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Abstract

Breast cancer is one of the most common forms of cancer. Popular imaging modalities used for breast

cancer screening include Mammograms, Ultrasound (US), and Magnetic Resonance Imaging (MRI).

US is a widely adopted modality due to its relative affordability, portability and higher patient safety.

Early detection of lesion(s) is crucial to ensure a high survival rate and minimise adverse effects on

the body. Currently, we face a global crisis in the number of experienced radiologists available per

patient. Therefore, automating lesion detection, with Artificial intelligence (AI) acting as a secondary

opinion, can assist radiologists in faster diagnosis. In recent years, deep-learning (DL) based object

detection methods have become popular in Computer-Aided Diagnosis (CAD) systems due to their

ability in extracting high level, abstract features resulting in their higher generalisation capability and

applicability in real-life operations.

Compared to object detection in natural images, lesion detection in US images is a challenging task

due to the inherent characteristics of these images. Due to these challenges and a lack of large-scale

US datasets, the number of DL-based lesion detection methods developed for US images is relatively

lower compared to object detection methods developed for natural images. Thus, it is common prac-

tice to modify an existing object detector originally designed for natural images for lesion detection in

US images. One such popularly adapted detector is Faster R-CNN (FRCNN). Limited attention has

been given to adapted FRCNN for breast lesion detection in US images. The adaptation results in a

relatively high detection rate along with a high number of false positive (FP) detections that degrade

the overall performance. Such high FPs may mystify radiologists in reading and interpreting the US

images and lead to unnecessary additional checks and biopsies. Reducing FPs in breast US images

still remains an open investigation area which provides us the motivation for this study. Up to the

point reported in this thesis, no work has been specifically developed to adequately address the issue

of FPs in DL-based detection methods for breast lesion detection in US images.

The aim of this research is to create a novel and effective DL-based method for detecting breast

lesions from 2D US images. The research starts by investigating the effectiveness of FRCNN for breast

lesion detection using large datasets of US images collected from different medical centres and machine

makers. The research then provides the first solution to address the issue of FP detections by searching
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and identifying the optimal training and architectural hyperparameters of this powerful network. The

adapted FRCNN model outperformed the original FRCNN through a significant reduction in FPs and

small negative impact on the number of correct detections. Additionally, the adapted model also sur-

passed several existing detectors developed for natural images as well as those adapted for breast lesion

detection in US images. Furthermore, this research develops a new U-Detect method. U-Detect is a

clustering-based approach that combines unsupervised learning technique and the adapted FRCNN

to reduce the FP detections. Two variants of the U-Detect method are developed: U-Detect-Base

and U-Detect-RPN models. Both U-Detect models outperform original and adapted FRCNN models

through considerable reduction in FPs resulting in its higher precision. Additionally, U-Detect-RPN

detected higher number of lesions than the adapted FRCNN model.

Inspired by the domain knowledge of breast lesion characteristics, we further enhanced the archi-

tecture of U-Detect by developing a new classification-based approach (U-DetectH) that uses a fusion

of textural and morphological handcrafted features to improve the classification scores in U-Detect and

ultimately reduce the FP detections. Two variants of U-Detect-H are developed: U-DetectH-Base and

U-DetectH-RPN models. The research concludes that on multiple datasets comprising a combined

total of 3119 US images, U-DetectH-Base outperforms original FRCNN with 5.49% to 32.83% higher

precision and a small drop of 0.27% to 10.02% in recall. This significantly higher precision is due to

a 31.86% to 77.07% reduction in FPs. The work presented in this thesis provides an approach for

scientists to design a robust object detection model for other cancer types as well as other medical

modalities.
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Chapter 1

Introduction

This thesis is intended to present new deep learning solutions for tumours detection in 2D ultrasound

images, in particular, breast lesion detection based on an effective and efficient deep convolutional

neural network. This chapter presents an overview of the research and the layout of the thesis. First,

the problem statement and research motivation is detailed in Section 1.1. Next, Section 1.2 details

the aim and objectives of this research to address the problem. This is followed by Section 1.3 which

presents an overview of the research methodology. Section 1.4 lists the contributions made by this

work. Section 1.5 details the ethics. Finally, Section 1.6 provides an overview of the structure of this

thesis.

1.1 Research Motivation and Problem Statement

Cancer is a serious disease causing the second highest number of fatalities globally [7]. Breast can-

cer is one of the most common forms of cancer, constituting 11.6% of the global cancer cases [8].

Fundamentally, breast cancer is an uncontrolled growth of cells that eventually leads to formation of

lesion(s) [9]. A lesion can be categorised as benign or malignant. Benign lesions are not fatal and

do not spread to any other region of the body whereas malignant lesions pose a fatal threat and can

spread from its region of origin (also known as primary site) to other parts of the body, either through

the bloodstream or through lymph nodes (lymphatic system). If the cancerous cells travel through

the bloodstream, distant organs can be affected whereas if the cells travel through the lymphatic

system, lymph nodes are likely to be affected [10]. Based on the amount of disruption and spread,

American Cancer Society categorises malignant lesions as local, regional or distant [11]. A local lesion
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is one that is contained within the breast. A regional lesion is one that has spread to the surrounding

tissues/organs and a distant lesion is one that has spread even further to distant tissues/organs. A

patient with a local lesion has a 99% chance of survival. However, the survival rate drops to 86% if the

lesion progresses to the regional stage. The survival rate drops drastically to 27% if the lesion advances

further to the distant stage [11]. Thus, early detection and diagnosis of the lesion is of vital importance.

The first stage of screening for breast cancer is a clinical examination, after which it is common

practice to utilise imaging modalities to generate a scanned image of the region. Widely used imag-

ing modalities include Ultrasound (US), Mammography, Magnetic Resonance Imaging (MRI), etc.

Modalities such as mammograms and MRI expose the patient to harmful radiation. Mammograms

use X-rays for generating a scan of the region while MRI uses magnetic and radio waves. On the

other hand, US machines do not expose the patients to harmful radiations as they use sound waves for

generating a scan of the region. Additionally, US machines are portable and relatively affordable than

other modalities. Unlike other modalities, the process of generating US scans is simple and does not

typically invoke anxiety or stress in the patient. Furthermore, US is more effective in screening ab-

normal regions of the breast that may not appear clearly in mammograms images. For dense breasts,

US scans are much more reliable than mammograms [12, 13, 14]. For these reasons, US imaging is

currently gaining popularity, especially in developing countries [15]. An important point to mention

here is that it is common to use multiple modalities to achieve a more comprehensive view of the

complex or difficult-to-assess lesions.

After the scan is generated, a radiologist diagnoses and reports the lesion on the basis of a widely

used Breast Imaging Reporting and Data System (BI-RADS) [16]. This system labels lesions on the

basis of its type and severity starting from 0 (indicating a need for further examination), 1 (indicating

a high certainty of the lesion being non-cancerous) to 6 (indicating lesion proven malignant through

biopsy). After this, at least one other radiologist performs a blind diagnosis to confirm the initial

reading and ensure that no lesion is missed. As mentioned previously, it is crucial to detect lesion(s)

at the earliest possible stage. Unfortunately, we currently face a concerning shortfall of radiologists

worldwide, thereby delaying timely diagnosis and treatments of millions of cancer patients globally [17].

In Europe alone, there are only 13 radiologists available per 100,000 patients as of 2022 [18]. The
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UK has an acutely low number of 8.5 radiologists per 100,000 [18]. This rate is even lower for devel-

oping countries. For instance, Malaysia has only 30 radiologists per million patients [19]. Globally,

as well as in the UK, this number has increased at a very slow pace over the last few years, with

projections estimating similar slow growth in the following years. Along with the slow growth, the

demand continues to grow at a much faster pace due to an increase in cancer patients worldwide [20].

Additionally, the UK also has an ageing population further increasing the requirement [17]. Currently,

the UK faces a 29% deficiency of clinical radiologists, predicted to increase further to 39% by 2026

[17]. Furthermore, there are discrepancies in the number of radiologists in various regions of a country.

For example, in the UK, London does not face a lack of radiologists while North and West Wales have

a considerable lack of 54% [17].

Multiple solutions have been proposed and utilised to address this issue, one of which is the use of

Artificial Intelligence (AI) in Computer-Aided-Diagnosis (CAD) systems to assist radiologists in their

decision. Use of AI for automated detection of breast lesion(s) in an US image can help radiologists

in various ways such as: perform initial scanning to identify suspected cases; support faster confir-

mation of the diagnosis; and aid in avoiding missed detection/diagnosis. This helps in utilising the

radiologists’ time more efficiently through faster decisions on detections as well as added assistance in

challenging cases [21].

Automating object detection is an established field of research. Traditional methods in this field

extract handcrafted features to detect object(s) in an image. Since these methods extract low-level

features such as edges, contours, etc., models trained on these features have poor generalisation ca-

pabilities. Also, the development of these features requires significant input from the developer and

is limited to their knowledge of the domain. In recent years, deep learning (DL) based detectors have

become popular as they address the important drawbacks of traditional methods thereby marking

a significant developmental stage in this field. DL networks have higher generalisation capability as

they extract features of higher abstraction and require little involvement of the developer for selec-

tion and extraction of these features. Compared to object detection in natural images, the speed of

innovation and development in the field of breast lesion detection in US images is much slower due to

the difficulties posed by the inherent characteristics of the US images such as poor resolution, unclear

boundary of the lesion, similarity in the texture of the lesion (object) and other tissues (background
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region), significant variation in images generated from different machines. Additionally, lack of pub-

licly available dataset and the difficulty and challenges involved in collection of these images further

slow the progress in this field.

Therefore, it is common practice to adapt detectors developed for natural images for detection of

breast lesions in US images. One such DL-based detector popularly adapted for not only breast lesion

detection in US images but also for detection of other lesions in images from different modalities is

the Faster R-CNN (FRCNN) network. It is a 2-stage detector where the first stage acts as a coarse

detector while the second stage acts as a finer detector, filtering through the output of the first stage.

When utilised in its original configuration for breast lesion detection in US images, FRCNN correctly

detects a high number of lesions. However, the overall performance of the model drops due to the

high number of false positive (FP) detections also output by the model. Successful adaptation of

this network for breast lesion detection in US images include either modifications of the modelling

hyperparameters and/or the network architecture.

Although the adapted FRCNN models show high performance, they have the following drawbacks.

Firstly, these methods do not provide an experimental evaluation of the impact of each modification

on the overall performance. As these methods modify several modelling hyperparameters and/or

network architecture, understanding the influence of individual modifications can provide valuable in-

sights and facilitate further adaptations by researchers. Secondly, some methods use small to medium

sized datasets. Due to large variation in US images collected from different sources, one of the

important prerequisites of a reliable detector in this field is high generalisation. Therefore, when de-

veloped on small to medium sized datasets, it is hard to gauge the generalisation capabilities of their

modifications on datasets collected from different hospitals and generated using different US machines.

In addition to modifications of existing detectors developed for natural images, several novel 2-

stage detectors designed for breast lesion detection in US images have also been proposed. However,

despite the high performance of these methods, a prominent and recurring issue in all these models is

the FP detections. The issue of FP detections is a significant concern not only in the field of breast

lesion detection in US images but also in detectors developed for other lesions in images of various

modalities. While methods developed for breast lesion detection in US images introduce certain
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modifications such as modification in the network training loss to improve the overall performance

and reduce FPs, there are no dedicated approaches specifically designed to reduce FPs in DL-based

breast lesion detectors developed for US images. In this research, we aim to address these limitations

in the current literature by developing a new and effective method for breast lesion detection in US

images.

1.2 Aim and Objectives

The aim of this research is to develop a novel and effective solutions for breast lesion detection from

static 2D US images. The main research objectives are summarised as follows:

1. To review, understand and acquire knowledge on state-of-the-art object detection methods de-

veloped for natural and medical image, focusing particularly on methods developed for breast

lesion detection in US images;

2. To evaluate the effectiveness of existing deep and reinforcement learning networks in detecting

breast lesions from US images acquired from clinical settings;

3. To adapt Faster R-CNN network for breast lesion detection in 2D US images with the goal to

reduce the false positive detections while incurring minimal negative impact on the number of

correct detections;

4. Improving the number of correct detections as well as reducing the number of false positive

reduction in the adapted Faster R-CNN model through improving its classification accuracy;

5. To develop a novel method that combines Faster R-CNN network and region proposal clustering

for effective reduction of challenging and persistent false positive detections with negligible effect

on the number of correct detections;

6. To embed medical domain knowledge to improve the classification accuracy of the region proposal

to further reduce the false positive detections;

7. To evaluate and compare the proposed methods against various state-of-the-art techniques of

breast lesion detection using large datasets collected from different hospitals.
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The outcome of this research is an added value to the Computer-Aided Diagnosis systems. It

provides detection models for processing and identifying lesions in US images collected in clinical

settings. Such detection models supports other tasks such as lesion classification and segmentation.

But it is worth bearing in mind that this research is only concerned with lesion detection in 2D static

image, not lesion detection from video nor lesion contour segmentation. In addition, although the

presented solutions may well be applicable to different cancer types (e.g. thyroid and prostate), the

scope of this research project is mainly focused on breast lesion detection.

1.3 Research Methodology: An Overview

The research in this thesis follows the approach of investigation to evaluations to comparisons to ma-

jor development. Empirical evidence from experiments and analysis are used to support the creation

and development of new and novel solutions and models. A blend of both deductive and inductive

reasoning based on sound understanding is practised throughout the research. This section presents

a brief overview of our general methodology.

This work aims to improve reliability of breast lesion detection methods in 2D static US images

through reduction of persistent and challenging FP detections while maintaining a high number of

detected lesions. To accomplish this, the work is developed in an iterative fashion where the outcome

of each stage is used for the development of next. First, we start by evaluating the state-of-the-

art object detection techniques including FRCNN as one of the most powerful approaches for object

detection. After selecting FRCNN as best performing method for breast lesion detection, several net-

work hyperparameters have been examined for reducing the FPs detection and the overall detection

performance. We modified FRCNN by searching for optimal network hyperparameters which results

in a new network called adapted FRCNN. Such adaptations provide in-depth understanding of the

two stages of object detection techniques, limitations, and ultimately areas of improvement. After the

adaptation of FRCNN, we propose a new detection technique called U-Detect that uses FRCNN as a

base detection network and unsupervised learning to reduce the FPs detection. Finally, inspired by

the domain knowledge of breast lesion characteristics, we modify U-Detect by introducing U-DetectH

that uses a set of handcrafted texture and morphological features to improve the overall detection

accuracy and reduce FPs detections in particular.
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In this research, the evaluation plays a major role for validating and testing alternative solutions

as well as evaluating performance of various networks. Therefore, the data quality is crucial. To

ensure the soundness of the research outcomes, the collected US images are of clinically acceptable

quality, acquired using different medical centres and several US machine makers, covering a large

range of breast lesions of benign and malignant of different sizes. Experimental protocols as well as

performance metrics used in this research will be further explained in later chapters.

1.4 Contributions

The contributions of this research can be summarized as follows:

1. A good understanding and critical evaluation of various existing deep learning methods for

breast lesion detection in 2D US images;. The thesis provides a comprehensive analysis of Faster

R-CNN network performance limitations through a systematic evaluation.

2. Adapt Faster R-CNN hyperparameters for creating effective models for detecting breast lesions

from ultrasound images. This involves exploring the effects of Faster R-CNN hyperparameters

(anchor boxes, base network’s training samples’ selection, training and test proposals, training

loss) in reducing the false positives in breast lesion detection.

3. A novel detection method (U-Detect) that uses the x-means clustering and trainable features to

reduce the false positive detection of the region proposal.

4. A novel detection method (U-DetectH) that uses the x-means clustering and both trainable and

handcrafted features to reduce the false positive detection of the region proposal.

5. A new region proposal candidate merging method to reduce the overlapping of the false positive

detections.

6. A decision fusion method to refine the classification score of region proposals to further improve

the single false positive detections cases as well as the number of correct detections.

7. Evidence of the overall effectiveness of the U-Detect and U-DetectH methods through extensive

analysis and experiments using US breast images collected from different hospitals and clinical

settings.
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8. Compare U-Detect and U-DetectH methods against the state-of-the-art detection methods de-

signed for breast lesion detection and objects detection in natural images.

1.5 Ethics

This project is part of TenD Buckingham Research and Development Centre (TBRDC). TBRDC is a

collaboration partnership between TenD AI Medical Technologies Ltd and University of Buckingham.

All images used for this project were collected by TenD AI Medical Technologies Ltd, thus acting as

the third party provider for this work. These images were collected from various hospitals in China in

agreement with TenD AI Medical Technologies Ltd. All images were anonymized by TenD AI Medical

Technologies Ltd. Collected data consists of the images and their respective labels. Nature of the

tumour as revealed through pathology test and tumour location marked by an experienced radiologist.

The images are securely stored on the local share point created by TBRDC with limited access only to

the researches involved in this research. No participants were recruited in Buckingham for the purpose

of this project.This research was granted ethics approval by the Research and Ethnics Committee of

the School of Computing, University of Buckingham before start of this project.

1.6 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 describes background concepts and

methods relevant to this research. Chapter 3 presents review of the literature in breast lesion detec-

tion in 2D US images as well as detection of different types of lesions in images from different screening

modalities. Experimental setup used for this research including datasets and evaluation metrics is de-

scribed in Chapter 4. Chapter 5 presents the adaption of FRCNN for breast lesion detection in US

images. Chapter 6 presents a novel idea of proposing a new detection method based on combining

FRCNN and x-means clustering. The investigation results from the previous chapter which provides

the foundation for the proposed idea in this chapter. Chapter 7 proposes a classification approach

based on handcrafted features for improving candidate selection in the clustering method through

improving the final detections. Discussion on the important concepts and findings in this research is

presented in Chapter 8. Chapter 9 concludes the thesis and describes the future work.
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Chapter 2

Background

This chapter describes fundamental concepts and methods relevant to this research. Section 2.1

provides an overview of breast cancer including a description of lesions, various modalities used for

breast cancer screening with particular focus on US. Section 2.2 describes concepts relating to the

automation of breast lesion detection ,including methods for extraction of features from an image,

dimensionality reduction methods for the extracted features to machine learning (ML) methods that

utilise the extracted features for classification and object detection tasks. In Section 2.3, deep learning

networks that overcome the drawbacks of traditional methods are described. Furthermore, a detailed

description of Faster RCNN (FRCNN) is provided in this section. Finally, this chapter is summarised

in Section 2.4.

2.1 BI-RADS for Breast Cancer Screening

BI-RADS was developed by the American College of Radiology to report breast US, mammogram,

and MRI scans. In this reporting system, a scan is assigned a BI-RADS score from 0 to 6. Each score

is associated with a predefined diagnosis. For example, if a scan is assigned a BI-RADS score of 1,

then it indicates no lesion was found in the scanned region. Each BI-RADS score and its associated

diagnosis is detailed in Table 2.1. To categorise a lesion in an US image using BI-RADS, various

aspects of tumour are considered such as shape of the mass, its orientation with respect to the skin

surface, its margin, echo pattern of the mass and its posterior region, presence of calcifications in and

around the lesion, etc. Detailed list of these features is shown in Table 2.2.
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BI-RADS Score Diagnosis

0 Need additional imaging or prior exam

1 Negative (Essentially 0% cancer likelihood)

2 Benign (Essentially 0% cancer likelihood)

3 Probably Benign (>0% and ≤2% cancer likelihood)

4 4a. Low suspicion for malignancy (>2% to ≤10% )
4b. Moderate suspicion for malignancy (>10% to ≤ 50%)
4c. High suspicion for malignancy (>50% to <95%)

5 High suspicion of malignancy (≤95% cancer likelihood)

6 Biopsy proven

Table 2.1: BI-RADS scoring for ultrasound scans [6].

Characteristic Types

Breast Composition 1. Homogeneous - fat
2. Homogeneous - fibroglandular
3. Heterogeneous

Mass Shape: Oval, round, irregular
Margin: Circumscribed or not circumscribed (indistinct, angular, mi-
crolobulated, spiculated)
Orientation: Parallel or not parallel
Echo Pattern:Anechoic, hyperechoic, complex cystic, solid hypoe-
choic,isoechoic,heterogeneous
Posterior Features: No features, enchancement, shadowing, combined
pattern

Calcifications In mass, outside mass, intraductal

Associated Features Architectural distortion, duct changes, skin thickening, skin retraction,
edema, vascularity (absent, internal, rim), elasticity.

Special cases Simple cyst, clustered microcysts, complicated cyst, mass in or on skin,
foreign body (including implants), intramammary lymph node, AVM,
Mondor disease, postsurgical fluid collection, fat necrosis

Table 2.2: Ultrasound lexicon [6].

For example, margin is useful in identification of the lesion type and its consecutive BI-RADS

score. A benign tumour typically has a clear and distinct margin as shown in Figure 2.1a. On the

other hand, a malignant tumour typically has an unclear and irregular margin as shown in Figure 2.1b.

Another typical sign of malignancy is the orientation of the lesion. A benign lesion is usually parallel

to the skin or appear ‘wider-than-tall’ in the US image as shown in Figure 2.1a whereas malignant

lesions are generally perpendicular to the skin or they appear ‘taller-than-wide’ in the US image as

shown in Figure 2.1b. It is important to highlight here that no single feature is a definite sign of the

type of cancer. As previously mentioned, to ensure low negative impact on the body and high survival
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rate, it is of vital importance that the lesion is detected at the earliest possible stage. However, we

currently face a serious lack of trained radiologists. Thus, automating lesion detection can assist

radiologists in faster diagnosis by acting as secondary opinion. This automation is achieved using

machine learning methods for image analysis. The following section provides a detailed explanation

of this field, focusing on relevant techniques and approaches.

(a) Benign lesion (b) Malignant lesion

Figure 2.1: Benign and malignant lesions in US images (Green box indicates the lesion).

2.2 Feature Extraction, Dimension Reduction and Machine Learn-

ing for Image Analysis

Image analysis is a well-established field of research. An image is fundamentally a matrix of pixel

values. Thus, image analysis is the study of the nature of the image pixels to extract useful information

i.e. features which are then utilised to train ML models to perform tasks such as object detection.

We first describe the commonly used feature extraction methods in Section 2.2.1. The extracted

features generally have a high dimension which increases computation time of the ML model and

may negatively impact the overall performance of the model. Over the years, several methods have

been developed to efficiently reduce the dimension of the extracted features without losing integral

information. Popular methods of dimension reduction are described in Section 2.2.2. Using these

features, ML models are trained to perform tasks such as classification or object detection. The three

types of ML models and their utilisation for the various tasks is described in Section 2.2.3.

2.2.1 Feature Extraction

Feature extraction is an important aspect of image analysis. Features can be defined as patterns

in an image. Traditional machine learning methods utilise handcrafted methods to extract features
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for image processing applications. However, these traditional methods have important drawbacks

which are addressed by a relatively new approach called deep learning. This section describes both

handcrafted and deep learning-based feature extraction methods.

2.2.1.1 Handcrafted Features

Handcrafted methods extract low-level features such as edges of an image. These methods rely on

the knowledge of the developer for extraction of important, distinguishing features. Generally, each

method extracts either global features like contrast of the image or local features such as edges and

shapes. To ensure that important textural and morphological features in the image are captured, it

is common practice to use multiple techniques together. Some of the popular handcrafted feature ex-

traction methods include HOG [22], LBP [23], ULBP [24], SIFT [25], GLCM [26], filters such as Sobel

filter, etc. For analysis of breast lesions in US images, HOG, ULBP and GLCM are commonly used.

Therefore, further details of these methods are provided in this section. HOG and ULBP capture

local features whereas GLCM captures global features.

Histogram of Oriented Gradients (HOG) is a simple and efficient method for capturing local

textural features in an image, focusing on the shape of objects. This is achieved by extraction of local

features such as edges and contours which contribute in the identification of the overall shape of ob-

jects in the image. HOG captures the degree (magnitude) and direction (gradient) of change in pixel

intensities with respect to x-axis and y-axis for each pixel in an image and represents this information

in a histogram. One of the popular bin sizes for the histogram is 20 degrees which produces a 9 × 1

dimensional histogram if the angles are unsigned (θ ∈ [0, 180]) or a 180 × 1 dimensional histogram

if the angles are signed (θ ∈ [0, 360]). HOG features are invariant to geometric transformations and

relatively robust to changes in illumination. Due to these characteristics, HOG is widely used for

feature extraction.

Local Binary Pattern (LBP) [23] is another simple and widely-used method of feature extrac-

tion which captures local textural features using compact descriptors. LBP computation begins by

creating a binary pattern for a cell of predefined number of neighbouring pixels using the following

thresholding operation: if any neighbouring pixels have equal or greater intensity than the centre pixel,

then they are assigned a value of 1, otherwise they are assigned 0. Each value in this pattern is then
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multiplied with its corresponding binomial factor to generate the LBP value for that cell. LBP feature

vector for an image is a histogram of LBP values computed for each cell. Despite its advantages,

LBP suffers from high dimensionality and is negatively impacted by rotation i.e., the LBP of the

original image would not be the same if the image was rotated. To overcome these limitations, several

adaptations of LBP have been proposed over the years. One of the effective and simple adaptations

is Uniform LBP (ULBP) [24].

ULBP captures the frequency of uniform binary patterns in an image. As this textural informa-

tion varies for images of different classes, capturing it aids in accurate image classification. A binary

pattern is categorised as ‘uniform’ if it contains up to 2 transitions in bit value. All other patterns

with more than 2 transitions are labelled as non-uniform. Binomial factors of only the uniform pat-

terns are recorded, while for all non-uniform patterns, P+1 value is recorded where P is the number

of neighbouring pixels. ULBP can be recorded as signed or unsigned. Signed ULBP is similar to

rotation-invariant LBP (RLBP) [27] where only the minimum value for the binary pattern of the

cell is considered whereas unsigned ULBP is the same as LBP. Unsigned ULBP feature vector has

a dimension of P + 2 of which P + 1 bins are reserved for the uniform patterns and 1 bin for all

non-uniform patterns. Signed ULBP feature vector has a dimension of (P × (P − 1)) + 3 of which

(P (P − 1)) + 2 bins are reserved for uniform patterns and 1 bin for all non-uniform patterns. Thus,

use of ULBP reduces the size of the feature vector. For P = 8, LBP of an image is 256× 1 dimension

whereas unsigned ULBP is 10× 1 and signed ULBP is 59× 1. Therefore, ULBP effectively combines

the advantages of LBP and RLBP while significantly reducing the feature vector dimension. Due to

these advantages, ULBP is one of the common variations of LBP used.

Gray Level Co-occurrence Matrix (GLCM) [26] is another popular method used to extract

global textural features unlike HOG or LBP (and its variants) where local textural features are ex-

tracted. Specifically, GLCM extracts second-order textural features by capturing the relationship

between a pair of pixels. During GLCM computation, the pixel being analysed is referred to as ‘refer-

ence’ pixel and its neighbouring pixel is referred to as ‘neighbour’ pixel. Distance between the reference

and neighbour pixels is called ‘offset’. One of the popular methods used to describe a neighbour pixel

is using its position with respect to the reference pixel. To extract GLCM features, a GLCM matrix

is constructed for single reference-neighbour pixel relationship.
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The GLCM matrix is a square matrix whose dimension can be based either on the range of pixel

values in an image or the quantization level of the image. The GLCM matrix is constructed by

registering the frequency of every pair of pixels with the predefined reference-neighbour relationship

in the image. The generated GLCM matrix is then normalised. For each GLCM matrix, a number of

features are computed which form the GLCM feature vector of the image. The original GLCM paper

extracts 14 features from a single GLCM matrix. Some of the popular features computed for breast

lesions are contrast, energy, correlation and entropy.

2.2.1.2 Deep Learning Based Feature Extraction

Although traditional methods of feature extraction have various advantages, they suffer from impor-

tant drawbacks. These methods rely on the developer to determine the optimal setup (such as cell

size) to extract useful features. Also, as these methods extract low-level features such as edges, shapes,

contrast, etc., they have low generalisation capabilities. In recent years, deep learning (DL) networks

have become more prominent for feature extraction as these networks overcome the drawbacks of the

traditional methods of feature extraction. This section provides further explanation of DL networks,

their utilisation for feature extraction, and their effectiveness in overcoming the drawbacks of tradi-

tional feature extraction methods.

Perceptron, also referred to as neuron, is the building block of all DL architectures. It is a decision-

making unit, which takes several binary inputs and outputs a binary value [28]. For complex tasks, a

network of neurons called neural network or multi-layer perceptron (MLP) is used. As the complexity

of the task increases, the number of neuron layers also increases. Neural networks with a considerable

number of perceptron layers are called deep neural networks. For two or higher dimensional inputs

such as images, convolutional neural networks (CNNs) are more effective than MLPs. Irrespective of

the network structure, each neuron in the network requires optimization of its parameters to produce

the desired output. This optimization is performed automatically during model training using a pop-

ularly used technique called backpropagation. Backpropagation involves the use of training loss which

is the measure of the difference between the expected output and the output generated by the model.

Based on this training loss, weights and other learnable parameters of the network are updated so as

to generate the desired output i.e. minimise the training loss. Thus, the network automatically learns
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the features to be extracted without any involvement of the developer.

In order to extract features from a CNN, it needs to be trained for its parameters to be optimised.

Generally, CNN is trained for image classification. For this, two to three perceptron layers (also called

fully connected (FC) layers) are added after the last convolution layer. Output of the CNN layer is

vectorised and served as the input of the FC layers. The final FC layer is the output layer and con-

tains the exact number of neurons as the number of classes in the dataset. However, the FC layers are

prone to overfitting. Regularisation methods such as dropout are used to address this issue. A recent

method to address the overfitting issue of FC layers is the use of global average pooling (GAP) layer.

The GAP layer is generally placed before the FC layers or, in some networks, completely replaces the

FC layers (except the FC layer acting as the output). The GAP layer computes the average of each

feature map, output by the last convolution layer, and generates vectorised averages for further pro-

cessing. This layer has no learnable parameters as it only computes the average, thereby completely

removing the overfitting issue. Thus, it acts as a ‘structural regulariser’.

After the CNN model is trained, it can be used to extract features of images for a range of

applications. Initial layers of the CNN extract low-level features while the deeper layers extract higher-

level, abstract features. Due to the higher quality of features, DL networks have higher generalisation

capabilities than traditional methods. Thus, DL networks are more suitable for real-life applications

than traditional methods [2]. Equally important is the lower degree of involvement of the developer

in individually selecting features to be extracted. These characteristics render the DL based networks

versatile and easily adaptable to different domains without requiring significant changes to the network

unlike handcrafted features which require modifications with change in dataset or domain. Although

theoretical knowledge of DL networks has been established for many decades, it was only recently

that these methods became more popular. This was due to the availability of higher computational

capacity. The first CNN to successfully use DL was AlexNet [29]. Features extracted from AlexNet

were used for classification of natural RGB images. This was a significant breakthrough in the field of

image processing. Some of the recent state-of-the-art CNNs include ResNet [30], Inception-ResNet-

v2[31], ResNeXt [32], etc.
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2.2.2 Dimension Reduction

Features extracted from an image generally have large dimensions. Use of high dimensional feature

vectors increases computation time of the ML model. Furthermore, in higher dimensional feature

vectors, the data becomes sparse. The impact of noisy features in such a feature vector is generally

larger. Additionally, finding patterns using such high-dimensional feature vectors is a challenging task

resulting in poorer overall performance of the model. This issue caused by the high dimensionality of

the feature vectors is referred to as the ‘curse of dimensionality’. Several techniques have been devel-

oped to reduce the negative impacts of the high feature dimensionality, one of which is dimensionality

reduction methods. Dimension reduction methods can be classified into the following two categories

as shown in Figure 2.2: feature selection and feature projection. Feature selection methods reduce

dimension through retention of only important, distinguishing features and removal of redundant and

noisy features. On the other hand, feature projection methods, as the name suggests, project the

feature vector to a lower-dimensional space where the new dimensions are a linear or non-linear com-

bination of the original features.

Figure 2.2: Types of dimension reduction methods.

Feature selection methods can be further divided into three categories; wrapper, embedded and

filter methods. Wrapper methods reduce dimension by evaluating various sets of features and retain-

ing only the best performing set. Examples of this method include forward and backward selection

methods. Both these methods are computationally heavy and time-consuming as it requires training

and testing models for every feature set. Filter methods compute each features’ importance using

statistical methods such as correlation, information gain, chi-square, etc. and redundant and/or irrel-
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evant features are removed. These methods are faster than wrapper methods since it does not require

training and testing multiple models. Embedded methods combine the filter and wrapper methods

where a small set of important features are first evaluated. New features are added iteratively in the

order of their importance and evaluated. Best performing set is then selected as optimal. Some ex-

amples of embedded methods include Lasso L1 and tree-based methods. Feature projection methods

can be categorised as linear and non-linear methods based on the method used for creation of the new

dimension. Linear methods project the feature vectors onto a new dimension created from a linear

combination of the original features. Some popular examples of this method include PCA [33], LDA

[34] and SVD [35]. Non-linear methods are applicable for non-linear data and examples include Kernel

PCA (KPCA) [36], t-SNE [37] and auto-encoder [38]. PCA and KPCA are commonly used and are

therefore explained in further detail.

Principal Component Analysis (PCA) is a linear feature projection method which not only

reduces the dimension of the feature vectors (input data) but also helps in interpretability of high-

dimensional data. Essentially, PCA projects the original data into a new space where the new dimen-

sions are a linear combination of the original dimensions. The process begins by standardising the

input feature vectors due to the sensitivity of PCA to variance. Standardisation is typically done by

subtracting each dimension with its mean. Next, a covariance matrix is generated. While variance

measures the spread of the data in a single dimension, covariance measures the spread between two

dimensions. Covariance between two dimensions provides information on the change of each dimen-

sion with respect to each other. For example, consider a 2D dataset where the dimensions represent

height and width. Here, variance of each dimension represents change in height or width with respect

to its own respective mean. On the other hand, covariance represents change in height with respect

to width or vice versa. Covariance of a dimension with itself is its variance.

Next, eigenvectors and eigenvalues are computed for the covariance matrix. Eigenvectors represent

the direction of maximal variance in the dataset. They are unit-length vectors as they only indicate the

direction of maximal variance. The eigenvectors are fundamentally a linear combination of the original

dimension. Eigenvalues show the degree of variance captured by the eigenvectors i.e., the amount

of information captured. Following this computation, all eigenvectors are reordered in descending

order of their eigenvalues. Eigenvector with the highest eigenvalue captures the largest amount of
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information. First Principal Component (PC) is the eigenvector with the largest eigenvalue. For

dimension reduction, PCs with a certain amount of cumulative variance (sum of eigenvalues) are

selected. For example, in a 3D data, if the cumulative variance of first 2 PCs is 99% (meaning sum of

eigenvalues of the two PCs is 99%), then the third PC can be dropped for dimension reduction with

only 1% loss in information. Cumulative variance is also referred to as cumulative information (CI).

Furthermore, visualisation of the data in various combinations of the PCs provide useful information

on the nature of the dataset. The original dataset can be transformed from the PC space using

Equation 2.1.

(OriginalData)T = (FeatureV ector)× (NewData) + (OriginalMean) (2.1)

PCA is a simple and popularly used method of dimension reduction. However, PCA relies on

the data being linearly separable, limiting its use in non-linear data. To overcome this limitation,

Kernel PCA (KPCA) was proposed. KPCA first transforms the n-dimensional original data into

n + 1 dimension. This transformation makes the data linearly separable. After this, standard PCA

steps are applied. Instead of computing individual values for the new dimension(s), kernel trick is

used. Some of the commonly used kernels include linear, polynomial, gaussian, gaussian RBF, etc.

These kernels are defined in Equation 2.2. In application of breast lesion in US images, gaussian and

gaussian RBF are most common.

Polynomial =⇒ K(x̄i, x̄j) = (r + x̄i · x̄j)n

RBF (Gaussian) =⇒ K(x̄i, x̄j) = exp(
−||x̄i − x̄j ||2

2σ2
)

Sigmoid =⇒ K(x̄i, x̄j) = tanh(σx̄ix̄j + r)

(2.2)

2.2.3 Machine Learning for Image Analysis

Once the appropriate features are extracted, ML techniques are used to develop models that utilise

these features for a variety of tasks such as image classification, object detection, object segmentation,

etc. ML methods can be broadly classified into three main types based on the dataset used, namely, su-

pervised, unsupervised and reinforcement learning based methods. Remainder of this section provides

further details on these ML methods.
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2.2.3.1 Supervised Machine Learning

Supervised learning methods require labelled dataset to train the model. Owing to the model’s re-

liance on the labels provided by a ‘supervisor’, this type of ML is referred to as supervised ML.

Here, the ML model can be trained to either classify unseen test data into one of the predefined

classes (discrete output such as assigning a category or object class) or predict an outcome/trend

(continuous output such as weather prediction). Some of the popular supervised ML methods include

linear regression, logistic regression, decision tree, random forest, neural network, SVM, etc. Linear

regression essentially identifies the relationship between dependent and independent variables. Here,

the outcome is continuous. Logistic regression is similar to linear regression but its outcome is discrete.

Decision tree, as the name suggests, is a tree-like model consisting of a parent node, internal nodes

and leaf nodes. The internal nodes represent individual features of the data and leaf nodes represent

the output classes. Final categorisation of the data is achieved with the help of conditional statements

to direct the flow between the internal nodes, providing a visual representation of the decision-making

process. This is typically easier to apply on smaller datasets. Random forests is a collection of decision

trees, designed to reduce variance thereby increasing the accuracy of the final decision. When used for

continuous output, it is referred to as ‘regression trees’. K-nearest neighbour is a relatively simpler,

non-parametric method of supervised learning. Here, the classification of a data sample is based on

its closeness to predefined ‘k’ nearest neighbours; the class assigned to this data sample is the most

common class of its ‘k’ nearest neighbours. In this research, SVM and SoftMax are utilised. Both

SVM and Softmax are popularly used in traditional and DL based networks. Thus, the remainder of

this section provides a deeper explanation of these methods.

Support Vector Machine (SVM) is used for classification and regression tasks in various appli-

cation fields including image analysis. In this research, SVM is utilised for classification tasks. Thus,

the following discussion of this method is in the context of its use for classification. Due to its simple

and sophisticated design, it is still in popular use since its inception in 1995 [39]. Originally, SVM was

designed for linear data. SVM separates an n-dimensional data using a (n − 1) dimensional optimal

hyperplane. Once this hyperplane is generated for training data, any unseen sample can be classified

in the appropriate class depending on its position with respect to the hyperplane.
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The output of a trained SVM is a score which represents the distance of that data from the decision

boundary. Based on the nature of the dataset, SVM can be either hard-margin or soft-margin based.

In hard-margin based SVM, data samples belonging to separate classes have no overlap with each

other; samples from each class lie in their distinct region. However, in many real-life scenarios, there

is no clear separation between the classes of the data; a small minority of samples from one class lie in

the other class. In such cases, soft-margin method is used where the aim is to separate the majority

of the data of individual classes, allowing small errors or overlaps.

Considerable majority of real-life datasets are nonlinear in nature. Since they are not linearly

separable, the traditional linear SVM cannot be applied. To address this issue, a non-linear SVM

model was developed. Here, the dataset is mapped onto a higher dimension where the dataset is

linearly separable. Thus, after this mapping, the standard SVM technique can be applied. For the

transformation, kernel trick is used. Instead of computing values of the new dimension for each data

sample, kernel trick directly provides the dot product of the transformed sample pairs to be used.

Commonly used kernels are defined in Equation 2.2 in Section 2.2.2. SVM is in popular use due to its

robustness and applicability in high dimensional data.

Apart from SVM, SoftMax is also popularly used as a classifier, especially in DL applications.

Unlike SVM, SoftMax considers all input values in relation to one another. While SVM outputs

uncalibrated values as the classification scores, SoftMax outputs probabilities for each class which add

up to 1. Thus, the SoftMax provides easier interpretation of the classification output. As an example,

consider a DL network with SoftMax as the classifier. Here, features of the final layer (typically an FC

layer) are processed through a SoftMax layer i.e., a layer of neurons with SoftMax as the activation

function. The number of neurons in the SoftMax layer is set to the total number of classes in the

dataset. For training a model with SoftMax, cross-entropy loss is used. As the output predictions

add up to [0, 1], SoftMax encourages assignment of higher scores to the most likely class and lower

scores to all other classes. Due to its advantages, it is commonly used in DL networks for a range

of applications including image processing applications such as object detection, image classification,

etc.
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2.2.3.2 Unsupervised Machine Learning

Unsupervised ML is used when the ground truth label is unknown. These methods are typically used

to find patterns or trends in the data in order to develop a deeper understanding of the same. One of

the popular methods of unsupervised ML is cluster analysis or clustering. Here, the dataset is grouped

into clusters where all data samples in a cluster are similar to each other. Equally, samples in one

cluster are dissimilar to those in all other clusters. Similarity between samples is measured using a

predefined distance metric. Clusters are typically represented by a centroid. This technique is useful

in statistical data analysis applied in many fields including pattern recognition and image analysis.

Clustering methods can be classified into five categories based on the technique and/or principle used

as shown in Figure 2.3. These categories include distribution-based, density-based, fuzzy, hierarchical

and partition-based clustering methods.

Figure 2.3: Categories of clustering methods.

In distribution-based methods, the clusters are formed based on the assumption that they follow

a certain standard distribution such as normal/gaussian distribution. Density-based methods cluster

the data on the basis of density such that densely packed regions or elements close to each other are

grouped into one cluster. A popular density-based method is DBSCAN [40]. Fuzzy methods allow

all samples a degree of membership to every centroid such that an element can be partially a part

of multiple clusters. Methods that allow membership to multiple centroids are also referred to as

soft-clustering methods. Hierarchical methods group data samples in a hierarchy of clusters. This

hierarchy is usually visualised using a dendrogram. Hierarchical methods are either agglomerative or

divisive. Agglomerative methods use a bottom-up approach where the process begins by assigning all

samples to individual clusters. On the other hand, divisive methods follow a top-down method start-

ing by grouping all data samples in a single cluster and dividing the cluster further in each iteration
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till a predefined condition is met.

Partition-based methods divide or ‘partition’ the data into a predefined number of clusters based

on a distance metric. One of the popular examples of this method as well as a widely adopted cluster-

ing technique is k-means clustering [41] and its adaptations. In k-means clustering method, after the

dataset is divided into a predefined number of clusters,each cluster is represented by a centroid which

is the mean of all samples in that cluster. The aim of the algorithm is to minimise the distance be-

tween the samples belonging to one cluster while increasing the distance between samples of different

clusters. This distance can be computed using any of the standard metrics based on the application.

Euclidean distance is the most commonly used distance metric. The process of clustering data samples

using k-means clustering method involves the following steps beginning with standardisation of the

dataset such that it has a mean 0 and standard deviation 1. As k-means clustering relies on distance

between data samples, standardisation of the dataset ensures a proportional impact of the individual

features of each sample on the distance measurement. After standardisation, k number of elements

are randomly selected as centroids. In the next step, all elements are assigned to one of the k clusters.

This step is referred to as the cluster assignment step. In this step, the distance of all samples from

each k centroids is computed. Each sample is then assigned to the cluster of the closest centroid.

After cluster assignment, new centroids are computed for each cluster. This new centroid is the

mean of the cluster. This step of computing a new centroid is referred to as the centroid update step.

The process continues with cluster assignment and centroid update steps performed iteratively until

the centroids in two consecutive steps remain constant (convergence) or the maximum number of it-

erations is reached. Thus, k-means clustering is a simple and computationally light clustering method

which can be scaled to cluster large datasets with considerable feature size. However, this method has

an important drawback relating to the selection of initial centroids (seeds). Poor selection of seeds

can lead to poor overall clusters and/or high computation time due to larger number of iterations

required for convergence.

Since its inception, many methods have modified k-means to overcome its shortcomings or further

improve its overall performance. One such method, called K-means++ clustering [42], addresses the

issue of sensitivity to seed selection in k-means clustering by replacing the randomised selection with
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an intelligent selection mechanism. After data standardisation, K-means++ clustering begins with

the selection of a single random data sample as the first centroid. Next, the distance of all samples

from this centroid is computed. The sample furthest away from this centroid is selected as the next

centroid. This process continues till all k centroids are selected. After this, the cluster assignment

and centroid update steps of k-means clustering are followed. Although this process of seed selection

is comparatively more time-consuming, the quality of clusters formed using these seeds is higher and

the overall computation time is reduced due to faster convergence.

Both k-means and k-means++ require a predefined k. However, in some datasets, the optimal

number of clusters is unknown. In such datasets, the optimal k can be found using a manual or

automatic approach. One of the manual methods to find optimal k is using the elbow method. Here,

a range of k values are applied to the dataset. After clustering, for each k, the mean of the squared

distance of each sample in a cluster to its centroid is computed. This value is also referred to as

‘distortion’. The trend in change in the distortion value with respect to change in k depends on the

distance metric used. For instance, if distortion is measured in terms of Euclidean distance, as k

increases, the number of samples in a cluster decreases which results in lower distortion. Evaluated

values of k and their respective distortion values are plotted in a graph with k in the x-axis. The value

of k where distortion stabilises is referred to as the ‘elbow’. The k value at the elbow is chosen as the

optimal since it provides a good balance between distortion and number of clusters.

Besides manual approach, automation is also used to determine optimal k. One such automation

method is x-means clustering [1]. X-means clustering is an adaptation of k-means clustering where

instead of a predefined value of k, a range of k values are provided and the algorithm finds the optimal

k in this predefined range. Assuming the range of k is [kmin, kmax], the first step here is to cluster

the samples for kmin using the k-means clustering method. In the next step, each centroid is further

divided into two child centroids and k-means is performed in the individual clusters using the new

child centroids. To decide whether the parent centroid or the child centroids are the optimal, Bayesian

Information Criteria (BIC) as defined by Kass and Wasserman (1995) is used as the metric. BIC is

defined in Equation 2.3.
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BIC = (
k∑

n=1

RnlogR−RnlogRn − RnM

2
log(2πσ̂2)− 1

2
M(Rn − 1))− C · k · logR(M + 1) (2.3)

Here, k is the number of clusters, Rn is the number of proposals in nth cluster, R is the total number

of proposals in all clusters, M is the size of the feature vector and C is the weight assigned to the

penalty term which is set to a default value of 0.5. Variance σ̂ is defined in Equation 2.4.

σ̂2 =
1

(R− k)M

k∑
n=1

abs(xi − µi)
2 (2.4)

The first term in Equation 2.3 calculates how well the elements fit in the clusters using log-

likelihood and the second term penalises high numbers of clusters. Thus, a balance between good fit

and number of clusters is achieved. If the BIC of the child centroids is greater than that of the parent

centroid, then the child centroids are preserved and the parent centroid is discarded, and vice versa.

An example of this merging and division of clusters is shown in Figure 2.4. Here, the initial three

clusters are individually divided into two clusters each as shown in Figure 2.4a. In clusters where the

BIC score of the child clusters is greater than that of the parent cluster, the child clusters are retained

whereas in the opposite case, the parent is maintained as shown in Figure 2.4b.

(a) BIC Computation (b) Final Clusters

Figure 2.4: X-means clustering using BIC [1].

This process continues till the total number of clusters remains unchanged for two consecutive

iterations or till kmax is reached. Thus, x-means clustering automates the selection of optimal k from

a range of k values thereby addressing the drawback of k-means and k-means++ clustering methods.
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2.2.3.3 Reinforcement Learning Based Machine Learning

Reinforcement learning (RL) based ML methods consists of a goal-oriented agent trained using positive

and negative reinforcements provided in the form of a scalar feedback loop. The goal of the agent is to

find the optimal path for completion of the assigned task. For instance, some RL detectors are trained

with the goal to find objects in an image using cost-effective paths (least number of steps). Unlike

supervised learning, RL methods do not depend on an external supervisor to provide the expected

output for each step. Instead, the agent learns based on its own past experience which consists of past

actions and their respective rewards or punishments. RL is also different from unsupervised learning

in that it does not find patterns in the input training data. Unlike unsupervised learning, RL relies

on a feedback signal to learn the optimal path in order to reach its predefined goal.

2.3 Object Detection

Object detection is a well-established field of image analysis. Traditional methods of object detection

consist of the following four stages: image preprocessing, image segmentation, feature extraction and

classification. In the first stage, the image is preprocessed using various filtering and image enhance-

ment to remove noisy data which would otherwise negatively impact the model performance. In the

second stage, the image is segmented in order to extract regions of the image that potentially contain

an object. Commonly used segmentation methods include thresholding, edge detection techniques,

pixel clustering, etc. In stage three, the features of the selected regions are extracted. The traditional

methods commonly use handcrafted methods of feature extraction. Finally, the extracted features are

classified into one of the object classes or as background.

Designing each stage requires considerable knowledge of the corresponding fields. Recent years

have witnessed the development of a considerable number of deep-learning (DL) based detectors due

to the following reasons. First, traditional methods rely on the use of handcrafted feature extraction

methods. As described in Section 2.2.1.2, deep CNN features extract higher-level data resulting in

higher generalisation capabilities. Furthermore, these networks are more adaptable for applications

across various domains in comparison to traditional methods. Additionally, DL-based detectors com-

bine the three stages (stages two to four) of object detection in a single model.
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Figure 2.5: Components of an object detection network.

A DL-based object detector contains four main components as shown in Figure 2.5. The back-

bone of a detector is a pretrained classification network. Certain layers (depending on the detector)

and the last FC layers of these networks are modified for object detection. The neck of the object

detector refers to additional layers or networks introduced to improve overall performance. Head of

the object detection network represents crucial components responsible for generating the final output

of the detector. Finally, all object detection networks utilise a post-processing mechanism to remove

redundant detections.

Depending on the number of stages in ‘head’, object detection networks can be classified as 1-stage

or 2-stage as shown in Figure 2.6. 1-stage detectors generate output detections in a single forward

pass of the image through the entire network. On the other hand, 2-stage detectors pass the input

image through two stages of the network; first stage acts as a coarse detector and the second stage

filters through the output of the first stage acting as finer detector. 1-stage detectors are generally

computationally faster than 2-stage detectors due to smaller network size. However, 1-stage detec-

tors typically have poorer localisation capabilities than 2-stage detectors, especially for smaller and

unusually shaped objects. Popular 1-stage detectors include SSD [43] and YOLO family of detectors

[44, 45, 46, 47, 48]. Popular 2-stage detectors include the RCNN family of detectors [49, 50, 51, 52].

YOLO [44], a 1-stage detector, consists of 24 convolution layers, followed by 2 FC layers. For

detection, the image is first divided into a number of S × S grids [44]. After processing through the
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Figure 2.6: Object detection timeline [2].

network, following two outputs are generated for each grid - classification scores and bounding boxes.

If the centre of the object is suspected to fall in a grid, a high classification score is assigned to the

class of the potential object. On the other hand, if the grid is suspected to cover the background

region, a high classification score is assigned to the background class. Furthermore, for each grid that

potentially contains an object, two bounding boxes are generated in order to capture the object of each

class. A post-processing mechanism called Non-Maximal Suppression (NMS) [53] is applied to remove

redundant boxes and the final output detections are generated. Thus, generation of bounding boxes

and their classification is performed in a single stage. Various updates have since been developed to

overcome these drawbacks. These updates are described in Chapter 3.

Single Shot MultiBox Detector [43] is another popular 1-stage detector that surpasses YOLO net-

work in its ability to localise objects, especially ones with small dimensions. SSD uses pretrained

VGG16 classification model as its backbone. Feature maps output by each convolutional layer of the

VGG16 model are divided into a specific number of regions referred to as locations. The number of

locations varies for feature maps of each convolutional layer. An important distinction between SSD

and YOLO is the use of predefined bounding boxes commonly referred to as reference or anchor boxes.

In particular, SSD uses 4 anchor boxes in each location. Aspect ratio and size of these boxes varies

with the feature maps used.

For larger objects, features maps of deeper layers prove useful whereas for smaller objects, feature
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maps of initial layers prove useful. Anchor boxes for each layer were designed to take advantage of this

characteristic. These anchor boxes are plotted on each location and during model training/testing.

The bounding box regression branch computes the transformation required to ensure the anchor box

tightly fits a potential object. These transformed bounding boxes are then passed through a classifier

which assigns classification scores for each class. These boxes are then processed through NMS to

remove redundant boxes and output final detections of the model. Two versions of SSD were de-

veloped depending on the input image size, namely, SSD500 (image size of 500 × 500) and SSD300

(image size of 300× 300). Compared to YOLO, SSD has better localisation capabilities and was also

experimentally proven better for detection of small objects. Furthermore, SSD is also computationally

faster than YOLO.

It is important to note here that a large majority of object detectors are developed for natural

(non-medical) images, including YOLO and SSD. This is due to the publicly available large datasets of

natural images. For example, some of the commonly used, publicly available datasets of natural images

include ImageNet [54], PASCAL VOC [55] and MS-COCO [56]. These datasets contain millions of

images, with thousands in a large variety of classes. However, similar large datasets of medical images

are not publicly available. Furthermore, collection of medical images and labelling of the objects

such lesions by experienced professionals is a tedious and time-consuming process. Therefore, the

development of detectors for medical images is comparatively slower. For this reason as well as

adaptability of DL networks, it is common practice to modify object detectors developed for natural

images for object detection in medical images. Specifically in breast lesion detection in US images,

FRCNN is commonly adapted. Therefore, FRCNN is described in further detail in the following

section.

2.3.1 FRCNN

FRCNN is a 2-stage detector. The architecture of FRCNN is shown in Figure 2.7. VGG16[57], pre-

trained for classification of natural images (ImageNet dataset) is used as the backbone network to

extract features of the input image. Extracted features are then input to the first stage of this detec-

tor which is referred to as Region Proposal Network (RPN). RPN generates the first set of (coarse)

detections, referred to as proposals. After removing redundant proposals using NMS, features of the

remaining proposals are passed through to the second stage of the detector, referred to as base net-
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work, for further processing. Output of the base network is then processed through NMS to remove

redundant boxes and remaining proposals are output as the final detections of the model.

As VGG16 is a classification network, it undergoes the following two modifications to adapt it for

object detection: 1. ROI pooling layer inserted after the last convolution layer and 2. Replacement of

classification layer with two new branches (classification branch and bounding box regression branch).

The FC layers of the VGG16 network require a constant input size of 7×7×512. ROI pooling layer is

used to ensure this requirement is met. The ROI pooling layer has two inputs. First is the feature map

from the last convolution layer of VGG16 and second is the coordinates of proposals generated by the

RPN. Using the proposal coordinates, features of each proposal are extracted from the feature map.

These features then undergo a 7 × 7 maxpooling operation. Therefore, irrespective of the proposal

size, the output of the ROI pooling layer is maintained at 7× 7× 512. Secondly, the final FC layers of

the VGG16 network are replaced in the base network. The remainder of this section provides further

details of both stages of the FRCNN network.

Figure 2.7: Faster R-CNN architecture using VGG16 as backbone.

2.3.1.1 Region Proposal Network (RPN)

RPN, first stage of the FRCNN network, is a shallow, fully convolutional network which uses the

output of the last convolutional layer of the VGG16 model as its input to generate proposals. RPN

uses predefined anchor boxes to generate proposals. The size and aspect ratios of the anchor boxes

are selected so as to accommodate different object shapes and sizes. In this case, 9 anchor boxes of
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scales {8, 16, 32} and aspect ratios {1 : 1, 1 : 2, 2 : 1} are used. These 9 anchor boxes are plotted across

each spatial location on the input feature map. If the input feature map is size W ×H, then a total

of 9×W ×H anchor boxes are plotted.

In the RPN, the input feature map is processed through a 3× 3 convolution layer. After this, the

network splits into two branches: classification branch and bounding box regression branch. Classifica-

tion branch is responsible for identifying the likelihood of an object being present in each anchor box.

Each anchor box is classified as foreground or background. Classification scores assigned by the RPN

are also referred to as objectness scores. Given that 9 anchor boxes are used and classification scores

assigned to two object classes (foreground and background), the output of the classification branch

has a dimension of W ×H×18. On the other hand, the bounding box regression branch is responsible

for identifying the transformation to be applied on each anchor box for it to tightly bound a potential

object. Every anchor box is described using 4 coordinates (x, y, w, h) where (x, y) are coordinates of

the centre point and (w, h) are the width and height of the anchor box. Thus, output of the bounding

box regression branch is the changes to be applied to each of these 4 coordinates for every anchor box

to tightly fit a potential object. Therefore, with 9 anchor boxes, output of the bounding box regres-

sion branch has a W ×H × 36 dimension. Both classification and regression branches consist of 1× 1

convolution layers. Thus, owing to the fully-convolutional nature for the RPN network and the use

of the ROI pooling layer, FRCNN network does not require a predefined dimension of the input image.

For an image of size 600 × 1000, the feature map output by the last convolution layer of VGG16

has 38 × 63 dimension. As anchor boxes are plotted on every spatial location of this feature map,

a total of 21546 anchor boxes are generated. Anchor boxes that are cross-boundary are eliminated

leaving around 6000 boxes. These 6000 boxes are processed through the RPN to generate proposals.

NMS is applied to remove redundant proposals. NMS consists of two main steps. In the first step,

proposals with objectness score below the predefined threshold of 0.3 are discarded. In the next step,

the highest scoring proposal is selected and moved to the final output of the network and all propos-

als with 70% or higher overlap with this proposal are removed. The same process is applied to all

remaining proposals till every proposal is either discarded or moved to the final output. After NMS is

applied, only 2000 top-scoring proposals are sent through to the base network during model training.

During model testing, only the top 300 proposals are used.
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RPN training samples are selected from the generated anchor boxes. Anchor boxes with overlap

of 70% or higher with ground truth box(es) are considered as positive training samples and those with

overlap of 30% or lower are considered as negative training samples. Remaining anchor boxes are not

used for training. A minibatch of size 256 with a 1 : 1 ratio of positive and negative samples is used.

In the event of lack of positive training samples, the minibatch is padded with additional negative

samples so as to ensure constant size. Training loss of each minibatch is defined as in Equation 2.5.

Lrpn(pi, ti) =
1

Ncls

∑
i

Lcls(pi, pi∗) + λ
1

Nreg

∑
i

P ∗
i Lreg(ti, t

∗
i ) (2.5)

where pi is the output objectness score for the ith anchor box in the minibatch and ti is output trans-

formation of the four coordinates for the same anchor box. p∗i is the ground truth label which is set

to 1 for positive training samples and 0 for negative training samples. Ground truth transformation

is represented by t∗i which is computed only for positive samples. Ncls and Nreg are the number of

training samples in each minibatch for classification and bounding box regression task, respectively.

Since Ncls is larger than Nreg, λ is set at 10 to ensure proportional weights are assigned to both losses.

Lcls is log loss and Lreg smooth L1 loss.

2.3.1.2 Base Network

Base network is the second stage of the FRCNN network. Proposals generated by the RPN and pro-

cessed through the ROI pooling layer are passed through to the base network for further processing.

As previously mentioned, the final FC layer of the VGG16 network is replaced with a classification

branch and bounding box regression branch of the base network. Both these branches consist of FC

layers. Classification branch is responsible for classifying every proposal into one of the object classes

or as background and the bounding box regression branch computes the offsets required to ensure

that the proposals tightly bound potential objects.

Base network is trained using RPN generated proposals. Compared to RPN, the base network’s

training samples are selected with a broader overlap range. Specifically, proposals with an overlap

of 50% or higher with the ground truth box(es) are considered as positive samples whereas those
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with 10% to 50% overlap are considered as negative samples. Proposals with no overlap with the

ground truth are used for hard-negative mining. A minibatch is formed using 128 samples of which

25% are positive and remaining are negative. Training loss Lbase for every minibatch is the same as

Lrpn defined in Equation 2.5. However, in Lbase, λ is set to 1. The FRCNN model can be trained in

multiple ways. The most efficient mechanism is the end-to-end training where both RPN and base

network are trained simultaneously. Loss of the whole model is the combined loss of RPN and base

network.

2.4 Summary

This chapter provided an insight into the medical and computational background relevant to this

research. In particular, an overview of breast cancer, types of lesions and need for early detection

was highlighted. The current lack of radiologists and the usefulness of automating lesion detection in

addressing this issue was also discussed. After this, relevant computational concepts were detailed.

Specifically, popular methods of feature extraction, dimensionality reduction and ML techniques utilis-

ing the extracted features for various applications were presented. Furthermore, an overview of object

detection methods along with detailed explanation of important detectors was provided. Therefore,

this chapter presented the fundamental concepts of this research. In the following chapter, state-of-

the-art object detection methods for breast lesion detection as well as FP reduction techniques are

presented.
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Chapter 3

Literature Review

This chapter presents an extensive review of the existing research in the field of object detection in

natural images with greater focus on breast lesion detection in 2D US images and lesion detection in

images generated from a range of modalities. In each section, along with a thorough review of the

existing detection methods, we also highlight the various methods of false positive (FP) reduction

employed in these domains. The aim of this chapter is to provide a comprehensive exploration of

this research field and highlight the advancements and limitations in the context of FP reduction

techniques in each domain.

Section 3.1 details object detection methods developed for natural images along with details on

techniques developed used to reduce FPs in these networks. Following this, Section 3.2 presents breast

lesion detection methods for 2D US images which includes methods that adapt detection networks

developed for natural images as well as novel methods developed for high performance and FP re-

duction. Section 3.3 provides a review of methods developed for detection of a variety of lesions in

images generated from various other modalities along with FP reduction methods. This chapter is

summarised in Section 3.4.

3.1 Object Detection in Natural Images

Object detection in natural images is a well-established field of research. Traditional methods of

object detection rely on handcrafted methods for feature extraction. As described in Chapter 2, these

methods have a common drawback of low generalisation capabilities due to the extraction of low-
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level features. DL networks overcome the drawbacks of the handcrafted methods through extraction

of features with higher levels of abstraction which results in the higher generalisation capabilities of

these networks. Due to their high generalisation capabilities, DL networks are commonly used for real-

life applications. Compared to handcrafted methods based models, DL networks are easier to adapt to

different datasets and domains. In 2012, a classification method called AlexNet [29] revolutionised the

field by successful utilisation of deep CNN to achieve remarkable performance. This network inspired

the subsequent advancement in this field. Since 2012, DL networks have been used not only for image

classification but in various fields of image analysis including but not limited to object detection,

image segmentation, image recognition, etc. In the remainder of this section, the current state-of-

the-art object detections methods developed for natural images are presented after which methods

developed to refine these detectors including FP reduction are detailed.

3.1.1 DL-Based Detectors

Object detection networks consist of the following four parts: backbone, head, neck and post-processing

mechanism. The function of each part is described in Section 2.3 in Chapter 2. Three publicly avail-

able datasets commonly used for development of DL networks for object detection in natural images

are ImageNet, PASCAL VOC and MS-COCO. ImageNet is a much larger dataset than the PASCAL

VOC and MS-COCO. However, ImageNet does have exhaustive annotations of the objects. Thus,

it is common practice to first train the backbone network for classification using ImageNet dataset.

Through transfer learning, this trained network is then adapted for object detection through transfer

learning using PASCAL VOC or MS-COCO dataset.

Depending on the number of stages in the head, object detection networks can be categorised as

1-stage or 2-stage detectors. Some of the popular 1-stage detectors in natural images are YOLO family

of detectors [44, 45, 46, 47, 48], SSD [43] and reinforcement based detectors such as [58, 5, 59, 60].

The popular 2-stage detectors are the R-CNN family [49, 50, 51] and reinforcement learning detectors

[61, 62]. 1-stage detectors have an advantage of higher speed due to lesser computation cost. How-

ever, they share a major limitation in its localisation abilities and overall generalisation, especially of

smaller objects and unusually shaped objects. On the other hand, 2-stage detectors require higher

computation but have better generalisation along with better detection of small, unusually shaped

objects due to the two stages of detection. Detailed architecture of YOLO, SSD and FRCNN is pro-
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vided in Section 2.3 of Chapter 2.

Object detection methods developed before R-CNN [49] were mostly based on handcrafted features

such as SIFT [25] and HOG [22]. These methods follow an exhaustive search and are not robust due

to use of low-level features. R-CNN generates region proposals (regions of the image that potentially

contains an object) using selective search and AlexNet for feature extraction as well as classification

and bounding box regression. By combining traditional and DL methods, R-CNN outperforms its

predecessors by a large margin. R-CNN made two important contributions to this field of research.

First, R-CNN demonstrated a successful adaptation of a network trained for classification (AlexNet)

for the task of detection. Secondly, their method of fine-tuning a deep CNN network, originally trained

on a large dataset using a smaller dataset, paved the road for applications where the dataset available

is considerably small. The network is easily expandable by using different region proposal generation

methods and/or use of a deeper feature extraction CNN.

However, R-CNN has important drawbacks. Firstly, training R-CNN is a multi-stage process; first

the region proposal generation method is tested, then the deep CNN is trained and fine-tuned, and

finally linear SVM is trained for each object class. Bounding box regression is trained separately. This

makes training the R-CNN model a very time-consuming process. Secondly, for every image, around

2000 proposals are generated. Features of each proposal are individually extracted for further training.

This makes the training process computationally expensive. Fast R-CNN [50] reduces computation

time by using the ROI pooling layer for an efficient extraction of proposal features. However, both Fast

R-CNN and R-CNN, are limited by the performance of the traditional method used for region proposal

generation. Poor performance of this stage inevitably has a negative impact on the performance of

the whole network. Furthermore, as the proposal generation stage is a traditional method which re-

quires manual adaptation, it cannot be automatically improved during the training of the CNN stages.

FRCNN [51] addresses the common drawbacks of R-CNN and Fast R-CNN. In FRCNN, a trainable,

DL based method is used for region proposal generation. This trainable network is called Region

Proposal Network or RPN. Further details of FRCNN architecture and training process is provided

in Section 2.3.1 in Chapter 2. Introduction of a trainable head (RPN) improved mAP to 78.9% in

comparison to Fast R-CNN. Additionally, time required for testing an image was reduced by 250
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times in FRCNN in comparison to R-CNN and 25 times in comparison to Fast R-CNN. A relatively

recent development in this field is the use of Network Architecture Search (NAS) [63]. NAS is a

method to automatically develop CNN architectures based on predefined conditions for the provided

dataset. In the field of object detection, NAS is typically used to design the backbone network. One

such network is EffecientDet [64] that uses EfficientNet [65] which was developed using NAS as its

backbone. However, NAS is outside the scope of this research.

3.1.2 Refinement of DL-Based Detectors

Apart from development of novel object detection networks, several methods have been proposed that

focus solely on the refinement of existing detectors. Specifically, these methods concentrate on ad-

dressing drawbacks of one or more components of the object detection network in order to improve

the overall performance of the detector. Remainder of this section explores these methods in further

detail. Novel classification networks commonly investigate their use as the backbone in existing de-

tectors. For instance, He et al. [30] evaluate their proposed ResNet classification networks as the

backbone of FRCNN and show higher overall performance of this FRCNN model in comparison to the

FRCNN model using other classification networks such as VGG16. Methods such as Spatial Pyramid

Pooling network (SPPNet) [66] and Feature Pyramid Network (FPN) [67] improve proposal generation

in the neck of existing detectors by introducing additional layers that improve the quality of features

extracted.

SPPNet uses an SPP layer to improve overall detection performance. This layer is inserted after

the last convolution layer of the backbone network. SPP layer is essentially maxpooling operation

on the input feature maps individually using a range of window sizes. Output of this layer is sent

to the FC layers. Thus, use of this layer allows the detector to accept input images of varying sizes.

R-CNN with SPP layer had mAP of 59.2% which was 0.7% higher than R-CNN without SPP layer.

Also, this layer processed all 2000 proposals simultaneously which improved overall speed by 24 to

64 times depending on the number of maxpooling levels used. On the other hand, the FPN network

concatenates feature maps of several convolutional layers of the backbone network in a ’bottom-up

fashion’. Feature maps from each concatenation level are individually used for proposal generation

which is unlike the traditional method of using a single feature map from the last convolution layer of

the backbone network. Thus, by combining low-level features with higher-level abstract features, the
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FPN network improves detection of objects of varying sizes. FPN outperforms other methods such as

image pyramid [68] where the same image is input in different scales or feature pyramid [67] where

the feature maps from different layers are used directly, without the concatenation with feature maps

from other layers. Using FPN in FRCNN (with ResNet50 as the backbone) improved mAP of the

FRCNN model by 3.8 points from 53.1% to 56.9% in MS-COCO dataset.

Apart from the introduction of additional neck architecture, several methods have been developed

for improving overall performance of the head itself. This is done in one of two ways; change in the

architecture of the head or refinement of anchor boxes. Anchor boxes are predefined boxes used in

the head of a detector. They are described in further detail in Section 2.3 of Chapter 2. Methods

such as AttractioNet [69] and Cascade RPN [70] improve performance through architectural changes.

AttractioNet uses multiple stages of heads, each trained to improve the detection of the previous stage.

This head architecture is referred to as ‘iterative RPN’ [69]. The use of this iterative process improved

the quality of region proposals which resulted in higher detection performance. On the other hand,

this iterative process can lead to the model overfitting the training set. Furthermore, using multiple

iterations of the RPN leads to misalignment of anchor boxes which results in lower quality of output

detection. A potential improvement strategy is to use deformable convolution [71].

Cascade RPN addresses the issues of the iterative RPN improving the quality and connections of

the multiple RPN stages used. In essence, it replaces the iterative flow of RPN with a cascaded one.

With only a single anchor box at each location, the first stage of Cascade RPN consists of a dilated

convolution layer on which the predefined anchor boxes are plotted and regressed. Feature maps from

the dilated convolution layer along with the regressed anchor boxes are then sent to the second stage.

Second stage consists of an adaptive convolution layer, a novel convolution method introduced in this

work, followed by classification and further bounding box regression. Cascade RPN used in FRCNN

led to mAP of 40.6% as opposed to FRCNN using traditional RPN which has a mAP of 36.9%. This

method also outperformed other iterative RPN networks.

Another common method of detector head improvement is through an improvement of anchor

boxes. Choice of anchor boxes plays an important role in overall performance of the detector. In-

stead of manual computation of anchor boxes as per the dataset and domain, methods have been
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developed to either improve predefined anchor boxes or automatically estimate anchor boxes during

detector training. Zhong et al. [72] improve anchor boxes during training by introducing a new branch

attached to the bounding box regression branch which learns the amount of change to be made to

the width and height of the predefined anchor boxes. FRCNN with mAP 76.4 was outperformed by

this method with a mAP of 80.69. Other methods such as [73] and [74] develop bags of anchor boxes

during training and an optimal bag is selected depending on the input image. However, these methods

require an initial predefined set of anchor boxes. A recent method called GARPN (Guided Anchoring

RPN) [75] automatically estimates anchor boxes from scratch.

GARPN is a shallow network that replaces traditional RPN. It estimates anchor boxes for every

location. These estimated anchor boxes and the adapted feature map are then processed in the same

manner as traditional RPN (described in Section 2.3.1 of Chapter 2). GARPN consists of two branches;

location prediction and shape prediction. Output of the location prediction branch is a segmentation

map. A score threshold of 0.1 defines active regions in this map. Active regions represent areas on

the image which are most likely to contain an object. To avoid using inactive regions, all further

convolutions in the detector are replaced with masked convolution layers. Shape prediction branch

predicts height and width of potential object in every location. Only one anchor box is predicted

on every location of the input feature map. Owing the large variation in size of the anchor boxes,

deformable convolution [71] is used to adapt the input feature map. Only anchor boxes in the active

regions are considered. GARPN improves mAP of FRCNN by 2.7 points in COCO 2017 dataset. Fur-

thermore, when a pretrained FRCNN model was fine-tuned using GARPN proposals, its performance

improved by 2.3 points mAP proving the higher quality of proposals generated by this method. Recent

developments have been made in detecting objects without anchor boxes [76, 77, 78, 79, 80, 81]. In

general, this is an emerging field and these methods have a common drawback of inability to achieve

high performance in complex scenarios.

A common post-processing mechanism used in a significant proportion of existing detectors is

Non-Maximal Suppression (NMS) [53]. Further details of this method is provided in Section 2.3.1

in Chapter 2. Several works such as SoftNMS [82] and MaxPool NMS [83] have been proposed to

improve the performance of NMS. Unlike NMS, SoftNMS avoids discarding low scoring boxes in a

single thresholding operation. Here, after the highest scoring box is selected, scores of boxes with high
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overlap with this box are reduced in proportion to the overlap. So, a box that is distant from the

highest scoring box would have a lower reduction in its score whereas one that is closer would have a

higher reduction in its score. After this process is performed for all boxes, the lowest scoring boxes

are discarded. MaxPooling NMS approaches this issue from a different perspective. Here, output of

the classification branch undergoes a maxpooling operation in order to retain only those areas of the

output that have higher probability of containing an image. This is especially helpful in reducing FPs.

To compute overlap between boxes in the post-processing mechanism of the detector, Intersection-

over-Union (defined in Section 4.2 in Chapter 4) is commonly used. To improve this metric, works

such as [84, 85, 85] have been proposed.

In general, detectors have an imbalance in the number of positive and negative training samples.

Due to the excessive amount of negative samples, the probability of the selection of hard negative

samples is low. This is addressed using hard negative mining where such hard negative samples are

specifically chosen to improve classification accuracy. Online Hard Negative Mining (OHEM) [86]

and its successor Stratified OHEM (S-OHEM) [87] are popular methods used for this task where

hard negative samples are chosen based on the confidence score loss. Negative samples with the

largest loss are used for training. Methods such as Libra-RCNN [88] use IOU for selecting training

samples, instead of training loss like traditional hard sample mining techniques. Thus, a balanced

set of training samples are selected including hard negative samples. This method removes the need

for classifying all training losses first to generate confidence score loss for identification of hard samples.

Various training losses have also been proposed for improving class imbalance by utilisation of

weights in the loss or ranking samples. Focal loss [89] increases weights of hard negative samples in

the loss function which enforces updates for such samples and has proportional reduction in weights

of easier negative samples. Thus, hard negative samples have a larger impact on training. PISA [90],

CARL [90], DR loss [91] and AP loss [92] uses ranking of samples to address class imbalance. One

of the recent methods propose PISA and CARL loss [90] to improve classification accuracy through

linking classification and bounding box regression branches of detection networks. Finally, in some

works, search space is reduced to increase probability of using only hard negative samples for training.

Recent methods such as Single-shot Refinement Network [93] and Enriched Refinement Network [94]

filter out negative anchor boxes to increase probability of using hard negative samples during training.
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3.2 Breast Lesion Detection in Ultrasound Images

Breast lesion detection in US images is a field that has been evolving for decades. In this section,

we first present the traditional methods used for breast lesion detection in US images after which

DL-based object detection methods are discussed. In both sections, techniques used for FP reduction

are also highlighted.

3.2.1 Traditional Methods

Traditional method of breast lesion detection in US images involves four stages, namely, pre-processing,

proposal generation, feature extraction and classification. In the pre-processing stage, the quality of the

US image is improved which includes removal of speckle noise common in US images. This is commonly

achieved using methods such as contrast-enhancement, histogram equalisation, filtering, etc. After

pre-processing, proposals are generated using a variety of techniques such as using segmentation. In

the next stage, features of these regions are extracted and used for their classification in the final

stage. Given the higher relevance of the last two stages (feature extraction and classification) to this

work, they are discussed in further depth. Many works have been proposed that focus purely on these

two stages. Therefore, these methods are evaluated as a classifier (not as a detector) using popular

evaluation methods that include area under ROC (receiver operating curve) curve and/or accuracy,

usually accompanied with sensitivity and specificity.

Types of Handcrafted Features

Handcrafted features are selected for extraction of features characteristic of breast lesions in US im-

ages. These features can be classified into two main types: morphological and textural. Morphological

features provide information relating to the shape and contour of the lesion [95]. Some of the com-

mon morphological features include lesion solidity, convexity, compactness, elongation, form factor,

roundness, area. Aspect ratio, sometimes as referred to as orientation or depth-to-width ratio (DWR),

is one the most common morphological features. Some morphological features such as computation

of roundness, convexity, elongation require segmentation of the lesion for their extraction. Textural

features provide information on the underlying pattern between pixels in an image. These are usually

first order or second order features. First order features provide an overview of the image. Some ex-

amples include contrast, entropy, homogeneity, etc. of the whole image. Second-order features provide
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information regarding the relationship between pairs of pixels in an image. Commonly used methods

to extract textural features include GLCM, HOG, LBP and ULBP. Theoretical background and the

extraction process of these methods have been described in Section 2.2.1 of Chapter 2.

Classification using a single feature type

Several traditional methods rely solely on one type of feature (either morphological or textural) for

description of the lesion and its subsequent classification. For example, Chang et al. [96] use only

morphological features (form factor, roundness, aspect ratio, convexity, solidity and extent) were used.

Using these features, 210 images were classified by SVM with an accuracy of 90.95%. Sehgal et al. [97]

uses only margin features such as margin sharpness, echogenicity, etc. along with age of the patient

to classify lesions as benign or malignant which achieved an AUC of 0.87 on a dataset of 58 images.

Although these methods have shown high reliable performance, the dataset is too small to appreciate

their model’s generalisation capabilities.

Likewise, following methods only use textural features. Gomez et al. [98] use 22 features from 240

GLCM matrices to describe the texture of lesions. MRMR was used for reducing the dimension of

the final feature vector to 17 × 1. With the help of MRMR, contrast and correlation were found to

provide the most important, discriminating features of the lesion. Their model achieved a high AUC

of 0.87 over 436 images showing that use of GLCM alone can help classify lesions as benign or malig-

nant. The model proposed by Chen et al. [99] uses autocorrelation, a second-order textural feature,

to characterise the lesions. On a large dataset of 1020 images, this method had a high classification

accuracy of 96.47%, outperforming three experienced radiologists.

Here, the difference between radiologists and the model was highest in precision caused due to

difference in number of FPs. Radiologists had an average of 43.13% precision whereas the model

had 81.4%. Furthermore, 2 out of the 3 radiologists had 6 FNs whereas the model and one of the

radiologists missed only 1 lesion. Abdel et al. [100] studied the impact of five different textural fea-

tures individually, namely, GLCM, ULBP, phase congruency-based LBP (PCLBP), HOG and pattern

lacunarity spectrum (PLS). It was found that HOG had the highest AUC of 0.989 on a dataset of 59

images. This was followed by LBP and PCLBP with AUC 0.95 and 0.923, respectively.
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Methods such as [101, 101, 102, 103, 104, 105] use a multiple textural features for higher classifica-

tion accuracy. For example, Wei et al. [101] use GLCM, HOG and LBP for classification of 600 images.

Individually, HOG had highest precision of 79.63%, GLCM had the highest sensitivity of 82.61% and

LBP had the highest F1-score of 0.8. However, the combination of all these features outperformed

the individual features with highest F-score of 0.839 along with highest sensitivity, specificity, and

precision. Benaouali et al. [102] use HOG and LBP to classify 780 images. Here too the combination

of the features had highest accuracy of 96% as well as higher sensitivity and specificity than individual

features.

Classification using a combination of textural and morphological features

With the increased complexity in the US images, it has become more popular to use a combination

of both morphological and textural features as a variety of lesion characteristics are captured in the

combined feature vector which in turn improves the overall performance of the model. For instance,

Alvarenga et al. [106] use GLCM and complexity curve features to classify 152 images. Various com-

bination of the combined feature vector was analysed, and the best performing feature vector, with

an accuracy of 84.2%, contained GLCM’s contrast, correlation, standard deviation, the contrast, and

maximum value of transition of the internal region of the lesion (excluding the margin). Similarly, Wu

et al. [107] use solidity (morphological feature) and autocovariance (textural feature) for classification

of 210 images which achieved an accuracy of 92.86%.

Wei et al. [108] use shape related features such as compactness and textural features using GLCM,

HOG and LBP. PCA was applied only on the textural feature vector due to its significantly larger di-

mension. The proposed model consisted of two separate classifiers, one for the morphological features

(Näıve Bayes classifier) and another for textural features (SVM). The final classification score output

was a weighted sum of both scores assigned by classifiers (90% weight assigned to the SVM). On a

dataset of 448 images, this model had highest accuracy of 87.78% which is higher than that of three

other works that used only a single feature and two other works that used a single classifier for both

morphological and textural features.

Similarly, Wei et al. [109] also use GLCM, HOG and LBP as textural features and a different

range of morphological features such as an ellipse’s direct least square fitting. On a large dataset
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of 1061 images, the combined features outperformed both the individual morphological and textural

features with an accuracy of 87.32%. Other works such as [110, 111, 112, 113, 114, 115] use a range

of textural features such as Tamura features, posterior acoustic attenuation, echo pattern, etc along

with morphological features like aspect ratio, normalized residual value (NRV), Hu-moments, etc.

In many of these works, the final feature vector has a large dimension which can adversely impact

the performance. Commonly used dimension reduction methods include PCA [108, 116, 117] whereas

others use feature selection such as stepwise logistic regression, RFE, etc [104, 106, 118]. The choice of

classifier is popularly SVM [108, 109, 110, 101, 119, 107] and neural network [103, 120, 99, 105]. Some

works compare various classifiers such as LDA, random forest, decision trees with SVM. Generally

SVM outperforms majority of the evaluated classifiers [111, 114, 121, 102].

Deep CNN for feature extraction

Due to the drawbacks of handcrafted features and the advantages of DL methods as described in

Section 2.2.1 of Chapter 2, DL networks have been used for feature extraction in multiple recent

works. An important requirement for DL methods is a large, diverse training set. However, such

datasets of US images are not publicly available, and their collection is quite a challenging and time-

consuming process. This issue is addressed by employing transfer learning on models pre-trained on

large (publicly available) datasets of natural images. One of the early works such as one by Huynh

et al. [122] prove the effectiveness of this strategy. In particular, Huynh et al. [122] experimentally

prove that the DL-based classifier trained using transfer learning outperformed handcrafted features

based classifiers. Other works [123, 124] show the higher classification accuracy of the model after

transfer learning compared to the model trained from scratch using breast lesion dataset. With these

developments, use of DL networks for feature extraction gained popularity.

Han et al. [125] successfully utilise GoogleNet [126], a deep classification network developed and

pretrained for object detection in natural images, for classification of breast lesions in US images. This

work also showed that use of 180 margin pixels improved the classification accuracy of the network.

Their final model has a high accuracy of 91.23% on a large dataset of 4254 benign and 3154 malignant

lesions. Some methods further utilise the generalisation capabilities of the DL architectures to classify

lesions in US images of different modes such as B-mode, Doppler mode, etc. For example, Bressem et

al. [127] investigate ResNet18 (pretrained for classification of natural images) for classification of four
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modes of US images. This model had a reliably high accuracy of 95.43%.

Combination of learnable and handcrafted features

Despite the drawbacks of handcrafted features, they provide critical information that might be lost

in deep CNN networks especially for small lesions. Therefore, a combination of DL and handcrafted

features are widely used to leverage advantages of both methods. For example, Peng et al. [128]

utilise shape-related features (morphological) and DL features (textural) to classify breast lesions. It

was found experimentally that use of this combined feature vector had higher accuracy than use of

either handcrafted or DL features alone. Similarly, Antropova et al. [129] combine morphological and

textural features related to size and shape of the lesion with DL features to provide high classification

accuracy of 0.9. Similar performance improvement was also found in DCE-MRI and FFDM images.

3.2.2 Deep-Learning Based Detectors

Although these traditional methods described previously provide reliable accuracy, there is still a re-

liance on outside models or sources for the ROI. In recent years, DL models combine the three stages

of traditional detection methods (proposal generation, feature extraction and classification) in a single

model. Furthermore, DL based detectors eliminate the requirement for manual feature engineering

that is required in traditional handcrafted methods. Compared to classification of breast US images,

breast lesion detection is a less explored field due to the difficult and time-consuming process of an-

notation by experienced radiologists.

Nonetheless, important development has taken place in this field. One of the pioneering works

by Yap et al. [130] investigated the impact of using three DL networks, namely Patch-based LeNet,

UNet and FCN-AlexNet, and compared their performance to that of three traditional methods using

handcrafted features. This investigation was conducted using two datasets, datasets A (generated in

2001) and dataset B (generated in 2012), containing 306 and 163 images each. Overall, DL-based

methods outperformed the traditional methods. FCN-AlexNet had the best performance in various

test settings while LeNet had the lowest number of FPs per images (FPI). A more recent work by

Cao et al. [131] evaluated multiple 1-stage and 2-stage object detection networks that were originally

designed for natural images for breast lesion detection in US images. The methods analysed include

FRCNN with ZFNet and VGG16 as backbone, YOLO, YOLOv3, SSD300 and SSD500 with ZFNET
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and VGG16 backbone. These models were trained on 860 images and tested on 183 images, all resized

to 256× 256. SSD300 with ZFNet had the best performance with an F-measure of 79.38%.

Use of ZFNet led to better detection of benign lesions whereas VGG16 was better suited for

malignant lesions. As ZFNet is shallower than VGG16, the features extracted by this network are of

comparatively lower levels of abstraction. Thus, the number of benign lesions detected by ZFNet is

greater. However, it underfits the more challenging malignant lesions due to the lower-level features

extracted. On the other hand, VGG16 extracts higher-level features which enables it to outperform

ZFNet in detection of the malignant lesions but it underfits benign lesions leading to poor performance

in the same. Therefore, due to higher number of benign lesions in the test set, SSD300 with ZFNET

outperforms SSD300 with VGG16. Although the 1-stage detectors evaluated in this work are faster and

have higher performance, their performance for detection of challenging lesions are lower. Furthermore,

the dataset used in this work is small, limiting the generalizability of the results.

3.2.2.1 Adaptation of FRCNN

In recent years, FRCNN has been widely adapted for breast lesion detection in US images. These

methods adapt the network either through modifying the network architecture or modelling hyper-

parameters or both. In one such work, Zhang et al. [4] adapt FRCNN (pretrained VGG16 as the

backbone) by modifying, both, the network architecture and modelling hyperparameters with the aim

to improve the overall performance of the network for breast lesion detection in US images, focusing

particularly on improving detection of small lesions. Also, the final output of the network classifies the

detected lesion into one of three BI-RADS categories, namely category 2 (benign), category 3 (likely

benign) and malignant (category 4 to 6), in order to further assist the radiologists in their diagnosis.

Their work was conducted on a large dataset of size 3103 images collected from a hospital and

150 images crawled from the internet using “Scrapy+Selenium+Phantomjs” framework [4]. After

augmentation, the training set consisted of 6000 images and the test set consisted of 1200 images.

The boundary black marker region around the scan image was removed in both training and test sets.

Labelling was done so as to include 10% of the margin around the lesion in the GT box to utilise the

critical information contained in this region. In terms of network architecture, they made two major

changes. Firstly, convolution layers 2 and 4 of the base VGG16 network were fused so as to introduce
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lower-level features such as edges from convolution layer 2 to the higher-level features of convolu-

tion layer 4. Secondly, an additional RPN was utilised. The additional RPN uses the feature maps

from the fused convolution layer 4 while the standard RPN uses feature maps from convolution layer 5.

In terms of the modelling hyperparameters, test proposals were reduced to 200 in line with lower

number of objects in an US image and aspect ratio of anchor boxes were modified to 1:1, 3:2, 2:1 in

line with the elliptical/circular shape typical of a breast lesion. During model testing, every image

was tested in its original size, zoomed at 0.6 and 1.5 and mirrored. The final output was the fusion of

results of all 4 images using a voting mechanism. The proposed model outperformed original FRCNN

in all categories of classes as well as overall performance. The proposed model had an overall mAP

of 0.913 surpassing original FRCNN with mAP 0.861. However, the modified version had a slightly

slower speed of 4.11 FPS compared to that of the original at 4.68 FPS.

When compared to YOLOv3, a 1-stage detector, their model outperformed by 0.071 overall mAP.

But, YOLOv3 had a higher speed of 15.6 FPS. Compared to YOLOv3, detection of smaller lesions

was 8.2% better in their modified version of FRCNN along with higher IOU of the output detections.

This is evidence of the higher accuracy of 2-stage detectors in detection of challenging cases found in

US images. However, this method has two main drawbacks. Their images were all high-quality (high

resolution), including ones crawled from the internet. Secondly, these images were collected from a

single hospital. Use of images from multiple hospitals helps analyse the generalisation capabilities of

a network since these images would have significant differences.

In a similar, more recent work, Yap et al. [132] adapted FRCNN for breast lesion detection in

US images through modifications of modelling hyperparameters. This work proposed a novel 2-tier

transfer learning method which is suitable for small datasets. As the issue of small datasets is prevalent

in this field, their proposed 2-tier transfer learning step is an important contribution. In this work,

two datasets were used. Dataset A contained 306 images from 2001 whereas datasets B contained

163 images from 2012. Dataset B had relatively higher resolution images than dataset A. Inception-

ResNet-v2 is used as the FRCNN backbone in this work. Following modelling hyperparameters were

modified: anchor boxes updated to “64px, 128px and 256px” [132] and aspect ratio changed to 0.5,1,

and 1.5 [132], number of proposals reduced to 100 and NMS score threshold increased to 0.9 from
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the original value of 0.3. When trained and tested on the datasets individually, their proposed model

had the highest accuracy of 0.8892 and 0.831 in datasets A and B, respectively, outperforming a

FCN-AlexNet model. Compared to dataset A, all models had higher FPs and lower performance in

the new dataset B. This along with the small size of both datasets point towards poor generalisation

capability of the network.

3.2.2.2 Novel Methods

Apart from the adaptations of the FRCNN network, several works have proposed novel 2-stage detec-

tion networks for breast lesion detection in 2D US images. These methods were primarily designed

for overall high detection performance. Additionally, they employ one of the following two common

techniques to specifically ensure low FP detection. First strategy is the generation of a segmentation

map that is used as reference for removal of FPs in the output of the detector. Second technique is

the use of a separate network for further classification of the output of the detector.

One of such notable works in this area is the novel 2-stage detector proposed by Huang et al.

[133] to detect breast lesions in 2D US images and classify them in one of five BI-RADS categories

(3, 4A, 4B, 4C and 5). Their detector consists of two sub-networks, namely, ROI-CNN and G-CNN.

The input image is first processed through the ROI-CNN, which is the first stage of their detection

network. ROI-CNN outputs a segmentation map indicating potential lesion locations referred to as

regions of interest (ROI). Based on the segmented map, the background regions of the input US image

are masked, leaving only the potential lesion regions. This masked image is then sent to the second

stage, which is the G-CNN network, for further classification of the potential lesion regions into one of

the five BI-RADS categories or background. ROI-CNN is a fully convolutional network (FCN) based

on VGG16 with new layers added to efficiently concatenate lower-layer features with those of the

higher-layer whereas G-CNN is an 18-layer encoder network. They also use refinement mechanisms

based on C-V level sets to ensure high quality of the output of ROI-CNN.

In this work, a large dataset of 2238 images, resized to 228x228, was utilised. Dataset augmenta-

tion was performed separately for the two stages of the network. The proposed model had an average

accuracy of 0.934 in the other four categories whereas category 4B it dropped to 0.735. This drop in

performance for lesions of 4B BI-RADS category was attributed to the relatively smaller number of
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these lesions in the dataset as well as their challenging nature. The two main drawbacks here is the

lack of comparison to other 2-stage detectors and no information on the computation time. Although

this performance is reliably high, the use of two large networks might render this network computa-

tionally slower.

Tao et al. [134] address this issue of large network size by proposing a novel 1-stage model that

combines the two stages (ROI generation and classification). In particular, both stages use a common

feature extraction network. This model consists of three sub-networks, base-net, seg-net, and cls-net

[134]. Base-net generates feature maps for the input US image which is used by seg-net to generate

a segmentation output containing ROI. Output of the seg-net is sent through to this cls-net which

classifies the ROI regions as benign or malignant. Feature maps from four layers of the base-net are

used to create cls-net. The first feature map extracted from base-net is concatenated with the output

of seg-net. Thus, only the ROI regions output by seg-net are processed in cls-net. Anchor boxes are

used at five stages in cls-net. The size and aspect ratio of these anchor boxes varies with respect to

the receptive field of that layer as well as the lesion size and aspect ratio. A total of 4753 anchor boxes

were used.

This work uses a large dataset of 2280 images. Overall, their proposed network method outper-

formed SSD with highest F-measure of 90.78% and a small drop in computation speed. SSD had a

detection time of 0.016s whereas their proposed model had a speed of 0.111s. Additionally, they ex-

perimentally prove the reduction in FPs due the use of cls-net. To address the lack of large annotated

US datasets (where the GT lesion is provided by experience radiologists), numerous works propose

the use semi-supervised learning where the model is trained with a combination of annotated and

unannotated images [135, 136].

In summary, despite the advantage of lower computation time, 1-stage detectors have poorer per-

formance than 2-stage detectors in detection of breast lesions in US images, especially challenging

cases. FRCNN is a popular method used for this application. This network was originally designed

for object detection in natural images. To adapt this network for breast lesion detection in US images,

two main categories of changes are made. First, the network architecture is adapted to improve de-

tection of breast lesions such as the introduction of a secondary RPN network. Second, the modelling
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hyperparameters are adapted, most common being anchor boxes and number of test proposals. Most

methods perform both types of modifications for improving overall performance as well as reduction of

FPs. These modifications show reliable performance of the FRCNN network after these modifications,

outperforming 1-stage detectors like YOLOv2 and SSD. However, they have two major drawbacks.

Firstly, the experimental evaluation of the proposed modifications are not provided. Thus, the impact

of individual modifications on the overall performance and/or FP reduction is unknown. Secondly,

certain methods use small to medium sized datasets for their evaluation which raises concerns regard-

ing the generalisation capabilities of these networks on large datasets, collected from different hospitals

and US machines.

We address these drawbacks in Chapter 5 through a comprehensive evaluation of the modelling

hyperparameters of the FRCNN network when used for breast lesion detection on our large dataset

of US images collected from multiple hospitals in different countries. Based on this investigation,

we design an adapted FRCNN model which outperforms the original FRCNN through considerable

reduction in FPs. Both modified FRCNN methods as well as novel detectors developed specifically for

breast lesion detection in US images do not specifically address the prevalent issue of FP detections.

We address this gap through our novel U-Detect and U-DetectH methods proposed in Chapters 6 and

7, respectively.

3.3 Lesion Detection of Other Cancer Types on Various Modalities

The four stages of traditional methods of lesion detection were previously described in Section 3.2.

This section focuses on the feature extraction and classification methods used for lesion detection

in images generated by various modalities. As seen with methods developed for breast lesion detec-

tion, due to the increased complexity of images, it is common practice to extract a combination of

morphological and textural features for lesion classification. For instance, Byra et al. [137] extract

22 morphological and textural features to classify breast lesions in mammograms using SVM. These

features include 5 shape related features, 3 features measuring sharpness of the edge and 14 GLCM

texture features. Performance of the SVM classifier was compared to that of novel strict two-surface

proximal (S2SP) classifiers. Both these classifiers had a high classification accuracy of around 0.95

when trained with features selected using FLDA. Similarly Al-Dhabyani et al [124] use 20 handcrafted
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features including 12 based on shape, 8 on wavelet local maxima were used to classify thyroid lesions

using SVM. The SVM had higher classification accuracy of 0.96 in comparison to a probabilistic neu-

ral network which had a comparatively lower accuracy of 0.91. Several works adapt the standard

feature extraction methods in order to improve classification accuracy. For example, Han et al. [138]

successfully adapted GLCM for improved characterisation of breast lesions in mammograms. Use

of their improved GLCM resulted in overall higher classification accuracy along with requiring less

computation time .

As described in the Section 2.2.1 of Chapter 2, DL methods have gained popularity due to their

advantages over handcrafted features. Han et al. [125] propose a CNN model to classify breast lesions.

In their work, the higher classification accuracy of the DL based model in comparison to the traditional

methods is experimentally proven. Zhu et al. [139] propose generic deep CNN models developed for

classification of breast and thyroid lesions in US images. These networks were pretrained on natural

images and transfer learning was performed to adapt the network for this domain. With the same

parameters used for thyroid and breast classification networks, both models had high classification

accuracy of 86.5% in the thyroid dataset and 89% in breast dataset. Furthermore, it was also ex-

perimentally shown that the use of the classification model trained for classifying thyroid lesions was

also effective in the classifying breast lesions with high sensitivity and specificity. Their models also

outperformed three radiologists.

Many works use a combination of handcrafted and DL features to combine their advantages and

achieve high classification accuracy. For instance, Ciritis et al. [140] use HOG and LBP along with

features extracted by a VGG-F model to classify thyroid lesions in US images. A novel method of

feature voting was used for fusion of these features. Compared to models using features extracted from

a single method, their model had the highest classification accuracy of 0.931 especially in challenging

malignant lesions on a dataset of 1037 images. In another such method proposed by Zhuang et al.

[141], handcrafted features relating to shape, size and texture of the breast lesion were utilised along

with features extracted from VGG19. This method had high classification accuracy in detection of

breast lesions in images from three modalities, US, DCE-MRI and FFDM.

In recent years, DL based detection networks that combine the three stages of proposal generation,
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feature extraction and classification have become more popular owing to their better generalisation

capabilities and robustness as described in Section 3.2.2. FRCNN is one of the popular methods used

in detection of lesions in images from different modalities. Like with breast lesion detection in US

images, here too the original FRCNN network is modified to adapt it for the lesion detection. For

example, Zhuang et al. [142] use deformable convolution layers in the backbone network of the FR-

CNN model to improve detection of different sizes and shapes of lesions. Additionally, to specifically

improve detection of small lesions, a multi-scale FPN, designed using NAS, was also utilised. Use of

NAS-FPN increased FP per image (FPI) in one dataset in comparison to that of the original FRCNN

(from 0.0277 to 0.0327 in the best case). But there was an increase in true positive rate (TPR) and

a notable improvement in detection of small lesions. An et al. use the FRCNN model with Inception

v2 as the backbone network for detection of carotid plaque in US images. Several modelling hyper-

parameters were also modified. This adapted FRCNN model had mAP of 58.62% and high average

precision of 91.02%. The aim of this method was to be one of the pioneer research in this domain and

provide fundamental knowledge for further development in this domain.

A recent work by Liu et al. [143] on thyroid lesion detection in ultrasound images, FRCNN was

used with ResNet50 backbone along with FPN. Here, anchor boxes were adapted for each level of the

FPN output in accordance with size and aspect ratio of the lesions in their dataset. Furthermore, to

improve classification performance of the base network, they introduced a cost matrix applied to the

classification loss of the base network. This cost matrix heavily penalised misclassification of benign

and malignant lesions as background and had a smaller penalty for misclassification of benign lesions

as malignant. These modifications improved mAP from 0.938 of original FRCNN with FPN to mAP

of 0.947 of their proposed model. Additionally, they utilised a modified ZFNet for further classification

of the final detections of the modified FRCNN model to further improve the classification of lesions.

Their proposed modified ZFNet model outperformed 5 radiologists in sensitivity, specificity as well as

accuracy. Similarly, FRCNN was modified for lesion tracking in US images by Igarashi et al. [144].

Here, the final output was taken from the RPN and the base network’s classification and bounding

box regression branches were removed. This was done to reduce computation time and provide overall

stability in the detections between consecutive frames. Although these modifications reduced overall

F-measure, localisation was improved along with reduction in instability between frames and compu-

tation time.
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Li et al. [145] proposed a FRCNN model, modified for thyroid lesion detection in ultrasound

images. Here, ZFNet is used as the base network. To improve detection of small lesions, feature maps

of layers 3 and 5 were concatenated. The scaling ratio for this concatenation is learnt during training.

The concatenated feature map is then input to RPN. Choice of the layers to concatenate was done

through an extensive combination of up to 3 layers where the selected layers had the best perfor-

mance. A ‘spatially constrained layer’ [66] was used to stabilise the results. Original FRCNN with

ZFNet backbone had a TPR of 0.868 which was improved to 0.935 using their modifications. There

was also a reduction in FPR from 0.289 to 0.185 as well as false negative rate (FNR) from 0.132 to 0.07.

Ribli et al. [146] adapt FRCNN for breast lesion detection in MRI scans without architectural

changes. Here, the lower threshold for RPN’s positive sample selection was dropped from 0.7 to 0.5.

This was done due to the small size of lesions in MRI scans in comparison to the whole image. This

threshold helped increase the number of positive samples otherwise missed with the original threshold.

Also, the NMS threshold was dropped to 0.1 from 0.3 in the original FRCNN configuration. Their

modified FRCNN model had a high AUC of 0.95. Similarly, Akselrod et al. [147] modified FRCNN

for breast lesion detection in mammogram images. Modifications here involved resizing the input

image to 4000× 3000 and preprocessing this image to remove background and majority of the normal

tissue. This preprocessed image is then divided into grids. FRCNN processes individual grids for

lesion detection. Result is the concatenation of all grids to form the original (preprocessed) image.

This method had an average precision of 0.72. Although it did not outperform the original FRCNN,

their work adds valuable information in modification of this network.

Adaptation of Mask R-CNN has also gained popularity in this domain. An et al. [148] use Mask

R-CNN with FPN and soft-NMS was used for detection of breast lesions in CBIS-DDSM dataset.

The final mAP of this modified model of 0.66 was higher than that of the original Mask R-CNN

model by 0.55. Similarly, Abdolali et al. [149] also modified Mask R-CNN for detection of thyroid

lesions in US images. On the other hand, 1-stage methods, with or without modifications, were also

evaluated for lesion detection. For instance, Xie et al. [150] use SSD for thyroid nodule detection in

US images. On the other hand, Wu et al. [151] use an ensemble of 1-stage and 2-stage detectors for

kidney abnormalities detection. Their detection model consisted of three parts. First, the US image is
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selected in the first stage which is then passed to the second stage where the kidney is detected in the

US image and the last stage classified the detected kidney as normal or abnormal. First stage is based

on CNN and the second stage is an ensemble of three detectors (SSD, RetinaNet and RefineDet). The

final output is an aggregation of the outputs of these three models. Final classification stage is a novel

CNN proposed in this work. Their ensemble method had the highest TP of 98% and classification

accuracy of 94.67% on a dataset of 3772 abdominal US images.

3.4 Summary

This chapter presented an extensive review of the state-of-the-art object detection methods developed

for object detection in natural images as well as lesion detection in medical images with emphasis

on breast lesion detection in US images. In addition, we highlighted the methods developed for FP

reduction in all domains. In the review, the popularity of the FRCNN model for not only breast

lesion detection in US images but also lesion detection in medical images was evident. We also

highlight the following important gaps in the literature that are addressed in our work. Firstly,

the methods that adapt FRCNN model for breast lesion detection in US images provide insufficient

experimental evaluation of their modification and in some works, small to medium sized dataset

is used. We address these drawbacks in Chapter 5 where we study the impact of several modelling

hyperparameters on our large dataset of US images. The adapted FRCNNmodel designed through this

investigation successfully outperforms the original FRCNN model due to significantly lower number

of FP detections. Secondly, although novel methods of breast lesion detection in US images have been

developed, no method specifically focuses on FP reduction which is a common and important issue in

this domain. FP detections can result in unnecessary and painful checks including biopsy. Therefore,

in Chapters 6 and 7, we propose novel U-Detect and U-DetectH methods to address this gap.
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Chapter 4

Dataset and Experimental Setup

This chapter provides general preparation for the rest of the chapters in this thesis. The chapter details

the datasets and the experimental setup used in this research. Section 4.1 describes the ultrasound

images datasets used in this research including its collection, annotation and exploration. Section 4.2

details the experimental setup used for training and testing all models and presents the evaluation

metrics used to measure or analyse the performance of all models.

4.1 Breast Ultrasound Images Datasets: Collection, Exploration

and Annotation

A total of five datasets of 2D breast US images* have been collected and used in this study. For

simplicity purposes, the datasets are named as dataset A, B, C, D, and E. Datasets A, B, D, and E

were provided by our collaborator TenD AI Medical Technologies Ltd., Shanghai, China. Images in

these datasets were collected from multiple hospitals and generated using various US machine makers

including Siemens Oxana 2, Siemens S3000, Toshiba Apolio 500, GE Logic E9, and Philips Epic 7.

All images as well as hospital names were anonymised by TenD AI Medical Technologies Ltd. The le-

sion delineation (lesion boundary points or Region-of-Interest (ROI)) were annotated by experienced

radiologists of 10-20 years of experience manually with the assistance of a MATLAB software tool

provided by Zhu et al. [139]. While detecting the type of the lesion (benign or malignant) is outside

the scope of this study, a pathology report that confirms the histopathological assessment of tissue

samples obtained via biopsy or surgery was used to confirm the nature of each lesion.

*The term image refers to breast ultrasound image unless specified otherwise.



ROI coordinates provided by the radiologists are used to construct ground truth (GT) boxes.

First, from the ROI coordinates of a lesion, the minimum and maximum values of x and y-coordinates

(xmin, xmax, ymin, ymax) are determined. These values represent the top-left corner (xmin, ymin) and

bottom-right corner (xmax, ymax) of the GT box. Each lesion is then described using the x- and y-

coordinates of the top-left corner, width (xmax − xmin + 1) and height (ymax − ymin + 1) of the GT

box. Dataset C is a publicly available dataset [152]. ROI in this dataset was provided in the form of

a mask image for each lesion. ROI coordinates were then extracted using this mask image. GT boxes

were then constructed using these ROI coordinates using the aforementioned steps.

When generated, US images include a black boundary around the scanned region. This boundary

region is referred to as black marker region and it contains information such as the settings of the US

machine, region being scanned, date and time, etc. Except dataset C, images in all datasets contain

the black marker region. It is worth mentioning that no preprocessing (e.g. image normalisation and

filtering) was conducted on any of the datasets except for removal of corrupt images that contained

artefacts occluding the lesion characteristics. To comply with the clinical research common practice,

images from one hospital (or medical centre) was used for creating the detection models, and images

independently sampled from other hospitals for external testing. Dataset A is used as modelling

dataset while datasets B-E are used solely as external unseen test sets. Further detailed description

of each dataset and its characteristics are provided in the remainder of this section.

Dataset A

This dataset consists of 1733 images in total, comprising 1070 benign and 663 malignant cases, collected

from two hospitals. All images in this dataset contain one lesion. Figure 4.1 shows samples of different

lesions from this dataset. Figure 4.1a shows a simple benign lesion with clear boundary; Figure 4.1b

shows a very small benign lesion, generally hard to detect due to its size; Figure 4.1c shows challenging

benign lesions where the lesion boundary is unclear and irregular and its texture is closely similar to

that of the background normal tissue; Figure 4.1d illustrates the taller-than-wide nature of malignant

lesions; Figure 4.1e shows large malignant lesions with very unclear boundaries; and finally Figure

4.1f shows image sample that contains Doppler. Images with Colour Doppler were observed mostly in

malignant lesions. Samples in Figure 4.1 show that dataset A contains a large variety of images and

lesions. Therefore, it was selected as modelling dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Sample images from dataset A (Green box: ground truth box encompassing the lesion).
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Dataset B

Dataset B contains 150 images (100 benign and 50 malignant cases), collected from one of the same

hospitals as dataset A. Every image contains one lesion. Figure 4.2 shows sample benign and malignant

images cases from this dataset. Figure 4.2a and 4.2b show simple benign and malignant lesions from

this dataset; Figure 4.2c shows a challenging benign case with texture similar to that of the background

normal tissue and Figure 4.2d shows a challenging malignant case where the boundary of the lesion

is unclear and irregular.

(a) (b)

(c) (d)

Figure 4.2: Sample images from dataset B (Green box: ground truth box encompassing the lesion).

Dataset C

Dataset C is a publicly available dataset [152]. It consists of 349 benign and 177 malignant, totaling

to 509 images. Two machines were used to generate these images; LOGIQ E9 and LOGIQ E9 Agile

with ML16-15 D matrix linear probe at 1-5MHz frequency. All images were collected from Baheya
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Hospital for Early Detection & treatment of Women’s Cancer, Cairo, Egypt [152]. All ROIs were

provided by radiologists from the same hospital. These images contain 1 to 3 lesions per image. Here,

corrupt images where the lesion was covered with artefacts were removed.

Figure 4.3 shows samples of benign and malignant cases from this dataset. Dataset C has a

lot more challenging cases in comparison to other datasets. A considerable number of benign and

malignant lesions have unclear boundaries or very similar texture as the background tissue. Figure

4.3a shows a case with single benign lesion; Figure 4.3b shows an example of multiple benign lesions;

Figures 4.3c and 4.3d show challenging benign lesions that have unclear boundary or textures similar

to that of the background; Figure 4.3e shows a benign case with irregular boundary; Figure 4.3f shows

a case with single malignant lesion; Figure 4.3g shows a malignant lesion with unclear boundary with

taller-than-wide characteristic; and finally Figure4.3h shows a malignant lesion with texture similar

to the background normal tissue.

Dataset D

Dataset D comprises 383 benign and 170 malignant cases, a total of 553 images, collected from a single

hospital. All images contain one lesion. Figure 4.4 shows samples of benign and malignant lesions

from this dataset. Figures 4.4a and 4.4b show cases of benign and malignant lesions from this dataset,

respectively. Figures 4.4c and 4.4d show challenging benign and malignant cases. The majority of the

images in this dataset contain an additional doppler scan of the lesion such as the ones illustrated in

Figures 4.4e, 4.4f 4.4g, 4.4h, 4.4e, 4.4f, 4.4g and 4.4h.

Dataset E

Dataset E consists of 168 images in total, of which 72 are benign and 96 are malignant cases, collected

from a single hospital. These images contain one lesion. It is the only dataset where the number of

malignant lesions is slightly higher than that of the benign lesions. Figure 4.7 shows sample images

from this dataset. Figures 4.5a and 4.5b show simple benign and malignant lesions from this dataset;

Figure 4.5c shows a taller-than-wide malignant lesion and Figure 4.5d shows a challenging cases of

malignant lesions where the boundary is unclear.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Sample images from dataset C (Green box: ground truth box encompassing the lesion).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Sample images from dataset D (Green box: ground truth box encompassing the lesion).
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(a) (b)

(c) (d)

Figure 4.5: Sample images from dataset E (Green box: ground truth box encompassing the lesion).
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Lesion Characteristics

One of the main variations observed across different datasets is the size* of the image lesion. Dif-

ferences in the lesion size appearance in the image refers to several factors such as the physical size

of the lesion and the way the image is acquired (zoom in or out). Such variations are common and

our study sets no constraints on the image acquisitions. On the other hand, all the detection models

analysed in this research are anchor-based. As discussed in Chapter 3, majority of the lesion detection

methods adapt detectors developed for object detection in natural images for their application. The

predefined anchor boxes in these detectors are based on natural images. In order to adapt them for

breast lesion detection in US images, an understanding of the lesion size (height×width) and aspect

ratio (shape) is crucial.

Lesion size is the area (height×width) of the GT box tightly covering the lesion. For readability

and ease of visualisation, all lesion sizes are divided by 1000. Thus, a lesion of size 50 implies that

the actual size of the lesion is 50,000 pixels. Table 4.1 shows the overall number of lesions in each

dataset in different ranges of lesion sizes. As seen in Table 4.1, the vast majority of the lesions have

small sizes in the range of < 50. The number of lesions in the higher size ranges is comparatively lower.

Lesion Size Overall
(in 1000s) A B C D E

< 50 1227 127 372 440 99

[50, 100) 288 15 99 84 43

[100, 200) 182 7 45 28 26

≥ 200 36 1 10 1 0

Total 1733 150 526 553 168

Table 4.1: Number of lesions in different size range in all datasets.

To develop a deeper understanding, the distribution of benign and malignant lesions in these size

ranges is analysed. Figure 4.6 shows the distribution of benign and malignant lesions in all datasets.

In general, malignant lesions tend to be larger than benign lesions. In all datasets, the proportion of

benign lesions with size < 50 is much lower in malignant lesions. Overall, around 89% of the benign

lesions have size < 50 whereas only 48% of malignant lesions fall in this size range. On the other hand,

only 2.6% of benign lesions are large (size ≥ 100) whereas 20.5% of the malignant lesions fall in this

size range. Dataset B has the highest percent of small benign and malignant lesions. Dataset A has

*Size here refers to number of pixels.



the largest percent of large malignant lesions (around 28%). Dataset D has the second highest number

of small lesions. This is due to the nature of the scans in this dataset. Dataset D contains images with

the normal (B-mode) scan as well as doppler scan, side-by-side. Thus, even if a lesion is large enough

to cover the whole scan region, the overall size of the lesion (pixels) is small. Such a size difference

in benign and malignant lesions in US images is due to the following two reasons. First, generally,

benign lesions are smaller than malignant lesions. Secondly, it is common practice for clinicians to

capture enlarged images of malignant lesions for a clear visual of this lesion to ensure correct diagnosis.

Furthermore, all datasets (with the exception of dataset E) contain a larger number of benign

lesions than malignant lesions. Therefore, the overall distribution of the lesion sizes of these dataset

follows a distribution pattern closer to that of benign lesions. On the other hand, as dataset E contains

a larger number of malignant lesions, the size distribution of all lesions in this dataset has a similar

distribution as that of malignant lesions, with the lowest proportion of lesions being in the size range

of < 50. Designing anchor boxes and for deeper understanding of the performance of the detection

models as well as their development, aspect ratio is an important measurement. Aspect ratio is the

ratio of width and height of the GT box tightly covering the lesion. Table 4.2 presents the mean

aspect ratio of benign and malignant lesions in all size ranges. Overall, benign lesions have larger

aspect ratio than malignant lesions in the same size range. This is due to the nature of these lesions as

described in Section 2.1 in Chapter 2. Benign lesions are typically parallel to the surface of the skin.

As a result, the benign lesions generally appear ‘wider-than-tall’ in the US image (large aspect ratio).

On the other hand, malignant lesions are generally perpendicular to the skin surface and appear as

‘taller-than-wide’ in the US image. Thus, malignant lesions generally have smaller aspect ratio than

benign lesions.

Lesion Size Benign Lesions A.R. Malignant Lesions A.R.
(in 1000s) A B C D E A B C D E

< 50 1.73 1.66 1.84 1.81 1.72 1.47 1.61 1.44 1.54 1.53

[50, 100) 1.76 2.42 1.91 1.75 1.96 1.58 1.66 1.41 1.47 1.70

[100, 200) 1.73 1.53 1.64 2.01 2.75 1.68 1.35 1.51 1.34 1.63

≥ 200 1.48 - 1.66 2.23 - 1.60 1.37 1.34 - -

Table 4.2: Aspect Ratio (A.R.) of benign and malignant lesions in different size range in all datasets
(’-’ indicates no lesion in that size range was present).
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(a) (b)

(c) (d)

(e)

Figure 4.6: Distribution of benign and malignant lesion sizes in all datasets.
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In summary, this section presented the characteristics of lesions in our datasets. Particularly, size

and aspect ratios of the lesions were studied and presented as this provides critical information for

development and evaluation of detection models. Overall, the characteristics of the lesions in US

images reflect their biological characteristics. Benign lesions are generally smaller and have larger

aspect ratio than malignant lesions. Irrespective of the type of the lesion, larger lesions have smaller

aspect ratio. As seen throughout this section, the variety of lesions used in this research is large.

4.2 Experimental Setup and Evaluation Metrics

This section details the experimental platform, protocols and evaluation metrics used in this research.

All implementations are conducted on Intel(R) Xenon(R) Gold 6230R CPU with 64 bit OS and NVidia

GeForce. MATLAB 2020b is used to compose the experimental scripts. To determine the detection

accuracy, a 5-fold cross validation protocol is used. In each iteration, we split the US images in dataset

A into training and testing sets at a ratio of 80% to 20%. The 80:20 ratio was selected to strike a

balance between using a diverse set of images for model training while reserving a sufficient number for

thorough testing. The medical research testing protocol for external tests is followed by evaluating the

models that have been internally tested during the cross-validation. Following a detailed description

of evaluation matrices:

Detection Models: All detection models are evaluated using standard evaluation metrics of this

field. First, the quality of all output detections is computed using Intersection-over-Union (IOU).

IOU measures the degree of overlap between output box(es) and GT box(es) covering the lesion(s).

IOU is the ratio of the area of intersection between two both to the area of their union. Based on IOU,

the output detections are categorised as either true positive (TP) or false positive (FP). If a detection

has IOU ≥ 0.5 with the GT box, then it is considered as a TP detection. Thus, a TP detection

covers at least 50% of the lesion. An example of this is shown in Figure 4.7a. On the other hand, if a

detection has IOU < 0.5 with the GT box, it is considered a FP detection. The IOU threshold of 0.5

for categorisation of detections as TP or FP is a standard threshold used for evaluation of detection

models across all domains.

FP detections are further categorised as additional boxes or low IOU FPs depending on its IOU
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(a) (b) (c)

Figure 4.7: Types of output detections. (a) TP detection (b) TP detection with overlapping FP
detection. (c) TP detection with FP detections in background scan region ( additional boxes).

with GT box. Low IOU FPs have IOU in the range of (0, 0.5) whereas additional boxes have no overlap

with GT (IOU 0). Additional boxes typically cover background regions that have lesion-like texture.

Figures 4.7b and 4.7cprovide sample cases of low IOU FPs and additional boxes, respectively. If the

model generates multiple outputs for a single lesion, the output detection with highest confidence

score is considered as the main detection and all other detections are categorised as FP by default.

Depending on the IOU of the main detection with GT, it is categorised as TP or FP. If the image

contains > 1 lesion and the number of output detections exceeds the number of lesions, then the same

steps are followed. False negative (FN) cases are those where the model completely misses the lesion

(no bounding box was generated for the images).

After categorisation of all output detections, performance of the model is summarised using pre-

cision, recall and F-measure defined in Equations 4.1, 4.2 and 4.3, respectively. Precision represents

the proportion of correct detections (TP) from all the output detections generated by the model. A

high precision value indicates that a large majority of the output detections are TPs whereas a low

precision value indicates a considerable portion of the output detections are FPs. Recall represents

the proportion of objects (lesions) in the test set that were correctly detected by the model as TPs.

Thus, a high recall indicates that the majority of the lesions in the test set were correctly detected by

the model (TP) whereas a low recall indicates that a significant portion of the lesions were missed by

the model (FN). F-measure summarises the performance of the model to a single value. Both precision

and recall have equal impact on the final F-measure of the model.

Precision =
TP

(TP + FP )
(4.1)
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Recall =
TP

(TP + FN)
(4.2)

F −measure = 2× Precision ∗Recall

Precision+Recall
(4.3)

An important characteristic of a detection model is its computation time. In this work, compu-

tation time is the time required by a detector to fully process a single input image and generate the

output. As mentioned in Section 4.1, all models are trained on 5 folds of the dataset A. Of the five

trained models, the model with highest F-measure is selected as the best model.

Cluster analysis and evaluation:

In this research, k-means++ and x-means clustering are used. K-means++ clustering, used in Chapter

5 to cluster GT boxes, requires a predefined k which is the number of clusters to be formed. To

determine the optimal k, the elbow method is used. The elbow method is described in detail in

Section 2.2.3.2 Chapter 2. As an overview, distortion is the mean of the squared distance between

centroids and all samples in their respective cluster. The elbow method involves manually selecting

an optimal k from a range of k values on the basis of change in distortion. In our application, inspired

by YOLO-v2 [45], distance between two boxes is measured in terms of IOU as shown in Equation 4.4.

Thus, distortion is also measured in terms of IOU as shown in Equation 4.5.

d(box1, box2) = 1− IOU(box1, box2) (4.4)

distortion =

∑k
i=1

∑n
j=1 d(centroidi, boxj)

k
(4.5)

Here, n represents the total number of samples in the ith cluster. Thus, higher distortion indicates

better representation of the cluster by its centroid and vice versa. We refer to distortion as mean

IOU. Therefore, low values k have low mean IOU and vice versa. A graph is generated with k values

plotted on the x-axis and their respective mean IOU (distortion) values in the y-axis. In this graph,

the value of k where the mean IOU (distortion) value stabilises is selected as optimal k. Thus, a good

balance between number of clusters and representation of the dataset is achieved. X-means clustering

is used in Chapters 6 and 7 to cluster test proposals generated by the RPN. This method of clustering
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requires a predefined range of k from kmin to kmax. The optimal k is automatically determined from

this range using Bayesian Information Criteria (BIC) described in Section 2.2.3.2 Chapter 2.

Classification Models: Images used for training and testing classification models are assigned GT

labels. The images are referred to as positive or negative samples based on the assigned GT labels.

First step in measuring the performance of a classification model is to categorise the test images as

TP, FP, FN or true negative (TN) based on labels output by the model. If a positive or negative

sample is correctly labelled as positive or negative by the model, then the image is categorised as TP

or TN, respectively. On the other hand, if the positive or negative sample is incorrectly labelled as

negative or positive by the model, then the image is categorised as FP or FN, respectively. After the

test images are categorised, the model’s performance is measured using accuracy, specificity, precision,

recall and F-measure.

Accuracy of a classifier is defined in Equation 4.6. It represents the proportion of test images that

were correctly labelled by the classifier. Specificity, defined in Equation 4.7, represents the proportion

of negative samples that were correctly classified by the model. Precision, recall and F-measure are

defined in Equations 4.1, 4.2 and 4.3, respectively. Precision of a classification model indicates the

proportion of true (GT) positive samples out of all the samples that the model labelled as positive.

Thus, 80% precision of a model indicates that 80% of the true positive samples were correctly labelled

by the model. Recall of a classification model indicates the proportion of positive samples correctly

identified by the model. Thus, a classification model with 80% recall indicates that 80% of the positive

samples were correctly labelled positive by the model. Finally, F-measure summarises precision and

recall values into a single performance value.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(4.6)

Specificty =
TN

TN + FP
(4.7)
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Chapter 5

Adaptation of FRCNN for Breast

Lesion Detection in 2D Ultrasound

Images

FRCNN is a deep-learning based 2-stage detector developed for object detection in natural images. As

detailed in Chapter 3, FRCNN is popularly adapted not only for breast lesion detection in US images

but also for detection of other types of lesions in images generated from different modalities. These

works adapt FRCNN by modifying the modelling hyperparameters and/or the network architecture.

Although the FRCNN network modified in these works have shown high performance for breast lesion

detection in US images, they have two drawbacks: insufficient experimental evaluation of the modifi-

cations and/or the use of a small to medium sized dataset.

Generally, FRCNN is adapted through modification of several modelling hyperparameters along

with the network architecture. However, the impact of the individual modifications on the overall

performance is not supported with sufficient experimental evaluation. Furthermore, a considerable

portion of these works use a small to medium sized dataset. Since US images collected from different

sources (US machines, hospitals, etc.) have significant variations, the generalisation capability of a le-

sion detection model is a crucial characteristic. In methods that use of small to medium sized dataset,

it is difficult to gauge the generalisation capabilities of the adapted FRCNN model proposed.
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Figure 5.1: Stages involved in the adaptation of FRCNN for breast lesion detection in US images.

We address these common drawbacks in this chapter through an investigation of the impact of

several modelling hyperparameters from both stages of the FRCNN model using our large dataset

of US images. Through this investigation, optimal values of each hyperparameter is determined and

used to design our adapted FRCNN model. The investigated hyperparameters and development of

the adapted FRCNN model are described in Section 5.1. To reduce the FP detections of adapted

FRCNN, two methods to improve the classification accuracy of both stages of the network were

investigated, namely, evaluation of state-of-the-art classification networks as the backbone network of

the adapted FRCNN model and impact of various training losses. Section 5.2 contains the details of

these investigations. Section 5.3 presents the experimental results of all investigations. Section 5.4

discusses findings relevant to the work presented in this chapter. Section 5.5 contains the summary of

the work presented in this chapter along with an overview of the main contributions and findings.

5.1 FRCNN Investigation

This section describes the investigation of the modelling hyperparameters of the FRCNN network

and its adaptation for breast lesion detection in US images. The architecture of the FRCNN network

along with training details is comprehensively explained in Section 2.3.1 of Chapter 2. Section 5.1.1

details the investigated modelling hyperparameters from both stages of the network and Section 5.1.2

describes the development of an adapted FRCNN model.

5.1.1 Optimal Modelling Hyperparameters Selection

This section describes the evaluated FRCNN modelling hyperparameters. First, the evaluated mod-

elling hyperparameter from the first stage (RPN) is described. This is followed by a description of the
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Figure 5.2: Investigated FRCNN modelling hyperparameters.

hyperparameters investigated in the second stage (base network) of the network. Figure 5.2 illustrates

the investigated hyperparameters.

5.1.1.1 Region Proposal Network (RPN) Hyperparameters

RPN is the first stage of the FRCNN network. It relies on a predefined set of anchor boxes for genera-

tion of proposals which are then passed to the base network for further processing. Anchor boxes are,

fundamentally, the first set of predictions of potential object size which is refined by the RPN and the

base network. Poor selection of anchor boxes negatively impacts the quality of proposals generated by

the RPN. As the base network is trained using RPN-generated proposals, the low quality of proposals

has a negative influence on the base network’s training. Furthermore, the base network relies on the

test proposals generated by the RPN during model testing. Therefore, low quality of these proposals

would severely limit the detection performance of the base network and, consequently, the whole net-

work. Therefore, selection of the anchor boxes has a significant influence on the overall training and

performance of the model. Thus, their impact is studied in further detail.

We investigated four sets of anchor boxes. First, the default anchor boxes of the FRCNN model,

with scales {8, 16, 32} and aspect ratios {1:1, 1:2, 2:1}, are studied. Since the size of breast lesions

is relatively smaller in comparison to objects in natural images, anchor boxes of scale 1 and aspect

ratio {1:1, 1:2, 2:1}, are studied. These anchor boxes are referred to as fundamental anchor boxes.

To include a larger variation of potential lesion sizes, the original and fundamental anchor boxes are

combined to form a new set of anchor boxes referred to as combined anchor boxes [153].
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The aforementioned three sets of anchor boxes are manually estimated based on our knowledge

of the objects (lesions). To automate the anchor box estimation process, we used k-means++ clus-

tering [154]. Anchor boxes estimated using this method are referred to as k-means++ anchor boxes

[153]. This method of automatic estimation is inspired by YOLOv2 [45] where k-means clustering

is used to automatically estimate anchor boxes for object detection in natural images. To compute

k-means++ anchor boxes, all GT boxes from the modelling dataset (dataset A) were used. The GT

boxes are defined by their heights and widths. In other words, the input to the k-means++ cluster-

ing is the height and width of all GT boxes. K-means++ requires a predefined value of k. Here, k

centroids represent the k estimated anchor boxes. Optimal k is manually determined using the elbow

method described in Section 4.2 of Chapter 4. For this, k = [1, 30] with increments of 1 were evaluated.

Optimal k selected using the elbow method provides a good balance between generalisation and

computation cost is achieved. Higher k values a relatively high mean IOU i.e. a very good represen-

tation of the boxes in the dataset. However, the model trained with these anchor boxes will overfit

on the modelling dataset and will not generalise well on other datasets. Also, the computation cost

increases with an increase in the number of anchor boxes as the RPN is required to process through

a higher number of anchor boxes. Alternatively, low k values have a relatively low mean IOU, i.e.

inadequate representation of the dataset, but the computation cost will be low due to lower number of

anchor boxes. Selection of optimal k for this dataset is presented in Section 5.3.2. To the best of our

knowledge, no other work in this field has utilised this method of automated anchor box estimation

for breast lesion detection in US images.

5.1.1.2 Base Network Hyperparameters

This section details the investigated modelling hyperparameters of the base network which is the sec-

ond stage of the FRCNN model. This includes selection of samples for training the base network,

number of training proposals, and number of test proposals.

Training Samples: Base network is trained with proposals generated by the RPN. Selection of

training samples directly influences the classification accuracy of the base network, in turn impacting

the number of FPs generated by the model. In the original configuration, proposals with IOU ≥ 0.5

with GT are considered as positive training samples and those with 0.1 ≤ IOU < 0.5 are considered
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as negative training samples. Proposals with IOU 0 are used for hard-example mining. Since these

IOU thresholds were selected for object detection in natural images, the impact of a range of these

thresholds when used for breast lesion detection in US images is studied.

Positive samples train the network to correctly identify objects (lesions) whereas negative samples

train the model to correctly identify background regions. The original FRCNN uses a broad range for

selection of the training samples. However, when used for breast lesion detection in US images, this

range proved ineffective as experimentally shown in Section 5.3.1 due to the textural similarity be-

tween background regions and lesions. We hypothesise that use of a smaller IOU range for selection of

both positive and negative samples would improve the network’s ability in differentiating lesions from

background regions. Therefore, following IOU thresholds were evaluated for selection of positive train-

ing samples: [0.6, 1], [0.7, 1] and [0.8, 1] with negative sample selection maintained at the default IOU

threshold of [0.1, 0.5). The original FRCNN model is trained with IOU 0 samples for hard example

mining. However, when utilised for breast lesion detection in US images, it was experimentally found

that the performance of the network improved without the use of hard-example mining as shown

in Section 5.3.1. Thus, for this evaluation of negative sample selection, hard example mining was

not used. Following IOU threshold ranges were evaluated for negative sample selection with the pos-

itive sample selection threshold maintained at its default values of [0.5, 1]: [0, 0.2), [0, 0.3), and [0, 0.4).

Number of Training Proposals: In the original FRCNN model, the base network is trained with

2000 RPN-generated training proposals. This high number was selected according to the larger num-

ber of objects typically found in a natural image. In comparison, the average number of objects

present in one breast US image is much lower. Therefore, lower values of these training proposals,

specifically 300 and 1000, were studied.

Number of Test Proposals : During model testing, RPN in the original FRCNN model forwards

its top 300 test proposals to the base network for further refinement. This large number is set for

the same reason as the large number for training proposals, i.e., the comparatively higher number of

objects found in a typical natural image. Since the average number of objects is much lower in US

images, a lower number of test proposals, specifically 100, was investigated.
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5.1.2 Adapted FRCNN Development

Throughout the investigation of modelling hyperparameters described in Section 5.1.1, optimal values

for each hyperparameter were selected. This selection was done on the basis of overall performance

on a smaller modelling dataset referred to as dataset A-small which is a subset of dataset A. Dataset

A-small is described in further detail in Section 5.3. Selected optimal values are presented in Section

5.3.3. The FRCNN model designed with the selected optimal values is referred to as adapted FRCNN.

5.2 Classification Accuracy Enhancement

FPs output by the adapted FRCNN model are caused due to the following two drawbacks: incorrect

classification of FP proposals by both stages of the FRCNN model and incorrect retention of FP

proposals by NMS (post-processing method used in both stages of FRCNN). This chapter addresses

the issue of poor classification accuracy of the RPN and base network. Particularly, the following two

strategies were evaluated. Firstly, multiple state-of-the-art classification networks as the backbone

network of the adapted FRCNN model are evaluated. Secondly, training losses aimed at reducing

hard samples responsible for FP detections are investigated. In particular, these losses are utilised in

the RPN of the adapted FRCNN model in order to improve the overall quality of proposals passed to

the base network which would in turn reduce the number of FPs generated by the model. Both these

methods are described in this section.

5.2.1 Backbone Networks

The default backbone network in the FRCNN model is VGG16 which is also used in adapted FRCNN.

Both RPN and base network rely on the features extracted by this backbone network for their tasks

of classification and bounding box regression. Additionally, the accuracy of the backbone network has

a strong influence on the classification accuracy of the base network. Therefore, various classifiers are

evaluated as the backbone of the adapted FRCNN model. These include ResNet50 [30], ResNet101

[30], Inception-ResNet-v2 [31] and Inception-v3[155]. These selected networks have high accuracy in

classification of natural images and have also proven to have similar high classification and detection

performance in medical images. When utilised in the adapted FRCNN model, these networks are

pretrained on ImageNet dataset for classification of natural images.

74



5.2.2 Network Training Loss

RPN and base network contain a classification and bounding box regression branch. FRCNN uses

binary cross-entropy (CE) for classification task and smooth-L1 loss for bounding box regression task

in both these stages. Final loss of the network is the sum of all four losses (classification and regres-

sion loss of the RPN and base network). Training loss of classification and regression branches are

completely independent of each other which causes the following scenario: a high IOU proposal that

is correctly assigned a high classification score is transformed into a FP due to the regression branch

output transforming it to a low IOU detection (IOU < 0.5). The output detection in this scenario

is a low IOU FP with high classification score. Furthermore, loss of all training samples are assigned

equal weights, without more focus given to hard samples.

To address these issues, PISA and CARL losses [90] are evaluated. PISA loss is used in the clas-

sification branch whereas CARL loss is used in the regression branch. In essence, PISA loss improves

classification accuracy by assigning larger weight to training loss of hard samples and smaller weight

to that of the easy samples. Since FPs are hard samples that are misclassified, PISA loss is used

to directly address these cases. On the other hand, CARL loss is used in the regression branch. It

combines the classification and regression branches by introducing the classification score assigned

to the training sample in the loss of the regression branch such that poor transformation of a high

scoring classification output is assigned higher weight. For instance, if a TP proposal that is assigned

a high classification score is converted to a low IOU FP proposal after application of the regression

output, then the regression loss of this sample is assigned higher weight than a correct transformation

of the same sample. In this manner, CARL loss addresses FP detections caused due to the disconnect

between classification and regression branches.

Table 5.1 shows the evaluated combinations of losses. Additionally, PISA negative is studied to

improve the classification of hard negative samples that result in FPs. Two variations of PISA negative

are also evaluated. These variations are based on the changes in γ value in the Equation 5.1 [90] for

weight computation.

wi = ((1− β)ui + β))γ (5.1)
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Loss Classification Loss Regression Loss
Default Cross Entropy Smooth L1

PISA + Smooth L1 PISA Smooth L1

CE + Smooth L1 Cross Entropy Smooth L1

PISA + CARL PISA CARL

Table 5.1: Investigated training losses for RPN of adapted FRCNN model.

Here, β is a bias value responsible for determining the smallest weight assigned to training loss of

samples, ui is the assigned rank of the ith sample, γ determines the degree of importance given to a

sample and wi is the weight assigned to the loss of the sample. In this investigation, γ is increased to

1 and 1.5 to increase the importance given to hard negative samples i.e. FP proposals. These training

losses are only investigated in the RPN of the adapted FRCNN model in order to improve the quality

of training and test proposals. Higher quality of training proposals positively impact the classification

accuracy of the base network. During model testing, the reduction of FP proposals sent through to

the base network would in turn reduce the number of FPs generated by the model.

5.3 Experimental Results

This section contains experimental results of the investigations described in Sections 5.1 and 5.2.

First, performance of the original FRCNN model is presented in Section 5.3.1. This is followed by

the investigation of the modelling hyperparameters in Section 5.3.2. FRCNN models trained for the

study of the modelling hyperparameters in Section 5.3.2 are trained with default values of all other

modelling hyperparameters with the exception of the modelling hyperparameter being studied. After

the investigation of the modelling hyperparameters and the selection of their optimal values, Section

5.3.3 details the performance of the adapted FRCNN model which is designed using the selected op-

timal values. Sections 5.3.4 and 5.3.5 present the impact on the classification accuracy of the adapted

FRCNN model with change in the backbone network and training loss, respectively. Performance of

the adapted FRCNN model is then compared to that of several state-of-the-art detection methods in

Section 5.3.6.

FRCNN models in Sections 5.3.1, 5.3.2 and 5.3.3 are trained on 5 folds of dataset A-small. This

dataset is a subset of the dataset A described in Section 4.1 of Chapter 4. Dataset A-small consists of

524 images (262 benign and 262 malignant cases). Performance of the models in these datasets was
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used for selection of optimal hyperparameters and design of the adapted FRCNN model. Furthermore,

in these sections, datasets B and C are used unseen test sets. Reproducibility of the selected optimal

values on larger dataset (dataset A) is presented in Section 8.1 in Chapter 8. FRCNN models in the

following Sections 5.3.4, 5.3.5 and 5.3.6 are trained on 5 folds of dataset A while datasets B, C, D

and E are used as unseen external test sets as described in Section 4.1 of Chapter 2. Unless otherwise

specified, all performance values are an average over 5-folds.

All FRCNN models are trained in an end-to-end fashion using the following common modelling

hyperparameters: weights are initialised using normal distribution; models are trained for a total of

10 epochs with the initial learning rate set to 0.001 which drops by a factor of 0.1 at the 7th epoch;

weight decay is set to 0.0005; momentum of 0.9 is used; minibatch size of RPN and base network

is set to 256 and 128, respectively; stochastic gradient descent is used as the optimization algorithm

for model training. If a FRCNN model is trained or tested with modelling hyperparameters differing

from that of the original FRCNN, it is highlighted in this section.

5.3.1 Original FRCNN for Breast Lesion Detection in US Images

Table 5.2 shows the performance of the original FRCNN model on datasets A-small, B and C. Overall,

this model has high recall due to the high number of detected lesions. On the other hand, due to the

high number of FPs, its precision is considerably low. Thus, despite its high recall, the F-measure of

this model is low due to its low precision.

Model Dataset A-small Dataset B Dataset C
P R F P R F P R F

Original 55.60 98.98 70.89 54.51 99.09 70.25 42.84 86.08 57.04

Table 5.2: Precision (P), Recall(R) and F-measure (F) of original FRCNN model.

The correct detections of this model (TPs) generally have high IOU, typically in the range of

[0.7, 0.8), as shown in Figure 5.4. Generally, the output detections of the original FRCNN model

contain one high IOU TP along with at least one FP. The FPs of this model can be divided into two

main categories; low IOU FPs (FPs with IOU (0, 0.5) and additional boxes (FPs with IOU 0 or cov-

ering small regions of a large lesion with low IOU). Figure 5.3 illustrates both these FP cases. Figure

5.5 shows the IOU of FPs with GT lesion(s) in all three datasets. As seen in this figure, out of the
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Figure 5.3: FPs generated by original FRCNN (Green box: Ground truth, red boxes: output detec-
tions).

total FPs generated by the original FRCNN model, around 80% are additional boxes (FP detections

with IOU0). Typically, these additional boxes are scored lower than the main TP detection with rare

exceptions.

Figure 5.4: IOU distribution of TP detections of original FRCNN.

Performance of the original FRCNN model is relatively lower in dataset C due to the nature of

images in this dataset. Ths dataset contains a considerable number of challenging lesions that have

background-like texture, an example of which is shown in Figure 5.6. These lesions are missed by the

original FRCNN model resulting in its relatively lower recall in this dataset. Also, like other datasets,

the low precision here is also due to the high number of FPs, specifically additional boxes. The images

in this dataset are commonly populated with lesion-like regions in the background normal region of

the scan. Examples of such images are shown in Figure 5.6. Additionally, in some images, one GT
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Figure 5.5: IOU distribution of additional boxes (FPs) with ground truth in original FRCNN.

Figure 5.6: Original FRCNN performance in dataset C (a) FPs in lesion-like regions of the background
scan area (b) FP due to multiple detections in large lesion (c) Lesion with background like texture
missed by the model (FN). Green boxes: Ground truth. Red boxes: output detections.

box contains two lesion-like regions as shown in Figure 5.7. In these cases, the original FRCNN model

detects the two separate lesion-like regions as individual lesions, thereby increasing the number of FP

detections in this dataset.

5.3.2 Modelling Hyperparameters Selection

In this section, performance of various modelling hyperparameters of the RPN and base network as

well as selection of their optimal values is presented.
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Figure 5.7: Detections by adapted FRCNN (red boxes) for lesion-like regions in ground truth box (in
green) from dataset C.

5.3.2.1 RPN: Anchor Box Selection

This section presents the impact of four sets of anchor boxes on the overall performance. Besides the

anchor boxes, all modelling hyperparameters of the FRCNN models were maintained at their default

values. The evaluated anchor boxes include original, fundamental, combined and k-means++ anchor

boxes. Original, fundamental and combined anchor boxes were selected manually whereas k-means++

anchor boxes were automatically estimated using GT boxes of modelling dataset (dataset A-small).

As described in Section 5.1.1, k values in the range of [1, 30] with increment of 1 were evaluated. The

elbow method is used to select optimal k from this range and mean IOU is the distortion measured

for each evaluated k. Detailed explanation of the elbow method and mean IOU is provided in Section

2.2.3.2 Chapter 2. The distribution of mean IOU versus a range of k values is shown in Figure 5.8.

In this figure, ‘number of anchors’ represent k values. For low k values, the mean IOU is low which

increases drastically as the k increases. After k = 5, the change in mean IOU is relatively smaller. At

k = 5, the mean IOU is 0.75. As the k increases, the mean IOU increases further in the range of 0.8

to 0.9. Thus, based on the elbow method, k = 5 is selected as optimal as it provides a good balance

between generalisation and computation cost.

Table 5.3 shows the performance of all anchor boxes on dataset A-small and unseen test sets

(datasets B and C). Figure 5.9 shows the change in the number of TP, FP and FN with the change

in anchor boxes in datasets A-small and B. Change in TP, FP and FN in dataset C with change in

anchor boxes is shown in Figure A.1 in Appendix A. For brevity, FRCNN models are referred to by
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Figure 5.8: Mean IOU for various number of anchor boxes: Dataset A-small.

their anchor boxes. Overall, the fundamental anchor boxes have the highest F-measure, outperforming

all anchor boxes including original. This high F-measure is due to its high precision with a small drop

in recall. On the other hand, combined and k-means++ anchor boxes have high recall. But due to

their overall low precision, the F-measure of these models drops below that of the original anchor boxes.

Dataset Anchor Box Precision Recall F-measure

A-small Original 55.60 98.98 70.89
Fundamental 77.55 96.32 85.77
Combined 50.19 99.57 66.27
K-means++ 45.78 99.78 62.60

B Original 54.51 99.09 70.25
Fundamental 77.63 93.12 84.66
Combined 42.90 99.69 64.41
K-means++ 45.51 99.54 62.35

C Original 39.28 87.91 54.07
Fundamental 52.56 82.89 64.30
Combined 34.65 89.51 49.72
K-means++ 30.78 88.84 45.51

Table 5.3: Performance of various anchor boxes (selected optimal value in bold).

Fundamental anchor boxes have comparatively lowest number of TPs. However, due to the signifi-

cantly lower number of FPs, fundamental anchor boxes have around 17.66% to 29.99% higher precision

in comparison to all other anchor boxes. Compared to the original anchor boxes, fundamental anchor

boxes have 13.27% to 21.95% higher precision. On the other hand, due to the slightly higher number
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Figure 5.9: FRCNN performance with all anchor boxes.

of missed lesions (lower TP and higher FN), fundamental anchor boxes have 3.12% to 6.32% lower

recall compared to other models. As the overall drop in recall was much smaller than the improvement

in precision, the fundamental anchor boxes have 14.53% to 19.18% higher F-measure than all other

anchor boxes. Compared to the original anchor boxes, the F-measure of the fundamental anchor boxes

is 10.23% to 14.88% higher.

Combined and K-means++ anchor boxes have the highest recall due to the lowest number of

missed lesions i.e. highest TPs and lowest FNs. With combined anchor boxes, this is due to the

higher number of anchor boxes that fit lesions of varying sizes and shapes whereas with k-means++

anchor boxes, the high recall is due to the use of anchor boxes designed for breast lesions from GT

boxes. These anchor boxes have around 1.21% to 2.96% higher recall than the other two anchor

boxes. However, these anchor boxes have low precision due to the high number of FPs. Compared

to the original anchor boxes, combined anchor boxes have 4.63% to 11.61% lower precision whereas

k-means++ anchor boxes have 8.50% to 9.82% lower precision. Given this large drop in precision,

the F-measure of these anchor boxes is also lower than that of the original anchor boxes. Specifically,

combined anchor boxes have 4.91% to 8.01% and k-means++ anchor boxes have 10.52% to 11.71%

lower F-measure that the original anchor boxes.

In summary, use of a small number of anchor boxes designed for breast lesions led to a lower

number of FPs along with a small increase in missed lesions as there are fewer reference boxes to fit

a variety of lesions with different sizes and aspect ratios. On the other hand, use of larger numbers
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of anchor boxes such as combined anchor boxes improved the network’s classification accuracy for

challenging lesions but also caused incorrect classification of lesion-like background regions resulting

in high number of FPs. Thus, the selection of the anchor boxes should be done so as to establish a

good balance between the number of correct detections and FPs. Based on the performance on the

modelling dataset, fundamental anchor boxes are selected as optimal.

5.3.2.2 Base Network

This section presents the evaluation of following modelling hyperparameters of the base network:

training sample selection, number of training and test proposals. An important point to note here is

that only the mentioned hyperparameters are changed and all other hyperparameters are maintained

at their default values.

Training Sample Selection

This section details the impact of base network’s training sample selection on the overall performance

of the FRCNN model. All hyperparameters, except the IOU range of the positive/negative training

samples, are set to the default values used in the original FRCNN model. First, performance of the

FRCNN model with change in positive samples selection is presented which is followed by the perfor-

mance change due to change in negative samples selection.

Positive Sample Selection: Table 5.4 shows the change in performance with various investigated

thresholds for positive training samples selection. The change in number of TP, FP and FN for these

thresholds in datasets A-small and B is shown in Figure 5.10. Figure A.2 in Appendix A shows this

change in TP, FP and FN in dataset C. Positive samples help the classifier in differentiating between

lesions and background regions. With a smaller IOU threshold range for selection of positive samples

(where the lower threshold is increased and the higher threshold held constant at 1), the percentage of

lesion present in the positive training samples is higher. This leads to an improvement in the classifi-

cation of lesions as well as reduction in incorrect classification of background regions with lesion-like

texture.

Thus, as seen in Figure 5.10, as the IOU range decreases, the number of FPs also decreases.

However, use of a small IOU range also leads to a higher sensitivity of the model to the proportion
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of background region in the proposals. Therefore, proposals containing lesions as well as background

regions are incorrectly classified as background. Additionally, challenging lesions with background-like

texture are also incorrectly classified as background. Thus, as the range becomes smaller, the number

of missed lesions increases. After a certain point, the sensitivity of the model increases to the point

where all proposals are classified as background.

Dataset Positive Training Precision Recall F-measure
Sample Threshold

A-small [0.5,1] 55.60 98.98 70.89
[0.6,1] 64.82 98.55 77.60
[0.7,1] 81.77 84.88 82.96
[0.8,1] 0 0 0

B [0.5,1] 54.51 99.09 70.25
[0.6,1] 61.28 96.48 74.73
[0.7,1] 82.30 76.58 79.13
[0.8,1] 0 0 0

C [0.5,1] 39.28 87.91 54.07
[0.6,1] 45.63 81.59 58.19
[0.7,1] 60.48 53.82 56.72
[0.8,1] 0 0 0

Table 5.4: Performance of positive training sample selection thresholds (selected optimal value in
bold).

Figure 5.10: FRCNN performance with variations in base network’s positive training samples.

This is seen in the case of the model trained with an IOU range of [0.8, 1] for positive sample selec-

tion. This model is trained to only accept a maximum of 20% background region in the proposal for it
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to be classified as lesion. Although the RPN generates high IOU proposals, the number of proposals

with IOU ≥ 0.8 is small. Thus, this threshold of [0.8, 1] has no correct detections as all proposals are

classified as background. To summarise, as the IOU range for positive samples becomes smaller, there

is a reduction in FPs with a subsequent increase in missed lesions. Of the investigated IOU ranges,

[0.7, 1] has the highest F-measure. Compared to the model trained with default IOU range of [0.5, 1],

the model trained with IOU range [0.7, 1] has 26.17% higher precision and 14.1% lower recall resulting

in 12.07% higher F-measure. Based on the performance on the modelling dataset, [0.7, 1] is selected

as optimal since it has the highest F-measure.

In dataset C, [0.7, 1] threshold has a larger drop in recall than increase in precision. This is because

of the challenging lesions in this dataset. As shown in Figure 5.6, a considerable number of lesions in

this dataset have background-like texture. With a smaller threshold range, a larger number of these

challenging lesions are classified as background leading to an increase in missed lesions. In this dataset,

threshold of [0.6, 1] has the highest F-measure since it is comparatively less sensitive to background

regions and background-like lesions than the model trained with [0.7, 1] range. It is important to note

that, in this dataset, the [0.7, 1] range has second-highest F-measure of 56.72%, very close to 58.19%

F-measure of [0.6, 1] range based model.

Negative Sample Selection: Table 5.5 shows the change in performance with the change in nega-

tive sample selection thresholds. Figure 5.11 shows the change in the number of TP, FP and FN for

the investigated negative samples thresholds in datasets A-small and B. Figure A.3 in Appendix A

shows this change in dataset C. Negative training samples influence the base network’s accuracy in

classification of background regions in a similar manner as the positive samples influence classification

of lesions. The original FRCNN range of [0, 0.5) (samples with IOU 0 being used for hard example

mining) is quite broad. With this range, these samples contain up to 50% of the lesion. Due to the

similarity in texture of lesion and background regions, such a range causes incorrect classification.

Consequently, use of a smaller range (with the upper threshold reduced to smaller value and lower

threshold maintained at 0) improves the base network’s classification accuracy since these negative

training samples contain a much larger proportion of the background region than the lesion. There-

fore, the number of FPs is lower as the range becomes smaller.

85



Dataset Negative Training Precision Recall F-measure
Sample Threshold

A-small [0,0.2) 71.65 98.98 82.95
[0,0.3) 71.49 98.57 82.45
[0,0.4) 71.49 98.81 82.67
[0,0.5) 70.80 98.57 81.98
[0.1,0.5) 55.60 98.98 70.89

B [0,0.2) 72.82 95.26 82.52
[0,0.3) 71.86 95.95 82.06
[0,0.4) 70.87 95.57 81.32
[0,0.5) 72.35 96.45 82.51
[0.1,0.5) 54.51 99.09 70.25

C [0,0.2) 40.42 88.00 55.37
[0,0.3) 41.85 87.76 56.50
[0,0.4) 40.41 87.68 55.27
[0,0.5) 41.32 87.17 55.87
[0.1,0.5) 39.28 87.91 54.07

Table 5.5: Performance of negative training sample selection thresholds (selected optimal value in
bold).

Figure 5.11: FRCNN performance with variations in base network’s negative training samples

On the other hand, such a small range causes incorrect classification of lesions with background-

like texture leading to an increase in missed lesions. However, the increase in missed lesions is lesser

than the reduction in FPs. Therefore, as the range becomes smaller, the precision of the model

increases as shown in Table 5.11. Also, recall changes to a comparatively smaller degre. There-

fore, the overall performance of the model improves with the use of lower thresholds for selection of

negative samples. It is important to note here that the degree of reduction in FP with change in

the negative samples IOU range is smaller in comparison to that of positive samples. Based on the
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best performance of [0, 0.2) range on the modelling dataset with 16.05% higher precision than the

original FRCNN threshold and no change in recall, it is selected as the optimal negative threshold.

Similar performance is seen in dataset B. However, in dataset C, [0, 0.3) range has higher precision

and F-measure than the selected optimal threshold of [0, 0.2). The reason for this is similar to what

was seen for positive sample selection. Due to the nature of the lesions and the US images in this

dataset, a slightly broader range helps reduce the FPs more than a smaller range such as [0, 0.2). It

is important to highlight here that the overall performance of [0, 0.2) is only slightly lower than [0, 0.3).

Selection of Number of Training Proposals

Table 5.6 shows the impact of the number of training proposals on the overall performance. Figure

5.12 shows the change in the number of TP, FP and FN with the change in number of training pro-

posals in datasets A-small and B. Figure A.5 in Appendix A shows the change in TP, FP and FN

with change in the number of training proposals in dataset C. In these models, all hyperparameters

with the exception of the number of training proposals are set to their default value. The original

FRCNN model uses 2000 training proposals that were set in accordance to the high number of objects

in the natural images. However, when used for breast lesion detection in US images, use of 2000

training proposals led to a low performance due to the overall lower number of objects (lesions) in

an average US image. When reduced to 1000 training proposals, classification accuracy of the model

improves resulting in lower number of FPs. This is also accompanied with a small drop in the number

of correctly detected lesions. But this drop in the correct detections is much smaller than the drop in

the number of FPs.

Dataset Training Proposals Precision Recall F-measure

A-small 300 49.49 99.18 65.56
1000 58.88 98.79 73.43
2000 55.60 98.98 70.89

B 300 49.04 100.00 65.80
1000 53.96 98.91 69.75
2000 54.51 99.09 70.25

C 300 40.28 73.71 52.00
1000 40.90 86.81 55.52
2000 39.28 87.91 54.07

Table 5.6: Impact of various number of training proposals (selected optimal value in bold).
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Figure 5.12: FRCNN performance with variations in number of training proposals.

When the number of training proposals is dropped even lower to 300, the model’s classification

accuracy drops due to underfitting. Given the challenging nature of the breast US lesions, using a

small number of samples limits the variation in the training samples thus limiting its generalisation

capabilities. This causes poorer classification accuracy of the background regions resulting in higher

number of FPs. In the modelling dataset, use of 1000 proposals improved the precision by 3.28% than

the default 2000 training proposals of the original FRCNN model with only a small drop of 0.19% in

recall. Thus, due to higher precision, the 1000 proposals model has 2.54% higher F-measure than the

original FRCNN model. Use of 300 training proposals led to highest recall of 99.18% which is 0.19%

higher than that of the original model. However, due to a large drop in precision (6.11% lower than

the original model), it has 5.33% lower F-measure than the original model. Based on the performance

on the modelling dataset, 1000 training proposals is considered as optimal. In dataset B, use of 1000

training proposals had the second highest F-measure due to slightly lower precision than the original

model. In dataset C, the negative impact of small variation in the training set when using 300 training

proposals is amplified as evidenced through the lowest recall of the 300 training proposals based model.

Selection of Number of Test Proposals

This section details the impact of changing the number of test proposals on the overall performance

of the FRCNN model. Here, all FRCNN models are trained with default modelling hyperparameter

values. Table 5.7 shows the impact of 100 and 300 test proposals on the performance of original FR-

CNN trained for breast lesion detection in US images. Figure 5.13 shows the change in the number of

TP, FP and FN with the change in test proposals in datasets A-small and B. Figure A.5 in Appendix
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A shows the change in TP, FP and FN with change in the number of test proposals in dataset C.

Default number of test proposals in the original FRCNN is 300 which is in line with the number of

objects present in an average natural image. However, the average number of objects (lesions) in an

average US image is lesser in comparison. Therefore, when FRCNN is used for breast lesion detection,

out of the 300 test proposals generated by the RPN, a considerable portion are FPs which are passed

through to the base network. These FP proposals are also incorrectly classified by the base network

as lesions resulting in FP detections in the final output of the model.

Dataset Training Proposals Precision Recall F-measure

A-small 100 59.95 98.80 74.25
300 55.60 98.98 70.89

B 100 58.68 98.33 73.44
300 54.51 99.09 70.25

C 100 42.84 86.08 57.04
300 39.28 87.91 54.07

Table 5.7: Impact of number of test proposals on the performance of FRCNN (selected optimal value
in bold).

Figure 5.13: FRCNN performance with variations in number of test proposals.

The RPN typically assigns low classification scores to FP proposals. The higher scoring proposals

generally consist of high IOU TP proposals. Therefore, when the number of test proposals is reduced

to 100, only the 100 top-scoring (mostly TP) test proposals are sent through to the base network.

Thus, as the majority of the FP proposals are discarded at the RPN and not passed through to the

base network, the total number of FP detections in the final output of the model is also reduced.
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On the other hand, due to relatively poorer classification accuracy of the RPN, proposals containing

challenging lesions with background-like texture are also scored low. When all 300 test proposals are

sent through to the base network, they are correctly classified as lesions by the base network due

to its higher classification accuracy. However, when only the top 100 proposals are selected, these

challenging lesions are discarded at the RPN and thus missed by the network. Therefore, the number

of missed lesions (lower TP and higher FN) is higher when 100 test proposals are used. However, the

drop in the number of missed lesions is much smaller than the reduction in FPs as shown in Figure

5.13. Therefore, the model using 100 test proposals has 3.56% to 4.35% higher precision and 0.18% to

1.83% lower recall than the model using 300 test proposals. Thus, use of 100 test proposals resulted

in 2.97% to 3.36% higher F-measure than the default 300 test proposals. Based on its performance in

the modelling dataset, 100 test proposals is considered as optimal.

5.3.3 Breast Lesion Detection with Adapted FRCNN

Based on the investigation presented in Section 5.3.2, following optimal values of the evaluated hy-

perparameters were selected to design the adapted FRCNN model:

• Fundamental Anchor Boxes with scale 1 and aspect ratio {1 : 1, 1 : 2, 2 : 1}

• [0.7, 1] threshold for positive sample selection for base network training

• [0, 0.2) threshold for negative sample selection for base network training

• 1000 training proposals

• 100 test proposals

As previously mentioned, these optimal values were selected using dataset A-small as the mod-

elling dataset. Reproducibility of these values, using a larger dataset (dataset A) as the modelling

dataset, is presented in Section 8.1 of Chapter 8. Table 5.8 shows the performance of the original and

adapted FRCNN models in all datasets. Overall, the adapted FRCNN model outperforms the origi-

nal FRCNN with higher precision and relatively lower recall. In the modelling dataset, the adapted

FRCNN model has 19.85% higher precision with only 4.62% drop in recall leading to a 12.75% raise in

F-measure. Similar performance change is also seen in the external test sets. Furthermore, irrespective

of the anchor boxes, use of the selected optimal values of hyperparameters leads to an improvement
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in performance of the model. For instance, FRCNN models using original and k-means++ anchor

boxes and optimal values for training sample selection, number of training and test proposals show

higher performance in all datasets. Figures 5.14 and 5.15 show performance of these models in datasets

A-small and B. Figures A.7 and A.6 in Appendix A show the performance of these models in dataset C.

Dataset Original FRCNN Adapted FRCNN
P R F P R F

A-small 55.60 98.98 70.89 75.45 94.36 83.64

B 54.51 99.09 70.25 76.39 85.37 80.79

C 39.28 87.91 54.07 44.70 70.63 54.70

Table 5.8: Precision (P), Recall(R) and F-measure (F) of original and adapted FRCNN.

Figure 5.14: Original anchor boxes with default and optimal modelling hyperparameters.

Figure 5.15: K-means++ anchor boxes with default and optimal modelling hyperparameters.

Figure 5.18 shows the number of TP, FP and FN of the original and adapted FRCNN models in
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datasets A-small and B. Figure A.9 in Appendix A shows the number of TP, FP and FN in original

and adapted FRCNN models in dataset C. As seen in this figure, the adapted FRCNN model has a

considerably lower number of FPs than the original FRCNN which is responsible for its higher preci-

sion. Overall, the reduction in total FPs is largely due to the reduction in additional boxes. Figure

5.19 shows sample cases of FP reduction in the adapted FRCNN model. However, compared to the

original FRCNN model, the adapted FRCNN model has a higher number of missed lesions (lower

TPs and higher FNs) resulting in its lower recall. Figure 5.20 shows an example of lesions that were

detected by the original model but missed by the adapted FRCNN model. Additionally, TP detections

of the original FRCNN model have overall higher IOU than those of the adapted FRCNN model as

shown in Figure 5.16 (Figure A.8 in Appendix A shows the IOU distribution of TP detections of

original and adapted FRCNN models in dataset C). Figure 5.17 shows sample TPs detected by the

original and adapted FRCNN model. Overall, due to considerably lower number of FPs and a small

drop in the number of missed lesions, the adapted FRCNN model has higher precision and F-measure

than the original FRCNN.

Figure 5.16: IOU distribution of TPs in original and adapted FRCNN in all datasets.

Both original and adapted FRCNN models have poorer performance in dataset C. This is because

of the challenging images in this dataset. Like other datasets, the adapted FRCNN model outper-

formed the original FRCNN model in this dataset. Both models have high quality TP cases as shown

in Figure 5.16(c). Sample TP detections of single and multiple lesions from this dataset are shown in

Figures 5.21 and 5.22. However, the number of TPs detected by either model is relatively lower than

the other datasets as this dataset contains large number of lesions with texture very close to that of
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Figure 5.17: Sample TP in original FRCNN (left) and adapted FRCNN (right) in Datasets A and B.
Green box: ground truth and red box: output boxes (Black marker region removed for confidentiality
reason).

Figure 5.18: Number of TP, FP and FN detections in original and adapted FRCNN models in datasets
A-small and B.
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Figure 5.19: Sample FPs in Original Faster R-CNN (left) eliminated in Optimal Faster R-CNN (right)
in Datasets A and B. Green box represents ground truth and red box represents output boxes (Black
marker region removed for confidentiality reason).

Figure 5.20: Lesion missed by adapted FRCNN but detected by original FRCNN (left) and lesion
missed by both original and adapted FRCNN (right). Green box: ground truth and red box: output
boxes. (Black marker region removed for confidentiality reason).
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the background region as shown in Figure 5.26.

As seen with other datasets, adapted FRCNN successfully reduces FP detections in this dataset.

An example of this is given in Figure 5.24. However, due to the nature of the images in this dataset,

the number of FPs output by the adapted FRCNN is objectively high. Figure 5.23 shows an example

case where the adapted FRCNN model reduced the number of additional boxes (FPs) in comparison

to the original FRCNN model, but did not eliminate them entirely. In GT boxes that contain two

distinct lesion-like regions as shown in Figure 5.25, both models detect these regions as two separate

lesions instead of covering the entire GT box with a single detection thereby resulting in FPs.

Figure 5.21: TP (single lesion) in original FRCNN (left) and adapted FRCNN (right) in Dataset C.
Green box: ground truth and red box: output boxes).

Figure 5.22: TP (multiple lesions) in original FRCNN (left) and adapted FRCNN (right) in Dataset
C. (Green box: ground truth and red box: output boxes).

Therefore, the important drawbacks in literature are successfully addressed through an investi-

gation of the impact of individual hyperparameters on the overall performance on a large dataset.

The adapted FRCNN designed through this investigation outperformed the original FRCNN through

a substantial reduction in FP detections therefore successfully adapting the model for breast lesion

detection in US images. This work has been published to aid the researchers’ understanding of the
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Figure 5.23: FPs in lesion-like regions of the background region in original FRCNN (left) which were
reduced in adapted FRCNN (right) in Dataset C. Green box: ground truth and red box: output boxes.

Figure 5.24: Multiple FPs in large lesions generated by original FRCNN (left) replaced by single TP
detection by adapted FRCNN (right) in Dataset C. Green box: ground truth and red box: output
boxes.

Figure 5.25: Multiple FPs in small lesion generated by original FRCNN (left) replaced by single
detection by adapted FRCNN (right) in Dataset C. Green box: ground truth and red box: output
boxes.
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Figure 5.26: FN in original and adapted FRCNN in Dataset C. Green box: ground truth.

impact of these hyperparameters and to appropriately adapt the FRCNN model for their application.

Despite the high performance of the adapted FRCNN model, the number of FPs generated by this

model is relatively significant. The common FP detections of this model are caused due to two main

reasons. Firstly, proposals covering lesion-like background regions are incorrectly assigned high clas-

sification scores by both stages of the model. The common type of FP detections caused due to poor

classification accuracy of the model is additional boxes . Secondly, the post-processing mechanism

used in the model (both at the RPN and base network) incorrectly filters out high IOU TP proposals

and retains FP proposals. Common FP issue cases caused due to NMS are single FP and multiple FP

detections.

In case of single FP detections, the model outputs a single FP detection with either no overlap

with the GT (IOU 0) or low IOU with GT (IOU < 0.5). Figure 5.27 shows sample single low IOU FP

detection output by the adapted FRCNN model. Multiple FP detections are cases where the model

generates multiple FP detections covering background regions (additional boxes) and/or small regions

of a large lesion (low IOU FP). Multiple FP detections are occasionally accompanied by TP detection

of the lesion. Figure 5.23 shows examples of multiple FP detections output by the adapted FRCNN

model. We address the low classification accuracy of the adapted FRCNN model in this chapter in

Sections 5.3.4 and 5.3.5. We propose novel U-Detect and U-DetectH methods in Chapters 6 and 7,

respectively, to reduce FP detections resulting from improper filtering of proposals by the NMS.

5.3.4 Backbone Network Selection for Adapted FRCNN

In this section, FPs caused due to poor classification accuracy are addressed through an investigation

of various state-of-the-art classification models as the backbone of the adapted FRCNN model. The
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Figure 5.27: Multiple FPs generated by original FRCNN model (left) reduced to single FP in the
adapted FRCNN model (right)

models presented in Sections 5.3.1 and 5.3.2 were trained on dataset A-small. At this point, a larger

dataset (described in the Section 4.1) was made available for this research. Therefore, all analysis and

experiments from this point on are conducted on this larger dataset. Particularly, dataset A is used

as modelling dataset and datasets B to E are used as unseen external test sets as described in Section

4.1 Chapter 4. Comparison of the performance of selected optimal values as well as adapted FRCNN

using dataset A as modelling and datasets B to E as external test sets is described in Chapter 8.

The adapted FRCNN model presented thus far uses VGG16 as the backbone which is the default

backbone network of FRCNN. Table 5.9 shows the performance of the state-of-the-art classification

networks used as backbone in the adapted FRCNN. Figure 5.28 shows the change in the number

of TP, FP and FN in datasets A and all unseen test sets (datasets B to E), respectively. Overall,

Inception-ResNet-v2 (IRV2) has the best performance. The IRV2 model has the highest number of

detected lesions in comparison to all other models whereas VGG16 has the lowest. In terms of FPs,

ResNet101 has the lowest number of both types of FPs, closely followed by IRV2. Inception-v3 has

the highest number of FPs. Due to the highest number of detected lesions as well as low number of

FPs, IRV2 has the highest precision and recall overall which results in its highest F-measure.

The IRV2 model also has the lowest number of FNs. Thus, this model has the highest recall given

its high TP and low FN. The highest FN was found in the VGG16 model. In the overall external test

sets, ResNet101 has a higher number of FNs than ResNet50. This higher FNs is caused due to high

FNs in dataset C alone; in all other external datasets (datasets B, D and E), ResNet101 has a lower

number of FNs than ResNet50. Dataset C contains a significant number of challenging small lesions.

Critical textural information of such lesions are lost in the deep layers of ResNet101. In networks
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Dataset Adapted FRCNN Model Precision Recall F-measure

A VGG16 78.44 94.49 85.67
ResNet50 82.40 95.67 88.50
ResNet101 83.74 96.74 89.77
Inception-v3 85.71 98.19 91.53
Inception-ResNet-v2 84.56 99.39 91.36

B VGG16 85.72 94.42 89.83
ResNet50 87.70 96.32 91.80
ResNet101 90.83 97.69 94.13
Inception-v3 90.65 98.85 94.53
Inception-ResNet-v2 92.04 99.28 95.51

C VGG16 58.41 69.51 63.34
ResNet50 63.40 83.34 71.89
ResNet101 71.54 73.44 71.93
Inception-v3 66.49 81.25 68.68
Inception-ResNet-v2 58.69 82.95 72.90

D VGG16 76.38 78.50 77.40
ResNet50 77.34 83.40 80.10
ResNet101 78.33 84.57 81.30
Inception-v3 69.08 88.65 77.58
Inception-ResNet-v2 74.55 93.14 82.69

E VGG16 79.69 95.13 86.70
ResNet50 86.29 97.65 91.60
ResNet101 89.44 97.54 93.30
Inception-v3 84.44 99.21 91.22
Inception-ResNet-v2 88.89 99.08 93.68

Table 5.9: Performance of various backbone networks in adapted FRCNN.

(a) (b)

Figure 5.28: Number of TP, FP and FN for various backbone networks in adapted FRCNN model.
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Figure 5.29: Architecture of adapted FRCNN with IRV2 backbone.

such as IRV2, the combination of inception and residual blocks ensures that such features are not

lost with increased network depth. This high performance of IRV2 is due to its high classification

accuracy resulting from the use of a combination of inception and residual blocks that helps preserve

the important textural features in an image in deeper layers of the network. Compared to VGG16,

IRV2 is more capable in correctly classifying proposals containing lesions as well as those containing

background lesion-like regions. Therefore, the adapted model with IRV2 has 6.12% and 6.32% higher

precision as well as 4.9% and 4.86% higher recall in modelling and overall external test sets, respec-

tively. Thus, the adapted FRCNN model with IRV2 backbone has 5.69% and 5.68% higher F-measure

than VGG16 in modelling and overall external test sets, respectively. Architecture of the adapted

FRCNN model with IRV2 backbone is shown in Figure 5.29.

The change in number of TP, FP and FN of original FRCNN with VGG16 backbone and adapted

FRCNN model with IRV2 backbone is shown in Figure 5.30. In comparison to the original FRCNN,

the IRV2 model has 6.11% to 22.94% higher precision due to lower number of FPs due to higher

number of missed lesions (lower number of TPs and higher number of FNs). Due to the comparatively

higher precision and a relatively small drop in recall, the adapted FRCNN model using IRV2 has 5.04%

to 14.78% higher in F-measure than the original FRCNN model in modelling and overall unseen test

sets, respectively.
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(a) (b)

Figure 5.30: Number of TP, FP and FN of original and adapted FRCNN models.

5.3.5 Training Loss Selection for RPN of Adapted FRCNN Model

This section details the impact of PISA and CARL training loss on the classification accuracy of the

adapted FRCNN model. This study is performed on the adapted FRCNN model with ResNet50 as

the backbone. Table 5.10 shows the performance of all losses. Figures 5.31, 5.32 and 5.33 show the

change in the number of TP, FP and FN with PISA+CARL loss variations. The default training loss

used in FRCNN is CE + Smooth L1 (see Table 5.9). Overall, use of PISA + Smooth L1 has the

highest performance due to its high recall and relatively smaller drop in precision.

(a) (b)

Figure 5.31: TP of adapted FRCNN model using various training losses.

Like PISA + Smooth L1, CE + CARL and PISA + CARL losses also have higher recall than

the default loss. This is due to the lower number of FNs despite lower number of TPs compared

to the default loss. In particular, PISA + Smooth L1 loss has 0.19% and 0.16% higher recall than

the default loss in modelling and overall external test sets, respectively. However, these losses have a
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(a) (b)

Figure 5.32: FP of adapted FRCNN model using various training losses.

(a) (b)

Figure 5.33: FN of adapted FRCNN model using various training losses.
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Dataset Training Loss Precision Recall F-measure

A PISA + Smooth L1 82.96 96.14 89.04
CE + CARL 82.18 96.61 88.79
PISA + CARL 82.07 96.40 88.64

Overall External PISA + Smooth L1 72.46 88.07 79.49
Test Sets CE + CARL 70.96 88.07 78.56

PISA + CARL 70.27 88.33 78.24

B PISA + Smooth L1 86.82 97.48 91.84
CE + CARL 87.15 97.53 92.04
PISA + CARL 86.09 97.16 90.91

C PISA + Smooth L1 60.54 85.62 70.88
CE + CARL 59.84 85.22 70.23
PISA + CARL 58.84 85.48 69.62

D PISA + Smooth L1 77.62 84.58 80.92
CE + CARL 75.03 84.28 79.85
PISA + CARL 74.69 85.30 79.61

E PISA + Smooth L1 86.93 97.80 92.03
CE + CARL 84.22 97.22 90.76
PISA + CARL 84.93 98.30 91.11

Table 5.10: Impact of PISA and CARL on adapted FRCNN (ResNet50 backbone).

higher number of low IOU FPs than the default loss as they convert the TP detections of the default

loss to low IOU FP detections. Also, CE + CARL and PISA + CARL losses have a higher number

of additional boxes. Thus, due to lower number of TPs and higher number of FPs, both CE + CARL

and PISA + CARL losses have lower precision than the default loss.

On the other hand, PISA + CARL loss has the lowest number of additional boxes, including in

comparison to the default loss. Thus, despite a higher number of low IOU FPs, PISA + Smooth L1

loss has a lower number of total FPs than the default loss. In the modelling dataset, PISA + Smooth

L1 loss has 0.64% higher precision than the default loss due to the lower number of FPs (despite the

lower number of TPs). However, in overall external datasets, the drop in the number of TPs was larger

than the drop in FPs. Therefore, here, the PISA + Smooth L1 loss has 0.08% lower precision than

the default losses. Thus, due to the relatively higher recall, PISA + Smooth L1 loss has 0.47% and

0.11% higher F-measure than the default loss, also outperforming CE + CARL and PISA + CARL

losses.

In summary, the three PISA and CARL losses improved the classification accuracy for challenging
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lesions. However, use of CARL loss in the regression branch had a negative impact on the classification

accuracy of lesion-like background regions. Although PISA + Smooth L1 loss improved the overall

performance of the adapted FRCNN model, the degree of improvement was marginal. Therefore,

this loss is evaluated further with the aim to reduce FPs without any negative impact on the recall.

In particular, PISA negative loss that is responsible for the weight assigned to training loss of hard

negative samples (FPs) is studied further and presented in the remainder of this section.

PISA negative loss: Table 5.11 shows the performance of PISA negative and its variants, PISA

gamma 1 and PISA gamma 1.5. An important point to note here is that these PISA negative losses

are used in the classification branch and smooth L1 loss used in the regression branch. This analysis

is performed on a single fold. Figures 5.34, 5.35 and 5.36 show the change of in the number of TP,

FP and FN with the use of PISA negative and its variants. Overall, PISA negative has the highest

performance, outperforming all losses including PISA + Smooth L1 (see Table 5.10) and default loss

(see Table 5.9). This high performance of PISA negative loss is due to its high recall.

(a) (b)

Figure 5.34: TP of adapted FRCNN model using PISA negative training losses and its variants.

Compared to PISA + Smooth L1, PISA negative has a higher number of detected lesions (higher

TPs and lower FNs). Thus, PISA negative has 0.07% and 1.34% higher recall in modelling and overall

external test sets, respectively. However, the number of FPs in PISA negative loss is higher than that

of PISA + Smooth L1. Thus, despite the higher number of TPs, PISA negative has 0.05% and 0.24%

lower precision than the PISA + Smooth L1 loss in modelling and overall external test sets, respec-

tively. Since the increase in recall is higher than the drop in precision, PISA negative loss has 0.43%

higher F-measure than that of PISA + Smooth L1 in overall external tests. In the modelling dataset,
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Dataset Training Loss Precision Recall F-measure

A Default 84.91 93.79 89.13
PISA + Smooth L1 83.33 95.00 88.79
PISA negative 83.29 95.07 88.79
PISA negative 1 84.06 96.35 89.78
PISA negative 1.5 83.97 94.74 89.03

Overall External Default 77.09 83.78 80.30
Test Sets PISA + Smooth L1 74.25 86.25 79.80

PISA negative 74.01 87.58 80.23
PISA negative 1 73.83 87.15 79.94
PISA negative 1.5 74.33 87.10 80.21

B Default 86.39 94.07 90.07
PISA + Smooth L1 85.62 97.76 91.29
PISA negative 87.16 95.56 95.17
PISA negative 1 87.33 97.04 91.93
PISA negative 1.5 86.75 97.76 91.93

C Default 67.51 83.60 74.70
PISA + Smooth L1 63.37 82.77 71.88
PISA negative 63.19 83.93 72.10
PISA negative 1 64.92 86.46 74.16
PISA negative 1.5 64.71 85.56 73.68

D Default 81.47 77.56 79.47
PISA + Smooth L1 77.71 82.60 80.08
PISA negative 78.48 81.43 81.83
PISA negative 1 74.44 81.76 79.01
PISA negative 1.5 77.80 82.16 79.92

E Default 88.02 95.45 91.59
PISA + Smooth L1 90.96 97.42 94.08
PISA negative 86.55 98.01 91.93
PISA negative 1 85.88 97.99 91.54
PISA negative 1.5 86.55 98.01 91.93

Table 5.11: Impact of PISA negative and its variation in the RPN of adapted FRCNN (ResNet50
backbone).
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(a) (b)

Figure 5.35: FP of adapted FRCNN model using PISA negative training losses and its variants.

(a) (b)

Figure 5.36: FN of adapted FRCNN model using PISA negative training losses and its variants.
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both losses have the same F-measure as the change in precision and recall is similar. Therefore, use

of PISA negative improves classification of background-like lesions but at the expense of incorrect

classification of lesion-like background regions. Increasing γ (defined in Equation 5.1 in Section 5.2.2)

of PISA negative loss to 1 (PISA gamma 1 loss) led to a drop in performance in all metrics. However,

increasing it further to 1.5 (PISA gamma 1.5 loss) improved precision through reduction in low IOU

FPs. But along with the reduction in FPs, there was also a drop in the number of correctly detected

lesions leading to lower recall. Thus, increasing the importance assigned to hard negative samples (γ)

led to reduction of FPs at the expense of correctly detected lesions.

In summary, overall, all investigated losses had a lower number of missed lesions in comparison

to the default losses. Only PISA + Smooth L1 loss had a lower number of FPs than the default

loss. Therefore, improving training loss assigned to the classification branch improved the overall

classification accuracy of the model for challenging lesions. Using only PISA negative loss and its

variants led to a further reduction in FNs while negatively impacting FPs. Irrespective of the impact,

change in the overall performance of the adapted FRCNN model with the various losses is negligible.

5.3.6 Comparison with State-of-the-Art Object Detection Methods

In this section, the adapted FRCNN with IRV2 is compared to object detections methods developed

for natural images as well as those developed for breast lesion detection in 2D US images. For natural

images’ methods, both 1-stage and 2-stage detectors were evaluated. YOLOv2, and SSD are the afore-

mentioned 1-stage detectors whereas Mask R-CNN is the 2-stage detector. Two breast lesion detectors

[3, 4] were also evaluated. Overall, adapted FRCNN outperforms all evaluated detectors. Remainder

of this section is organised as follows: first, performance of the adapted FRCNN is compared to that of

the detectors developed for natural images in Section 5.3.6.1 followed by its comparison to the breast

lesion detectors in Section 5.3.6.2. Finally, computation time for all evaluated models is described.

5.3.6.1 Object Detectors Developed for Natural Images

Table 5.12 shows the performance of all the object detectors developed for natural images in com-

parison with the original and adapted FRCNN. Figures 5.37, 5.38 and 5.39 show the number of TP,

FP and FN of these detectors. Overall, the adapted FRCNN model has the highest performance.
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Analysis of the performance of the individual detectors and their comparison to the adapted FRCNN

model is as follows.

Dataset Model Precision Recall F-measure

A Original FRCNN 78.45 96.23 86.32
Adapted FRCNN 84.56 99.39 91.36
Mask R-CNN 37.70 97.44 54.37
YOLOv2 (320) 73.03 70.48 71.73
YOLOv2 (416) 77.54 70.38 73.79
SSD300 80.89 82.20 81.54
SSD500 81.67 78.03 79.80

B Original FRCNN 73.34 99.85 84.50
Adapted FRCNN 92.04 99.28 95.51
Mask R-CNN 41.64 98.56 58.55
YOLOv2 (320) 82.79 69.99 75.66
YOLOv2 (416) 82.93 73.91 78.16
SSD300 82.98 86.03 84.48
SSD500 83.06 76.87 79.84

C Original FRCNN 35.60 90.20 51.02
Adapted FRCNN 58.69 82.95 72.90
Mask R-CNN 18.37 94.02 30.74
YOLOv2 (320) 44.02 59.68 50.67
YOLOv2 (416) 51.41 57.56 54.31
SSD300 58.12 64.73 61.25
SSD500 48.50 47.62 48.05

D Original FRCNN 64.80 95.58 77.22
Adapted FRCNN 74.55 93.14 82.69
Mask R-CNN 37.54 88.14 52.66
YOLOv2 (320) 64.79 53.00 58.31
YOLOv2 (416) 75.68 42.58 54.50
SSD300 84.13 59.66 69.81
SSD500 85.04 54.10 66.13

E Original FRCNN 70.92 99.47 82.35
Adapted FRCNN 88.89 99.08 93.68
Mask R-CNN 21.90 98.74 35.84
YOLOv2 (320) 75.61 79.49 77.50
YOLOv2 (416) 87.10 67.50 76.06
SSD300 77.25 86.00 81.39
SSD500 76.92 52.98 62.75

Table 5.12: Performance of adapted FRCNN in comparison to state-of-the-art detectors developed for
object detection in natural images.

Of the evaluated YOLOv2 models, YOLOv2 (416) has better overall performance than YOLOv2
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(a) (b)

Figure 5.37: TP of detectors developed for object detection in natural images. Yv2(20): YOLOv2
(320), Yv2(416): YOLOv2(416).

(a) (b)

Figure 5.38: FP of detectors developed for object detection in natural images. Yv2(20): YOLOv2
(320), Yv2(416): YOLOv2(416).

(a) (b)

Figure 5.39: FN of detectors developed for object detection in natural images. Yv2(20): YOLOv2
(320), Yv2(416): YOLOv2(416).
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(320) due to its higher precision despite its comparatively lower recall. The higher precision of

YOLOv2(416) is due to lower number of FPs whereas its lower recall is due to higher number of

missed lesions (lower TPs and higher FNs). Adapted FRCNN model outperforms both these vari-

ations of YOLOv2 due to higher number of correct detections and lower number of FPs as seen in

Figures 5.37, 5.38 and 5.39. Compared to YOLOv2 (320), the adapted FRCNN model has 18.88%

higher F-measure in the modelling dataset and 21.04% higher in unseen test sets. Compared to

YOLOv2 (416), adapted FRCNN model has 16.82% and 20.66% higher F-measure in modelling and

unseen test sets, respectively.

SSD300 has 2.39% and 0.39% lower precision than the adapted FRCNN model in modelling and

overall external test sets, respectively. This is due to the comparatively higher number of TPs and

lower number of FPs produced by the adapted FRCNN model. In all datasets, SSD300 has the small-

est number of low IOU FPs. SSD uses a variety of anchor boxes designed specifically for each feature

extraction layer. Given the high number of anchor boxes covering various aspect ratios and scales,

lesions were detected with higher IOU TP detection resulting in reduction of low IOU FPs. However,

due to the use of the high number of anchor boxes, the number of additional boxes generated by SSD

models is high, resulting in a high number of total FPs generated by this model.

The only exception to this is dataset D where SSD300 has a lower number of, both, low IOU

FPs and additional boxes than the adapted FRCNN model.Therefore, despite the drop in TPs, in

dataset D, SSD300 has 11.37% higher precision than the adapted FRCNN model. In terms of recall,

compared to SSD300, the adapted FRCNN model has 17.19% to 23.04% higher recall in modelling

and unseen test sets, respectively, given the higher number of TPs and lower number of FNs of the

adapted FRCNN model. Therefore, due to its higher precision and recall, the adapted FRCNN model

has 9.07% higher F-measure in the modelling dataset and 10.78% higher in overall unseen test sets

than SSD300. In dataset D, despite its higher precision, SSD300 has 33.54% lower recall than the

adapted FRCNN model resulting in its overall lower F-measure.

Similar performance is seen in SSD500. Compared to adapted FRCNN, this model has 1.61% and

4.3% lower precision in modelling and unseen test sets, respectively. In terms of recall, the adapted

FRCNN model has 21.36% and 36.32% higher recall than the SSD500. Therefore, due to higher pre-
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cision and recall, the F-measure of the adapted FRCNN model is 10.81% and 20.1% higher than the

SSD500 model in modelling and overall unseen test sets, respectively. Compared to SSD300, SSD500

had a higher number of missed lesions with higher FN along with lower TP. Thus, a larger drop in

recall in comparison to the adapted FRCNN model was observed with this model. To summarise, use

of SSD helped reduce low IOU FPs due to the design of anchor boxes but the use of only a single

stage led to a drop in correct detections.

In comparison to mask RCNN, a 2-stage detector, adapted FRCNN has 0.6% to 5.06 % higher

recall on all datasets except dataset C. In dataset C, mask R-CNN has 12.61% higher recall than the

adapted FRCNN model. In all other datasets, its recall is very close to that of the adapted FRCNN

model. Overall, mask R-CNN has a higher number of TPs than the adapted FRCNN model. This

is because mask R-CNN uses an ROI-align layer which improves the quality of features extracted for

each proposal in comparison to the ROI-pooling layer used in FRCNN models. This resulted in better

processing (classification and regression) of high IOU proposals which leads to higher number of TPs.

But due to the higher number of FNs, it has comparatively lower recall than the adapted FRCNN

model.

Also, this model produces a considerably high number of FPs. Therefore, its precision is 45.58%

and 46.7% lower than that of the adapted FRCNN model in modelling and unseen test sets, respec-

tively. Due to this large drop in precision, F-measure of the mask R-CNN model is 36.24% and

40.12% lower than the adapted FRCNN model in modelling and overall unseen tests, respectively.

Additionally, we also investigated the performance of Hierarchical Reinforcement Learning [5] model

for breast lesion detection in US images. This model was designed for object detection in natural

images. When utilised for breast lesion detection in our dataset, its performance was significantly low.

Detailed description of the model and its performance is presented in Section 8.6 in Chapter 8.6.

In summary, 2-stage detectors have the highest recall. In comparison, 1-stage detectors face diffi-

culty in detection of lesions leading to their relatively lower recall. This drawback of 1-stage detectors

was especially seen in datasets C and D that contain a high number of challenging lesions. On the

other hand, 1-stage detectors have comparable precision to that of the adapted FRCNN model, and

in some cases, higher precision than the adapted FRCNN model due to lower number of FPs.
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5.3.6.2 Breast Lesion Detectors

Table 5.13 compares the performance of the adapted FRCNN model to that of two breast lesion de-

tection methods [3, 4]. Both these methods modify the FRCNN model for breast lesion detection in

US images through network and modelling hyperparameters adaptation. First, the detector proposed

in [3], referred to as detector A, is evaluated. Detector A undergoes modifications of the several mod-

elling hyperparameters including anchor boxes, NMS score threshold, and number of proposals. Apart

from this, modifications are also made to the input image and training mechanism. The backbone

network used here is IRV2. Detailed description of this detector is provided in Section 3.2 of Chapter 3.

Dataset Model Precision Recall F-measure

A Adapted FRCNN 84.56 99.39 91.36
Detector A [3] 83.27 95.09 88.79
Detector B [4] 38.11 98.23 54.73

Overall External Adapted FRCNN 74.93 90.32 81.90
Test Sets Detector A [3] 72.70 76.37 74.40

Detector B [4] 33.75 93.78 49.63

B Adapted FRCNN 92.04 99.28 95.51
Detector A [3] 87.92 94.57 91.09
Detector B [4] 35.63 99.64 52.41

C Adapted FRCNN 58.69 82.95 72.90
Detector A [3] 61.35 62.23 61.33
Detector B [4] 23.52 88.19 37.07

D Adapted FRCNN 74.55 93.14 82.69
Detector A [3] 73.10 78.15 75.45
Detector B [4] 41.83 94.69 57.90

E Adapted FRCNN 88.89 99.08 93.68
Detector A [3] 88.36 94.85 91.48
Detector B [4] 47.25 98.83 63.79

Table 5.13: Performance of adapted FRCNN in comparison to breast lesion detectors.

Compared to detector A, the adapted FRCNN model has 1.82% to 6.04% higher F-measure.

Overall, this method has precision comparable to that of the adapted FRCNN model, but the lower

F-measure is due to larger drop in recall. Specifically, the adapted FRCNN model has 4.30% to 14.07%

higher recall than this detector with only 0.24% lower precision. The comparison of the number of TP,

FP and FN of the adapted FRCNN model and detector A is shown in Figure 5.40. This detector has
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(a) TP (b) FP (c) FN

Figure 5.40: Number of TP, FP and FN of adapted FRCNN (IRV2 base) and breast lesion detection
methods. Detector A: Method [3], Detector B: Method [4].

3.4% to 14.1% lower number of FPs (low IOU FPs and additional boxes) than the adapted FRCNN

model. However, the overall lower precision of this model in comparison to adapted FRCNN is due

to 3.07% to 12.7% lower number of TPs. In datasets D and E, due to lower number of FPs, detector

A has 0.34% and 4.66% higher precision than the adapted FRCNN model despite the lower number

of TPs in these datasets. In all other datasets, the precision of detector A is lower than that of the

adapted FRCNN.

Along with a lower number of TPs, this detector also has a higher number of FNs. For instance,

in dataset A, the number of FNs increased from 1.8 in the adapted FRCNN model to 14.4 in detector

A and in overall unseen test sets, an increase from 111 FNs in the adapted FRCNN model to 282.8 in

detector A. Due to the higher number of missed lesions, detector A has lower recall than the adapted

FRCNN. The largest reduction in recall using this detector was seen in datasets C and D. Recall of

dataset C and D is 19.18% and 15.05% lower than that of the adapted FRCNN model, respectively.

In their published work, no detailed evaluation on the impact of applied modifications on the perfor-

mance of the network is presented. However, our investigation shows that challenging lesions, more

commonly found in datasets C and D, are typically scored lower than 0.9. Therefore, use of a high

NMS score threshold of 0.9 resulted in these lesions being missed leading to a drop in the model’s

recall. On the other hand, use of the high NMS score threshold reduced FPs as the majority of the

FPs are scored lower than 0.9.

Method proposed in [4] is referred to as detector B. In detector B the FRCNN network architecture

and modelling hyperparameters were modified to improve detection of small lesions as well as overall

performance of the FRCNN model. Here, an additional RPN is introduced along with concatenation
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of convolution layers 2 and 4 of the base VGG16 network. Other adaptations include change in anchor

boxes , number of test proposals and the training/testing mechanism. These changes are explained in

detail in Section 3.2 in Chapter 3. In comparison to the adapted FRCNN model, this method has an

overall 35.88% to 30.81% lower F-measure in modelling and unseen test sets, respectively. Although

detector B has 1.16% to 3.34% higher recall than the adapted FRCNN model, the overall F-measure

of this model is lower than the adapted FRCNN model due to its considerably lower precision. Com-

pared to adapted FRCNN , this model has 45.17% to 38.71% lower precision.

Figure 5.40 compares the number of TP, FP and FN of detector B with that of the adapted FR-

CNN model. Compared to the adapted FRCNN model, this detector has a lower number of TPs as

well as a higher number of FPs resulting in its lower precision. Here, the lower TPs do not indicate

missed lesions as these were detected but with low IOU FPs. Apart from a higher number of low IOU

FPs, detector B also has a higher number of additional boxes in comparison to the adapted FRCNN

model. Compared to adapted FRCNN, detector B has a lower number of FNs. Thus, despite the

lower number of TPs, the recall of detector B is higher than that of the adapted FRCNN model. The

largest difference in recall of this detector and adapted FRCNN is seen in dataset C that contains

very challenging lesions. Here, recall of detector B is 6.78% higher than that of the adapted FRCNN

model. Like detector A, the published work on detector B [4] does not specify the impact of individ-

ual modifications. However, through our investigation of this detector, the following analyses were

drawn. First, the high number of anchor boxes along with use of two RPN results in a high number

of FPs. But due to the same characteristics and the improved quality of textural features resulting

from concatenation of VGG16 layers, the number of lesions detected by detector B was high.

Computation Time: Table 5.14 shows the minimum, maximum and average computation time of

all models. The computation time, as described in Section 4.2 Chapter 4, is time required by the

detector to process a single input image. over all datasets for all these networks. The time presented

in Table 5.14 is the average over all datasets (datasets A to E). 1-stage detectors are naturally faster

than the 2-stage networks due to smaller sized networks. Of this, YOLOv2 (320) is the fastest with

an average computation time of 0.03 seconds. Mask R-CNN is faster than the adapted FRCNN

model with an average computation time of 0.29 seconds. Adapted FRCNN model had the highest

computation time of 0.39 seconds (average) due to the use of a deeper base network. Detector A
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has an average computation time of 0.34 seconds comparable to that of the adapted FRCNN model.

On the other hand, detector B is faster than both detector A and the adapted FRCNN model with

average computation time of 0.24 seconds.

Model Computation Time (sec)
Average Minimum Maximum

Original FRCNN 0.16 0.09 3.27

Adapted FRCNN 0.39 0.37 1.95

YOLOv2 (320) 0.03 0.03 0.36

YOLOv2 (416) 0.03 0.03 0.37

SSD300 0.04 0.03 0.32

SSD500 0.16 0.14 0.73

Mask R-CNN 0.30 0.25 1.50

Detector A [3] 0.34 0.32 1.64

Detector B [4] 0.24 0.10 2.25

Table 5.14: Computation time (in seconds) of all evalutated state-of-the-art detectors in comparison
to original and adapted FRCNN.

5.4 Discussion

This chapter addressed the current gap in the literature through an investigation of the modelling

hyperparameters of the FRCNN network on a large dataset of US images. Through the investigation

an adapted FRCNN was developed which outperformed the original FRCNN model as well as other

state-of-the-art detectors. Although this investigation and adaptation of the FRCNN model was con-

ducted for breast lesion detection in US images, it can also prove useful for detection of other types

of lesions in US images with minor modifications. For instance, thyroid lesions in US images have

been shown to have similar characteristics as breast lesions in US images [139]. However, the average

number of thyroid lesions in a typical US image is comparatively higher than that of breast lesion US

images. Therefore, increasing the number of proposals would prove beneficial.

Apart from the modelling hyperparameters evaluated in this chapter, an investigation of RPN

training samples and NMS score threshold were also conducted. RPN uses samples with IOU [0.7, 1]

as positive and those with IOU [0, 0.3] as negative. Broadening this range such as [0.5, 1] for positive

samples and (0, 0.5] for negative samples led to an overall drop in performance. When trained with

a higher NMS score threshold of 0.9 instead of 0.3, no lesions were detected. Since the margin of
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the lesion carries important information, the impact of introducing this region in the training of the

adapted FRCNN model was studied. Here, the adapted FRCNN model with IRV2 was trained with

GT boxes that covered 2%, 8% and 16% of the surrounding margin region. It was found that use of

2% margin was the best performing one out of the three investigated values. However, it performed

poorly in comparison to the model trained without any margin in the GT. Additional impact of

GARPN [75] and fusion of the base network’s convolutional layers were also investigated to improve

the classification accuracy of the adapted FRCNN model in order to reduce FPs. Description and

performance of these methods is provided in further detail in Section 8.2 of Chapter 8.

The evaluation metrics used in this work are commonly utilised for lesion detection. However,

these metrics do not address some of the intricacies of this field. For instance, many of the low IOU

FP detections by the FRCNN models are centred on the lesion; these detections cover the lesion

plus margin area surrounding the lesion. Although these are classified as FP due to their low IOU ,

they successfully detect the lesion albeit with larger margin area. Over the years, methods have been

proposed to overcome this issue. One such method uses the centre of the detections as the guide for

their classification as TP or FP. Here, if the centre of the output detection lies inside the GT box, it

is classified as TP, otherwise as FP. However, as shown in [3], this technique fails to correctly evaluate

the model as there is a higher acceptance of very low IOU detections as TPs. Development of a

standard evaluation method for lesion detection is a growing field of research as improved evaluation

metrics help in gaining a deeper understanding of the model’s performance.

5.5 Summary

This chapter presented the investigation and the adaptation of FRCNN for breast lesion detection

in 2D US images. FRCNN is a 2-stage detector that was originally designed for object detection in

natural images. It is popularly used for lesion detection in medical images through modification of

its modelling hyperparameters and/or its network architecture. However, these methods have two

important drawbacks, namely, insufficient data on the evaluation of the modifications and use of a

small to medium sized dataset. We addressed these drawbacks in this chapter through a thorough

investigation of the important modelling hyperparameters of this network using our large dataset of

US images collected from real-life clinical settings.
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The adapted FRCNN, designed through the investigation of the hyperparameters, outperformed

the original FRCNN due to a reduction of 28% to 61% in FPs resulting in 5% to 21% higher precision

and a small negative impact of 0.27% to 9% in recall. The most common FPs in this adapted FRCNN

model were caused due to low classification accuracy of the RPN and base network and improper

filtering of proposals by the nms at both stages of the network. In this chapter, two methods to im-

prove the classification accuracy of the adapted FRCNN were presented. These include investigation

of state-of-the-art classification networks as backbone of the adapted FRCNN model and evaluation

of several training losses.

Following is the summary of the main findings and contributions made in this chapter:

• Investigation of the impact of various modelling hyperparameters of the FRCNN model on the

overall performance for breast lesion detection in US images.

• Successful reduction of FPs in FRCNN models trained with optimal values of the investigated

hyperparameters and using any set of anchor boxes was presented.

• Irrespective of the anchor boxes used, use of the optimal values of the other investigated hyper-

parameters successfully improved the performance of the model in comparison to its counterpart

trained on default values of the hyperparameters. This improved performance was achieved due

to a considerable reduction in FP cases.

• The cause for FPs in the adapted FRCNN model was identified as the incorrect classification of

FP proposals at both stages of the network and incorrect retention of FP proposals after filtering

through NMS in both stages.

• Following state-of-the-art classification networks were evaluated to improve the classification

accuracy of the adapted FRCNN model: ResNet50, ResNet101, Inception-v3 and Inception-

ResNet-v2 (IRV2). Of these , IRV2 had the best overall performance due to its high classification

accuracy which not only reduced FPs but also increased the number of correct detections of the

adapted FRCNN model.

• PISA and CARL losses were evaluated to specifically improve the classification accuracy of the

RPn thereby improving the quality of proposals as well as overall performance of the model.
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• All investigated losses improved the classification accuracy of the model for challenging lesions.

Overall, use of PISA loss in the classification branch had the highest performance largely due

to the increase in detected lesions and small reduction of FPs. However, this improvement was

small . Use of CARL and other variants of PISAloss had a negative impact on the number of

FPs.

• The adapted FRCNN model with IRV2 as the backbone was compared to several state-of-the-

art object detectors including YOLOv2, SSD and mask R-CNN which were designed for object

detection in natural images and two breast lesion detection methods [3, 4] developed for US

images. The adapted FRCNN model outperformed all evaluated detectors.

In summary, this chapter addressed an important gap in the literature and proposed an adapted

FRCNN that successfully modified the FRCNN model for breast lesion detection in US images. Use of

IRV2 as the backbone network successfully improved the overall performance of the adapted FRCNN

model by addressing the issue of classification accuracy in both stages of FRCNN. In the following

chapter, a novel U-Detect method is proposed in order to reduce FP detections caused by NMS.
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Chapter 6

U-Detect: A Clustering-Based

Approach Using Learned Features

Chapter 5 presented our successful adaptation of the FRCNN method for detecting breast lesions

from US images with performance higher than the existing detection techniques. However, despite the

adaptation of the network hyperparameters, the false positive (FP) detection remains an issue. The

aim of this chapter is to present a novel method to reduce FP detections while maintaining acceptable

level of true positive (TP) detections.

Both stages of the FRCNN network – Region Proposal Network (RPN) and base network – gen-

erate a high number of proposals for a single input image. It is critical to remove the redundant and

poor-quality (low IOU) proposals for reliable performance and lower computation cost. The post-

processing method employed in FRCNN is called Non-Maximal Suppression (NMS) which is a simple

and computationally light technique. It is applied to the proposals, first, when they are generated

at the RPN and, second, after their processing at the base network. NMS uses classification scores

and IOU for filtering out proposals. In particular, first, all proposals with classification scores < 0.3

are removed. From the remaining proposals, the proposal with highest classification score is moved

to the final output and any proposals with IOU ≥ 0.7 with this highest-scoring proposal are dis-

carded as redundant. This process continues until all proposals are either moved to the final output

or discarded. Despite its advantages, NMS has major limitations as it does not consider textural

information in identifying redundant proposals. The improper grouping of proposals as redundant
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based on their overlap with the highest scoring proposal causes the common issue cases found in the

adapted FRCNN presented in Chapter 5.

In particular, our work presented in Chapter 5 Section 5.3.3 shows that NMS produces two types

of FPs: single FPs and multiple FPs. Single FPs are those detection cases where the FRCNN model

produces a single detection which is either a low IOU FP, i.e., IOU (0, 0.5) or an additional box cov-

ering the background region with IOU = 0. On the other hand, multiple FPs is a scenario where the

model’s produces more than one FP (with or without a TP detection) which includes low IOU FPs

with IOU (0, 0.5) that cover small regions of a lesion, FPs with IOU 0, or combination of all/some of

these FP types. Figure 6.1 illustrates different types of FPs.

(a) Single FP (b) Multiple FPs (c) Multiple FPs

Figure 6.1: Issue cases of adapted FRCNN model caused by NMS.

In the majority of the single FP output scenarios, the adapted FRCNN model produces at least

one TP proposal at the RPN and base network as shown in Chapter 5 Section 5.3.3. However, due

to the higher score of the FP proposal, it is selected as the final output and because of the high IOU

of the TP proposal with this FP proposal, the TP proposal is incorrectly discarded as redundant.

Similarly, in case of multiple FPs output, the FP proposals are filtered through the NMS due to their

high classification score and improper grouping as shown in Chapter 5 Section 5.3.3.

This chapter presents a new method called U-Detect that combines unsupervised learning tech-

nique and FRCNN to reduce the FP detections. In particular, we propose a clustering approach to

reduce the FP detections caused by the limitations of NMS. We hypothesise that clustering proposals

with similar learnable texture features leads to identification of distinctive group of detections of one

object (lesion), while the candidate selection from each group leads to the true detection of the object.
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The proposed approach can be summarised as follows. First, proposals in the RPN or base network

of FRCNN are represented using learnable features extracted from convolutional neural network layers.

Then, the x-means clustering method is used to group texturally similar proposals. After clusters are

formed, a single best proposal is selected from each cluster, referred to as the candidate of that cluster,

and remaining proposals in that cluster are considered redundant and discarded. As the number of

clusters generated is typically high, the selected candidates tend to have high overlap with each other.

Therefore, these candidates are processed through NMS to remove spatially redundant proposals.

Since the candidates have been selected through the clustering mechanism, processing them through

NMS at this stage does not have the same negative impact on the overall performance as seen in the

adapted FRCNN model. Finally, from the remaining candidates, if any candidates have an overlap of

over 20% with each other, they are merged into one box through a novel candidate merging method.

Output of the candidate merging method is the final output of the model. This approach is the first

piece of research work to use unsupervised learning techniques to reduce the FP detections in FRCNN.

This chapter is composed of the following sections. Section 6.1 provides a detailed description of

our approach which includes features extraction and representation of the proposals, dimensionality

reduction, proposal clustering, candidate selection and candidate merging method. The performance

of the proposed approach is presented in Section 6.2. Finally, the chapter concludes with discussion

in Section 6.3 and a summary in Section 6.4.

6.1 U-Detect for False Positive Reduction

We propose a novel method to reduce FP detections. The main approach of the proposed solution is

to use unsupervised learning to cluster proposals in the RPN or base network on the basis of textural

similarity. This is done to overcome the issue cases (single and multiple FPs) resulting from improper

filtering through NMS. U-Detect method is designed for the test-stage of a pretrained detector (FR-

CNN) thereby adding no additional computational cost to the model training. The proposed method

consists of five main phases, namely, learnable feature extraction, dimensionality reduction, proposal

clustering, candidate selection, and candidate merging. Figure 6.2 shows our U-Detect method.
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Figure 6.2: The proposed U-Detect method.

We use our U-Detect method to process proposals generated by the RPN as well as proposals

processed by the base network of the pretrained adapted FRCNN model with IRV2 base from Chapter

5. Depending on the extraction of learned features, two U-Detect methods are developed, namely,

U-Detect-RPN and U-Detect-Base. Figures 6.3 and 6.4 illustrate U-Detect-RPN and U-Detect-Base

models, respectively, highlighting the process from phase one to phase six in both methods. Sections

6.1.1 to 6.1.5 describe each phase of the U-Detect method in further detail.

6.1.1 Learned Feature Extraction

Proposals generated by FRCNN RPN and base-network represent image regions with potential pres-

ence of lesions. Each proposal has its own texture characteristics which can be extracted and used to

identify the correct detection. This section provides details of our approach of learned features extrac-

tion used for description of proposals. Features extraction of both U-Detect-RPN and U-Detect-Base

are described as follows.
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6.1.1.1 RPN Features in U-Detect-RPN

In FRCNN, the quality of RPN test proposals sent through to the base network has a considerable

impact on the overall performance of the detection model. During model testing, features of the input

image are extracted by the convolution layers of the base network, referred to as conv-features, which

are then input to two branches: RPN and ROI pooling layer as illustrated in Figure 6.3. RPN uses the

conv-features to generate proposals. After classification, an average of 300 test proposals per image is

generated. ROI pooling layer extracts features of each test proposal from the conv-features which is

then sent to the base network for further processing. The extracted features of each proposal have a

dimension of 17× 17× 1088 where 1088 is the number of channels in the described convolution layer.

Figure 6.3: Proposed U-Detect-RPN method.

To use the features output by the ROI pooling layer, for defining each proposal, every feature map

needs to be flattened and concatenated to form an extremely large feature vector of size (17 × 17 ×

1088) × 1. Such a feature vector would undoubtedly increase computation time. Furthermore, part

of these feature maps contain little to no textural information or redundant information. Thus, to

effectively reduce the dimension without losing vital textural information of each feature map, global

average pooling (GAP) is utilised. Essentially, GAP replaces every feature map with the average of

all its individual features. So, the impact of redundant and irrelevant feature maps is reduced while

important information from remaining feature maps is preserved. Detailed description of GAP layer

is provided in Section 2.2.1.2 Chapter 2. After applying GAP, the dimensionality of the feature vector

is reduced from (17 × 17 × 1088) × 1 to 1088 × 1. This 1088 × 1 feature vector is referred to as
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RPN-GAP features and is used to describe proposals in U-Detect-RPN.

6.1.1.2 Base Network Features in U-Detect-Base

ROI pooling layer outputs features of each RPN-generated proposal as shown in Figure 6.4. These

features are then processed through convolution layers and finally through a GAP layer embedded

in the base network. Output feature vectors from this GAP layer, referred to as Base-GAP feature

vectors, are used for classification and bounding box regression of the test proposals by the base

network. The Base-GAP feature vector has higher abstraction and contains more textural information

than the RPN-GAP feature vector. Therefore, in U-Detect-Base, each proposal is described using its

Base-GAP feature vector, of size 1536× 1.

Figure 6.4: Proposed U-Detect-Base method.

6.1.2 Dimensionality Reduction

Given the large size of the RPN-GAP and Base-GAP feature vectors presented in Section 6.1.1, the

Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) are used

and compared to reduce the dimensionality of the extracted feature vectors in phase two of the U-

Detect method. Detailed explanation of these dimensionality reduction methods is provided in Section

2.2.2 Chapter 2.

6.1.2.1 Principal Component Analysis (PCA)

PCA, a commonly used dimension reduction technique, is employed to reduce dimensions of both RPN-

GAP and Base-GAP features. To find the optimal number of principal components (PCs) for each

feature vector, a range of PCs were investigated. This range was determined using a preliminary test
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conducted to identify the number of PCs required to capture 95% to 99% of the textural information

contained in the entire feature vector i.e., the number of PCs with cumulative information (CI) of

95% to 99%. Based on this, for both RPN-GAP and Base-GAP feature vectors, 5, 10, 15, and 20

PCs were evaluated and the optimal number of PCs was determined experimentally as illustrated in

sections 6.2.1.2 and 6.2.2.2.

6.1.2.2 Kernel Principal Component Analysis (KPCA)

CNN features are nonlinear due to the nonlinear nature of the input data (image) as well as the

multiple non-linear activation functions used in the convolutional neural network. KPCA essentially

adapts PCA for non-linear data. Thus, use of KPCA to reduce dimension of RPN-GAP and Base-

GAP features was also investigated. Like with PCA, an initial test was conducted to find the number

of kernel PCs required to contain 95% to 99% CI. Based on the findings of this test, the following

number of kernel PCs were evaluated for both feature vectors: 5, 10, 15, and 20. The optimal number

of kernel PCs was selected experimentally as shown in sections 6.2.1.2 and 6.2.2.2.

6.1.3 Proposal Clustering

Using extracted learned features, proposals are grouped using x-means clustering method [1] in phase

three of the U-Detect method. X-means clustering is an adaptation of k-means clustering where the

requirement of predefining number of clusters (k) to be formed is eliminated. Instead, a range of

potential k values are input to the method and an optimal k is found iteratively during model testing.

In particular, the range of k is set to [1,max prop] wheremax prop represents the maximum number of

proposals generated for that image. Typically, max prop is 300 but in some images with small lesions,

it drops to around 296 or 297. Distance measure is a core component used by clustering algorithms

to group similar data points into the same clusters. In our method, the cosine similarity method is

used to measure the distance between the feature vectors representing the texture information of the

proposals. Equations 6.1 and 6.2 define the cosine similarity method.

dist(A,B) = 1− cos(A,B) (6.1)

where
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cos(A,B) =
(A ·B)
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(6.2)

Here, A and B represent feature vectors of two proposals. A small distance between two proposals

therefore indicates their high textural similarity and vice versa. Thus, proposals that are texturally

similar, such as high IOU TP proposals, are clustered together separate from other proposals such

as low IOU FP. Another core component of x-means algorithm is the Bayesian information criterion

(BIC). BIC is the metric used to determine optimal k. BIC is defined in Equation 2.3 in Section 4.2

Chapter 4. BIC score is assigned such that a balance between good fit and total number of clusters

is measured. In particular, BIC uses log-likelihood to determine fit of the clusters in the data and a

penalty term to penalise high numbers of clusters. Penalty is impacted by dimension of the feature

vector M , number of cluster k, number of proposals in the cluster Rn, total number of proposals and a

constant C. C is set to a default value of 0.5. As all values with the values of C are dependent on the

image and variable k, we investigate the impact of the constant C in its impact on the overall number

of clusters in U-Detect models. Specifically, C is optimised for both U-Detect-Base and U-Detect-RPN

using a range of values between 0 and 20.

6.1.4 Candidate Selection

In a typical clustering task, the centroid of a cluster is selected as its candidate. However, centroids

are a mean representation of their cluster. As the aim of this method is to select the best proposal

from a cluster, centroid is not used for candidate selection. Generally, both RPN and base network

assign high confidence scores to high IOU proposals and low scores to low IOU proposals. Therefore,

to ensure that the objective of only filtering out the best proposals is met, RPN and base network’s

classification scores are used for candidate selection in U-Detect-RPN and U-Detect-Base, respectively.

Specifically, after proposals are clustered using learned features, from each cluster, the proposal with

highest RPN/base network classification score is selected as the candidate of that cluster in phase four

of the U-Detect method.

It is worth noting that selected candidates tend to have high overlaps with each other especially

when clustered with low BIC penalty. Thus, they are processed through NMS to remove low-scoring

and redundant candidates. Since these candidates have been identified through the clustering method,
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passing them through NMS does not cause the issue cases that NMS is otherwise prone to cause. In

U-Detect-RPN, selected candidates are processed through the NMS before passing through to the base

network, after which they are passed to the final phase as shown in Figure 6.3. On the other hand,

in U-Detect-Base, the selected candidates pass through the NMS and then directly move to the final

phase as shown in Figure 6.4.

6.1.5 Candidates Merging

As illustrated in Figure 6.1b, the multiple overlapping FPs are typically found in large lesions where

the FPs cover small regions of the lesion. These boxes are not removed through NMS due to their

lower overlap with each other and relatively high classification score. Candidate merging method is

specifically developed to reduce the number of multiple overlapping FPs. In particular, candidates

(output detections of the model) with IOU ≥ 0.2 are merged to form single detection in the final

phase of the U-Detect method.

6.2 Experimental Results and Analysis

This section presents the experimental results of the proposed U-Detect method. Adapted FRCNN

with IRV2 base from Section 5.3.4 of Chapter 5 is used as the pretrained detector. Same modelling

dataset (A) and external datasets (B, C, D, and E) presented in Section 4.1 of Chapter 4 are used to

evaluate the U-Detect. All experimental results are the average of 5-folds unless specified otherwise.

First, performance of U-Detect-RPN is described in Section 6.2.1 which is followed by Section 6.2.2

detailing the performance of U-Detect-Base method. Development of both models begins with a

base U-Detect model using the entire feature vector (RPN-GAP or Base-GAP), default C of 0.5 and

without candidate merging. Every phase is adapted or added in individual investigation to study its

impact. Therefore, the output of each investigation/adaptation is the input to the next step.

6.2.1 U-Detect-RPN

This section reports the evaluation results of U-Detect-RPN. First, performance of U-Detect-RPN with

entire RPN-GAP features used for proposal description is detailed. This is followed by a description

of the impact of using PCA and KPCA for dimensionality reduction of the RPN-GAP feature vector.

Next, analysis of parameter C in BIC penalty for building a better balance between quality and
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number of clusters is detailed. All these models do not include phase five (candidate merging). The

impact of this final phase is studied separately and presented in the final part of this section.

6.2.1.1 RPN-GAP Feature Vector

Table 6.1 shows the performance of the U-Detect-RPN using entire RPN-GAP features in comparison

to that of adapted FRCNN. U-Detect-RPN outperforms adapted FRCNN with 0.27% to 1.52% higher

precision in modelling and unseen test sets, respectively, with a comparatively small drop of 0.5%

in recall in the overall unseen test sets (there was no change in recall of modelling dataset). This

improvement in performance is due to increase in TP detections along with reduction in FPs.

Dataset Model Precision Recall F-measure

A Adapted FRCNN 83.18 99.39 90.55
U-Detect-RPN 83.45 99.39 90.71

Overall External Adapted FRCNN 70.69 90.58 79.33
Test Sets U-Detect-RPN 72.21 90.08 80.11

B Adapted FRCNN 90.16 99.42 94.53
U-Detect-RPN 91.47 99.42 95.26

C Adapted FRCNN 60.15 81.55 68.97
U-Detect-RPN 61.64 80.23 69.48

D Adapted FRCNN 72.58 93.20 81.46
U-Detect-RPN 73.35 93.08 81.92

E Adapted FRCNN 82.56 99.20 89.74
U-Detect-RPN 85.76 99.21 91.84

Table 6.1: Performance of U-Detect-RPN and adapted FRCNN models.

U-Detect-RPN overcomes the drawbacks of NMS in all datasets through effective filtering of pro-

posals, ensuring that TP proposals are not overshadowed by FP ones. FP proposals with IOU = 0,

covering lesion-like background regions are clustered with texturally similar proposals. The selected

candidates from such clusters typically have high overlap with TP candidates. Due to the higher score

of the TP candidates, these FP candidates are removed in the NMS phase. Without U-Detect-RPN,

these FP candidates are output by the adapted FRCNN as additional boxes. Candidates from clus-

ters containing low IOU FP proposals are also removed in a similar manner. Thus, compared to the

adapted FRCNN model, U-Detect-RPN produces a higher number of TPs along with a lower number

of both types of FP detections, namely, low IOU FPs and additional boxes.
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However, the U-Detect-RPN model has a higher number of FNs in overall unseen tests compared

to the adapted FRCNN model. Due to the relatively poorer classification accuracy of the RPN,

challenging lesions with background-like texture are typically scored low. In adapted FRCNN where

all RPN-generated proposals are sent through to the base network, proposals containing such lesions

are correctly classified by the base network owing to its higher classification accuracy. But, in U-

Detect-RPN, due to the textural similarity between lesion and background, TP proposals covering the

lesion are clustered with those covering background regions (FP proposals). Owing to the lower score

assigned to the TP proposal, it is not selected as the candidate. Since no TP proposal is sent through

to the base network, it is missed completely by the model. Additionally, lesions missed by adapted

FRCNN are also missed by U-Detect-RPN. In these common FN cases, all proposals covering the lesion

are assigned very low classification scores (i.e., labelled as background). As the classification scores

assigned to proposals are not altered by U-Detect models, despite good clustering of the proposals,

these lesions are also missed by U-Detect-RPN. An example of such missed lesions common to both

models and their clusters is shown in Figure 6.16.

6.2.1.2 Dimension Reduction of RPN-GAP Feature Vector

The previous section demonstrated the performance of U-Detect with full RPN-GAP features (1088×

1). This section reports the evaluation results of using PCA and KPCA to reduce the dimension of

RPN-GAP feature vector. From this point on, for the sake of brevity, all U-Detect-RPN models are

referred to by the feature vectors used for proposal description. For instance, RPN-GAP model refers

to the U-Detect-RPN model that uses RPN-GAP features for description of proposals. Both these

models do not include candidate merging method.

To identify the optimal number of PCs, the performance of U-Detect-RPN was evaluated using

5, 10, 15 and 20 PCs using a single fold of modelling dataset. F-measure was used to identify the

optimal number of PCs. Similar to PCA analysis, the number of kernel PCs was evaluated using the

same single fold of modelling dataset and number of optimal kernel PCs was identified based on the

performance in this fold. Figure 6.5 shows the performance of all tested PCA and KPCA components.

Overall, as the number of components increased, performance of the model dropped. Based on the

performance on the modelling dataset, 5 PCs and 5 kernel PCs were selected as optimal. Table 6.2

shows the impact of reducing dimension of RPN-GAP feature vector of size 1088 × 1 to 5 × 1 using
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PCA and KPCA. The U-Detect-RPN model using 5 PCs of RPN-GAP feature vector for proposal

description is referred to as RPN-GAP-PCA model and the model using 5 kernel PCs is referred to

as RPN-GAP-KPCA. Overall, both RPN-GAP-PCA and RPN-GAP-KPCA outperform RPN-GAP

model and adapted FRCNN model (see Table 6.1 for performance of RPN-GAP and adapted FRCNN

models). The RPN-GAP-KPCA model has the highest F-measure in all datasets.

(a) PCA (b) KPCA

Figure 6.5: Evaluation of number of PCs in PCA and KPCA applied to RPN-GAP feature vector.

Dataset U-Detect-RPN Model Precision Recall F-measure

A RPN-GAP-PCA 84.34 97.21 90.31
RPN-GAP-KPCA 84.08 99.26 91.02

Overall External RPN-GAP-PCA 75.54 88.35 81.38
Test Sets RPN-GAP-KPCA 74.85 90.37 81.84

B RPN-GAP-PCA 91.18 95.97 93.47
RPN-GAP-KPCA 92.51 99.43 95.83

C RPN-GAP-PCA 66.57 78.97 71.94
RPN-GAP-KPCA 65.84 80.59 72.24

D RPN-GAP-PCA 76.16 90.81 82.74
RPN-GAP-KPCA 74.73 93.14 82.81

E RPN-GAP-PCA 86.13 98.65 91.85
RPN-GAP-KPCA 86.64 99.21 92.38

Table 6.2: Impact of dimension reduction of RPN-GAP features using PCA and KPCA on the per-
formance of U-Detect-RPN.

The RPN-GAP-PCA model outperforms RPN-GAP with 0.01% to 2.46% higher F-measure in

the majority of the datasets (datasets C to E). In datasets A and B, the F-measure of this model is
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lower than that of RPN-GAP by 0.4% and 1.79%, respectively. In general, the RPN-GAP-PCA model

has 0.89% to 3.23% higher precision in modelling dataset and overall external test sets, respectively.

Largest improvement of 4.93% was seen in dataset C. However, this model has 2.18% and 1.76% lower

recall than the RPN-GAP model in modelling and overall external test sets, respectively. In datasets

A and B, due to larger drop in recall than improvement in precision, RPN-GAP-PCA model has

lower F-measure than RPN-GAP model. On the other hand, in datasets C to E, the drop in recall

was not significant leading to higher F-measure of the RPN-GAP-PCA model. Similar performance

was seen in comparison to the adapted FRCNN. In particular, the RPN-GAP-PCA model outper-

forms the adapted FRCNN model in datasets C, E, and E with 1.28% to 2.97% higher F-measure

due to higher precision and a relatively smaller drop in recall. In datasets A and B, the RPN-GAP-

PCA model has 0.24% to 1.06% lower F-measure due to larger drop in recall than the gain in precision.

On the other hand, RPN-GAP-KPCA has 0.31% and 1.72% higher F-measure than the RPN-GAP

model in modelling and overall external test sets, respectively, of which the largest improvement is

seen in dataset C (2.76% higher F-measure). This higher F-measure of the RPN-GAP-KPCA model

is due to its higher precision as well as recall. Specifically, the RPN-GAP-KPCA model has 0.63%

to 4.2% higher precision and 0.01% to 0.36% higher recall in modelling and overall external test sets.

Only exception to this is modelling datasets where this model has 0.13% lower recall than the RPN-

GAP model. In comparison to the adapted FRCNN model, the RPN-GAP-KPCA model has higher

F-measure (0.47% higher in modelling dataset and 2.53% in overall unseen test sets) due to higher

precision in the range of 0.9% to 5.69% with relatively smaller drop of 0.06% to 0.96% in recall. In

datasets B and D, along with higher precision, recall was also higher. In comparison to RPN-GAP-

PCA model, the RPN-GAP-KPCA model has 0.71% to 0.46% higher F-measure in modelling and

unseen test sets, respectively, which is due to average of 2.05% higher recall over all datasets and a

small drop of 0.26% to 0.66% in precision.

The higher precision of both RPN-GAP-PCA and RPN-GAP-KPCA models in comparison to

the adapted FRCNN and RPN GAP models is due to the reduction of FPs (both low IOU FPs and

additional boxes). PCA and KPCA condense the whole RPN-GAP feature vector such that the im-

pact of noisy, redundant information in the original feature vector is reduced without loss of critical

information. This leads to improved clustering that results in overall improvement in performance.
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Additionally, due to the superior quality of the KPCA feature vector, the RPN-GAP-KPCA model

has a generally higher number of TPs than all models in modelling and external test sets. In this

case, use of KPCA feature vectors further improves the quality of clusters formed in comparison to the

RPN-GAP and RPN-GAP-KPCA models resulting in selection of higher IOU candidates for further

processing.

However, despite the higher number of correct detections, RPN-GAP-KPCA has lower precision

than the RPN-GAP-PCA model due to the higher number of additional boxes. While the supe-

rior quality of the KPCA feature vector helps reduce low IOU FPs due to improved clustering, the

same quality of the KPCA feature vector also causes an increase in the number of clusters formed

in lesion-like regions of the background, with the majority of the proposals covering these regions

in single-element clusters (clusters containing a single proposal). Therefore, these proposals are sent

through to the base network, leading to additional boxes in the output of the model thereby increasing

the total number of FPs generated by this model.

However, both RPN-GAP-PCA and RPN-GAP-KPCA models have higher FN than the RPN-

GAP and adapted FRCNN. Specifically, RPN-GAP-PCA has the highest number of missed lesions

(low TPs and high FNs) leading to its lowest recall in all datasets. RPN-GAP-KPCA has higher

recall than the RPN-GAP model due to the relatively higher TPs despite the lower number of FNs.

Most lesions missed by the RPN-GAP-PCA and RPN-GAP-KPCA models are small and challenging

with background-like texture. Due to condensation of already weak textural information contained in

RPN-GAP feature vectors for such lesions, proposals covering these lesions are clustered with those

covering background regions. Furthermore, FNs missed in the RPN-GAP model are also missed here

due to the relatively poor classification accuracy of the RPN as explained in the previous section. In

terms of computation time, reducing the dimension from RPN-GAP in RPN-GAP-PCA and RPN-

GAP-KPCA led to a reduction in computation time from 16.52 seconds for the U-Detect model using

RPN-GAP features to 3.96 seconds in U-Detect-model using RPN-GAP-KPCA model.

In summary, reducing dimension of RPN-GAP feature vector from 1088×1 to 5×1 using either PCA

or KPCA led to an overall improvement in performance along with reduction in computation time.

However, in both RPN-GAP-PCA and RPN-GAP-KPCA, a significant number of clusters contain
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single proposals, followed by a considerable portion containing a very small number of proposals. Due

to this, majority of the proposals through to NMS in phase five without going through the intelligent

filtering of U-Detect method, which results in small to no change in issue cases caused by NMS. This

high number of clusters is caused due to the low default penalty used in the BIC metric of x-means

clustering. Following section evaluates the BIC metric of x-means.

6.2.1.3 X-means Penalty Evaluation for RPN-GAP

This section investigates the impact of C in the BIC penalty term on the overall performance of

RPN-GAP-PCA and RPN-GAP-KPCA. Both these models use the optimal number of components

(5 PCs and 5 kernel PCs) selected in the previous section. Also, these models do not include candi-

date merging (phase five of the U-Detect method). First, the penalty term in the RPN-GAP-PCA

model is evaluated which is followed by its evaluation in RPN-GAP-KPCA. Figures 6.6a and 6.6b

show the impact of C = {0, 0.5(default), 1, 2, 4, 6, 8, 10} on a single fold of modelling dataset. In both

RPN-GAP-PCA and RPN-GAP-KPCA, higher C values result in lower recall and F-measure with

comparatively small change in precision. As the penalty increases, the number of clusters decreases.

Candidate selection depends on the classification score assigned to the proposals by the RPN. Due

to the poorer classification accuracy of the RPN, lower IOU proposals are selected as candidates,

subsequently discarding high IOU proposals. This results in an increase in missed lesions leading to

lower recall and lower F-measure. Based on this performance, for RPN-GAP-PCA, C = 1 is selected

as the optimal. Although the F-measure for RPN-GAP-PCA models with C = 0 and C = 0.5 is the

same as C = 1, C = 1 is selected as optimal since it provides a better balance between number of

clusters and performance. Similarly, for RPN-GAP-KPCA, C = 1 is selected as optimal.

Table 6.3 shows the impact of this optimal penalty in RPN-GAP-PCA and RPN-GAP-KPCA

models, respectively (see Table 6.2 for performance of these models with default C). In the RPN-

GAP-PCA model, increasing C to selected optimal value of 1 leads to an improvement in the model’s

performance. In comparison to the default C, use of optimal C increased F-measure by 0.38% to

0.23% over modelling and unseen datasets, respectively, which was due to an improvement of 0.55%

to 0.37% in precision and 0.16% to 0.3% in recall. However, in the RPN-GAP-KPCA model, use of

optimal C results in no change to a small drop in overall performance. Specifically, in datasets A, B,

and E, increasing C leads to no change in performance whereas in datasets C and D,higher C results
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(a) PCA (b) KPCA

Figure 6.6: Impact of C in to RPN-GAP-PCA and RPN-GAP-KPCA models.

in a small drop of 0.045% precision and 0.015% recall.

Dataset Optimal C in U-
Detect-RPN

Precision Recall F-measure

A RPN-GAP-PCA 84.89 97.37 90.69
RPN-GAP-KPCA 84.08 99.26 91.02

Overall External RPN-GAP-PCA 75.91 88.40 81.61
Test Sets RPN-GAP-KPCA 74.82 90.36 81.82

B RPN-GAP-PCA 91.67 97.28 94.37
RPN-GAP-KPCA 92.51 99.43 95.83

C RPN-GAP-PCA 67.05 78.76 72.11
RPN-GAP-KPCA 65.79 80.57 72.19

D RPN-GAP-PCA 76.41 90.86 82.91
RPN-GAP-KPCA 74.69 93.13 82.79

E RPN-GAP-PCA 86.36 98.26 91.81
RPN-GAP-KPCA 86.64 99.21 92.38

Table 6.3: Performance of optimal C in U-Detect-RPN model using RPN-GAP-PCA feature vector.

Optimal C has a comparatively lesser number of clusters, especially single-element clusters, than

the default C. Reducing total number of clusters ensures that FPs are clustered with texturally similar

background regions unlike default C where the high number of single-element clusters restricts the

reduction of FPs as majority of the proposals are sent through to the base network without filtering.

Also, the improved clustering limits the overshadowing of TP proposals by FP proposals in single-
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element and small clusters. Therefore, due to the higher number of TPs and lower number of FPs,

optimal C has higher precision in modelling and overall unseen test sets, respectively. However, as

previously mentioned, with the reduced number of clusters and poorer classification accuracy of the

RPN, the optimal C models had a higher number of missed lesions.

RPN-GAP-KPCA model with optimal C has poorer performance in datasets C and D as these

datasets contain a higher number of challenging lesions that have high textural similarity with the

background region. Due to low classification scores assigned to proposals covering these lesions as

well as reduction in the number of clusters with higher C, these challenging lesions were missed which

resulted in lower recall and F-measure. Due to higher overall F-measure, the RPN-GAP-KPCA model

with default penalty is selected as optimal and used in all RPN-GAP-KPCA models mentioned from

hereon. Likewise, due to the superior performance of optimal C in RPN-GAP-PCA model, this penalty

is used in all RPN-GAP-PCA models referred from this point on.

6.2.1.4 Candidate Merging Method Application

This section reports the performance of the candidate merging method in RPN-GAP-PCA and RPN-

GAP-KPCA models with optimal number of PCs/kernel PCs and optimal C. Table 6.4 shows the

performance of these RPN-GAP-PCA and RPN-GAP-KPCA model with application of candidates

merging method (see Table 6.3 for performance of these models without candidate merging method).

Both models use optimal C. Overall, the candidate merging method improved the overall performance

of both models due to an improvement in precision and, in many cases, recall. The higher precision

is due to a reduction of FPs along with an increase in TPs. This is because, typically, the multiple

FPs covering small sections of a lesion are merged into a single box which covers the entire lesion with

high IOU IOU > 0.5 thereby converting the FP detections to a single TP detection. In some cases

where the merged box has IOU < 0.5, the total number of FPs is still reduced from multiple FPs to

a single low IOU FP. Occasionally, one of the overlapping boxes is a TP detection. Merging this TP

detection with the overlapping FPs leads to a drop in TP along with a drop in total FPs. But these

scenarios are relatively rare.

Lastly, there is no change in FNs as the candidate merging method does not influence any other

aspects of the U-Detect-RPN method including clustering of proposals and classification score assigned
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to proposals. Therefore, majority datasets had an improvement in recall with the use of merging due

to an increase in TPs and no change in FNs. However, in datasets where the TPs are converted to

low IOU FPs, there is a small drop in recall. Due to the best performance of RPN-GAP-KPCA model

with candidate merging method (along with optimal kernel PCs and C) as well as better suitability of

KPCA for dimension reduction, this model is selected as optimal U-Detect-RPN model. All references

from hereon to the U-Detect-RPN model use this optimal setup.

Compared to adapted FRCNN (see Table 6.1), the U-Detect-RPN modelhas 1.33% to 8.42% higher

precision due to 8.78% to 38.16% lower number of FPs and a relatively small drop of 0.12% to 0.21%

in recall. In datasets B and E, the U-Detect-RPN model has 0.01% higher recall than the adapted

FRCNN model. Thus, the overall F-measure is 0.7% to 5.05% higher. The improvement in precision

and recall is due to improved filtering of proposals which restricted overshadowing of TP proposals

as well as improved filtering of FP proposals. Single-fold performance of the U-Detect-RPN model is

provided in Section B.1 in Appendix B. Therefore, the proposed U-Detect-RPN method successfully

overcomes drawbacks of NMS.

Dataset U-Detect-RPN Models Precision Recall F-measure
with Candidate Merging

A RPN-GAP-PCA + merge 84.59 96.99 90.35
RPN-GAP-KPCA + merge 84.51 99.26 91.26

Overall External RPN-GAP-PCA + merge 77.17 88.67 82.52
Test Sets RPN-GAP-KPCA + merge 76.53 90.38 82.88

B RPN-GAP-PCA + merge 93.07 95.85 94.43
RPN-GAP-KPCA + merge 93.73 99.43 96.50

C RPN-GAP-PCA + merge 68.57 80.81 74.02
RPN-GAP-KPCA + merge 68.57 80.81 74.02

D RPN-GAP-PCA + merge 77.20 90.21 83.09
RPN-GAP-KPCA + merge 75.10 93.08 83.02

E RPN-GAP-PCA + merge 88.79 98.39 93.33
RPN-GAP-KPCA + merge 89.93 99.21 94.33

Table 6.4: Impact of candidate merging method on U-Detect-RPN models using RPN-GAP-PCA and
RPN-GAP-KPCA feature vectors.

6.2.2 U-Detect-Base

This section presents experimental results of the U-Detect-Base model. Similar to U-Detect-RPN,

the feature vector selection, dimensionality reduction, x-means penalty, and candidates merging are
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evaluated. This section starts with a description of the performance of the U-Detect-Base model with

the entire Base-GAP feature vector for proposal description. Next, an evaluation of PCA and KPCA

for reducing dimension of the Base-GAP feature vector is presented. This is followed by an analysis of

C in x-means penalty.As with evaluation of various phases of the U-Detect-RPN model, all U-Detect-

Base models presented in these sections do not use the candidate merging method (phase six) except

in the final section where the impact of the candidate merging method is exclusively studied.

6.2.2.1 Base-GAP Feature Vector

Table 6.5 shows the performance of the U-Detect-Base model with Base-GAP feature vector. Com-

pared to adapted FRCNN (see Table 6.1), U-Detect-Base model has a small improvement of 0.06%

to 0.19% in the overall F-measure due to higher precision with no to small change in recall. This

improvement in precision is a consequence of reduction in FPs with the use of the U-Detect method.

As with U-Detect-RPN, FNs of adapted FRCNN are also missed in the U-Detect-Base model as the

U-Detect models do not modify classification score assigned to proposals. Despite the overall improve-

ment in performance of the U-Detect-Base model, the high dimension of this feature vector increases

computation time and hinders optimal clustering. Thus, in the following section, use of PCA and

KPCA for reducing its dimension is investigated.

Dataset U-Detect-Base
Precision Recall F-measure

A 83.27 99.39 90.61

Overall External Test Sets 70.94 90.57 79.49

B 90.28 99.42 94.60

C 60.38 81.53 69.13

D 72.77 93.19 81.59

E 82.85 99.20 89.93

Table 6.5: Performance of U-Detect-Base model using Base-GAP feature vector for proposal descrip-
tion.

6.2.2.2 Dimension Reduction of Base Network Feature Vector

This section presents the impact of reduction in dimension of base-GAP feature vector using PCA

and KPCA. All U-Detect-Base models are referred to by the feature vector used for description of

proposals for the sake of brevity. For example, the Base-GAP model refers to the U-Detect-Base
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model using base-GAP feature vector for proposal description.

Figures 6.7a and 6.7b show the performance of 5, 10, 15 and 20 PCs and kernel PCs on the same

fold of modelling dataset as used in Section 6.2.1.2. As illustrated in Figure 6.7a, 5 PCs has the lowest

performance and an increase to 10 PCs improves the performance after which the performance is

unchanged with increase in PCs. The lower F-measure of the 5 PCs is due to higher number of FP in

comparison to the other three models (10 PCs, 15 PCs and 20 PCs). As the information contained in

5 PCs is lower, proposals are not clustered correctly leading to incorrect filtering out of FP detections.

Use of 15 PCs provides a good balance between small feature size and performance. Thus, 15 PCs is

selected as optimal. The U-Detect-Base model using 15 PCs is referred to as Base-GAP-PCA. On the

other hand, the lowest number of kernel PCs (5 PCs) has the best performance as shown in Figure

6.7b. Increasing the number of kernel PCs leads to an increase in FPs with no change in FN resulting

in a drop in precision and F-measure with higher number of kernel PCs (recall is unchanged). This is

because of an increase in the number of clusters with higher kernel PCs. Based on this performance,

5 PCs is selected as optimal and the U-Detect-Base model using this feature vector is referred to as

Base-GAP-KPCA.

(a) PCA (b) KPCA

Figure 6.7: Evaluation of PCA and KPCA components of Base-GAP feature vector.

Table 6.6 shows the performance of Base-GAP-PCA and Base-GAP-KPCA. Both models out-

perform Base-GAP (see Table 6.5) and adapted FRCNN models (see Tables 6.1). Use of PCA has
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a similar impact on the overall performance as seen in Section 6.2.1.2. Base-GAP-PCA model has

higher F-measure than Base-GAP model; 0.16% in modelling dataset and 1.01% in overall unseen test

sets. This is due to improvement of 0.42% to 1.82% in precision along with relatively smaller drop in

recall of 0.2% to 0.49% in modelling and unseen test sets, respectively. Similarly, Base-GAP-KPCA

outperforms the Base-GAP model. Here, the F-measure improved by 0.18% to 0.9% over modelling

and external test sets, respectively which is the result of an increase in precision (0.41% to 1.62%)

with a comparatively smaller drop in recall (0.14% to 0.31%). Also, both Base-GAP-PCA and Base-

GAP-KPCA models outperforms the adapted FRCNN model with higher precision and a relatively

small drop in recall.

Dataset U-Detect-Base Model Precision Recall F-measure

A Base-GAP-PCA 83.69 99.19 90.77
Base-GAP-KPCA 83.68 99.25 90.79

Overall External Base-GAP-PCA 72.76 90.08 80.50
Test Sets Base-GAP-KPCA 72.56 90.26 80.39

B Base-GAP-PCA 90.60 99.28 94.71
Base-GAP-KPCA 90.48 99.14 94.57

C Base-GAP-PCA 61.92 80.60 69.81
Base-GAP-KPCA 61.74 80.98 69.86

D Base-GAP-PCA 75.72 92.85 83.31
Base-GAP-KPCA 75.13 93.03 83.01

E Base-GAP-PCA 83.38 99.20 90.22
Base-GAP-KPCA 83.41 99.07 90.17

Table 6.6: Impact of dimension reduction using PCA and KPCA on Base-GAP features on perfor-
mance of U-Detect-Base model.

Impact of reducing the dimension of the base-GAP feature vector using PCA and KPCA is similar

to that seen in U-Detect-RPN described in Section 6.1.2. Like U-Detect-RPN, using PCA and KPCA

feature vectors led to an overall reduction in FPs leading to the higher precision of Base-GAP-PCA and

Base-GAP-KPCA in comparison to the Base-GAP and adapted FRCNN models. Likewise, due the

reduced textural information in the PCA and KPCA feature vectors, these models had comparatively

higher number of FNs. Also, due to the higher quality of the KPCA feature vector, the Base-GAP-

KPCA model has higher TPs than the Base-GAP-PCA model along with higher FPs. Therefore,

Base-GAP-PCA has 0.01% to 0.2% higher precision than Base-GAP-KPCA but 0.06% lower recall.

Due to the larger drop in precision, Base-GAP-PCA has 0.11% higher F-measure overall. In the
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following section, the impact of variation in BIC penalty in both these models is investigated.

6.2.2.3 X-means Penalty Selection

This section evaluates the impact of C on the performance of Base-GAP-PCA and Base-GAP-KPCA

models. Both models use the optimal number of PCs and kernel PCs identified in the previous section.

Figure 6.8a shows the impact of C = {0, 0.5(default), 1, 2, 4, 6, 8, 10} in the Base-GAP-PCA model.

Figure 6.8b shows the impact of C = {0, 0.5(default), 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} on the perfor-

mance of Base-GAP-KPCA model. Both these analyses were conducted on the same fold of modelling

dataset as used in Section 6.2.1.3 for U-Detect-RPN.

Overall, an increase in C improves F-measure due to reduction in FPs in a similar manner as

described in Section 6.2.1.3. As C increases, the number of clusters, especially single-element clusters.

This reduction in the number of clusters with higher C value is shown in Figure 6.9. Figure 6.10

illustrates the reduction in the high number of clusters when C is increased. Higher C values promote

better clustering of proposals which in turn reduces the number of FPs with negligible impact on

the number of correct detections. An example of reduction in FPs with higher penalty is shown in

Figure 6.11. Thus, increasing the penalty leads to increase in precision with recall remaining relatively

constant. Smaller range of C was investigated for Base-GAP-PCA as values higher than 10 led to an

undesired reduction in the number of clusters. Based on the performance on the modelling dataset,

C = 10 is selected as optimal for Base-GAP-PCA and C = 14 for Base-GAP-KPCA. In U-Detect-

RPN, higher penalty led to lower F-measure and the selected optimal value of C is much lower than

optimal value of C selected in U-Detect-Base. As previously mentioned, higher C values reduce the

number of clusters i.e. larger number of proposals in each cluster. Due to the comparatively higher

classification accuracy of the base network, better quality of candidates (proposals with high IOU)

were correctly selected as candidates from these large clusters. This results in further reduction in

FPs without significant negative impact on correct detections.

Table 6.7 shows the performance of optimal C in Base-GAP-PCA and Base-GAP-KPCA models,

respectively (see Table 6.6 for performance of these models with default C). In Base-GAP-PCA,

changing C from default value of 0.5 to the selected optimal value of 10 led to an increase of 0.22%

to 2.31% in F-measure owing to its higher precision. As seen with U-Detect-RPN in Section 6.2.1.3,
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(a) PCA (b) KPCA

Figure 6.8: Evaluation of C in U-Detect-Base model using Base-GAP-PCA and Base-GAP-KPCA
feature vectors.

optimal C value in Base-GAP-PCA leads to a reduction in FPs as well as number of correct detections.

This resulted in its higher precision of 0.37% to 4.1%. On the other hand, recall of the Base-GAP-

PCA model had a relatively smaller drop of 0.38% in overall unseen test sets (no change in modelling

dataset). Similarly, compared to adapted FRCNN, Base-GAP-PCA model with optimal C has 0.44%

to 2.94% higher F-measure due to 0.88% to 5.46% improvement in precision and 0.2% to 0.89% drop

in recall in modelling and unseen test sets, respectively.

Dataset Optimal C in U-Detect-
Base

Precision Recall F-measure

A Base-GAP-PCA 84.06 99.19 90.99
Base-GAP-KPCA 84.41 99.19 91.19

Overall External Base-GAP-PCA 75.98 89.70 82.24
Test Sets Base-GAP-KPCA 77.15 89.69 82.94

B Base-GAP-PCA 91.52 99.14 95.16
Base-GAP-KPCA 92.12 99.14 95.49

C Base-GAP-PCA 66.02 79.82 72.12
Base-GAP-KPCA 68.02 79.83 73.38

D Base-GAP-PCA 78.08 92.70 84.68
Base-GAP-KPCA 78.29 92.72 84.82

E Base-GAP-PCA 85.39 99.07 91.50
Base-GAP-KPCA 87.00 99.07 92.56

Table 6.7: Impact of the optimal C in U-Detect-Base model using Base-GAP-PCA feature vector.
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Figure 6.9: Impact of change in C on total number of clusters.

Use of optimal C in Base-GAP-KPCA improved precision by 0.73% to 4.59% with only a smaller

drop of 0.06% to 0.57% in recall leading to an overall improvement of F-measure in comparison to the

Base-GAP model. Likewise, the Base-GAP-KPCA model with optimal C also outperforms adapted

FRCNN with 1.23% to 6.63% higher precision and only 0.2% to 0.9% drop in recall leading to an

overall higher F-measure of 0.64% to 3.64% (see Table 6.1 for performance of adapted FRCNN). Here,

the optimal C Base-GAP-KPCA model has a lower number of FPs than adapted FRCNN. An exam-

ple of the reduction in one of the challenging additional boxes (FP boxes with IOU = 0) of adapted

FRCNN from dataset C in the Base-GAP-KPCA model (optimal C) is shown in Figure 6.13. Majority

of the TP cases from the adapted FRCNN model are retained. Figure 6.12 shows clusters of TP cases

common to both models. Multiple lesions are also detected in the Base-GAP-KPCA model as shown

in Figure 6.14.

The small increase in missed lesions compared to the adapted FRCNN is due to improper clustering.

In these cases, proposals covering lesion and lesion-like background regions are clustered together.

Here, due to the higher score of the proposal covering lesion-like background regions, it is selected as

the candidate from the cluster leading to a missed lesion. An example of this is shown in Figure 6.15.

Apart from this, lesions missed by the adapted FRCNN model (FNs) are also missed by this model

due to the low classification scores assigned to all proposals covering the lesion. An example of such

missed lesions common to both models and their clusters is shown in Figure 6.16.
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(a) C = 0

(b) C = 10

Figure 6.10: Illustration of the impact of C on number of clusters. Each dot represents the centre
point of a proposal and each colour represents one cluster. Dots marked with a cross (’x’) were selected
candidates from their respective clusters.
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(a) C = 0 cluster (b) C = 0 output

(c) C = 10 cluster (d) C = 10 output

Figure 6.11: Sample reduction of overlapping low IOU FP with higher C.

(a) (b)

Figure 6.12: Clusters generated in TP detections of U-Detect-Base model using Base-GAP-KPCA
feature vector.
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(a) Adapted FRCNN output (b) Base-GAP+KPCA Output

Figure 6.13: Additional box reduction in U-Detect-Base model using Base-GAP-KPCA feature vector.

(a) Clusters (b) Output

Figure 6.14: Detection of multiple lesions by U-Detect-Base model using Base-GAP-KPCA feature
vector.

(a) Clusters (b) Output Detections

Figure 6.15: Increased missed lesion in U-Detect-Base model using Base-GAP-KPCA feature vector.
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(a) (b)

Figure 6.16: Clusters generated in FN cases of U-Detect-Base model using Base-GAP-KPCA feature
vector.

6.2.2.4 Candidate Merging Method Application

This section details the impact of candidate merging method (phase five) on the performance of Base-

GAP-PCA and Base-GAP-KPCA models. Note that both these models use the optimal number of

PCs/kernel PCs and their respective optimal C (see Table 6.7 for performance of these models without

candidate merging method). Table 6.8 shows the impact of the candidate merging method in these

models.Irrespective of the model, use of the merging mechanism led to a reduction of FPs thereby

improving overall precision of the model. Furthermore, some of the merged boxes cover the lesion

with IOU ≥ 0.5 resulting in an increase in TPs. An example of such a TP merged box is as shown in

Figure 6.17.

Base-GAP-KPCA outperforms Base-GAP-PCA model with and without merging. Thus, due to

the best performance as well as applicability of the Base-GAP-KPCA model with optimal number

of PCs, C and candidate merging method, it is considered as the optimal setup for U-Detect-Base.

All mentions of U-Detect-Base models from hereon refer to this model. The U-Detect-Base model

outperforms adapted FRCNN with 1.18% to 7.87% higher precision resulting from 6.08% to 38.89%

lower number of FPs and only a small drop of 0.13% to 1.72% in recall. Single-fold performance of

the U-Detect-RPN model is provided in Section B.2 in Appendix B. Therefore, using the clustering

network to filter the final detections of the base network is effective in addressing drawbacks of NMS

while causing minimal negative impact on the number of correct detections.
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Dataset U-Detect-Base Models Precision Recall F-measure
with Candidate Merging

A Base-GAP-PCA + merge 84.22 99.25 91.11
Base-GAP-KPCA + merge 84.41 99.19 91.19

Overall External Base-GAP-PCA + merge 76.94 89.74 82.84
Test Sets Base-GAP-KPCA + merge 77.15 89.69 82.94

B Base-GAP-PCA + merge 91.87 99.14 95.35
Base-GAP-KPCA + merge 92.12 99.14 95.49

C Base-GAP-PCA + merge 67.25 79.96 72.97
Base-GAP-KPCA + merge 68.02 79.83 73.38

D Base-GAP-PCA + merge 78.53 92.70 84.96
Base-GAP-KPCA + merge 78.29 92.72 84.82

E Base-GAP-PCA + merge 87.28 99.07 92.72
Base-GAP-KPCA + merge 87.00 99.07 92.56

Table 6.8: Impact of candidate merging method on U-Detect-Base models using Base-GAP-PCA and
Base-GAP-KPCA feature vectors.

(a) Without merging (b) With merging

Figure 6.17: Impact of candidate merging method on reduction of overlapping FPs.

6.2.3 U-Detect-RPN vs U-Detect-Base

This section compares the performance of the two U-Detect-RPN (see Table 6.4) and U-Detect-Base

(see Table 6.8). U-Detect-Base has a comparatively lower performance than U-Detect-RPN due to

lower precision and recall. In both models, the base network has higher classification accuracy than

the RPN as shown in Table 6.9. However, in U-Detect-RPN, the quality of proposals sent through to

the base network is superior leading to a better overall performance. On the other hand, U-Detect-

Base uses comparatively poorer proposals due to their improper filtering by NMS. Therefore, despite
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no change in the classification accuracy, U-Detect-Base has a comparatively lower F-measure than

U-Detect-RPN.

IOU Dataset A Dataset C Dataset D
RPN Base RPN Base RPN Base

0 18.21 17.61 35.85 33.25 22.81 23.90

(0,0.5) 74.53 71.38 56.22 53.93 69.74 64.21

[0.5,1] 7.26 11.01 7.92 12.82 7.44 11.88

Table 6.9: Percentage of proposals in the different IOU ranges after classification and bounding box
regression by RPN and base network of the adapted FRCNN model.

Overall, the U-Detect-RPN model outperforms the U-Detect-Base model with 0.1% and 1.77%

higher F-measure. However, in dataset D, U-Detect-Base had 1.8% higher F-measure due to 3.19%

higher precision resulting from lower number of FPs and 0.36% lower recall. Irrespective of the

location, both U-Detect-RPN and U-Detect-Base outperform adapted FRCNN through reduction of

NMS issue cases including single and multiple FPs with minimal negative impact on number of correct

detections. Therefore both models have higher precision than the adapted FRCNN. An important dis-

tinction to note here is that along with higher precision, U-Detect-RPN also has higher recall than the

adapted FRCNN model due to higher number of TPs. In terms of computation time, U-Detect-Base is

faster. Average computation time of U-Detect-Base is 0.96 seconds whereas that for U-Detect-RPN is

3.96 seconds. In comparison to computation time of adapted FRCNN (0.39 seconds), U-Detect-Base

adds only an additional 0.57 seconds.

Despite the improvement to the overall number of FPs, two types of FPs still remain in both these

models, namely, single low IOU FPs and FP+FN cases. Single low IOU FPs are cases where the out-

put of the model is a single output detection with IOU < 0.5. Secondly, FP+FN are scenarios where

the single output detection covers lesion-like background region and the lesion is completely missed

thereby creating a FP and a FN. Additionally, since the classification scores assigned to proposals

is not altered by the clustering mechanism, there is no change in FNs in comparison to the adapted

FRCNN model despite high quality clustering.

These common issues cases are caused due to poor classification scores assigned to proposals. In

these cases, there exists a high IOU, TP detection in the cluster but due to its poorer classification
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score, it is not selected as the candidate of the cluster and discarded as redundant proposals. In single

low IOU FP output of U-Detect-Base, the cluster containing this low IOU FP also contains at least

one high IOU proposal with an average IOU of 55% and average rank of 4.56 in the cluster on the

basis of its classification score. Thus, despite the presence of TP, the low IOU FP proposal is selected.

In the FN+FP scenario, best proposals in the cluster have an average IOU of 0.48 and an average

rank of 7.6. Although here the best proposal is not a TP, it still detects the lesion instead of the

selected candidate which is a FP box with IOU 0 with the GT lesion. Finally, in FN cases, the cluster

covering the lesion contains proposals with an average of IOU 0.52 but as these proposals are labelled

as background, they are discarded and the lesion is missed.

6.3 Discussion

This chapter successfully addressed the issue cases of the adapted FRCNN model caused by improper

filtering of the proposals by NMS using a novel U-Detect method. This section discusses investigations

relevant to the proposed U-Detect method. In phase three of this method, candidates from each cluster

are selected based on their classification score. However, the common practice in clustering methods is

to use the centroid of a cluster as its candidate since it provides a good representation of that cluster.

Therefore, it is worth investigating the impact of using centroid as the candidate selection method is

also studied in the U-Detect method. Specifically, the impact of the centroid method of candidate

selection was studied in U-Detect-RPN where proposals are described using RPN-GAP features and

default C was used. Distance between proposals is measured using cosine similarity as described

in Section 6.1.3. Also, the candidate merging method was not applied to the final candidates. An

important point to note here is that centroid is typically not a proposal as it is the mean of any given

set of proposals in a cluster. Since we require the candidate to be one of the proposals, the selected

candidate in this case is the proposal closest to the centroid, where closeness is measured in terms of

textural similarity. Equation 6.3 defines this method of candidate selection.

candidatej = min(dist(pij , centroidj)) for i ∈ [1, n], j ∈ [1,m]

where

dist(pij , centroidj) = 1− cos(pij , centroidj) for i ∈ [1, n], j ∈ [1,m]

(6.3)

Here, pij represents ith proposal in jth cluster, n is the total number of proposals in that cluster and
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m is the total number of clusters. Thus, the proposal that is most texturally similar to the centroid is

selected as the candidate for that cluster. Table 6.10 shows the performance of the centroid method

for candidate selection in comparison RPN score. The centroid method achieved lower performance

compared to the adapted FRCNN (see Table 6.1) with 0.23% to 0.84% lower F-measure. This drop in

performance is due to higher number of FPs along with reduction in the number of correctly detected

lesions. Here, as the selected candidate is the best mean representation of all proposals in the cluster,

lower IOU boxes are selected as candidates in spite of the presence of high IOU boxes in the cluster,

thereby converting TP detections of the adapted FRCNN model to low IOU FPs. An example of this

is shown in Figure 6.18.

Dataset U-Detect-RPN Model Precision Recall F-measure

A RPN-GAP (Centroid) 82.81 99.39 90.34
RPN-GAP (RPN Score) 83.45 99.39 90.71

Overall External RPN-GAP (Centroid) 70.08 89.80 78.66
Test Sets RPN-GAP (RPN Score) 72.21 90.08 80.11

Table 6.10: Comparison to candidate selection methods in U-Detect-RPN model using RPN-GAP
features.

(a) Adapted FRCNN (b) RPN-GAP (centroid)

Figure 6.18: Increase in low IOU FP reduction using centroid for candidate selection in U-Detect-RPN
model.

However, compared to the adapted FRCNN, this centroid-based U-Detect-RPN model had an

overall lower number of additional boxes due to the effectiveness of the U-Detect method. Here,

FP proposals covering background lesion-like regions are clustered together. Their centroid is either

removed during NMS due to high overlap with other candidates or due to the low confidence score

assigned by the base network. In spite of this drop in additional boxes, total FPs of the centroid
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model was still higher than the adapted FRCNN due to the high number of low IOU FPs. Along with

the drop in TPs through conversion to low IOU FPs, there was also an increase in FNs. Some of the

challenging lesions with background-like texture are clustered with proposals covering background due

to similarity in texture. As majority proposals in this cluster cover the background region, centroid

also covers the background region. Thus, the proposal containing the lesion is discarded leading to a

missed lesion. In other cases, candidates contain significant percentage of margin leading to assign-

ment of low classification score by the base network.

Compared to the model using RPN classification score for candidate selection, the model using

centroid method of candidate selection had 0.41% to 1.84% lower F-measure. Unlike the centroid

method, use of RPN score (typically) ensures that the proposal with highest IOU with the lesion

is selected as the candidate which led to reduction in FPs as well as an increase in number of de-

tected lesions. Number of FNs of both methods is almost the same. While challenging lesions in

centroid-based method are missed due to selection of background-covering proposal as candidate, in

RPN-score-based model lesions are missed due to poor classification score assigned by the RPN. Both

models have common FNs with adapted FRCNN model as the U-Detect models do not modify the

classification score of proposals.

Initially, tests were conducted using k-means clustering. This required predefining the number

of clusters. Although the performance was reliably high, using predefined k limited any appropriate

adaptation required for an individual image. Use of k-means also limits application of the U-Detect

method in detectors of other types of lesions where the average number of lesions is higher. Therefore,

x-means clustering is used to ensure that the appropriate number of clusters is used for each image

without relying on a single predefined value making the network more adaptable to other detectors

and datasets/domains. X-means clustering [1] employs BIC as the metric to merge or break clusters.

The BIC equation detailed in the original x-means paper uses incorrect maximum likelihood estimate

(MLE) for variance [156]. When used in this format, all proposals were placed in a single cluster. In

this work, the correct form of this equation as detailed in [156] is used.
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6.4 Summary

This chapter presented a new approach based on unsupervised learning for reducing false positive

detection for breast lesion detection in ultrasound images. In particular, a new method called U-

Detect was proposed and consists of learnable features extraction, dimensionality reduction, proposals

clustering using x-means clustering method, candidates selection, and candidates merging. U-Detect

is only used during the test-stage of a pretrained detector thereby adding no additional computa-

tional cost to model training. The chapter consists of two main parts. The first part introduced a

new method called U-Detect-RPN which uses features extracted from the last convolution layer of

inception-resnet-B block as a texture information to reduce the FPs.

The second part presented another variant of U-Detect called U-Detect-Base which uses features

extracted from the last convolution layer of inception-resnet-B block as a texture information to reduce

the FPs. Using the datasets detailed in Section 4.1, both U-Detect-RPN and U-Detect-Base models

outperformed the adapted FRCNN by reducing FPs by 8.45% to 47.53% without significant nega-

tive impact of 0.07% to 0.98% on recall. In some cases, U-Detect-RPN improved the total number

of correct detections along with the reduction of FPs. Of the two models, U-Detect-RPN outper-

formed U-Detect-Base. This is because of the higher quality of proposals sent to the base network in

U-Detect-RPN which improved the overall performance. However, U-Detect-RPN had higher com-

putation time while U- Detect-Base had computation time comparable to that of the adapted FRCNN.

The main findings of this chapter can be summarised as follows:

• The FPs issue was found to be due to the poor classification accuracy of the network and the

post-processing method, NMS, used to remove redundant proposals.

• The study in this chapter demonstrated that the U-Detect method reduces the FPs and increases

the performance of detecting breast lesions in ultrasound images.

• The hypothesis of clustering proposals with similar learnable texture features (RPN or Base) for

FPs reduction was validated.

• U-Detect-RPN outperformed U-Detect-Base and produced high quality proposals sent to the

base network which improved the overall performance.
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Out of the remaining FPs in both U-Detect-RPN and U-Detect-Base, single low IOU FPs were

the most common. This is because of the poor classification accuracy. In particular, the cluster

containing these single low IOU FP also contain high IOU detections. However, due to the lower score

assigned to the high IOU detections, the single low IOU FP in that cluster is selected as the candidate.

In some cases, additional boxes (or detections) are also clustered with proposals covering the lesion

with high IOU. But due to the higher classification score of the additional box, it is selected as the

candidate leading to a missed lesion and a FP. In the following chapter, these common issue cases are

addressed with the help of handcrafted features designed to improve the classification score providing

an adaption of the U-Detect method.
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Chapter 7

U-DetectH: A Classification-based

Approach using Handcrafted Features

for FP Reduction

In Chapter 6, a novel method (U-Detect) was presented which successfully reduced FP detections of

adapted FRCN. Based on the learnable features used by the U-Detect method, two networks called

U-Detect-RPN and U-Detect-Base were proposed. Both U-Detect-RPN and U-Detect-Base outper-

formed adapted FRCNN through successful reduction of FPs. Additionally, U-Detect-RPN also had a

higher number of correct detections than the adapted FRCNN model in datasets B and E. The perfor-

mance of U-Detect based learned features in FPs reduction provides motivation to further improve the

proposals selection using engineered features. Therefore, the aim of this chapter is to introduce a new

set of features to improve the proposals selection performance and ultimately reduce FP detections.

U-Detect models have the following common types of issue cases: single low IOU FP, FP + FN,

and FN, in that order of commonality, as discussed in Section 6.2.3 of Chapter 6. Single low IOU

FPs are cases where the model outputs a single detection covering the lesion with IOU < 0.5. In

FP + FN, the output is a single detection that covers lesion-like regions in the background (FP)

thereby completely missing the lesion (FN). Figure 7.1 illustrates these issue cases. As presented in

Section 6.2.3 of Chapter 6, the cause of the cases is incorrect assignment of classification scores to

the proposals. In the majority of these cases, there exists at least one high-IOU TP proposal in the
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same cluster as the output issue case. However, the TP proposal is assigned a lower score than the FP

proposal. Therefore, from this cluster, the FP proposal is selected as the candidate while the high-IOU

proposal is discarded as redundant. In case of FN, all proposals covering the lesion are assigned low

scores, classifying them as background. Therefore, despite the good quality of clusters, all proposals,

including the high-IOU TPs, are discarded.

(a) Single FP (b) FN+FP (c) FN

Figure 7.1: Common issue cases of U-Detect models.

In this chapter, these cases are addressed through improving the classification score assigned to the

proposals with the help of handcrafted features. We hypothesise that the improvement in classification

scores would lead to selection of higher IOU TP candidates, consequently reducing the number of FPs

and missed detections where the definition and selection of the handcrafted features are inspired by

the domain knowledge of the lesion characteristics.

The proposed approach is referred to as U-DetectH. It builds on the U-Detect method of Chapter 6

and differs from it in two phases. In phase one, while U-Detect extracts only learned features for each

proposal, U-DetectH extracts learned as well as handcrafted features. Second, a new phase is added

where the classification score assigned to each proposal is modified using SVM model(s) trained on the

extracted handcrafted features. Remainder of the phases of both methods (U-Detect and U-DetectH)

are the same. Therefore, this chapter focuses mainly on phases novel to U-DetectH. First, Section 7.1

details the proposed U-DetectH method. Next, Section 7.2 presents the performance and analysis of

U-DetectH and several handcrafted features. Section 7.3 discusses key points related to this work and

Section 7.4 provides a summary of the key findings from this chapter.
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7.1 U-DetectH for False Positive Reduction

In this chapter, we propose a new approach of adapting the U-Detect method to reduce FPs using

handcrafted features. The handcrafted features have been identified and selected to extract impor-

tant texture and morphological features of breast lesions that would help in distinguishing proposals

containing lesions from those containing background regions. These features were determined with

reference to the characteristics of breast lesions in US images used by radiologists to assign BI-RADS

score as detailed in Section 2.1 of Chapter 2. An SVM classifier is trained using these handcrafted

features to improve the classification score assigned to the proposals by the RPN/base network. This,

in turn, helps reduce FPs through selection of high IOU TP proposals.

Figure 7.2 provides an overview of the proposed U-DetectH method. U-DetectH consists of the

following six phases: feature extraction, dimensionality reduction, proposal clustering, classification

score update, candidate selection, and candidate merging. In phase one, learned and handcrafted

features of every proposal are extracted. In phase two, dimension of both learned and handcrafted

feature vectors is reduced. These dimensionally reduced learned feature vectors are then used in the

following phase (phase three) to cluster proposals based on their texture using x-means clustering. In

the fourth phase, classification decision fusion of SVM trained on handcrafted features and RPN/base

network is performed which outputs a new, updated score for every proposal. Using this updated

score, candidates from each cluster are selected in phase five.

Classification decision fusion in this manner is used for the following two reasons. First, the quality

of the clusters formed using learned features is reliable as evidenced through the high performance

of the final U-Detect-RPN and U-Detect-Base models in Chapter 6. Second, as described in Section

6.2.3 of Chapter 6, the common FP detections of U-Detect models (single low IOU FPs and FP+FNs)

are caused due to incorrect candidate selection which is a result of low classification score assigned

to high IOU proposals in comparison to FP proposal present in the same cluster. Likewise, FNs of

the U-Detect models are caused due to low classification score assigned to all proposals containing

the lesion. Therefore, through this decision fusion, classification scores assigned to high IOU propos-

als can be improved which would in turn lead to their selection as candidates from their respective

clusters. Through such an improvement in classification score and candidate selection, the issue cases

156



Figure 7.2: Overview of U-DetectH method.

of U-Detect models can be addressed. After candidates are selected in phase five using the updated

score, they are passed through phase six where they are filtered through the NMS without causing

a negative impact on the output. The filtered candidates are then processed through the candidate

merging method presented in Section 6.1.5 of Chapter 6. Based on the location of the U-DetectH

method, two networks are derived, namely, U-DetectH-RPN and U-DetectH-Base. Figures 7.3 and

7.4 show the proposed U-DetectH-RPN and U-DetectH-Base, respectively.

Given the similarity in phases of both U-Detect and U-DetectH, the remainder of this section

describes investigation of the phases specific to U-DetectH, i.e., handcrafted feature extraction in

phase one, dimension reduction of handcrafted features in phase two and classification decision fusion

in phase four. First, Section 7.1.1 details the selected handcrafted features. Section 7.1.2 describes

dimensionality reduction technique used for the handcrafted features. Finally, Section 7.1.4 describes

the decision fusion method used.
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Figure 7.3: Overview of U-DetectH-RPN method.

Figure 7.4: Overview of U-DetectH-Base method.
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7.1.1 Extraction of Handcrafted Features

Inspired by the way the radiologists read and report the breast lesion characteristics such as echogenic-

ity, margin and shape, a set of discriminating features are defined to improve the classification scores

assigned to the proposals. As illustrated in Chapter 2 Section 2.1, echogenicity of a lesion is its

property to reflect US waves in reference to its surrounding tissues. This is an important textural

characteristic of the lesion used for its BI-RADS classification. Depending on the nature of the lesion,

its echogenicity varies. For instance, fluid-filled lesions appear dark in an US image as fluids absorb

the US waves instead of reflecting them. These are usually benign lesions/cysts as shown in Figure

7.5a. On the other hand, solid lesions have isoechoic texture as solid mass have high reflectivity. An

example of an isoechoic lesion is shown in Figure 7.5b.

(a) Anechoic (b) Isoechoic (c) Hyperechoic

Figure 7.5: Example of lesions with different echogenicities.

Also, some fluid-filled lesions contain solid calcifications which appear as bright spots in an other-

wise dark lesion as seen in figures 7.5b and 7.5c. These calcifications also provide important informa-

tion useful for the classification of the lesion. Lesions may also have mixed echogenicity (non-uniform

texture) depending on its composition. For instance, hyperechoic lesions (usually malignant) contain

fat and therefore have bright grey regions in the lesion as shown in Figure 7.5c. Margin of a lesion

contains important textural information pertaining to the type of lesion. Furthermore, proposals con-

taining lesions generally have a distinctive aspect ratio as lesions are typically elliptical in shape. Such

characteristics can be used to distinguish lesions from normal breast tissue.

We propose to extract HOG, GLCM, ULBP and aspect ratio (shape) features to represent each

proposal where the aspect ratio feature captures the orientation of the lesion, GLCM captures global

textural features relating to the lesions’ echogenicity and HOG and ULBP capture local textural
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features such as edges and contours caused by the change in contrast with varying echogenicity of the

lesion and the background tissue as well as calcifications found inside the lesion. Then, these features

are used with SVM to recognise the proposal as foreground (lesion) or background. Theoretical

background of HOG, GLCM and ULBP is provided in Section 2.2.1 Chapter 2. Remainder of this

section presents the extraction of the proposed handcrafted features.

7.1.1.1 Gray-level Co-variance Matrix (GLCM)

GLCM is a second-order textural feature which provides global textural information. In particular,

GLCM provides textural information in relation to the echogenicity of the region of the image contained

in the proposal. For each proposal, 16 GLCM matrices are constructed for four distances (1, 2, 3, 4)

and four angles (0, 45, 90, 135). These values have been commonly used in the literature for breast

lesion classification as discussed in Chapter 3. From each of these 16 GLCM matrices, four textural

metrics are computed, namely, contrast, correlation, entropy, and energy, which provide details with

respect to echogenicity. These textural metrics are defined in Section 2.2.1 of Chapter2. Therefore,

each proposal is described using 64 textural metrics computed for the 16 GLCM matrices. Thus, the

dimension of the GLCM feature vector is 64× 1.

7.1.1.2 Histogram of Oriented Gradients (HOG)

HOG extracts local textural features in an image such as edges and contours. Such local features

help in identification of the lesion. As proposals have varied sizes, using the traditional approach of

extracting HOG would lead to an inconsistent feature size of across proposals generated for an image.

For example, consider two proposals, P1 of size 139× 264 and P2 of size 50× 65. As shown in Figure

7.6, use of the traditional method of predefining the number of pixels in a cell (cell size) generates

HOG feature vectors of different dimensions for each proposal. Additionally, an optimal cell size for

P1 works poorly in P2 and vice versa. Also, predefined cell size designed for the average proposal size

fails for proposals of smaller dimensions as shown in Figure 7.6f.

To overcome this issue and maintain a constant feature vector size, the total number of cells is

predefined instead of cell size. Thus, every image is divided into the same number of cells with the

only difference being in the number of pixels in each cell. Using this approach also adapts HOG for

each individual proposal. We defined the number of cells to 4 × 4 and bin size to 9. With block
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(a) Cell size 8× 8. Feature size = 4608 (b) Cell size 8× 8. Feature size = 432

(c) Cell size 16× 16. Feature size = 1152 (d) Cell size 16× 16. Feature size = 72

(e) Cell size 32× 32. Feature size = 288 (f) Cell size 32× 32. Feature size = NA

Figure 7.6: Impact of varying cell size in two sample proposals P1 of size 139× 264 (left column) and
P2 of size 50× 65 (right column).
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size set to 2 × 2 cells and no overlap between blocks, the output feature vector is maintained at a

constant size of 144 × 1. These parameters have been commonly used in HOG feature extraction,

with the exception of the number of cells. Number of cells is determined so as to ensure a balance

between quality of features and dimension of the feature vector; higher number of cells would improve

the textural information captured in the feature vector but it greatly increases the dimension of the

feature vector and vice versa.

7.1.1.3 Uniform Local Binary Pattern (ULBP)

Compared to LBP, ULBP is invariant to rotation as well as the dimension of the feature vector

is considerably smaller. ULBP provides local textural information such as edges which aid in the

classification of lesions. Here, the window size is adapted to the size of the input proposal. Thus,

59 ULBP features are extracted for the entire proposal. This feature vector is a histogram of binary

patterns. Thus, each feature in the ULBP feature vector is a histogram bin for a binary pattern(s).

Of the 59 bins, 58 bins are reserved for 58 uniform patterns and 1 bin for all non-uniform patterns.

Thus, the feature vector has a constant size of 59× 1, irrespective of the proposal size.

7.1.1.4 Aspect Ratio

Lesions have a characteristic elliptical shape which is captured by its unique aspect ratio or shape.

Shape here refers to the ratio of width and height of the proposal. This single feature is not used on

its own for classification but in combination with the above-mentioned textural features.

7.1.1.5 Feature Fusion

We produce a new feature vector that combines all textural and morphological features, namely,

GLCM, HOG, ULBP, and shape. This results in a feature vector of size 268 × 1. This feature

vector is referred to as the combined feature vector. We hypothesise that combining all textural

and morphological features, capturing global and local textural features of the proposals along with

morphological features, can improve the proposal selection and ultimately the lesion detection. Table

7.1 provides a summary of the extracted features.
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Feature Extraction Method Type of Feature Feature Vector Size

GLCM Global texture 64× 1

ULBP Global texture 59× 1

HOG Local texture 144× 1

Shape Morphological 1× 1

Combined Textural and Morphological 268× 1

Table 7.1: Handcrafted features used in U-DetectH models.

7.1.2 Dimension Reduction of Handcrafted Feature Vector

Given the large size of the combined features in Section 7.1.1, the Principal Component Analysis

(PCA) is used to reduce the dimensionality of the extracted feature vectors. In particular, PCA is

applied to the 268 × 1 handcrafted feature vector extracted from each proposal. This dimensionally

reduced feature vector is then used for classification of each proposal using SVM. The optimal number

of principal components (PCs) were estimated using the same method presented in Section 6.1.2.1

in Chapter 6. An initial test was conducted to determine the number of PCs that capture 99%

cumulative information (CI). The number of PCs capturing 99% CI ranged from 25 to 41. Based on

this, the number of PCs to be evaluated was determined. The optimal number of PCs was estimated

experimentally as presented in Section 7.2.2.

7.1.3 Proposals Classification

After extraction of the handcrafted features and their dimension reduction using PCA, the proposals

are classified using an SVM model. This SVM model is trained independently using proposals gener-

ated for images from modelling dataset (dataset A) by the RPN of adapted FRCNN. Details of the

selection of SVM training samples and its modelling hyperparameters is provided in Section 7.2.1.

Thus, SVM outputs classification scores for each proposal in phase four. At this point, each proposal

has two classification scores – one assigned by the RPN/base network and the second assigned by the

SVM. After this, a classification decision fusion of the RPN/base network score and the SVM score is

performed which outputs an updated score for each proposal.

7.1.4 Classification Decision Fusion

This section describes the method of decision fusion between the classification score assigned by the

RPN/base network and the SVM model. In particular, weighted sum is used to generate an updated
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proposal score as a fusion between the two classifiers as shown in the following Equation 7.1.4.

RPN : scorenew(rpn) = wsvm × scoresvm + wrpn × scorerpn

Base Network : scorenew(base) = wsvm × scoresvm + wbase × scorebase

(7.1)

Here, scorenew(rpn) and scorenew(base) represent the updated score in U-DetectH-RPN and U-

DetectH-Base, respectively. scoresvm, scorerpn and scorebase are the classification scores assigned by

SVM, RPN and base network, respectively. wsvm, wrpn and wbase represent weights assigned to SVM,

RPN and base network, respectively. All weights lie in the range [0, 1] and wsvm+wrpn(or wbase) = 1.

Optimal weights were identified experimentally as wsvm = 0.1 and wrpn = wbase = 0.9. Experimental

evaluation of various weights and identification of the aforementioned weights as optimal is discussed

in Section 8.5 of Chapter 8.

7.2 Experimental Results and Analysis

This section presents the experimental results and analysis of the U-DetectH method. As this method

uses an SVM classifier trained on the combined feature vector, first a description of the training set

used to train this classifier is provided in Section 7.2.1. Both U-DetectH models (U-DetectH-RPN

and U-DetectH-Base) use U-Detect models from Chapter 6 as the base. The pretrained detector here

is the adapted FRCNN model using IRV2 as the backbone. All models are evaluated on dataset A as

modelling dataset and datasets B to E as external test sets as described in Section 4.1 of Chapter 4.

All results shown in this section are average of 5-folds unless otherwise specified. The performance of

U-DetectH-Base and U-DetectH-RPN methods are presented in Sections 7.2.2 and 7.2.3, respectively.

7.2.1 SVM Training Dataset Generation

This section details the selection of samples used to train SVM models on combined feature vectors.

As previously mentioned, all U-DetectH models use pretrained adapted FRCNN model with IRV2 as

the base detector. The 5-folds splits of the modelling dataset (dataset A) used for training adapted

FRCNN model are used to generate training and testing sets for the SVM model. In particular,

training images from each fold of the modelling dataset are used to generate SVM training samples

for that fold. Thus, all U-Detect and U-DetectH models are tested on the same splits of the modelling

dataset. Likewise, as with U-Detect models, datasets B to E are also used as unseen external test
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sets for the U-DetectH models. For training the SVM model, proposals generated by the RPN of the

adapted FRCNN (IRV2 base) for the training images are considered. Table 7.2 shows the number

of proposals in a range of IOU (with GT box) values, generated for one-fold of the training set. As

the IOU increases, the total number of proposals decreases. This is due to the presence of only one,

generally small to medium sized, lesion in an average image in the modelling dataset.

IOU Total Samples Selected Training Samples Sample Class

0 164428 292
(0, 0.1) 98511 292
[0.1, 0.2) 55761 292
[0.2, 0.3) 30011 292 Negative
[0.3, 0.4) 17157 292 (Background)
[0.4, 0.5) 9292 292
[0.5, 0.6) 5264 292
[0.6, 0.7) 2941 292

[0.7, 0.8) 1498 1498
[0.8, 0.9) 750 750 Positive
[0.9, 1] 86 86 (Lesion)

Table 7.2: SVM training sample selection.

The RPN and base network have high classification accuracy for very high IOU proposals (IOU

[0.7, 1]) and very low IOU proposals (IOU [0, 0.3)). For example, over 99% of proposals with IOU

0, 97% of proposals with IOU (0, 0.2) and around 87% with IOU [0.2, 0.3) had classification scores

in the range [0, 0.1). However, their classification accuracy drops for proposals with IOU [0.3, 0.6].

For instance, Figures 7.7 and 7.8 show the range of base network’s classification scores assigned to

proposals with IOU [0.4, 0.5) and IOU [0.5, 0.6), respectively. 46.71% proposals with IOU [0.4, 0.5)

were correctly scored < 0.3. However, 34.14% of these low IOU FP proposals were incorrectly assigned

very high scores in the range of [0.9, 1].

Likewise, TP proposals with IOU in the range [0.5, 0.6), base network incorrectly assigned 25.61%

of these with score < 0.3. Similar classification score distribution was seen with the RPN. When such

TP and FP proposals are clustered together, the FP proposal is incorrectly selected as the candidate

from that cluster due to its higher classification score resulting in the issue cases of U-Detect models

(single low IOU FP and FP+FN). Thus, the aim of the SVM model is to increase the classification

score assigned to high IOU proposals as well as reduce that assigned to lower IOU, FP proposals.
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Figure 7.7: Classification scores assigned by the base network of adapted FRCNN model (IRV2 back-
bone) to proposals with IOU [0.4, 0.5) with the GT box.

Figure 7.8: Classification scores assigned by the base network of adapted FRCNN model (IRV2 back-
bone) to proposals with IOU [0.5, 0.6) with the GT box.
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Based on this, all proposals with IOU ≥ 0.7 are selected as positive (lesion class) training samples.

In the example of the fold described in Table 7.2, total number of positive samples equals 2334.

To balance the number of positive and negative samples, prevent the model from becoming biased

towards one class as well as ensure variety in the negative samples, 292 proposals from each IOU

bin mentioned in Table 7.2 (up to IOU 0.7) were randomly selected as negative (background class)

samples, which in this fold totals to 2336 negative samples. All SVM models use gaussian RBF kernels.

Input dataset to all SVM models is standardised to its weighted mean and standard deviation. To

test the classification accuracy of the trained SVM classifier, proposals generated by the RPN of the

adapted FRCNN for all images in the test set of the modelling dataset as well as external test sets

(B to E) are used. Classification accuracy of the SVM models (average of 5 folds) is presented in the

Table 7.3. Additionally, three other training sets were evaluated. Their performance is discussed in

depth in Section 8.3 Chapter 8.

Dataset Accuracy Precision Recall F-measure Specificity

A 95.38 7.01 84.85 12.95 95.42

B (benign) 96.10 5.45 91.43 10.29 96.11

B (malignant) 94.09 4.96 74.14 9.30 94.18

C 95.28 6.19 73.37 11.41 95.38

D 96.32 8.33 69.72 14.89 96.44

E 86.79 1.87 78.39 3.66 86.82

Table 7.3: Classification accuracy of SVM model trained on combined feature vector.

7.2.2 U-DetectH-Base

This section presents the performance of U-DetectH-Base in three main parts. In part 1, performance

of the U-DetectH-Base with SVM model trained on the entire combined feature vector (without

dimensionality reduction) is discussed. Part 2 presents the impact of dimensionality reduction of the

combined feature vector using PCA on the overall performance. Here, the SVM model is trained on

the same dataset described in Section 7.2.1 but using the dimensionally reduced feature vector. To

understand the influence of individual features, performance of U-DetectH-Base using SVM models

trained on these features was studied and presented in the part 3 of this section. In particular, three

additional SVM models were trained using HOG, GLCM and ULBP feature vectors individually, using

the same training set described in Section 7.2.1. Classification decision fusion of these SVM models
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and the base network in the U-DetectH-Base model is performed using weighted sum described in

Section 7.1.4.

PART 1: U-DetectH-Base with Single SVM Model

This section details the performance of the U-DetectH-Base model using the SVM model trained on

combined feature vector. For brevity, this U-DetectH-Base model is referred to as combined-SVM

model. Table 7.4 shows the performance of combined-SVM model. Although the combined-SVM

model has slightly lower performance in the modelling dataset in comparison to the U-Detect-Base,

in the unseen external datasets, it has 0.23% higher precision as well as 0.12% higher recall (see Table

6.8 for performance of U-Detect-Base). This higher performance of the combined SVM-model is due

to higher number of correct detections and lower number of FPs, overall. Compared to U-Detect-Base

model, combined-SVM has 0.14% to 1.24% higher number of TPs and 1.45% to 16.67% lower number

of FNs as well as 1.69% to 9.17% lower number of FPs. The exception to this improvement is in

modelling dataset where the combined-SVM model has lower number of TPs due to 0.55% lower TPs

and 2.96% higher FPs than the U-Detect-Base model (no change in the number of FNs).

Dataset Combined-SVM
Precision Recall F-measure

A 83.95 97.78 90.91

Overall External Test Sets 77.36 89.81 83.11

B 92.26 99.28 95.63

C 68.43 80.17 73.76

D 77.98 92.58 84.59

E 88.17 99.20 93.33

Table 7.4: Performance of U-DetectH-Base using combined-SVM model.

Figure 7.9 shows an example of reduction of single low FP, one of the common issue cases of

U-Detect-Base, by the combined-SVM model. Apart from reduction of FPs and FNs, there was also a

reduction in FP+FN cases (one of the common issue cases of U-Detect-Base) where the model outputs

a single detection that covers the background region while completely missing the lesion. Such cases

were reduced in the combined-SVM model due to improvement of scores assigned to proposals leading

to a subsequent selection of the high-IOU proposal from the cluster instead of IOU 0 FP proposal.

An example of this is shown in Figure 7.10.
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(a) U-Detect-Base (b) Combined-SVM

Figure 7.9: Reduction of single low IOU FPs using U-DetectH-Base with combined-SVM model.

(a) U-Detect-Base (b) Combined-SVM

Figure 7.10: Reduction of FP + FN in U-DetectH-Base with combined-SVM model.

The combined-SVM model also outperforms the adapted FRCNN and, consequently, original FR-

CNN (see Tables 6.1 and 5.12 for performance of adapted FRCNN and original FRCNN models,

respectively). This is due to its considerably lower number of FPs and relatively small drop in FNs.

Figure 7.11 shows an example of reduction of FP detection, found in both original and adapted

FRCNN model, by the combined-SVM model. Specifically, compared to adapted FRCNN, combined-

SVM model has 6.08% to 38.89% lower FPs leading to 0.77% to 8.28% higher precision. The drop

in recall was relatively lower (0.77% to 0.62%) resulting in 0.36% to 4.79% higher F-measure than

the adapted FRCNN. Likewise, compared to the original FRCNN, combined-SVM model has 31.86%

to 77.07% lower FPs. Therefore, the combined-SVM model has 5.49% to 32.83% higher precision.

With only a drop of 0.27% to 10.02% in recall, combined-SVM model has 4.59% to 22.74% higher

F-measure than the original FRCNN model. The original FRCNN model maintains lower FNs than

adapted FRCNN models, U-Detect and combined-SVM models. An example of such a case is shown

in Figure 7.12a where the lesion is detected by the original FRCNN model but missed by adapted
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and combined-SVM model. But some challenging lesions continue to be missed by all models. Figure

7.12b shows an example of such a challenging lesion. Single-fold performance of the combined-SVM

model is presented in Section C.2 in Appendix C.

(a) Original FRCNN (b) Adapted FRCNN (c) Combined-SVM

Figure 7.11: FP reduction by U-DetectH-Base model with combined-SVM model in comparison to
original and adapted FRCNN models.

(a) Original FRCNN (b) All models

Figure 7.12: FN examples. 7.12a: Lesion detected by original FRCNN but missed by other models
including adapted FRCNN, U-Detect and U-DetectH-Base with combined-SVM. 7.12b: Missed by all
models.

In summary, combined-SVM model addresses the common issue cases (single low IOU FPs,

FP+FN, and FNs) of U-Detect-Base model by improving classification scores assigned to propos-

als by the base network. However, computation time of this model is relatively high in comparison to

that of the U-Detect model. For a single image, combined-SVM requires an average of 10.6 seconds

to process whereas the U-Detect-Base model requires 0.96 seconds. This increase in computation

time is due to the additional time required for extraction of all features (HOG, GLCM, ULBP and

shape). Additionally, we also investigated the impact of using a feature selection method of dimen-

sionality reduction on the overall performance. In particular, we investigate the Maximum-Relevance

and Minimum-Redundancy (MRMR) [157] method for the dimension reduction of the combined-SVM.
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The performance of this model is discussed in Section 8.4 of Chapter 8.

PART 2: Dimension Reduction of Handcrafted Features in U-DetectH-Base

Part 1 demonstrated the performance of U-DetectH-Base with no dimension reduction of handcrafted

features. This section details the impact of dimension reduction on the overall performance. First,

the optimal number of PCs is determined. Here, 25, 30, 35, 40 PCs were investigated based on the

range of components with 99% CI as described in Section 7.1.2. Optimal number of PCs is deter-

mined based on the performance of these PCs on a single fold of modelling dataset (same fold used in

Sections 6.2.1.2 and 6.2.2.2 in Chapter 6). Figure 7.13 shows the impact of these PCs on the overall

performance. As the number of PCs increases, the overall performance improves. Here, increasing

the number of PCs led to retention of useful information that improves the overall classification per-

formance of the SVM models and, in turn, the performance of the U-DetectH-Base models. Based

on this performance, 40 PCs are selected as optimal. Classification performance of the SVM model

trained on 40 PCs of combined feature vector is detailed in Table C.4 Appendix C.

Figure 7.13: Impact of change in PCs on performance of U-DetectH-Base model using combined-SVM
on a single fold of dataset A.

Table 7.5 compares the performance of U-DetectH-Base model using SVM model trained on the

whole combined feature vector (combined-SVM) with that of the U-DetectH-Base model using SVM

model trained on dimensionally reduced feature vector (combined-PCA-SVM). The combined-PCA-

SVMmodel performs poorly in comparison to the combined-SVMmodel in all datasets. The combined-

PCA-SVM model has 2.6% to 13.02% lower precision along with 0.03% to 2.53% lower recall resulting
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in 1.54% to 8.01% lower F-measure than the combined-SVM model.

Dataset U-DetectH-base Model Precision Recall F-measure

A Combined-SVM 84.97 98.99 91.45
Combined-PCA-SVM 82.37 98.96 89.91

Overall External Combined-SVM 77.60 89.80 83.25
Test Sets Combined-PCA-SVM 68.21 88.91 77.20

B Combined-SVM 90.67 99.27 94.77
Combined-PCA-SVM 78.67 99.16 87.73

C Combined-SVM 67.23 78.02 72.23
Combined-PCA-SVM 57.54 75.49 65.30

D Combined-SVM 80.00 94.02 86.44
Combined-PCA-SVM 72.73 94.12 82.05

E Combined-SVM 86.98 100.00 93.04
Combined-PCA-SVM 73.96 100.00 85.03

Table 7.5: Impact of PCA on the performance of combined-SVM model in U-DetectH-Base: Single
Fold.

This drop in the performance of the model with the use of PCA is due to reduction in TPs and

increase in FPs. In general, FNs had small to no change. Use of PCA feature vectors led to poorer

classification of background regions causing an increase in additional boxes (FPs). Furthermore, due to

the reduced textural information in these feature vectors, lesions are detected with lower IOU leading

to an increase in low IOU FPs along with reduction in TPs. However, the dimensionally reduced

feature vectors did not cause a significant, if any, change to the number of detected lesions (FNs)

showing that although these features are capable of detecting lesions, they contain insufficient textural

information for correct classification of background regions with lesion-like texture and detection of

lesions with high IOU. As the combined-PCA-SVM model has poorer performance, it is not used for

further investigations.

PART 3: U-DetectH-Base with Single Feature-Based SVM Models

This section details the performance of U-DetectH-Base with single feature-based SVM models,

namely, GLCM-, HOG- and ULBP-SVM. These SVM models were trained using the same dataset

used for combined-SVM model training (described in Section 7.2.1). The classification performance

of GLCM-SVM, HOG-SVM and ULBP-SVM is detailed in Section C.1 of Appendix C in Tables C.1,

C.2 and C.3, respectively.Table 7.6 shows the performance of these models in U-DetectH-Base and
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Figure 7.14 shows the number of TP, FP, and FN of these models in comparison to U-Detect-Base and

combined-SVM. Of these models, GLCM-SVM is the best performing, followed by HOG-SVM and

finally ULBP-SVM. However, these models do not outperform U-Detect-Base and combined-SVM.

Dataset U-DetectH-Base Model Precision Recall F-measure

A GLCM-SVM 84.02 99.12 90.91
ULBP-SVM 82.16 99.17 89.83
HOG-SVM 84.18 99.18 91.05

Overall External GLCM-SVM 74.64 87.79 80.68
Test Sets ULBP-SVM 71.06 87.57 78.45

HOG-SVM 73.83 87.73 80.18

B GLCM-SVM 91.42 98.70 94.92
ULBP-SVM 87.13 98.63 92.52
HOG-SVM 89.55 98.67 93.88

C GLCM-SVM 61.12 79.87 69.22
ULBP-SVM 58.29 80.46 67.56
HOG-SVM 62.25 80.72 70.25

D GLCM-SVM 78.74 87.06 82.67
ULBP-SVM 75.80 86.59 80.82
HOG-SVM 76.80 86.80 81.47

E GLCM-SVM 84.45 99.45 91.32
ULBP-SVM 81.59 99.42 89.62
HOG-SVM 85.99 99.45 92.22

Table 7.6: Performance of U-DetectH-Base using single-feature based SVM models.

TP Of the three models, HOG-SVM has the highest number of TPs. Compared to global fea-

tures extracted by GLCM, HOG extracts local textural features which provides greater textural

information that aids correct identification of high IOU proposals. These proposals typically

contain challenging small lesions that require such intricate, local textural details contained in

HOG feature vectors for their correct identification. An important point to note here is that

GLCM-SVM has a comparable number of TPs as HOG-SVM and it does not miss these small

lesions but detects them with lower IOU (IOU < 0.5). An example of this is shown in Figure

7.15. Although ULBP also captures local textural features, ULBP-SVM completely misses these

lesions as the degree of information captured is insufficient.

FP GLCM-SVM has the lowest number of, both, additional boxes and low IOU FPs (despite con-

version of TPs to low IOU FPs) in comparison to HOG- and ULBP-SVM. This was closely

followed by HOG-SVM. ULBP-SVM has the highest number of FPs. High number of FPs in
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(a) TPs: Dataset A (b) TPs: External Test Sets

(c) FPs: Dataset A (d) FPs: External Test Sets

(e) FNs: Dataset A (f) FNs: External Test Sets

Figure 7.14: Number of TP, FP and FN of U-DetectH-Base using single feature-based SVM models
and U-Detect-Base (base-GAP) model.
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(a) U-Detect-Base model (b) GLCM-SVM model

Figure 7.15: Low IOU FP in U-DetectH-Base with GLCM-SVM model.

HOG-SVM is due to the textural similarities between proposals containing lesions and those

containing lesion-like background regions. Thus, use of local textural features alone improves

TP detections at the expense of FPs (except ULBP where the number of the opposite is true

due to insufficient textural information contained in the feature vector).

FN GLCM-SVM also has the lowest number of FNs compared to HOG- and ULBP-SVM. HOG-

SVM has the same number of FNs as GLCM-SVM except in dataset C where the number of FNs

is higher. This dataset contains lesions that have high textural similarity with the background

region. As HOG-SVM relies on extraction of distinct local textures such as edges and contours

for correct classification, it misses such lesions, whereas GLCM-SVM correctly classifies these

cases since it only uses the global texture of the entire proposal. ULBP-SVM has the highest

number of FNs.

In summary, local textural features extracted using HOG helps identify high IOU proposals but

falls short when the lesion has a very challenging texture (isoechoic) and unclear boundary. On the

other hand, global features extracted using GLCM have a higher number of detected lesions (includ-

ing isoechoic lesions) but with small, challenging lesions, the lower IOU proposal is selected. Finally,

ULBP features of the entire proposal does not contain sufficient local textural information for reliable

classification performance.

Given the lowest number of FPs and high number of correct detections, the GLCM-SVM model

has the highest precision and F-measure among the three single feature SVM models. HOG-SVM has

the highest recall due to the highest number of correct detections (highest TPs and second-highest

FNs). However, in comparison to U-Detect-Base, all three single-feature based SVM models have
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lower performance due to relatively lower number of correct detections as well as higher FPs. This is

because these SVM models have lower classification accuracy than the base network. Therefore, a de-

cision fusion of their scores results in a poorer score assigned to the proposals. This results in incorrect

selection of candidates which negatively impacts the overall performance of the model. It is important

to note here that GLCM-SVM model made a positive impact on the scores of lesions that were oth-

erwise missed by the U-Detect-Base, leading to a lower number of FNs than the U-Detect-Base model.

Combined-SVM model (see Table 7.4) outperforms all models including single feature-based mod-

els due to higher number of TPs and lower number of FPs (additional boxes and low IOU FPs). Use

of HOG along with ULBP in the combined feature vector helps identify high IOU proposals while

GLCM helps detect challenging lesions as well as successfully differentiate between proposals covering

lesion and lesion-like regions. The combined-SVM model has lower FNs than HOG-SVM and ULBP-

SVM. However, compared to GLCM-SVM, it has slightly higher FNs. Use of GLCM in the combined

feature vector helps reduce FNs compared to the U-Detect-Base model (see Table 6.8 for performance

of U-Detect-Base model) but due to the negative impact of HOG and ULBP, it has higher FNs than

GLCM. Also, like combined-SVM, GLCM-SVM also reduces FP+FN cases. Therefore, a combination

of all textural and morphological features incorporates their respective advantageous characteristics

with relatively smaller degree of their negative counterparts.

All single-feature based U-DetectH models have higher computation time in comparison to the

U-Detect-Base model due to the added time required for extraction of their respective handcrafted

features of each test proposal.The U-Detect-Base model has an average computation time of 0.96

seconds. Of the three single features, ULBP extraction requires the least amount of time making the

ULBP-SVM model fastest among the SVM models with an average computation time of 2.33 seconds.

This is closely followed by HOG-SVM whose average computation time is 3.17 seconds. Extraction

of GLCM of each proposal requires the highest computation time resulting in the high computation

time of 8.42 seconds by the GLCM-SVM model. As all features are extracted in the combined-SVM,

its computation time is highest (10.6 seconds). This computation cost can be significantly reduced

through improving the functions used for feature extraction step, especially for extraction of GLCM

features since it is the largest contributing factor in the high computation time of combined-SVM.
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7.2.3 U-DetectH-RPN

This section details the performance of U-DetectH-RPN. The U-DetectH-RPN model builds on the

U-Detect-RPN model from Chapter 6 and uses the same dataset split (dataset A as modelling dataset

and datasets B to E as unseen test sets) used in Chapter 6 and for U-DetectH-Base models. Here,

dataset A is used as the modelling dataset and datasets B to E are used as external test sets. Table 7.7

presents the performance of all U-DetectH-RPN models. Like with U-DetectH-Base, all U-DetectH-

RPN models are referred to by the SVM model used. Here, of all U-DetectH-RPN models, the

combined-SVM model has the best performance overall. However, the combined-SVM model has

lower performance in comparison to U-Detect-RPN.

The SVM models perform in a similar manner as observed in U-DetectH-Base described in Section

7.2.2. Considering single feature-based models only (GLCM, HOG and ULBP), HOG-SVM has the

highest number of TPs overall, closely followed by GLCM-SVM. GLCM-SVM has the lowest number

of FPs and FNs. ULBP-SVM has the lowest performance overall. Finally, the combination of both

textural and morphological features in the combined-SVM model outperformed all single feature-based

models. Combined-SVM has highest TPs and lowest FPs. FNs of the combined-SVM model is com-

parable to that of the GLCM-SVM model. Thus, the combined-SVM model has the highest precision

and recall. Although the combined-SVM model outperformed U-Detect-RPN by 2.33% in F-measure

over modelling dataset, it has 3.77% lower F-measure in external test sets except dataset D. The

largest drop in performance by the combined-SVM model is seen in dataset C where combined-SVM

had 7.72% lower F-measure than the U-Detect-RPN model. In dataset D, both GLCM and combined-

SVM models outperform U-Detect-RPN by 0.16% and 0.38% in F-measure, respectively.

Unlike U-DetectH-Base, U-DetectH-RPN does not outperform its U-Detect counterpart (U-Detect-

RPN). This is due to the difference in classification accuracy of the RPN and the base network. The

SVM models have poorer classification accuracy than the RPN and base network. Therefore, due to

the higher classification accuracy of the base network, the negative impact on the number of correct

detections with the use of SVM models was limited. However, due to the comparatively poorer classi-

fication accuracy of the RPN, the lower classification accuracy of the SVM models led to a reduction

in the number of detected lesions. Since it was found in Section 7.2.2 that reducing dimension of

feature vectors leads to poorer performance, investigation of PCA based models for SVM models in
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Dataset Model Precision Recall F-measure

A U-Detect-RPN 84.08 99.26 91.02
U-DetectH-RPN with:
GLCM-SVM 88.25 98.72 93.19
ULBP-SVM 87.97 98.71 93.03
HOG-SVM 88.29 99.04 93.35
Combined-SVM 88.29 99.04 93.35

Overall External U-Detect-RPN 74.85 90.37 81.84
Test Sets U-DetectH-RPN with:

GLCM-SVM 67.90 90.12 77.45
ULBP-SVM 67.80 90.20 77.42
HOG-SVM 68.12 90.24 77.63
Combined-SVM 68.75 90.31 78.07

B U-Detect-RPN 92.51 99.43 95.83
U-DetectH-RPN with:
GLCM-SVM 86.62 99.27 92.52
ULBP-SVM 87.18 99.27 92.83
HOG-SVM 87.74 99.27 93.15
Combined-SVM 87.18 99.27 92.83

C U-Detect-RPN 65.84 80.59 72.24
U-DetectH-RPN with:
GLCM-SVM 53.94 77.37 63.57
ULBP-SVM 53.45 77.37 63.23
HOG-SVM 54.18 77.60 63.81
Combined-SVM 55.15 77.72 64.52

D U-Detect-RPN 74.73 93.14 82.81
U-DetectH-RPN with:
GLCM-SVM 73.38 94.84 82.74
ULBP-SVM 73.62 95.04 82.97
HOG-SVM 73.33 95.03 82.78
Combined-SVM 73.96 95.06 83.19

E U-Detect-RPN 86.64 99.21 92.38
U-DetectH-RPN with:
GLCM-SVM 75.13 100.00 85.80
ULBP-SVM 75.13 100.00 85.80
HOG-SVM 76.06 100.00 86.41
Combined-SVM 76.04 100.00 86.39

Table 7.7: Performance of U-DetectH-RPN models.

U-DetectH-RPN was not conducted.

U-Detect-RPN does not outperform U-DetectH-Base with combined-SVM model (see Tables 6.4

and 7.4 for 5-fold average performance of U-Detect-RPN and combined-SVM, respectively). In par-
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ticular, the U-DetectH-Base model has 0.89% and 2.75% higher precision than the U-Detect-RPN in

modelling and overall external test sets, respectively. This was due to the considerably lower number

of FPs. Specifically, the U-DetectH-Base model has 6.81% to 14.68% lower FPs in modelling and

unseen external test sets, respectively. Also, the U-DetectH-Base model has 0.27% to 0.57% lower

recall than the U-Detect-RPN model. Despite the lower recall, the U-DetectH-Base model has 0.43%

to 1.41% higher F-measure than U-Detect-RPN due to its higher precision. The largest change was

seen in dataset D where the U-DetectH-Base model had 5.27% higher precision due to 25.68% lower

FPs along with 0.88% higher recall due to higher number of TPs.

7.3 Discussion

This chapter presented and evaluated our methods U-DetectH-Base and U-DetectH-RPN for accurate

breast lesion detection in US images. We discuss three main investigations in this section. First, per-

formance of multi-model classification decision fusion using all SVM models (GLCM-, HOG-, ULBP-

and combined-SVM) and base network classifier is discussed. As shown in Sections 7.2.2 and 7.2.3,

each feature vector has its unique as well as common advantageous characteristics. Therefore, to fur-

ther strengthen these characteristics, decision fusion of all five classifiers was investigated. Second, the

use of statistical moments for dimension reduction was investigated and discussed in this section. In

particular, four central moments of the ULBP feature vector were extracted and used for proposal de-

scription. As central moments extract important characteristics of a feature vector, this investigation

was conducted to study its effectiveness in dimension reduction. Third, the performance of a fusion of

HOG and GLCM features on the overall performance was investigated. Individually, HOG-SVM and

GLCM-SVM had a reliably high performance. However, these did not outperform U-DetectH using

combined-SVM or U-Detect models. Therefore, this fusion of HOG and GLCM features was studied.

The evaluation of the impact of such a fusion on the overall performance is discussed in this section.

Multi-model Classification: To strengthen advantageous characteristics of each feature vector,

multi-model classification decision fusion using all four SVM models (HOG-, GLCM-, ULBP- and

combined-SVM) and the base network of the U-DetectH-Base model is performed. In this model, all

handcrafted features are extracted for each proposal along with the extraction of learned features in

phase one. After dimension reduction of learned features in phase two, the proposals are clustered
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using the dimensionally reduced learned features in phase three. In phase four, all proposals are clas-

sified using the extracted handcrafted features and their respective SVM models. At this point, each

proposal is assigned with five classification scores (four scores from the SVM models and one score

by the base network). Through decision fusion of these five scores, the classification score of each

proposal is updated in this phase. The updated score is then used for candidate selection in phase

five and selected candidates are processed through NMS and candidate merging in phase six. Two

decision fusion methods were evaluated, namely, weighted sum, and majority voting.

For weighted sum (described in Section 7.1.4), following weights are assigned to each of the five

classifiers based on their classification accuracy: wbase = 0.4, wcombined = 0.3, wglcm = 0.2, whog =

0.1, wulbp = 0.1. For majority voting, if a sample is labelled as background by all SVMs (i.e., scored

< 0.5) then its score is updated with the sum of scores of all SVMs, else the base network’s classifica-

tion score is maintained as the new score. Therefore, the aim of using this decision fusion method is to

utilise the SVM models to filter out the FP proposals without impacting the TP proposals generated

by the model.

Table 7.8 shows the performance of two decision fusion methods. For concision, these U-DetectH-

Base models are referred to by means of the decision fusion mechanism used. For example, if the

model uses weighted sum as the decision fusion mechanism, then it is referred to as weighted-sum

based model or simply, weighted-sum. Overall, of the two decision-fusion methods, weighted-sum has

the higher performance. However, these methods do not outperform single-SVM models (see Tables

7.6 and 7.4 for performance of single-SVM models) and U-Detect-Base model (see Table 6.8 for U-

Detect-Base performance). Weighted-sum based model has a higher number of correct detections than

the majority-voting model. In particular, the weighted-sum model has 203 and 746.6 higher number

of TPs than the majority-voting model in modelling and external test sets, respectively. In terms of

FNs, the weighted-sum model has 243.8 and 1002.4 lesser FNs in modelling and unseen external test

sets, respectively. This led to 61.13% to 91.74% higher recall of the weighted-sum model in comparison

to the majority-voting model.

On the other hand, the majority-voting based model has 42.8 and 304 lesser FPs than the weighted-

sum model in modelling and unseen external test sets, respectively. This resulted in 0.23% to 11.28%
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Dataset U-DetectH-Base Model Precision Recall F-measure

A Weighted Sum 83.23 99.24 90.52
Majority Voting 83.46 26.00 38.34

Overall External Weighted Sum 73.26 87.41 79.70
Test Sets Majority Voting 79.61 16.28 26.73

B Weighted Sum 89.53 98.52 93.81
Majority Voting 93.75 29.55 44.75

C Weighted Sum 62.04 81.53 70.45
Majority Voting 73.32 20.39 31.42

D Weighted Sum 76.09 85.49 80.51
Majority Voting 79.47 11.53 19.87

E Weighted Sum 84.78 99.16 91.40
Majority Voting 94.79 7.42 13.63

Table 7.8: Performance of multi-model classification decision fusion in U-DetectH-Base.

higher precision of the majority-voting model. However, due to considerably lower recall, the majority-

voting based model has 39.03% to 77.77% lower F-measure than the weighted-sum based model. In

comparison to U-Detect-Base and U-DetectH-Base with GLCM-, HOG- and combined-SVM models,

both these models have lower performance. Weighted-sum based model outperforms U-DetectH-Base

model using ULBP-SVM with 0.69% to 2.89% higher F-measure.

All SVM models have their individual useful characteristics such as high number of correct detec-

tions by the GLCM-SVM model as well as disadvantageous characteristics such as high missed lesions

of the ULBP-SVM model. Therefore, when used in the weighted-sum model, their useful unique char-

acteristics are subdued due to the influence of other SVM models, and their common disadvantageous

characteristics are highlighted. Also, the base network has overall higher classification accuracy than

the SVM models. In this weighted-sum model, the influence of the base network is reduced and that

of the SVM models is increased. Therefore, the weighted-sum model has relatively higher number of

missed lesions as well as higher number of FPs than the U-Detect-Base. Since SVM models are trained

to classify proposals with IOU < 0.7 as negative (background), TP proposals with IOU [0.5, 07) are

assigned low scores by most of these models. Therefore, the score of such proposals is reduced in the

majority-voting based model resulting in incorrect candidate selection which leads to a high number

of missed lesions despite their correct classification by the base network. On the other hand, this same

characteristic of the SVM models helps reduce FPs. However, the number of missed lesions is too

high for this model to be viable.
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Computation cost of decision fusion models is higher than that of the U-DetectH-Base model us-

ing any SVM models including combined-SVM. For combined-SVM, computation time is 10.6 seconds

whereas for decision fusion models it is 10.72 seconds. Like with the combined-SVM model, the high

computation time is largely attributed to the time required for extraction of all handcrafted features

for 300 test proposals. Slight increase in the time with decision fusion models is due to the additional

time used for classification of all proposals using all four SVM models. As with combined-SVM model,

improvement in the feature extraction function will improve the overall computation time of all these

models.

ULBP-Moment Feature Vector: The ULBP feature vector is a histogram of uniform patterns of

dimension 59 × 1. To reduce the dimension of this feature vector while retaining only key textural

information, a new feature vector called ULBP moment was investigated. This feature vector consists

of the four central moments of the ULBP histogram. Central moments are defined using Equation

7.2.

mk =
1

N

N∑
i=1

(πi − π̄)k (7.2)

Here, k is the order of the central moment, N is length of the feature vector which in this case is 59×1

(size of ULBP histogram) and πi is the ith element in the feature vector. First central moment π1 is

the mean of the feature vector. Since here the moments are all central, π1 = 0 for all feature vectors.

Therefore, π1 is not used and only k ∈ [2, 5] are used as the feature vector.

An SVM model was trained using this ULBP moment feature vector using the same training set

as all other SVM models as described in Section 7.2.1 of this chapter. Classification performance of

this SVM model is detailed in Table C.5 in Section C.1 Appendix C. To study the impact of this

SVM, it was employed in U-DetectH-Base. For brevity, this model is referred to as ULBP-M-SVM.

Decision fusion was achieved through weighted-sum where the ULBP-M-SVM model was assigned

weight of 0.1 and the base network 0.9. Table 7.9 shows the performance of the ULBP-M-SVM model.

Overall, this model had lower F-measure than the ULBP-SVM in all datasets (see Table 7.6 for per-

formance of ULBP-SVM model). This was due to lower number of correct detections and higher FPs.
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ULBP-M-SVM had 2.2% to 0.68% lower F-measure than ULBP-SVM in modelling and external test

sets, respectively. However, in comparison to the PCA-based ULBP-SVM model, this ULBP-M-SVM

performed better in terms of precision and F-measure. ULBP-SVM had the poorest performance in

comparison to HOG-, GLCM- and combined-SVM models since it captures only the global textural

features, insufficient for correct classification of breast lesions. Reducing this feature vector further

led to further drop in performance.

Dataset ULBP-M-SVM
Precision Recall F-measure

A 82.95 98.97 90.25

Overall External Test Sets 72.38 88.88 79.79

B 84.00 99.21 90.97

C 58.89 75.55 66.19

D 78.00 93.26 84.95

E 81.07 100.00 89.54

Table 7.9: Performance of U-DetectH-Base with ULBP-M-SVM model.

HOG and GLCM Feature Fusion: A fusion of HOG and GLCM feature vectors was studied

as, individually, these feature vectors have a relatively high performance. An SVM model is trained

on this fused feature vector using the same training set described in Section 7.2.1 and classifica-

tion performance of this SVM model is presented in Table C.6 in Section C.1 Appendix C. The

(HOG+GLCM)-SVM model is used in the U-DetectH-Base model. This U-DetectH-Base model is

referred to as (HOG+GLCM)-SVM for brevity. Decision fusion between the classification score as-

signed by the SVM model and the base network is achieved using the weighted sum method described

in Section 7.1.4. Optimal weights of wsvm = 0.1 and wbase = 0.9 were found experimentally.

Table 7.10 shows the performance of this SVM model in U-DetectH-Base. (HOG+GLCM)-SVM

model does not outperform the combined-SVM (see Table 7.4 for performance of combined-SVM

model). However, it combines the characteristics of both GLCM and HOG leading to an overall

higher F-measure than both GLCM-SVM and HOG-SVM (See Table 7.6 for performance of HOG-

SVM and GLCM-SVM). Here, the number of TPs were higher than either model along with a lower

number of FPs which led to its higher precision. However, there was a small increase in the number

of FNs. But due to the larger increase in TPs, recall of the (HOG+GLCM)-SVM model was also
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higher than both models. Thus, combination of these two features improved TPs of GLCM as well as

reduced FPs and FNs of HOG model.

Dataset (HOG+GLCM)-SVM
Precision Recall F-measure

A 86.42 99.01 92.28

Overall External Test Sets 77.19 89.63 82.95

B 89.33 99.26 94.04

C 65.09 76.84 70.84

D 80.36 94.24 86.75

E 89.35 100.00 94.38

Table 7.10: Performance of (HOG + GLCM)-SVM model in U-DetectH-Base model: Single Fold.

7.4 Summary

This chapter presented a novel approach for breast lesion detection in US images. In particular, a new

method (U-DetectH) to address common issue cases of the U-Detect method, namely, single low IOU

FPs, FP+FN and FN was presented and evaluated. These issue cases were caused due to incorrect

classification scores assigned to proposals which led to poor quality (low IOU) of candidates selected

from each cluster. Therefore, handcrafted features that capture lesion characteristics were used to

train SVM classifier which was used in conjunction with the network’s classifier in order to improve

the classification scores. Particularly, methods to extract textural features relating to echogenicity,

margin, calcification, and aspect ratio were selected.

Total of five features were investigated, namely, HOG, GLCM, ULBP, aspect ratio (shape) and

a combined feature vector which is a fusion of all features. The proposed U-DetectH consists of six

phases of which three phases are common with the U-Detect method. This chapter focused on the

phases unique to the U-DetectH method (phase one, two and four). Depending on the type of learned

features used, two methods called U-DetectH-Base and U-DetectH-RPN were developed. Similar to

U-Detect, the U-DetectH method is also only used during model testing. The datasets used for the

development and testing of these methods are the same as those used for U-Detect models. Dataset

A was used as modelling dataset and datasets B to E were used as external test sets. U-DetectH-

Base with SVM model trained on combined feature vector outperformed U-Detect method with 2.41%

higher precision along with 0.14% higher recall than U-Detect-Base. The improvement in both pre-
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cision and recall is reduction of issue cases of U-detect method as well as an increase in number of

correct detections.

Consequently, U-DetectH-Base also outperformed original and adapted FRCNN models. This

model had 5.49% to 25.37% higher precision than the original FRCNN which is a result of 30% to

70% lower FP detections along with a small drop of 1.55% to 4.89% in recall. Compared to the

adapted FRCNN, this U-DetectH method has 14.72% higher precision and only 0.37% lower recall.

On the other hand, U-DetectH-RPN did not outperform U-Detect-RPN due to the lower classifica-

tion accuracy of the RPN. Overall, computation time of the U-DetectH models is higher than that

of U-Detect models due to the additional time required for extraction of all five handcrafted features

for an average of 300 proposals generated for each image. The main contributing factor for the high

computation time is the extraction of GLCM features. Therefore, improving extraction of this feature

vector would considerably reduce computation time of the U-DetectH models.

Following is a summary of the main findings of this chapter:

• The investigation presented in this chapter shows the effectiveness of using handcrafted features

in improving the classification accuracy of the base network for reduction of FPs as well as

increasing the number of detected lesions.

• U-DetectH-Base model outperformed U-Detect-RPN due 6.81% to 14.68% lower FPs. This

resulted in 0.89% and 2.75% higher precision of the U-DetectH-Base model. Despite 0.27%

to 0.57% lower recall, the U-DetectH-Base model had 0.43% to 1.41% higher F-measure than

U-Detect-RPN.

• HOG features were useful in detection of high-IOU proposals. However, it also caused incorrect

classification of lesion-like background regions leading to an increase in FPs.

• GLCM features proved useful in the detection of challenging lesions. Since the extracted fea-

tures are global, the GLCM-SVM model successfully detected challenging lesions with unclear

boundaries. However, the HOG-SVM model struggled to detect such lesions as it relies on strong

local textural features.

• The ULBP-SVM model had the poorest performance due to insufficient textural information
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contained in this feature vector for correct classification of the proposals.

• Combination of both textural and morphological features had the best performing SVM model

due to the increased information contained in the feature vector.

• Reducing the dimension of combined feature vector using PCA led to an overall drop in perfor-

mance of U-DetectH models.

• All SVM models were trained to identify high IOU proposals as positive samples. Due to the

generally poorer classification accuracy of the RPN, use of the U-DetectH method had a negative

impact on the overall performance.

• U-DetectH models using combined feature based-SVM model had higher computation time than

the U-Detect models due to the added time required for extraction of all handcrafted features

(HOG, GLCM, ULBP and shape) for every test proposal. In particular, extraction of GLCM

features required the highest computation time.

In conclusion, the best performing model of this chapter, U-DetectH-Base with combined-SVM,

outperforms all both U-Detect-RPN and U-Detect-Base. Use of a combination of textural and morpho-

logical features helped not only in reduction of FPs but also increase in number of correct detections.

Although the computation cost of this model is higher than U-Detect-Base, improvement in the fea-

ture extraction process can address this issue and provide a better balance between computation cost

and performance.
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Chapter 8

Discussion

In this thesis, we presented our work on automating breast lesion detection in 2D US images using

deep CNN. In particular, we focused on FP reduction through first an extensive study of a popularly

used FRCNN network and successfully adapting it for breast lesion detection in US images using our

large and varied dataset collected from real-life clinical settings. Our adapted FRCNN model outper-

formed the original FRCNN through a significant reduction of FP detections and a small drop in the

number of correct detections. We then presented two novel methods, U-Detect and U-DetectH, that

further reduce the FP detections of our adapted FRCNN model. In this chapter, we present important

evaluations relevant to the work presented in this thesis.

In Chapter 5, we used dataset A-small for selection of optimal values of investigated modelling

hyperparameters of the FRCNN model. In Section 5.1.1, we present the performance of the same

modelling hyperparameters when tested with dataset A used for modelling, highlighting the repro-

ducibility of the selected optimal values with the different modelling datasets. After development of

the adapted FRCNN model, we investigated training losses and various state-of-the-art classification

networks as the backbone of adapted FRCNN in order to improve the classification accuracy of this

model for reduction of FP detections. In Section 8.1, we present two other methods that were also

investigated in order to improve classification accuracy of the FRCNN network, namely, impact of

GARPN [75] and fusion of convolution layers of the backbone network.

Our novel U-Detect method, presented in Chapter 6, successfully reduced FP detections and out-

performed both original and adapted FRCNN. The FP detections of this method were caused due to
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selection of lower IOU FP detections from clusters containing high IOU TP detections. We addressed

these cases in Chapter 7 where we presented a novel U-DetectH method that utilises handcrafted fea-

tures to improve the classification scores assigned to high IOU TP and, conversely, reduce the scores

of low IOU FP detections. For this, an SVM model was trained on the selected handcrafted features.

The training set selected for this SVM model is described in Section 7.2.1 of Chapter 7. Other training

sets were also evaluated for the SVM model and are described in this chapter in Section 8.3.

Dimensionality reduction of the handcrafted features using PCA was also investigated in Chapter

7. PCA is a ‘feature projection’ based method commonly used for reducing dimension of handcrafted

features. Thus, use of a ‘feature selection’ type of dimension reduction method, specifically MRMR

[157], is investigated to study its impact on the overall performance. This investigation is presented

in Section 8.4. Furthermore, in U-DetectH, classification score assigned to each proposal is updated

through a decision fusion of the scores assigned by the RPN/base network and the SVM model.

Weighted sum method was used for the decision fusion. Section 8.5 provides experimental evaluation of

the investigated weights of RPN/base network and SVM as well as justifies the selection of wsvm = 0.1

and wrpn/base = 0.9 as optimal. All detection methods investigated in this research are based on

supervised learning. We also investigated the performance of a reinforcement learning (RL) based

network for breast lesion detection in our dataset of US images. This study is presented in Section

8.6.

8.1 FRCNN Hyperparameter Reproducibility

In Chapter 5, various modelling hyperparameters of the FRCNN model were investigated to study

their impact on the overall performance. A range of values of these hyperparameters were evaluated

and the values with the best performance (highest F-measure) on the modelling dataset (dataset A-

small) were selected as optimal. An adapted FRCNN model was then designed using the selected

optimal values. As shown in Section 5.3.2 of Chapter 5, adapted FRCNN model outperformed the

original FRCNN model through considerable reduction in FPs and small drop in number of correct

detections. With the availability of a larger dataset, the same investigation of the modelling hyperpa-

rameters (detailed in Section 5.1.1) was performed with dataset A used as modelling dataset to study

the reproducibility of the optimal values. Optimal values were then selected based on the performance
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over this modelling dataset. This section details the difference and similarities in the optimal values

selected based on the performance on dataset A-small and A.

Irrespective of the modelling dataset used, anchor boxes and number of test proposals maintain

the same optimal values. On the other hand, the number of samples required to train the base network

and optimal thresholds for selection of these samples differ when dataset A is used as the modelling

dataset. The optimal values of the number of training samples and the training sample IOU threshold

varies in the larger modelling dataset due to the increase in variation of the training samples. Dataset

A-small is a subset of dataset A as described in Section 5.3. While dataset A-small consists of 524

images collected from one hospital, dataset A consists of 1733 images collected from two hospitals.

Such an increase in the variation of the training set requires a higher number of training samples and

broader IOU range for selection of training samples in order to utilise the variety of samples in the

larger dataset. However, performance of the optimal values selected from dataset A-small have second

highest performance in dataset A, generally very close to that of the highest performing value. A

deeper explanation of the individual hyperparameters on the new dataset is as follows.

The optimal number of training proposals increased from 300 to 1000 when the dataset was changed

from A-small to A. However, an important point to note is that although 1000 proposals had the high-

est F-measure in dataset A, performance 300 training proposals had the second highest F-measure,

very close to that of 1000 proposals. Based on their performance on dataset A-small, [0.7, 1] thresh-

old range was selected as the optimal IOU range for selection of positive training samples. When

evaluated using dataset A, the optimal threshold for positive samples was experimentally found to be

[0.5, 1]. As mentioned in Section 5.3.2.2 Chapter 5, positive training samples have a direct impact

on the model’s accuracy in classification of high IOU TP proposals as well FP proposals containing

background lesion-like regions. When a smaller IOU range is used for selection of positive training

samples, the model becomes sensitive to background regions in proposals. Furthermore, challenging

lesions with background-like texture are incorrectly classified as background by the base network.

Also, for such lesions, the number of high IOU proposals generated by the RPN is relatively lower.

Due to large variation in the lesions and images in dataset A, the variation in the background

region is also higher. Thus, when evaluated on this dataset, the optimal threshold for positive samples
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has a larger IOU range to include more variation of the background region as well as ensure correct

classification of the challenging lesions. It is important to note here that the difference in performance

of models trained with thresholds [0.5, 1] and [0.7, 1] is small. The model trained with an IOU range

of [0.7, 1] for positive sample selection had the second-highest F-measure which was only 0.07% lower

than that of the best performing model trained with optimal IOU range of [0.5, 1]. Optimal thresholds

for negative samples, selected based on their performance on dataset A-small (modelling dataset), was

[0, 0.2) which changed to [0, 0.4) when trained on dataset A. Like with positive threshold, the larger

variation in the background region requires a broader range in the threshold for negative samples.

But the difference in performance of the optimal values selected based on the two datasets is small.

An adapted FRCNN model is trained on the optimal values selected based on performance on

dataset A. Table 8.1 shows the performance of this adapted FRCNN model in comparison to that

trained with optimal values selected based on performance on dataset A–small and original FRCNN

model. Both adapted FRCNN models outperform the original FRCNN through effective reduction

in FPs with small negative impact on the number of detected lesions. Adapted FRCNN trained on

values selected from dataset A has around 2.58% to 4.42% higher F-measure in modelling and overall

unseen test sets, respectively. Thus, the small drop in performance of the adapted FRCNN based on

dataset A-small over our large datasets of 3119 images (of which 4 datasets were unseen external test

sets collected from multiple hospitals and generated using various US machines) is evidence of the

generalisation capability of the selected optimal values.

Dataset Original Adapted Adapted
(Dataset A) (Dataset A-small)

P R F P R F P R F

A 78.45 96.23 86.32 81.71 95.94 88.25 78.44 94.49 85.67

Overall External Test Sets 51.99 94.71 67.12 72.40 87.47 79.19 70.90 79.09 74.77

Table 8.1: Precision (P), Recall(R) and F-measure (F) of Original and Optimal Faster R-CNN using
dataset A-small and dataset A (Average of 5-folds).

This investigation highlights the impact of the dataset on the selection of optimal hyperparameters.

As this study is performed on two datasets, the following important points can be drawn: 1.) Despite

the large variation on these datasets, there was no change to the optimal values of anchor boxes and

number of test proposals proving their generalisation capabilities. 2.) Although the optimal values
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for number and IOU range for base network’s training sample selection varies with the larger dataset,

the change in performance of the individual hyperparameters as well as the overall models trained

with their respective optimal values is small. This is evidence of the overall generalisation capability

of these hyperparameter values.

8.2 Improving Classification Accuracy of Adapted FRCNN Model

As discussed in Section 5.3.3 Chapter 5, the adapted FRCNN outperformed the original FRCNN due

to lower number of FPs. However, the number of FPs in the adapted FRCNN was still considerable.

One of the reasons for these FPs was poor classification of FP proposals. Thus, evaluation of various

training losses and classification networks as the backbone network were studied and presented in

Sections 5.3.5 and 5.3.4 in Chapter 5. Besides these strategies, two other techniques were also inves-

tigated, namely, Guided-Anchoring based RPN (GARPN) [75] and fusion of convolution layers of the

backbone network. GARPN modifies the first stage (RPN) of the FRCNN model in order to improve

the quality of proposals which would in turn improve the overall performance of the model including

lower number of FPs. The second investigated technique is the fusion of convolutional layers of the

backbone network to improve the quality of features used by both stages of the adapted FRCNN model

and thereby improve the quality of proposals and output detections of the model. The remainder of

this section describes both these techniques and their impact on the overall performance in further

detail.

GARPN: GARPN was developed for object detection in natural images. It replaces the default RPN

network of the FRCNN model to improve the quality of proposals generated by the RPN. Thus, lower

number of FP proposals and higher number of TP proposals are sent through to the base network for

its training and during test time thereby reducing FPs in the final output and improving the overall

performance of the model. In particular, the classification and regression branches of the RPN are

replaced with two new branches, namely, shape prediction branch and location prediction branch. The

shape prediction branch predicts the shape (width and height) of a potential object on every point of

the feature map whereas the location prediction branch generates a probability map which contains

the probability of the presence of an object at every location of the input convolutional feature map.

The output of both these branches is then combined such that only shapes generated at high proba-
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bility locations are sent through for further processing. The architecture of this network is described

in further in Section 3.1.2 in Chapter 3.

The GARPN model was trained and tested on five folds of dataset C. For comparison, the adapted

FRCNN model was also trained and tested on the same folds of dataset C. Overall, GARPN had

17.34% higher precision and 23.06% lower recall. The high precision of this model is due to the lower

number of FPs generated. This is due to the use of the location prediction branch which filters out

FP proposals at the RPN. As these FP proposals are not passed to the base network, the number

of FP detections output by this model is lower. However, the GARPN model has a comparatively

lower recall than the adapted FRCNN model which is a result of higher number of missed lesions.

Due to the lower classification accuracy of the RPN in the GARPN model, the high IOU proposals

covering challenging lesions are not passed through to the base network resulting in missed lesions.

Thus, owing to the lower recall, the overall F-measure of the GARPN model is lower than that of the

adapted FRCNN despite its higher precision.

Layer Fusion: To improve the classification accuracy of the adapted FRCNN model, fusion of convo-

lutional layers of the base network was investigated. Initial convolutional layers of a network extract

low-level features such as edges and contours. As the layer depth increases, the features extract become

more abstract. In deeper layers, the resolution of the low-level features reduces, especially for objects

of small size. Fusion of initial convolutional layers with the deeper convolutional layers introduces

the low-level features with the abstract features. Thus, the fused features maps hold higher textural

information. As classification accuracy of both stages of the FRCNN model relies on the quality of

the input features, impact of layer fusion on the reduction of FPs was studied.

This study was conducted on adapted FRCNN with ResNet50 as its backbone network. The

ResNet50 network is divided into five convolutional blocks. Feature map output by convolution block

4 (conv4) is used by the RPN for proposal generation. After proposals are generated by the RPN,

ROI pooling is performed on the same feature map for further processing of the proposals by the base

network. For this study, the output feature map of convolutional block 1 (conv1) is fused with the

output feature map of conv4. The fused feature map is then used by both RPN and base network.

Overall, the adapted FRCNN model using fused layers had higher recall but lower precision than
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the adapted FRCNN model that does not use layer fusion. Due to the larger drop in precision than

the improvement in recall, the F-measure of this fused model was lower than that of the adapted

FRCNN. The recall of the model was higher due to higher number of detected lesions (higher TP and

lower FN). However, due to the higher number of FPs generated by this model, its precision was lower.

Furthermore, as the number of fused layers increased, a similar performance change was noted

(higher recall and lower precision) due to an increase in detected lesions along with an increase in FPs.

The introduction of the low-level features improved the detection of small lesions whose features are

lost in deeper layers. However, this fusion also caused incorrect classification of FP proposals covering

background lesion-like regions both at the RPN as well as base network leading to an increase in FP

detections. This is because of similarity in lower-level textural features (such as edges and contours)

of the background lesion-like regions and the lesion.

8.3 Training Samples Selection for SVM Models in U-DetectH

U-Detect models had the following common issue cases: single low IOU FP, FP+FN (where a single

detection is output by the model which covers background region and completely misses the lesion

resulting in a FP and FN) and FNs. The U-DetectH model proposed in Chapter 7 addressed these

issue cases with the help of handcrafted features that were selected with reference to characteristics of

lesions in US images used by radiologists to assign its BI-RADS score. In particular, an SVM model

trained on a fusion of handcrafted features was used to improve classification score assigned to the

proposals by RPN/base network. The aim of the SVM model was to improve the scores assigned

to high IOU proposals and reduce the scores assigned to low IOU FP proposals thus ensuring the

selection of TP proposals as candidates resulting in the reduction of FP detections of the model.

For training the SVM model, proposals generated by the RPN of the adapted FRCNN model for

images in the same split of the modelling dataset (dataset A) were considered. Of these, proposals

with IOU [0.7, 1] were used as positive samples and 292 proposals, randomly selected from seven bins

of IOU [0, 0.7) (detailed in Table 8.2), were used as negative samples. This training set (TS) is referred

to as optimal TS and used for SVM training in Chapter 7. Besides this training set, three other TSs,

derived from the same proposals, were also evaluated. These training sets are referred to as TS1, TS2
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and TS3. This section details the performance of the SVM and U-DetectH models trained with the

TS1, TS2 and TS3 training sets.

Table 8.2 shows the selected training samples in the four training sets. In TS1 and TS2, the positive

samples are the same as the ones used in optimal TS. They differ from optimal TS in the selection of

negative samples only. On the other hand, TS3 differs from optimal TS in both positive and negative

sample selection. In TS1, only proposals with IOU [0.6, 0.7) are considered as negative and those with

IOU [0.7, 1] are considered as positive samples. This was to focus purely on the common issue cases of

single low IOU and FP+FN found in U-Detect models. The SVM model trained using TS1, in general,

had the highest specificity but overall poor performance due to the limited variation in negative sam-

ples. Detailed performance of combined-SVM model trained using TS1 is presented in Table C.7 in

Section C.1 Appendix C. Therefore, in TS2, the range for negative samples was increased to [0.5, 0.7)

to introduce more hard negative samples. This increase in negative samples’ variation improved recall

of the SVM model along with an increase in FPs and drop in TNs i.e. drop in accuracy, specificity,

precision and F-measure. Performance of combined-SVM model trained using TS2 set is detailed in

Table C.8 of Section C.1 Appendix C. When the range of negative samples was increased further

so as to include hard as well as easy negative samples in the optimal TS training set, these metrics

were balanced as evidenced through its performance detailed in Table 7.3 in Section 7.2.1 of Chapter 7.

Training Sample IOU Optimal TS TS1 TS2 TS3

0 - -
(0, 0.1) - -
[0.1, 0.2) - -
[0.2, 0.3) Negative - - Negative
[0.3, 0.4) - -
[0.4, 0.5) -
[0.5, 0.6) Negative
[0.6, 0.7) Negative

[0.7, 0.8)
[0.8, 0.9) Positive Positive
[0.9, 1)

1 - - -

Table 8.2: Evaluated SVM training sets. Negative: Negative training samples. Positive: Positive
training samples.
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In TS3, proposals with IOU [0.7, 1] were selected as positive samples. Along with this, ground

truth boxes i.e., IOU = 1 samples, were used as positive samples. RPN rarely generates proposals

with absolute overlap of IOU = 1 with the lesion. Thus, introduction of these GT boxes was evaluated

to study its impact on the overall performance. To balance the number of negative samples, 640 pro-

posals from each IOU bin in range of [0.4, 0.7), 632 proposals from IOU bins in the range of [0.3, 0.4)

and 292 proposals from IOU bins in the range of [0, 0.3) were selected. Higher number of proposals

from higher IOU bins were selected to introduce more challenging negative samples in comparison to

easier negative samples with lower IOU. Classification accuracy of this model is detailed in Table C.10

in Section C.1 Appendix C.

An SVM model trained using GLCM features and TS3 samples is utilised in the U-DetectH-Base

model. Decision fusion was performed using weighted-sum method where wsvm = 0.1 and wbase = 0.9

(same weights used for all SVM models in Chapter 7). This U-DetectH-Base model is referred to as

GLCM-new for brevity. Table 8.3 shows the performance of the GLCM-new model. The performance

of the GLCM-new model is compared to that of the U-DetectH-Base model using GLCM-SVM (re-

ferred to as GLCM-SVM model). Performance of the GLCM-SVM model was presented in Table 7.6

in Section 7.2.2 Chapter 7.

The GLCM-new model had a small improvement in the overall detection performance due to

lower number of FPs and FNs. However, the number of TPs in the GLCM-new model was lower than

that of GLCM-SVM. Thus, use of GT boxes in the training of the SVM model improved classification

accuracy of the model. This in turn improved the classification score assigned to TP proposals covering

challenging lesions as well as FP proposals covering lesion-like background regions (additional boxes).

On the other hand, multiple lesions were detected with low IOU FP proposals by the GLCM-new

model. This is because of the higher classification score assigned to lower IOU FP proposals in

comparison to TP proposals present in the cluster. Thus, use of TS3 improves the classification of

challenging lesions and additional boxes but at the expense of low IOU FP.
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Dataset GLCM-new
Precision Recall F-measure

A 85.60 99.07 91.85

Overall External Test Sets 76.34 89.75 82.51

Table 8.3: Impact of new training set on GLCM-SVM in U-DetectH-Base model: Single Fold.

8.4 Dimension Reduction using MRMR in U-DetectH Models

In Chapter 7, dimension reduction of the handcrafted features using PCA in the U-DetectH model

was investigated. Use of PCA was experimentally found to result in a lower performance overall. This

was due to poorer classification of FP proposals covering background regions as well as low IOU FP

proposals. However, the change in number of FNs did not undergo significant change. Thus, the di-

mensionally reduced feature vector contained insufficient textural information for correct classification

of FP proposals only. PCA is a feature projection method of dimension reduction. In order to study

the impact of the feature selection method for dimension reduction, MRMR (Maximum Relevance -

Minimum Redundancy)[157] was evaluated.

While PCA projects the feature vector into another space for dimension reduction, MRMR selects

a predefined number of components (mC) from the feature vector where the number of components is

less than the dimension of the feature vector. In particular, MRMR ranks all elements of the feature

vector in terms of its importance, ensuring low redundancy between the selected top elements. If

mC = 10, then the top 10 ranking elements are selected. The impact of MRMR is studied on the

U-DetectH-Base model. Particularly, Base-GAP features and handcrafted features of each proposal

are extracted in phase one. In phase two, KPCA is used to reduce dimension of Base-GAP features

and MRMR is used to reduce the dimension of handcrafted features. Proposals are clustered using

the dimensionally-reduced Base-GAP features in phase three. In phase four, using the dimensionally

reduced handcrafted features, the proposals are classified by a pretrained SVM model. Weighted sum

is used for decision fusion of the classification scores of base network and SVM model in phase four,

using the same optimal weights (wbase = 0.9 and wsvm = 0.1) as used by U-DetectH models. In phase

five, candidates from each cluster are selected based on the updated proposal score and in phase six,

the selected candidates are processed through NMS and candidate merging method.
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Like PCA, the optimal number of components (mC) needs to be predefined. Thus, an analysis of

the number of mCs required to capture 99% of the textural information was conducted. This study

was performed on a single fold of modelling dataset (dataset A) using the combined feature vector

extracted for each proposal. Combined feature vector is a fusion of HOG, GLCM, ULBP and shape.

This fold is the same as the one used for PCA and KPCA investigations in Chapters 6 and 7. Based on

this investigation, the range of mCs to be evaluated was determined. Following mCs were evaluated

: 85, 95, 105, 115, 125.

Figure 8.1 shows the performance of the investigated mCs. Overall, the overall performance

dropped with the increase in the number of mCs. Higher number of mCs had lower TPs and higher

FPs. Thus, 85 mCs was selected as optimal based on its highest F-measure. Using the optimal mCs,

an SVM model was trained on the same training set detailed in Section 7.2.1. Classification perfor-

mance of this SVM model is presented in Table C.10 in Section C.1 Appendix C. U-DetectH-Base

model with MRMR-based combined-SVM models using optimal mCs was trained on a single fol of

dataset A (modelling dataset); same fold used in Section 7.2.2. Table 8.4 shows the performance

of this U-DetectH-Base with MRMR-based combined-SVM. For brevity, U-DetectH-Base models are

referred to by the feature vector used. Thus, combined-SVM, combined-PCA-SVM and combined-

MRMR-SVM refer to U-DetectH-Base models using no dimension reduction on the combined feature

vector, using PCA for dimension reduction and using MRMR for dimension reduction, respectively.

Performance of combined-SVM and combined-PCA-SVM models are presented in Table 7.5.

Dataset Combined-MRMR
Precision Recall F-measure

A 85.55 99.00 91.78

Overall External Test Sets 78.17 89.91 83.63

Table 8.4: Performance of combined-MRMR in U-DetectH-Base model: Single fold.

Overall, the combined-MRMR-SVM model has considerably higher F-measure than combined-

PCA-SVM and a marginally higher performance in comparison to combined-SVM model. Compared

to combined-PCA-SVM, combined-MRMR-SVM has a higher number of TPs as well as lower number

of FPs. Thus, combined-MRMR-SVM has 2.22% to 7.62% higher F-measure than combined-PCA-

SVM model due to 3.76% to 12.42% higher precision with 0.05% to 2.12% higher recall in modelling
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Figure 8.1: Impact of various MRMR components on performance of all combined feature vector in
U-DetectH-Base model: Single fold of dataset A.

and unseen external test sets, respectively. Compared to combine-SVM, combined-MRMR-SVM had

0.51% to 1.16% higher precision and 0.01% to 0.42% higher recall resulting in 0.33% to 0.48% higher

F-measure. However, in dataset E, both combined-MRMR-SVM and combined-SVM models had the

same performance. Furthermore, in dataset B, combined-MRMR-SVM had 0.67% lower precision,

0.01% lower recall and 0.36% lower F-measure than combined-SVM model.

Use of MRMR improved the performance through a successful removal of redundant and noisy

features. However, the improvement in performance is small. Additionally, MRMR also provides

useful conceptual information regarding important, distinguishing features, a characteristic that is

absent in PCA. For instance, through investigation of various mCs of GLCM feature vector, it was

found that contrast and correlation were consistently ranked higher. Also, features extracted from

GLCM matrices computed for (-1,0), (0,2), (-4,4) and (-4,-4) pixel relationships were consistently

used in the MRMR feature vector. This indicates that the mentioned features and pixel relationship

provide the most important textural information that helps distinguish proposals containing lesions

from those containing background region.
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8.5 Weighted Sum Analysis in U-DetectH Models

The U-DetectH models proposed in Chapter 7 use an SVM model in conjunction with RPN/base

network to update the classification scores assigned to proposals. The decision fusion method used

for updating the proposal score is weighted sum. The optimal weights of wrpn = wbase = 0.9 and

wsvm = 0.1 were found experimentally and used in all U-DetectH models. The experimental eval-

uation of all weights investigated as well as the selection of aforementioned weights as optimal is

presented in this section.

Weights in the range of (0, 1) with increments of 0.1 were investigated with the condition that

wrpn/base + wsvm = 1. Table 8.5 details the weights were investigated on a single fold of modelling

dataset (dataset A). The same fold is used for evaluation of weights for all U-DetectH models. For

illustration, consider U-DetectH-Base models using GLCM-SVM and HOG-SVM. Figure 8.2 shows

the impact of the investigated weights on the overall performance of U-DetectH-Base models. In both

models, higher the wbase, higher is the F-measure of the model. Such a performance trend was seen

in all U-DetectH models. This is because the RPN/base network have overall higher classification

accuracy in comparison to SVM models. Furthermore, these models are trained to assign lower scores

to TP proposals with IOU in the range [0.5, 0.7). Thus, with lower weight assigned to the RPN/base

network, the number of detected lesions is lower leading to overall lower F-measure. Based on the

highest F-measure over a single fold of modelling dataset, wrpn = wbase = 0.9 and wsvm = 0.1 are

selected as optimal and used in all U-DetectH models using one SVM model in the network.

Test wsvm wrpn/wbase

1 0.1 0.9

2 0.2 0.8

3 0.3 0.7

4 0.4 0.6

5 0.5 0.5

Table 8.5: Investigated weights for weighted sum decision fusion of a single SVM model and RPN/base
network in U-DetectH models.
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(a) GLCM (b) HOG

Figure 8.2: Change in F-measure with change in weights assigned to the base network, GLCM-SVM
and HOG-SVM in U-DetectH-Base model. Base network is represented using B whereas both GLCM-
SVM and HOG-SVM models are represented using S.

8.6 Reinforcement Learning (RL) for Breast Lesion Detection

As part of the investigation and study of the various detection methods developed for breast lesion

detection, a RL based method was also investigated. As described in Section 2.2.3.3 in Chapter 2, RL

differs from both supervised and unsupervised learning. It is an emerging field of study. When used

for detection, RL agents automatically learn the detection during model training using a feedback

signal which is a scalar value. We studied the performance of a hierarchical RL network [5] developed

for object detection in natural images. We refer to this network as HRL-US. Here, VGG16, pretrained

for classification of natural images, is used for feature extraction. A deep Q-network is used as the

agent. Figure 8.3 shows the possible steps that the agent can take for successful object detection.

Step 0, i.e., the default starting state, is a bounding box covering the entire image. This bounding

box is then divided into five bounding boxes covering five quarters; four quarters in each standard

quadrant and one quarter covering the central region. The agent then selects one of these quarters

that potentially contains the lesion (object) or it can decide to terminate the search and output the

current bounding box. If the search is not terminated, then the selected quarter is divided into further

five quarters and so on. The agent is permitted a maximum of 10 steps to detect an object in the image.

We trained the HRL-US model on 5-folds of dataset A-small. For this investigation, we also trained

the HRL network for object detection in natural images using MS-COCO dataset in order to compare
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Figure 8.3: Action steps of the RL agent in HRL network [5]. Blue bounding boxes represent selected
quarter from previous action step and red bounding boxes represent five possible quarters that the
agent can select in that step.

the performance of this dataset on natural and US images. This network is referred to as HRL-natural.

Both models are trained using the default hyperparameters detailed in [5]. The performance of these

models was evaluated using precision-recall curve. Based on this curve, average precision (AP) was

calculated for each model. HRL-natural had a higher performance than HRL-US. HRL-natural had an

AP of 11.64. In HRL-natural, the agent terminated the search in two to three steps for the majority

of the detections. Output detections with IOU [0.1, 0.6] required two to six steps. On the other hand,

AP of HRL-US was much lower than either of the natural images’ models at 0.11. Also, the agent

required an overall higher number of steps in HRL-US. In particular, in the majority (57.26%) of the

US images, the agent used all 10 steps. In a significant proportion of these images, the lesion was

completely missed. In 9.17% of the images, the agent terminated the search in step 2. Of all the

output detections of HRL-US models, 61.64% cases had no overlap with the lesion (additional boxes),

37.79% had up to 50% overlap (0 < IOU < 0.5) (low IOU FP) and only 0.57% were TP detections

with IOU > 0.5.

HRL performs poorly due to the inherent challenging nature of US images as well as poor designs

of steps allocated to the agent. Nature of the agent’s steps prevents correct detection of small lesions

as the agent cannot change width or height of the bounding box. For the same reason, unless at least

one of the quarters tightly fits the lesion, majority detections have low IOU. Additionally, incorrect

selection in one critical step leads to missed lesions as the agent is not allowed to retrace its path and
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modify its selection in this critical step. This performance can therefore be improved through two

main improvements. First, improvement in the quality of features extracted for better representation

of the current step. Secondly, improving the steps to allow greater flexibility to the agent. In summary,

RL is a new, emerging field with promising results. However, one of its major requirements of large

and varied dataset for optimal training of the agent limits its development in this field of breast lesion

detection in US images. Therefore, this field of detection networks requires further development for

successful application in medical images.
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Chapter 9

Conclusion and Future Work

Automating breast lesion detection is an important field of research. Given the high average ratio

of patients to available experienced radiologists, such an automation can assist radiologists in their

diagnosis process and facilitate faster, accurate reading. In the field of lesion detection in US images,

a fundamental issue that challenges the research community is false positive (FP) detections. This

thesis presented methods for breast lesion detection in US images using deep convolutional neural

networks and unsupervised learning. In particular, this thesis aims to address the issue of FPs in

breast lesion detection in 2D US images. This chapter serves as the conclusion for the whole thesis

and provides key contributions and findings from this research. It also outlines the possible future

investigations and potential developmental direction of this research.

9.1 Summary of the Thesis

The main aim of this research is to develop and design a method for breast lesion detection in US

images. Figure 9.1 illustrates the key components of this research. Component (A) is the adaptation

of the FRCNN model for breast lesion detection in US images. First step in this adaptation was

the study of various modelling hyperparameters and their impact on overall performance. Through

this study, optimal values for each of the investigated modelling hyperparameters was determined.

The FRCNN model trained using these optimal values, referred to as adapted FRCNN, outperformed

original FRCNN through a significant reduction in FPs along with a small drop in the number of

correctly detected lesions. Furthermore, the adapted FRCNN model outperformed several state-of-

the-art detectors developed for object detection in natural images as well as those adapted for breast
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Figure 9.1: Key research components.

lesion detection in US images. Further modifications of the adapted FRCNN model were performed

to improve its classification accuracy which would in turn reduce FP detections. These modifications

included an investigation of various state-of-the-art classification networks as the backbone as well as

different training losses. Through this investigation, the adapted FRCNN model was further modi-

fied. Specifically, the IRV2 network outperformed the default VGG16 as the backbone of the model.

It not only had a lower number of FPs but also a higher number of correctly detected lesions. All

investigated models improved the number of correct detections. However, the overall number of FPs

were higher with the use of these losses.

The next main component (B) of this research is the novel U-Detect method which combines un-

supervised learning with the adapted FRCNN model for reduction of FPs for breast lesion detection

in US images. This model utilises learned features of the adapted FRCNN model to cluster proposals

based on their textural similarity using x-means clustering method and selects highest scoring proposal

from each cluster. Depending on the features extracted, the following two networks were developed:

U-Detect-RPN and U-Detect-Base. Both these networks outperform original as well as adapted FR-

CNN models through considerably higher precision as a result of lower number of FPs. Additionally,

U-Detect-RPN also improves the number of correct detections made by the adapted FRCNN resulting

in not only higher precision but also higher recall than the adapted FRCNN model.

The third component of this work (C) is the novel U-DetectH method which utilises textural

and morphological handcrafted features, selected based on domain knowledge, in order to improve

the classification scores assigned by the adapted FRCNN model. This method builds on the U-
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Detect method to improve the quality of proposals (improve). Following two U-DetectH models were

derived: U-DetectH-RPN and U-DetectH-Base. Both these models outperformed the original and

adapted FRCNN models due to a large reduction in FPs with a relatively smaller drop in the number

of correct detections.

9.2 Main Achievements

The main achievements of this thesis starts from comprehensive investigations in Chapter 5 that

evaluates the effectiveness of FRCNN and several state-of-the-art object detectors for breast lesion

detection in 2D US images. We presented an extensive analysis of the FRCNN network and its limita-

tions. We conducted a, first of its kind, systematic study of several modelling hyperparameters from

both stages of the FRCNN network for breast lesion detection on our large dataset of US images. Op-

timal values of the evaluated modelling hyperparameters were selected during this study. The adapted

FRCNN model designed using the selected optimal values outperformed the original FRCNN model

through considerable reduction of 28% to 61% in FPs with a relatively small drop in the number of

detection lesions. This study addresses an important gap in the current literature and has therefore

been published to aid researchers in their understanding of the impact of these hyperparameters on

the overall performance as well as for the adaptation of the FRCNN model for lesion detection in US

images. Furthermore, when compared to multiple state-of-the-art detectors developed not only for

object detection in natural images but also those adapted for breast lesion detection in US images,

the adapted FRCNN model had the highest performance.

The adapted FRCNNmodel was modified further in Chapter 5 to improve its classification accuracy

for FP reduction through an investigation of various training losses and state-of-the-art classification

networks as backbone of the adapted FRCNN model. The evaluated losses improved the number of

correct detections. Use of PISA loss in the classification branch and the default smooth L1 loss in the

bounding box regression branch reduced the number of FPs albeit by a very small degree. On the

other hand, use of deeper backbone networks led to a larger improvement in the classification accuracy

as well as overall performance of the adapted FRCNN model. Of the evaluated classification networks,

adapted FRCNN model using Inception-ResNet-v2 as the backbone had the best performance, out-

performing adapted FRCNN using VGG16 (default backbone network of the FRCNN model) through
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not only lower number of FPs but also higher number of correct detections. However, the number of

FPs in the adapted FRCNN model was still significant.

Therefore, in Chapter 6, we proposed a novel U-Detect method that combines unsupervised learn-

ing with adapted FRCNN developed for FP reduction. The U-Detect method essentially intelligently

filters proposals so that high IOU proposals at the RPN or base network are retained and low IOU FP

proposals are discarded. This is achieved by texture-based clustering of the proposals and selection

of high IOU proposals from each cluster with the help of their classification scores. We also proposed

a novel candidate merging method used in the final phase of this method that reduces the number

of overlapping FPs. Based on the learned features extracted to describe the proposals, two networks

were derived, namely, U-Detect-RPN and U-Detect-Base. Both, U-Detect-RPN and U-Detect-Base,

outperformed original and adapted FRCNN. Compared to adapted FRCNN, the U-Detect-RPN model

has 8.78% to 47.53% lower number of FPs where the U-Detect-Base model has 8.45% to 32.72% lower

number of FPs. Thus, the U-Detect methods successfully address the FP issue cases of the adapted

FRCNN model. The U-Detect method is only used during model testing. Therefore, it adds no

additional computation cost to model training. U-Detect-RPN has a high computation cost of 3.96

seconds but the U-Detect-Base model has a much lower computation cost of 0.96 seconds which is

very close to that of adapted FRCNN model(0.57 seconds).

We presented the common issue cases of the U-Detect models. These issue cases were caused due to

incorrect selection of proposals from the cluster containing high IOU TP proposals. Thus, in Chapter

7 we addressed these cases through a novel classification-based U-DetectH method. The U-DetectH

model uses a fusion of textural and morphological handcrafted features to improve the classification

scores assigned to high IOU proposals and reduce the scores assigned to lower IOU FP proposals.

Selection of these features was inspired by the characteristics of breast lesions in US images studied

by radiologists to assign the lesions’ BI-RADS score. Particularly, HOG, GLCM, ULBP and shape

features were used to train an SVM model.

The classification scores assigned to proposals were updated through a decision fusion of RPN/base

network classification scores and SVM classification scores using weighted sum method. Based on the

extraction of learned features, U-DetectH-RPN and U-DetectH-Base models were developed. Both
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U-DetectH models outperformed original and adapted FRCNN models. Compared to U-Detect-Base,

U-DetectH-Base had 0.13% to 4.59% higher F-measure due to its lower number of FPs as well as

higher number of TPs. Furthermore, U-DetectH-Base also outperformed U-Detect-RPN. Despite the

lower recall, the U-DetectH-Base model has 0.43% to 1.41% higher F-measure than U-Detect-RPN

due to its higher precision. However, U-DetectH-RPN did not outperform U-Detect-RPN due to the

relatively lower classification accuracy.

U-DetectH-Base had 6.08% to 38.89% lesser FP detections than the adapted FRCNN model which

led to 0.77% to 8.28% higher precision. Although it had 0.77% to 0.62% drop in recall, the overall F-

measure was 0.36% to 4.79% higher due to the comparatively higher precision. Similarly, compared to

the original FRCNN, the U-DetectH-Base model had 31.86% to 77.07% lower number of FPs resulting

in 5.49% to 32.83% higher precision. Due to a relatively small drop in the number of detected lesions,

recall of the U-DetectH-Base model is 0.27% to 10% lower than the original FRCNN model. Thus,

owing to the higher precision than the original FRCNN model, U-DetectH-Base had 4.59% to 22.74%

higher F-measure. Additionally, we also presented the impact of individual features (HOG, GLCM

and ULBP) on the performance of both U-Detect models. Due to the additional time required for

extraction of all handcrafted features, U-DetectH models had higher computation time in comparison

to their U-Detect counterparts.

In summary, in this thesis, we address important gaps in the literature. First, we address the

drawbacks of existing methods to modify the FRCNN model for breast lesion detection in US images

through an investigation of the impact of FRCNN modelling hyperparameters on a large US dataset.

FP detection is a prevalent issue not only in breast lesion detection for US images but also for lesion

detection in US images. Although several works have adapted the FRCNN model or proposed novel

detectors, the issue of FP detections has not been adequately addressed. In this work, we bridged this

gap through development of novel U-Detect and U-DetectH models that successfully reduce FPs. This

work has been developed on a large and varied dataset of US images collected from a variety of US

machines from a range of hospitals based in different countries. The effectiveness of our adaptation

and novel methods (U-Detect and U-DetectH) on such a dataset strongly suggests high generalisation

capability.
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Figure 9.2: U-Detect method in YOLOv2 detector.

9.3 Future Work

The research presented in this highlighted several important future works that complement the inves-

tigation of adapting our U-Detect and U-DetectH methods.

Evaluation of U-Detect and U-DetectH methods for detection of other types of lesions:

Both U-Detect and U-DetectH were developed for breast lesion detection in US images. However,

a recent work [139] argues that breast and thyroid lesions have similar characteristics in US images.

Thus, a promising direction of this work is an investigation of U-Detect and U-DetectH methods in

detection of other types of lesions. Such a study could provide valuable information in terms of the

generalisation capabilities of the proposed methods.

Evaluation of U-Detect and U-DetectH methods with different base detectors: Both U-

Detect and U-DetectH methods are used during the model’s test-stage. Therefore, irrespective of the

nature of the detector, both these methods can be utilised. This investigation would prove insightful

in understanding the adaptability of the U-Detect and U-DetectH methods. For example, consider

the U-Detect method used for FP reduction in the YOLOv2 network as shown in Figure 9.2. Output

of the YOLOv2 network is the classification score assigned to all cells in the image and the bounding

box regression for all anchor boxes assigned to each cell. Therefore, the proposals here are bounding

boxes that have been classified as an object and transformed as per the output of the bounding box

regression branch. In phase 1 of the U-Detect method, these proposals are defined using the learned

features output by the last convolution layer of the YOLOv2 backbone network. If the backbone

network used in YOLOv2 is DarkNet-19 and the input image is 416× 416, then the dimension of the

learned features for each proposal is 13× 13× 1536.
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Given the large dimension, in phase 2, GAP can be first applied to reduce the feature vector to

1536× 1 dimension, followed by KPCA which further reduces it to a feature of size 5× 1. These fea-

ture vectors are used to cluster proposals using x-means clustering in phase 3 of the U-Detect method.

Candidates from each cluster are selected in phase 4 based on the classification score assigned to each

proposal. The candidates then are processed through NMS to remove redundant boxes. In phase 5,

candidate merging method is applied to remove overlapping FPs.

Furthermore, U-DetectH uses handcrafted features selected to extract important features of breast

lesions in US images. In recent work [139], the similarity between breast and thyroid lesions in US

images was highlighted. Therefore, evaluation of the U-DetectH in detection of other lesions could

provide valuable information in terms of the generalisation capabilities of the U-DetectH model for

detection of other lesions in US images. Considering the above example of the trained YOLOv2 de-

tector for thyroid lesion detection in US images, Figure 9.3 illustrates the use of U-DetectH in this

network. As the combined feature vector is proven to be most effective, all four handcrafted features

(HOG, GLCM, ULBP and shape) are extracted for each proposal. Decision fusion (weighted sum) of

the SVM model trained separately and the YOLOv2 classifier provides the updated classification score

for all proposals. After proposals are clustered using the learned features, candidates are selected on

the basis of the updated classification score. Remaining phases are the same as the U-Detect method.

Figure 9.3: U-DetectH method in YOLOv2 detector.

Evaluation of U-Detect and U-DetectH methods for object detection in natural images:

To further evaluate the effectiveness and generalisation capabilities of the U-Detect and U-DetectH

209



methods, an important further work is the investigation of this method for object detection in natural

images. This would provide valuable understanding of the U-Detect method in this domain.

Reduction of computation time of the U-DetectH models: As discussed in Chapter 7, the

high computation time of the U-DetectH models is caused due to the high computation time required

for extraction of GLCM features of the test proposals. We used the inbuilt MATLAB function for

GLCM features extraction. Thus, to improve the overall speed of the U-DetectH model, the GLCM

feature extraction process will be improved through development of a new function for this process

as part of the future work. The MATLAB function uses several checks and computation that are not

relevant or required in this work. The new function will focus purely on the generation of GLCM

matrices and features required for this work to reduce the overall computation time.

Automation of Network Optimization: In this research, manual optimization is performed since

the aim of this work was to study the impact of the various hyperparameters involved. With the

larger dataset now available, automating this optimization is an important future work. A promising

direction is using ENAS (Efficient Network Architecture Search). ENAS is a growing field of research

and has proven successful in multiple image processing tasks for medical images such as image clas-

sification [158] and segmentation [159]. Specifically, use of ENAS for hyperparameter optimization

will be studied. Furthermore, one of the recent works in this field, NAS-FPN [160], has successfully

used NAS for automatic development of an optimal FPN network that concatenates layers of the

base classification network for improving the features extracted by the model and in turn the overall

performance for object detection in natural images. Study of such a network will also be performed to

further improve the classification and bounding box regression accuracy of the adapted FRCNN model

for breast lesion detection in US images. The impact of U-Detect and U-DetectH on this adapted

FRCNN model will also be studied.
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Figure A.1: Number of TP, FP and FN detection in FRCNN models trained with all anchor boxes in
dataset C.

Figure A.2: Change in number of TP, FP and FN with variation in base network’s positive training
samples in dataset C.
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Figure A.3: Change in number of TP, FP and FN with variation in base network’s negative training
samples in dataset C.

Figure A.4: Number of number of TP, FP and FN with variations in number of training proposals in
dataset C.

Figure A.5: FRCNN performance with variations in number of test proposals in dataset C.
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Figure A.6: Original anchor boxes with default and optimal modelling hyperparameters: Dataset C.

Figure A.7: K-means++ anchor boxes with default and optimal modelling hyperparameters: Dataset
C

Figure A.8: IOU distribution of TPs in original and adapted FRCNN models: Dataset C.
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Figure A.9: Number of TP, FP and FN detections in original and adapted FRCNN models in dataset
C.
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Appendix B

U-Detect models

B.1 U-Detect-RPN

Table B.1 shows single-fold performance of adapted FRCNN and U-Detect-RPN. Compared to adapted

FRCNN, the U-Detect-RPN model has 3.79% to 13.54% higher precision with only a small drop of 0.3%

in recall in modelling dataset and 0.72% higher recall in overall unseen test sets. Thus, the overall

F-measure is 2.02% to 8.94% higher. The improvement in precision and recall is due to improved

filtering of proposals which restricted overshadowing of TP proposals as well as improved filtering of

FP proposals. Therefore, the proposed U-Detect-RPN method successfully overcomes drawbacks of

NMS.

Dataset Model Precision Recall F-measure

A Adapted 85.23 99.34 91.74
U-Detect-RPN 89.02 99.04 93.76

Overall External Adapted 62.88 90.17 74.09
Test Sets U-Detect-RPN 76.42 90.89 83.03

Table B.1: Single fold performance of U-Detect-RPN and adapted FRCNN model

B.2 U-Detect-Base

Table B.2 shows single fold performance of U-Detect-Base model in comparison to adapted FRCNN.

U-Detect-Base model outperforms adapted FRCNN with 0.94% to 12.31% higher precision and only

a small drop of 0.33% to 0.51% in recall. Therefore, using the clustering network to filter the final

xxxii



detections of the base network is effective in addressing drawbacks of NMS while causing minimal

negative impact on the number of correct detections.

Dataset Model Precision Recall F-measure

A Adapted 85.23 99.34 91.74
U-Detect-Base 86.17 99.01 92.14

Overall External Adapted 62.88 90.17 74.09
U-Detect-Base 75.19 89.66 81.79

Table B.2: Single fold performance of U-Detect-Base and adapted FRCNN
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Appendix C

U-DetectH-models

C.1 SVM Training Sets Evaluation

Dataset Accuracy Precision Recall F-measure Specificity

A 90.48 3.24 78.03 6.23 90.53

B (benign) 93.21 2.91 82.86 5.63 93.24

B (malignant) 85.52 2.29 82.76 4.46 85.53

C 47.46 0.55 90.47 1.09 47.32

D 87.16 2.68 85.17 5.21 87.71

E 92.22 4.31 74.77 8.16 92.31

Table C.1: Classification accuracy of GLCM-SVM model trained training set described in Section
7.2.1 in Chapter 7.

Dataset Accuracy Precision Recall F-measure Specificity

A 95.13 6.58 83.59 12.20 95.17

B (benign) 95.68 5.07 90.00 9.60 95.87

B (malignant) 95.27 5.11 74.14 9.56 94.35

C 87.67 1.88 73.09 3.66 87.71

D 95.27 6.30 75.12 11.63 95.36

E 95.28 7.05 75.69 12.90 95.37

Table C.2: Classification accuracy of HOG-SVM model trained training set described in Section 7.2.1
in Chapter 7.
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Dataset Accuracy Precision Recall F-measure Specificity

A 90.90 3.06 69.95 5.86 90.98

B (benign) 93.33 1.98 54.29 3.82 93.42

B (malignant) 86.13 2.06 70.69 3.99 86.19

C 63.03 0.42 84.75 0.84 35.88

D 90.34 2.06 70.69 3.99 86.19

E 92.00 3.06 53.21 5.79 92.18

Table C.3: Classification accuracy of ULBP-SVM model trained training set described in Section 7.2.1
in Chapter 7.

Dataset Accuracy Precision Recall F-measure Specificity

A 43.18 0.53 73.99 1.04 43.05

B (benign) 41.75 0.31 72.86 0.61 41.68

B (malignant) 40.99 0.61 87.93 1.20 40.80

C 60.01 0.66 82.63 1.31 59.93

D 44.48 0.67 90.43 1.33 40.80

E 44.19 0.75 91.74 1.50 43.97

Table C.4: Classification accuracy of combined-PCA-SVM model trained training set described in
Section 7.2.1 in Chapter 7.

Dataset Accuracy Precision Recall F-measure Specificity

A 77.28 1.29 72.73 2.53 77.30

B (benign) 80.97 0.70 54.29 1.38 81.03

B (malignant) 72.21 1.16 79.31 2.28 72.18

C 62.88 0.57 66.74 1.14 62.87

D 69.54 1.11 82.14 2.18 69.49

E 71.73 1.37 82.14 2.18 69.49

Table C.5: Classification accuracy of ULBP-M-SVM model trained training set described in Section
7.2.1 in Chapter 7.

Dataset Accuracy Precision Recall F-measure Specificity

A 95.26 6.72 83.08 12.43 95.31

B (benign) 95.48 4.66 90.00 8.87 95.31

B (malignant) 93.47 4.69 77.59 8.84 93.53

C 88.38 1.96 72.03 3.82 88.43

D 95.70 7.19 78.79 13.18 95.77

E 94.87 6.68 77.98 12.31 94.95

Table C.6: Classification accuracy of (HOG+GLCM)-SVM model trained training set described in
Section 7.2.1 in Chapter 7.
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Dataset Accuracy Precision Recall F-measure Specificity

A 97.41 8.63 56.31 14.97 97.58

B (benign) 97.09 6.29 78.57 11.65 97.13

B (malignant) 97.61 4.81 25.86 8.11 97.90

C 85.72 1.08 48.09 2.11 85.84

D 97.89 7.94 38.60 13.17 98.14

E 98.47 10.50 30.73 15.65 98.79

Table C.7: Classification accuracy of combined-SVM model trained training set TS1 described in
Section 8.3 in Chapter 8.

Dataset Accuracy Precision Recall F-measure Specificity

A 98.96 13.10 27.78 17.80 99.25

B (benign) 99.20 15.52 51.43 23.84 99.31

B (malignant) 98.76 1.64 3.45 2.22 99.15

C 98.41 3.54 15.04 5.73 98.68

D 97.35 1.99 11.16 3.37 97.71

E 99.21 3.01 2.29 2.60 99.66

Table C.8: Classification accuracy of combined-SVM model trained training set TS2 described in
Section 8.3 in Chapter 8.

Dataset Accuracy Precision Recall F-measure Specificity

A 92.81 4.07 74.24 7.71 92.88

B (benign) 94.62 3.36 75.71 6.43 94.66

B (malignant) 89.84 2.99 75.86 5.74 89.89

C 57.01 0.6 81.14 1.19 56.93

D 90.68 3.46 80.06 6.64 90.73

E 95.01 5.68 62.84 10.42 95.16

Table C.9: Classification accuracy of GLCM-new-SVM model trained training set TS3 described in
Section 8.3 in Chapter 8.

Dataset Accuracy Precision Recall F-measure Specificity

A 17.93 0.49 100.00 0.98 17.60

B (benign) 94.14 1.09 25.71 2.10 94.31

B (malignant) 72.40 0.54 36.21 1.06 72.55

C 2.07 0.27 82.63 0.54 1.81

D 50.26 0.79 95.22 1.56 50.08

E 5.30 0.48 99.54 0.96 4.86

Table C.10: Classification accuracy of combined-MRMR-SVM model trained training set described in
Section 7.2.1 in Chapter 7.
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C.2 U-DetectH-Base Performance

Table C.11 shows the performance of the single-feature based models on a single fold of modelling

dataset. These models perform in a similar fashion in this fold. As with the 5-fold performance,

combined-SVM outperforms all these models.

Dataset U-DetectH-Base Model Precision Recall F-measure

A GLCM-SVM 88.73 99.03 93.60
ULBP-SVM 86.71 99.01 92.45
HOG-SVM 85.55 99.00 91.78

Overall External GLCM-SVM 76.01 89.76 82.31
Test Sets ULBP-SVM 73.34 89.14 80.47

HOG-SVM 76.18 89.68 82.38

Table C.11: Performance of U-DetectH-Base using single feature-based SVM models: Single Fold.

Table C.12 shows single-fold performance of the combined-SVM model in U-DetectH-Base. Here,

too, the combined-SVM model has the highest F-measure overall. The combined-SVM model has

slightly lower F-measure than the U-Detect-Base model in the modelling dataset. But, in overall

external test sets, combined-SVM model has 2.41% higher precision along with 0.14% higher recall

than the U-Detect-Base model. This improvement in both precision and recall is due to an increase

in the number of correct detections and reduction in FPs.

Dataset Model Precision Recall F-measure

A Adapted FRCNN 85.23 99.34 91.74
U-Detect-Base 86.17 99.01 92.14
Combined-SVM 84.97 98.99 91.45

Overall External Adapted FRCNN 62.88 90.17 74.09
Test Sets U-Detect-Base 75.19 89.66 81.79

Combined-SVM 77.60 89.80 83.25

Table C.12: Performance of U-DetectH-Base using combined-SVM model: Single Fold.
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