety of 
scenarios have grown rapidly. From being a concept to 
mainstream, DTs have become popular in many fields. One 
such state-of-the-art development is the smart city platform 
developed by Unreal Engine and Buildmedia for Wellington's 
net-zero energy buildings, revolutionizing the transition to a 
sustainable future. The adoption of DTs has significant cost 
savings, as they allow for precise monitoring, analysis, and 
optimization of energy consumption, resulting in efficient 
building operations and reduced expenses. By creating virtual 
replicas of physical assets, DTs enable real-time data 
collection and predictive modelling, empowering 
stakeholders to make informed decisions that maximize 
energy efficiency and minimize wastage [8]. Further, a review 
of the recent advancements of DTs by Ramu et al. [7] 
describes the merging of Federated Learning and Decision 
Trees within the context of smart city applications. Federated 
Learning is integrated with DT in several smart city 
applications like manufacturing, automobile, retail, 5G, 
Industrial IoT. Research by Patros et al. [9] developed a multi-
dimensional framework for classifying energy and other DTs. 
They highlighted how energy DTs can apply to distinct phases 
of the production life cycle and presented a concept for energy 
DT application to industrial sites and local areas. The energy 
applications and usage play a crucial role in the Net-Zero 
transition. Research by Wang et al. [10] provides a broad 
review of digital twins covering their applications, the 
definitions, classifications, key features, case studies, the key 
technologies at present, and future directions and challenges 
of DT in energy fields. Tsialiamanis et al.[11]a methodology 
of developing generative models as a base for DTs. The 
authors suggest the use of Stochastic Finite Elements (SFE) 
based method for physics-based models when the physical 
twin provides accurate data capture through different sensors 
which will be fed into the DT. On occasions where physics-
based models are not sufficient, data driven models have been 
introduced which use conditional generative adversarial 
networks – a machine learning framework for generative AI. 

III.  IOT LANDSCAPE 

This section focuses on exploring the concept of Internet 
of Things (IoT) and its advancement in the modern world. IoT 
constitutes an expanded network rooted in the Internet 
infrastructure, aiming to facilitate real-time interaction among 
objects, machinery, environment, and people through 
advanced technological means. Originating in 2002, early IoT 
related literature, like Schoenberger's work in 2002, 
envisioned its application in retail, using miniature wireless 
chips to confer perceptual capabilities to stores. Over the past 
two decades, a growing consensus among governments, 
business leaders, and researchers has emerged, enhancing the 
IoT's role in enhancing living conditions and overall well-
being. Market analysis underscores this trend, indicating a 
global IoT market valuation of $1.90 billion in 2018, projected 
to surge to $11.03 billion by 2026. The European Union (EU), 
United States, and China have also crafted strategic 
frameworks for IoT advancement, exemplified by initiatives 
such as Europe's IoT-An Action Plan and the 2016–2020 IoT 
development plans [12].    

 IoT often goes hand in hand with heterogeneous 
technologies which enables the design and development of 
applications such as smart cities, retail, agriculture, healthcare, 
and energy management. The connectivity of the physical 
elements of the intended system with the goal of achieving an 
interoperable network allows the users privileges such as 
remote controllability, data collection and monitoring, 
predictive maintenance, and automation via  the integration of 
a variety of sensors, wearable devices, and mobile 
technologies.  

  It is evident that in the field of IoT, the growth in 

computational power and reduction in the size of electronic 

components have enabled IoT devices to become smaller, 

efficient, and affordable. This has facilitated the creation of a 

wide range of interconnected devices with sensing, 

communication, and processing capabilities, which are at the 

core of the IoT ecosystem [13].   

IV. DIGITAL TWINS IN IOT 

This section explores the usage of DT concept as a 
framework for IoT applications. Since a DT is a virtual replica 
of a real-world object which synchronizes itself with the 
original by means of data and communication, it is possible to 
use the same model to develop an IoT system of which the 
overall performance could be monitored remotely. Further, 
reinforcement learning can provide a dynamic and adaptable 
approach for optimizing system behaviour and decision-
making when integrated within DTs in IoT applications. This 
concept could enhance capabilities of fault detection and 
prevention, supply chain optimization and adaptive control in 
DT based IoT applications. The ability of a DT to interconnect 
itself with other DTs via different mechanisms such as Web 
APIs, Peer to Peer networks, middleware protocols such as 
Data Distribution Service (DDS), makes it preferable to act as 
a framework for the development of IoT systems using the 
same [14], [15]. In this section the fields of smart city 
construction, environmental sustainability and healthcare will 
be explored with existing examples.  

To recognize the benefits of DTs over existing IoT 
frameworks, it is necessary to understand its strengths. For 
example, Arduino is a popular open-source hardware platform 
for IoT development. However, only being suitable for small-



 

scale projects and less suitable for large scale IoT projects due 
to processing power and memory limitations is a drawback. 
Cloud based platforms such as Amazon Web Services (AWS), 
Microsoft Azure IoT  are comprehensive platforms compared 
to the mentioned. Such platforms are expensive and have a 
steeper learning curve for beginners. Comparatively, usage of 
DTs as a framework for IoT systems can benefit in many 
ways. One such way is via simulation. As DTs are a virtual 
representation of a physical system, it makes managing and 
monitoring a large number of assets easier. The ability to 
predict and optimize behaviour of complex systems makes 
DTs a resourceful framework. Data integration and 
interoperability of IoT systems could be exhaustive in generic 
frameworks, whereas in DTs data integration could bridge 
communication gaps via a unified view of the system. Ability 
to provide data analytics and real-time monitoring along with 
the ability to represent the system in a simple, user-friendly 
manner makes it easier for beginners to learn. Considering the 
costs that would be acquired on generic IoT frameworks, DTs 
can provide cost reductions by simplifying and optimizing the 
existing IoT systems. 

A. Digital Twins in Smart cities IoT applications 

The smart city development goes hand in hand with IoT 

developments as the concept of Smart cities itself refers to a 

technologically advanced urban area which allows the people 

to live an easier and a more sustainable life via Artificial 

Intelligence (AI) based prediction, maintenance and solution 

deriving systems. Ruohomaki et al. [16] suggests creating a 

smart city DT for Helsinki, of which the model of the city is 

based on Open Geospatial Consortium (OGC)’s Geography 

Markup Language (GML). This allows the creation of DTs of 

real-world objects of a city with similarity in semantics, 

geometry, topology and appearance to its physical element. 

Their paper also discusses the   integration of data from the 

real world via an IoT based data model named 

“SensorThings”. Further, the creation of virtual smart cities 

has many uses such as crowd simulation and expansion, self-

learning and self-optimization, integration of interactions 

between virtual and real cities, simulation reasoning, spatial 

analysis and calculation, data fusion, visual representation, 

digital representation of different city elements and IoT 

recognition and control [17]. Kayoung et al. discusses how 

existing Building Information Systems (BIMs) and other IoT 

based infrastructure could be integrated into DTs for 

achieving a higher-level smart city virtual model as a pre-DT. 

Therefore, it is evident that the usage of DTs as a framework, 

which could have multiple IoT entry points, has many 

benefits in the context of smart cities to make the 

communication and data synchronization efficient. 

 

Adhering to a set of rules and regulations seems ideal in 

the synergy of DT as a framework for IoT. This is due to the 

possibility of many data security issues which could be 

involved in communication channels and other 

synchronization links of DT technologies. Robust security 

measures such as end-to-end encryption of data being 

communicated with the IoT platform and DT, regular 

maintenance of the DT and implementation of safe 

authentication could be ideal solutions for ensuring security 

of both physical and virtual systems.  

B. Digital Twins in IoT as environmental sustainability 

solutions 

In the current global context, it is essential to consider the 

effects of different modernization solutions to the 

environment. With global warming and its effects on the 

entire planet Earth, the use of DTs that can process large 

volumes of data for many different scenarios and predict 

intelligent outcomes via Adaptive and Intelligent DTs has 

many advantages.   

Sustainable solutions such as renewable energy sources, 

solar and hydro power, waste reduction and recycling, net 

zero transition [18] and sustainable agriculture could utilize 

IoT based infrastructure. The development of modular 

machine learning algorithms for specific purposes such as 

prediction and expert decision making using IoT data for the 

tasks mentioned above could be exhausting. A sensible 

approach would be to use IoT sensor data from different 

sources within a single DT and make predictions for decision 

making for the achievement of sustainability goals [7], [9]. 

Intelligent DTs could cooperate with its operator and system 

preference capabilities in achieving sustainability goals [2]. 

C. Digital Twins as a framework for IoT in healthcare 

The field of healthcare deals with processing large 

amounts of data for sensitive tasks such as treatments and 

surgeries. Hence this field could have a variety of DTs such 

as human simulations to hospital systems. In this context, 

DTs can be applied to various areas such as patient 

monitoring, medical equipment management, and drug 

development. DTs create personalized models of patients by 

integrating data from wearable devices, electronic health 

records, and other sources [19]. This allows healthcare 

professionals to monitor patients in real-time, predict health 

issues, and recommend personalized treatments [20]. By 

analyzing data from various sources, including patient health 

records and environmental data, DTs can help predict disease 

outbreaks, identify trends, and support public health 

initiatives. DTs can enhance telemedicine experiences by 

providing a detailed virtual representation of patients, 

allowing healthcare providers to better understand patients' 

conditions during remote consultations [19]–[21]. Hence, the 

use of DTs as a framework for monitoring and analysing data 

gathered from IoT networks could be a methodologically 

efficient approach.  

TABLE I.  APPLICATIONS OF DTS IN DIFFERENT IOT PARADIGMS 

Field IoT Data gathered 
 

Developed DT framework. 

 

Manufacturing Production 

statisticss, sensor 

data   

Digital replicas of manufacturing 

processes   

Aerospace Flight data, sensor 
readings   

Virtual models of aircraft 
systems 

Energy Power generation 

data, equipment 
readings 

Virtual representations of energy 

systems 

Agriculture Soil moisture, crop 

health data   

Digital models of farming 

processes 

Automotive Vehicle sensor data, 
performance 

metrics   

Digital twins of vehicles and 
components   

 



 

V. ARCHITECTURAL CONSIDERATIONS FOR DT FRAMEWORKS 

IN  IOT APPLICATIONS 

In this section, the architectural developments of the DT 
frameworks which are employed in developing IoT 
applications will be analysed by providing examples from a 
selected set of literature and practical applications. A digital 
record-keeping system that stores information in linked blocks 
which is referred to as blockchains is making its entry into a 
variety of fields in the modern world. Research by Wang et al. 
[22] suggests a sustainable, blockchain based architecture for 
IoT devices. [22] This approach includes a DT framework 
which   has devices, agents, and requestors and agents which 
collect current data from physical devices and feed them to 
requestors to create DT services. These services such as 
supply chain tracking, digital identity record-keeping and data 
security are then employed in information and energy 
sustainability for improving system performance. This is 
carried out by introducing blockchain technology to enable 
data sharing among agents and integrate data in the DTs of 
physical assets [22].  

 

VI. DATA INTEGRATION AND MODELLING 

In this section, the role of data integration and 

modelling in the context of  DTs as a framework for IoT 

devices will be discussed. All IoT devices contain input and 

monitoring methods such as sensors, cameras, RFID(Radio-

Frequency Identification) etc. for capturing the data of which 

the intended application is aimed at collecting. This data must 

be analysed and stored adhering to the policies and 

procedures governing data protection regulations. This data 

will be integrated with the virtual models for ensuring 

simultaneous connectivity between the participating models.  

Ensuring the accuracy of this integration process is crucial, as 

it forms the foundation for coherent decision-making in IoT 

environments. Recent studies have emphasized the symbiotic 

relationship between data integration, modeling, and the 

efficacy of Decision Trees as a facilitative framework in IoT 

applications [23], [24]. These developments emphasize the 

significance of robust data preprocessing and the direct 

impact on the accuracy and reliability which ensures the 

decision-making processes in IoT ecosystems. 

The integration of data within the IoT devices, along 

with the utilization of DTs, has emerged as a critical area of 

research and development. Various data integration 

methodologies have been employed to harness the full 

potential of IoT-generated data in conjunction with Digital 

Twins, enabling enhanced insights and decision-making 

capabilities. One prevalent approach is the employment of 

Extract, Transform, Load (ETL) techniques, which facilitate 

the extraction of raw data from diverse sources, its 

transformation into a standardized format, and subsequent 

loading into Digital Twin environments. For instance, in 

industrial settings, ETL methods have been employed to 

integrate data from sensors across machinery to create virtual 

replicas that mimic real-world behaviours, aiding in 

predictive maintenance and performance optimization [25]. 

 

 
1  a wireless communication technology optimized for long-range 

connectivity and minimal energy consumption, often used for connecting 
IoT devices and remote sensors  

Another noteworthy methodology involves the use 

of data streams for event processing techniques. This 

approach involves real-time processing of streaming data 

from IoT devices, enabling rapid response to changing 

conditions and facilitating the synchronization of DTs with 

real-world occurrences. For instance, in smart cities, data 

streams from traffic sensors and weather monitors can be 

integrated with urban planning DTs to optimize traffic flow 

during severe weather [26]. 

 

VII. COMMUINICATIONS AND CONNECTIVITY 

 

The effective communication and connectivity 

paradigms relating to IoT devices, combined with the 

integration of DTs such as seamless data interchange between 

IoT devices and their corresponding DTs, is important in 

realizing operational insights and decision-making 

capabilities. One prominent approach to achieving robust 

connectivity is through the utilization of Low-Power Wide-

Area Networks1 (LPWANs), such as LoRaWAN and NB-

IoT. These networks facilitate long-range, low-power 

communication, enabling remote monitoring and control of 

devices while conserving energy, as observed in applications 

like agricultural monitoring systems [13].  The integration of 

edge computing with DTs have gained popularity. By 

processing data closer to the data source, edge computing 

minimizes latency and conserves network bandwidth, critical 

for real-time applications. This approach is demonstrated in 

healthcare scenarios where wearable IoT devices interact 

with patient-specific DTs, enabling timely and personalized 

interventions [27]. 

VIII. ANALYTICAL INSIGHTS 

Usage of DTs as a framework for IoT applications can 

have many advantages in the modern technological 

ecosystem. The physical components of IoT systems could 

encounter anomalies which may occur due to connectivity 

issues, sensor malfunctions, data quality issues, 

environmental and human factors and many more. 

Identification of anomalies and presenting with predictive 

maintenance for IoT systems is an innovative approach which 

can benefit from characteristics of DTs. Further, monitoring 

the environment for sustainable urban planning can benefit 

from the usage of DTs as framework for IoT applications. 

With the rising energy crisis, smart solutions such as clean 

energy have become popular. IoT plays a main role in the 

lifecycle of smart grids, from planning to maintenance.  This 

section discusses the analytical insights which could be 

obtained from existing research in the context of using DTs 

as a framework for IoT. 

A. Predictive Maintenance and Anomaly Detection 

A common area of focus involves predictive maintenance 

and anomaly detection. In the point of statistics an anomaly 

could be considered as an outlier in a distribution. Leveraging 

advanced machine learning algorithms, research by Johnson 

et al. proposed a predictive maintenance framework that 



 

combines real-time sensor data from industrial equipment 

with Digital Twins to forecast equipment failures, optimizing 

maintenance schedules and reducing downtime. [26], [27] 

B. Environmental Monitoring and Urban Planning 

Urban planning involves a range of considerations which 

go hand in hand with a variety of other industrial fields such 

as vehicular traffic management, environmentally friendly 

building development and sustainable modifications and 

developments. Urban planning has seen significant benefits 

through the connection of IoT and DTs. In the study by 

Martinez et al., environmental data collected from IoT 

sensors, such as air quality and noise level measurements, 

were integrated into urban DTs. These insights enable city 

planners to assess the impact of various interventions on 

urban sustainability and quality of life [28] 

C. Energy Efficiency and Smart Grids 

Smart energy grids highly benefit from the IoT concepts 

and DT frameworks. Advancements in energy efficiency 

have been driven by the integration of IoT data and Digital 

Twins in smart grid systems. Research by Brown et al. 

demonstrated the utilization of real-time energy consumption 

data from IoT sensors to update Digital Twin simulations of 

power distribution networks. This approach aids in 

optimizing energy distribution, minimizing wastage, and 

enhancing overall grid resilience in smart energy girds [29].   

IX. CHALLENGES AND FUTURE DIRECTIONS 

Along with its many advantages, the DT usage as a 
framework for IoT applications comes with a set of challenges 
as well. One of the most common challenges is maintaining 
data security over the system which uses the DT as a common 
platform which possibly integrates multiple resources. 
Standardization of data allocation, storage, proper policies and 
procedures related to model customization needs to be 
considered in such instances. Achieving seamless integration 
between the physical world and its virtual representation via 
DTs requires secured communication protocols and 
interoperability standards [30]. This is essential for building a 
cohesive environment where diverse IoT devices DT 
instances can collaborate harmoniously. Scalability also 
emerges as a potential concern, particularly in large-scale 
deployments. As IoT networks and Digital Twins expand, the 
ability to efficiently manage and orchestrate numerous 
interconnected entities becomes necessary [31].  

 Future directions of this combined framework hold a great 
potential. Enhancing the cognitive capabilities of DTs as a 
framework for IoT applications through artificial intelligence 
and machine learning techniques could lead to more 
sophisticated and adaptive systems [32]. For example, 
utilising recent advancements in Virtual Reality (VR) and 
Augmented Reality (AR), Da Silva et. al.[33]   implemented 
an AR based application for controlling and monitoring 
physical systems that has a DT. Additionally, the integration 
of edge computing with Digital Twins can alleviate network 
congestion and reduce latency, enabling quicker decision-
making in time-sensitive scenarios [30], [32]. Collaborative 
research and cross-disciplinary efforts will play a crucial role 
in addressing these challenges and realizing the 
transformative potential of IoT and DTs.  

 

X. CONCLUSION 

The integration of Digital Twins and IoT has 

introduced a promising path for novel applications across 

various sectors. While challenges such as data security and 

standardization exist, the potential of this combination 

remains strong. The emergence of adaptive and intelligent 

Digital Twins, combined with the integration of edge 

computing, indicates the prospect of more advanced systems 

capable of real-time decision-making. Collaborative 

endeavors spanning multiple fields will play a vital role in 

overcoming challenges and fully capitalizing on the 

transformative potential of this framework. This cooperative 

effort could improve connectivity and achieve operational 

effectiveness within IoT applications. 
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