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Abstract
Despite the astonishing successes of Convolutional Neural Networks (CNN)

as a powerful deep learning tool for a variety of computer vision tasks, their de-
ployments for ultrasound (US) tumour image analysis within clinical settings is
challenging due to the difficulty of interpreting CNN decisions compounded by
lack of availability of class labelled “good quality” US tumour image datasets that
represent an i.i.d random sample of the unknown population. The use of CNN
models pretrained on natural images in transfer learning (TL) mode for US im-
age analysis are perceived to suffer from a lack of robustness to small changes
and inability to generalisation to unseen data.

This thesis aims to develop a strategy for designing efficient CNN architec-
tures customised for US images that overcome or significantly reduce the above
challenges while learning discriminating features resulting in highly accurate di-
agnostic predictions. We first uncover the significant differences in the statistical
contents and spatial distribution of image texture landmarks (e.g. Local Binary
Patterns) between US images and natural images. Therefore, we investigate the
effects of convolution with random Gaussian filters (RGF) on US image content
in terms of spatial and an innovative texture-based entropy, and the spatial dis-
tribution of texture landmarks. These effects are determined for US scan images
of malignant and benign masses for breast, bladder, and liver tissues.

We demonstrate that several pretrained CNNmodels retrained on US tumour
scan images in TL mode achieve high diagnostic accuracy but suffer greatly from
a lack of robustness against natural data perturbation and significantly low gen-
eralisation rates due to highly ill-conditioned convolutional layer filters. Thus, we
investigate the behaviour of the CNNmodels during the training process in terms
of three mathematically linked characterisation of the filters point clouds: (1) the
distribution of their condition numbers, (2) their spatial distribution using persis-
tent homology (PH) tools, and (3) their effects on tumour discriminating power
of texture landmark PH scheme in convolved images. These results pave the way
for a credible strategy to develop high-performing customisedCNNarchitectures
that are robust and generalise well to unseen US scans.

We further develop a new approach to ensure equal condition numbers across
the different channel-wise filters at initialisation, andwe highlight their impact on
the PH profiles as point clouds. However, the condition number of filters contin-
ues to be unstable during training, therefore we introduce a simple novel matrix
surgery procedure depending on singular value decomposition as a spectral reg-
ularisation. We illustrate that the PH of different point clouds of RGFs and their
inverses are distinct (in terms of their birth/death of connected components and
holes in dimensions 0 and 1) depending on variation in their condition number
distributions. This behaviour changes as a result of applying SVD-surgery, so that
the PH of point cloud of a filter set post SVD-surgery approaches the same shape
and connectivity of a point cloud of orthogonal RGFs.
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Chapter 1

Introduction

The field of data science and representation learning has emerged in fields across
multidisciplinary research communities driven by challenging real-world scenar-
ios including environmental, financial, andmedical problems. Although, most of
the challenging tasks exist prior to the artificial intelligence (AI) and advanced
computing power era. The profound impact of AI, machine learning (ML), deep
learning (DL), and neural networks (NNs) in computer vision and natural lan-
guage processing has been evident in terms of their broad use from auto-driving
cars, smart houses, to automated medical diagnoses. In particular, these tech-
nologies have already helped make significant progress in dealing with com-
plex medical problems related to life-threatening diseases such as cancer and
COVID19. There is an increased recognition of the need to exploit the great poten-
tials of these technologies for integration into primary digital healthcare systems
with all the benefits for the good of humanity. A key benefit of medical image
analysis via machine and deep learning tools is that it can help healthcare profes-
sionals makemore accurate and consistent diagnoses. By automating the process
of analysing medical images, machine and deep learning algorithms can help re-
duce the risk of human error and improve accuracy and consistency of medical
diagnoses besides easing the shortage of medical experts in most national health
surfaces. It can lead to earlier and more effective treatment of medical conditions
with ultimately improved patient outcomes.

Despite the remarkable achievements and progress achieved by deep learn-
ing models in computer vision tasks, the practical implementation of artificial
intelligence across various domains faces significant barriers concerning the de-
velopment of deep neural networks that possess both robustness and the abil-
ity to generalise effectively beyond the training data [1]. In clinical settings and
medical image diagnostics, scarcity of data samples, black-box style of decision-
making with little/no interpretability, trustworthiness and reliability are major
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concerns compounded by the ease with which DL systems can be accessed and
tampered with, [2]. Even though most of the theoretical mathematical foun-
dations in DL are well-known yet computing a stable model is somewhat im-
practical [1, 3]. Inherited numerical instability is a major issue due to the need
for extremely high computational processing on complex and high-dimensional
datasets. How can we trust AI and prevent it from making erroneous decisions?
Even a small amount of noise or perturbations in data or models parameters can
change the outcomes of the systemmaking DLmodels vulnerable and more sus-
ceptible to such failure.

The inquisitiveness of how DL models learn and what kind of features are
extracted from the training data through the hidden layers unfolded fascinating
research outcomes while unveiling significant challenges. One of the most im-
portant aspects of medical image analysis is the development of algorithms that
can accurately classify, detect and segment medical images. This involves devel-
oping algorithms that can identify and isolate the structures of interest inmedical
images, such as tumours or blood vessels, [4, 5]. This thesis is devoted to inves-
tigate CNN architectural factors and parameters that may underlie the observed
deficiencies in robustness to minor perturbations and the limited generalisation
capacity to previously unseen data, particularly in the context of analysing ul-
trasound tumour scan images. Additionally, the research aims to propose viable
remedies to address these identified issues and enhance the overall performance
and reliability of the CNN-based analysis of tumour scan images.

The next two sections of this chapter are concerned with the problem state-
ments of research conducted in this thesis. Section 1.1, describes the general area
of medical image analysis using deep learning and topological data analysis. In
Section 1.2, we state the main obstacles to the deployment of deep learning for
medical imaging and the inherent problems in computational approaches. In the
rest of the chapter, we state the aim and objectives of the research project, describe
main challenges and existing approaches, our strategy and contributions, and the
overall structure of the thesis.

1.1 Medical image analysis

Medical imaging is an essential part of clinical practices whereby a variety of
imaging instruments are employed to examine the interior of human body parts
hidden by skin and bone structures for a variety of purposes including disease
status assessment of some organs/tissue or monitoring their functions for abnor-
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mality as well as guiding medical intervention and treatment procedures. There
are many different types and modalities of medical imaging that can be used for
different diagnostic purposes of human body, e.g. Magnetic Resonance Imaging
(MRI), Computed Tomography (CT) scans and ultrasound (US) images, [6, 7].
Each of these images contain a wealth of complex information and require highly
experienced expert clinicians to interpret manually, while the scanning equip-
ments are becoming more sophisticated and rely on operators with high skills in
digital technologies.

Medical image analysis has become a research-intensive field of computer vi-
sion that involves the use of advanced computational techniques to extract mean-
ingful disease-relevant information from medical scan images of tissues/organs.
By using computer algorithms to analyse medical images, healthcare profession-
als can speed up the process of their clinical examinations and improve reliabil-
ity of detecting and diagnosing a wide range of medical conditions, including
tumours, infections, and abnormal growths. With the increasing availability of
medical images and the growing demand for more accurate and efficient diag-
nostic methods, medical image analysis has become a critical area of study in
the medical field. It requires a strong understanding of advanced computational
techniques, includingmachine learning, image processing, data analysis, and do-
main experts, in order to effectively analyse and interpret medical images [6].
In addition, medical image analysis has the potential to improve patient care by
enabling the identification of early warning signs of disease, monitoring of treat-
ment effectiveness and support regular screening efforts. But, such potentials rely
heavily on automating the image analysis algorithms. Early research on automat-
ing medical image analysis followed the common pattern recognition approach
by developing handcrafted image texture features analysis leading to noticeable
success. Exploiting recent significantly increased computational power and the
revolutionary advances in the field of AI for medical image analysis, provides
significantly more opportunities to diagnose and treat conditions more quickly,
accurately, and effectively.

In this thesis, we focus on ultrasound images of urinary bladder, liver and
breast. But many of the issues raised during our investigation are by no mean
confined to US imaging modality. Ultrasound images can capture information
about tissues of abdominal organs and measure the blood flow in vessels. De-
spite its usefulness, there are several shortcoming of USI such as quality of the
images, interpreting them, type of machine, air and movement inside body [7].
In general, US images have lower resolution compared to other modalities such
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as CT or MRI due to the fact that they are affected by the frequency of the sound
waves emitted by the transducer prob, with higher frequencies resulting in better
resolution but less insight to the deep layers of the tissues. The resolution can be
affected by factors such as the distance between the transducer and the tissue be-
ing imaged, the presence of artefacts such as speckle noise and lateral shadows as
well as the deployed image processing techniques. Figure 1.1 presents the ultra-
sound samples of benign andmalignant tumours of three different organs such as
breast, liver, and bladder, and the yellow boxes are highlighting the region of in-
terest (RoI) of the tumour. The considerable variation in terms of the RoI size and
shape is a major challenge as resizing the image, in preparation of input to CNN
models, may lead to additional computational instabilities. Mitigating some/all
these issues help achieve more accurate tumour classification needed for early
detection and treatment purposes, but are not the only challenging factor that
influences the success of deploying AL algorithms.

Figure 1.1: Samples of benign (top) and malignant (bottom) tumours from
breast, liver, and bladder Ten-D ultrasound datasets.

1.2 Deep learning challenges

Convolutional neural network models have shown extraordinary success in di-
verse areas of image analysis and classification applications due to their signif-
icant learning capacities leading to uncovering huge amounts of hidden image
feature patterns far beyond handcrafted features based machine learning models

4



or human experts capacity. Moreover, during training, CNN models learn mas-
sive amounts of architectural parameters including the large sets of convolution
filters that are used to extract the learnt image patterns during testing. How-
ever, this success is not without significant drawbacks, especially in critical ap-
plications like medical image analysis. CNN decisions leverage computational
power to extract a large number of learned hidden image feature patterns and
sift through them. The challenge lies in associating these learned patterns with
the causes of medical diseases or abnormalities, making the interpretability of
CNN decisions a formidable task. Despite the careful initialisation of numerous
convolution filters, the learned versions of these parameters frequently change
during the elaborate iterative training process, enabling the model to learn image
feature patterns that align with the training set and yield high performance on
similar data samples. This phenomenon is commonly known as the overfitting
challenge of CNN, which often manifests as a lack of generalisation to unseen
data. The third challenge of CNNmodels that could occur in other image modal-
ities is the lack of robustness against data perturbation and noise which in turn
becomes a source of adversarial attacks. A potential source of this challenge
relates to the instability of the convolution filters during training as a result of
differences between successive training sample patches as a results of variable
level of artefacts and noise. The third challenge faced by CNN models, which
may be encountered in other image modalities, is the lack of robustness against
data perturbation and noise, consequently leading to vulnerabilities to adversar-
ial attacks. This challenge is potentially rooted in the instability of convolution
filters during training, arising fromvariations between successive training sample
patches due to variable levels of artefacts and noise.

This thesis is primarily concerned with the last two operational challenges,
and the first challenge of decision interpretability will be differed to future work.
To understand the targeted challenges and adopt/develop mitigating solutions,
we need to investigate Computer Aided Diagnostics in the clinical setting with
focus on factors that can cause instabilities in deep learning. In Section 1.2.1, we
describe specific scenarios that lead to possible perturbations in ultrasound im-
ages that in turn can cause misdiagnosis. In Section 1.2.2, we describe the general
sources in computational instability of CNN models in relation to the two chal-
lenges forUS images. We close this section by brieflydescribe existing approaches
to deal with these two operational challenges in comparison to our alternative ap-
proach.
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1.2.1 Data perturbation in medical images

Themain concernwithAI is its trustworthiness and reliability of the predicted de-
cisions. Adversarial attacks on images in CNNs refer to the intentional manipula-
tion of images with the goal of causing misclassification by the CNNmodel. This
problemoccurs evenwhenCNNmodels are trainedwith large datasets of natural
images. Even a small amount of noise or perturbations can change the outcome
predictions of the system. A popular example is the image of a panda [8], where
even a small amount of noise can change the classification result from a panda
to another object. In medical and clinical applications, These attacks can have se-
rious implications where incorrect diagnoses could lead to patient harm. Some
examples of adversarial attacks on medical images include adding perturbations
to the input image, modifying the intensity or contrast of the image, or adding
small patterns that are not easily noticeable to the human eye. These attacks can
be carried out through various statistical, machine learning and deep learning
techniques, [9, 10]. For a deeper understanding of the adversarial attacks we re-
fer the reader to [11–15]

Adversarial attacks are not the only source of lack of robustness challenge, but
medical image data perturbation and artefacts aremore inherent to the process of
recording medical images. For instance, in the case of a skin lesion [16], a small
amount of noise from the scanning device, variation in lighting, or inter-personal
variation of capturingmedical images image can undermine the confidence in the
output diagnostic prediction. In our case, introducing a small amount of noise
that is invisible to human visuals to the testing images led to misclassifying the
benign and malignant tumours as shown in Figure 1.2. This is a critical and ma-
jor issue, as a misdiagnosis can have severe consequences for patients and may
become a source of litigation.

In this thesis we assume two natural perturbation scenarios1 in terms of the
US image modality and cancerous tissues. The first assumption is the ultrasound
scan quality can be affected by various factors such as the machine settings, ra-
diologists, the tissue being imaged, the presence of artefacts, and the image pro-
cessing techniques. Therefore, we exploit natural perturbations as means of ad-
versarial scenarios in our empirical investigations to test the robustness of the
CNN models and examine the generalisability against an external dataset.

The second source of concern regarding the presence of perturbations inmedi-
cal images is associatedwith the spatial distribution of tissues and textures, where

1Natural perturbation scenarios, such as Gaussian and speckle noise, are discussed in detail
in Section 3.4.2.
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Figure 1.2: Adversarial example on ultrasound images.

cells exhibit distinct patterns. The tumour takes its shape from the changes in the
cells and deformation in their structure, as illustrated in Figure 1.3. In fact, the im-
pact of heterogeneous nature of noise interference varies across different regions
of an image. In areas with intricate textures, noise can disrupt fine details, poten-
tially obscuring critical information. Whereas, in smoother regions, noise may
manifest as a subtler interference, affecting overall image clarity or introducing
faint background disturbances.

Figure 1.3: Illustration of benign and malignant tumours, [17].

1.2.2 Instability of convolution filters in DL models

The complexity of deep learning models involve a variety of parameters, which
are dominated by the sets of trainable weights and computations deployed at
various stages and layers. Therefore, the source of numerical instability in DL
methods are partially due to the use of a large number of parameters, hyperpa-
rameters, and data that result in floating-point errors and inaccurate results. In
particular, In general, accurate and stable numerical algorithms play a significant
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role to computing a robust and reliable computational models [18].
Training any CNNmodel to learn class-discriminating image feature patterns

is a complex procedure during which training set image batches are iteratively
subjected to the various operations of the convolution layers as well as the fully
connected layers, and post each iteration the backpropagation algorithm is used
to optimise the loss function and achieve optimal learning rates by changing all
the sets of weights. The corresponding changes of convolution filters entries re-
sults in possible changes to their condition numbers to enable learning feature
patterns from the current batch, and this is likely to change again after each epoch
or as a result of the input of a new batch. Despite the careful initialisation of
convolution filters and the incorporation of regularisation techniques, the con-
volution filters in most pretrained CNN models tend to exhibit a high degree
of ill-conditioning2. Retraining such pretrained CNN models on US datasets in
transfer learning mode were shown to exhibit significant instability of filters con-
dition numbers, [19]. The importance of maintaining stability in the condition
numbers of convolution filters arises from the fact that convolving images with
filters possessing distinct condition numbers can lead to the learning of signifi-
cantly different feature patterns. Figure 1.4, below, illustrates how convolving an
image with two filters of markedly different condition numbers produces distinct
convolved images.

Therefore, the instability in the condition numbers of convolution filters re-
sulting from pre-training CNNmodels on US images contributes to the challenge
of overfitting in CNNmodels. It is noteworthy that within the domain ofmachine
learning and deep learning, complications like vanishing or exploding gradients
and suboptimal convergence frequently arise due to issues of ill-conditioning.
To tackle these challenges, commonly employed strategies encompass regulari-
sation, data augmentation, normalisation, re-parameterisation, standardisation,
and the implementation of random dropouts.

Moreover, convolving images with highly ill-conditioned filters can result in
learning significantly different feature patterns form different image patches for
which the original pixels only differ by tiny amounts as a result of the way noise
effect patches that differ in texture contents. This is true for any image modality,
but in the case of US images this could have particular impact on the stability of
CNNmodels used for US image analysis. Figure 1.5, below, illustrates the signif-

2In the context of deep learning, ill-conditioned filters, indicate an exceptional sensitivity to
minor variations in input data. This sensitivity can compromise the stability and reliability of
numerical computations, posing challenges in the training of DL models and potentially leading
to numerical instability, thereby impacting overall robustness.
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𝐵 ∗ 𝑓𝑤𝑒𝑙𝑙

𝑀 ∗ 𝑓𝑖𝑙𝑙𝐵 ∗ 𝑓𝑖𝑙𝑙

𝑀 ∗ 𝑓𝑤𝑒𝑙𝑙

Figure 1.4: Convolving a US image with two filters of different conditioning.

icant difference between texture features in a US image and a noisy version of it,
pre- and post-convolution with two filters one reasonably well-conditioned and
another highly ill-conditioned. Accordingly, the instability in the conditioning of
convolution filters also contributes to a lack of robustness against data perturba-
tion.

1.2.3 Research approaches for addressing challenges in robust-
ness and generalisation

The two operational challenges mentioned above are not exclusive to the appli-
cation of CNNs for the analysis of US images. Furthermore, the performance of
CNNmodels in analysing natural/medical images is not solely dependent on the
stability of the condition numbers of convolution filters. Indeed, the effectiveness
of these CNN models relies on several critical factors, such as the chosen CNN
architecture, the employed optimisation algorithm, dataset size and range of di-
verse examples, as well as parameter and hyperparameter choices. It is essential
to avoid even the slightest oversight or incorrect selection, as they can result in
suboptimal outcomes without providing any indication of the problem. Notably,
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Image X Image 𝑋 + 𝜀

𝑋 ∗ 𝑓𝑤𝑒𝑙𝑙

𝑋 + 𝜀 ∗ 𝑓𝑖𝑙𝑙𝑋 ∗ 𝑓𝑖𝑙𝑙

𝑋 + ε ∗ 𝑓𝑤𝑒𝑙𝑙

Figure 1.5: Image texture post convolution with two different conditioned filters.

the initialisation of weights in both the convolutional layers and fully connected
layers holds significant importance in achieving desirable outcomes during CNN
model training. These limitations highlight the need for continued research and
development in deep learning algorithms formedical imaging in clinical settings.

The overfitting problem in deep learning is expected to be more prevalent
in medical image analysis due to the insufficient number of samples available
for training a well-performing CNN architecture from scratch. Using data aug-
mentation prior retraining pretrained CNN models in transfer learning mode,
that have optimal performance on natural image analysis, have been widely pro-
posed for many applications to overcome model overfitting, but in many cases
only suboptimal performance are reported. The scarcity of reliably cropped and
labelledUS tumour images is somewhat very severe not only in terms of the num-
ber of available training images but also of restricted diversity within the rather
unknown population. In general, pretrained CNN models for medical images
analysis are retrained with a specific dataset collected at a single/multiple clini-
cal centres that practice common scan procedure may still suffer from overfitting
when tested on data obtained in other clinical centres that use different devices,
practice different recording conditions due to interpersonal variation in the level
of expertise of radiologists.
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For other possible causes of the overfitting problem, several methods have
been extensively explored in the literaturewith varying degrees of success. These
methods aim to mitigate complexities and overfitting issues without compro-
mising the inherent accuracy of the model. Notable techniques include random
dropout, regularisation, compression, clustering, filter and/or layer pruning, batch
normalisation, impose strict initialisation strategies for filterweights including or-
thogonality/orthonormality, aswell as the utilisation of diverse and sophisticated
optimisation algorithms [20–22].

Our approach will be focused on addressing the factors contributing to the
high level of instability in convolution filters during the retraining of pretrained
CNN models on US images. We will investigate various solutions aimed at miti-
gating this instability throughout the training process, particularly those that help
control the condition numbers of filters. We search for solutions that have addi-
tionally desired properties about their spatial distributions in their domainsman-
ifested by Topological Data Analysis tool of Persistent Homology. We shall also
investigate the development of customised Slim efficient CNN models that can
be trained with US images from scratch that incorporate these solutions and per-
formwell in terms of generalisation to unseen data as well as being robust against
tolerable levels of data perturbation.

1.3 Aim and Objectives

This PhD research project aims to develop highly efficient convolutional neural
network models that can effectively learn distinctive features from ultrasound or
radiology images, supporting clinical diagnostic decisions. These models should
exhibit robustness against natural data perturbationswithin acceptable limits and
minimise the risk of overfitting when tested on new, unseen data. In a nutshell,
the overall aimof the research investigation is to understand, explain, and identify
potential source of overfitting in CNN models. The main objectives that guided
our research are stated below:

1. Investigate and determine the effects of pretrained CNN models convolu-
tion layers on pixel and textural data contents in US images, and how these
effects vary in relation to data perturbation by noise and the algebraic prop-
erties of convolution filters conditioning. These investigations require good
statistical knowledge of US tumour images pixel/texture contents and how
do they relate to those of natural images. Among other things, the outcome
of these investigations are expected to determine if the convolutions layers
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extraction of feature maps could contribute to potential lack of robustness
and/or overfitting.

2. Investigate, the impact of the pretrained CNN model’s convolution layers
components, post retraining, on the spatial distribution of textural land-
marks in US tumour images prior to feeding into the FCL component for
classification. The outcome from this is expected to help determine the dis-
criminating power of these distributions in the learnt feature maps. For
these investigations, we deploy the TDA tools and image processing meth-
ods for texture feature extraction.

3. Determine the performance of retraining a few state-of-the-art pretrained
CNNmodels onUS breast tumour images in transfer learning (fine-tuning)
mode, and determine the actual extent to which these models suffer from
lack of robustness against tolerable data perturbation andoverfitting in terms
of ability to generalise to unseen data. The experimental works for these in-
vestigations should monitor the stability of the conditioning of pretrained
convolution filters during the iterative retraining procedure.

4. The remaining objectives are concernedwith building on the outcomes from
the previous tasks to explore methods for mitigating the challenges of over-
fitting and lack of robustness in CNNanalysis of US tumour image datasets.
These investigations can benefit from (1) studying the topological profiles
of point clouds of convolution filters and their inverses in relation to their
conditioning instability, and (2) leveraging existing research on controlling
condition numbers of matrices.

1.4 Contributions

In this thesis, we investigate the way DCNNs work. The main demonstrated con-
tributions in this research include:

1. The first contribution of this thesis is analysing ultrasound texture features
in terms of their nature, statistics, and spatial distribution for original (raw)
and convolved images (featuremaps) in general aswell as per convolutional
layer in CNNmodel settings i.e. at the convolution stage, after applying the
activation function, after local response normalisation, and down-sampling
(if any). This investigation is described in Chapters 3 and 4. These results
highlight the importance of knowing the extent towhich a dataset of images
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are distinct from natural images, before adopting CNN models pretrained
with large datasets of natural images, for their analysis.

2. Uncovering the link between the condition number of matrices and persis-
tent homology of filter (matrix) point clouds. To understand the algebraic
properties of CNN filters at initialisation, during and post-training from
scratch and pretrained models through Chapters 4 and 5.

3. Developing a strategy for constructing efficient slimCNN architectures cus-
tomised for analysis of ultrasound tumour scan images, that are capable of
learning discriminating features for reliable diagnostic predictionswhile ro-
bust against tolerable data perturbation and less prone to overfitting effects.
This strategy have been successful in designing customisedCNNmodels for
classifying malignant and benign tumours from ultrasound images based
on the given knowledge in Chapters 3 and 4. In Chapter 5, we showcase
several customised CNNmodels, we designed, and test the models against
various clean and noisy datasets. In addition, we propose innovative tech-
niques to initialise well-conditioned filters (weights).

4. Comprehensive empirical investigation of the instability of filters’ condition
number during the training process and its relation to factors such as the
nature of the training dataset, the initial conditioning of the filters, from
scratch as well as from pretrained models throughout Chapters 4, 5, and 6.

5. Developing a flexible matrix conditioning based singular value decompo-
sition (SVD), filter surgery, as a regularisation technique. We demonstrate
the impact of SVD-Surgery on extensive sets of filter point clouds, including
(1) the distribution of condition numbers, (2) the distribution of eigenval-
ues, and (3) the topological profiles before and after applying the recondi-
tioning.

6. Applying SVD-Surgery and replacement on convolutional layer filters at
initialisation and/ or during training either per epoch or mini-batches for
training CNN models to control well-conditioning and the stability of fil-
ters from scratch and pretrained.

7. Integrating the tools of TDA as a research tool for understanding the perfor-
mance ofDLmodels ofUS image analysis, providing amore comprehensive
understanding of the underlying structure in images featuremaps. The link
between these two fields lies in their complementary strengths. The gained
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knowledge can also contribute to the current active research into the inter-
pretability of CNN models for the analysis of medical image analysis.

1.5 Publications and preprints:

The following publications arose directly from the work on this thesis:

Publications

• J. Ghafuri, H. Du, and S. Jassim, “Impact of Convolutional Layer Filters’
Instability onRobustness ofClassificationDecisions for TumourDiagno-
sis from Ultrasound Images”, 26 UK conference on Medical Image Under-
standing andAnalysis, Cambridge, UK, 2022. https://www.miua2022.com/

• J. Ghafuri, H. Du, and S. Jassim,“Sensitivity and stability of pretrained
CNN filters”. In Multimodal Image Exploitation and Learning 2021 (Vol.
11734, p. 117340B). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2589521

• J. Ghafuri, H. Du, and S. Jassim, “Topological aspects of CNN convolu-
tion layers for medical image analysis”, ECCV 2020, Women in Computer
Vision Workshop.
https://sites.google.com/view/wicvworkshop-eccv2020/home

• J. Ghafuri, H. Du, and S. Jassim, “Topological aspects of CNN convolution
layers for medical image analysis”. In Mobile Multimedia/Image Process-
ing, Security, and Applications 2020 (Vol. 11399, p. 113990X). International
Society for Optics and Photonics. https://doi.org/10.1117/12.2567476

Preprints

• J. Ghafuri, and S. Jassim, “Singular value decomposition based matrix
surgery”, arXiv:2302.11446. https://arxiv.org/abs/2302.11446

• J. Ghafuri and S. Jassim, "Filter surgery and replacement on the state-of-the-
art DCNN for small datasets", (under preparation)

Technical report

J. Ghafuri, H. Du, and S. Jassim, “Extremely slim robust CNN for ultrasound
tumour scan image classification”, Feb 2022. Reported to Ten-D AIMedical Tech-
nologies Ltd.
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1.6 Thesis Outline

The rest of the thesis is organised as follow:

• Chapter 2: Background, covers preliminaries, general concepts, and math-
ematical background of Convolutional Neural Networks (CNN) and Topo-
logical Data analysis (TDA) that are essential for the rest of the chapters.

• Chapter 3: Effects of Convolutions on US Images, we show our investi-
gation on convolutions/kernels/filters on ultrasound images bladder, liver,
and breast scans in terms of the amount of spatial and textural information
content and their distribution, the spatial distribution of texture features us-
ing TDA, and the algebraic properties of filters and their impact on feature
maps through the TDA and spectral analysis lenses.

• Chapter 4: CNN Models for US Image Analysis, we present the perfor-
mance of various state-of-the- art CNNs in transfer learning mode for clas-
sifying malignant and benign lesions from ultrasound scans and their abil-
ity to the tolerable data perturbation and generalisation to unseen data. We
then investigate the convolutional layers to understand the impact of pre-
trainedCLfilters in the CNN settings on ultrasound image information con-
tent aswell as on the algebraic and topological properties of the convolution
filters pre and post training, based on [19]. In addition, we explore the pos-
sibility to reduce the complexity of CNNmodels and keeping the relatively
well-conditioned CL filters via filter pruning.

• Chapter 5: Towards Slim, Robust and Generalisable CNNs for US Scans,
based on the work of the knowledge gained in Chapters 3 and 4, we present
our customised CNN models in terms of specific requirements such as the
number of convolutional layers, the number of filters, and weight initialisa-
tion techniques. We introduce two new approaches to initialise the wights
guided by their condition number andPH spatial distribution. We showour
investigation and findings on benchmark datasets such as Digits, MNIST,
and CIFAR-10 as well as breast ultrasound scan datasets, based on [23,24].
In addition, we monitor the instability of the condition numbers during the
training, and test CNNmodels in terms of their robustness against tolerable
data perturbations and ability to generalise to unseen data.

• Chapter 6: Stabilising Filters Conditioning by Matrix Surgery, we intro-
duce an innovative approach based on Singular ValueDecomposition called

15



SVDmatrix surgery to control and/or reduce the condition number of con-
volutional filters at initialisation/pretrained as well as during the training
process. We then present our findings on the effect of the SVD-Surgery in
large filter sets in terms of their distribution of condition numbers, distri-
bution of singular values, distribution of eigenvalues, and their topological
profiles, based on [25]. We showcase the application of matrix surgery in
the context of CNNs before the training as well as throughout the training
process.

• Chapter 7: Conclusion and FutureDirections, we conclude this thesis, pro-
vide a summery of key findings, and reporting on possible directions of
follow-up research.
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Chapter 2

Background

This thesis objectives involve a variety of different mathematical and computa-
tional concepts that are fundamental to different areas of deep learning, topolog-
ical data analysis, numerical linear algebra, and spectral analysis that are needed
to deal with the peculiarity of ultrasound image analysis in comparison to other
image modalities in relation nature of textural/structural content distribution.

We introduce the deep learning concepts in computer vision for medical im-
age classification using convolutional neural networks in Section 2.1. In Section
2.2, we describe the algebraic topology preliminaries and its application in data
analysis along with point cloud settings for images and convolutional layer fil-
ters. We then discuss aspects of the spectral analysis of matrices in Section 2.3.
The depth to which these sections delve into their topics is by no mean exten-
sive, but sufficient for readers of diverse level of knowledge in each of these area
to follow the rest of the thesis with reasonable ease. Readers familiar with the
background to any/all these topics may skip parts/all this chapter.

2.1 Deep learning for computer vision

Traditionally, computer vision tasks relied on quantifying structural measure-
ments of objects of interest in images and/or extracting texture features, that are
deemed relevant to the domain/requirements investigated tasks, to design com-
puter aided tool. These approaches eventually developed intowhat is referred to,
in the literature, by handcrafted features basedMachine Learning (ML) thatwork
by following traditional procedures adopted in pattern recognition and forensic
analysis. All the handcrafted schemes involve the choice of a classifier applied on
the extracted feature. Significant progress was made in a variety of computer vi-
sion tasks by automating the components of such ML algorithms. However, suc-
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cess relied on several factors including the choice of textures assumed to be char-
acterising the sought after image analysis task and invariant to certain changes in
image recording conditions. It is also important to note that, for the most part,
classifiers make decisions according to the rather stringent mathematical concept
of Equivalent Classes, although attempts are often made to introduce some flex-
ibility or associate a confidence level with the predicted decisions.

Neural networks emerged at the early stages of computer science as a strong
and reliable contender as a classifier in such tasks. Their success and capabili-
ties, however, only emerged as a result of incorporating backpropagation more
recently. Together, with the success of the Neocognitron, in the early 1980s by
K Fukushima [26], energised research in AI with focus on mimicking the way
the human brain learn and work. In fact, the structure of the Neocognitron was
inspired by that of the visual nervous system of vertebrates.

Towards the end of 1980s, a period of pioneering work began with the work
of Yann LeCun [27], who was the first to coin the term Convolutional neural net-
work, that culminated before the turn of the 21st century in developing LeNet
as the first CNN model used for character recognition within a real-time docu-
ment recognition system. Themodel exploit the advantages of trainingmultilayer
Neural Networks with backpropagation algorithm for automatic gradient decent
learning. Since then a series of CNNmodels developed for a variety of computer
vision applications, including AlexNet, and GoogleNet.

The idea behind building blocks of convolutional neural networks is inspired
by the hierarchical organisation of the visual cortex in the human brain [32]. Hy-
pothetically, CNNs mimic the brain’s processing of visual information through
multiple layers, including convolutional, down-sampling, and fully connected
layers. The convolutional layer performs operations similar to receptive fields
in the visual cortex, highlighting specific patterns, [28]. The aim is to capture
key principles of visual processing for efficient pattern recognition in tasks such
as image classification and object detection. Figure 2.1 illustrates the levels of
identifying features recognised by human visual cortex in four stages starting by
detecting the edges and lines, shapes, objects, and faces i.e. starting by broadly
looking at the object then narrowing down the focus on details. Considering the
work of typical CNN models of image analysis, one notice that the filters in the
early convolution layers are typically small and designed to detect simple pat-
terns such as edges, corners, and blobs. But the filters in deeper layers become
more complexwith ability to detect higher-level features such as objects structure
and texture.
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Figure 2.1: Illustration of human visual path, [28]

Though CNNs are becoming staggeringly powerful and successfully solving
extremely complex computer vision challenges, they are still considered to be
simplified models and far from acting as exact replicas of the brain. In the rest of
this section, we introduce the main concepts of CNN architectures in Subsection
2.1.1 followed by detailed description of AlexNet in Subsection 2.1.2 as one of the
typical state-of-the-art models. Subsection 2.1.3 describe the common training
procedure. We close this section by discussing relevance to using CNN to this
thesis objectives.

2.1.1 Convolutional neural network

Convolutional neural networks are designed to automatically learn features from
images in an end-to-end process. It consists of twomajor parts namely feature ex-
traction/learning and classification. The feature extraction part typically consists
of multiple convolutional layers (CL) that may be complimented with pooling
layers, while the classification part includes Fully Connected layers (FCL), see
Figure 2.2 below.

Benign

Malignant

Input layer Output layer

Hidden layers

Feature extraction Classification

Figure 2.2: Convolutional neural network structure.
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The convolutional layers extract features from input images using sets ofmulti-
channel convolution filters (also called Kernels),that are initialised prior to train-
ing but updated during the training. The filters compute features from image
patches, all over the image, formed weighted averaging patch pixels using the
entries of the filter. The convolved images are often normalised and passed on to
an activation function as a mean of endowing non-linearity and finally in many
cases outputs are passed onto a pool Layer . Activation functions include Rec-
tified Linear Unit (ReLU), sigmoid, and tanh, (for an extended activation func-
tion list see [21]). Pooling layers, subsamples the activated feature maps prior to
passing to the next layer. The most widely used pooling operations include max-
pooling and average-pooling. Max-pooling replaces data in windows of size 2×2
(or 3×3) with their maximum value.

The FCL connect neurons in one layer to neurons in the subsequent layer.
These layers aggregate information from previous layers and perform classifi-
cation or regression tasks. The weights of the FCL and convolution filters are
learnt through the training process, the goal being to minimise the difference be-
tween the predicted output and the actual output (label). This is done by using a
loss function such as cross-entropy loss. All weights are updated during the back-
propagation step using an optimiser such as stochastic gradient descent (SGD) to
minimise the loss. These layers are either followed by random dropout or trans-
formation functions such as softmax. The FCL component could be used for a
variety of tasks such as image classification, object detection, and image segmen-
tation.

CNN feature learning layers serve dual purposes reducing spatial resolution
of input data while deepening the learnt hidden pattern in features by produc-
ing multiple feature maps to be passed on to the next layer or to the FCL com-
ponent. As a consequence of the multiple convolution layers, input images are
represented by several low-dimensional maps each encapsulating different hid-
den patterns of features that are difficult to align with handcraft features. This
provides significant advantages for use of CNN in computer vision tasks over
handcrafted features. However, this comes at the expense of complexity of inter-
pretation of CNN predictions.

Besides the plethora of image operations applied on input images, several pa-
rameters and hyperparameters are selected and deploy prior to training. The hy-
perparameters that characterise eachCNNarchitecture and its complexity consist
of:

1. Depth -Number of convolutional layers and fully connected layers involving
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a large proportion of learnable parameters and affects the capacity to learn
complex features.

2. Width - Number of filters (with multiple channels) of chosen size and over-
lapping and which determines the number of features or patterns that the
CNN can learn. Filters size determines the receptive field of the CNN i.e.
smaller filters capture local features, while larger filters capturemore global
features.

3. Pooling window size and operation that affects the spatial resolution and
invariance of the model’s representations.

Factors determining the expected application dependent outcome of CNNmod-
els include:

• Learning rate: controls the step size of the optimisation algorithm during
training.

• Batch size and the number of epochs: determines the number of samples
processed before updating the model’s parameters, and how many times
the entire training dataset is passed through the network. The right balance
is application dependent, otherwise, the model might underfit or overfit to
the training dataset.

• Regularisation: appropriate regularisation technique with its correspond-
ing hyperparameters need to be selected based on the complexity of the task
to reduce overfitting. The most widely used methods are L1 or L2 regulari-
sation, dropout, or batch normalisation.

• Weight and bias initialisation techniques as well as the type of activation
function.

These criteria are usually user selected based on the characteristics of the dataset,
computational resources, and specific task requirements. Experimentation and
iterative tuning are often necessary to find the optimal combination of parameters
and hyperparameters for a given CNN model.

2.1.2 AlexNet architecture

AlexNet is the most successful deep convolutional neural network architecture
representing a significant milestone leap after LeNet1, and was developed by

1LeNet: the first model that successfully classified handwritten digits using CNNs, [27].
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Krizhevsky et. al. in 2012, [29]. It was designed to compete in the ImageNet
Large Scale Visual Recognition Challenge, which involved classifying images into
one of 1000 object categories. The AlexNet architecture achieved a significant im-
provement in image classification performance, winning the competition with a
top-5 error rate of 15.3%. The insights gained from AlexNet have also informed
the development of other deep learning applications, such as natural language
processing and reinforcement learning. The success of AlexNet has opened the
door for the development of even more complex and powerful deep learning ar-
chitectures, which continue to push the boundaries of artificial intelligence.

AlexNet was one of the first CNN architectures to incorporate several impor-
tant features that are now commonly used in deep learning, including the use of
ReLU activation functions, dropout regularisation, and data augmentation tech-
niques. ReLU activation functions are used to introduce non-linearity into the
network, which allows the model to learn more complex features. Dropout reg-
ularisation is used to prevent overfitting of the model by randomly dropping out
neurons during training. Data augmentation techniques are used to artificially
increase the size of the training dataset by applying random transformations to
the input images to improve the generalisation performance of the model.

AlexNet consists of five convolutional layers and three fully connected layers
as shown in 2.3. The first layer performs local contrast normalisation to normalise
the input images and reduce the effects of lighting variations. The next five layers
are convolutional layers, each followed by a max pooling layer, that reduces the
dimensionality of the feature maps. Filter sizes for the first two convolutional
layers are 11×11 and 5×5 and for other layers are 3×3. Bias values at first and
third layers are initialised with zero and one for the rest. The fully connected
layers perform the classification task.

Figure 2.3: AlexNet architecture, [29].
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2.1.3 Training and testing settings

The training setting of convolutional neural networks is far from a straight for-
ward process as it depends on several factors, as mentioned in Subsection 2.1.1.
There are several important training settings and/or rules to follow for effective
and successful training based on theories, best practices, and empirical observa-
tions as follows:

• Image pre-processing and augmentation: Suitable pre-process technique of
the input data before training depending on the imagemodalities including
normalisation.

• Training-Validation-TestingCNNs: The application relevant dataset of avail-
able image samples is split into three subsets: a training set, a validation set,
and a test set. The training set is used to update the model parameters, the
validation set is used for hyperparameter tuning andmodel selection, while
the test set is used for final evaluation. The test set should be kept separate
and only used once to avoid biasing the evaluation.

• Early stopping criteria: Amechanism used to halt training to prevent over-
fitting, It is based on monitoring the performance on the validation set dur-
ing training, and used if performance starts to deteriorate before reaching
the designated number of epochs.

The number of layers in a Convolutional Neural Network (CNN) can have a
significant impact on its performance in terms of accuracy, efficiency, and robust-
ness. Deeper networks tend to have more capacity to learn complex features and
patterns in the data, particularly with skip connections circumnavigate singular-
ity problems to retain information from earlier layers, which can lead to improved
accuracy on the training data and generalisation, [30, 31]. However, deeper net-
works can also be more prone to overfitting, especially when the dataset is small,
leading to poor generalisation performance on new data. In addition, deeper
networks may require more computational resources to train and run, i.e. less
efficient [32]. On the other hand, shallower networks may have less capacity to
learn complex patterns, yielding lower accuracy on the training data. However,
shallower networks may generalise better to unseen data.

A trade-off between accuracy, robustness and efficiency, [33], is often based on
employing techniques such as skip connections, batch normalisation, and resid-
ual connections to facilitate the flow of information across different layers and
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reduce the vanishing gradient problem and avoid overfitting, [30, 31]. In addi-
tion, model compression techniques such as pruning, quantisation, and low-rank
factorisation [34–36] can be used to reduce the number of parameters and op-
erations in the network, while maintaining or improving its performance. The
number of convolutional layers in a CNN can impact the representational power
of the network, which refers to the ability of the network to learn complex fea-
tures and patterns in the data, [37]. A deeper network with more convolutional
layers can have more capacity to learn complex representations, but it can also be
more prone to overfitting.

The need of large datasets is mainly considered that the more training sam-
ples would make the CNN models recognise the shapes in the same way when
humans are exposed to an unlimited amount of data and start recognising ob-
jects at early stages of life. Understanding and handling natural images is not
as difficult as medical imaging as it requires the specialists and years of training
and dedication in the domain. Though, collecting and processing medical data
to train CNN models is a challenging task due to the accessibility, quality, prior
medical history, the nature of the problem such as the difficulty of identifying the
internal abnormalities when occur at early stages, lack of data inclusiveness such
age, ethnicity, gender, geographical area.

One of the outstanding properties on CNNmodels is its transferability to im-
age tasks/problems different from the original purpose of their development.
Transfer learning modes (or fine-tuning) of deep learning models is based on
retraining a pretrained CNNmodel on a small size dataset of images that differs
in modality and/or in content from the original training dataset. The aim is to
adapt an existing pretrained model to enable using it for the analysis of the new
dataset. The pretrained parameters of existing CNNmodels, usually determined
by training on large datasets of natural images, are used as initialising parame-
ters for retraining on the new task. In fact, it has become a common approach for
developing CNNmodels for the analysis of ultrasound or other radiology image
datasets.

2.1.4 Relevance of CNN to thesis objectives

Having reviewed various aspects of the recent advances in theory and practices
of CNN models for image analysis and computer vision applications, we realise
the challenges in our work include scarcity of US tumour scan images and the
differences between US image tumour-relevant features and those learnt by state-
of-the-art CNN models pretrained on natural images. Hence, the starting point
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in investigating the use of deep learning for analysis of US tumour images, must
rely on the concept of transfer learning2. In this respect, we realise that there are
several state-of-the-art (SOTA) CNN architectures that have achieved excellent
performance on a variety of computer vision tasks. These architectures include,
but are not limited to, AlexNet [29], VGGNet [38], Residual Network [39], the
Inception architecture [37], EfficientNet [40], DenseNet [41], . . . , etc. Beside the
manual design of CNN architectures, the authors in [42–44] developed Efficient
Neural Architecture Search (ENAS) to automatically design CNN architecture
for natural images and for breast ultrasound image in [45].

In order to conduct the research project of this thesis, we need to gain a reason-
ably comprehensive investigations into the main factors that contribute to learn-
ing by a chosen state-of-the-art pretrained CNN model during retraining on US
datasets. It is crucial to conduct a thorough analysis of the individual convolu-
tional layers within the network and this encompasses a range of elements within
the layer, including convolutionfilters/kernels, convolved images or featuremaps,
the presence or absence of bias, the impact of the activation function, normalisa-
tion, and down-sampling. In particular, our analysis of the convolution filters
must link their mathematical properties to their effect during the training. Our
focus is on the robustness and generalisation properties of the CNNs for classify-
ing malignant and benign tumours from ultrasound images rather than limiting
ourself to gaining the optimal classification performance on the provided dataset.

2.2 Topological Data Analysis

Underlying any data and image analysis task is a set of data/image samples from
a larger population and a notion of similarity considered as a distance function.
The spatial distribution of such a dataset, in its domain, endows it with a notion
of a shape (topological space) the neighbourhood system of which is determined
by the similaritymetric. To understand/analyse certain behaviour and properties
of data in terms of their topological shape, it is essential to determine the spatial
distribution data records and the topological invariants of their shapes, [46]. Tra-
ditional data clustering algorithms builds on the knowledge of data shape and
similarity/distance function to identify and study the properties of significant

2Transfer learning in deep learning repurposes pretrainedmodels, leveraging knowledge from
one task to enhance performance on related tasks with limited data. Strategies include feature ex-
traction and fine-tuning. It is beneficial in scenarioswhere trainingmodels from scratch is compu-
tationally expensive or lacks sufficient labeled data, offering efficiency and improved performance
in various applications, such as computer vision and natural language processing.
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subsets. Topological data analysis (TDA) is an innovative paradigm for analy-
sis of structured/unstructured data, which goes well beyond basic clustering, by
associating with the data records a nested sequence of shapes in terms of simi-
larity/proximity information. Unlike TDA, clustering algorithms concentrate on
identifying dataset connected components but do not go beyond basic properties
of clusters size and density without considering the components full topological
profile.

TDA emerged at the turn of this century as natural advancements in the fields
of computational geometry and topology. It builds on exploits the tools and con-
cepts of algebraic topology that were rigorously formulated and developed over
a long period of time since the middle of the 19th century. Algebraic topology
emerged as a mean of characterising topological spaces in terms of different con-
nectivity parameters using tools of linear algebra and group theory. These pa-
rameters are referred to as topological invariants, due to being invariant under
continuous deformation of the topology, and form the terms of what is known
as the Euler Characteristics of the space. TDA is suitable for analysis of high di-
mensional and noisy datasets, and is able to uncover shape/object characteristics
that may change by intended/unintended distortions.

The most common relevant form of topological spaces are polyhedral shapes
that are constructed by gluing together basic building blocks, ofwell-known shapes
such as simplices/cells/spheres, according to certain conditions, see Figure 2.4.

.

.
0-simplex 2-simplex 3-simplex1-simplex

𝑡0 𝑡𝑖 𝑡𝑗 𝑡𝑘 

Figure 2.4: Simplices of different dimensions.

TDA approach to the analysis of datasets (referred to as point clouds) is based
on gradually constructing (via triangulation) nested sequence of simplicial com-
plexes by connecting pairs of data points according to an increasing distance/sim-
ilarity sequence of thresholds. This procedure determines the topological profile
of the data in terms of the well-researched algebraic topology tool of Homol-
ogy for each of the constructed nested shapes from which one can extract persis-
tency information. Persistent homology is an algebraically computable features
of topological invariants of shapes/functions at multiple distances or similarity
resolutions.

In this section, we briefly introduce homology preliminaries in Subsection
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2.2.1 then persistent homology in Subsection 2.2.2. We then describe the point
cloud settings to compute PH in Subsection 2.2.3. In Subsection 2.2.4, we briefly
describe the Mapper algorithm to visualise high dimensional data in low dimen-
sions.

2.2.1 Homology preliminaries

Homology is a functor from the category of topological spaces into that of ex-
act sequences of Abelian groups. It helps turning difficult analytical problems
in topology into algebraic problems on Abelian groups that more susceptible to
numerical solution by computers. For topological space X , this functor defines
an exact sequence {Hk(X)} of finitely generated abelian groups and for any con-
tinuous function f : X → Y the functor associates a sequence Hk(f) of homo-
morphism:

Hk(f) : Hk(X) → Hk(Y )

satisfying some conditions onhomomorphism composition. The rank of the abelian
groupHk(X), i.e. the number of its generators, is known as the k-th Betti counting
the number of k-dimensional holes (connectivity descriptors) in X .

This functor is well understood and is easier to compute for simplicial com-
plexes, and is referred to singular/simplicial homology, which is suitable for
use in TDA analysis of point clouds, [47–49]. For simplicity, we adopt the Vi-
etoris–Rips approach to constructing simplicial complex from point clouds in-
stead of alpha-complexes, [50] and Delaunay-Čech complexes, [51]. Below is a
formal definition and illustration of the Vietoris–Rips complex for point clouds,
with an example shown in Figure 2.5.
Definition (Vietoris-Rips complex): Given a collection of points X = {xα} in
the Euclidean space En. For each distance threshold t, let St be the Rips simpli-
cial complex whose k-simplices correspond to unordered (k+1)-tuples of points
{xα}k0 in X that are pairwise within distance ≤ 2ϵ of each other.

For a point cloud X , and let St be the Rips simplicial complex constructed at
distance threshold t. For each integer k ≥ 0, the k-th chain complex Ck(St) is
defined as the finite dimensional vector space, over the Boolean field Z2, freely
generated by the k-simplices σ = [v0, v1, . . . , vk] in St. Vectors in Ck (St), called
k-chains, are linear combinations of k-simplices with binary coefficients, i.e.∑

aiσi where ai ∈ {0, 1} and dim ai = k
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Figure 2.5: The construction of the Ribs simplicial complex of a point cloud.

For each integer k ≥ 0, define the boundary operator

∂k : Ck(St) → Ck−1(St)

∂k(σ = [v0, v1, . . . , vk]) =
k∑

i=0

[v0, . . . , v̂i, . . . , vk] (2.1)

where the ‘hat’ symbolˆover vi indicates that the vertex together with all sub-
simplices of σ that intersect at vi are removed. In other words, boundary operator
∂k maps each k-simplex into its bounding chain. For each k, one can establish the
composition relation ∂k ◦ ∂k+1 = 0. In homology terms, this means that we have
an exact sequence of chain complexes:

· · · → Ck+1(St)
∂k+1−−→ Ck(St)

∂k−→ Ck−1(St)
∂k−1−−→ . . .

∂2−→ C1(St)
∂1−→ C0(St) (2.2)

Clearly, image of ∂k+1 is a subspace of kernel of ∂k, and hence we define the k-th
homology group of St by the quotient vector space:

Hk(St) = ker(∂k)/im(∂k+1) (2.3)

This means that Hk(St) quantifies the number of k-dimensional subspaces of St

that have no boundary in it and do not bound any (k+ 1)-dimensional subspace
in St. Note that, the length of the above chain complex sequence is ≤ dim(St).
The nth dimensional Betti number βk is

βk = dim(Hk(St)) = dim(ker ∂k)− dim(im ∂k+1) (2.4)

It is worth noting that the Betti numbers of low dimensions are referred to as
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holes: β0 = # connected component, β0 = # 1-dim holes, and β2 = # voids (2-dim
holes). In Figure 2.6, we display manifolds of dimensions 0, 1 and 2 with their
Betti numbers profile.

𝛽0 = 1 𝛽1 = 0 𝛽0 =1 𝛽1 =1 𝛽0 = 1 𝛽1 = 0 𝛽2 = 1 𝛽0 = 1 𝛽1 = 2 𝛽2 = 1𝛽2 = 0𝛽2 = 0

Figure 2.6: Betti numbers Profile of manifolds of different dimensions.

2.2.2 Persistent homology and filtration

Persistent homology (PH) is a computational tool of TDA that encapsulates the
spatial distribution of point clouds of data records, sampled from metric spaces,
by recording the topological features of the nested triangulated shapes, described
above, by connecting pairs of data points according to an increasing distance/sim-
ilarity sequence of thresholds. The main idea behind persistent homology is to
capture the topological features (connected components, loops, voids, etc) of
the shape of a point cloud at multiple scales, rather than at a single scale anal-
ysis, [46–49]. It extends the concept of singular homology features by consider-
ing the nested sequence of Ribs-complexes formed for an increasing sequence of
distance thresholds, called a filtration of the final simplicial complex of the point
cloud. The persistent homology of a point cloud is then defined as the sequence
of topological invariants (such as connected components, loops, and voids) of the
nested Ribs-simplicial complexes formed over the filtration.

In general, a filtration of any simplicial complex X is a sequence {Xi} of nested
simplicial complexes each embedded as a subcomplex of the next one and together they
cover X , i.e.

∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xend = X (2.5)

For each i, the PH tool traces the evolution of the i-dim homology groups Betti
numbers over the subsequent nested Ribs-complexes in the filtration. It tracks
the birth (forming) and death (merging) of the topological features as the fil-
tration progresses and records its persistency as the length of its life span over
the filtration. For each topological dimension, it is customary to visualise the
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corresponding persistency information by a stack of barcodes, called the Persis-
tent Barcode (PB), or a multiset of pints in the first quadrant of the real plane R2

on/above the diagonal line y = x, called the Persistence Diagram (PD), of the
point Cloud, [47,48]. The length of each barcode in PB(X) equals (death−birth)
of the corresponding topological feature, while each point in PD(X) represents
the pair (x = birth,y = death) of a topological feature. Both PB and PD provide
ways of comparing the topological profile of different point clouds.

2.2.2.1 Persistent homology of a torus with/without noise

To illustrate the visual representations of PH representation and the computing
process, we first create a point cloud of 1500 points sampled randomly on the
surface of the Torus:

T = {(x, y, z) ∈ R3 : (
√
x2 + y2 − a)2 + z2 = b2} (2.6)

then we add noise to approximately 15% of the sampled points on the torus. Fig-
ure 2.7, below, displays both point cloud.

𝟄1 ≤ 0.1 𝟄2 ≤ 0.2 𝟄3 ≤ 0.3 𝟄4 ≤ 0.4 𝟄5 ≤ 0.6

𝑇𝑜𝑟𝑢𝑠 𝑁𝑜𝑖𝑠𝑦 𝑡𝑜𝑟𝑢𝑠

Figure 2.7: Clean and noisy point clouds on tori.

Steps of the Rips-complex construction from the above point clouds on tori is
shown in Figure 2.8, below, then connecting nearby points with distance thresh-
olds ϵi = 0.1, 0.2, . . . , 0.6.

𝟄1 ≤ 0.1 𝟄2 ≤ 0.2 𝟄3 ≤ 0.3 𝟄4 ≤ 0.4 𝟄5 ≤ 0.6

𝑇𝑜𝑟𝑢𝑠 𝑁𝑜𝑖𝑠𝑦 𝑡𝑜𝑟𝑢𝑠

Figure 2.8: Steps of Rips-complex of point cloud on tori.

Figures 2.9 shows the topological representation PBs of the point clouds for
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both dimensions 0 and 1. In 0-dim, little/no effect can be visible between the two
PBs. In 1-dim, the two long persisting barcodes represent the two empty discs
(holes) whose cartesian product generates the torus. The persistency lengths of
these two holes depend on the radii (a − b, b) of the generating circles. In this
case, a = 2b and the two longer persistent holes (dim 1) are nearly equal. Noisy
sampling will mostly have visible effects on the shorter barcodes by slightly in-
creasing their persistent lengths further.

H0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H1

(a) Torus

H0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H1

(b) Noisy torus

Figure 2.9: PBs, in H0 and H1, for the clean (a) and the noisy (b) point clouds.

Figures 2.10, below, shows the topological representation PDs of both point
clouds for both dimensions 0 and 1. There are visible differences between the
PDs in both dimensions, as a result of the noise, indicating effects of noise on
topological profiles of point clouds. Specifically, the presence of noise appears to
shorten the time spans of topological features such as holes while simultaneously
impeding the process of merging connected components.
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Figure 2.10: Topological representation of a torus using PD in H0 and H1.
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2.2.3 Setting point clouds for PH computation

Setting the point clouds is essential to compute their topological representations,
so far assumed the points are vectors in Rn. In this thesis, we deal with different
datasets of matrices representing convolution filters and their inverses. We also
deal with datasets of images mostly, but not entirely, US. Point clouds of graphs
and networks are another type of data structures, for which PH computation are
relevant to Deep Learning and AI research.

2.2.3.1 Point clouds setting from datasets of matrices

Let A be a set of randomly generated real n × n matrices based on a Gaussian
distribution, where each entry A in defines a point in Rn×n. To maintain uni-
formity, we normalise all matrices A/∥A∥ to reside on the (N − 1)-dimensional
spheres, denoted as SN−1, where N = n× n. We construct a second point cloud,
B, comprising the inverse matrices normalised as A−1/∥A−1∥ ∈ SN−1. For each
of these point clouds, we compute the pairwise distance matrix to construct the
Vietoris–Rips simplicial complex. Throughout this thesis, our computationswere
carried out using the L2-norm , and we explore various representations of their
topological profiles.

2.2.3.2 A cubical set approach for image analysis

This thesis being concernedwith image analysis, we have to dealwith considering
their representation that provides natural input to PH computation procedures.
Although, in computers, images are represented bymatrices of their pixel values,
the above setting is of any interest. On the other hand, vector representation of
images by flattening their rows or columns are occasionally used to compute PH
of such point clouds. But this approach ignores local image features.

The sublevel set of a function, defined on a space, is a concept used in persis-
tent homology [49, 52, 53]. A grayscale image can be abstractly represented as a
real-valued function f : R2 → R, where each point in the 2D plane corresponds
to a pixel, and the function value at that point signifies the pixel’s intensity or
brightness. The sublevel set pertaining to a given threshold t is defined as the set
of all points in the image for which the function values are less than or equal to
t. Formally, this sublevel set, denoted as St, is expressed as:

St = {(x, y) ∈ R2 : f(x, y) ≤ t} (2.7)
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In the context of image analysis, the sublevel set represents the regions of the
image that are darker than or equal to the threshold value. Considering the image
as a 3D space, St represents the subset of the image bounded above by the inter-
section of the image with the z = t plane. An increasing sequence of thresholds
{0 = t0 < t1 < t2 < . . . < tk = 256} defines a filtration of the image spaces, are
used to define PH representation of images. By varying the threshold value, we
obtain a hierarchy of sublevel sets, each capturing different levels of topological
profiles of the image. In Chapter 3, we shall describe, the LBP texture Landmark
based PH of images developed at the University of Buckingham, [54]. This ap-
proach provides multiple topological representations of image local information
defined in terms of different sets of landmarks.

2.2.4 Mapper algorithm

Mapper algorithm is a standard algorithm and software for implementing and
visualising TDA introduced by Singh et al. [55] in 2007. Mapper differs from
the tools of visualising PH information provided by persistence diagrams or bar-
codes. It is used to summarise vital information about datasets in high-dimensions,
by partially clustering and visualising the outcome in lowdimension usingmulti-
dimensional scaling (MDS), using different types of lenses. In other words, it is
a TDA data visualisation tool that reflects similarity, while reducing dimension-
ality.

Themost highlighted characteristics ofMapper, include being coordinate free,
invariant under “small” deformations, and its compressed representations of shapes.
The overall aim of this algorithm was to have a tool that can be used for simplifi-
cation, qualitative analysis, and visualise high dimensional data sets.

The main inputs of Mapper algorithm are point cloud samples, filter func-
tions (also known as lenses), covering of a metric space, clustering algorithm,
and other parameters. While the output of Mapper tool is simplicial complex
(or graph) that represents the topological aspects of the point cloud. There are
many different parameter, hyper-parameter, distance function, clustering algo-
rithm and lenses in Mapper algorithm to be chosen, [56].

Given a high dimensional point cloud X , the steps behind Mapper algorithm
[55–57] to construct the graphical representation of X are as follows:

• Filter function f : also known as lens to map X to a lower dimension i.e. f :

X → R, d ≥ 1.
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• Cover U : to construct a cover (Ui)i∈I of the projected space typically in the
form of a set of overlapping intervals which are also knows as bins.

• Clustering algorithm: to cluster the points for each intervalUi in the preimage
f−1(Ui) into sets {V i

j }kj=1, where Vj is the number of vertices in each bin.

• Construct the graph: cluster sets are connected if there are some points in
common.

There aremany choices to select the lens, covers, and clustering algorithmas these
could be problem/data dependent. However, the common choices for the lenses
are projection onto one or two dimensions via one method or combined together
such as Principal Component Analysis (PCA), isolation forest, L2-norm, see [55,
58] for further detail. Figure 2.11 illustrates a sampled data from a noisy circle in
R2, with 5 intervals for each set with length 1. There are common points shared
between the clusters (nodes) due to the 20% overlapping, therefore the nearby
nodes are connected.

Figure 2.11: Graphical illustration of point cloud using Mapper algorithm, [55].

2.3 Spectral analysis of matrices

CNNmodels use large numbers of convolution filters that aremostly initialised as
RandomGaussian matrices of relatively small sizes, but their entries are updated
frequently during training in order to fit the model performance to that of the
training dataset. In such situation, it is essential to maintain certain algebraic as
well as properties that avoid them getting them nearer to be non-invertible. The
condition number3 of a matrix is a measure of how sensitive it is to changes in
its input, and CNN models with high conditioning convolution filters are more
susceptible to instabilities during training. In particular, highly ill-conditioned
filters can lead to vanishing or exploding gradients, which can cause the model
to converge slowly or not at all.

3The condition number of a matrix was first introduced by A. Turing in [59].
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The condition number κ(A) of a square n× nmatrix A, considered as a linear
transformation Rn×n −→ R, measures the sensitivity of computing its action to
perturbations to input data in their domains of action and round-off errors. For
an arbitrary vector norm ∥·∥, it is defined as sup∥Ax∥/∥x∥ over the set of nonzero
x. It depends on how much the calculation of its inverse suffers from underflow
(i.e. how far det(A) is from 0).

A stable action of amatrix/filter A implies that small changes in the input data
are not expected to result in significant changes in the output. The extent of these
changes is bounded by the reciprocal of the condition number. Therefore, the
higher the condition number of A, the more unstable its action becomes to small
data perturbations, and matrices with high condition numbers are referred to as
ill-conditioned.

CNN layers consist of large numbers of multi-channel convolution filters, and
it is necessary to control the growth of the condition numbers to achieve rea-
sonable stability in model performance and robustness against data perturba-
tion and adversarial attacks. Indeed, the distribution of condition numbers of
a random matrix simply describes the loss in precision, in terms of the num-
ber of digits, as well as the speed of convergence due to ill-conditioning when
solving linear systems of equations iteratively, [60]. The condition number of
matrices and numerical problems was comprehensively investigated in [59–66]
Definition (Condition number): Suppose matrix A ∈ Rn×n is a non-singular
square and the condition number, κ of A is defined as:

κ(A) = ∥A∥∥A−1∥ (2.8)

Where ∥·∥ is the norm of thematrix. Note that for the Euclidean norm (L2-norm)
where ∥ · ∥ = ∥ · ∥2, then ∥A∥2 = σ1 and ∥A−1∥2 = 1/σn. Thus:

κ(A) = σ1/σn (2.9)

where σ1 and σn are the largest and smallest singular values of the singular value
decomposition of A, respectively.

Amatrix is said to be ill-conditioned if any small change in the input results in
big changes in the output, and it is said to bewell-conditioned if any small change
in the input results in a relatively small change in the output [18]. Alternatively, a
matrix with a low condition number (close to one) is said to be well-conditioned,
while a matrix with a high condition number is said to be ill-conditioned and the
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ideal condition number of an orthogonal matrix is one4.
The most common efficient and stable way of computing κ(A), is by comput-

ing its Singular Value decomposition (SVD) fromwhich κ(A) is calculated as the
ratio of A’s largest singular value to its smallest non-zero one, [67].

J. W. Demmel, in [64], investigated the upper and lower bounds of the prob-
ability distribution of condition numbers of random matrices and showed that
the sets of ill-posed problems including matrix inversion, eigenproblems, and
polynomial zero finding all have a common algebraic and geometric structure.
In particular, Demmel showed that in the case of matrix inversion, the further
away a matrix is from the set of non-=invertible matrices, the smaller is its con-
dition number. Accordingly, the spatial distribution of random matrices, in their
domains, are indicators of the distribution of their condition numbers.

These results provide clear evidence of the viability of our approach to exploit
the tools of topological data analysis (TDA) to investigate the condition number
stability of point clouds of random matrices and convolution filters in particular.

In this thesis, we shall first determine the level of instability and fluctuations in
the conditioning numbers of convolution filters in different layers and investigate
themeans of controlling their instabilities. Many approaches have been proposed
to impose orthogonality conditions, but this may result in low performance on
the training data as a result of underfitting and stifling learning. We shall discuss
several approaches, including an SVD based matrix manipulation, that controls
the instability of condition numbers in a reasonable manner without imposing
rigid orthogonality criteria.

In this chapter, we presented brief introductions to both tops to provide the
necessary background for the investigations conducted in the rest of the thesis
for designing CNN models for the analysis of US tumour scan images. There
are three main challenges: (1) interpreting CNN decisions, (2) maintaining ro-
bustness against data perturbation, and (3) ability to generalise to unseen image
datasets. We shall use TDA together with spectral analysis to investigate proper-
ties of point clouds of convolution filters as a potential source of overfitting and
lack of robustness. We also use the combined knowledge of topology and spec-
tral analysis of matrices to develop regularisation schemes to reduces these two
challenges.

4The acceptable range for the condition number depends on the specific application. For in-
stance, in the context of CNN convolution filters, a matrix is considered well-conditioned when
κ is small, typically in the range of 1 ≤ κ < 102, and ill-conditioned if κ is large (e.g. κ ≥ 102).
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Chapter 3

Effects of Convolutions on US
Images

Convolution of an image in the spatial domain refers to the process of combin-
ing the image patch entries with a kernel of the same size by calculating their
inner product (i.e. summing up the entry-wise multiplications) and sliding the
kernel over the image. The architecture of Deep Learning CNN models consists
of sufficiently large sets of convolution filters that form the main part of extract-
ing feature maps of input data samples prior to feeding into the Neural network
layers for decision making. The entries of these filters are modified through an
elaborate iterative process of training on a sufficiently large samples of images (in
batches) for training, related to the investigated application, using the backpropa-
gation procedure that alsomodifies the neural network parameters by controlling
the growth of the gradient descent while optimally fitting the training image set.
The convolution operation is designed to highlight/suppress certain features in
an image such as edges, textures, noise, and patterns depending on the type and
properties of the adopted kernel. It is therefore essential for this thesis research
to have an understanding of the effects of the various types of convolutions on as
many as possible image descriptors and attempt to link these effects with compu-
tationally known descriptors of the deployed kernels.

In this chapter, we investigate the impact of random Gaussian filters/kernels
on extracted features in the spatial domain from bladder, liver, and breast ul-
trasound scans in terms of the amount of information, texture features and their
spatial distribution. We use entropy tomeasure the amount of information before
and after applyingGaussian kernels on ultrasound images to their related texture
features. For extracting texture features, we apply Local Binary Pattern (LBP) to
evaluate the local geometrical behaviour of the landmarks. We investigate the
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spatial distribution of these LBP landmarks by using persistent homology. We
shall demonstrate the effect of well or ill-conditioned filters on the output of con-
volved ultrasound images.

3.1 Introduction

For the sake of self-containment, we give the definition of the Gaussian kernels,
describe their generation, and illustrate the effects of different filters on an ultra-
sound image. We shall then describe the datasets of US scan images of different
human tissues/organs that we deploy in some or all the experimental work in this
chapter and thesis.

3.1.1 Gaussian filters in the spatial domain

Weights in neural networks, especially in convolutional neural networks (CNNs),
are crucial parameters influencing the network’s ability to capture intricate data
patterns. Initialisation, typically achieved through zero-mean random Gaussian
distributions, involves choices between layer-dependent/independent variances.
Common methods include Xavier/Glorot [68], He [69] or less commonly used
constant standard deviation of 0.01 to initialise weights in each layer [29]. The
aim is to break symmetry, promote effective learning, and improve the conver-
gence as well as the performance of the network during training, [70]. Due to
exponentially vanishing/growing gradient of loss function and for compatibil-
ity with activation functions, Glorot andHeweight initialisation techniques select
variances per layer, that may depend on the number of in/out neurons or only the
number of input neurons, respectively. In all these initialisation strategies, no ex-
plicit consideration is given to the conditioning of filters or their stability during
training. Weight initialisation inmedical imaging needs rethinking due to limited
data availability, complex and varied image structures, class imbalance, and rare
abnormalities. Furthermore, in these cases using CNN models pretrained with
natural images in transfer learning modes, there is a need to take into account
sensitivity and interpretability, [71] and to consider model convergence condi-
tions during the retraining, [72]. In the next chapter, we shall develop/adapt
specific weight initialisation for improved model performance, robustness, and
interpretability in US image analysis. Here, we shall first describe the construc-
tion of Gaussian Kernels.

Gaussian filters in the spatial domain are one of themostwell-knownmethods
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for detecting edges, blurring, smoothing, and extracting texture features from
images, and it is widely used in image processing and computer vision tasks. It is
a two-dimensional filter that is based on the Gaussian distribution that convolves
the image with a Gaussian function i.e. it is the product of two such Gaussian
functions at (x, y) distances from the origin :

G(x, y) =
1√
2πσ2

e−(x2+y2)/2σ2 (3.1)

where σ is the standard deviation of the Gaussian distribution, and it determines
the spread of the filter. The choice of σ in He and Glorot weight initialisation
techniques is dependent on the structure of building blocks of the layers and the
number of neurons.

The result of the convolution operation is a new image with modified pixel
values that represent texture features that the kernel is designed to extract. The
effect of the convolution includes reducing the high frequency content and/or
small variations i.e reducing noise, thus smoothing out the overall appearance
of the image. The level of noise removal or blurring effect is partially bound to
the choice of the standard deviation σ. A larger standard deviation results in a
stronger blurring effect, while a smaller standard deviation results in a weaker
blurring effect. Gaussian filters may cause artefacts such as ringing around edges
due to the convolution operation or enhance less important features in the image.

Often a set of random filters are applied in deep learning architectures for ex-
tracting texture features. These sets are a variation of individual filters, where
the values of the filter coefficients are generated randomly based on i.i.d. Gaus-
sian or uniform distribution. The aim of using random Gaussian filters is to add
a degree of randomness to the smoothing process and produce a set of various
texture features which can help provide relevant information about the source
input image. The settings as well as the effectiveness of such filters are depended
on the specific applications and the characteristics of the image being processed.

The behaviour and smoothing properties of Gaussian kernels are well under-
stood for natural images, hence our focus is on their effect on various ultrasound
images. In Figure 3.1, we show examples of applying three different 3×3 Gaus-
sian kernels wi (i=1,2,3) on an ultrasound image and their effect on the texture
features from the original image. The convolved image texture features are shown
in two and three-dimensional landscapes to illustrate the changes as a result of
convolutions. All three kernels are producing new convolved images that either
preserve the general characteristics of the original image or preserve a certain
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level of the image characteristics. The standard deviation of the selected kernels
is 0.01, however, their coefficients are different from each other. The convolved
images obtained with w1 and w2 kernels seem to create a smoother version of the
original images as shown in 2D and 3D visualisations, while w3 may be seen as
an enhanced version of the image. Furthermore, w2 filter seems to produce a ver-
sion is similar to the negative of the original image in terms of brightness, w3 filter
seems to act in a manner similar to histogram equalisation, while w1 filter seems
to compress the pixel values into a narrow Gray-level range.

(a) Image G (b) G ∗ w1 (c) G ∗ w2 (d) G ∗ w3

Figure 3.1: Example of Gaussian kernel convolutions on an ultrasound image.

The above example, shows that different kernels have different impacts on
the input image descriptors and these differences must reflect the variation in
their entries and algebraic properties. Deep learning schemes, use large sets of
convolution filters in a number of layers that apply several processing steps on
the convolved images arriving from their predecessor layers and try to learn dis-
tinguishable feature maps from the combined different actions of all these con-
volution filters on the training set of images. The above example illustrates the
impracticality of estimating the cumulative effect of numerous convolution filters
on a single image, let alone on a large set of training images.In the rest of the
chapter, we try to investigate the effect of sets of convolution filters on known im-
age descriptors to determine if there is any linking of algebraically computable
parameters of Gaussian filters with their effect on the selected image descriptors.

Ultrasound scan images of different tissues/organs are usually produced by
different frequency ultrasound signals due to differences in the textural/struc-
tural features within different organ tissues, for detail see [73]. Accordingly, the
effects of convolution filters applied to US image descriptors may vary between
different human tissues/organs. In order to investigate this variation, we shall
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next introduce and describe our experimental ultrasound image datasets of dif-
ferent human tissues as we extend our investigations on the effect of random
Gaussian kernels.

3.1.2 Ultrasound scan image datasets

Since undertaking this thesis, our primary investigations have been based on ul-
trasound data sets provided by Ten-D AI Medical Technologies Ltd. These data
sets include the bladder, liver, and breast scans which we use throughout the
thesis unless stated otherwise. These data sets were collected and sorted from
Shanghai Pudong People’s Hospital by experienced radiologists. The ground
truth of each scan was based on the patient’s pathological tests. For classification
purposes, these ultrasound scans are cropped around the tumour by radiologists
which are called the region of interest (RoI) and labelled as malignant or benign
as a few samples are shown in Figure 1.1. The following are descriptions of each
data set:

• Bladder ultrasound dataset: consists of 176 images which 100 of the cases
are benign with image sizes ranging between 9×22×3 to 254×254×3, and
76 of the cases are malignant with image sizes ranging between 25×41×3 to
480×640×3.

• Liver ultrasound dataset: consists of 193 images which 106 of the cases are
benign with image sizes ranging between 26×18×3 to 157×157×3, and 87
of the cases are malignant with image sizes ranging between 49×48×3 to
454×440×3.

• Breast ultrasound dataset: consists of 524 images which 262 of the cases
are benign with image sizes ranging between 32×54×3 to 275×373×3, and
262 of the cases are malignant with image sizes ranging between 62×82×3
to 468×846×3.

To ensure consistency and meet the requirements of CNN models, we resize all
images to the dimensions of 224×224×3, unless otherwise specified. Figure 3.2
shows different samples of benign and malignant tumours per data set after re-
sizing the regions of interest.

There are several image descriptors used in image analysis to (1) measure
the quality such as Entropy, Mean Absolute Error (MAE), Mean Squared Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM);
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Figure 3.2: Samples of US images with cropped RoI’s for benign (B) and malig-
nant (M).

(2) extract texture features such as Gray Level Co-occurrence Matrix (GLCM),
Local Binary Patterns (LBP), and histogram of oriented gradients (HOG). In this
thesis, we are particularly interested in entropy, texture, and noise image descrip-
tors. We use Shannon entropy to evaluate the amount of information of con-
volved images. For image texture, we use local binary patterns to extract LBP-
based landmarks from which we can compute statistical and entropy descriptors
of landmark groups as well as spatial distribution descriptors of these texture
landmarks. For impacts of noise on convolved US image descriptors will focus
on Gaussian and Speckle noise of different strengths.

3.2 Effect of convolutions on entropy descriptor

The fact that Gaussian filters are image smoothing then it is natural to expect loss
of image information as a result of convolutions by such kernels. In this section,
we utilise the information theory1 concept of image entropy as an effective and
simplemetric to evaluate image content from original and convolved imageswith
random Gaussian kernels. It is a well-known image descriptor, often referred to

1Information theory is a field of mathematics that concerns about how information is quanti-
fied, stored, and communicated. It focuses on measuring information, finding efficient ways to
encode and transmit it, and understanding the limits of information processing systems.
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as Shannon Entropy, that measures the amount of uncertainty or randomness
in an image, [74]. Shannon Entropy measures the disorder of a signal/image
content in terms of the proportion of different symbols/gray-values present in
the signal/image. High entropy indicates more randomness or disorder in the
signal/image, while low entropy means more regularity or structure. For image
entropy, the probability, p(i), represents the histogram of each pixel or bin values
occurring, 0 ≤ i ≤ 255 s.t. for 8-bit grayscale images the entropy value can be
computed as follows:

H(X) = −
255∑
i=0

p(i) log2 p(i) (3.2)

Entropy values are in the range 0-8 corresponding to 256 possible numerical pixel
values. A low or 0 entropy value means no information and uniform pixel value
distribution (i.e. mostly redundant information), while a medium to high en-
tropy value indicates the presence of reasonable information with increased cer-
tainty. Alternatively, the above equation can be re-written for computing feature
maps as follows:

H(X) = −
m∑
i=1

n∑
j=1

p(xij) log p(xij) (3.3)

where X is an m × n grayscale image with xij pixel values of index (i, j), and
p(xij) is the probability of histogram of pixel values. Image entropy is widely
used in image analysis for tasks such as image segmentation, feature extraction,
and compression evaluation. Here, we compare the distribution of entropy of a
sufficient number of images convolved pre- and post-convolution by a sufficient
number of Gaussian filters. Figure 3.3, below, displays the distribution of image
entropy for randomly selected 150 images from the US (Bladder, Liver and Breast
tissue) scan data sets, All images are resized to 224×224.
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Figure 3.3: Distribution of entropy from original ultrasound images.

The distribution of entropy values seem to differ on the position of the mean
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and (min-max) range in different tissues. Low entropy values ranging from 3.8 to
5.5 in bladder and liver histograms are representing the small sizes of RoI images
with less texture variation in the image compared to RoI images with entropy
values between 5.5 to 8. The breast US scan dataset entropy values are in the
tighter and higher range (5.7-7.2) and there are less variation in terms of tumour
sizes measured by the cropped RoI.

To test the impact of convolution of these image sets with a reasonable num-
ber of different Gaussian kernels, we generated five different sets of 100 random
Gaussian filters of size n×n for (n=3,5,7,9,11) of mean µ = 0 and standard devia-
tion σ = 0.01. Note that, these kernel sizes and parameters are most common ker-
nel sizes in constructing convolutional neural network architectures. The corre-
sponding entropy distribution histograms are displayed in figure 3.4 for all three
ultrasound data sets. Interestingly, the differences in the shape/range of entropy
distributions between the different tissues disappeared as a result of convolutions
with Gaussian kernels of any size. In all cases, the entropy values post convolu-
tion have amean of around 7with a negative skewness distribution. Furthermore,
the lower bound values increase, in all cases, as the kernel sizes increase. Similar
entropy distributions, post convolution, were observed when σ = 0.1 and 0.001
for all three datasets.

These results confirm that the observed similar impact of convolving images
from these different tissues on their entropy do result in changing image con-
tents, but the fact each image corresponds to a single entropy value makes it dif-
ficult to gain useful insight into the effect of different convolution filters in terms
of the spatial distribution of changes or in terms of enhancements/elimination.
Therefore, it is crucial to complement the gained knowledge in this section by in-
vestigating the impact of convolution on image texture features. The rest of this
chapter will deal with this issue, but first, we attempt to identify existing descrip-
tors associatedwith image texture features used inmachine learning and propose
a new image descriptor that quantifies image texture information content.
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Figure 3.4: Distribution of entropy values of convolved US images with n × n
kernels.
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3.3 US image texture features and descriptors

The three-dimensional landscape illustration in Figure 3.1, confirm the observa-
tion made at the end of last section about the necessity of using landmark based
texture feature analysis descriptors such as LBP, HoG, and GLCM. For HOG tex-
ture descriptor, it is cumbersome to linkmagnitude and orientations to local land-
mark positions, because it computes the distribution of the gradient map values,
in blocks, post binning the range of the slope values of the gradients. The same
is true about GLCM and many other texture features. Accordingly, only LBP and
other similar texture descriptors can be presented in a manner that are associated
with image positions and pixels (see next section for an explicit analysis).

In this section, we explore a statistical analysis of US scan texture features
before and after convolutions using LBP Texture descriptors. This help consid-
ering the LBP image transform as a random space defined on the different LBP
code symbol, and consequentlywe introduce and propose a simplemeasurement
based on the statistical distributions of LBP codes called Entropy LBP landmarks.

3.3.1 The local binary pattern image texture feature

Texture features are associated with changes in spatial/transform image repre-
sentations. Over the years a variety of image texture analysis methods have been
developed and applied in computer vision applications. These methods often
exploit the statistical distribution of changes, structural-based changes, model-
based changes, and/or spectral-based changes. See [75,76] for a recent review on
texture analysis. This chapter is not designed to determine the effect of convolu-
tions on all kinds of texture features. In image processing and computer vision,
local binary patterns is one of the powerful texture descriptors that is used to ex-
tract texture information from images for a variety of automatic image analysis
tasks such as facial recognition, object recognition, and image segmentation. LBP
is known to be robust to noise and is particularly useful because it is invariant to
monotonic grayscale transformations, (i.e. it is not affected by changes in lighting
or other changes that only affect the overall intensity of the image). The LBP has
been extended in various ways depending on the radius of neighbouring pixels
and the relation between the targeted pixel to its neighbouring regarding addi-
tional conditioning. These variants include rotation-invariant LBP, uniform LBP
(ULBP), and multi-scale LBP that are deemed to improve performance/robust-
ness of the descriptor in various tasks.

LBP was first introduced by Ojala et al. [77] to extract image texture features
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based on the comparison of the intensity of the centre pixel with the intensity of
the pixels in its neighbourhood pixels and to assign a binary code to each pixel
depending. The LBP transformation is a composition process of image pixel val-
ues based on their link to the surrounding pixels Ψ : R −→ R according to the
following formula:

Ψ(xc, yc) =
7∑

i=0

ψ(ki − kc)2
i (3.4)

where ki is the neighbouring pixel, kc is the centre pixels at (xc, yc) location, and
the function ψ : R −→ [0, 1] is defined as:

ψ(x) =

{
1 if x ≥ 0

0 if x < 0
(3.5)

If the intensity of the centre pixel is greater than the intensity of its surround-
ing pixels, a binary code of 1 is assigned, otherwise, a binary code of 0 is assigned
(e.g. see Figure 3.5). The binary codes of all the pixels in an image I are combined
to form aLBP image, which is a representation of the texture of the original image.
For 8-bit grayscale images, there are 256 LBP patterns that are rotational invari-
ant. When considered as circular strings, the set of all LBP codes can be grouped2

according to the number of transitions between 0 and 1. In general, the LBP pat-
terns come in five different transitions namely 0,2,4,6,8-transition, each with vari-
ous number of groups per transition, and each group with different subgroup of
rotations.

82 45 56

38 45 32

11 27 40

1 1 1

0 0

0 0 0

3×3 image patch Binary code representation

=

Pixel to LBP

H(Pixel) = 8 H(LBP) = 1.0059

Figure 3.5: An example of LBP code of the centre of a 3 × 3 image patch.

A 0-transition indicates the values either 00000000 or 11111111, and 8-transitions
are 01010101 or 10101010. The 2-transition groups, also the well-known Uniform
Local Binary Pattern (ULBP) consisting of seven groups, each with 8 different ro-
tations. The 4-transition and 6-transition groups consist of five and three groups,
respectively, each with a different number of subgroup rotations. Each transition

2The use of notation for groups and subgroups is solely for the purpose of distinguishing
between different LBP operator landmarks.
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group are known to indicate the presence of different structural features such
as corners, edges, as well as smooth locality. For simplicity, we show all transi-
tions and groups in Figure 3.6with including subgroup rotations as (#transition,
#rotations). The empty and filled circles are indicating 0s and 1s, respectively.

(0,1)

(2,8) (2,8) (2,8) (4,20)

(8,2)

(0,1) (2,8) (2,8) (2,8) (2,8)

(4,32)

(4,32)

(6,16)(4,20)

(4,36)

(6,24) (6,16)

Figure 3.6: Illustration showing the 0 and 1 binary values of LBP landmark groups
represented by empty and filled circles, respectively. The count of transitions
between 0 and 1, along with the number of rotations per transition, is presented
as (#transition,#rotation).

The commonly used statistical representation of LBP codes in image analysis
tasks is a histogram with 58 bins of 0- and 2-transitions with/without a 59th bin
for the rest of the transitions. However, the 256-bins have also been used in some
applications to represent the LBP transformed image after computing image in-
tensity post LBP transformation.

In Figure 3.7, below, we show an example of transferring the original and con-
volved ultrasound images into LBP representation using the same Gaussian ker-
nels from Figure 3.1. The LBP transformed images highlights the local informa-
tion about the texture features present in the original image. The white-patch
areas in all four LBP transformations represent the 0-transitions around this area,
while the dark black patches represent 1-transitions. The LBP representations
from convolved images with kernels w1 and w2 are showing fine details from the
original images. Whereas, w3 is showing most of the texture features from the
original image around.

We shall next determine the probability distributions of these different LBP
transitional codes in US images, but most of our focus in later chapters will be
on the ULBP groups for texture analysis and spatial distributions. We extend the
statistical computation of these LBP groups for all three ultrasound datasets and
their convolved images from the previous section.
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(a) Image G (b) G ∗ w1 (c) G ∗ w2 (d) G ∗ w3

Figure 3.7: Example of LBP operator performed on original and convolved ultra-
sound images.

3.3.2 Statistical distribution of LBP US datasets

Statistical analysis of the LBP landmarks can provide insight into the nature of the
image or dataset properties in terms of the dominant, existence, or absence of cer-
tain geometric patterns. Therefore, we compute all five different transitions with
their associated groups regardless of subgroup rotations mainly to understand
the most and/or less frequent transitions for bladder, liver, and breast ultrasound
datasets. The statistical analysis includes the minimum, maximum, range, aver-
age, standard deviation and mode for each LBP transition/group for 150 images
per dataset with 75 images per class. We present the average percentage of all
three data sets in Figure 3.8-(a). The groups Z1 and Z2 are 0-transitions, G1-G7

are 2-transitions, F1-F5 are 4-transitions, S1-S3 are 6-transition groups, and E is
8-transition. Dominant texture features in all three datasets are G4 and G5 with
[24,40] % , whereas no image landmarks are found in 6 and 8-transitions. All
three datasets have the 0, 2, and 4-transition LBP landmarks with a noticeably
similar pattern among each group. After the statistical analysis of the original
ultrasound scans, we compute the LBP statistics after convolution with 100 ran-
dom Gaussian filters from the previous section. In Figure 3.8-(b), average per-
centages of LBP landmark groups from 15000 convolved images show a similar
statistical pattern to the original image with a notable increase in 9 of the groups
(Z1, G1, G2, G3, F1, F2, F3, F4, F5) and a very modest increase in the %s of the S
and E groups that were almost absent in the original images. These increases,
post convolution, occurred at the expense of the other dominant groups.

The results in Figure 3.8 reveal mostlymodest differences between the various
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(b) Convolved ultrasound images

Figure 3.8: Average% of LBP transitions for bladder, liver, and breast US datasets.

group statistics between different tissue types in both the original images and in
the convolved images. Our investigation extended to examining whether these
statistics exhibit class-dependent patterns in terms of the nature of the tumour.
Our results indicate that the statistical patterns of individual LBP groups for ma-
lignant and benign classes are nearly identical, with only minor, imperceptible
differences observed in some LBP groups 3.9).
Remark 1. (Texture contents of ultrasound vs atural images)The statistical dis-
tribution of the LBP different groups in Figure 3.8-(a), provides a clear significant
distinction between Natural images and US medical images in terms of texture
content. In [54], A. Asaad computed statistical distribution of the ULBP groups
(i.e. Z1,Z2, andG1−G7) in passport face images in two known publicly available
databases (Utrecht and London DBs). While the Z2 (11111111) landmark group
in ultrasound images form in the low range of (5-11)%, in face images it was esti-
mated to form 87.67% and 72.96% in the LondonDB andUtrecht DB, respectively.
Furthermore, on average each of theGi groups form 1.4% (3.06%) in the face im-
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(b) Convolved ultrasound images

Figure 3.9: Average % of LBP transitions per class for the 3 US datasets.

ages of the London DB (Utrecht DB), whereas the G4 alone form (30%-40%) of
US images. Thus, unlike natural face images, texture features are predominant in
US images. This is a motivation to propose the use of texture information content
as an important image descriptor.

3.3.3 A new texture entropy descriptor of LBP landmark groups

The statistical analysis of LBP landmark groups provides an additional motiva-
tion for introducing a new image descriptor of texture information content by a
straightforward entropy based formula. Here, we propose evaluating the amount
of information conveyed by LBP landmarks in general and per transitions and/or
groups. Integrating entropy with LBP descriptor has shown significant advan-
tages for image processing tasks for example the authors, in [78], used entropy
based local binary pattern (ELBP) for a biometric database. The ELBP is com-
puted based on replacing each image pixel value with its entropy value for ex-
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tracting texture features and performed better than the conventional rotation in-
variant LBP methods. We have become aware of a very recent similar approach
to that of ELBP but based on a block-wise consideration, [79]. Our proposed tex-
ture entropy descriptor, denoted by TE(LBP), differs in terms of the utility and
computability. It can be used to identify subtle changes in texture features and en-
hance the ability to estimate information content of texture landmarks in images.
In addition, it can facilitate further analysis along with, and in comparison to,
the traditional image entropy. Computing Entropy of LBP landmarks, TE(LBP),
is based on the statistical analysis of the 256 LBP landmarks substituted in the
conventional entropy equation 3.2:

H(X) = −
4∑

i=0

p(xi) log2 p(xi) (3.6)

Where p(xi)’s are the probability of the presence of the five LBP landmark transi-
tion groups i=0,. . . ,4. Alternatively, transform the image into LBP representation
and compute the histogram of each bin from 0 to 255 and the probability of non-
zero bins. The resulting entropy values will be between 0 and 8, as explained in
Section 3.2 for 8-bit images.

The intuition of using this approach is to provide distinct general insight into
the image content information in terms of various texture features. To illustrate
the difference between our proposed texture entropy descriptor from that of tra-
ditional image entropy, consider an ideal 16×16 array/image (Figure 3.10) of 256
sorted pixel values from 0 to 255 where the each bin occurs once exactly and have
the probability of 1/256 resulting in traditional image entropy value of 8. Af-
terwards, we encode the pixels into their correspondence LBP descriptors and
compute the occurrence of each bin. shows the ideal image pixel from black, 0,
to white, 255 and their LBP encoding where the changes are noticeable at the
top/bottom left/right corners. In this ideal image, the dominant LBP rotation is
00111100 (2-transition) with high probability i.e. there are four neighbours less
than the targeted pixel value, and four neighbours greater than the targeted pixel
value. The TE(LBP) of the image was found to be 1.0059 while the individual
entropy values are 0.0624 and 0.9433 for 0 and 2-transitions, respectively.

Depending on the application, the texture-based entropy type can be cus-
tomised to compute the entropy of a selected set of landmarks or for conditional
occurrences. We assessed the Texture Entropy (TE) derived from Local Binary
Patterns (LBP) in ultrasound images of bladder, liver, and breast tissues. The re-
sults, presented in Figure 3.11, are compared to the corresponding distributions
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Figure 3.10: An illustration of high variation pixels and its LBP landmarks.

of traditional entropy in Figure 3.3. The TE(LBP) distributions exhibit similar
shapes but are consistently shifted to the left by approximately 1.5 values across
all tissue types. This shift indicates a higher level of certainty regarding texture
information compared to pixel value information.
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Figure 3.11: Distribution of Texture-based LBP entropy from original ultrasound
images (USI).

Due to the fact that CNN have strict requirements important for identifying
changes in the tissue texture features due to resizing, adding or removing noise.
In general, ultrasound scans can have varying levels of tumour RoI resolution
and noise depending on several factors, including the US devices, the imaging
technique, and the specific application. The effect of these and other factors will
be discussed in Section 3.4.

The success of the topological data analysis paradigm, that is based on gradual
construction of simplicial complexes for point clods of data records encapsulating
the spatial distribution of the point cloud, is a strong motivation for studying the
spatial distribution of LBP landmarks. Clearly, neither the LBP landmark entropy
nor their statistical distribution provides information about the spatial distribu-
tion of image pixels or textures. Next, we utilise topological data analysis tools to
gain insight into the underlying patterns and relationships in image data.
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3.3.4 The spatial distribution descriptor of LBP groups

Studying the spatial distribution of LBP landmarks is expected to provide ad-
ditional tools for automatic image analysis, and benefits from using emerging
paradigm of Topological Data Analysis (TDA) and its tools. The main idea is
that the LBP landmark groups from point clouds of image pixel positions (i.e.
points in the Euclidean plane R2) that can be represented as a topological space,
the structure of which can be used to gain insight into the underlying patterns
and relationships in the corresponding image datasets. Recall that the spatial
distribution of a point cloud in Rn is determined by the TDA tool of persistent
homology, defined in Section 2.2, records the topological invariants (number of
connected components, loops, holes, and voids) in the gradually constructed se-
quence of simplicial complexes formed by the point cloud as 0-simplices at an
increasing sequence of distance thresholds. In recent years, topological data anal-
ysis has emerged as a promising approach for studying the spatial distribution
of LBP landmarks for genuine and tampered face images [80]. Here, we follow
this approach of investigating LBP landmarks persistent homology to model the
landmarks spatial distribution. Figure 3.12, illustrates the process of generating
the PH representation of LBP group landmarks in ultrasound scan images. We
selected rotationR1 inG5 group of 2-transitions constructed the sequence of sim-
plicial complexes using different distance thresholds d (0,10,20,25,30, and 35).
Clearly, the topological invariants (#connected components) in dim 0, and (#holes
bounded by > 3 sides) in dim 1 change at each level of increased distances from
0 to 35.

In this thesis, we exploit this process to analyse the spatial distribution of LBP
landmark groups in US images to analyse the nature of malignant and benign
texture tissues before and after convolutions and other texture distortion factors.
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Image G5 − R1LBP d ≤ 10

d ≤ 30d ≤ 25d ≤ 20 d ≤ 35

Figure 3.12: Illustration of the determining the PHprocess of (G5,R1) landmarks.

3.4 Factors influencing US texture descriptors

In this section, we highlight the potential factors that may result in changes in the
texture features and influence the effect of convolution kernels. These factors in-
clude image resizing, presence of noise, and Algebraic properties of convolution
kernels.

3.4.1 Impact of image resizing

Resizing images is a challenging task in computer vision and particularly for low
resolution region of interest (RoI) in medical images. Existing state-of-the-art
CNN models require the input images to be of fixed size, while the RoIs of US
tumour scan image datasets include significant variation in size. CNN required
US RoI resizing is expected to have size-dependent effects on the quality of re-
sized image. Image resizing techniques can impact input image texture features
as well as the performance of automated or AI-based computer-aided systems.
Resizing and rescaling ultrasound images are important to standardise image
sizes for analysis, usability with DL models and visualisation purposes. Vari-
ous methods are available for resizing and rescaling images, each with its own
strengths and limitations. These methods include nearest neighbour, linear, cu-
bic, spline, and wavelet-based interpolation techniques. The simplest method is
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the nearest-neighbour interpolation, where the nearest pixel to the new location
is used when resizing an image. Bilinear and bicubic interpolations are straight-
forward methods, where the weighted average of the four and sixteen nearest
pixels are taken into account for the new pixel value and location, respectively.
Spline and B-Spline interpolations are more sophisticated techniques to estimate
the new pixel values and locations by fitting smooth curves. Wavelet-based in-
terpolation is another method that can produce high-quality ultrasound images
by decomposing the image into a series of wavelets and using these wavelets to
estimate the value at the new pixel location. This method is useful for ultrasound
images with a high level of detail, such as in vascular imaging or fetal ultrasound.

There are significant advancements and successes in terms of enhancing im-
age resolutions for natural and somemedical images, [81,82]. The super-resolution
process in ultrasound images typically involves applying various algorithms and
techniques to the original low-resolution or relevantly small-size image to create
an upscaled version with a higher resolution, which can reveal fine details and
structures that were previously hidden or could be lost during the traditional
resizing method. The challenge in choosing the ultimate method for US image
resizing and rescaling stems from the need to take into account simplicity, impact
on image quality, aswell as the significant variation in tumour RoI sizes. Formore
details, see [83, 84]. In this research, we deploy the default MATLAB image re-
sizing function as exploring image resizing and cropping is not within the scope
of our research.

Ultrasound image sizes in our research project is reflecting the cropped ar-
eas around the tumour (i.e. the RoI) and all the RoI’s in the US datasets differ
significantly in their size. In deep learning models, it is required to have a uni-
fied image size to proceed with the end-to-end process. The ratio between the
size of the original image and the targeted size can influence the quality of the
new resized image. Unlike natural images, there is no agreed standard of how to
quantify the quality of US images. If the ratio is large, then resizing is expected
to result in loss of texture features manifested by blurring effects. For example,
when the original tumour image size is as small as less than 40×40 then resizing
it into to 224×224 is expected to be worse than doing the same for tumour image
size of 600×600. Figure 3.13 shows the difference of a gradual resizing of an ul-
trasound image from 102×121 to 224×224. It is difficult to determine the amount
of information change with visual inspection, whereas LBP transformed images
seem to show some noted changes of local information, in certain regions, after
resizing the image. The reader is advised to examine the nature of the vertical
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lines pattern in marked regions as the resizing increases. This example indicates
possible changes to the TE(LBP) as well as changes to the spatial distribution of
some LBP landmark groups.

102×121              150×150                  180×180                         224×224 

Figure 3.13: Illustration of an ultrasound image resizing and LBP representations.

To demonstrate the above observation, we experimented with m × n ultra-
sound scans images in the trio of US datasets, by computing the entropy of the
original image sizes and that of resized version of the 224×224, as well as their
texture-based entropy TE(LBP) before and after resizing. The distribution of en-
tropy values of 150 per dataset are presented in Figure 3.14. There is hardly any
noticeable differences between entropy of the original and resized images of all
tissue scans, whereas the differences between the texture-based entropy of the
original and resized images for all types of tissues are not negligible. In addition,
we compute the texture-based entropy per class before and after resizing to exam-
inewhich class is particularly affected by the image resizing. There are significant
differences in TE(LBP) distribution between malignant and benign classes after
resizing for the three datasets as shown in Figure 3.15. In fact, the separation
of TE(LEP) between the classes of bladder and liver show good discriminating
power due to the nature of the tissue and tumour sizes.
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Figure 3.14: Distributions of entropy values (top), and LPB texture entropy (bot-
tom).
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Figure 3.15: Class-distribution of TE(LPB): Original sizes (Top) and the resized
(Bottom).
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3.4.2 Impact of noise on image descriptors

Ultrasound images can be affected by noise of different types arising from sev-
eral sources such as electronic interference, signal processing, and physical phe-
nomena such as acoustic speckle. Noise are manifest as random fluctuations in
pixel values, making it difficult to distinguish between structures of interest and
noise. However, advances in ultrasound technology and image processing have
led to improved noise reduction techniques, which can help improve image qual-
ity [85]. It is worth noting, that addition of noise to images is a well-established
source of adversarial attacks on Deep learning CNN models.

LBP texture features are robust against illumination, contrast and some uni-
form distortion in image pixel values. However, their robustness against non-
uniform structural/textural changes, inUS images is notwell understood. Speckle
and random Gaussian noises are excellent candidates to generate such changes.
Random Gaussian noises may make changes to LBP landmark statistics and spa-
tial distributions as a result of random fluctuation in pixel values surrounding
the landmarks. To determine the effect of such random pixel value fluctuation
around LBP landmarks, we recomputed the statistical distribution of LBP land-
mark groups for the 3 datasets post noise addition to the images. Figure 3.16,
below, illustrates a significant change in these distributions across the 3 datasets
when Gaussian noise, mean(µ) =0 and variance = 10−3 were added in compari-
son to those of clean images.
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Figure 3.16: LBP landmarks distribution in the 3US datasets post Gaussian noise.

Comparing the results presented here with those in Figure 3.8-(a) reveals an
intriguing pattern of change in the statistics of LBP landmarks caused by the
addition of noise. The only group that maintained its statistics is the bright Z1

landmarks (i.e., 0-transition represents all 11111111). The more dominant LBP
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landmark groups G3, G4, G5, and G6 have been significantly diminished propor-
tionately. All other groups exhibit an increased presence due to the alteration
and variation of 8-pixel neighbours around the centre pixel values. We anticipate
that these changes will translate into improved TE(LBP) values for noisy images,
andwemay also expect similar, if lower, effects with the addition of speckle noise
given the nature of ultrasound scans. The subsequent set of experimentswas con-
ducted to assess the effects on TE(LBP) with different levels of noise addition.

Our experiments aim to compare the distributions of traditional image en-
tropy as well as texture-based TE(LBP) of the original clean images and their
noisy version for the images in the 3 datasets. Several levels of noise addition
have been tested in these experiments, namely randomGaussian noisewith µ = 0

and var = 10−6, & 10−5 and speckle noise with µ = 0 and var = 10−6, 10−5, &
10−4. In Figure 3.17, we observe little or no change to the distributions of entropy
values between clean and noisy images. However, the distributions of TE(LBP)
changes and becomemore uncertain as more noise is added to each dataset. Low
and medium TE(LBP) values are most affected by the noise and the shift in the
distribution is caused by the fluctuations around the pixel values.

To determine the impact of convolutions on image entropy and TE(LBP) on
noisy images in comparison to clean ones, we repeated the above set of experi-
ments after applying the same set of convolution kernels on the original and noisy
images. The results are shown in Figure 3.18.

The randomGaussian kernels are smoothing the effects of the addedGaussian
and speckle noises, therefore we added further level of noises to test the level of
noise that makes the distribution of entropy values separate from the distribution
of the original imageswithout noise. These results show that the combined effects
of adding noise and convolutions on traditional entropy are of less use to these
effects on TE(LBP). Figure 3.17 show that the TE(LBP) in the Bladder and Liver
datasets are more affected by the increased level of added noise compared to the
breast dataset. For both bladder and liver datasets the TE(LBP) distributions
shift and/or change with small overlapping percentages. Figure 3.18, show that
the Gaussian kernels suppress most of these changes and it takes higher noise
level to get reasonable differences.

This type of investigationwill contribute to our exploration and analysis in the
subsequent chapters of deep learning settings, where the prevalent challenges in-
clude underperformance, robustness, and adversarial attack issues. The robust-
ness of deep learning models is evaluated by introducing small changes to the
input data or image, with the expectation that these changes should lead to mini-
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mal or no alterations in the output, especiallywhen the changes are imperceptible
to human vision.
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Figure 3.17: Impact of noise on distributions of image entropy and TE(LBP) post
various Gaussian (Top) and Speckle (Bottom) noise levels.
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Figure 3.18: Effects of convolutions on entropy and TE(LBP) on noisy images –
Gaussian (Top) and Speckle (Bottom).
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3.4.3 Impact of kernels conditioning on image descriptors

In the previous sections, we illustrated we studied the effects of random Gaus-
sian kernels on traditional image entropy as well as TE(LBP) in US images. We
found that the addition of noise to images have an impact on the statistical distri-
bution of LBP landmark groups, and the Gaussian kernel acts to suppress these
changes to some extent. The condition number of convolution filters is a well-
known algebraic descriptor that relate to the sensitivity of their action on image
patches as a result of a certain level of pixel value perturbation of the sort caused
by the addition of noise. Filters with low condition numbers are less sensitive
to data perturbation. Hence, we are interested in the range of condition number
of kernels that causes low instability of TE(LBP) in the presence of noise. Such
investigations are useful for understanding the factors that influence robustness
of deep learning models and absence/presence of overfitting.

The condition number, κ(A), of a kernel is an important factor that can affect
the performance of a Gaussian filter, especially when applied in the spatial do-
main. When awell-conditionedRGF is applied to an image, it can help to preserve
the texture features by smoothing the image in a controlled and stable manner.
The filter will tend to blur out noise and high-frequency informationwhile retain-
ing important texture features at lower spatial frequencies. In contrast, when an
ill-conditioned RGF is used, it can lead to the loss of important texture features or
the introduction of artefacts. An ill-conditioned filter can lead to unpredictable
and unstable smoothing, which can cause texture features to become distorted
or blurred beyond recognition. In some cases, an ill-conditioned filter can also
introduce artificial texture features into the image that do not exist in the original
data. This can be a significant problem in applications where the image contains
a high level of noise or where the desired output is a high-quality, noise-free im-
age. In practice, the condition number of a Gaussian kernel is independent of the
standard deviation of the generating Gaussian function, but we expected that the
use of well-conditioned kernels preserve important texture features in US images
when a patch of the image changes or an additional noise is introduced, while the
use of ill-conditioned kernels will introduce artificial artefacts and distortions.

Figure 3.19, illustrates these effects for an input US image. We selected two
distinct 3 × 3 kernels, one well-conditioned with a low condition number, and
the second is ill-conditioned with a high condition number. We added a small
amount of Gaussian noise with µ = 0 and var = 10−5 to the images then en-
code them to the LBP domain. On visual inspection, both kernels, produce the
matching convolved images to the original ultrasound.
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Image G Image 𝐺 + 𝜀

𝐺 ∗ 𝑓𝑤𝑒𝑙𝑙

𝐺 + ε ∗ 𝑓𝑖𝑙𝑙𝐺 ∗ 𝑓𝑖𝑙𝑙

𝐺 + ε ∗ 𝑓𝑤𝑒𝑙𝑙

Figure 3.19: Illustration of original and convolved images and their correspond-
ing LBP transformation when applying well- and ill-conditioned filters.

The LBP patterns for these images with well- and ill-conditioned filters are
showing similar patterns to the original unfiltered images. However, the spatial
distribution of the LBP landmarks seem to undergo some hidden changes in dif-
ferent regions. To support this assertion, we extract R1 and R2 rotations in G1

group (2-transition), then build the simplicial complex at different D distance
thresholds for all six images (see Figure 3.20). The number of connected compo-
nents and the number of holes (#connected components, #holes) in dimensions zero
and one, are displayed below each image.

It is evident that the addition of noise, with or without convolutions, increases
the #connected componentsdue to the change in the LBP landmark groups as shown
in Subsection 3.4.2. Therefore, there is a change in the rate atwhich these numbers
decrease relative to the threshold distance increase with the addition of noise,
with or without convolutions. In all cases, the number of holes fluctuates with
different patterns, but more importantly, these changes occur in different regions
of the ultrasound scans.
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Figure 3.20: Changes to the spatial distribution of original and convolved US im-
ages with/out Gaussian noise ε, with selected well-/ill-conditioned filters.
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These results support the hypothesis that the properties of the Gaussian ker-
nels can impact the preservation or distortion of texture features in ultrasound
images of various types of tissue. The characteristics of the texture features in an
image can be affected by the condition number of these filters as it can impact the
texture features in the resulting image. Investigating other algebraic properties
of the kernels and their topological behaviour may provide more understanding
of their impact on the performance of CNN models of analysing US images.

3.5 Conclusion

The investigations conducted in this chapter aimed to gain a better understand-
ing of ultrasound image properties and the impact of random Gaussian filters on
the information content of the US convolved images with presence/absence of
noise. Although, different convolutions were found to have different impacts on
conventional entropy image descriptor of US images of different types of tissue
but exploiting these differences may be not straightforward. The statistical anal-
ysis of the LBP texture landmark groups revealed significant differences between
texture contents in US images and those in natural face images. This observa-
tion is a kind of warning not to expect image analysis models, trained on natu-
ral images, to generalise with ease and high performance when deployed for US
image analysis. Furthermore, it motivated the introduction of an effective LBP
texture-based entropy (TE(LBP)) to quantify texture feature content. Our sim-
ple observational illustrations of the impact of image resizing, presence of noise,
and condition number of convolution kernels on some image descriptors point to
the importance of more research into the link between robustness against noise
and the conditioning of convolution kernels. Furthermore, these studies indicate
that persistent homology plays an important role in understanding the effect of
convolution layers on the discriminating power of texture features. Deep learn-
ing models such as CNN involve large datasets of convolution filters, organised
in different layers which involve other image processing procedures such as ac-
tivation function, down-sampling, and normalisation. The performance of such
models will be influenced by the combination of the above mentionedmethod. It
is useful to determine if the impacts of the various convolution filters deteriorate
or improve by these additional procedures. In the next chapter, we shall study
these issues.

67



Chapter 4

CNNModels for US Image Analysis

The rapid advances in computer vision as a result of using Convolutional neu-
ral networks (CNN’s) have demonstrated, beyond any doubt, the richness and
power of CNN tools. However, interpretability of CNNdecisions is far from ideal
and present a serious hurdle in the much urgent critical tasks of embracing AI in
medical image analysis. Researchers have long identified some shortcomings of
CNN, even for natural images, are the inability of state-of-the-art CNN models
trained with tens of millions of images to generalise to unseen data as well as ro-
bustness against data perturbation due to presence of noise. Moreover, various
approaches have been proposed to overcome/reduce the severity of these chal-
lenges for datasets of natural images, and many highlighted the importance of
TDA properties of convolution filters in this respect. In light of what we learned
in the last chapter about the significant differences between nature of US image
contents and those of natural images, this chapter is designed to investigates these
issues and approaches for datasets of US tumour scan images the availability of
which present an added constraint.

We first, in Section 4.1, review recent research relevant to identifying various
approaches to designing CNN models that overcome/reduce the severity of the
above challenges. In Section 4.2, we test the performance of several state-of-the-
art CNNmodels in transfer learningmode for classification of US images, besides
testing the ability of these models to generalise to an external dataset and to be
robust against tolerable level of noise. Section 4.3 is dedicated to understanding
the effect of CNN training procedures on US image entropy content as well as
on the algebraic and topological properties of the convolution filters pre and post
training. Section 4.4 is concerned with the learnt features during training, while
Section 4.5 investigates the widely practised filter pruning as a mean of control-
ling CNN architecture complexity.
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4.1 Review of existing work linking TDA with CNN

Linking TDA to understand decisions of machine learning models of natural im-
ages can be traced back to the work of G. Carlsson et al., in [86, 87], that investi-
gated the geometry of the space of small (3×3) normalised natural image patches
of high contrast and established that it is topologically equivalent to that of the 2-
dimensional non-orientable Klein Bottle manifold. Originally, the interest in the
space of natural image patches arose in relation to investigating the non-Gaussian
structures of natural images, [88]. Moreover, CNNs for image analysis may be
constructed directly using TDA of the graph structure on the grid of pixels, with-
out any additional information. G. Carlsson and R. Gabrielsson, [87], consider
this TDA approach as a powerful source of methods for constructing CNNs for
any data sets that admit notions of distance between features that can be used as
nodes in a graph with connections restricted by distance proximities.

The review of recent literature revealed several research contributions that
aim at combining TDA and its tools with Deep learning neural networks for im-
age analysis using a variety of approaches. Although, all these approaches target
analysis of natural images they have lots of synergies with our current investiga-
tions and provide valuable guidance for future investigations for developing cus-
tomised efficient CNN models for analysis of US images that are robust against
data perturbation and avoid overfitting. Most attempts of combining TDA and its
tools with the learning process and decisions of CNN models developed for im-
age analysis are implicitly aim to contribute to one or more of the specific difficult
challenges of (1) interpreting CNNdecisions, (2)maintaining robustness against
data perturbation, and (3) ability to generalise to unseen image datasets. The
momentum for research on combining TDAwith deep learning began to escalate
since 2019, (e.g. [89–97]), andmostly develop innovative procedures to construct
simplicial complex topologies with the various learning related structured com-
ponents of CNN architecture, the features of which can be summarised by per-
sistent homology tools. In terms interpreting CNN decisions these approaches
are yet to be formalised but it is certainly different from existing work on explain-
able AI for image analysis which are focused on identifying image regions that
contribute to decisions [98].

Recall that the main structured matrices/graphs ingredients of CNN archi-
tectures in both the multiple convolution layers of the Feature maps extractor
module, and those of the FCL classifier module are adjusted by the elaborate
training procedures based on the gradient descent backpropagation to minimize
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the loss function. The various ingredients are admissible to topological analy-
sis, perhaps in more than one way. In Chapter 2, we described and reviewed
the various ways of constructing simplicial complex topologies to be associated
with point clouds in R, images and graphs/networks that would be amenable to
PH analysis. Matrices of weights can be either represented by point clouds by
flattening to 1D vectors, but mathematically large matrices can be treated as im-
ages. We noted that new ways of constructing simplicial complex topologies for
graphs/networks are emerging, but a good starting point for these approaches
is to represent a graph by the simplicial complex formed by the (k + 1)-clique
subgraphs as its k-simplices. Analysing the topological features of graphs/net-
works can benefit from the various types of filtrationsdefined for different types of
directed/undirected and weighted/unweighted networks. For a detailed review
and comparisons of the various filtrations, see Mehmet E Aktas et al. [99]. G. Jor-
genson et al., in [96], point out that while coarse topological data summaries en-
dow data with stability (and other desirable properties) it could inhibit learning
fine scale features that have considerable discriminatory power. For image data,
the authors propose convolving the original images with a collection of Random
Gaussian filter to enhance the discriminatory power of TDA features computed
from the sublevel filtration of simplicial complex representation of the data sam-
ples. In section 4.4, we shall present similar results ofmore extensive experiments
we conducted during the early part my PhD project and appeared in [19] on the
discriminatory power of LBP-based landmarks PH features when applied on US
images pre and post convolving with the pretrained AlexNet filters through the
different layers.

R. Gabrielsson et al., in [89], demonstrate that the weights of convolutional
layers at depths from 1 through 13 learn simple global structures. They investi-
gated the changes in simple structures during the training stage by analysing the
spaces of spatial filters of the convolutional layers over a thousand CNN models
applied to the well-known natural image datasets (MNIST, CIFAR-10, and SVHN
datasets).

Algebraic topological methods can help in understanding how the connec-
tions between neurons are structured and how it affects the network’s perfor-
mance. Accordingly, some existing work focused on analysing deep neural net-
works using TDA PH-based features to analyse the directed graph structure of
the FCL hidden layers and attempted to link these features to the performance
of the corresponding models. S. Chowdhury et al., in [90], introduced two dif-
ferent types of directed persistent homology schemes (PathPH and FlagPH) to
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characterise feedforward deep neural networks, in general, and the FCL of exist-
ing CNN architectures in particular. These types of directed PH schemes, aim to
understand the structure of the network and how information is processed and
transformed as it passes through the layers. The directed flag homology of deep
networks is computed by determining the simplicial homology of the underlying
undirected graph, and explicitly using Euler characteristic computations. The
path homology of these networks is non-trivial in higher dimensions and relies
on the number and size of the layers in the network. M. Gabella, in [92] designed
a feedforward neural networks to train on theMNISTdataset and track theweight
evolution through TDA methods to study how structure emerges in the weights
during training.

To gain insight into howDCNNs such asGoogLeNet, ResNet, andBERTachieve
their optimal performances, A. Rathore et al., [91], developed a visual topological
tool called TopoAct to enable exploration of topological summaries of activation
vectors. TopoAct displays the shape of the activation space, the organisational
principle behind neuron activations, and the relationships of these activations
within a layer. Furthermore, in [95], TDA methods are used to investigate the
generalisation gap, where the approach involves computing homological persis-
tence diagrams of weighted graphs that are constructed based on neuron acti-
vation correlations observed during training, with the aim of capturing patterns
that are associated with the network’s generalisation ability.

T. Lacombe et al., in [93] proposed a post-training method that assesses the
reliability of predictions by investigating the entire network’s topological prop-
erties, rather than the common approach of restricting the investigations to the j
final layer. This method assigns a Topological Uncertainty score to each new ob-
servation, which can be used for trained network selection, Out-Of-Distribution
detection, and shift-detection.

Around the same timeYangZhao&HaoZhang, in [94], proposed topological-
based entropy to quantify the information content of CNN unit as a mean of
quantifying the status of the Unit. A unit is defined by the highly activated po-
sitions in the feature map of an image output by a CNN model, modelled as
a weighted graph, and its topological features are obtained from the simplicial
complex formed by its k-clique subgraphs, (Aktas et al. [99] ). The topological
feature entropy is defined in terms of the distribution of birth times of the topo-
logical features per class in the corresponding simplicial complex. It is expected
to accurately indicate status for units in different networks. They showed that
feature entropy shares trends with loss during training and decreases the deeper
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the layer is, and investigating their values only on training data could distinguish
between networks of different abilities for generalisation. In Chapter 3, of this
thesis, we introduced the concept of image texture entropy that complements the
concept of topological feature entropy. In subsection 4.3.1, belowwe shall investi-
gate the effects of CNN training in transfer learning for US tumour classification
on both conventional as well as texture entropy of the training images of different
tissue datasets.

Inspired by the work in G. Carlsson [100] on the geometry of high contrast
natural image patches being that of the Klein bottle E. R. Love, in [97] introduce
a new topological convolution neural network (TCNN) architecture where layer
structures exploit the prior knowledge on natural image data with topological
data analysis (TDA). They define the space of image Klein filters, closely related
to a subfamily of the Gabor filters, based on a graph discretisation of the Klein
bottle. The Klein filters form a template for new layers and help produce sparse
featuremaps. The experiments on image/video data yield significantly improved
performance of TCNNs compared to conventional CNNs.

The research project in this thesis was designed to investigate the use of CNN
models for the analysis ofUS tumour scan images for different tissue/organ types.
Ultimately, we should aim to develop CNN models that (1) can reliably classify
benign and malignant masses from the ultrasound images, (2) is robust against
tolerable data perturbation, and (3) able to generalise to unseen images. Al-
though, interpreting the sought after model decisions is even more essential for
the critical medical image analysis, that challenge was not deemed as urgent as
the above ones. Notwithstanding the significant differences, we uncovered in the
last chapter, between contents of US image and natural images, there are obvious
synergies between our objectives and the motivating objectives of the above re-
viewed publications. Recognising the significant role played by the convolution
filters in determining the extracted feature maps to be learnt by CNNmodels for
image analysis, it was essential to link the algebraic and topological properties to
their effects on the content of US images through the different convolution layers.
The fact that the weights of the convolution filters are updated by the backprop-
agation procedure through an elaborate iterative training with image batched,
monitoring the changes in the filters properties is equally essential.

The current common practice in designing CNN models for US (or medi-
cal) image analysis, is to use existing CNNmodels, trained on natural images, in
transfer learning mode which involves adding a new layer to train the pretrained
model on a dataset of US images. Accordingly, we need to determine the effect
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of this additional training on the extracted US feature maps as well as on the al-
gebraic and topological properties of the output transfer learnt filters. In the last
chapter, we investigated the various effects of convolution filters on US image fea-
tures including spatial and textural entropy. The feature maps obtained during
CNN architecture elaborate training schemes (originally or in transfer learning
mode) deploy large sets of multi-channel Gaussian convolution filters in differ-
ent number of layers each layer of which involves different normalisation, acti-
vation functions, and possible down-sampling applied on the convolved images
before passing lower-resolution image maps into the next layer. In this chapter,
we investigate how these added processing steps impact the effect of each con-
volution layer on conventional/textural entropy and the spatial distribution of
texture features (using LBP landmarks). We shall also investigate the algebraic
and topological properties of convolutional filters in terms of sensitivity to small
changes using condition numbers and their spatial distribution by TDA tools.

4.2 Performance of pretrained CNN for US images

Due to lack of availability of sufficiently large datasets of US images, the common
practice in designing CNN models for US (or medical) image analysis is to use
existingCNNmodels, trained on natural images, in transfer learningmodewhich
involves adding a new layer to train the pretrained model on a dataset of US im-
ages. This section is designed to determine the commonly perceived level of over-
fitting and lack of robustness against image data perturbation of CNNmodels of
US image analysis. For that, we first implement several commonly used state-
of-the-art CNN architectures pretrained on natural images in transfer learning
mode for analysis of US breast scan images. These SOTA architectures selected
are AlexNet [29], VGG16 [38], ResNet18 [39], and EfficientNet [40]. These mod-
els were trained and tested exclusively on Tend-D breast ultrasound images, as
mentioned in section 4.2.1, to ensure consistency and equitable comparison. We
shall test the performance of these transfer learnt models with regards to: (1)
discriminating Benign against Malignant masses, (2) ability to generalise its per-
formance to an external dataset, and (3) robustness against certain level of noise-
caused image data perturbation.
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4.2.1 Classification performance

In our experiments, we shall use the internal Ten-D recorded database of US
breast tumour dataset (a class balanced set of 524 images) for training and test-
ing the selected CNN models in TL1 mode. To achieve models of improved per-
formances, we adopted different image augmentation schemes to increase the
number of training and testing dataset. The Ten-D/Buckingham research team
adopted known data augmentation methods, and developed new schemes, for
this purpose and each cropped RoI ultrasound image was used to generate 7 ad-
ditional image versions. These methods include geometric methods such as mir-
roring and rotationwith degrees 90, 180, and 270, respectively, and singular value
decomposition with 45%, 35%, and 25% ratios of the selected top singular values.
As a result, our training and testing dataset consists of 4192 class-balanced US
RoI images.

We followed the common practice in determining the models performance in
terms of classification accuracy, sensitivity, and specificity computed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
(4.2)

where
True positive (TP): Malignant case correctly classified,
False positive (FP): Benign cases incorrectly classified as malignant,
True negative (TN): Benign cases correctly classified, and
False negative (FN): Malignant cases incorrectly classified as benign.

In these and other experiments, we follow the training and testing protocol
that randomly select 80% of the samples (i.e. 3352 images) for training plus
validation and the remaining 20% (840 images) are used for testing the perfor-
mance of the trained models. We tried other training/testing ratios, but this ratio
achieved a more desirable performance during training (i.e. resulted in the low-
est difference between classification and validation accuracy) as a result of having
wider range of data samples in the database.

WeusedMATLAB2deep learning toolbox to implement pretrainedCNNmod-
els and test the performance of the selected CNNmodels. During the training we

1Replacing the last fully connected layer and re-train the model on ultrasound datasets, it is
also known as fine-tuning.

2Deep learning toolbox – MATLAB (version R2019a – R2022a), MathWorks Inc.
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used the default parameters, but we repeated the experiments for three different
batch sizes: 32, 64, and 128. We also tried different numbers of epochs. Below, in
Table 4.1, we only present the results for the 64 batch sizes with 20 epochs.

Table 4.1: CNN models Performance in transfer learning mode for US breast
scans.

TL models Validation Acc Test Acc Sensitivity Specificity
AlexNet TL 97.16 96.53 95.95 97.14
VGG16 TL 96.87 96.79 97.86 95.71
ResNet18 TL 97.31 94.17 95.00 93.33

EfficientNet TL 88.06 89.4 91.19 87.62

All CNN models achieved a high test accuracy (> 89%) with reasonable 2-
3% difference between sensitivity and specificity rates. AlexNet, VGG16, and
ResNet18models attained notably higher performance compared to the Efficient-
Net model. Notably these performances are suboptimal to that achieved on nat-
ural images.

Using batch size 32 causes unstable training i.e. the classification accuracy
and validation rates suffer from sudden change/shift during the training and the
model seems to be fitted specifically well for the training set. In contrast in the
case of batch size 64 the classification accuracy and validation are more balanced
and stable. In the other case of using batch size 128, the model is underfitted
compared to batch size 64. These assertions can be deduced from the training
output curves of performance and loss functions (for instance as shown in Figure
A.1).

To test if similar performances hold for US scan images of other than breast tis-
sue, we repeated the experiment for training and testing the pretrained AlexNet
in TL mode using a dataset of US bladder tumour scan images. However, the
dataset for bladder tissuewas considerably smaller compared to that of breast tis-
sue, containing only around 200 images for both classes, without augmentation.
We followed the same training/testing protocol and found that the Training accu-
racy (95.15%), Validation accuracy (86.67%), while Test Accuracy = 76% with a
big gap between Specificity = 93.33% and Sensitivity = 60%. Note the behaviour
of the training performance and loss functions displayed in the following Figure
4.1. Obviously, lower validation and test performances are due the rather much
smaller size training and testing samples compared to the breast dataset (with
augmentation) case.

Similar patterns of results were achieved, in terms of fluctuation of learning
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33

Figure 4.1: Classification accuracy on Ten-D dataset, with applying two levels of
Gaussian (GN) and Speckle (SN) noises.

and loss rates, when we used Ten-D Liver ultrasound dataset. Even though the
liver dataset is slightly larger than the Bladder dataset.

Achieving high test accuracy in the upper 90%s, though very impressive, is
not enough to adopt as a credible CNN model for US tumour image classifica-
tion. Recall that the dataset, prior to augmentation, were recorded in a single
clinical centre and by nomean constitutes a random sample of the global popula-
tion of US images recorded using different US devices and labelled by differently
trained radiologist who may follow different clinical practices. In the rest of this
section, we investigate robustness of the almost best performing transfer Learning
CNN model (AlexNet) against tolerable perturbations followed by their ability
to generalise to an external dataset.

4.2.2 Robustness against natural perturbation

To evaluate the robustness of each CNNmodel, we deployed a simple adversarial
setting where we tested the classification performance on degraded versions of
the testing dataset. Similar to the noise distortion factors in Chapter 3, we used
Gaussian and Speckle noise with varying levels of degradation to assess themod-
els’ performance at stages where the CNNmodels were expected to be highly or
poorly sensitive to small perturbations 3. Specifically, we applied Gaussian noise
with µ=0 and var = 0.001 to 0.01 referred to as GN1 and GN2, respectively. We

3The level of noise perturbation affects both the pixel value distribution and their descriptors,
as established in Subsection 3.4.2
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also added speckle noise to the testing set with µ=0 and var=0.01 to 0.1 which
will be referred to as SN1 and SN2, respectively. Figure 4.2, below, shows the sig-
nificant drop in accuracy indicating lack of robustness against the perturbed data
with both types of noise. AlexNet and VGG16 responded better than ResNet18
and EfficentNet-b0 to the image distortion and the accuracy dropped by 4-6%
for AlexNet and VGG16, whereas for ResNet18 and EfficentNet-b0 the accuracy
dropped by 10-30% for the minimum noise levels.
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Figure 4.2: Classification accuracy performance of CNNmodels on Ten-D dataset
and robustness testing against noise levels (GN1, GN2, SN1 and SN2).

4.2.3 Generalisability performance

To check the inherent overfitting problem to the training dataset in the TL mod-
els, we utilise a publicly available external breast ultrasound dataset called BUSI
dataset [101]. BUSI dataset served as a benchmark to estimate the generalisability
and performance of the CNN models beyond the training dataset in our exper-
iments throughout the thesis. Figure 4.3 illustrates the significant decrease in
accuracy by 8-20% on 160 cropped RoI, clean, and balanced class images. The
accuracy drops further when it is evaluated on unbalanced classes.

However, it is worth remembering that the performance of any deep learn-
ing model can be affected by many factors such as the (depth, width) architec-
ture parameter and/or hyperparameters selection; distribution of quality training
images; size of training and validation datasets; and distribution of the testing
population (see Subsection 2.1.3). The purpose of the above experiments was
beyond finding the optimal performance for the selected CNN models. In fact
the results have confirmed that adopting CNNmodels pretrained on natural im-
ages, for analysis of US images, suffer from lack of robustness against noise and
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Figure 4.3: Classification accuracy performance on Ten-D and BUSI datasets.

inability to generalise to unseen data. Recall that in Chapter 3, we have shown
that texture landmarks distributions of US images are notably distinct from those
of natural images. This together with the scarcity of US images of standardised
image “quality”, may partially explain the above observed behaviour of the inves-
tigated CNNmodels in the presence of noise or when tested on unseen datasets.
Forwider explanations, however, we need to identify CNNmodel’s training com-
ponents/parameters that contribute to their lack of robustness and poor general-
isation. We focus on the effects of the convolutional layers processes and parame-
ters on the output feature maps of the training dataset images. These effects need
to be expressed in terms of the dynamic behaviour of algebraic and topological
properties of the convolution filters during training.

4.3 Training-caused effects of convolutional layers

This section, is concerned with the CNN model training processes/parameters
that have an impact on the feature maps as they input into the fully connected
Layers. we study the effect of convolution layer pretrained filters on grayscale
entropy and texture-based LBP entropy on ultrasound images. Furthermore, we
investigate the algebraic and topological properties of these filters as well as post
retraining on US images. These investigations are expected to reveal the chal-
lenging complexity of interpreting the CNNmodels decisions. The related inves-
tigations and experiments have been done for the various CNN models used in
Section 4.2, but here we shall only present the results for the AlexNet not only for
being well performing architecture but for having only 5 convolution layers with
filters of different sizes.
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4.3.1 Effect of pretrained filters on entropy

In the previous chapter, sections 3.2 and 3.3, we evaluated the impact of randomly
selected Gaussian kernels on original and convolved images in terms of grayscale
entropy and texture-based LBP entropy. However, when usingAlexnet, aswell as
other CNN architectures, in transfer learning mode the convolution filters used
to initiate retraining of US images are the ImageNet pretrained filters and the
retraining may result in filters that differ significantly in terms of their effects on
image contents as well as in terms of their algebraic and topological properties.
In order to establish these effects in relation to the results in the last section, we
confine our experiments to tumour class dependency effects.

Note that the first convolution layer of AlexNet deploys 96 3-channels set of
pretrained filters in the first layer of size 11×11 with stride 4 (i.e. overlap of 7),
see section 2.1.2 for more detail. Together with the other steps, this layer reduces
the size of any input image to 55×55.

We shall first demonstrate, in Figure 4.4, the visual effects on a sample image
during the convolution process with an example of a pretrained filter w from
AlexNet, using the adapted bias b, and the ReLU activation function σ. For the
visualisation purpose, all images appear with the same size.

𝑤𝑋𝑋 𝑤𝑋 + 𝑏 𝜎(𝑤𝑋 + 𝑏)

Figure 4.4: US image convolved with pretrained filter w, bias b, ReLU activation
σ, prior to max-pooling.

Next, we examine the effect of these pretrained filters in the convolutional
layer settings by compute the entropy values of 75 original images per class with
a different sampling selection than the samples used in chapter 3 experiments. In
these experiments, we use conventional and texture-based LBP entropymeasure-
ments as a metric to quantify the information content of each convolutional layer
of AlexNet architecture. We observed a similar pattern in terms of entropy values
across layers taking into account that size of feature maps are getting smaller due
to convolution overlapping and max-pooling. For simplicity, we discuss the first
convolutional layer after operations within the layer such as the convolution and
adding bias, ReLU activation function, local response normalisation, and max
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pooling. For the convolutions and adding biases, we use the 96 pretrained fil-
ters on the US images that result in producing 7200 convolved images per class.
Distribution of entropy values of original and convolved images, are displayed
in Figures 4.5 and 4.6, using both entropy metrics for bladder, liver, and breast
ultrasound scans.
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(c) Breast USI

Figure 4.5: Distribution of conventional entropy 1st layer: original images (top)
and convolved images (bottom).

For all tissue types, the minimum entropy values in all original US image
classes are shifted by just above 1 unit after applying convolution. The application
of the local response normalisation did not result in any significant loss of infor-
mation as it normalises the local contrast among every 5 feature map channels i.e.
brightness normalisation. The ReLU activation replaces all negative valueswith 0
and keeps the positive values and consequently most of the feature maps become
redundant as the entropy values become zero or below 0.5. A small percentage
of non-zero entropy value feature maps are passing the texture features to the
next stage for down-sampling. The cause of negative values mainly is due to the
fact that biases are mostly negative in the first convolutional layer. After apply-
ing max-pooling, the entropy values are increasing and/or decrease as a result of
selecting the maximum value out of four values for each window.

The results in Figure 4.6, show an understandable reduction in texture en-
tropy by almost similar amounts for the 3 different tissue type in comparison to
traditional entropy distributions. But the pattern of change in the distributions
of texture entropy output by the first convolution layer, is almost similar to those
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Figure 4.6: Distribution of LBP texture entropy pre- and post- CNN convolution.

corresponding to conventional entropy results in Figure 3.4 for both tissue classes.
Incidentally, both experiments show the futility of attempting to classify and

discriminate tumour classes using either type of entropy as the sole criteria. There-
fore, we need to investigate the effect of the convolution layers on the spatial dis-
tribution of texture features to understand the challenges uncovered in Section 4.2
with regards to the performance of the CNN models for distinguishing between
malignant and benign tumours. This will be done in Section 4.4.

4.3.2 Algebraic properties of various CL filters

Prior to training, CNN convolution filters are initialised using random Gaussian
matrices, with mean zero and small standard deviations, with a range of condi-
tion numbers. Fitting the model performance to the training set could contribute
to more learnt filters to become ill conditioned while achieving high classifica-
tion accuracy on the training, validation, and some testing sets that are drawn
from the same distribution. Ill-conditioned filters may cause instability of model
performance and perform poorly on unseen data or as result of slight changes in
the input data. A. Sinha et al., [102], point out that ill-conditioned learnt weight
matrix contributes to neural network’s susceptibility to adversarial attacks. They
proposed an orthogonal regularisation that ismeant to keep the learntweightma-
trix’s condition number sufficiently low, and demonstrated its increased robust-
ness to adversarial attacks when tested on the natural image datasets of MNIST
and F-MNIST.
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Accordingly, the algebraic properties of filters relevant to the objectives of this
thesis must cover both the distribution of their condition numbers and their spa-
tial distributions within their domains. W. Demmel, in [64], investigated the up-
per and lower bounds of the probability distribution of condition numbers of
random matrices and showed that the sets of ill-posed problems including ma-
trix inversion, eigenproblems, and polynomial zero finding all have a common
algebraic and geometric structure.

Investigating the effects of convolution layers on texture features and their
conventional entropy as well as spatial distributions are motivated by: (1) most
DL analysis of US images use CNNmodels, developed for natural image analysis,
are trained in transfer learning and (2) yet in chapter 3 we have already shown
that the distribution of texture features in US images differ significantly than their
counterparts in natural images. To clarify these issues we start with an example.

4.3.2.1 Illustrating example

To further explain our emphasis on filters condition numbers, we illustrate the
impact of a relatively well- and ill-conditioned pretrained filters, selected ran-
domly from the AlexNet setting, on a given US image before and after adding
noise. This is motivated by the fact that ill-conditioned n × n matrices, consid-
ered as linear transformations ofRn, are highly likely to map nearby vectors inRn

onto far apart vectors. The two pretrained first layer filters of size 11×11×3 were
chosen to have on average (over the 3 depth-wise channels) condition numbers:
w1 <200 and w2 > 2×104. Both multi-channel filters were applied with stride
4 on the input US image and after adding Gaussian noise µ=0 and var=0.001,
besides adding biases (b) and applying the ReLU activation function (σ). Vi-
sual examination of the resulting feature maps and their LBP descriptors with-
/without noise, show obvious differences between the case of using the relatively
well-conditioned filter and the case of the highly ill-conditioned one. Despite the
obvious visible differences in the LBP texture contents between the original im-
age and the noisy version, convolution with w1 results in significant reduction of
differences in texture contents. In contrast, the convolution with w2 results in big
differences between the corresponding texture contents both in quantity and in
spatial distribution. These differences in the effects of noise can be explained by
the known facts about the link between conditioning of filters and their actions as
linear transformations on nearby vectors. In turn this helps illustrate sensitivity
to noise by the conditioning of the filters.

This illustrating example may lead to predicting that (1) feature maps ob-
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𝑤1 is filter no 23

𝑤2 is filter no 79

𝑋

𝜎(𝑤1𝑋𝜀 + 𝑏)

𝑋𝜀

𝜎(𝑤2𝑋𝜀 + 𝑏)𝜎(𝑤2𝑋 + 𝑏)

𝜎(𝑤1𝑋 + 𝑏)

𝑛𝑜𝑖𝑠𝑒 10−2

Figure 4.7: Impact of well- and ill-conditioned pretrained filters, w1 and w2, on a
US image with and without random Gaussian noise ε.

tained with reasonably lower condition number filters preserve the texture con-
tents of the original US images, and preserve the shape of the tumour RoI, with or
without noise, and (2) feature maps obtained with ill-conditioned filters exhibits
instability and sensitivity to small changes. It may also illustrates a potential link
between the distribution of filters condition numbers across the various convolu-
tion layers and the overfitting problem inCNNmodels. But the action of filters on
images are influenced by many properties of the filters such as variation in their
entries, their norms and the norms of their inverses. For the 11×11 pretrained fil-
ters w1 and w2, Figure 4.8 displays their 3-channel versions and inverses besides
providing information on their norms and condition number values. For both fil-
ters: (1) there is a significant variation in the condition numbers of their channel
versions, (2) increased condition numbers do not yield larger norms, (3) norms
of inverses are significantly higher than the original filters, and intriguingly the
ill conditioned filters have smooth entry shapes with one global maximum/min-
imum.
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𝜔1,1
−1 = 1899.99 𝜔1,3

−1 = 929𝜔1,2
−1 = 4477.72

𝜅 𝜔1,1 = 94.083 𝜅 𝜔1,3 = 52.96𝜅 𝜔1,2 = 434.01

𝜔1,1 = 0.049 𝜔1,2 = 0.096 𝜔1,3 = 0.057

(a) Average condition number of the three channels: κ(w1) = 193.6893

𝜔2,1 = 0.478 𝜔2,2 = 1.062 𝜔2,3 = 0.649

𝜅 𝜔2,1 = 487.52 𝜅 𝜔2,3 = 59133.3𝜅 𝜔2,2 = 1903.7

𝜔2,1
−1 = 1019.12 𝜔2,3

−1 = 91013.7𝜔2,2
−1 = 1791.51

(b) Average condition number of the three channels: κ(w2) = 20508.1842

Figure 4.8: Visualisation of the pretrained 3-channel first layer filters w1 and w2.
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Although, the range of entries of the different channel filters are relatively
small but their local maximum/minimum entries appear in different positions,
indicating that convolving an image with the different channel filters result in
learning different patterns that may not be reflected by their average condition
numbers. Accordingly, the visual effects noted in Figure 4.7 may change if we
use a different channels than the one used. Consequently, the above stated pre-
dictions are not valid and allowing different channel filters (as is the case for the
pretrained AlexNet filters) to have significantly different conditioning numbers
adds to complexity of interpreting CNN decisions. Recall that, the number of
depth-wise channels beyond the first convolutional layer are significantly greater
than 3 to be compatible with the number of filters in the previous layer.

4.3.2.2 Distribution of condition number of filter sets

To get the wider and more informative picture beyond that of the above illustrat-
ing example, we shall now investigate the algebraic and topological properties of
three different sets of the CNNconvolution filters: (1) initialised sets of filters, (2)
filters pretrained on natural images, and (3) filters post-retraining on ultrasound
images in transfer learning mode. We generated the initialisation sets, in a simi-
lar way to the original AlexNet4, consist of Gaussian filters with µ=0 and σ=0.01.
We imported the pretrained filters from [103], while the transfer learning filters
were output when AlexNet were retrained on breast ultrasound images. First,
we shall determine the distribution of condition numbers of these different sets
of 96 3-channel filters. Due to the extremely wide ranging condition numbers, we
show the distributions with different size binning in Figure 4.9 below.
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Figure 4.9: Distribution of condition numbers of the sets of 96×3 filters.

4Notably, theMATLAB pretrainedmodel filters were initialised usingGlorot initialisation [68]
instead of the original setting (µ = 0 and σ = 0.01) detailed in [29].
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This chart show that various training has led to creating more ill-conditioned
filters which inevitably could undermine the sensitivity and stability of CNN
models. Majority of the initialised filters are among the lowest range of the con-
dition numbers (<50) and no filters in the other two sets are in that range. While
majority of the pretrained and transfer learnt filters have their condition numbers
in the upper range (>700) in which only very few initialised filters belong. Table
4.2 below, show the level of variation in the condition numbers between the dif-
ferent channels of the 3 sets, as illustrated by the maximum condition numbers.
Within each set, variation within the different channels get more significant: (Ini-
tialised: 3323, 1190, 4076), (Pretrained: 108612, 46049, 59133), and (Transfer Learnt:
49223, 46491, 226323).
Based on the final observations from the illustrating example, we assert that:

Due to the significant variations of condition numbers, not
controlling filters condition numbers within the channels
compounds the complexity of interpreting CNN decisions.

In Figure 4.10, below, we present the actual changes in pretrained filters’ con-
dition number (in Log10 values) during the retraining of AlexNet on US images
over 20 epochs. Clearly this reveals significant instability during training, perhaps
as a result of variation in the training US image batches, and the final destination
may not entirely reflect its behaviour. Only few filters are somewhat stable.
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Figure 4.10: Condition Number fluctuation during retraining AlexNet.

We conducted an examination of the singular value distribution of filters to
attain a deeper understanding of distinctions among initialised, pretrained, and
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transfer learning filter sets across various convolutional layers. The findings pre-
sented in Table 4.2 include the minimum and maximum values for each of the
three filter sets. Notably, the table emphasises a significant difference in the small-
est singular values across all three filter sets, whereas revealing a proximity be-
tween the largest singular values of the pretrained and transfer learning filter sets.

Table 4.2: Minimum and Maximum singular values of filters in the 3 sets.

Filters Initialised Pretrained Transfer learnt
min 1.49× 10−5 2.39× 10−6 8.55× 10−7

max 0.08273462 1.27163079 1.27102534

We conclude this subsection to remark that CNN decision interpretation can
benefit from controlling the range of filters condition numbers and/or singular
values over the different channels, which in turn can improve performance sta-
bility, improve generalisation and robustness against data perturbation. We shall
elaborate on these remarks in the next two chapters.

4.3.3 Topological properties of convolution filters

In the last subsection, we discussed the work of W. Demmel, in [64], who inves-
tigated the upper and lower bounds of the probability distribution of condition
numbers of randommatrices for ill-posed problems and showed that the further
away a matrix is from the set of noninvertible matrices, the smaller is its condi-
tion number. Accordingly, the spatial distribution of random matrices, in their
domains, are indicators of distribution of their condition numbers. These results
provide a clear evidence of the viability of our approach to exploit the tools of
topological data analysis (TDA) in our investigations of the stability of condition
numbers of point clouds of convolution filters.

To visualise the spatial distributions of point clouds of filters (post flattening),
we use the two TDA established tools: Mapper and the PD’s. We apply these tools
on the initialised, pretrained, and transfer learning AlexNet filters. In particular,
we focus on the 3 set of filters in the first convolutional layer to check whether
there is a link between the performance of filters in terms of entropy or the state
of their condition numbers. Readers, however are reminded that the performance
of filters in the CNN settings is dependent on other convolution layers steps such
as normalisation, activation function, and down-sampling.
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4.3.3.1 The Mapper Visualisation

The Mapper algorithm is dependent on selecting the many parameters as de-
scribed in section 2.2.4. We first flatten each k × k filter to create a point cloud
in Rk×k, then we select different lens projection techniques to visualise the data
in lower dimension such as isolation forest and L2-norm, or principal component
analysis (PCA) lenses. Overlapping parameters, covering space, and clustering
algorithms are playing an important role for the Mapper layout and connections
between the point clusters and neighbouring ones. In figure 4.11, we show a sim-
ple case of all three types of filters whereby all parameters are fixed except the
lenses. The first lens is isolation forest and L2-norm (top row), and the second
lens is PCA 1 and 2. In both cases, the clustering and the number of connected
components for initialised filters are similar. This indicates the state of those fil-
ters involving less anomalous property and/or behaviour to be effected by the
choice of parameters. For the pretrained and transfer learning filters, both lenses
are capturing slightly different information manifested by differences in the con-
nected components, number of nodes, edges and samples.
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Figure 4.11: Visualising AlexNet filters via Mapper algorithm.

The overall behaviour of all weights are difficult to analyse throughMapper as
it requires parameter selection and in some cases a priori knowledge of the data.
For example, there are nodes that contain multiple filter point when their L2-
norm are close to each other however the norm of their inverses are significantly
far from each other i.e. this type of spatial distribution and condition number
may not be linked directly. In fact, repeating the same steps on the inverses of the
filters for visualisation require a larger covering space for pretrained and transfer
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learning filters which indicated the larger distance between the points i.e. consid-
ering the norm of the filters and its inverses may provide the condition number
states. Wewill focus on the topological behaviour of filters exclusively in the next
chapters.

4.3.3.2 The PD visualisation

The TDA persistent homology tool and its persistence diagrams (PDs) provide a
more informative visualisation of the spatial distribution of the various filter sets.
Taking into account the discussion on variation of condition numbers of filters in
different channels, we can either construct the PDs of the 3 sets by concatenat-
ing the flattened filters of the 3 channels and create 96 vectors of 3×(11×11)-
dimensional vectors or construct the PD of 288(=3×96) 121-dimensional vectors.
In both cases, besides constructing the PDs, in both dimensions 0 and 1, of the
filters as well as their inverses.

Examining the PDs in Figure 4.12, that are computed from the concatenation
of the flattened filters in the 3-channels, reveal that the initialised filters are spread
out widely and their connected components start to die, by merging, at a later
stage (death > 3.8) with only one component that continues to live beyond (4.4).
The holes in that set start to be born (at birth = 4) when significant numbers of
connected components die, and very few holes have long life spans. On the other
hand, the PD’s of the pretrained and transfer learnt sets have more or less similar
patterns but differ from that of the initialised set. These two sets of filters are
less spread out than the initialised one and they start to merge much sooner (at
around death=0.75), and again only one connected component stay alive. Again,
the holes in both these sets start to appear when most connected components
merge, and rarely have noticeable life spans. The inverse filters in all the three sets
have very few differences in their topological profile. The connected components
start to merge much earlier than that of the original filters indicating that the
inverse filters are more packed.

Figure 4.13, displays the PDs when each of 3-channel filters are considered
singularly. The topological profile of these filter sets, only differ marginally from
those in 4.12 as a result of having larger point clouds in lower dimensional do-
mains. This exploration can reveal essential features and connections that might
be obscured in higher-dimensional representations.
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Figure 4.12: PDs of the first layer convolutional filters 96× (11×11×3) (top) and
their inverses (bottom).
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Figure 4.13: PDs of 1st layer convolutional filters as 288(11×11)-dim vectors (top)
and their inverses (bottom).
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4.4 Convolution layer effects on LBP landmarks PH

Feature Learning by CNNmodels does not only depend on the properties of the
convolutional filters. It is also influenced by the training datasets, and the train-
ing procedures. Based on the differences of the texture contents in US images
compared to those in natural images, it is necessary to determine the effect of con-
volution layers on the spatial distribution of texture in US images. In this section,
we investigate the impact of convolutional layers on the discriminatory power of
persistent homology features of feature maps throughout the CL operations on
malignant and tumour lesions.

4.4.1 Topological representation of texture landmarks

To this extent, we have seen the impact of the convolution filters on the discrim-
inatory power using the entropy values on the original and convolved images.
We extend the in-depth investigation of the CL effects on the spatial distribu-
tion of texture features in images and feature maps. In particular, we extract LBP
features, as described in Section 3.3.4, from original US images and feature maps
after each operation of the convolution layers. After selecting the LBP landmarks,
the persistent homology features are computed in dimensions zero and one. The
dimension of topological features for each geometric group is:

TFV = k × τ × n (4.3)

where k is the number of rotations per LBP group, τ is the maximum distance
thresholds for computing PH in both dimensions, and n is the number of filters
or feature maps at each convolutional layer. Simple classification methods such
as K-Nearest Neighbour (KNN) or Support Vector Machine (SVM) can be used
to classify the TVF of malignant and benign ultrasound images.

4.4.2 Experimental setting and results

For compatibility with AlexNet architecture, the ultrasound images are resized
to 227×227. To prepare the topological feature vector, we only extract the 2-
transitions LBP landmarks for k=8 rotations per geometric groups Gi (i=1, . . . ,
7) of landmarks. These choices are based on the distribution of ultrasound LBP
descriptors and the statistical analysis shown in Chapter 3. The maximum dis-
tance thresholds τ for computing PH, is set to 30 for ultrasound images whereby
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the number of connected component in dimension zero is one and all holes in di-
mension one are closed - using “Ripser” software [104] to construct the Rips Sim-
plicial Complexes. This parameter selection is dependent on the image modality,
e.g. natural and face images require thresholds beyond 30. The number of n filters
or feature maps are n=1, 96, 256, 384, 384, 256 representing the input image and
number of filters per layer as the grouped convolutions are concatenated for the
evaluation purposes. We feed the TVF to SVM classifier at to evaluate the separa-
tion of the spatial distribution frommalignant and benign tumours. For the train-
ing and testing selection strategy, four single-split schemes with dataset ratios of
30-70%, 50-50%, 60-40%, and 70-30% were compared after repeating each exper-
iment 100 times. Due to the high variation of ultrasound images as explained in
the previous chapter, the 70% of training and 30% of testing scheme is chosen.

4.4.2.1 Experimental results

Figure 4.14, below, illustrates the performance of the ULBP landmark groups
based PH schemes (in dimensions 0 and 1) on the original ultrasound scan im-
ages of three tissue types: liver, bladder, and breast. The classification perfor-
mance, based on the spatial distribution of each class and type, reveals that the
bladder dataset is underperforming, with accuracy for each landmark ranging
between 52-60%. In contrast, the breast and liver datasets exhibit significantly
higher accuracy, ranging between 76-82%.
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Figure 4.14: ULBP landmark based PH for All US Original images.

The following intriguingly settled patterns can be noted during the first con-
volution layer: (1) except for ULBP landmark G4 in dimension 0 and G3 in di-
mension 1, each of the first convolution three operations (Convolution, ReLU,
and Normalisation) improve accuracy on their predecessors, and (2) except for
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ULBP landmarkG1 in both dimensions andG4 andG3 in dimension zero and one,
the max-pooling operation results in reduced performance. The improved accu-
racy may be attributed to observations that many filters eliminate landmark sets,
especially in benign cases. This reduction in entropy does not necessarily have a
negative impact, (see Tables A.1, A.2, and A.3 for detailed results on specificity,
sensitivity, and classification accuracy). This raises the possibility of using some
convolution filters to improve the performance of PH schemes in conventional
machine learning paradigms. Additionally, it provides empirical guidance for
CNN architectures in terms of the depth and width of the convolutional layers.

As a case study, we will initially present and discuss the results up to and in-
cluding the first convolutional layer. Figures 4.15 and 4.16 display the accuracy
of original images for comparison with the post-ReLU feature maps of the first
convolutional layer. The differences in sensitivity and specificity of both persis-
tent homology dimensions are relatively small at the ReLU layer compared to the
original images.
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Figure 4.15: Classification accuracy - AlexNet 1st convolutional layer.
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Despite the reported drop in entropy in the previous section, the performance
post-ReLU for all groups and homology dimensions is higher than the perfor-
mance of the pre-convolution schemes. Upon close examination of the persistent
homology (PH) features, it was observed that PH texture features vanish (result-
ing in empty landmark sets) for both cases when original images are convolved,
bias values are added to feature maps, and the ReLU operation is applied. This
improvement is linked to ReLU’s impact, introducing sparsity in activation maps
by zeroing out negative values and allowing positive values to pass through,
thereby promoting the activation of more discriminative features. Despite a sim-
plified data representation, ReLU’s sparsity and selective feature extraction con-
tribute to improved task-specific performance. Additionally, ULBP groups and
PH vectors become empty for some feature maps produced by certain filters, es-
pecially those causing the entropy values to drop to 0 or near 0.
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Figure 4.16: Classification accuracy - AlexNet convolutional layers.
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4.5 Pruning convolutional filters

Pruning is used in deep neural networks to decrease the network’s complexity
and size by eliminating unnecessary connections and weights. The purpose of
pruning is to identify the connections and weights in a CNN that make the least
contribution to the network’s accuracy. These connections and weights can be
eliminated during training or removed entirely, resulting in aCNNwith fewer pa-
rameters. This reduction in parameters leads to less memory usage and compu-
tational requirements during training and inference. There are several methods
for pruning CNNs, including weight pruning, filter pruning, and neuron prun-
ing. Weight pruning involves setting the smallest weights to zero and removing
the corresponding connections, while filter pruning involves removing entire fil-
ters that have little impact on the network’s accuracy. For instance, the authors
in [105] proposed pruning filters based on L1 and L2-norm criteria for more effi-
cient CNNs. The pruning was applied on VGG16 and ResNet-110 models trained
CIFAR-10 and the inference costs reduced up to 34% and 38% for each model, re-
spectively. Another example is integrating principal component analysis scheme
to prune deep neural networks, [106].

To this extent, our investigations on exploring the impact of convolutional lay-
ers on input images by examining the algebraic parameters of initialised, pre-
trained, and transfer learning convolutional filters have led to proposing a simple
filter pruning strategy based on the condition number. We implement pruning
filters for a feedforward CL filters in AlexNet based on the condition number and
percentage of filters. Pruning filters based on condition number may increase the
robustness of the model. Filters with high condition numbers can be pruned at
various percentages. In addition, we applied a filter pruning technique based on
condition numbers, reducing pretrained filters by 50%. This led to a decrease in
computational complexity while maintaining classification accuracy results that
are similar to those achieved without pruning the filters (see Figure 4.17).

In order to explore the possibility of reducing the condition number of filters
more thoroughly, examining the impact of backpropagation on pruning strate-
gies, including the proposed filter pruning based on conditioning is essential.
Furthermore, building upon a pilot study conducted earlier, it is important to
investigate the feasibility of using different types of well-conditioned filter ini-
tialisation methods with the aim of decreasing redundancy and computational
complexity.
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Figure 4.17: Classification accuracy after 50% pruning.

4.6 Summary and conclusion

In this chapter, we have established that utilising pretrained CNNmodels trained
on natural images in transfer learning mode for the analysis of US images indeed
results in a lack of robustness against natural perturbations and limited general-
isation to unseen data. We conducted various investigations to understand these
shortcomings by studying the effects of pretrained convolutional filters on feature
maps in terms of conditioning of various filter sets. The aim was to gain a better
understanding of the sources of overfitting in deep learning, and quantifying the
amount of redundant information in the feature extraction process of AlexNet us-
ing the conventional and texture-based entropy values of the convolved images
and feature maps. Additionally, we examined the effect of the convolutional lay-
ers on the preservation or enhancement of LBP texture features, whichmay not be
evident from simple entropy quantification alone. To further understand the spa-
tial distribution and topological features of feature maps across all convolutional
layers, we deployed persistent homology.

Our findings suggest that the incorporation of convolution filters as feature
extraction methods can enhance the discriminative capacity of PH based hand-
crafted features. Additionally, it enables the CNN model to more effectively dis-
tinguish between benign and malignant masses. We have gained valuable in-
sights into the performance patterns across different layers, with potential impli-
cations for the design of CNN architectures tailored for ultrasound images. Our
aim is to train these architectures from scratch, focusing on controlling or regu-
larising the condition numbers of sets (tensors) of filters during training. This
will be the focus of work in the next two chapters.
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Chapter 5

Towards Slim, Robust and
Generalisable CNNs for US Scans

In the last chapter, we established that existing state-of-the-art CNNmodels, that
have been trained with natural images, in transfer learning mode for analysis of
US images suffer significantly from lack of robustness against noise-based ad-
versarial attacks, and overfitting effects manifested by the inability to generalise
performances to unseen data. These problems are often attributed to the lack of
availability of class labelled “good quality” US tumour image datasets that rep-
resent an i.i.d random sample of the unknown population. We have also uncov-
ered empirical evidence for additional factors contributing to these limitations by
(1) examining the algebraic and topological properties of pretrained and trans-
ferred learned point clouds of convolution filters, comparing them with those of
initialised filters, and (2) linking these properties to their impact on the texture
contents of US images. This chapter is designed to exploit knowledge gained so
far in order to explore a viable strategy for overcoming these challenges. We shall
demonstrate that controlling the condition numbers of convolution filters pro-
vides a suitable strategic framework for designing and testing customised slim
CNNmodels1, capable of addressing the aforementioned challenges in US image
diagnostic tasks while achieving high performance.

Section 5.1, discusses the background for the work in this chapter with a re-
viewof existingwork ondeveloping customisedCNNmodels trained from scratch
on breast ultrasound images. Section 5.2, identified the basic requirements of
intended customised models, describe our first attempted simple architectural
structures of SlimCNNs, and investigate several approaches to generating convo-

1Slim CNNmodels are characterised by a reduction in parameters, achieved through reducing
the number of filters andmaintaining a shallowdepth in convolutional and fully connected layers.
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lution filters with emphasis on distribution of condition numbers. In Section 5.3,
we test the performance of simple Slim CNN models on computer vision bench-
mark datasets such as Digits, MNIST, and CIFAR-10. Moreover, we investigate
the instability of the condition numbers during the training in these natural im-
age dataset experiments. In Section 5.4, we introduce an innovative filters weight
initialisation to maintain equal condition numbers across the different channels
of each layer to be used for refined models of the already suggested simple mod-
els. We then evaluate the performances of the simple CNN models, as well as
their refined ones, for US tumour image diagnostics together with their robust-
ness against tolerable data perturbations and ability to generalise to unseen data.

5.1 Introduction and background

The idea of designing customised CNN models for image analysis is not a new
concept, and recently several such attempts have been made for a variety reasons
and purposes. The need for such schemes arise for different reasons, mostly re-
lated to non-optimal performance of existing optimal CNN schemes retrained in
transfer learning modes. Other reasons, that coincide with our main observation
in relation to differences in the nature of images, under investigations, from the
types of natural images used to build existing CNN models.

Yi-Cheng Huang et al., [107], designed customised Automated Optical In-
spection (AOI) CNN models to identify defects on parts of metal surface that
suffer from high reflection level. They justify the need for a customised scheme
by the incompatibility of AOI requirements those of CNN algorithms and by the
extremely size of residual networks (e.g. versions of ResNet and DarkNet). The
improved customised metal surface defects detection scheme uses Grad–CAM to
display the feature maps of the last layer for assessing the outcome.

Mobeen-ur-Rehman et al., [108], develop a customised CNN model for the
classification of Diabetic Retinopathy Images (DRI) consisting of 2 CLs and 3 FC
layers. Traditional Computer AidedDiagnostic schemes rely on detecting and as-
sessing artefact-like feature known as Exudates formed by deposit of lipoprotein
near leaking retinal capillaries. Their customised scheme is reported to outper-
form existing CNN models retrained on DRIs in transfer learning mode.

Osman Özkaraca et al., [109], note the challenge of achieving desired classifi-
cation of health image data using CNN’s in transfer learningmodes. This is based
on experimental work and review of the literature. That manuscript presents a
comparative analysis of a list of several CNNand handcraft-feature classifications
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schemes trained and tested on MRI brain scans (including public Brats datasets)
highlighting performances and pros and cons of each. They developed a cus-
tomised scheme for classifying meningiomas and gliomas brain by combining
multiclass handcrafted features-based schemes with CNN models retrained in
transfer learning modes. The improved performance achieved comes at the ex-
pense of higher cost of processing time. The proposed scheme is presumed to be
suitable for brain tumour as well as other chronic nerve diseases.

None of the above reviewed schemes, implicitly consider robustness or ability
to generalise to unseen data which is the core concern of our research besides
efficiency. While the DRI customised CNNmodel is obviously efficient, the Brain
MRI combined classification scheme is not.

Robustness is often dealt with through optimisation of network architecture
in relation to width2, depth3 andweight initialisation, [110]. While ability to gen-
eralisation in existing work often rely on data augmentation and/or regularisa-
tionmethods to control the growth/vanishing of gradient decent during training.
Practised approaches for achieving efficient CNN schemes include model com-
pression, and filter dropping/exclusion.

Several recent research works have explored the use of orthogonality condi-
tions on trainable deep learning model weights to improve the stability, robust-
ness, and efficiency of CNNs. These include orthonormal and/or orthogonal
weight initialisation techniques, regularisation, convolution, normalisation, and
orthogonal DNN [102,111–117]. These studies indirectly support our hypothesis
that there is a link between deep learning overfitting and the condition numbers
of learnt convolution filters (few of thesemethodswill be discussed further in the
next chapter). Moreover, the emerging paradigm in these studies fit into spectral
regularisation of neural network weight matrices. However, instability of weight
matrices’ condition numbers, that we established in the last chapter in terms of in-
stability of filters condition numbers during training, are not discussed explicitly
in these studies.

To overcome the vanishing gradient and/or overfitting issues, several tech-
niques have been proposed, such as residual connections [118], batch normalisa-
tion [119], and skip connections [120]. These techniques can facilitate the flow of
information across different layers and reduce the impact of the vanishing gradi-
ent problem, allowing deeper networks to be trained effectively through recover-
ing texture features and/or reducing the effect of the data on adjusting the model

2Depth refers to the number of layers in the network.
3Width refers to the number of neurons in each layer.
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parameters. Authors in [31] explored the deep neural networks with/without
skip connections and revealed that without skip connections, DNNs encounter
singularity issues as depth increases, causing hidden representations to lose in-
formation and making optimization challenging. In contrast, DNNs with skip
connections avoid singularity issues as depth increases, maintaining complete in-
formation and resulting in better optimisation and generalisation.

A recent emerging customised CNNmodels developing strategy advocate the
use of network architecture optimisation techniques such as neural architecture
search (NAS) [121] to automatically discover efficient and robust architectures
that balance depth and width, as well as other design criteria. These techniques
can help to reduce time and cost of designing desired customised CNNs with
improved performance. The Efficient Neural Architecture Search (ENAS) have
been used, in [45,122], to automatically design CNN architecture specifically for
Ten-D breast cancer classification from ultrasound images as part of Ten-D re-
search project. Their initially generated CNN schemes (ENAS7 and ENAS17)
outperformed the manually designed CNN architectures for US breast cancer
classification, but do not generalise well to unseen datasets. They further investi-
gated several approaches to improve the generalisation rate of these ENAS-based
models including reduced model complexity, different data augmentation, and
unbalanced dataset training. For more details, we refer the reader to [123].

5.2 Design requirements of customised CNN archi-
tectures

In this chapter, we investigate and explore the core ingredients towards construct-
ing efficient customised convolutional neural networks, to be trained from scratch
on ultrasound scans, that are robust against adversarial noise and able to gener-
alise to unseen data. Guided by the intensive research inmedical imaging tasks as
well as our established results in Chapters 3 and 4, we focus on the main building
blocks that are required to design a customised CNN model.

5.2.1 Characteristics of Slim CNN architectures

The depth and width of any CNN models form an efficiency characterising fac-
tor of their architectures and play a major role in achieving model performance,
robustness, and ability to generalisation. Deeper neural networks are perceived
to have more capacity to learn complex features and patterns in data. However,
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such architectures can also bemore susceptible to overfitting, particularly in cases
where the available dataset is small. Appropriate selection of the number of con-
volutional and fully connected layers in CNNs (i.e. their depth) should be based
on the requirement of the task, characteristics of the image modality in terms of
the discriminating features, required computational efficiency, the number of im-
age classes, and the contribution to learning. Some of these factors also influence
the decision width that represent the number of channels in the convolution lay-
ers as well as the number of neurons of FCL.

Our task relate to a binary classification (i.e. 2 classes: Benign and Malig-
nant) of US tumour scan images, but we would not purposefully exclude their
use for non-binary classification of other image modalities. Indeed, our design
will be refined in light of their performances on benchmark datasets of natural
images. Our strategy for deciding these architectural parameters for CNN mod-
els customised US tumour images will be guided by the knowledge, gained in the
previous chapters. First of all, in Chapter 3, we established that texture content
and spatial distribution of texture landmarks distinguish US images from natural
images. In Chapter 4, Section 4.4, we also demonstrated that:

The spatial distribution of LBP texture landmarks via the PH-based
classification scheme is improved markedly for all types of tissue
through training in the first two layers of the pretrained CNNmodels
compared to the original images, and then deteriorate subsequently
indicating that texture feature pattern learning either stops or be-
come very marginal.

Therefore our strategy will be based on reduced depth CNN architectures. Fur-
thermore, in Section 4.5, we have shown that:

Filters dropping by 50% based on their desirable condition numbers,
maintains the discriminating power of PH texture landmark-based
classification through all convolution layers.

The above two displayed results were established in relation to the content of US
tumour scan images being dominated by texture features. Accordingly:
First principal strategic design:Customised slimCNNforUS images should have
shallow depth (i.e. at most 3 layers) as well as narrow width (i.e. small number
of filters per layer).
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5.2.2 Filter initialisation requirements

Filters initialisation is a crucial step in the training of convolutional neural net-
works. There are several factors influencing our strategy of filters initialisation
for our customised CNN architecture. These include: (1) determining matrix-
related properties of the selected, (2) number of selected filters per convolution
layers, and (3) what restrictions, if any, we should impose on the differences be-
tween filters of the different channels? All these choices have an impact on the
features learning stage during training. This raises another issue on stability of
the chosen matrix-related property during training.

The commonly popular approach to filter initialisation of CNN models use
Random Gaussian Filters (RGFs) but the only property considered related to the
standarddeviation of theGaussian function used. While effective and simple, this
approach presents challenges for US images, in terms of their action on image tex-
ture landmarks being an important class discriminating image features the statis-
tics of which are distinguishes US images from natural ones. RGFs are smoothing
filters and images convolved by RGFs are sensitive to small/imperceptible textu-
ral changes (e.g. due to addition of noise) with sensitivity level depending on
filter condition numbers. The condition number of a matrix measures the sensi-
tivity of their action as linear transformation to changes in input domain. High
condition numbers lead to ill-conditioned convolution that can cause numerical
instabilities like vanishing or exploding gradients during training.

In fact, we already illustrated that convolution by ill-conditioned filters are
highly likely to increase image textural artefacts which in turn contributed to lack
of robustness against noise when the various pretrained CNN were used for re-
training US datasets in transfer learning mode. The fact that most pretrained
CNN filters, including those obtained through transfer learning, are highly ill-
conditioned. When convolved with visually similar ultrasound images recorded
in different clinical settings, this ill-conditioning likely increases the distances be-
tween them, thereby contributing to challenges in generalising to unseen data. In
relation to issue (1), above, our initialisation strategy is to focus on filters condi-
tion numbers:

Only use reasonably well-conditioned Gaussian kernel.

In considering this strategy, we need to consider the task of generating for each
convolution layers sufficient number of RGF’s with the desired range of condi-
tion number to be used for specified number of channels. We shall first consider
our strategy regarding the appropriate number of filters. In section 4.5, we have

102



demonstrated that dropping the top 50% of ill-conditioned pretrained CNN fil-
ters had little or no adverse impact on the texture landmark-based PH scheme of
US image diagnosis. In relation to issue (2), above, our initialisation strategy is
to focus on filters condition numbers:

Use reasonably small number of RGFs per convolution layer.

Taking the above discussion into account, we stipulate that:
Second principal strategic design: Customised slim CNN for US images, should
involve relatively small number of reasonably well-conditioned filters per convo-
lution layer.

5.2.3 Simple customised CNNmodels

We shall now, propose first two simple Slim Customised CNN model architec-
tures to be trained and testedprimarily from scratch onUS tumour imagedatasets.

1. Model-A: consists of one convolutional layer (64 filters with dimensions 5×
5×1), ReLU/Tanh, maxpooling, one fully connected layer with 10 neurons,
softmax, and classification layer.

2. Model-B: consists of two convolutional layers (32 and 64 filters with dimen-
sions 5×5×3 and 5×5×32), ReLU/Tanh, maxpooling, two fully connected
layer with 64 and 10 or 2 neurons depending on the class size, softmax, and
classification layer.

Model-A is specifically designed for binary classifications while the Model-B can
also be used for multi-class purposes. However, we shall test viability of us-
ing both models for multi-class analysis of different non-US natural/synthetic
datasets of images.

5.2.4 Initialisation of filter point clouds and their properties

In this section, we shall discuss the process of selecting the required number of fil-
ters in accordance with the specified architectures of the above two models. RGF
matrices can have a wide range of condition numbers, but to select any num-
ber N of matrices that have a specific range of condition numbers, one needs to
generatemuch greater thanN filters and discard the surplus. In this work, we ex-
perimented with several randomly selected convolution filter sets of reasonably
well-conditioned RGF matrices without imposing other criteria such as orthogo-
nality.
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In relation to the standard deviations of the associated Gaussian distribution,
we conducted pilot experiments with three well-known types of weight initiali-
sation techniques that control the standard deviation of the randomGaussian fil-
ters per layers.These weight initialisation known as Narrow Normal (NN) [29],
Glorot/Xavier [68], and He [69]. We trained Model-A customised CNN scheme
on benchmark datasets (DIGITS, MNIST and CIFAR-10, see descriptions later in
Section 5.3) with rectified linear unit (ReLU) and hyperbolic tangent (Tanh) ac-
tivation functions using randomly selected 96 (=32×3) weight initialisation, re-
gardless of condition numbers, for a duration of 20 epochs. We observed similar
pattern of behaviour, for the 3 datasets, in terms of the initial condition number
and stability over the training. Irrespective of deployed weight initialisation and
activation function, both well-conditioned and ill-conditioned initial filters may
become unstable, but the fluctuation of well-conditioned filters are more likely
to end up with acceptable condition number. In Figure 5.1, we present the ob-
served condition numbers (in logarithmic scale) over the 20 epochs for two typ-
ical filters per initialisation scheme, one being unstable with a medium to high
condition number and the other being stable with a low condition number when
we trained Model-A on the DIGITS dataset. Our observations indicate that the
effect of training the Digits dataset on the stability of filters is similar across the
three filter models. Therefore, in the rest of the thesis we use the NN initialisation
scheme for training customised CNNs.

Examples of stable/unstable filters Post training
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Figure 5.1: Condition number of stable and unstable filters over 20 epochs (E).

The following is a list of few sets of NN initialised convolution filters, used for
training our proposed customised CNN models from scratch:

• WD: Default generate the exact number of filters regardless of conditioning.

• W1: select the exact number of filters per convolutional layer based on the
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lowest condition number out of randomly generated 103 filters.

• W2: select the exact number of filters per convolutional layer based on the
lowest condition number out of randomly generated one 106 filters.

• W3: selects twice the required number of well-conditioned filters out of 106,
trains the model once, drop half of the filters that are less stable, and re-
train the CNN model from scratch again with the retained filters. with For
model-B, selected most stable 32 out of 64 filters for 1CL, and 64 out of 128
for 2CL. With model-A we selected the most stable 64 out of 128 filters.

The selected n×n filters in these sets differ in the range of condition numbers,
and are expected to differ in their performance and behaviour during training
and testing the proposed customised CNN models. In CNN setting, initialised
filters can be treated as an n×n×k tensor, where k is the number of channel-wise
depth whose condition number is set to be the average condition number of the
k n× n filters.

The probability of lower/upper bounding condition number of an identical
and independent distribution (iid) n× n randommatrices is well investigated in
the literature (see [60, 64, 124, 125] for further detail). Understanding the lower
and upper condition number probability bounds of the chosen criteria plays an
important role in the way they affect the training image datasets, but the risk of
instabilities of filters condition numbers during training cannot be determined
a priori and maybe dependent on the training image datasets and the training
procedure.

Figure 5.2, below, illustrates the distribution of N number of 5×5 random
Gaussian matrices. Probability distributions of condition numbers for 3×3 filters
are similar, see Figure A.4.
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Figure 5.2: Distribution of condition number (log) - N number of 5×5 RGFs.

In light of the observation in Figure 4.10 on the topological property of fil-
ters point clouds based on initialised, pretrained, and transfer learning filters,

105



we close this section by computing the PD of point clouds of 5×5 filters in the
sets WD, W1, and W2. Figure 5.3 summaries the PD representations of the spa-
tial distribution of these point clouds and their inverses whereby the condition
numbers are counted as the average over the corresponding layer channels (see
Figures A.5 and A.6 for various 3×3 and 5×5 filter set conditioning). The PDs
show clear differences between the persistence of their topological profiles. Not
only the numbers of connected components and holes differ from one to another,
but they differ in the range of their persistence life spans in relation to their birth
times. Initially, members of the three point clouds join their neighbours form-
ing local clusters that only start merging, to form bigger disjoint clusters after the
proximity of threshold reaches around 1.175 for WD and W1 (but slightly ear-
lier around 1.125 forW2). The connected components continue to merge rapidly
but become a single one just after threshold reaching 1.65 for WD when W1 still
have 2 component that only merge at 1.575 which is the time when W2 still have
2 component that merge at around 1.85. The holes start to appear for WD at 1.4
marginally sooner thatW1 butW2 larger number of holes do not emerge until 1.5.
Moreover, the number of longer persisting holes increases in the order WD, W1,
and W2. For WD and W1, all holes become extinct around 1.8 when some holes
inW2 continue to be generated for a while until 2. Reasonably similar comments
can be made about patterns of differences between the topological profiles of the
point clouds of inverses.
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Figure 5.3: PD of point clouds of 5×5 filters (top) and their inverses (bottom).
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5.3 Performance testing for natural image datasets

Given the knowledge we gained from previous chapters about the nature of ul-
trasound datasets, we test our hypothesis on well-known computer vision bench-
mark datasets as well as ultrasound datasets. In this section, we present the
empirical investigations to test various filter initialisation approaches with cus-
tomised CNN architectures trained on benchmark datasets Digits, MNIST, and
CIFAR-10, but the same experimental work on the Ten-D dataset of US breast im-
ages will be given later in Section 5.4. These benchmark datasets differ among
themselves, and from US image, in terms of their texture content. The perfor-
mance of state-of-the-art CNNmodels are widely investigated. Moreover, Unlike
these datasets, variation of lesion sizes and/or potential biases in the sampled
US images may have an adverse impact overall model performance during train-
ing. These are the main motivations for including these experiments in a thesis
dedicated to the analysis of US images. Besides testing the performance of the
proposed Model-B on the training datasets, we shall also test their sensitivity to
small perturbations of the input images.

5.3.1 The experimental benchmark datasets

All these benchmark datasets consist of 10 labelled classes, as shown in Figure
5.4, and their properties are described below:

• Digits [126]: consists of 10000 synthetic grayscale images of handwritten
digits from 0-9 of size 28×28 pixels.

• MNIST [127]: consists of 70000 grayscale images of handwritten digits
from 0 to 9 of size 28×28 pixels.

• CIFAR-10 [128]: consists of 60000 colour images of natural images of size
32×32 pixels. The 10-classes are airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck.

Images in both Digits andMNIST datasets are grayscale and in such cases, the
first convolution layer of the customised CNNmodels consists of single channel.
Therefore, we shall only train and test Model-A for Digits and MNIST datasets.
There obvious differences in the content and sources of the images in CIFAR-10
dataset that are all RGB images. Hence, it is highly unlikely that a single convo-
lution layer is capable to do performing reasonably well. Accordingly, Model-B
customised CNN will be used in this case the first layer of which should have 3
channels.
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Figure 5.4: Digits, MNIST and CIFAR-10 benchmark dataset samples.

5.3.2 LBP descriptor statistics

We compute the statistical analysis on all images contained within three bench-
mark experimental datasets. The aim is to determine the proportions of the vari-
ous LBP landmark groups present in each dataset similar to the statistical analy-
sis of Ten-D ultrasound datasets4. The results obtained from this analysis provide
valuable insights into the spatial distribution of geometric texture features within
each of the benchmark datasets. Here, we shall only consider the statistics of
ULBP landmarks, because the other landmarks are very rare in these natural im-
age datasets. The percentage of the different ULBP landmark groups are clearly
depicted in Figure 5.5, below, for the MNIST and DIGITS datasets. It shows that
for all classes the dominant landmark set is the 0-transition group, Z2 with ap-
proximately 80% of pixels in these datasets have the LBP code of 11111111. The
remaining bins are distributed amongst other landmark groups. Furthermore,
our analysis reveals that the distributions of LBP groups in digits and MNIST
datasets exhibit a comparable pattern, with minor variations in percentage on
average.
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Figure 5.5: ULBP descriptor statistics of 0,1,. . . ,9 digits.
4See Section 3.3.2 for further detail on the ultrasound LBP Statistics.
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Figure 5.6, below, presents the statistical distributions of LBP landmarks in im-
ages of the CIFAR-10 dataset. These results demonstrate completely different pat-
terns from the patterns observed in the Digits andMNIST datasets which reflects
the difference in the nature of the image modalities. Specifically, the dominant
groups in CIFAR-10 are G4, G5, and G3, and the differences in the distributions
between all classes are quite distinct for these landmarks. The discrepancies in
the ULBP local texture feature distributions between CIFAR-10 and the two other
similar datasets offer an exciting opportunity to explore the effects of CNN con-
volution layers on PH analysis post-convolution when compared to the original
images. However, such an investigation falls outside the scope of this chapter’s
focus study as the LBP statistics of post-convolution feature maps are dependent
on the filter stride, size, and activation function.
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Figure 5.6: ULBP descriptor statistics of CIFAR-10 dataset.

It is worth noting that the distributions of the LBP landmarks in CIFAR-10
images may appear more similar to those in US images (refer to Section 3.3.2)
when compared to Digits and MNIST. However, significant differences still exist.
The percentage difference between dominant and non-dominant LBP landmark
groups in US images is higher compared to natural images and lower compared
to the digits datasets.

A key advantage of this type of analysis lies in the valuable textural insights
it provides into datasets intended for CNN training from scratch or in transfer
learning mode. For example, if a CNN model is trained with CIFAR-10, it can
be re-trained with Digits or MNIST datasets and/or used as a feature extrac-
tor. However, the reverse process may not be as successful as the former due
to the high variation in the texture. In light of this fact, [89] sheds light on the
relationship between the topological structure of networks’ ability to generalise
across two datasets, handwritten digits (MNIST) and street view house numbers
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(SVHN) [129], which feature distinct image classes from 0 to 9. In particular, the
authors confirm the hypothesis that a network trained on themore diverse SVHN
dataset exhibits better generalisation ability when evaluated onMNIST than vice
versa, emphasising the relevance of dataset diversity for generalisation. We have
observed that the distribution of LBP landmark of SVHN dataset is nearer to that
of CIFAR-10, and it is much richer in texture than the MNIST dataset, see Figure
A.2. In general, the statistical analysis presents an insight into the relationship be-
tween dataset diversity and generalisation performance, which have significant
implications for the design and optimisation of neural networks for real-world
applications. For example, before deploying a CNN model trained on a particu-
lar set of tumour images obtained from one or more hospitals, it may be helpful
to conduct an analysis of LBP distributions in the new hospital’s images to ensure
that the model will perform well in that setting.

5.3.3 Training and testing the customised CNNmodels

We used the specified training benchmark datasets for training and validating
the CNN models then testing them on the specified testing sets. Typically, k-
fold cross-validation5 technique is adopted to identify the best performedmodel.
Digits and MNIST datasets are trained with Model-A, where the classification
accuracy of validation and testing is around (97-99.5)%. Whereas CIFAR-10 and
Ten-D datasets was trained with Model-B, achieving classification accuracy of
validation and testing is around (65-67)%. Table 5.1 displays the full classification
accuracy results, at the training & validation stage as well as when tested with an
unseen subset of the datasets, for the Digits, MNIST, and CIFAR-10 datasets.

The results show that the test and validation accuracy are very similar reflect-
ing the fact that the datasets are very large and the training as well as the testing
sets are good random samples of their respective population. The results also
demonstrate that datasets of images whose textural and structural contents are
of limited variation can be classified almost optimally by a very slim customised
CNN model with a single convolution layer and any relatively small set of con-
volutions filters, like our Model-A. However, datasets of images that vary widely
in their textural and structural contents, require deeper CNN architecture and
careful selection of convolution filters.

5k-fold cross-validation: is a statistical technique used to evaluate the performance of a ma-
chine learning model. The data is split into k subsets, and the model is trained on k − 1 subsets
and tested on the remaining subset. This process is repeated k times, and the results are averaged
to estimate the model’s performance.
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Table 5.1: Classification accuracy of various customised CNN models.

Dataset Digits MNIST CIFAR-10
Weights Val. Test Val. Test Val. Test
WD 98.2 97.75 97.1 97.45 66.03 65.98
W1 99.33 98.85 97.2 97.46 65.82 66.82
W2 98.53 98.1 97.47 97.52 65.11 65.46
W3 97.73 97.95 97.38 97.44 66.11 66.03

Whilewe have established all these schemes performwell with the benchmark
dataset, our objectives in introducing our customised CNN schemes place more
emphasis on robustness against various levels of natural perturbations similar to
the image perturbations as well as the ability to generalise to unseen data. But
next, we shall only investigate the robustness properties of the schemes for the
benchmark datasets.

5.3.4 Robustness testing against random perturbation

Robustness is a critical aspect of image classification using convolutional neural
networks. The performance of CNN models can be adversely affected by varia-
tions in the input data, leading to incorrect predictions and model failure. There-
fore, evaluating the robustness of CNNmodels to variations in input data is cru-
cial for their successful deployment, and this is nowhere more critical than in the
analysis of medical images. Testing the performance of a CNN model on input
data with natural perturbations is an effective way to evaluate its robustness, but
appropriate evaluation metrics such as robustness score or adversarial accuracy
should be used. The choice of natural perturbations for evaluation depends on
the problem and the specific forms of perturbations likely to occur in real-world
scenarios. In this section, we show the robustness of each of the customised CNN
models in a simple adversarial setting, whereby we repeat the classification ex-
periments after degrading the test images in the various datasets. We conducted
this with different simple degradation procedures, but all have similar effects and
therefore we only present the results for Gaussian noise degradation by adding
Gaussian noise with 0 mean and variance in the range 10−4 to 0.5. We present the
results for each dataset separately.
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5.3.4.1 Digits dataset

We evaluated the robustness of Model-A to noise by introducing random 0-mean
Gaussian noise with variances ranging from 10−4 to 0.1 on 1000 test images from
the Digits dataset. Figure 5.7 presents the accuracy rates for 11 different noise
levels. Intriguingly, we observed a slight improvement in testing accuracy upon
adding low levels of noise (0.0001 and 0.001) to the input images. The most sig-
nificant differences in testing accuracy between WD and W3 were observed at
variances of 0.01 and 0.03, with WD weight initialisation dropped from 84% to
42.3% while W3 weight initialisation dropped from 89% to 70.4%, resulting in a
difference of approximately 28% betweenWD andW3 at variance = 0.03. In sum-
mary, our findings indicate that using W3 filters can enhance the noise tolerance
of Model-A compared to other modes.
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Figure 5.7: Robustness test of classification accuracy performance against natural
perturbation on the Digits dataset.

5.3.4.2 MNIST dataset

To assess the effectiveness of Model-A when dealing with noisy data, we sub-
jected one thousand test images from theMNISTdataset to random0-meanGaus-
sian noise with varying degrees of variance (ranging from 10−4 to 0.5). The re-
sults of our experiments, presented in Figure 5.8, below, indicate that the accuracy
of themodel remained relatively stable until the noise level increased beyond 0.02.
However, as the variance increased noise level to 0.1 and beyond, significant dif-
ferences emerge in performance between the WD and W3 sets. More strikingly,
when the variance increased from 0.1 to 0.2, the accuracy of the WD filters de-
creased to just over 20%, while the W3 scheme only experienced a decrease of
less than 13%.
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Testing Robustness to Noise For MNIST Datasets :

Figure 5.8: Robustness test of classification accuracy performance against natural
perturbation on the MNIST dataset.

5.3.4.3 CIFAR-10 dataset

For this rather more complex dataset, we evaluated the performance of Model-B
trained with the different initialisation sets post addition of noise. We subjected
one thousand test images from the CIFAR-10 dataset to random 0mean Gaussian
noise with varying variances (ranging from 10−4 to 0.1). The results presented
in Figure 5.9, below, again indicate that the accuracy of the model remained rela-
tively stable when the noise level was low. However, unlike the results observed
for other datasets, we found that W1 filters demonstrated better robustness to
noise thanW3 filters. Upon closer examination of the filters inW3, we discovered
the presence of several stable filters that had high condition numbers. This seems
to be the most plausible explanation for the observed discrepancy.

Robustness for CIFAR-10 Dataset:
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Figure 5.9: Robustness test of classification accuracy performance against natural
perturbation on the CIFAR-10 dataset.

The results of these experiments provide strong evidence thatwell-conditioned
filters are less susceptible to small perturbations than other filter modes. While
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customised CNN models with WD exhibit high performance and accuracy dur-
ing training, they experience a significant drop in performance when subjected
to testing or even minor input changes.

5.3.5 Training impact on stability of filters condition numbers

Although, it seems that various weight initialisation techniques lead to similar
classification accuracy results, but hidden properties such as robustness to small
data input perturbation and the variability of filters condition number and persis-
tent homology could provide a better insight of these CNNmodels. The purpose
of conducting the above sets of experiments using the non-Ultrasound bench-
mark image datasets was not solely on achieving the highest classification ac-
curacy. In Chapter 4, we argued that the instabilities of the already highly ill-
conditioned pretrained convolution filters is among the most likely contributors
to the lack of robustness and inability of generalisation of the several state-of-
the-art CNN models. Hence, it was also necessary to monitor the training and
document the progression of condition numbers of the convolutional layer fil-
ters. The lack of robustness even with the non-default initialisation sets despite
the fact that their filters had reasonably low condition numbers, can benefit from
analysing the documented progression of filters condition numbers. During the
customised CNNmodels training, for all weight initialisation sets, we kept moni-
toring changes to the filters condition numbers with the aim of determining their
stability over several training epochs. Figure 5.10, below, depicts the range of con-
dition numbers of each of 96 (=32×3) filters over 10 epochs training of Model-A
with the Digits dataset for all four types of filter initialisation sets. Similar pat-
terns were noted with all the other datasets.

We observe that the numbers of filters with very small fluctuation range, in-
creases steadily in the order WD, W1, W2 and W3. For the unstable filters in
these four sets, the range of fluctuation decrease in the same order. These results
are consistent with the robustness performance of the corresponding Model-A
CNNs, on the Digits dataset, presented in Figure 5.7 where the lack of robustness
decreases in the same order. However, the fact that there are still relatively many
unstable filters in all these initialisation sets explains that all four schemes are not
robust against addition of noise other than at low level. The fact that trainingwith
W3 resulted in a big drop (20%) in performance when the level of noise increased
from 0.001 to 0.02, should be considered with the observation that several stable
filters in W3 had very high condition numbers. Marginally different patterns of
instability were noted, when the customised schemes with those four sets were
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Figure 5.10: Condition numbers of different initialised filters, during training
Model-A on Digits dataset.

trained and tested on the MNIST dataset. The alterations in filter parameters
are influenced by the diverse patches of images encountered across batches and
epochs during training. As the model processes various image patches over the
course of training, the evolving patterns and features in these patches contribute
to changes in the filter parameters. This dynamic interactionwith different image
subsets throughout batches and epochs plays a crucial role in shaping and adapt-
ing the model’s filters, ultimately impacting its performance and robustness.

Finally, the stability records of the filters in the different initialisation sets,
whenModel-B was trained on the CIFAR-10 dataset, are less notable compared to
the training ofModel-A on theDigits orMNIST datasets. Recall that the images in
CIFAR-10 are more complex in terms of textural as well as structural content than
the other 2 datasets. We also observed that filters in W3 that were stable during
the first training round may not remain stable during the second training round.
This results from the fact that modifications to filter weights, enacted as a result
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of the backpropagation, are determined by the combined effects of all filters on
diverse training image batches.

5.4 Performance of US customised CNNs

We repeat the experimental setting and implementation as well as testing the ro-
bustness and generalisation with similar settings to Section 5.3. However, we
narrow the focus on the classification of US images by the two customised CNN
models with the different convolution filter initialisation methods. Before pro-
ceeding, we consider the findings from the previous section concerning image
modality and the stability/sensitivity of convolutional filters. Despite varying
filter pools used for training across different datasets, filter condition number in-
stabilities persisted throughout and post-training in the customisedCNNs. Many
unstable filters, mostly end with high condition number even when started with
reasonably low condition number. In the next section, we shall propose using
well established mathematical facts about matrix condition numbers to modify
our initialisation procedure.

5.4.1 Refining convolution filter initialisation

Except for WD, all other initialisation techniques aim to select filters with the
lowest condition numbers from a larger pool. However, as the number of chan-
nels increases, these methods often include filters with less favourable condition
numbers. To address this, we leverage established mathematical insights regard-
ing matrix condition numbers, whereby from given a matrix A of a known con-
dition number various other matrices of the same size can be obtained while
maintaining the identical condition number as A. Thus, we state the following
lemma, [130].
Lemma 1. Let A be an n× n real matrix:

1. If α ̸= 0 is a real number then κ(αA) = κ(A).
2. If B is an n× n permutation matrix then κ(BA) = κ(A) = κ(AB).

These observations offer valuable insights into the selection of a limited set of
well-conditioned RGFs during the initialisation phase. For our specific objectives,
we aim to identify a straightforward set of real-number parameters linked to the
image while allowing some variation in condition number ranges. When em-
ploying real-number parameters, it is imperative to avoid significant increases or
decreases in the entries. Instead of relying on random parameter choices (such
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as multipliers or permutations), we aim to formalise these parameter selections
by considering desired or established relationships between channelswithin each
layer. For instance, the necessity for three channels in the initial layer aligns with
the RGB nature of the input images. Subsequent layers’ channel counts are deter-
mined by the number of feature maps produced by preceding layer filters. Our
approach formalises the generation of convolutional filter sets, multidimensional
array, based on the following criteria:

Fk
nnm = βm ⊗ F k

nn (5.1)

where each entry in βm ∈ R, m is the number of depth-wise channel per filter, F
is an n× n random Gaussian matrix, and k in the number of convolutional filter.
In special cases such as using 3D image for Model-B, the unified channel-wise
initialisation is defined by the following filters selection:

First convolutional layer:

1. Select 32 filters from its respective pool.

2. For each filter create 3 filters by multiplication with
β3=[0.299, 0.587, 0.114].

The chosen multipliers, β3, are those used in converting RGB images
into grayscale images.
Second convolutional layer:

1. Select 64 filters from its respective pool.

2. For each filter create 32-channel filters by multiplying it with
the convex combination coefficients:

βr =
κr∑32
i=1 κi

, r = 1, . . . , 32

where κ’s are the condition numbers of 32 filters for the first
convolutional layer.

Accordingly, we define a modified version of Model-B whereby the convolu-
tion filters are chosen according to the above scheme. We shall not apply this
modification on theW3. We shall denote the three new filter initialisation sets as
FD, F1, and F2, respectively. Here we use, 5×5 filters on both convolution layers.
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Table 5.2: Proposed weight initialisation techniques - revisited.

Name #channels (1st, 2nd) CL Set size Condition
WD (3,32) 32/64 -
W1 (3,32) 103 Lowest condition number
W2 (3,32) 106 Lowest condition number
FD (1,1) 32/64 -
F1 (1,1) 103 Lowest condition number
F2 (1,1) 106 Lowest condition number

Our interest in linking PH investigation to our proposed weight initialisation,
stems from the significant differences between the topological behaviour (visu-
alised by PDs) of well and ill-conditioned point clouds of filters as previously
demonstrated in Section 5.2.4, Figure 5.11 shows at the top row PDs of the 3 point
clouds of 5×5 filter initialisation sets FD, F1, and F2 and the PDs of their in-
verses at the bottom (see Figure A.7 filter sets). In comparison to Figure 5.3, the
number of connected components and holes (i.e. homological features in dimen-
sions zero and one) are significantly reduced for the same number of points in
the point cloud, respectively. Therefore, imposing the exact condition number of
filters across the channels at initialisation has led to reducing the complexity at
the initial step of CNN model training as well as simple topological profiles of
the filters point clouds.
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Figure 5.11: PDs of point clouds of the unified channel-wise filters and their in-
verses.
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5.4.2 Performance of the customised CNNmodels on US images

Along with testing our proposed procedure on weight initialisation, we incorpo-
rated batch normalisation (BN), [119], to our customised CNNs. BN is a popular
technique used in DCNN to improve their accuracy and training efficiency by ap-
plying it to the output of each convolutional layer before applying the activation
function to normalise the distribution of input values by subtracting the mean
and dividing by the standard deviation of the batch of input values. The aim is to
reduce the internal covariate shift problem that occurs due to changes in the input
value distribution during training. The network also learns parameters for adapt-
ing to the specific characteristics of input data. The use of BN in CNNs improves
the convergence speed and accuracy of the network, making it less sensitive to
changes in input distribution. Hypothetically, this type is expected to work well
on diverse image modalities such as medical images due to less adjusting CNN
model parameters to the training dataset. However, we need to remember that
their use for US image analysis may not have the same effect expected when used
for natural images. This is due to the relatively small size ultrasound dataset
which cannot be considered as an i.i.d. sample of the unknown population of US
breast tumour images.

For testing this approachwith Ten-D dataset, we integrate BN layer into few of
our customised Model-B CNN architectures (namely Model-D-FD, Model-B-F1

andModel-B-F2), after both convolutional layers before applying ReLU layer. We
train, validate, and test these as well as the others schemes that do not use BN, for
the Ten-D ultrasound dataset, and the results are shown in Table 5.3. CNNmod-
els with batch normalisation layer outperformed those without BN layer by 5-6%
with weight initialisation methods F1 and F2. Whereas the difference of default,
FD, weight initialisation is less significant. These results are an obvious indication
of the power of well-conditioned weight initialisation for training CNN models.
As expected the performance of the customised CNNs are lower than the pre-
trained CNN models except for the Efficientb0 model which is outperformed by
all but the customised Model-B-F2. Both Model-B-F1+BN and Model-B-F2+BN
achieve the best test accuracy of 94%. However, the difference between the sensi-
tivity and specificity is increasing, in particular for models with batch normalisa-
tion layers, as the filter conditioning is more strict. This problem occurs because
of the nature of texture features frommalignant tumours and the BN parameters
does not generalise well to adapt to various shapes and sizes of US tumours.

119



Table 5.3: Classification accuracy of various customised CNN model-B with-
/without BN .

CNN model Validation acc. Test acc. Sensitivity Specificity
Model-B,WD 91.94 90.47 89.76 91.19
Model-B, FD 90.75 89.88 92.62 87.14
Model-B, FD, BN 90 91.19 92.38 90.00
Model-B,W1 90.75 91.42 88.81 94.05
Model-B, F1 89.55 89.4 84.76 94.05
Model-B, F1, BN 94.33 94.05 92.86 95.24
Model-B,W2 93.13 89.64 90.24 89.05
Model-B, F2 88.36 86.31 90.71 81.90
Model-B, F2, BN 94.03 94.05 90.95 97.14

5.4.2.1 Robustness testing against random perturbation

To evaluate the robustness of the customisedCNNmodels, we conduct similar ex-
periments to the robustness experiments of section 5.3.4, wherewe repeatedly de-
grade the testing images with various levels of natural perturbations. Our study
aimed to investigate whether the use of well or ill-conditioned filters in model
initialisation and imposing the same condition number over channel filters could
facilitate learning of distinguishing features with varying sensitivity to reason-
able perturbations. Specifically, we assessed the robustness of the models against
small perturbations by adding Gaussian and Speckle noise to the testing dataset,
with a mean of 0 and variance ranging between 0.0001 and 0.1.

Besides the customised CNNmodels, we recall the previous results from Sec-
tion 4.2. The results presented in Figure 5.12 indicate that initialising with well-
conditioned filters, F1 and F2, leads to more robust performance against small
noise caused perturbations compared to the FD. Furthermore, the addition of
batch normalisation to the model results in decreased sensitivity to the initial-
isation parameters. However, the condition number of the filters tends to in-
crease after 2-4 epochs, with only a few stabilising thereafter. Model-B with BN
achieved the highest performance when tested on the Ten-D dataset with/with-
out noise, particularly when combined with F1 and F2 filters. Our customised
CNNs trained from scratch on Ten-D US scans outperform those with transfer
learning models in relation to Robustness.
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Figure 5.12: Ten-D breast US dataset robustness test.

5.4.2.2 Generalisability to unseen dataset

To assess whether our customised CNNmodels with the proposedweight initial-
isation techniques have successfully learnt to generalise to unseen data, we use
BUSI dataset as the external testing dataset. We recall the results of the state-of-
the-art architectures in the transfer learning mode when tested on BUSI dataset.
Figure 5.13 shows the difference in performances of the various CNN models
when tested on Ten-D and BUSI datasets. Notably, Model-B without BN are out-
performing the rest of models. Imposing the well-conditioning property at the
beginning leads to a better generalisation with small to no difference between the
classification accuracy on both datasets. Whereas, use of BN layers add a higher
risk of overfitting to the training set. This may be due to the higher condition
numbers of the filters when using BN. The initial well-conditioned filters may
not remain stable during training, leading to a lack of robustness and overfitting.
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Figure 5.13: Model testing on Ten-D and BUSI breast US datasets.
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Transfer learning using all four deep learning architectures resulted in greater
overfitting, measured by a drop in accuracy of 8.1-17.84%. This can be attributed
to a significant increase in the condition numbers of the filters, compared to train-
ing the customised model from scratch.

5.4.3 Instability of filters’ conditioning during training

Once again, we delve into examining the stability, or lack thereof, of the condition
number of convolutional layer filters across a specified number of training epochs.
Our focus is primarily on the dynamic behaviour of the condition number of fil-
ters during the training process, notwithstanding the final level of accuracy of the
CNN models. To achieve this, we train various customised CNN models with a
fixed set of parameters and hyperparameters, where the only distinction between
them is the choice of filters. These filters are selected based on their initial condi-
tion numbers as described in the previous section and their stability overmultiple
training epochs. This approach enables us to examine the impact of the condition
number on the stability, robustness, and generalisation of the models during and
post the training process.

Figure 5.14, displays the stability records of (1) the WD and W1 filters, their
unified channel-wise versions FD and F1, and the last two with BN. It is difficult
to have a good assessment of the effect of the Unified-channel scheme on filter
stability, because the charts in the original initialisations are based on the average
of all channels of the 32 (or 64) filters. Nevertheless, we can see that for both ini-
tialisation sets the unified channel-wise conditioning createmore relatively stable
filters. Moreover, the BN procedure seem to create more filters with higher insta-
bility scales.

Figure 5.15, illustrates the first layer filters’ condition number variability as the
training procedure moves from one epoch to the next. It shows that in general,
initialisation by selecting the lowest condition numbers from a sufficiently large
pool result in filter stability over the first half of the epochs and this is more so
with the application of BN. Moreover, more filters return to the what we may call
the acceptable conditioning zone (Log(κ(A))≤ 1) before the last epoch. Thismay
explain the reasonable performances by the corresponding versions of Model-B
in terms of accuracy, robustness and ability to generalise.
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Figure 5.14: Filters condition number stability - Model-B.
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Figure 5.15: Averaged condition number from initialisation to the last epoch - 1st
convolutional layer of Model-B.

In summary, the analysis of Figures 5.14 and 5.15 confirms that initialisation
withwell-conditioned filters using unified channels schemes provides better level
of stability, but filter instability/stability is also dependent on the variation in con-
tents of training images. This means that the problem of filter instability cannot
be overcome by initially selecting lowest conditioned filters from a larger pool
of RGF’s. In fact, we tried much large pools of RGFs, than presented here but
instability continued to plague the training, (see Table A.4). Instead, we need
to reduce the effects of the training images by regularising the growth of filters
condition numbers during training. This will be investigated in the next chapter.

5.5 Summary and conclusion

In this chapter, weprogressed our investigation bydesigning a credible strategy to
develop high performing slim US customised CNN architectures that are robust-
ness against adversarial noise perturbation while generalise well to unseen data.
This strategy is based on controlling the condition numbers of initialised convo-
lution filters and their post training output filter sets. The viability of this strategy
was demonstrated incrementally by developing a sequence of schemes that meet
the requirements while being very slim using at most 2 convolution layers with
reduced numbers of well-conditioned filters. We investigated the algebraic prop-
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erties of the various filter sets in relation to cross -channels weight initialisation
settings. We proposed a filter selection approach based on their condition num-
bers, and investigating both at their initial settings and throughout the training
process, to address the instability of CNNmodels and lessen the chances of over-
fitting. Nevertheless, our findings indicate that there exists a trade-off between
the CNN classification accuracy and its robustness, as the proposed condition
number and stability-based method exhibited lower classification accuracy com-
pared to other CNN models. This highlights the critical importance of striking
a delicate balance between model performance and robustness while choosing
filters in CNNs, thus indicating the need for further harnessing constrains on
filters’ condition number during training. On the other hand, the lower classifi-
cation accuracy around 86-91% is aligning with radiologists’ expectation in terms
of recognising the type of tumour.

Our investigated filter selection approaches do yield well-conditioned and
many stable filters for Model-A and Model-B. For more complex CNN architec-
tures, using dropouts and regularisation techniques could help maintain well-
conditioned and stable filters. However, incorporating regularisation does not
mean controlling the condition number of filters precisely. Almost all filters of
pretrainedmodels retrained in transfer learningmode,were highly ill-conditioned,
and their training made the final filters more ill-conditioned with few exceptions.
While performing well on US datasets, they suffered from which resulted in lack
of robustness and inability to generalisation.

In general, this chapter’s investigations reveal a strong connection between fil-
ter’s algebraic properties, robustness of the CNNmodel to adversarial behaviour,
and generalisation to unseen data. This fits the widely assumed expectation that
robust CNN models should be less prone to tiny perturbations to the input and
is certainly linked to the potential of overfitting. The experimental results demon-
strated that regardless of the pool fromwhichwell-conditioned are selected, train-
ing always produces unstable filters. A more realistic approach to stabilising fil-
ter conditioning should be based on regularising changes to filters, caused by the
backpropagation procedure, throughout training.
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Chapter 6

Stabilising Filters Conditioning by
Matrix Surgery

In the previous chapter, wedemonstrated the instabilities of filters condition num-
ber continue to fluctuate regardless of the filter’s properties at initialisation and ir-
respective of the size of the RGF pool fromwhich these filters are selected. The fil-
ters conditioning instabilities problem persisted, with lower severity, even when
we used a unified-channel conditioning scheme or the dropping of 50% of filters
that were more unstable during a first round of training. In this chapter, we intro-
duce an innovative matrix surgery, based on their singular value decomposition,
to reduce and control the instability of filters condition number. This approach
is inspired by the concept of topological surgery of low dimensional manifolds
considering the action of filter matrices as a linear transformation on their do-
mains. It is also driven by our investigations of the links between convolution
filters condition numbers and the distribution of extracted convolved US texture
feature landmarks as well as the persistent homology of their point clouds. The
matrix surgery approach is carried out throughmodifying the spread of the filters
singular values determined by singular value decomposition.

In Section 6.1, we introduce basic matrix algebra concepts that describe the ac-
tion of any matrix as a linear transformation of its domain in terms of its spectral
analysis, and review existing work on controlling the ill-conditioning in CNNs
and reducing the condition number techniques. Section 6.2, presents our sin-
gular value decomposition based matrix surgery approach for controlling and
reducing filters’ condition numbers. Section 6.3, shows the effect of the matrix
surgery in large sets in terms of their distribution of condition numbers, distri-
bution of singular values, and their topological profiles. Section 6.4 presents the
application of thematrix surgery in the context of CNNs during initialisation (for
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pretrained models) and throughout the training process.

6.1 Introduction and related work

Any square k × k real matrix A defines a linear transformation of the Euclidean
space Rk via matrix multiplications on the left, i.e. ∀ v ∈ Rk

A(v) := AvT (6.1)

where vT is the transpose column vector of v. It defines another linear transfor-
mation by matrix multiplication on the right, i.e. ∀ v ∈ Rk

A(v) := vA (6.2)

The action of A is uniquely determined by its mapping of the standard basis of
Rk, i.e.

{e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), ek = (0, 0, . . . , 1)}

Topologically, each of these transformations define a smooth map on the sphere
Sk−1 whose image in Rk is an ellipsoid whose major axes have their lengths are
themagnitudes of the eigenvalues ofA and their directions are determined by the
corresponding eigenvectors of A. The condition number of the matrix is linked
to the nature of the geometric distortion of the mapped ellipsoid near the small-
est eigenvalue. For highly ill-conditioned matrices the smallest major axis is too
small in comparison to the largest major axis, and the smaller it becomes themore
ellipsoid distorted geometrically bordering on having a singularity near the end
of the smallest major axis.

Reducing the condition number of such matrices amount to applying topo-
logical surgery on the ellipsoid, to remove the potential singularity, by pushing a
sphere of a reasonably larger radius through the narrow tunnel. Here, we intro-
duce a process of manipulating a matrix that results in mimicking such topolog-
ical surgery, and we call this process as matrix surgery.

Accordingly, the inspiration for what we call matrix surgery can be attributed
to the Surgery theory1 on manifolds. Generally, topological surgery allows the
construction of newmanifolds (or homoeomorphic copies of amanifold) bymod-
ifying through surgery operations by the topological connected sum (#) opera-
tion. These operations usually involve removing a closed submanifold of a given

1Surgery theory was developed in the 1950s and 1960s by J. Milnor, A. Wallace, and others.
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manifold, thereby creating new boundary components for the given manifold,
and then gluing to it another manifold (that have the similar boundary compo-
nents profile) along these common boundary components according to a certain
controlled manner [131–134].

The most commonly known application of topological surgery, and easy to
illustrate, is the process of creating closed connected Riemann surfaces Xg of any
finite genus g, by repeatedly removing two closed discs from the surface of the 2-
dimensional sphere S2 and gluing a close bounded cylindrical surface along their
bounding circles to the exposed closed circles of the sphere. Figure 6.1, below, is
a simple illustration of this process. This process is similar to the well-known
Dehn-Twists on the meridian curve of the above described annulus but without
twisting, and it does not change the ellipsoid topologically, but changes the local
geometry around the near-singularity region. Note that, Denn-Twists2 along a
closed curve on a Riemann surfaceXg is implemented via topological surgery on
an annulus around its meridian curve, [135].

Figure 6.1: An illustration of gluing two surfaces.

Besides being instrumental in settling the Poincare Conjecture and classifi-
cation of high dimensional manifolds, topological surgery is becoming a useful
tool in a range of computer vision applications as diverse as black hole research
and medical imaging. The medical imaging field benefited from the application
of manifold surgery and has witnessed great success since then. The authors
in [136] developed an “Automated manifold surgery” by maintaining both geo-
metric accuracy and topological correctness after identifying the inaccurate con-
nections between adjacent banks of a sulcus due to single voxel misclassification
in the highly folded cerebral cortex, resulting in a topologically inaccurate model.
Recently, the authors in [137] developed a deep learning basedRapidReconstruc-
tion of Topologically-Correct Cortical Surfaces.

The concept of topological surgerymay result in themodification and/or trans-
formation of manifolds. However, our matrix surgery process do not change the

2The Dehn-Twists around 3g − 1 non-separating closed curves on Xg , generate its mapping
class group of homotopy classes of orientation preserving homeomorphisms of Xg .
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topology of the mapped Ellipsoid but simply results in local geometry change.
Matrix surgery in this thesis is a general term that refers to any technique that
modifies its entries and results in reducing its condition number in such a way
that the associated ellipsoid are less vulnerable to singularity, as explained above.

In terms of imposing orthogonality conditions on trainableDLmodelweights,
several related research works that have investigated this approach in relation to
the issues of underfitting/overfitting, instability of CNN performance, robust-
ness, and generalisation to unseen data. These include orthonormal and orthog-
onal weight initialisation techniques, [111–113] orthogonal convolution [116],
orthogonal regularizer [102], orthogonal deep neural networks [117], and or-
thogonal weight normalisation [114]. Since orthogonal/orthonormal matrices
are optimally well-conditioned, our attempt to explain DL overfitting in terms of
ill-conditioning of convolution filters learnt through training/retraining is con-
sistent with and supported by these works. In most of these works, there is no
explicit discussion about instability of convolution filters conditioning as a re-
sult of the model training procedure. However, these publications can be cat-
egorised within the emerging paradigm of spectral regularisation of NN layers
weight matrices. For example, J. Wang et al., [116], assert that imposing orthogo-
nality on convolutional filters is the appropriate mitigating tool of DCNNmodels
training instability for improved performance. Interestingly, A. Sinha [102] point
out that susceptibility of neural networks to adversarial attacks can be attributed
to ill-conditioned learnt weight matrix. In fact, their orthogonal regularisation
aims to keeping the learnt weight matrix’s condition number sufficiently low and
prove it improve adversarial accuracy when tested on the natural image datasets
of MNIST and F-MNIST.

S. Li et al., in [117], note that existing spectral regularisation schemes, are
mostly motivated to improve training for empirical applications, conduct a theo-
retical analysis of suchmethods using bounds the concept of Generalisation Error
(GE) measures that is defined in terms of the training algorithms and the isome-
try of the application feature space. They conclude that optimal bound on GE is
attainedwhen eachweightmatrix of a DNNhas a spectrum of equal singular val-
ues and call suchmodels OrthDNNs. To overcome the high computation require-
ments of strict OrthDNNs, they define approximate OrthDNNs by periodically
applying their Singular Value Bounding (SVB) scheme of hard regularisation.
In general, controlling weights’ behaviour during training has proven to accel-
erate the training process and reduce the likelihood of overfitting the model to
the training set e.g. weight standardisation in [138], weight normalisation/repa-
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rameterization [139], centred weight normalisation [140], and using Newton’s
iteration controllable orthogonalization [115]. Imposing Lipschitz condition on
convolution filters is less restrictive than orthogonality conditions have also been
investigated, [141–144]. Like the methods used to impose orthognolity condi-
tions, the method proposed by C. Runkel [144] to control Lipschitz constants re-
sult in reducing the condition numbers but more severely than our SVD-Surgery
and have the potential to ignore the features extracted from the various batches.

Most of the above proposed techniques have been developed specifically to
deal with trainable DL models for the analysis of natural images and one may
assume that these techniques are used frequently during the training after each
epoch/batch. However, none of the known state-of-the-arts DL models seem to
implicitly incorporate these techniques. In fact, our investigations of these com-
monly used DL models revealed that the final convolution filters are highly ill-
conditioned, [19]. Controlling the convolution filters norm doesn’t necessarily
control their condition numbers unless it is applied for the feedforward and back-
propagation of CNNs. GradInit [145] and MetaInit [146] propose methods to
control the norm of the network layer showing that these methods can acceler-
ate convergence while improvingmodel performance and stability. In both cases,
the model requires additional trainable parameters and control of the condition
numbers during training is not guaranteed.

Our literature review revealed that reconditioning and regularisation have
long been used in analytical applications to reduce/control the ill-conditioning
computations noted. In the late 1980’s, E. Rothwell and B. Drachman, [147], pro-
posed an iterative method to reduce the condition number in ill-conditioned ma-
trix problem that is based on regularising the non-zero singular values of the ma-
trix. At each iteration, each of diagonal entry in the SVD of matrix is appended
with a ratio of a regularising parameter to the singular value. This algorithm
is not efficient to be used for our motivating challenge. In addition, the change
of the norm is dependent on the regularising parameter. Note that this iterative
procedure amount to iterative matrix surgery.

Here, we introduce a singular value decomposition-basedmatrix surgery (SVD-
Surgery) technique to modify matrix condition numbers that is suitable for sta-
bilising the actions of ill-conditioned convolution filters on point clouds of im-
age datasets. It decomposes square matrices by SVD factorisation, replaces the
smaller singular value(s), and then reconstruct the original matrix with the re-
sulting singular value diagonal matrix. SVD-Surgery preserves the norm of the
inputmatrixwhile reducing the normof its inverse. Thismeans that SVD-Surgery
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make changes to the PH of the inverse matrices point clouds. We expect that PH
analysis of point clouds of matrices (and those of their inverses) can provide an
informative understanding of stability behaviour of DLmodels of image analysis.

6.2 SVD based matrix surgery

In this section, we introduce an innovative procedure to perform matrix surgery
that aims to reduce the condition number of matrices. In the wide context, SVD-
Surgery refers to the process of transforming ill-conditioned matrices to improve
their condition numbers. In particular, the focus is on addressing matrices that
deviate significantly from possessing orthogonality or orthonormality character-
istics by replacing or approximating them with matrices that exhibit better con-
ditioning. Since condition number of a matrix is defined in terms of it largest and
smallest condition number then we need to factorise it by the well-known sin-
gular value decomposition. The surgery proceeds by modifying the eigenvalues
and remultiply the left and right orthogonal singular vectors along with the new
singular value diagonal matrix. Recalling that the singular value decomposition
of a matrix A ∈ Rm×n is defined by:

A = UΣV T (6.3)

where U ∈ Rm×m and V ∈ Rn×n are left and right orthogonal singular vectors
(unitary matrices); diagonal matrix Σ = diag(σ1, ..., σn) ∈ Rn×n are singular val-
ues where Σ = σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. Since the ratio of the largest and smallest
singular values is determining the ill-conditioning of a matrix, we recall equation
2.9 in Section 2.3:

κ(A) = σ1/σn

where σ1 and σn are the largest and smallest singular values of A, respectively. Al-
tering the singular values while keeping the left and right factor matrices of the
SVD decomposition results in a newmatrix with a different condition number. In
order to reduce the condition number of the original matrix, the singular values
alteration should preserve their monotonic order while reducing the distance be-
tween the largest and the smallest new singular values. Preserving monotonicity
enables conducting topological surgery on the ellipsoid that corresponds to the
originalmatrix by pushing spheres through the narrow tunnel. Increasing the last
singular value alone may not be enough to make a significant/desired reduction
in thematrix condition number, especially if the gap between it and the one above
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it is small compared to the gap between it and the first singular value. Accord-
ingly, a significant reduction in conditioning of a matrix may require changing
many more singular values and push them towards the most significant singular
value, i.e. changing their spread. The extreme replacement of all the singular
values with the most significant one produces orthogonal matrix with optimal
condition number of 1. However, doing that for the convolution filters during
training CNNmodels amounts to avoiding fitting the CNNmodel to the training
image dataset.

SVD-Surgery can be customised in several ways depending on the desired
characteristics of the output matrices to suit their intended application. The SVD-
Surgery, described below, is equally applicable to rectangular matrices.
Given any matrix A, an SVD-Surgery on A outputs a newmatrix of the same size
as follows:

1. Compute its SVD decomposition,

2. From the diagonal matrix factor Σ construct another di-
agonal matrix Σ̃ by replacing the small singular value(s)
while keeping their descendant order

Σ̃ =


σ1 0 ... 0

0 σ̃2 ... 0
... ... . . . ...
0 0 ... σ̃n


where the updated singular value σ̃i’s are selected to
maintain low condition number while the new diagonal
entries remain monotonically decreasing, and

3. Reconstruct the output matrix Ã as follows:

Ã = UΣ̃V T

The modification of singular values leads to the adjustment of the matrix op-
eration impact along the orthogonal singular vectors of U and V . Themonotonic-
ity requirement guarantees reasonable control over these adjustments. Although
the orthogonal regularisation method proposed by [116] and the SVB method
suggested by [117] can reduce condition numbers and may enhance overfitting
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control for deep learningmodels trained on natural images, they fail to satisfy the
monotonicity condition. Furthermore, their effectiveness in training deep learn-
ing models for US image datasets cannot be guaranteed. While the SVB method
is more restrictive than SVD-Surgery in controlling condition numbers, no anal-
ysis has been performed on the norm of these matrices or their inverses. Our
proposed SVD-surgery approach is tailored to the intended application and aims
to lower excessively high condition numbers while preserving the norm of orig-
inal matrices. By replacing all singular values with the largest singular value,
an orthogonal matrix with a condition number of one can be generated, but this
approach overlooks significant variations in the training data along some of the
singular vectors, leading to less effective learning. A more effective way is to try
to change the spread of singular values by moving the lower ones upwards while
keeping their non-ascending order so that all move nearer to the most significant
one. Such a less drastic surgery strategy can include, but not limited to, changing
the singular values in a formal way as follows:

Select a diagonal position j, 1 < j < n, and let σ̃ be a convex
linear combination:

σ̃k =
n−1∑

k=j−1

αkσk, where αi ≥ 0,
∑

αi = 1

and set σ̃k for each j ≤ k ≤ n.

The choice of j, and the linear combination parameters can be made application-
dependent and possibly determined empirically. At its extreme, this approach al-
lows for setting σ̃ = σj , which is a conservative strategy compared to orthogonal
regularisation methods, as it maintains the monotonicity of the singular values.
For our intended application, layer-specific parameter choices should be made,
but the linear combination parameters should not result in substantial rescaling
of the training dataset features along the singular vectors. Although SVD surgery
can be applied to inverse matrices, using the same replacement strategy and re-
construction may not result in a significant reduction in its condition number.
Example:
Suppose B is a square matrix with n = 3 drawn from the normal distribution
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with mean µ = 0 and standard deviation σ = 0.01 as follow:

B =

−0.01960899999 0.02908008031 −0.01058180258

−0.00197698226 0.00825218894 −0.00468615581

−0.01207845485 0.01378971978 −0.00272469409

 (6.4)

Singular values of B are Σ = diag(σ1, σ2, σ3) and to modify and reconstruct B̃1,
B̃2, and B̃3 by replacing one and/or two singular values s.t. Σ̃1 = diag(σ1, σ2, σ2),
Σ̃2 = diag(σ1, σ̃2, σ̃3) and Σ̃3 = diag(σ1, σ1, σ1), respectively. New singular values
in Σ̃2 are convex linear combinations s.t. σ̃2 = 2σ1/3 + σ2/3 and σ̃3 = σ̃2 . After
replacement and reconstruction, the condition number of B̃1, B̃2, and B̃3 are sig-
nificantly lower compared to the original matrix as shown in Table 6.1, by using
Euclidean norm.

Table 6.1: Norm and condition number of matrix B and post-surgery B̃i .

∥A∥ ∥A−1∥ κ(A)

B 0.041883482 2034.368572 85.20644044
B̃1 0.041883482 199.5721482 8.358776572
B̃2 0.041883482 30.36464182 1.271776943
B̃3 0.041883482 23.87576058 1

One way to control the condition number of CNN filters during training is
by controlling their singular values. The implementation of this type of surgery
can be integrated into customised CNN models for the analysis of natural and
medical image datasets as a filter regularisation. This approach can be applied
at the filter initialisation when training from scratch, on pretrained filters when
training in the transfer learning mode, as well as at each epoch on filters that
become ill-conditioned when modified during training by backpropagation post
every batch/epoch. However, modification to convolution filters during training
depends on the optimisation adopted by the trained CNN architecture, the con-
volution layer parameters and the training dataset batches. Therefore, the choice
of appropriate SVD surgery per convolution layer, in terms of improved Gener-
alisation and robustness performance, requires extensive training and retraining.
Accordingly, we shall confine our investigation for this chapter on determining
the effect of a reasonably simple SVD-surgery on the initialised/pretrained con-
volution filters. This will be done in Section 6.4, below. We shall next investigate
the effect of SVD-surgery on various properties of point clouds of convolution
filters.
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6.3 Effects of SVD-Surgery on filter point clouds

The SVD-surgery operates on single matrices, and create new ones. Here, we
investigate its impact on larger sets of kernel matrices in terms of their overall al-
gebraic and topological behaviour. In particular, we present the impact of surgery
(1) on the distribution of condition numbers along with its norms in Subsection
6.3.1, (2) on the distribution of eigenvalues in Subsection 6.3.2, and on their spa-
tial distribution in Subsection 6.3.3.

6.3.1 Distribution of condition number of filter point clouds

To demonstrate the impact of SVD-Surgery on convolution filters point clouds
empirically, we generate N sample of n× n random Gaussian matrices. We com-
pute the norm of the original matrices, the norm of their inverses, and their con-
dition number to observe and analyse changes to their distributions in terms of
the level of SVD-surgery applied to each set. For simplicity of visualising the ef-
fect of gradual matrix surgery, we present our findings, in Figure 6.2, based on
N = 104 samples of 3×3 random matrices selected from the normal distribution
N (0, 10−4). We use the simple SVD-surgery by replacing the smallest singular
value σ3 with the new value σ̃3 = σ2. For graphs of matrix condition number, the
x-axes is indexed by Log10(condition numbers).
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Figure 6.2: Distributions of (Norm, Norm of inverse, condition number) of 3×3
matrices pre and post-surgery.

While, no change is detected in the distribution of the selectedmatrices norms
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post-surgery, these results reveal notable alterations in the distribution of the in-
verse matrices norms that in turn yielded significant change in the distribution
of their condition numbers post-surgery. The condition number ranged from ap-
proximately 1.2 to 10256 in the original set, whereas after the replacement and
reconstruction, the minimum and maximum numbers are [1.006, 17.14].

The changes in Figure 6.2, above, reflect the effects of the simple surgery that
only altered the smallest singular value. It is expected that these distributions
vary in terms of the level of matrix surgery. The use of a linear combination
enables the maintenance of the condition number within a specified threshold,
based on the singular value distribution. Figure 6.3, below, displays 3D visual-
isations of these distributions for 3 different surgery levels: (a) the above one,
(b) where σ2 and σ3 are replaced with σ1/3 + 2σ2/3, and (c) where σ2 and σ3 are
replaced with (σ1 + σ2)/2. After matrix surgery, the minimum and maximum
condition number values for both sets are now [1.004, 2.687] and [1.003, 1.88],
respectively.
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(c) σ̃2 and σ̃3 = (σ1 + σ2)/2

Figure 6.3: 3D depiction of distribution of 3×3 RGF matrices pre- and post-
surgery at 3 different levels.

In summary, different surgery results in different changes to the range of con-
dition numbers but retains the norm of the original matrices. In fact, as the linear
combination defining the SVD-surgery approaches a state where the smaller sin-
gular values become closer to the largest one, the range of conditioning numbers
becomes tighter. These results emphasise the significance of the link between the
distribution of singular values and the task of selecting an appropriate level of
SVD-surgery for convolution filters. We shall discuss that link in the next section,
but before doing that we shall return to the challenge of selecting and illustrate
that determining the appropriate SVD-surgery for point clouds of convolution
filters of different sizes, beyond 3×3.

Recall that in Chapter 4, we investigated the condition number of pretrained
CNN convolutional layer filters and found that the majority of these filters were
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tending towards ill-conditioning regardless of the architecture design and the
type of regularisation applied during training. This is a strong motivation for ex-
ploiting the advantages of SVD-Surgery to modify the pretrained convolutional
filters before re-training for US scan images. Most state-of-the-art CNN mod-
els use filters of mixed sizes beyond 3×3. For example, the pretrained Alexnet
convolution filters in the first layer uses 11×11, and it consists of filters of other
smaller sizes in subsequent layers. The singular value distribution of the sets of
pretrained filters per convolutional layer could guide the selection of appropri-
ate levels of SVD-surgery in that layer. Those distributions reflect the collective
spread of singular values of all the filters. For each single filter, the spread of its
singular values determines the success any SVD-Surgery in controlling its con-
dition number. However, for large filter sizes beyond 3x3 selecting appropriate
linear combination of singular values for a point cloud of filters, of varying spread
of singular values, is not a straightforward task. The following example, illustrate
this challenge.
Example: Consider the two 3-channel 11×11 pretrained AlexNet filters used in
the last two chapters:

w1 = (w11, w12, w13) w2 = (w21, w22, w23)

The various channel components of the two filters have a wide range of condition
numbers. Now, iteratively apply a sequence of SVD-Surgery by simply modify-
ing two consecutive singular values. For each i = 1, . . . , 11, let Si be the simple
SVD-Surgery defined by replacing the (12− i)th singular value with the (11− i)th

singular value, i.e. the S1 level of surgery σ̃11 = σ11, . . . , etc. Table 6.2, below,
shows the condition number of operated on filters w1,k and w2,k per the channel
k = 1, 2, 3 after each successive application of the {S1, . . . , Si}.

Comparing the achieved condition number at each stagewith that of the origi-
nal pretrainedfilters, reveal that all the filters eventually becomewell-conditioned.
However, there is no clear link between the original filter condition number and
the speed with which it becomes reasonably well-conditioned. For instance, The
condition number of the third channel ofw2 dropped by approximately 150 times
the original in one step, whereas the dropping rate for the second channel is ap-
proximately 2 times. Additionally, the filters w1,2 and w2,1 have relatively simi-
lar condition numbers of 434.02 and 487.53, respectively, and yet their speed of
reduction are far from each other. The different reduction rates, at any stage,
is an indication of different spread of their original singular values is different.
The overall condition number reduction rate, up to S10, for the relatively well-
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Table 6.2: Impact of iterative SVD-Surgery (Si) on conditioning of filters w1 & w2.

Surgery level κ(w1,1) κ(w1,2) κ(w1,3) κ(w2,1) κ(w2,2) κ(w2,3)

Original 94.08 434.02 52.97 487.53 1903.70 59133.33
S1 79.64 97.13 40.83 273.75 938.67 400.50
S2 28.18 49.95 20.43 180.03 576.44 194.94
S3 24.66 26.98 14.66 105.49 208.69 110.97
S4 9.61 20.43 10.77 77.92 149.21 92.48
S5 8.09 15.45 7.93 63.79 119.23 79.88
S6 7.36 13.87 6.64 41.72 102.80 47.02
S7 6.05 10.92 5.01 30.86 63.40 31.56
S8 3.01 6.16 4.56 25.87 33.31 27.06
S9 1.35 3.42 1.97 4.45 5.09 6.21
S10 1 1 1 1 1 1
S11 1 1 1 1 1 1

conditioned filter w1 is faster than its counterpart w2. As demonstrated in Section
6.2, replacing all singular values of a matrix with its largest singular value will
lead to an orthogonal matrix. Therefore, the condition number of all matrices at
S10 level of surgery is one, and the extremist level of the surgery S11 is replacing
all singular values with 1 resulting in condition number being one. The overall
structures of the original matrices’ and their inverses remain the same to a certain
level of the SVD-Surgery with a reduced scale of the matrix inverses. To illustrate
the kind of changes to the entries of the filters and their inverses as a result of
these surgeries, Figure 6.4 depicts the entries of the highly ill-conditioned filter
w2,3 and its inverse through this sequence of surgeries.

We first observe thatw2,3 post the first surgeryS1 yields significantly improved
conditioning, and maintains its norm while the norm of its inverse is reduced as
manifested by the reduced scale of entries from [-4,6] ×104 to [-3,3] ×102. Al-
though, these kinds of changes are persistent until the S7 level of surgery where
the matrix entries start adapting to the reconstructed matrices.

In conclusion, deciding on the level of matrix surgery suitable for point clouds
of pretrained filters, is a tough challenge, especially for layers that use filters of
larger sizes than 3×3 sizes. Such a decision is dependent on the spread of the
singular values of all the individual filters (i.e. on the distribution of eigenvalues
of all filters) and this is closely related to the local geometry structures around
lower major axes of their mapping of the unit sphere in its domain.
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(a) Filters

𝐎𝐫𝐢𝐠𝐢𝐧𝐚𝐥 𝑺𝟏 𝑺𝟐 𝑺𝟑
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(b) Inverse of filters

Figure 6.4: 3D Visualisation of entries of w2,3 and its inverse post the sequence of
Si Surgeries Si (i = 1, . . . , 11).
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6.3.2 Impact of SVD-Surgery on eigenvalue distribution

The spread of eigenvalues of amatrix can give an indication of howwell-conditioned
or ill-conditioned the matrix is. In particular, a matrix with a large spread of
eigenvalues (i.e., a large range ofmagnitudes)will have a high condition number,
indicating that it is ill-conditioned and susceptible to numerical errors in compu-
tations. On the other hand, a matrix with a small spread of eigenvalues will have
a low condition number, indicating that it is well-conditioned and less prone to
such errors. For point clouds of RGF convolution filters, studying the spread of
all the filter’s eigenvalues can provide a valuable indicator of the stability/other-
wise of the corresponding CNNmodels. As mentioned above, knowledge about
the spread of eigenvalues provides a good guide in selecting an appropriate SVD-
surgery level for CNN convolution filters. The fact that, counting multiplicities,
n × n RGF’s have n complex eigenvalues. Hence, visualising the set of eigenval-
ues as points in the complex plane provides a helpful tool in understanding the
spread of eigenvalues of point clouds of filters 3.

Figure 6.5, illustrates the eigenvalue distribution in the complex plane ofN =

104 randomly generated 3×3 matrices before and after matrix surgery. Eigenval-
ues in (a) are representing the original matricesA andA−1 before matrix surgery,
and eigenvalues of Ãi and Ã−1

i for three different SVD-Surgery schemes: (b) re-
places the smallest singular value with the second, i.e. σ̃3 = σ2; (c) the singular
values σ2 and σ3 are replaced with σ1, i.e. σ̃3 = σ̃2 = σ1; and (d) the diagonal
singular value matrix is replaced with identity matrix I3. The last drastic surgery,
which changes the eigenvalues is similar to the bounded singular value scheme
in [117].

In the pre-surgery case, there is no hole around the origin, but as one ap-
plies more drastic SVD surgeries the whole around the origin for both the actual
resulting matrices and their inverse point clouds starts to expand outward. An
extended version of the above example of N = 105 randomly generated 5×5 ma-
trices is presented in Figure 6.6. This illustrates the eigenvalue distribution before
and aftermatrix surgery. Eigenvalues in (a) are representing the originalmatrices
A and A−1 before matrix surgery, and eigenvalues of Ãi and Ã−1

i for five differ-
ent SVD-Surgery schemes starting (b) by equating the last two eigenvalues; (c)
by equating the last three eigenvalues; (d) by equating the last four eigenvalues;
(e) by equating all the eigenvalues; and (f) by replacing the diagonal SVD factor
with identity matrix I5.

3For a deeper understanding of the study on the distribution of eigenvalues of large random
matrices, interested readers are encouraged to explore [148–151].
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(d) Post-surgery Ã3

Figure 6.5: Eigenvalue distribution of randomly generated 3×3 matrices before
and after matrix surgery (top) and their correspondence inverses (bottom).

In general, the spread of eigenvalues in the complex plane is connected to
matrix well- and ill-conditioning. The radii of the inner and outer circles, passing
through the lowest and highest eigenvalues, respectively, provide insight into the
sensitivity of thematrix to small changes and its conditioning. Recall, that during
CNNmodels training/retraining at each layer, the convolution filters, are subject
to changes dictated by the backpropagation procedure that attempts to fit the
model to the training dataset.

The inner and outer radii of eigenvalues of orthogonal square matrices are
equal to 1. As a result, orthogonal matrices have real eigenvalues with absolute
values equal to 1. The inner radius of the eigenvalues of a square matrix is de-
fined as the minimum distance from the origin to the eigenvalues of the matrix.
For orthogonal matrices, all eigenvalues have absolute value 1, so the minimum
distance from the origin to the eigenvalues is equal to 1, making the inner radius
of the eigenvalues of orthogonal square matrices equal to 1. The inner radius of
eigenvalues of well-conditioned non-orthogonal matrices is positive and close to
1, whereas it can be close to zero for large condition number values.

Todetermine the inner and outer circles of thewell-condition filter aftermatrix
surgery (condition number equal to 1 by keeping the first singular value only),
for N number (N = 104) matrices with n× n:

After matrix surgery to reduce all condition numbers to 1, the inner and outer
radii of eigenvalues λ in the complex plane of N ≥ 2 random Gaussian matrix
samples are bounded and defined i.e. for any given matrix D ∈ Rn×n the inner
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radius, rin, is defined as:

rin = inf
k∈N

{D ∈ Rn×n : ∥Dk∥2} (6.5)

and the outer radius, rout, is defined as:

rout = sup
k∈N

{D ∈ Rn×n : ∥Dk∥2} (6.6)

In both cases, the ∥D∥2 = σ(D) = |λ(D)|. The thickness of the ring is dependent
on the spread of eigenvalues and singular value distribution. In fact, the width
of the ring increases with larger sizes of D, and keeping the largest singular val-
ues reduces the thickness between the inner and outer circles i.e. |rout − rin| ≤ ε.
For instance, Figure 6.7 shows the radii of eigenvalue distribution in the complex
plane before and after surgery with the significant difference between the largest
singular value and eigenvalue, whereas the ∥D∥2 = σ(D) = |λ(D)| when condi-
tion number is equal to 1. Moreover, it’s also possible to control the thickness of
the ring for non-orthogonal matrices by keeping the most top-relevant singular
values for large matrices with keeping the condition number close to 1 or below
2, or simply dependent on the level of SVD-surgery. The radii of the eigenvalue
distribution on the disc are defined as:

rin = inf
k∈N

{D ∈ Rn×n : |λ(Dk)|} (6.7)

rout = sup
k∈N

{D ∈ Rn×n : |λ(Dk)|} (6.8)
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Figure 6.6: Eigenvalue distribution of randomly generated 5×5 matrices before
and after matrix surgery (top) and their correspondence inverses (bottom).
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Figure 6.7: Eigenvalue distribution ofN = 103 randomly generated n×nmatrices
before and after matrix surgery.
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6.3.3 Impact of SVD-Surgery on PH of point clouds of filters

The interest in studying the impact on the topological profile of point clouds of
filters post-surgery relates to the remarkable variations (established in the pre-
vious chapters) in the topological properties visualised through PDs between
well-conditioned and ill-conditioned filters point clouds. We evaluate the level
of SVD-Surgery of randomly generated matrices point clouds through the lens
of persistent homology4. The PH of point clouds before and after surgery could
provide insight into the geometrical and topological changes of their action on
the unit sphere of their domain.

Investigating the PH changes of the point cloud of 3×3 randomly generated
filters from the previous example, see Subsection 6.3.1, after entry normalisation
results in a point cloud A on 8-dimensional sphere embedded in R9, and a sim-
ilar process for the set of matrix inverses A−1. Figure 6.8 shows the persistence
diagram in dimensions zero and one before and after applying matrix surgery
for two simple linear combinations. The post-surgery point clouds Ã1 and Ã2 are
representing a set of matrices Ã1 and Ã2 where the singular value σ̃3 = σ2 and
σ̃3 = σ̃2 = σ1, respectively. The point clouds Ã1 (top) and Ã−1

1 (bottom) are com-
posed of sets of matrices Ã1 and Ã−1

1 , respectively, where replacing the smallest
singular value σ3 is resulting in a narrower range of condition numbers, shift-
ing from [1.2, 10256] to [1.006, 17.14]. The persistence diagrams are significantly
changing compared to the pre-surgery A and A−1. The equivalence PDs of Ã2

(top) and Ã−1
2 (bottom) is a direct reflection of the particular SVD-Surgery that

forces the orthogonality property of the matrices, which in this particular case,
the inverse matrices are obtained simply by transposing the original ones.

In both dimensions, we observe contrasting PDs between well-conditioned
and ill-conditioned matrices, as well as between the PDs of their respective in-
verses. However, when analysing the PDs of the original matrices and their in-
verse point clouds, we have observed minimal variation in the spatial distribu-
tions for well-conditioned matrices compared to the ill-conditioned ones in di-
mension 0. Our proposed matrix surgery will aim to control the differences be-
tween the PDs’ of the output matrices and that of their inverse point clouds.

4See Subsection 2.2.3 for further detail.
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Figure 6.8: Persistence diagram of point cloudsA (top) andA−1 (bottom) before
and after SVD-Surgery.

6.4 Effects of SVD-Surgery on the CNNmodels

The various investigations in previous sections on the effects of matrix surgery
have shown that the task of selecting appropriate SVD-Surgery by linear combi-
nation of singular values is somewhat daunting and is likely to be related to the
dataset and the various parameters of the deployed CNN architecture. In this
section, we shall investigate the impact of applying SVD-Surgery on convolution
filters before training/pretraining CNN models and during the training process
steps. The interesting impact is the ability to endow the resulting CNN schemes,
for US tumour image analysis, with robustness and ability to generalise to unseen
image data. But before conduction such experiments, we shall first attempt to an-
swer the following question: “Does applying SVD-surgery at filter initialisation
stage help stabilising and controlling filters condition numbers throughout the
training procedure? This will be done in Subsection 6.4.1. In Subsection 6.4.3, we
present the result of experiments, similar to those conducted inChapter 5with the
various set of customised and state-of-the-art pretrained CNNs, but by applying
a uniformly defined simple SVD-Surgery applied at their filter initialisation step.
In the last subsection, we shall present the result of applying specially designed
conditioning based SVD-Surgery that is applied both at the initialisation stage as
well as at every intermediate epoch of the training stage. In both cases, the per-
formance results will be compared with those obtained without any surgery in
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terms of robustness and generalisation ability.

6.4.1 Visualising effects of SVD-Surgery during training

We already established, in Chapters 4 and 5, the instabilities of filters’ condition
number during training our customised CNN models as well as retraining sev-
eral pretrained of CNN models. Here we test the effect of applying simple SVD-
Surgery, as a condition number regularisation, on the convolution filters during
training our Model-B using the unified-channel default initialised filters, WD,
while training the Ten-D US dataset. The aim of this experiment is to monitor
the behaviour changes of the filters with and without integrating a simple level
of SVD-Surgery whereby the last singular value is replaced with the one before
the last. Figures 6.9, shows 3D illustration of the changes in norm of the first layer
filters, norm of their inverses, and their condition number (in logarithmic scale)
during training with no surgery over 15 epoch. Here, the graphs are labelled by
the epochs number and they display the filters input into that epoch. The graph
of Epoch 1 displays the initialised filters, and the graph of epoch (Ei), i > 1, dis-
plays the filters output from epochEi−1. Clearly, the training results in instability
of the filters condition numbers. This is manifested by the observed fluctuation
of condition numbers, that are initially in the high logarithmic range of 0-10 and
though dropping into somewhat lower log range of 0-6 over the first 5 epochs
only to fluctuate between these two ranges through the remaining epochs.
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Figure 6.9: 3D graphs (x, y, z) = (∥filter∥, ∥filter−1)∥, κ(filter)) for the 5×5 fil-
ters in WD.
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Figure 6.10 showcases comparative graphs from a repeated training experi-
ment, employing simple SVD-Surgery on the initialised filters inWD. In the graph
labelled "Epoch1," blue dots represent the initialised filters, while red dots depict
the same filters after applying the chosen SVD surgery. For subsequent epochs
(Ei, i > 1), blue dots represent filters output from epoch Ei−1, and red dots sig-
nify the result of applying the selected surgery on these filters. Notably, filters at
epoch 15 remain unaffected by surgery.

The figure illustrates a significant reduction in condition numbers during ini-
tialisation. While the condition numbers exhibit fluctuations within smaller log-
arithmic ranges for the first 7 epochs, they stabilise within the lower log range of
0-1.5 for the subsequent epochs. This is in contrast to the higher range of con-
dition numbers (in log) observed in Figure 6.9. Towards the end of training,
many output filters are reasonably well-conditionedwithin the log range of 0-0.5,
while others are less well-conditioned. The observed effects are clearly linked to
the chosen level of surgery, with fluctuations influenced by differences in data
batches within the training set. A parallel behaviour is noted in the second con-
volutional layer set, both with and without SVD-Surgery, as depicted in Figures
A.8 and A.9.
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Figure 6.10: 3D illustration of the norm (x-axis), norm of inverse (y-axis) and
condition number (z-axis) of a set of 5×5 weights per epoch (log) before and
after SVD-Surgery.
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6.4.2 SVD-surgery at initialisation or on pretrained filters

In this section, we present the results experiments, similar to those conducted in
Chapter 5, with several customised and pretrained CNNs, but instead we apply
a moderate uniformly defined SVD-surgery prior to training. This uniformity of
the surgery here means that for different size filters the modified singular values
are of the same proportion to the size. Here, we keep the largest two singular
values and replace the rest of the singular values with the second largest singular
value. Unless all singular values of a filter are equally significant, this surgery
reduces its condition numbers relatively well but can only make it orthogonal if
the first two singular values are equally significant.

Figure 6.11 shows the classification accuracy of the trainedmodels fromChap-
ters 4 and 5 with the modified trained CNNs after applying the above SVD-
Surgery before starting the training process. The customised CNN Model-B is
trained from scratch while for the pretrained CNNs are in the transfer learning
mode after applying surgery on all the pretrained filter. Throughout this section,
the displayed results gives the classification performance of the models with-
/without the SVD-Surgery.

Figure 6.11, shows the overall all accuracy of three customised CNNModel-B
variants with different filter initialisation schemes trained on the Ten-D breast US
dataset, along with three pretrained CNN models retrained in transfer learning
mode on the same dataset. Minimal differences are observed in their accuracy
before and after surgery. There is only slight improvement resulting from surgery
for Mode-B WD and FD as well as the ResNet18 Model, while all other schemes
experience marginal declines due to the application of surgery.
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Figure 6.11: CNN classification accuracy before and after the uniform SVD-
Surgery on initialised filters.
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6.4.2.1 Robustness tests

To evaluate the robustness of the above CNN models, we apply the same noise
levels and types as described in Subsection 4.2.2. Recalling the test results in Fig-
ures 4.2 and 5.12, we present those robustness results and compare the robustness
performance when the newly trained/retrained CNNs after applying the SVD-
Surgery (S) in Figure 6.12.
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Figure 6.12: CNN models against Gaussian and Speckle noises before and after
applying SVD-Surgery.

Generally, all models have disappointing robustness performance against the
higher level of noise (GN2 and SN2). And in that case it is checking the effect of
surgery is worthless. However, with the exception of ResNet18 and Model-B Dw
with surgery, all models have reasonable robustness tolerating the lower level of
noise (GN1 and SN1). And in that case, Model-B with FD benefits from surgery
by becoming reasonably more robust against GN1 and SN1 and AlexNet become
marginally more robust against GN1 only. The robustness of all other models
deteriorate with variable rates as a result of SVD surgery.

6.4.2.2 Generalisation tests

To check the generalisability performance of the newly trained CNN models on
Ten-D US datasets after reducing filters’ condition number at initialisation and
pretrained filters, we test the models on the BUSI US dataset5. Recalling the test
results in Figures 4.3 and 5.13, we present all generalisation test results in Figure
6.13 for both US datasets and with/out the SVD-Surgery. The accuracy level of
Model-B FD, VGG16 TL, and ResNet18 TL models on the BUSI dataset have all

5See Subsection 4.2.3 for further detail.
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benefited from filter surgery by increased performance rate in the range 1.5-5%
compared to no surgery. Model-B F1 and AlexNet performance on BUSI only
benefited from surgery by a negligible amount of 0.31%.
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Figure 6.13: CNN performance on the unseen BUSI datasets pre- and post-
surgery.

The experiments conducted in this section confirms that there is no one uni-
fied approach for SVD-Surgery across all CNN models. As mentioned in Sub-
section 6.4.1, applying surgery solely during the initialisation step does not effec-
tively stabilise the condition numbers. The fluctuation in condition numbers is
caused by the trainable parameters of the CNN architecture and variations be-
tween different batches of the training dataset.

Furthermore, considering the correlation between the distribution of condi-
tion numbers of filter point clouds and the spread of their singular values (as
discussed in Subsections 6.3.1 and 6.3.2), it is reasonable to expect that a specific
SVD-surgerymay not uniformly enhance the conditioning of all filters. In light of
these considerations, we conclude this chapter by testing a variable SVD-surgery
scheme, where the level of surgery is determined based on the conditioning of the
input filters. Furthermore, this method can be considered as a hyper-parameter
for training CNN models.

Overall, the experiments in this section confirms that no one kind of SVD-
Surgery can benefit all CNN models. In Subsection 6.4.1, above, we noted that
applying surgery at the initialisation step only does not stabilise the condition
numbers. Condition number fluctuation could arise as a result training parame-
ters of the CNN architecture as well as the variation between the different batches
of training dataset. Moreover, considering the link between the distribution of
condition numbers of filter point clouds and the spread of their singular values
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(as discussed above in Subsections 6.3.1 and 6.3.2) we should also expect that
one specific SVD-surgery can improve the conditioning of all filters in a similar
way. Accordingly, we end this chapter by testing a variable SVD-surgery scheme
whose level is based on the input filter conditioning.

6.4.3 Variable conditioning based SVD-Surgery

There are several major criteria that influence the performance of the CNNmodel
with filter surgery. These include the imagingmodality, the nature of the problem
and the CNN architecture, parameter and hyper-parameter selection, the distri-
bution of the eigenvalues and singular values, and the spatial distribution of the
filter point clouds. Here, we shall propose a special variable SVD surgery whose
level is defined in terms of the input filter condition number.

To test the viability of this variable SVD-surgery strategy, in relation to robust-
ness and generalisability, we shall experiment on our Model-B with F1 initialised
filters. We define the variable SVD-Surgery to be used on the filters of F1 be-
fore training and on the convolutional layer filters during training at each epoch.
Realising the difficulty of determining a linear combination of a certain set of
lower singular values to replace them all, we shall attempt to invoke the idea of
changing their spread so that each is replaced by a proportion of the one above
it. Accordingly, we define our special variable SVD-surgery as follows:

• At the initialisation stage, apply the simple surgery by
modifying σ̃5 = σ4.

• During the training at each epoch, for any filterA use the
surgery defined as follows:
if κ(A) ≥ 10 then:

σ̃3 = 0.5σ2 σ̃4 = 0.3σ2 σ̃5 = 0.2σ2

if 3 ≤ κ(A) < 10 then:

σ̃4 = 0.6σ3 σ̃5 = 0.4σ3

if 1.5 ≤ κ(A) < 3 then: σ̃5 = 0.95σ4

• Otherwise, do not apply surgery.
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This type of surgery is less dependent of the singular value distributions. The
various constant parameters are not meant to rigid but can be modified to suit
the purpose of the surgery. The learning process may become slower if a large
number of filters fall within the moderate surgery procedure when κ(A) ≥ 10.
However, the above procedure does not guarantee that the upper bound of the
condition number as the ratio of σ1 and σ2 could be large.

Similar to the previous CNN model performances, we trained and tested the
model with Ten-D breast US dataset and tested on BUSI US dataset for the gener-
alisation andwhen different levels of noise are added to the Ten-D datasets. Table
6.3, below, summarises the classification performance of theModel-BF1 with the
above described surgery scheme, for two distinct training batch sizes 50 and 80.

Table 6.3: Model-B classification performance with the variable SVD-Surgery.

Batch size Testing set Accuracy Sensitivity Specificity
50 TenD 87.26 85.48 89.05

GN1 87.74 78.81 96.67
GN2 87.50 85.48 89.52
SN1 88.33 80.24 96.43
SN2 87.38 88.33 86.43
BUSI 87.62 85.71 89.52

80 TenD 87.62 81.43 93.81
GN1 87.86 84.05 91.67
GN2 83.10 93.33 72.86
SN1 88.33 84.76 91.90
SN2 82.62 93.81 71.43
BUSI 83.10 93.57 72.62

These results demonstrate the success of using variable SVD-surgery, defined
differently for each filter according to their condition numbers, throughout the
entire training procedure. The developed model is optimally robust and general-
isable to unseendata. In fact, it levelled up all different testing scenarios especially
when the batch size is 50 i.e. moderate US image batch could help to tailor a bet-
ter CNNwith filter surgery that are robust to different noise levels and generalise
well to unseen data. With batch size 50, the presence of low level noise (GN1 and
SN1) there is a considerable gap between sensitivity and specificity rates which
are reduced significantly when the level of noise increased to (GN2 and SN2).
Interestingly, this pattern of gaps between sensitivity and specificity is reversed
when training was conducted with batch size 80. This indicate that these gaps
can be controlled by tweaking the training batch size.

The results from this and last section supports the idea of using variable SVD-
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surgery throughout training, the parameters are to be determined for each CNN
model differently. The results also suggest that achieving adequate surgery pa-
rameters may be done in multiple steps of training ad retraining with different
batch sizes.

6.5 Summary and conclusion

In this chapter, we proposed a convolution filters condition numbers regularisa-
tion scheme and adequately exploits the well-known link between the SVD of
matrices and their mapping of the unit sphere in their domain when considered
as linear transformations. The matrix SVD-Surgery concept is aimed at reducing
and controlling the condition number of convolution filters through the training
of CNNmodels. The SVD-Surgery applied on highly ill-conditioned matrices re-
sults in a reconstructed matrix of significantly lower condition number. We eval-
uated the various effects of the proposed strategy on different filter point clouds.
We discovered that this approach effectively reduces the condition number, de-
pending on the chosen parameters for the linear combination i.e. the level of the
surgery. We evaluated its impact on large point clouds through the perspectives
of persistent homology, distribution of condition numbers, and eigenvalues.

Addressing the initial motivation of the condition number regularisation, the
SVD-Surgery approach is equally applicable to both training from scratch and
transfer learning (fine-tuning) scenarios at initialisation and/or during the train-
ing process, without introducing additional complexity to themodel or requiring
the adjustment of extra parameters.

Although, the task of determining the adequate SVD-surgery parameters is
somewhat daunting, we have demonstrated that it is possible to do and reap the
benefits of developing customised or pretrainedCNNmodels for diagnostic anal-
ysis of US tumour scan images that are robust against perturbation of data and
conquer the overfitting problem by enabling generalisation to unseen data. How-
ever, it is important to consider that drastic changes in the filters particularly to-
wards the final epochs of the trainingmay lead to inconsistent learning or gradual
de-learning of texture features. Therefore, the level of surgery across channels,
convolutional layers, and per batches/epochs may influence various model per-
formance criteria.
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Chapter 7

Conclusion and Future Directions

This PhD research project arose within a wider collaborative initiative aimed to
leverage the extraordinary successes of deep learning technologies in computer
vision tasks and to develop CNNmodels for tumour diagnostic tasks using ultra-
sound tissue scan images. Established knowledge, at the time, highlighted sev-
eral serious challenges in developing such models from scratch for any computer
vision task without having access to a sufficiently large dataset of reliably class
labelled image samples that are diverse in reflecting the wider population. The
common suggested approach for small datasets was to select an existing CNN
model that has been pretrained with huge samples of natural images, and retrain
with US images for the purpose of efficiently tweaking the pretrained parameters
(i.e. the sets of convolution filters and the FCL weight matrices) to learn discrim-
inating US tumour image feature patterns.

The advice to use pretrained CNN models in transfer learning mode, comes
with a number ofwarnings themost important ones are (1) to expect sub-optimal
performance, (2) the model suffers from overfitting and may not generalise to
unseen data, and (3) may not be robust against data perturbation. Sub-optimal
performancemay be acceptable as long its decisions are as good as thosemade by
expert clinicians with reasonably long training. But for critical applications, like
medical diagnostics, overfitting is a serious disadvantage that must be avoided.
Robustness against the effect of tolerable level of perturbation by modest noise
must be guaranteed for the model to be accepted for deployment. Accordingly,
the aim and objectives of this thesis was set to (1) investigate CNN factors that
can be associated with the causation of overfitting and/or lack of robustness, and
(2) to use the gained knowledge to develop a strategy for designing CNNmodels
whose factors/parameters/procedures help mitigating these shortcomings.
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7.1 Conclusions

Post the retraining of a pretrained CNN model, the resulting convolution filters
determine the feature maps that contain the learnt US images hidden feature pat-
terns that discriminate between tumour classes. Therefore, our initial investiga-
tions focused on understanding the way commonly deployed convolution filters
impact content and structure in terms of their algebraic and topological profiles.
Such investigations are necessitated by the potential differences between natural
images and US images in terms of convolutions on image content and texture
descriptors including image entropy and distribution of texture landmarks.

These initial investigations were conducted on US images of different tumour
tissue types using sets of random Gaussian filters of mixed conditioning. No
easy to analyse patterns of impact were noted of image entropy variation in the
convolved US images. However, prior to testing impact of convolution filters on
distribution of texture landmarks in US images, our statistical analysis of the LBP
texture landmark groups revealed significant differences between texture con-
tents in US images and those in natural face images which was later noted for
other natural image datasets. In fact, this was conformed when we investigated
the statistical analysis of bladder, liver, and breast ultrasound scans as well as the
benchmark datasets such as Digits, MNIST, and CIFAR-10.

This observation, that could be relevant to othermodalities ofmedical images,
serves as a general warning against high expectation from retraining pretrained
CNN models of natural image analysis in terms of performance when deployed
for US image analysis. It motivated the introduction of texture-based entropy
(TE(LBP)) to quantify image texture feature content. It complements the empir-
ical evidence, provided by Nicholas Konz et al. in [152], for differences between
natural and radiological images, in terms of their intrinsic dimensions, and the
associated difficulty of learning form radiology images.

Through these investigations, we highlighted a strong correlation between the
condition numbers of convolution filters and their influence on traditional image
entropy and TE(LBP) descriptors as a result of image resizing or noise presence.
Furthermore, we noted substantial differences in the spatial distribution of tex-
ture landmarks within convolved US images using differently conditioned con-
volution filters, in the presence or absence of noise. These observations empha-
sise the necessity of conducting in depth research on the link between robustness
against noise and the conditioning of convolution kernels as the main algebraic
measure. Additionally, these observations also motivated the use of texture land-
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mark based persistent homology to extract representation of spatial distribution
of texture landmarks.

In Chapter 4, we set out to determine the level of success/failure of retrain-
ing several state-of-the-art CNN modes with US images in terms of robustness
against data perturbation and ability to generalise to unseen data. These exper-
iments established that while these schemes achieve high accuracy on the US
dataset, they suffer considerably from lack of robustness (against noise perturba-
tions) and generalisation into unseen data. Several investigationswere conducted
to have deeper understanding of the causes of these shortcomings by studying the
effects of pretrained convolutional layers, on the conventional and texture-based
entropy descriptors of the convolved images and feature maps, in terms of condi-
tioning of various filter sets. We first noted that almost all pretrained filters were
ill-conditioned with many being highly ill-conditioned. Moreover, the retraining
on the US Images, made the final model filters even more ill-conditioned with
few exceptions.

We also formally deployed the LBP landmark-basedPH, to further understand
the spatial distribution of texture landmarks in the feature maps across all con-
volutional layers. Our experimental work demonstrated that the incorporation
of convolution filters helps increase the discriminative power of this PH as well
as enable the CNN model to better distinguish between benign and malignant
masses. The performance improvement of tumour classification, using the LBP
landmark-based PH, was mostly noted in the first two layers of AlexNet. We also
demonstrated that pruning 50% of the filters, to retain the better conditioned fil-
ters, maintained the pattern of accuracy of LBP landmark-based PH schemes at
different layers. These results motivated the next step of our research into de-
signing slim CNN architectures customised for ultrasound images to train from
scratch.

Our strategy for constructingwell performing slimUS customisedCNNarchi-
tectures was designed to exploit the algebraic properties of filters and the spatial
distribution of US image LBP landmarks. In order to ensure robustness against
adversarial noise perturbation and ability to generalise well to unseen data, we
deemed it necessary to control the condition numbers of the convolution filters
as much as possible without jeopardising the learning rates. It is worth noting
that, although we were not aware at the time with the work of Nicholas Konz et
al. [152], our strategy is compatible with their advice to develop Deep learning
architectures specifically tailored to the characteristics of radiological images.

The different proposed architectures are based on controlling the condition
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numbers of convolution filters both at initialisation and throughout training if
necessary. The latter requirements were influenced by the instability of convo-
lution filters’ conditioning observed during training. Several customised CNN
models were designed and tested in terms of the set objectives, insisting on very
slim architectures using atmost two convolution layers. The tested schemes adopted
different filter initialisation including a default model as well as schemes of se-
lecting the lowest set of well-conditioned RGF out of different pool sizes. Fur-
thermore, to reduced the number of generated filters, we adopted the “unified
channels” schemewhereby every filter of themulti-channel tensor is a scaled ver-
sion of one chosen well-conditioned single filter. The experimental results were
satisfactory, especially for the customised CNN models that involve better con-
ditioned filters, in terms of overall accuracy, robustness to adversarial noise per-
turbation, and generalisation to unseen data. Except for the default model, most
filter initialisation schemes maintained reasonable conditioning and many filters
were stable.

The notable improved performance of the customised CNN models over the
pretrained CNNmodels in terms of robustness against natural perturbations and
generalisability to unseen data, demonstrated that stability of filters condition
numbers is an important factor. Indeed, the fact that Batch Normalisation wors-
ens overfitting and did not stabilise filters condition numbers confirms this con-
clusion

Despite these satisfactory success, the experimental results revealed a persis-
tent instability in filters during training, albeit less severely when using well-
conditioned filters selected from various RGF pools. This provided strong mo-
tive to search for algebraic schemes to stabilise filter condition numbers during
training. Instead of imposing strict criteria for tightly controlling the convolution
filters condition numbers such as orthogonality or Lipschitz bounds, in Chapter
6, we introduced SVD-Surgery as a condition number regularisation scheme. The
matrix SVD-Surgery method leverages the established link between the SVD of
matrices and their mapping of the unit sphere in their domain when considered
as linear transformations. The aim is to reduce and control the filters condition
number at each training epoch of CNN models.

The SVD-Surgery technique effectively reconstructs highly ill-conditionedma-
trices into considerably lower conditioned filters by surgically reshaping the sin-
gular values, spreading them closer to the largest singular value. This method
may preserves the filters’ norm depending on the surgery level while reducing
the norm of their inverses. We extensively evaluated its impact on large point
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clouds through the lens of persistent homology, examining factors like distribu-
tion of condition numbers and eigenvalues.

Applying SVD-Surgery at initialisation and during the training process, does
not introduce additional model complexity, and it is equally usable for retrain-
ing pretrainedCNNmodels. Determining the adequate SVD-surgery parameters
may require careful setting, but our experiments demonstrated that it is possible
to do and reap the benefits of developing customised /pretrained CNN models
for diagnostic analysis of US tumour scan images that are robust against pertur-
bation of data and conquer the overfitting problem by enabling generalisation to
unseen data.

In the various chapters, we computed persistent homology for the analysis
of spatial distributions of different ingredients involved in our investigations for
different purposes. These included the texture landmarks based US image based
classifications before and at different CNN convolution layers, the spatial distri-
butions of point clouds of convolution filters of different types (together with
those of their inverses) at various training stages. All these investigations re-
vealed strong links between the topological profiles of these ingredients and the
performance of the corresponding CNN models. Indeed, SVD-Surgery emerged
as a powerful technique that enabled the regularisation of highly ill-conditioned
convolution filters, effectivelymitigating potential near singularities during back-
propagation in training.

We close this section by listing the most important conclusions and observa-
tions that are implicitly discernible from the above detailed statements.

• The impact of the convolution filter’s conditioning and their stability during
training on robustness and generalisation to unseen data sets is significant.
This is demonstratedwell by the performance of the customised CNNmod-
els that are driven by the characteristics of the images, even when relatively
modest SVD-Surgery was implemented during training.

• When a model overfits during any training epoch, (i.e. the training and
validation loss divert), the overall condition number of filters get extremely
higher than in previous epochs. This is an indicator of the variation between
the different training batches, and using SVD-Surgery reduces the overfit-
ting of the model to those batches. Note that Batch Normalisation does not
help in preventing overfitting.

• The combined operations applied on input data within the convolutional
layers are enhancing the discrimination power of different classes in terms
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of their texture feature and PH characteristics. In many cases, this improve-
ment in discriminating benign frommalignant tumours are due to the com-
plete wipe out of textures in the benign images by the convolution filters as
compared to images of malignant images. This may be explained by the
medical fact that cancer cells spread out fact and create a highly dense cel-
lular connections.

• The spatial distribution of cancerous tissues in liver and bladder ultrasound
scans exhibits distinctive featureswhen compared to breast ultrasound scans,
allowing for effective differentiation betweenmalignant and benign classes.
These differences primarily stem fromvariations in tissue sizes, organ tissue
deformation, cancer stage, and the constraints imposed by limited sample
sizes representing the overall population.

• The integration of TDA and DL can enhance the analysis of US images that
differ in their textural complexity from natural images, by providing amore
comprehensive understanding of the underlying structure in images fea-
ture maps. The link between these two fields lies in their complementary
strengths. TDA can provide insights into the geometric structure of high-
dimensional data, which can be difficult to understand using traditional sta-
tistical methods, while deep learning can learn meaningful representations
of the data.

• Uncovering the connection between matrix condition numbers and the per-
sistent homology of matrix point clouds revealed intriguing insights. Ini-
tially, we established that the topological characteristics of CNN filter point
clouds are intricately linked to the algebraic properties of individual filters.
Subsequently, we utilised PH to evaluate the extent of SVD-Surgery and its
consequential effects on the topological profiles of point clouds and their in-
verses. This approach allowed us to unravel the intricate interplay between
algebraic stability, induced by SVD-Surgery, and the resulting topological
features within the context of CNN filter representations.
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7.2 Future research directions and challenges

The nature of this research project and the topics covered are very broad involving
concepts of linear algebra, topology and geometry besides Deep learning tech-
nologies. The wealth of knowledge established over centuries in these diverse
fields of Mathematics and the many of the issues/challenges encountered in this
thesis are likely to have been investigated for other purposes. This observation
opens the door to many potential future works as well as challenges that could
impact the future of AI in healthcare system. Here, we shall describe a few of
these problems below:

1. The full PH profile of point clouds of filters.
For practical reasons related to matrix inversion, our investigations of the
topological profiles of point clouds ofwell/ill-conditionedfiltersweremostly
confined to homology invariants of dimensions 0 and 1. Since convolution
filters are point in Rk×k, with k ≥ 3, then there is an obvious need to ex-
tend our PH investigation to the topological profiles toH2 and beyond. Our
early investigation revealed that the computation ofH2 for a relatively small
point cloud of random matrices using javaPlex [153] is possible, especially
when the matrices are well-conditioned or when both types are combined.
However, the javaPlex solution is not feasible in the case of point clouds of
the inverse filters for large point clouds of ill-conditioned filters. The pro-
posed SVD-Surgery provides a potential remedy for this situation. In fact,
we conducted a pilot study on the topological profiles of point clouds of
3×3 (or 5×5) matrices post SVD-surgery, we were able to compute the H2

invariants for both the original and inverse point clouds, see Figures A.10
and A.11 We note that the (dis)appearance of holes in H2 of the inverses
of ill-conditioned matrices is dependent on the surgery level that change
inverses norms.

2. Effect of SVD-Surgery on PD Vectorisation of Convolution filters.
Current investigations on the statistical interpretation and feature vectori-
sation of the topological profiles are based solely on the convolution filters
point clouds without consideration of the point clouds of their inverses that
reflect their conditioning status. For instance, the persistent entropy-based
PD vectorisation approach, [154], applied to filter point clouds can easily
highlight the differences, if any, before and after SVD-Surgery. Figure 7.1
illustrates a significant difference and impact of improved condition of the
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filters1. The bottleneck distances can be used to evaluate these differences
for each weight initialisation technique as well as for filter point clouds in-
stability during the training process. Ultimately, this could provide a po-
tential stopping criteria when no changes in PD and/or condition number
instability are detected during training instead of focusing on the overall
model performance.

(a) Before SVD-Surgery (b) After SVD-Surgery

Figure 7.1: Persistent entropy before and after applying SVD-Surgery on filters
point clouds.

3. Geometric properties of point cloud of US image patches.
Inspired by existing work in the literature on the geometry and topology
of the space of high-density patches in natural images, (e.g. [86, 156]), our
research efforts on deployment of DL models of US tumour scan images is
expected to benefit from extending the existing work into point clouds of
US image patches. However, the feasibility of this investigation is a chal-
lenge due to the fact that natural image patches investigations used a set of
8 × 106 or more for mapping the high contrast patches onto the Kline Bot-
tle. This challenge can be overcome, in different ways including the extrac-
tion of large number of US image patches from images of a variety tissues
without restricting the selection to patches from tumour RoIs. Moreover,
the abundances of certain groups of Uniform Local Binary Patterns (ULBP)
withinUS images canprovide an analogous concept to that of “high contrast
patches” used in the natural image work in terms of their topological struc-
ture. Our preliminary empirical investigations show good synergy between
both approaches. Besides providing interesting insight into deep learning

1The PH computation of the PH entropy-based approach is implemented with [155]
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approach to US image analysis, such investigations helps checking the vi-
ability of developing special US-related convolution filters analogously to
that of the Klein Filters recently proposed in [97]. Furthermore, the out-
come from this study help shed a light on the other important challenge of
CNN decision interpretation. This work can be extended to other radiolog-
ical image analysis.

4. SVD-Surgery for Tensor-based convolution filters.
In our unified channel conditioning problem2 avoids the use of different
condition number filters in different channels. However, there’s a need to
investigate and develop SVD-Surgery types for multi-channel convolution
filter channels without imposing such strict condition to observe their topo-
logical behaviour. Our unified-channel convolution filters condition was
imposed only at the initialisation step, but the training does not maintain
this property throughout the successive epochs. Attempting to impose this
condition over the different epochs is not only cumbersome but may slow
down or impede high learning rates of CNN models. The proposed inves-
tigation could benefit from the existing work regarding condition numbers
for tensor rank decomposition problems in [157, 158]. This also provide a
chance to link our intended SVD surgery to the work on Lipschitz condition
of neural networks as discussed in [141–144]. In [144], Christina Runkel et
al., introduce an efficient method for spectral normalisation of depth wise
separable convolutions. These investigations should be extended to cover
the stability of the fully connected layerweights during the training process.
For this we can exploit the Singular Value Representation (SVR) method,
[159], to our customised models.

5. Does US tumour image datasets satisfy the “Manifold Hypothesis”?
Themanifold hypothesis formulates a longheldmathematically soundview
that data of high dimension have much lower intrinsic dimension bounded
by the degrees of freedom in its coordinate, i.e. the records are samples of
points on/near a manifold of much lower dimension, [46]. However, many
recently encountered datasets emerging form genuine data analysis tasks
that does not align with this assertion, whose elements are sampled from
non-manifold, or manifolds with few exceptional singularities, [160, 161].
This proposed project is motivated by, and extends, the work of Nicholas
Konz et al., [152], regarding the relationship between intrinsic dimension-

2See Subsection 5.4.1 for further detail.
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ality and generalisation ability of CNN models. Although, US images are
not included in their study, they establish that not only the intrinsic dimen-
sions of radiological images are much lower than natural images, but the
relationship between generalisation ability and intrinsic dimensionality is
much stronger for radiological images due to the difficulty of learning in-
trinsic features in radiological images. This challenge is somewhat difficult
due to the fact that US datasets are not only small but do not reflect the di-
versity of the rather unknown population. However, it would be useful to
turn the question around to replace suchUS dataset with the corresponding
significantly larger dataset of their feature maps post the convolution layers
of customised/pretrained CNN models. The answer to this question is ex-
pected to shed light on the sensitivity of the corresponding FCL decisions
in general, but is also relevant to adversarial attacks. Also, the answer is
expected to depend on the algebraic and topological properties of the con-
volution filters. The dependency on these properties of filters can be used
as a mechanism of protecting the medical CNNmodels against adversarial
tampering with the filters, as well as trustworthiness of AI in the clinical
settings.

164



Appendix A

Additional Information and Results

A.1 Chapter 4

Figure A.1: Performance of AlexNet trained on breast ultrasound dataset.
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Figure A.2: LBP descriptor statistics of SVHN dataset.
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Table A.1: Classification accuracy, sensitivity, and specificity of PH based ULBP
landmarks in dimensions zero and one of bladder US dataset.

G1 G2 G3 G4 G5 G6 G7

PH
-D

im
en

sio
n
0

Image
Sensitivity 48.91 57.64 57.23 60.14 62.32 56.55 55.82
Specificity 55.00 59.68 58.36 59.14 60.68 58.55 59.55
Accuracy 51.95 58.66 57.80 59.64 61.50 57.55 57.68

1st CL
Sensitivity 69.50 67.91 71.91 64.32 76.45 71.86 69.09
Specificity 68.00 65.91 67.14 60.59 70.50 69.91 67.77
Accuracy 68.75 66.91 69.52 62.45 73.48 70.89 68.43

2nd CL
Sensitivity 71.55 77.86 77.36 76.14 76.41 75.86 77.05
Specificity 64.86 67.95 65.77 64.64 68.09 66.64 68.59
Accuracy 68.20 72.91 71.57 70.39 72.25 71.25 72.82

3rd CL
Sensitivity 67.45 64.91 71.32 72.23 69.18 64.82 62.36
Specificity 65.82 59.82 62.68 69.09 66.50 70.36 59.45
Accuracy 66.64 62.36 67.00 70.66 67.84 67.59 60.91

4th CL
Sensitivity 65.14 68.50 68.32 70.64 67.91 67.64 73.05
Specificity 65.18 69.00 66.45 67.27 65.41 70.18 64.14
Accuracy 65.16 68.75 67.39 68.95 66.66 68.91 68.59

5th CL
Sensitivity 66.00 64.23 62.95 66.55 64.14 57.55 64.36
Specificity 63.36 61.64 62.86 64.77 65.68 55.77 61.91
Accuracy 64.68 62.93 62.91 65.66 64.91 56.66 63.14

PH
-D

im
en

sio
n
1

Image
Sensitivity 36.18 40.59 62.32 59.95 59.73 60.36 61.14
Specificity 69.14 66.77 59.95 61.36 58.86 59.91 61.14
Accuracy 52.66 53.68 61.14 60.66 59.30 60.14 61.14

1st CL
Sensitivity 61.27 71.64 66.59 75.64 70.18 68.45 65.18
Specificity 63.05 70.41 68.95 63.86 69.64 67.50 70.95
Accuracy 62.16 71.02 67.77 69.75 69.91 67.98 68.07

2nd CL
Sensitivity 64.41 53.91 73.45 71.68 64.55 50.64 65.41
Specificity 54.50 73.09 69.14 55.36 72.23 75.27 64.00
Accuracy 59.45 63.50 71.30 63.52 68.39 62.95 64.70

3rd CL
Sensitivity 67.64 37.18 54.77 61.86 37.23 80.91 44.68
Specificity 55.68 68.82 61.09 63.27 58.45 25.68 53.32
Accuracy 61.66 53.00 57.93 62.57 47.84 53.30 49.00

4th CL
Sensitivity 59.09 46.14 45.50 63.68 52.09 14.09 73.59
Specificity 56.55 65.59 62.55 64.23 65.05 91.50 54.95
Accuracy 57.82 55.86 54.02 63.95 58.57 52.80 64.27

5th CL
Sensitivity 57.64 85.86 50.59 64.64 48.73 2.45 59.09
Specificity 58.41 22.64 65.82 67.55 53.05 95.95 55.91
Accuracy 58.02 54.25 58.20 66.09 50.89 49.20 57.50
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Table A.2: Classification accuracy, sensitivity, and specificity of PH based ULBP
landmarks in dimensions zero and one of breast US dataset.

G1 G2 G3 G4 G5 G6 G7

PH
-D

im
en

sio
n
0

Image
Sensitivity 72.50 69.55 72.00 69.05 71.95 71.09 72.95
Specificity 72.91 68.18 74.55 64.64 71.73 71.82 74.27
Accuracy 72.70 68.86 73.27 66.84 71.84 71.45 73.61

1st CL
Sensitivity 80.64 85.55 81.18 80.05 74.55 77.64 77.86
Specificity 79.91 81.59 77.50 79.50 75.77 74.32 76.50
Accuracy 80.27 83.57 79.34 79.77 75.16 75.98 77.18

2nd CL
Sensitivity 82.64 77.82 79.41 81.91 77.05 77.59 79.55
Specificity 80.68 78.32 80.64 79.82 77.82 72.91 74.91
Accuracy 81.66 78.07 80.02 80.86 77.43 75.25 77.23

3rd CL
Sensitivity 72.82 69.45 74.95 77.68 72.05 57.73 71.55
Specificity 78.27 73.59 76.09 82.73 79.05 62.73 66.73
Accuracy 75.55 71.52 75.52 80.20 75.55 60.23 69.14

4th CL
Sensitivity 79.55 73.05 78.05 79.77 78.50 76.50 78.18
Specificity 81.68 75.18 80.32 83.41 80.77 78.82 79.14
Accuracy 80.61 74.11 79.18 81.59 79.64 77.66 78.66

5th CL
Sensitivity 73.59 68.68 75.50 71.50 74.05 60.86 73.95
Specificity 82.95 76.55 80.86 79.05 80.45 66.73 76.36
Accuracy 78.27 72.61 78.18 75.27 77.25 63.80 75.16

PH
-D

im
en

sio
n
1

Image
Sensitivity 65.91 68.23 71.73 77.00 68.86 67.55 71.95
Specificity 71.09 75.95 73.50 73.82 68.41 70.55 74.73
Accuracy 68.50 72.09 72.61 75.41 68.64 69.05 73.34

1st CL
Sensitivity 79.05 81.14 79.41 78.68 79.09 74.68 68.82
Specificity 78.91 78.45 76.73 73.45 75.23 72.68 74.32
Accuracy 78.98 79.80 78.07 76.07 77.16 73.68 71.57

2nd CL
Sensitivity 72.55 63.45 71.05 75.77 73.00 81.59 73.41
Specificity 70.45 52.86 69.14 64.23 58.32 57.68 62.23
Accuracy 71.50 58.16 70.09 70.00 65.66 69.64 67.82

3rd CL
Sensitivity 61.05 9.36 35.23 57.55 44.55 7.50 73.50
Specificity 55.32 87.68 75.41 68.73 57.91 90.27 31.55
Accuracy 58.18 48.52 55.32 63.14 51.23 48.89 52.52

4th CL
Sensitivity 72.27 29.95 49.23 68.05 36.91 8.82 73.23
Specificity 74.77 69.86 68.05 76.64 67.86 85.18 58.86
Accuracy 73.52 49.91 58.64 72.34 52.39 47.00 66.05

5th CL
Sensitivity 69.86 23.18 58.59 66.41 57.09 11.09 54.18
Specificity 73.91 86.59 66.68 69.64 53.14 93.77 50.77
Accuracy 71.89 54.89 62.64 68.02 55.11 52.43 52.48
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Table A.3: Classification accuracy, sensitivity, and specificity of PH based ULBP
landmarks in dimensions zero and one of liver US dataset.

G1 G2 G3 G4 G5 G6 G7

PH
-D

im
en

sio
n
0

Image
Sensitivity 76.95 79.23 85.00 82.05 84.95 85.95 85.73
Specificity 84.27 83.86 83.27 84.73 86.36 81.95 86.64
Accuracy 80.61 81.55 84.14 83.39 85.66 83.95 86.18

1st CL
Sensitivity 86.50 88.18 88.09 86.27 88.32 87.77 82.95
Specificity 89.27 85.86 86.50 85.05 87.36 88.73 87.95
Accuracy 87.89 87.02 87.30 85.66 87.84 88.25 85.45

2nd CL
Sensitivity 92.27 90.32 91.59 92.32 92.05 89.59 89.73
Specificity 88.45 87.00 87.68 87.73 87.05 88.32 87.73
Accuracy 90.36 88.66 89.64 90.02 89.55 88.95 88.73

3rd CL
Sensitivity 90.59 80.68 88.36 88.23 91.86 80.68 86.18
Specificity 87.00 85.36 87.77 85.18 88.68 79.77 84.36
Accuracy 88.80 83.02 88.07 86.70 90.27 80.23 85.27

4th CL
Sensitivity 89.32 88.50 91.59 91.82 89.45 86.36 88.55
Specificity 88.64 84.82 87.45 87.36 87.73 86.27 82.14
Accuracy 88.98 86.66 89.52 89.59 88.59 86.32 85.34

5th CL
Sensitivity 84.95 82.59 86.64 89.68 88.55 81.32 77.41
Specificity 86.36 82.05 88.59 87.50 85.82 79.68 81.82
Accuracy 85.66 82.32 87.61 88.59 87.18 80.50 79.61

PH
-D

im
en

sio
n
1

Image
Sensitivity 75.82 75.95 82.95 84.36 85.91 84.77 83.73
Specificity 87.41 86.73 83.18 83.73 85.05 80.86 86.41
Accuracy 81.61 81.34 83.07 84.05 85.48 82.82 85.07

1st CL
Sensitivity 87.00 84.27 87.27 89.59 91.41 85.41 76.18
Specificity 92.86 78.05 83.18 83.00 84.14 85.14 83.86
Accuracy 89.93 81.16 85.23 86.30 87.77 85.27 80.02

2nd CL
Sensitivity 92.82 81.50 93.59 97.23 93.00 88.27 90.45
Specificity 78.05 76.32 70.73 75.73 71.18 68.64 83.00
Accuracy 85.43 78.91 82.16 86.48 82.09 78.45 86.73

3rd CL
Sensitivity 82.82 28.73 42.23 74.73 56.14 9.82 85.95
Specificity 62.41 87.36 84.18 73.32 77.05 92.00 41.09
Accuracy 72.61 58.05 63.20 74.02 66.59 50.91 63.52

4th CL
Sensitivity 89.14 37.27 71.05 86.77 63.50 15.18 91.09
Specificity 83.55 77.50 75.82 84.45 68.50 94.73 65.18
Accuracy 86.34 57.39 73.43 85.61 66.00 54.95 78.14

5th CL
Sensitivity 80.05 66.59 61.68 80.41 74.91 56.18 77.95
Specificity 76.95 40.77 70.73 81.09 70.77 43.41 59.41
Accuracy 78.50 53.68 66.20 80.75 72.84 49.80 68.68
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Figure A.3: Instability of 1st convolutional layer filter’s condition number per
channel - pretrained AlexNet.
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A.2 Chapter 5

Table A.4: Classification accuracy of various customised CNN model-B with-
/without BN .

CNN model Validation acc. Test acc. Sensitivity Specificity
Model-B,WD 91.94 90.47 89.76 91.19
Model-B, FD 90.75 89.88 92.62 87.14
Model-B, FD, BN 90 91.19 92.38 90.00
Model-B,W1 90.75 91.42 88.81 94.05
Model-B, F1 89.55 89.4 84.76 94.05
Model-B, F1, BN 94.33 94.05 92.86 95.24
Model-B,W2 93.13 89.64 90.24 89.05
Model-B, F2 88.36 86.31 90.71 81.90
Model-B, F2, BN 94.03 94.05 90.95 97.14
Model-B, F3 89.85 87.98 85.71 90.24
Model-B, F3, BN 95.07 93.69 95.00 92.38
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Figure A.4: Distribution of condition number (log) - N number of 3×3 RGFs.
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Figure A.5: PD of point clouds of 3×3 filters (top) and their inverses (bottom).
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Figure A.6: PD of point clouds of 5×5 filters (top) and their inverses (bottom).

172



0 0.5 1 1.5 2 2.5

Birth

0

0.5

1

1.5

2

1

D
ea

th

H
0

H
1

0 0.5 1 1.5 2 2.5

Birth

0

0.5

1

1.5

2

1

D
ea

th

H
0

H
1

(a) FD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Birth

0

0.5

1

1.5

1

D
ea

th

H
0

H
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Birth

0

0.5

1

1.5

1

D
ea

th

H
0

H
1

(b) F1

0 0.5 1 1.5 2 2.5

Birth

0

0.5

1

1.5

2

1

D
ea

th
H

0

H
1

0 0.5 1 1.5 2 2.5

Birth

0

0.5

1

1.5

2

1

D
ea

th

H
0

H
1

(c) F2

Figure A.7: PD of point clouds of 3×3 unified-channel filters (top) and their in-
verses (bottom).
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Figure A.8: 3D graphs (x, y, z) = (∥filter∥, ∥filter−1)∥, κ(filter)) for the 2nd CL
5×5 filters inWD.
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Figure A.9: 3D illustration of the norm (x-axis), norm of inverse (y-axis) and
condition number (z-axis) of the 2nd CL 5×5 weights per epoch (log) before and
after SVD-Surgery.
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Figure A.10: Persistent barcode representations of 3×3 matrices.
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Figure A.11: Persistent barcode representations of 5×5 matrices.
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