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ABSTRACT 

Face recognition systems under uncontrolled conditions using surveillance cameras is becom-

ing essential for establishing the identity of a person at a distance from the camera and 

providing safety and security against terrorist, attack, robbery and crime. Therefore, the per-

formance of face recognition in low-resolution degraded images with low quality against im-

ages with high quality/and of good resolution/size is considered the most challenging tasks 

and constitutes focus of this thesis. The work in this thesis is designed to further investigate 

these issues and the following being our main aim: 

“To investigate face identification from a distance and under uncontrolled conditions by pri-

marily addressing the problem of low-resolution images using existing/modified mathemati-

cally inspired super resolution schemes that are based on the emerging new paradigm of 

compressive sensing and non-adaptive dictionaries based super resolution.” 

We shall firstly investigate and develop the compressive sensing (CS) based sparse represen-

tation of a sample image to reconstruct a high-resolution image for face recognition, by tak-

ing different approaches to constructing CS-compliant dictionaries such as Gaussian Random 

Matrix and Toeplitz Circular Random Matrix. In particular, our focus is on constructing CS 

non-adaptive dictionaries (independent of face image information), which contrasts with ex-

isting image-learnt dictionaries, but satisfies some form of the Restricted Isometry Property 

(RIP) which is sufficient to comply with the CS theorem regarding the recovery of sparsely 

represented images. We shall demonstrate that the CS dictionary techniques for resolution 

enhancement tasks are able to develop scalable face recognition schemes under uncontrolled 

conditions and at a distance. Secondly, we shall clarify the comparisons of the strength of 

sufficient CS property for the various types of dictionaries and demonstrate that the image-

learnt dictionary far from satisfies the RIP for compressive sensing. Thirdly, we propose dic-

tionaries based on the high frequency coefficients of the training set and investigate the im-

pact of using dictionaries on the space of feature vectors of the low-resolution image for face 

recognition when applied to the wavelet domain. Finally, we test the performance of the de-

veloped schemes on CCTV images with unknown model of degradation, and show that these 

schemes significantly outperform existing techniques developed for such a challenging task. 

However, the performance is still not comparable to what could be achieved in controlled en-

vironment, and hence we shall identify remaining challenges to be investigated in the future.     
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Chapter 1 
 

INTRODUCTION 

 

During the last few decades, the field of digital image processing/analysis has been growing 

rapidly and has several applications, such as biomedical imaging, satellite imagery, image 

transmission, surveillance and applications in daily life. Image-based biometrics depend on 

many image processing and analysis techniques for the extraction of discriminating feature 

vectors is another high profile area of research with growing set of applications, e.g. proof of 

identity for access to physical/logical facilities or entitlement to services. For all such applica-

tions, the quality of the input image and the resolution are important factors to meet the ob-

jectives of the intended processing/analysis tasks. Image quality is influenced by external fac-

tors such as lighting conditions and environmental conditions that may lead to loss of contrast, 

addition of noise and blurriness. Image quality is also influenced by internal factors such as 

camera quality. Image resolution is related to the amount of detail available in the image area 

and is measured by the number of sampled pixels in a unit of area. In some applications, and 

for purposes of efficiency, the quality and resolution of a region of interest may be of more 

importance and concern than the entire image. For example, in face biometric applications, 

the region of interest is the face, which should be of good contrast and represented at a suffi-

ciently high-resolution. In many imaging systems, under-sampling leads to degradation of 

image quality, as well as there being different degradations that need to be taken into account, 

covering for instance noise and blurring. Image blurring can be caused by several external 

effects, such as relative motion between the camera and the original scene, an optical system 

that is out of focus, camera lens, atmospheric turbulence, etc.  

This thesis is primarily concerned with the investigation of mathematically inspired tech-

niques and procedures that can overcome variation in image quality and resolution resulting 

from different recording conditions. We use face biometric recognition in uncontrolled re-

cording as the closely relevant challenging application area, which could benefit from the 

techniques developed in this thesis. In particular, we focus on developing and testing the per-

formance of innovative techniques of super resolution techniques to overcome resolution 
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limitation and to construct high-resolution (HR) images for face recognition at a distance, that 

lead to improved face recognition accuracy in uncontrolled conditions.  

The aim of this introductory chapter is to describe the background materials and the challeng-

es in face recognition, where these challenges are the key to understanding the motivation, to 

explain in general the concept of super resolution (SR) and to introduce the recent field of 

compressive sensing for SR adopted in our investigations. We finish this chapter by giving an 

overview of this research project thesis, which includes the motivation for the thesis, a state-

ment of the main objectives of the investigations conducted for this thesis, and an outline of 

the approach taken to achieve these objectives. Finally, we highlight the main research con-

tributions and outline the remainder of the thesis. 

 

1.1  Biometric Systems 

Over the last few decades, advances in digital technology and the availability of cost effective 

cameras and other sensors as well as the surge in identity theft have led to a rapid growth of 

interest in Biometric-based authentication. Biometric recognition systems have the objective 

of automatically identifying the person’s identity present in the input images using human 

biometric identifiers such as face, iris, fingerprint and others. Compared to traditional authen-

tication techniques which are based on either “something you know” such as password and 

PIN or “something you have” such as passport and ID card, biometric authentication is based 

on “who you are”. Biometric traits are not easily reproduced, cannot be forgotten, lost, or sto-

len while password and ID card can be subject to these problems and can also be shared, cop-

ied and cracked.  

Biometric systems require the measurement of unique information (i.e. feature vectors) char-

acterizing the individual being enrolled or tested and later comparing/matching these samples 

against a database containing several candidates. This process is called feature extraction, and 

is the most important component. Matching is based on a distance or a similarity function de-

fined on the space of all feature vectors. For some biometrics, the feature extraction scheme 

is a mapping from the biometric traits into a high dimensional vector space, such as R
n
 or, the 

binary field. Examples of distance/similarity functions include Euclidian, City-block, Ham-

ming distances and the cosine function.  
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Biometric recognition systems mainly operate in two stages: the registration (enrolment) 

stage and recognition stage. During the registration stage, face images from a number of peo-

ple are captured (normally under controlled conditions), and enrolled into the system as gal-

lery/training data (templates). The training face images set which is used to create a biometric 

template normally contains images of good quality and of the highest possible resolution. In 

the recognition stage, the face image of a test subject (probe image) which is of reasonably 

good size and quality is matched to the gallery data using a one-to-one or one-to-many 

scheme, after the feature vectors of the person’s face in the gallery and probe data are ex-

tracted. Feature extraction aims to extract a set of discriminating features from the face image 

that can be used later to identify the person for recognition. The biometric recognition func-

tions can be performed in two modes depending on the application context. 

Identification: The purpose of face identification is to determine the identity of the person in 

the probe images based on the biometric template(s) in a database. 

Verification: In this mode of recognition, the person declares his identity, and the biometric 

system compares the probe image with only one image from the template/ gallery. If the per-

son’s identity claim is correct, then he is a genuine client, while if the person claim to be 

someone else, he is an imposter.  

An ideal biometric system should have perfect accuracy, but in practice, a biometric system 

can make types of errors. These types of error exist in the verification systems; these being 

False Rejection Rate (FRR), False Match Rate that is also known as False Acceptance Rate 

(FAR) and Equal Error Rate (EER). FRR occurs when two samples of the same biometric 

trait of an individual are not recognized as a match. FAR occurs when two samples from dif-

ferent individuals are incorrectly recognized as a match. While, the error EER is a connection 

between FRR & FAR and is computed as the point of intersection in the matching score dis-

tribution where FRR=FAR. Sometimes, the matching score distribution is not continuous and 

there is no cross point. 

In practice, biometric error can occur due the differences in the digital feature vector repre-

sentation of the biometric trait between the enrolment, where the images of HR, good size, 

and the recognition stages when the probe image of low-resolution (LR) small size. 

Face is the most popular and natural biometric trait for recognition due to the following prop-

erties:- 
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1. Universality: face is one of the most common biometric traits possessed by all hu-

mans. 

2. Collectability: facial information is very easily collectable. 

3. Acceptability: face is widely considered as one of the most non-intrusive biometric 

features to acquire. 

In fact, several other advantages exist which make the face the most preferred biometric trait 

such as: 

 The face biometric is easy to capture even at a long distance without the person's at-

tention. 

 The face conveys not only the identity, but also the internal feelings of the person (e.g. 

happiness or sadness) and the person’s age.  

Automatic face recognition technology is used in an increasing number of applications, such 

as video surveillance, secure access, human/computer interface and identity management (e.g. 

passports, driving license cards). Face recognition systems under uncontrolled conditions by 

surveillance cameras are becoming essential to the establishment of the identity of a person 

who is at a distance from the camera and providing safety and security against terrorist, at-

tacks, robbery, crime, etc. In the past twenty years, many different schemes for face recogni-

tion have been developed and deployed mainly for access control. They mostly differ in their 

feature extraction schemes, such as Principal component analysis (PCA) (Turk & Pentland, 

1991), Local binary pattern (LBP) (Zhang, et al., 2012) and wavelet based face recognition 

(Sellahewa & Jassim, 2010).  

Although face recognition is one of the most remarkable abilities of human vision and is the 

most widely researched area in the face biometric domain, face recognition technology has 

not been deployed widely in real world applications due to the many challenges that still exist 

such as changes in illumination, variation in poses, expressions, LR, occlusions and ageing.  

The problems that are characteristic of uncontrolled recording conditions lead to intra-class 

and inter-class variation with adverse impact on accuracy. Uncontrolled conditions such as 

changing in lighting, have adversely affected the face image where the individual images (e.g. 

two images of the same person) appear different, and the images from different persons tend 

to appear more similar and that affects the performance of face recognition between the en-

rolment and matching stages. In fact, there is no two images of the same person are identical 

even when captured under similar conditions. 
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Consequently, face recognition is currently perceived as the least reliable technique, especial-

ly when the images are captured at a distance under uncontrolled conditions by surveillance 

cameras (Park, 2009), where some cameras (i.e. cameras with different resolution) often pro-

duce low quality images that make recognition more difficult and less reliable. Therefore, 

amongst all these challenges, the performance of face recognition in LR images is considered 

the most challenging task and constitutes the focus of this thesis. To illustrate this challenge, 

below are displayed images of three persons (captured on CCTVs) at different quality and 

resolution levels that are meant to be captured post enrolment together with their reasonably 

good quality and HR gallery images captured at the enrolment stage. Note that the three LR 

images exhibit different level of degradation. 

 

 

           

              

 

 

                                                             

1.2  Image Resolution Manipulation Techniques 

A decrease in image resolution typically results in loss of facial details, which is expected to 

lead to a decrease in recognition rates. The uses of high quality/definition cameras (Al-

Obaydy & Sellahewa, 2011), (Choi, et al., 2010) have been suggested in order to solve the 

problem of face recognition at a distance and improve the quality of the captured images. 

However, limited success and cost implications necessitate the search for software solutions. 

Low-Resolution Probe Images 

 

High-Resolution Gallery Images 

 

 



CHAPTER 1: Introduction 

 6 

In this section, we shall briefly discuss the concept of image resolution and describe tradi-

tional approaches to image resolution enhancement schemes. 

The essence of the problem of low image resolution is not different from many experimental 

computations in science where the number of data samples is limited and sparse within the 

domain of the independent variable(s). In mathematics, such problems dealt with using opti-

misation and approximation techniques to obtain more samples and gain a more reliable es-

timation of the behaviour of the dependent variable(s). For example, when solving boundary 

value problems associated with partial differential equations. We normally have the solution 

known at a sparse set of points on the boundary of the space of interest, and more points are 

added to the space by a process of refinement using successive triangulation (more generally, 

finite elements methods). Then the solution will be expanded to these new domain points by 

various optimisation and approximations techniques, which depend on our knowledge of the 

mathematical model of the problem. Following this analogy, when one is presented with low-

quality, LR images, an intuitive approach for improving the quality of the images would be to 

attempt to increase image resolution by adding new pixels (in between existing pixels) and 

using mathematical techniques such as interpolation to assign gray values of the new pixels 

depending on the surrounding known pixel values. Most image software and tools provide 

image-resizing functions, which employ bilinear and bi-cubic interpolation with some suc-

cess. However, interpolation is not sufficient to improve face recognition when the captured 

images are not only of LR but are also of low degraded quality. A close look at the following 

sets of LR small images displayed on the top row of images in Figure 1.1 below are subjected 

to different levels of degradation and their enlarged versions obtained by the existing bi-cubic 

interpolation scheme and displayed on the second row. Illustrate that the quality of resulting 

HR images are only satisfactory when the original small images are mildly degraded. The 

PSNR values obtained for the enlarged images, with reference to the original high-resolution 

good quality image are decreasing in the range [33.72, 19.48]. The most challenging uncon-

trolled scenarios for face recognition involve images that are of LR and low quality that can-

not be dealt with using interpolation. Modelling image degradation that covers a wide range 

of image quality is a difficult task that adds to the complication of face recognition. 
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Low-Resolution Images 

     

     Bi-cubic Interpolation Images 

Figure 1.1: Illustration of enlarged images from low-resolution images with increasing level of degradation. 

 

The term “super resolution” refers to a process of obtaining higher resolution images from 

lower resolution ones. The search for higher-resolution images seems to be increasing and the 

ultimate aim of image SR is to produce a high-quality image that is visually clearer, sharper 

and contains more detail than the individual input LR images. The super resolved image 

should demonstrate an improvement in the perceived detail content compared with that of 

degraded LR images. Figure 1.2 shows sample of HR images that can be obtained by super 

resolving LR images subjected to different degradation. 

      

                                                                   

 

Figure 1.2: Example of super resolution images from low-resolution images with increasing level of degradation. 

 

Therefore, in order to improve the performance of face identification schemes and to deal 

with face recognition for LR, low quality images. SR techniques have been investigated/and 

developed to overcome the limitation in terms of image quality by enhancing the spatial reso-

lution to generate HR images of the original scene, without the need for any hardware en-
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hancements ( (Bannore, 2009), (Chaudhuri, 2001), and (Sroubek, et al., 2011)). This is why 

most of the research into image resolution enhancement has been directed towards develop-

ing image-reconstructing techniques that deliver the highest possible quality image that can 

be considered as the image of the same scene captured by the observed degraded image. Im-

age reconstruction techniques have proved useful in cases where greater clarity in images is 

required. Some of the applications are in medical imaging (such as Computed Tomography 

(CT) and Magnetic Resonance Imaging (MRI)), surveillance systems with CCTV, satellite-

imaging applications (such as remote sensing), and SR is required as a pre-processing for 

recognition. 

This thesis is mainly concerned with the development of mathematically inspired SR schemes 

for face recognition. We shall investigate feature resolution techniques and attempt to exploit 

recent advances in the mathematics of compressive sensing (CS) technology. Although we 

focus on face recognition, the use of the developed compressive sensing SR techniques is by 

no means limited to face biometrics. The corresponding HR features vectors help to achieve 

improved recognition rates when compared to a pixel-domain SR approach. It has recently 

been used to improve the performance of iris recognition when dealing with LR recordings. 

Nguyen (Nguyen, et al., 2011) has investigated a feature domain based SR approach for iris 

recognition, whereby multiple LR iris images are input into the PCA (or Eigeniris) domain. 

Super resolution methods can be classified into two groups: 

(a) Methods that will be using a single LR image, which interpolates the pixel infor-

mation available in the image.  

(b)  Methods that will use multiple images, and output a higher resolution image by fus-

ing the pixel information from multiple observations of the same scene. 

Mathematically, the SR approach to matching HR images in the gallery set to one or more 

observed LR input images    ,           is modelled as a solution   of the matrix equa-

tion   

                                                                  (1-1) 

where   and   are the down sampling and blurring functions respectively, as illustrated be-

low in Figure 1.3. In this model, image noise often modelled as additive noise is neglected. 
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Figure 1.3: Super resolution Imaging Model 

 

The SR is considered as an optimization problem that solves the above equation using a tech-

nique that attempts to reconstruct a HR image by iteratively fusing the partial information 

contained within a number of under-sample LR images of the pictured scene. Therefore, SR 

reconstruction involves up sampling of under-sampled images, thereby filtering out distor-

tions such as noise and blur. In comparison with various image enhancement techniques, SR 

techniques not only improve the quality of under sampled LR images by increasing their spa-

tial resolution but also attempt to filter out distortions. As shown in Figure 1.3, the LR images 

are independent images generated by blurring and down sampling the original image. Moreo-

ver, for SR to be possible each LR image contains slightly different information where a sin-

gle image is unable to provide all of the information required for reconstruction. Such tech-

niques are known to be ill conditioned, and are usually dealt with using regularisation tech-

niques such as Lagrange multipliers (Bannore, 2009).  

The above iterative optimization scheme and other SR methods along with their use of classi-

fications are provided in the following chapters. However, in the next section we introduce 

the recently emerging paradigm of CS approach to sparse signal representation, which pro-

vides a new potential for SR, which is the main contribution of this thesis. As hinted above, 

SR, image reconstruction is an ill-posed problem due to the insufficient number of LR images 

that can be assumed to have been obtained by downsampling. This means that the HR image, 

which corresponds to the observed LR image(s), is at best sparse. Hence, recovering the 

sparse HR image can benefit from using CS recovery techniques. Indeed, CS has been inves-

tigated as a new SR method to recover high quality, SR images from a single LR degraded 

image ( (Yang, et al., 2008), (Wang, et al., 2012) and (Yang, et al., 2010)).   
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1.3  Compressive Sensing 

Compressive sensing (CS) is a new theory of sampling in many applications (such as digital 

image and video camera), and it greatly eases the stringent limitation imposed by the tradi-

tional Shannon sampling theory on the number of samples needed to recover “small” or 

sparse signals. While Shannon theorem stipulates that perfect recovery of a signal require the 

number of samples to be at least as large as twice the highest frequency in the signal, most 

signal/image applications signals are compressed and represented by sparse signals using 

transformations that remove significant correlations and redundancies in the capture signals. 

Compressive sensing is an attempt to recover the sparse (compressed) signal directly by mak-

ing (i.e. sensing) a relatively small number of linear measurements of the signal/image from 

which the significant (i.e. the nonzero) sample/pixel values of the compressed signal/image 

can be recovered. The relatively small set of measurements must satisfy certain properties to 

guarantee the unique recovery of the sparse signal. Consequently, CS is a tool for solving a 

class of inverse/underdetermined problems in computer vision and image processing.  

The underdetermined problems can be defined as a solution of a matrix equation of the form: 

             ,                                               (1-2)    

Where   is the observed signal of length m and   is the sought solution of length n, and   is 

the matrix of size     whose rows are the measurements. 

This equation has no unique solution, since the number of variables in the matrix   is larger 

than the number of rows (equations). However, according to the compressive sensing theory, 

there is a unique sparse solution for the equation (1-2), which can be reconstructed by a num-

ber of practical algorithms. The basic principle of sparse solution (or sparse representation) 

assumes (Kulkarni, et al., 2011), (Zhang, et al., 2012) that any compressible/sparse signal 

     can be represented in the form of: 

  ∑    
          Or                                             (1-3) 

Where   is a column vector of length    , the sparse signal   can be shown as a linear 

combination of only   basis vectors from an overcomplete dictionary   which satisfies the 

property of CS theorem. While most of the linear coefficients are zeros, the exceptional 

  ones can be non-zero. The property of CS measures the degree to which each sub-matrix 

consisting   column vectors of   is close to being an isometry. 
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During the past few years, sparse recovery has been investigated to overcome the resolution 

problem of a single LR image (Yang, et al., 2010), and (Wang, et al., 2012). Therefore, it is 

necessary to formulate the SR in a CS framework. The LR image   as illustrated above in 

Figure 1.3 can be written in the form of equation (1-1). i.e.:  

                                                                (1-4) 

If       then we can reformulate this equation as:    

             Since (    )                                    (1-5) 

For practical reasons, the application of this equation is localised to image blocks (patches) of 

small size to avoid having every pixel being influence by all-the image. To prevent blocky 

effects, it is customary to use overlapping blocks. 

In SR based on CS,   is the unknown HR image patch while   is the observed LR image 

patch. The sparse representation   of the image   in terms of dictionary    which is denoted 

by    is used to recover the corresponding HR patch   in terms of dictionary   denoted by 

  .  

The main challenge is to have the dictionary   satisfying appropriate CS conditions so that 

the sparse linear representation of a HR image patch   in terms of   can be recovered per-

fectly from the LR image patch. Yang in (Yang, et al., 2008), (Yang, et al., 2010) recently 

proposed a method to recover a HR image patch by using a pair of learning dictionaries 

   &    that were dependent on images and whose columns are constructed from a number 

of randomly selected patches of high and low resolution image sets. Recent researches in the 

field of CS have focused on (1) developing various approaches to designing dictionaries that 

satisfy the CS requirements and (2) on designing efficient algorithms to recover the sparse 

solution uniquely. A major part of this thesis is concerned with the study of various known 

CS dictionaries, and tests their performance in terms of the quality of super-resolved images. 

We shall also investigate the consequences for face recognition under uncontrolled conditions 

and test the need for image-trained dictionaries. 
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1.4 Image Quality Measures 

In assessing the improvement achieved by any of the methods investigated and implemented, 

we need to use known image quality measures. Many image quality measures can be used to 

assess the degree of improvement or degradation in one or more of the attributes of images. 

The most widely known quality measures in the spatial domain are Peak Signal to Noise Ra-

tio (PSNR), Mean Squared Error (MSE)/or Root Mean Squared Error (RMSE) and Universal 

Image Quality Index (UIQI). Many of the resolution enhancement approaches have attempted 

to address the issue of image resolution and are expected to maximize the quality measure 

PSNR or minimize the RMSE between the original hypothetical HR image and the recon-

structed super resolved image. The PSNR quality measure can be defined as 

              
   

√   
                                             (1-6) 

where the Mean Squared Error (MSE) can be computed by averaging the square intensity dif-

ferences of the reference image   and the reconstructed image   as: 

    
 

  
∑ ∑                    

   
   
                                  (1-7)                               

On the other hand, a Universal Image Quality Index proposed by Wang and Bovik (Wang & 

Bovik, 2002) provides a good example of spatial domain measures that calculate the distor-

tion/or enhancement between the recovered image and the reference image (original image) 

by modelling distortion as a combination of three main components: loss of correlation, illu-

mination distortion and contrast distortion. However, in our implementation, we only need 

the contrast and correlation distortion components, due to the nature of the face database be-

ing used. This quality measure can be computed as: 

     
   

    
 

  ̅  ̅

  ̅     ̅  
 

     

  
    

                                        (1-8) 

Where  ̅ and  ̅ are the mean of images   and   respectively, 

    
  

 

   
∑      ̅   

   ,   
  

 

   
∑      ̅   

    and      
 

   
∑      ̅  

        ̅ .  

In addition, the first component in UIQI measures the degree of correlation between two im-

ages; the second component measures the proximity of the luminance between two images 

and the third component measures the level of proximity of the contrast of two images. In 
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practice, the contrast and correlation measures of an image with respect to reference images 

is calculated for each window measuring     pixels in the two images, and the average of 

these entire blocks defines the measure quality of the entire image. 

The problem with the above measures is the need to have a reference image of the same im-

aged object. A no-reference image quality measure is very essential when a reference cannot 

be found or it is impractical. The simplest and rather primitive measure that is of some use in 

determining the blurring level in an image is defined as follows. The square differences be-

tween an input image and further blurred version of the input image can be used as quality 

measure for estimating the blurring level in any input image where convolution the input im-

age with any degradation filter such as median filter used as a reference image.  

 

1.5 Motivation and Objectives  

Feature Extraction is the most important step of any image-based pattern recognition system 

and it is meant to output a digital representation model of the imaged object, which is referred 

to as the feature vector. The performance of the corresponding recognition depends very 

much, on how well the mathematical extracted digital model reflects the physical object. 

Many factors influence the feature extraction process with possible adverse impact on the 

quality of the extracted digital feature vector which in turn could cause inter-class and/or in-

tra-class variations. For face feature vectors, such factors include extreme variation in record-

ing condition with respect to illumination, facial expression, pose, and aging. Over the last 

few decades research has been conducted to mitigate the effect of a few of these factors with 

varying levels of success, either by developing feature vectors that are invariant to such re-

cording conditions or by applying some mathematical transformations to normalise the cap-

tured images and/or the extracted features. Other factors influencing the quality of face fea-

ture vectors include variation in the quality of capturing devices, distances between camera 

and subject as well as variation in time and environmental conditions of recording. The later 

set of factors are very much associated with unattended surveillance scenarios, often resulting 

in degraded face images that suffer from a combined effect of more than one of these factors. 

These factors may result in a combination of LR, small size degraded, and badly illuminated 

images of a non-frontal face with occlusion. Research into mitigating such variations have 

shown to be a very tough challenge and forms the initial main motivation for this thesis to 

investigate the development and use of efficient SR schemes.   
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Face recognition from unattended surveillance cameras is crucial to many applications such 

as in forensics for identifying persons suspected of terrorist and criminal acts, which may or 

may not be on a watch list. Whenever an accident happens or an attack occurs, there would 

be several videos captured by surveillance cameras placed in various locations in the sur-

rounding and nearby areas that are usually examined manually to identify suspects and/or 

eliminate innocent by-passers. The problem of low image quality, as a result of surveillance 

cameras due to the distance between face and the camera, subject on the move, and unstable 

sensors has a significant impact on the performance of face recognition schemes and this 

could in turn undermine the quality of forensic evidences. Besides blurring and other image 

degradation factors, the captured images are also of LR. Therefore, improving the perfor-

mance of face recognition at a distance does require a combination of procedures that im-

proves image resolution and quality. Recognising faces when matching LR degraded small 

images against face images with higher resolution and of good size can be dealt with by pre-

processing procedures primarily using the so-called SR methods, which aim to reconstruct a 

higher resolution version of the LR image. 

These observations constitute the main motivation to first review existing SR techniques with 

a focus on improving face recognition from images of low quality and low resolution. Since 

the performance of face recognition depends more on the feature vectors extracted from the 

image rather than the spatial domain of the image, it would be more appropriate to investigate 

the impact of using SR schemes on the space of feature vectors. Since wavelet subbands of 

decomposed face images have been used as feature vectors for face recognition with good 

performance in controlled and some uncontrolled situations, we shall therefore test the impact 

of SR on face recognition when applied to the wavelet domain rather than the spatial domain.  

The recent emergence of compressive sensing approaches to super resolution motivated and 

guided the work in this thesis for different reasons. Firstly, it would be interesting to compare 

the effect of using compressive sensing based super resolution approaches to that of using the 

traditional iterative optimisation approach. Moreover, noting that low-resolution images can 

be considered as sparse vectors, then perhaps provide a strong incentive to test the use of am-

ple data-independent random/deterministic compressive sensing dictionaries for super-

resolution and investigate the impact on the performance of face recognition in uncontrolled 

recording conditions. Indeed, the success of such an approach results in removing the need 
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for training sets which rely on sufficiently large and representative amounts of face images 

for a sample of persons.     

In summary, the main aims and objectives of this thesis are: 

 

 Investigate the suitability and implementation of various super resolution methods for 

enhancement of image quality/ resolution and for face recognition.  

 Study the properties of compressive sensing dictionaries, for ensuring recovery of 

sparse vectors with emphasis on implications for face recognition in uncontrolled 

conditions. 

 Investigate the application of compressive sensing paradigms for improving a single 

image resolution and quality.  

 Design super resolution dictionaries in the frequency domain, to obtain biometric fea-

ture vectors of a desirable high-resolution face that could obviate the need for costly 

high definition cameras.  

 Study various existing mathematical models for image degradation that could 

fit/approximate observed complex degradations in images captured from CCTV video 

cameras. 

 

1.6 Main Contributions 

This study investigates the possibility of the above objectives by conducting many experi-

ments on different publicly available face databases such as Extended Yale B, UBHSD video 

and Surveillance Cameras face (SCface). These investigations have revealed promising re-

sults in the quality and accuracy of images, when compared with the well-known scale-up 

techniques. 

The main contributions of this thesis can be stated as follows. 

 

 Instead of traditional methods for reconstructing the high-resolution image directly, 

new super resolution based approaches are developed for face recognition that involve 

matching low quality low-resolution images.   

 Developing compressive sensing based image super-resolution approaches in terms of 

image based learning dictionaries for improved image quality and for face recognition 

at different distances, sizes and degradation levels.  
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 Develop novel approaches for designing compressive sensing based non-adaptive dic-

tionaries for reconstruction are investigated, and compare their performances with im-

age-learnt dictionaries and traditional SR approaches in terms of different lev-

els/models of image degradation and face recognition in uncontrolled conditions   

 

1.7 Thesis Outline 

 Chapter Two: this chapter is devoted to a literature review regarding face recognition 

and describes the problems of face recognition under uncontrolled conditions; intro-

duce the basic information on super resolution and the most common techniques for 

super resolution in spatial domain. 

 

 Chapter Three presents a brief introduction to the mathematical concepts of com-

pressive sensing, and discuses the properties of compressive sensing for recovering 

sparse solution. 

 

 Chapter Four is aimed at studying super resolution methods based on compressive 

sensing dictionaries to cure low image resolution and recovering images with good 

quality. It presents the novel approaches to construct overcomplete dictionaries which 

are used for reconstructing face images, and the Restricted Isometry property compar-

isons between different overcomplete dictionaries is also discussed in this chapter.  

 

 Chapter Five is aimed at studying compressive sensing theory to develop scalable 

face recognition schemes that do not require training images by removing the need for 

training face image information to construct dictionaries based SR to recover all-face 

image and image feature. 

 

 Chapter Six: the effect of compressive sensing and super resolution techniques on 

CCTV face images with unknown model of degradation is studied in this chapter.  

 

 Chapter Seven: covers the general conclusions and potential directions for future 

work. 
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Chapter 2 
 

FACE RECOGNITION AND SUPER RESOLUTION –  

 A LITERATURE REVIEW 

 

This chapter is devoted to a review of the literature and background material for face recogni-

tion in uncontrolled scenarios, whereby the input image is of low-resolution (LR), of small 

size and has degraded quality. The desired procedures to be applied are expected to increase 

the resolution and size of the image and improve the image quality. The focus of this chapter 

is resolution enhancement approaches to deal with LR face images presented for identifica-

tion. The reviewed SR approaches include traditional interpolation like schemes as well as 

recently emerging approaches, which are termed super resolution schemes. In order to under-

stand our requirements for image super-resolution for the relevant application we shall first 

give a brief description of biometrics and face recognition systems, as the main area of appli-

cations that incentivise our research in this thesis. Include a review of the literature on face 

recognition that highlights the main approaches and challenges of face recognition in general, 

and in uncontrolled conditions and/or at a distance in particular. Then describe traditional 

resolution enhancement schemes, provided by current image processing tools, highlighting 

the limitations of such techniques in terms of improving image quality. The chapter then in-

troduces the concept of super-resolution, reviews existing iterative optimisation approaches 

and back-propagation, to be followed by reviewing the literature on compressive sensing 

based super-resolutions for face recognition. 

 

2.1 Face Recognition  

Biometric recognition systems aim to recognize persons based on the physiological character-

istics that are genetically implied such as face, fingerprint, iris, DNA and hand geometry, and 

behavioural qualities acquired during person’s life such as gait, speech and signature. Face 

recognition is an important and the most challenging tasks when compared to other types of 

biometric-based recognition. It has a number of real-world applications such as surveillance 
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systems, airport security and law enforcement. The performance of face recognition systems 

is significantly influenced by intra-class and inter-class variations, such as LR, illumination, 

occlusion, image noise, background and pose. Therefore, there exists a need to build reliable 

systems that work under different recording conditions. Several face recognition schemes 

have been developed and their performances have been tested. 

Face recognition schemes, like every other biometric recognition, work in two stages: enrol-

ment stage and matching/ recognition stage. In the enrolment stage, single or multiple face 

images from the same person for a number of people captured and then extracts a set of bio-

metric feature and store in the form of template, to be used later in matching stage. In the 

matching stage, a set of feature vectors extracted from probe images and then compared with 

a set of stored template using a similarity or distance function to verify the claimed identity or 

to identify the person. For biometric systems in which feature vectors are elements in the n-

dimensional space   , the Euclidean and the City block distance functions and the normal-

ised cross correlation similarity function are the most commonly used functions for matching. 

The Hamming distance is the natural choice for the Iris trait and biometric schemes whose 

feature vectors are fixed length binary strings. These distances/similarity functions will be 

used in this thesis for different purposes, and therefore we now briefly define these functions. 

Let               and                be any two-feature vectors of length   then the 

distance function    between the two vectors for each     can be defined as the following: 

   √∑ |     | 
 
   

 
                                                 (2-1) 

If     then the distance function    is called city block distance, while if     then the 

function    is Euclidean distance. The normalised cross correlation is the cosine function be-

tween the two vectors and defined as: 

         
   

‖ ‖ ‖ ‖
 

∑     
 
   

√∑        
    √∑        

   

                                  (2-2) 

Biometric recognition functions can be performed in two modes depending on the application 

context:  

Authentication or Verification: This is a “one-to-one” comparison between the acquired in-

dividual biometric data known as probe or query data and the stored template(s) of the indi-

vidual in the database. In this mode of recognition, a person claims an identity and the bio-
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metric system aims to verify the authenticity of the claimed identity; i.e. this system simply 

answers the question “am I the person whom I claim to be?” Therefore, verification might be 

used, for example, when a user wants to access their bank account or personal computer. 

 

Identification: This is a “one-to-many” comparison between the acquired biometric data and 

all biometric templates in a database. In this mode of recognition, a biometric system aims to 

identify an individual by searching the set of available identities, or to reject them if it cannot 

find the identity because the identity is not declared or is unknown to that system. Through-

out this thesis, the focus is on the identification scenario, but all the results can be extended 

easily to verification.  

 

2.1.1 Feature Extraction for Face recognition 

Feature Extraction is the most important step of any image-based pattern recognition system 

and is meant to output a digital representation of the imaged object, which is referred to as the 

feature vector. The performance of the corresponding recognition depends very much, on 

how well the mathematical model of the extracted digital feature vector reflects the physical 

object. Variations in the recording conditions, including the ones described above, has a sig-

nificant bearing on the success of the corresponding face recognition scheme. In this section 

we briefly describe the most commonly used face feature extraction schemes ending with the 

wavelet-based scheme that is adopted in this thesis.  

A face image is typically represented by a high dimensional array of pixels, each of which is 

represented by an integer in the cyclic group Z256 for a monochrome image, or a 3-

dimensional vectors of such integers for RGB (or any tricolour) image. For a reasonable size 

monochrome, face image, the processing/analysis of its content is a computationally demand-

ing task let alone extracting the desired face feature vectors. Therefore, it is essential to apply 

a dimension reduction procedure to remove redundant data without losing significant features. 

In the statistical pattern recognition literature, Principle Component Analysis (PCA), also 

known as the Eigenface method (Turk & Pentland, 1991), is the most popular technique used 

to reduce the large dimensionality of face images by representing the face image by a linear 

combination of a carefully selected reasonable size set of basis vectors. The required set of 

vectors are meant to encapsulate the most important information content of face image and is 

obtained by solving the solution of an eigenvalues problem associated with a training set of 

face images. In fact, the basis vectors are the eigenvectors of the covariance matrix     , 
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which is calculated from the training set of face images (called the gallery set) in the high-

dimensional image space. The covariance matrix can be defined as: 

     
 

 
∑      ̅  

        ̅                                        (2-3)                                         

where  ̅ is an average face image, N number of face images and the eigenvalue problem can 

be solved as: 

                                                                        (2-4) 

where   is the eigenvector matrix of      and   is the diagonal matrix containing eigenval-

ues of       on its main diagonal. The eigenvectors are then stored so that their corresponding 

eigenvalues are in descending order. These vectors are called Eigenface, and when a new im-

age or vector is presented for face recognition, it is projected into the new feature space and a 

match is found using a nearest-neighbour classifier (or any other classifier). Despite PCA 

success in reducing false acceptances, on the other hand false rejections due to the within 

class variations caused by illumination and pose remain in the Eigenface scheme (Jassim, 

2010). In addition, this method unfortunately requires the use of a sufficiently large training 

set of multiple face images of the enrolled persons. An alternative approach to PCA, which is 

based on face class (category) information for reducing the dimensionality of the feature 

space is the Fisher Discriminant Analysis (FDA) or as it is also known, Linear Discriminant 

Analysis (LDA) (Sellahewa, 2006). This method is used to maximize the ratio of the deter-

minant of the between-class scatter to that of within-class scatter.  

Another type of facial feature extraction is Local Binary Pattern (LBP). This technique origi-

nally developed for local spatial texture description and proved itself a good measure for tex-

ture classification. Based on the LBP operator, each pixel of an image is labelled with an LBP 

code and the histogram of each label can be used as a texture descriptor of the considered re-

gion (Maturana & Soto, 2009). The LBP code of the centre pixel in the neighbourhood is ob-

tained by converting the binary code into a decimal one. In general, the feature vector can be 

extracted by dividing the facial image into several non-overlap blocks, then for each block, 

the LBP histograms are computed. Finally, all the LBP histograms are concatenated into a 

single vector. However, this algorithm cannot capture all the different types of structure be-

cause the central pixel in the LBP code is not included in the calculation of local structure. 

Frequency transforms are commonly used to extract frequency information from any signal 

as a pre-processing procedure for further processing and/or analysis. Frequency information 
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content conveys richer knowledge about features in images that could be exploited to com-

plement knowledge gained from the spatial information. Fourier Transform (FT) is among 

the most widely used tool for analysing signals of any dimension including images. The Fast 

Fourier Transform (FFT) and the Discrete Cosine Transform (DCT) have been used exten-

sively for compression and other feature extractions. While the DFT provides information 

about the frequency content of the decomposed signal, it does not provide localisation infor-

mation. The Wavelet transforms (WTs) and in particular its discrete version (DWT) is anoth-

er example of frequency domain transformations that have been used with significant success 

in image processing and analysis tasks, including face recognition. The DWT decomposes 

any signal into subbands of different frequency ranges and allows perfect reconstruction. The 

main advantage of using the DWT over the DFT is its ability to simultaneously provide both 

frequency as well as spatial support (Bovik, 2009). Moreover, DWT is very efficient in iso-

lating redundant information. Consequently, in this thesis the DWT is our preferred choice of 

extraction scheme used for face recognition. 

DWT is a multi-resolution analysis technique that decomposes a signal into low and high fre-

quency subbands, each of which can be transformed repeatedly, providing multiple resolu-

tions of the signal at different scales and different ranges of frequencies. The WT of any sig-

nal is a representation of the signal in terms of a family of orthonormal wavelet bases ob-

tained from a single wavelet function, called a mother wavelet, through repeated translation. 

Wavelet Transform consists of different filters that have been designed/and used in the litera-

ture for various signals and image processing. The most prominent examples are the 

Daubechies (db) (Daubechies, 1990) and its family filters including db2, db4, db6, and db8 of 

length 2, 4, 6 and 8 respectively. Daubechies 2 filter, which is also known as Haar filter, is a 

piecewise constant function and can be defined as: 

     {
               

                
                    

                                               (2-5) 

The Haar wavelet function decomposed the signal into approximation subband containing the 

low frequencies by averaging the coefficient and a detail subband containing the high fre-

quencies by differencing the coefficients. 

The separable property of the DWT makes the implementation of the 2-dimensional wavelet 

transform (DWT) of images equivalent to a successive implementation of the 1-dimensional   
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DWT in two orthogonal directions. It is customary to apply the DWT firstly in the horizontal 

direction across the rows of the input image into approximation and details subbands. The 

approximation subband, commonly referred to as the low-subband, represents low frequen-

cies in the horizontal direction, while the details subband, called the high-subband, represents 

the high frequencies in the horizontal direction. This would be then followed by decomposing 

these two subbands in the column direction, thereby decomposing each horizontal subband 

into two low and high subbands. Therefore, the 2-dimentional signal will be decomposed into 

4-subbands: low frequency subband (  ) and high frequency subbands (     , &   ). The 

   subband represents the low frequencies in both horizontal and vertical directions,    and 

   subbands represent the high frequencies (indicating significant features such as edges) in 

the vertical direction and in the horizontal direction, respectively. The high frequency    

subband represents the highest frequencies in the image and holds information about “diago-

nal features” in the image. The recursive decomposition is performed only on the approxima-

tion coefficients and Figure 2.1 is an example of level three of the pyramid decomposition 

scheme. 

Numerous wavelet filter banks can implemented in a variety of decomposition schemes. The 

Haar wavelet filter has been selected for use throughout this thesis due to its simplicity. At a 

resolution level of  , the pyramid scheme decomposes an image I into      subbands 

                                    at a resolution level of   where the     is 

considered as the  -level approximation of image I, while             captures horizontal, 

vertical and diagonal features of the image. 
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Figure 2.1: Wavelet Transform Level 3. 

The coefficient in each subband of wavelet transformed face image (i.e. super resolved image) 

is used as a feature vector representation of the face for recognition purposes (Sellahewa & 
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Jassim, 2009), (Sellahewa & Jassim, 2010) with various accuracy rates. In the recognition 

stage, the feature vectors of gallery and probe images are typically compared by calculating a 

distance score between the two feature vectors (using City Block distance). The probe’s iden-

tity is classified according to the nearest neighbour criterion. The City Block distance (  ), 

which is also called the Manhattan distance function, between two vectors   [

  

 
  

] and 

  [

  

 
  

] is given by: 

        |     |  |     |    |     |                            (2-6) 

 

2.1.2 Face recognition – Uncontrolled Scenarios   

In this section the literature on face recognition in uncontrolled conditions, such as in the case 

of unattended surveillance situations or at a distance, is discussed and reviewed. Developing 

such schemes that perform well is a tough challenge (Tistarelli, et al., 2009). This is due to 

many factors, which might influence biometric feature extraction procedures. The perfor-

mance of face recognition schemes (in which feature extraction is based on using training sets 

of images) is strongly dependent on how representative of the real world the training set is. i.e. 

how much different the images in the matching stage are from those in the training set in 

terms of recording conditions that influence among other things image quality, resolution and 

illumination. For many face recognition algorithms, the recognition rate drops dramatically 

when there are significant variations in the image spatial resolution and/or image quality be-

tween the training and the matching stages in terms of the influencing factors. Face recogni-

tion in uncontrolled conditions refers to applications for which one or more of the following 

non-exhaustive list of sources of variations in recorded conditions could cause degraded per-

formance of face recognition schemes. 

(1) Illumination: Variation in illumination could change the appearance of the face drastical-

ly. In the case of face images, illumination depends on the alignment of source of light 

with respect to the camera. Badly illuminated images suffer from appearances of shad-

ows. The change in appearance is often more significant between differently illuminated 

images of the same person than between similarly illuminated images of different per-

sons. This problem makes face comparison very difficult.  
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(2) Pose: This is dependent on the position of the camera and orientation of the face. When 

a camera tracks the face of a walking person and/or the camera is at an elevated position 

above the tracked person’s head then the different image frames are associated with the 

different pose. The latter case is associated with images from most ordinary security 

cameras, thus the viewing angle of faces has a slight downward tilt. Therefore, face fea-

tures such as (i.e. eyes, mouth, nose, and chin) in the captured images are affected dra-

matically and may not be completely visible. 

(3) Facial Expression: Humans are capable of showing their feelings or state of health in a 

manner, which changes the appearance of their face in certain ways. These expressions 

include happiness, sadness, disgust, fear, laughing, embarrassment, etc. These expres-

sions are dependent on many factors such as cultural background and gender, and are af-

fected significantly by extreme variation in lighting conditions. For each expression, the 

face appearance change is a result of tension or relaxing certain muscles in the certain 

parts of the face. Humans are capable of recognising the various expressions on other 

people’s faces. In the literature regarding automatic machine recognition two different 

challenges, exist in relation to this factor: person identification regardless of their facial 

expression and expression identification regardless of the person presented.  

(4) Occlusions: In some unconstrained environments parts or all of the face image may be 

occluded (i.e. invisible) either as a result of head orientation away from camera (deliber-

ately or not), the presence of obstacles, or as a result of wearing caps/hoods, sunglasses 

and scarves. This makes face identification somewhat more difficult due to missing fea-

tures and data. 

(5) Low Image Resolution: This is the case when the number of samples in the digitised spa-

tial domain is small as a result of using cheap, low quality cameras or the face image is 

captured at a long distance from the camera when the view area is wide/large and the 

proportion of the face in the whole image is small. For example, when surveillance good 

quality cameras are deployed which are usually in public spaces such as metro stations 

and airports, faces recorded from a significant distance are of small size relative to the 

captured image. Therefore, the facial image is always at LR, which degenerate both the 

performance of face detection and the face recognition schemes. Generally, the LR im-

ages contain limited information and details are lost.  
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(6) Blurred image: In many cases of face recognition at a distance, the face image is blurred 

with little contrast. Blurring gets worse as the distance to the camera increases. This 

challenge is not unique to face recognition at a distance but happens when the person is 

moving fast, the camera is unstable and the optical system is out of focus, or may be due 

to other problems like abnormal weather and atmospheric conditions such as thermal 

waves and wind speed. However, these challenges are somewhat customized and more 

pronounced in face recognition at a distance. 

Face recognition in uncontrolled condition when there is an extreme variation in a single in-

fluencing factor while the other factors are minimally varied from the neutral condition. 

There has been extensive amount of research and publications that deal with the challenge in 

such scenarios with varying level of success. In the rest of this section, we shall review the 

literature in relation to this type of scenario for most of the above influencing factors. Typi-

cally, the large intra-class variations due to illumination, as well as expression variations, 

(Sellahewa & Jassim, 2008) make face recognition a challenging problem in all face biomet-

rics applications. The case of extreme variation in illumination from training images has been 

studied extensively and many approaches have been developed to mitigate these variations 

(e.g. see (Sellahewa, 2006), (Abboud, 2011), (Al-Assam, et al., 2012), (Al-Assam, 2013)). It 

has been found that these variations yield degraded images corrupted by shadows causing 

significant variation in face feature vectors, which in turn is manifested by loss of discrimi-

nating power. Pre-processing illumination normalization techniques, e.g., histogram equaliza-

tion (HE) with the aim of transforming recorded images to create the impression of being 

recorded under normal illumination/conditions, have been used to address the effects of vary-

ing conditions and normalise intra-class variation. However, normalizing well-lit face images 

could lead to a decrease in recognition accuracy. Therefore, Sellahewa et al in (Sellahewa & 

Jassim, 2009) proposed the quality based adaptive HE technique to deal with the problem of 

variable illumination by partitioning the face image into four parts and HE used to normalize 

only the region where the luminance distortion is higher than a predefined threshold. This 

approach improved the performance of face recognition under varying lighting conditions 

and produced higher results than non-adaptive HE scheme. On other hand, the adaptive fu-

sion approach to multi score of resulting wavelet based feature representations (Sellahewa & 

Jassim, 2010), (Abboud, 2011) focused on overcoming the problem of varying illumination 

conditions and to increase recognition accuracy. This approach is based on the image quality 

of the sample image, which has been used to select fusion parameters. In a further approach, 
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error correction with binaries face feature vector (Hussein, 2014) is recently proposed and 

used as an alternative to pre-processing normalization techniques in mitigating the effect of 

variations in recording conditions on automatic face recognition. Error correction means the 

ability to reconstruct the original data by the receiver.  

In some applications where high level of accuracy are necessary, such as e-passports and 

border/airport checks, in this case the problem of variation illumination can be solved through 

recognition systems, where the system restricts the variation by imposing normal illumination 

i.e. imposing strict control over recording conditions, whereby the person is recorded in a 

well-lit booth.   

Expanding the gallery to include the number of samples/templates for each individual record-

ed at different orientations has been used to deal with pose and expression variation. Howev-

er, this approach requires huge storage space. In addition, in some application such as crime 

fighting it may not be possible to capture different poses or expressions.  

The resolution of video frames/ images plays a vital role in face recognition from a distance 

where in some applications, video surveillance for example, we may only have access to low 

resolution and/or degraded images captured at a distance where the face is small relative to 

the field of view. In terms of “distance” from user to the camera, face recognition systems 

can be categorized into near or close-distance, middle-distance, and far-distance. For near-

distance, the camera might capture an image of good quality and stable face images, while at 

far distance the images captured are usually small and of low quality. A few research works 

have focused on the influence of variations of image resolution and modest image degrada-

tion, (e.g. (Al-Obaydy & Sellahewa, 2011), (Bailly-Bailliére, et al., 2003), (Phillips, et al., 

2009) & (Hu, et al., 2012)). The main developed approaches to deal with these challenges can 

be categorized essentially into two groups: (i) acquiring high-resolution face images using a 

special camera system and (ii) generating a super resolution face image from a given LR. 

High definition (HD) video cameras has been introduced recently (Al-Obaydy & Sellahewa, 

2011) as a new video standard, that provides high quality video with high resolution as op-

posed to an LR standard definition (SD) video camera. Recent studies (Bailly-Bailliére, et al., 

2003), (Phillips, et al., 2009) have shown that using HR video results in better face recogni-

tion accuracy. Al-Obaydy et al. (Al-Obaydy & Sellahewa, 2011) investigated the use of HD 

video cameras to recognise faces from a distance in indoor/outdoor-recorded conditions, 

while SD video camera has been used for comparisons. This study indicated that the high-
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resolution images from HD cameras improved the recognition accuracy and produced better 

results than the images from SD cameras when the gallery and probe images consist of faces 

captured from a distance. However, at close distance HD cameras do not provide an added 

benefit in terms of face recognition where the face data obtained from standard/low quality 

image (i.e. from SD camera) provides higher results. Therefore, the choice of HD or SD cam-

era depends on the quality of the gallery and the probe images presented for identification. 

Consequently, when low-quality images have been obtained, resolution enhancement meth-

ods may be a necessary step for accurate face recognition at a distance as an alternative to the 

costly high definition camera. However, if only a small face image with low quality (i.e. de-

graded image) is available for the recognition, it is questionable that traditional resolution en-

hancement alone can improve the performance. We shall investigate this and establish, later 

in this thesis, that even adding a traditional quality improvement step (known as image resto-

ration) can only work with modest image degradation. Super-resolution is the process that 

deals with LR to improve the quality of the images, and has been used in such situations as a 

pre-processing technique to enhance either the resolution of a single LR image or the resolu-

tion of multiple LR images (Bannore, 2009), (Irani & Peleg, 1991) for face recognition at a 

distance. Figure 2.2, depicts a framework for face recognition that deals with an LR problem 

by a three-stage process: super resolution, feature extraction and face recognition system.  
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Figure 2.2: General configuration of a face recognition system at a distance. 
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In the case of unattended CCTV surveillance, the variation in distances from the camera is 

not the only factor to have adverse impact on the quality and resolution of the images. One of 

the main challenges in this respect is the difficulty in determining a mathematical model for 

image degradation that encompasses the combined effect of various conditions such as reso-

lution, blurring, lighting and poses. Developing face recognition schemes that perform well in 

a range of uncontrolled conditions is a tough challenge (Tistarelli, et al., 2009). The use of the 

super-resolution approach is the obvious approach and will be investigated in this thesis. The 

description of super-resolution and the review of the relevant literature will be covered in 

Section 2.3. The remainder of this section is devoted to reviewing existing image spatial reso-

lution enhancing and image restoration schemes.  

 

2.2 Traditional Resolution Enhancing Techniques   

Image resolution refers to the number of samples measured when the image is digitised. This 

is obviously influenced by the size of the imaged scene compared to the display size, the 

sampling frequency and the sensor quality. Central to understanding the image resolution 

problem and the implications of low image resolution, is the question about the necessary 

number of digital samples that guarantees the recovery of an image, which exhibits the conti-

nuity of the scenery. Surely, more samples means more details and nearer to a continuous 

signal. However, there are limitations to how much improvement in detail is necessary.  

Theorem 1. The Shannon-Nyquist (S-N) Sampling theorem. 

An under-sampled image can be perfectly reconstructed/interpolated if the sample frequency 

   is greater than twice the highest frequency    of the original image.  

Proof. (See (Jerri, 1977))// 

The S-N sampling theorem provides a sufficient, but not necessary, condition for perfect re-

construction. If        then all frequency components higher than half the sampling fre-

quency are reflected as lower frequencies in the reconstructed image, i.e. a sparse image. 

Enhancing resolution means increasing the number of samples measured either by using more 

sophisticated high definition sensors or by developing software algorithms that insert new 

samples and exploit knowledge about the scenery in assigning values to the additional sam-

ples. Note that neighbouring image pixel values do not change in a random manner; other-

wise we will have noisy images and difficult to recognise structures. Knowledge about image 
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scenery is related to the mathematical models that are used to reflect the changes in regional 

and neighbouring pixel values.   

Resolution enhancement is required in two different types of scenarios: (1) when we have a 

single image of LR quality and (2) when two or more LR images of the same object are cap-

tured by two or more (CCTV) cameras from different angles. Traditionally, the first case is 

dealt with by interpolation whereas the process of registration deals with the second case. We 

shall now describe both processes used for increasing image resolution. Here the aim is not to 

improve image quality per se, but rather compensate for a rather low sampling rate.   

   

2.2.1 Interpolation 

Extrapolation and Interpolation (Levy, 2010) are subfields of numerical analysis and are im-

portant fields in mathematics. Extrapolation refers to the method of constructing new signal 

(data points) outside set of known data points (available signal). Interpolation, refers to the 

process of estimating the pixel intensities when an image is resized from a lower resolution/ 

or under-sample to a higher resolution, i.e. find the pixels between known data points. The 

image interpolation technique which is known as image resizing, image re-sampling, digital 

zooming and image magnification/or enhancement is an important image processing opera-

tion applied in diverse areas such as medical images, reconstruction, computer graphics, as 

well as being more useful for super resolution. Interpolation based super resolution has been 

used for a long time and it is requires to interpolate the missing pixels in the HR grid  ̂ when 

the number of the LR pixels is insufficient to fill all HR pixels. In fact, image resizing proce-

dures in most image processing tools (e.g. as Photoshop) use a variety of interpolations de-

pending on the assumed mathematical model of regional variation in neighbouring pixel val-

ues (e.g. linear, quadratics or other polynomial functions/splines).   

 

The interpolation process can be described in terms of    signal in the spatial domain by the 

following convolution formula: 

                 

where       is the sampled signal and       is the interpolation/reconstruction kernel which 

is satisfies the two properties (Bannore, 2009):- 

(1) Symmetric i.e.              and, 

(2) It is equal zero for all non-zero integer numbers   otherwise it is equal to one as: 
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      {
            
            

 

The most commonly used interpolation techniques are the nearest neighbour, the bilinear, and 

the bi-cubic interpolation. These are regarded as the most attractive methods and are widely 

used due to their ease of computation. Figure 2.3 illustrates an image interpolated with vari-

ous interpolation techniques. 

 

(1) Nearest Neighbour Replacement 

The Nearest Neighbour interpolation method uses the value from the nearest pixel, i.e. re-

places the interpolate point with the nearest neighbouring pixel, where the value of the new 

point is taken as the value of the old coordinate point which is located nearest to the new 

point. In other words, the variation of neighbouring pixel values is modelled as a step func-

tion. The nearest interpolation kernel is defined as the following: 

      {
                                    
                                       

                                      (2-7) 

Where   is the distance between the origin pixel and the interpolate point/pixel. This ap-

proach is very simple and easily implemented. However, it performs poorly and the resultant 

aliasing or blocky effect makes the image quality unacceptable for most high quality imaging 

applications, (see the examples below). One can see that even when the LR image is of rea-

sonably quality this approach introduces some degradation in the form of aliasing/blocky ef-

fect.   

 

(2) Bilinear Interpolation 

The bilinear interpolation is based on the assumption that the variation of neighbouring pixel 

values is modelled as a step function. Consequently, the missing pixel values can be deter-

mined as a weighted average of four neighbouring pixel values that are surrounding the un-

known pixel. In other words, the one dimension linear interpolation technique applied se-

quentially in both directions (horizontal and vertical). The missing pixel value in each direc-

tion is evaluated in terms of its immediate neighbouring pixels (say        , in the given di-

rection, using the interpolation function/kernel given below: 

      {
                         

                                   
                                   (2-8) 
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Suppose   is any unknown point at the sample data then: 

            
     

 
 

Since                                                                      

The following LR images and their bilinear interpolated images illustrate that this method 

performs better than the nearest neighbour method. For example, when applied to good quali-

ties LR images the aliasing/blocky effect is less visible. However, some degradation is still 

visible in the form of blurring, especially when the input LR image is of low quality.   

 

(3) Bi-cubic Interpolation 

This interpolation method is based on the assumption that the variation of neighbouring pixel 

values is modelled as a cubic spline function. Therefore, missing pixel values can be deter-

mined sequentially in the horizontal and then in the vertical direction by a cubic spline de-

termined of the closest four known neighbouring pixels in that direction. The one-

dimensional bi-cubic interpolation function in any direction is evaluated using the piecewise 

cubic polynomials (i.e. cubic spline) determined by the four neighbouring pixels (           

  ). The following is the general expression for this interpolation technique (see (Bannore, 

2009)): 

      {

 

 
     

 
                                           

  

 
     

 
                                 

                                                                        

                      (2-9) 

where   is the distance between the point to be interpolated and the point being considered. 

The kernel       is zero for all integer values of its argument and is one at zero. Suppose   is 

the point to be interpolated, then if       then   is equal:  

                      

 Where   

                       

 
         

 
                

                                                  

 
     

 
      

                                                  

 
        

 
         

                        

 
         

 
                 



CHAPTER 2: Face Recognition and Super Resolution- A Literature Review 

 32 

In addition                        are the distance between  and the points 

                respectively (Parker, et al., 1983), (Keys, 1981). 

The following LR images and their bi-cubic interpolated images illustrate that this method 

outperforms both previous methods when applied to good quality LR images, with barely any 

visible degradation. In fact, the output-enlarged image is slightly sharper than that produced 

by bilinear interpolation, while the bilinear method introduces blurring effects and does not 

have the aliasing/or blocky effect shown by nearest interpolation. Therefore, in all the exper-

iments we will focus on the bi-cubic (BC) interpolation technique. 

 

    

    

(a) (b) (c) (d) 

 

Figure 2.3: Well-known interpolation methods: the first column (a) original LR images with good and bad qual-

ity, the second column (b) nearest interpolation, the third column (c) bilinear interpolation, and the four column 

(d) bi-cubic interpolation. 

 

2.2.2 Registration 

Image registration is the process of spatially aligning two images of the same object/scene so 

that pixels in the two images correspond to the same region of the scene. It is necessary for 

image applications that require a pixel-by-pixel comparison. Image registration essential for 

different images is obtained using different sensors or at different times. In addition, image 

registration is the obvious tool for fusing and/or comparing the spatial information content of 

different images, which requires determining a pixel-to-pixel correspondence (Sabuncu, 

2004). Moreover, it is applicable to estimating scene motion for each image with reference to 

one particular image.  
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Image registration is therefore applicable to resolution enhancement, when two LR images 

are available. The first step in obtaining an HR image that combines these two LR images is 

to find the relative transformations between the input LR images. Each pixel from each LR 

image is placed onto an HR composite grid  ̂ based on the registration information. A miss-

registration of images will cause the pixels to be placed incorrectly in the composite grid, 

which causes loss of important information and has disastrous implications on overall SR 

performance.  

 

2.2.3 Image Restoration 

The quality of the interpolated SR image generated by any of the above interpolation algo-

rithms is inherently limited by the amount of data available in the image and its quality. This 

is due to the fact that the frequencies captured in the interpolated image are a combination of 

the frequencies existing in the LR input image and therefore interpolation cannot recover the 

high frequency components during the sampling process. To overcome this problem we need 

to work on the frequency domain of the LR images using Fourier or wavelet transforms. 

Image restoration or image de-blurring refers to the process of improving the information 

content present in the degraded or blurred image by estimating a mathematical model for the 

degradation. Therefore, the object of restoration is to remove identified distortion from the 

observed image and provide a best possible estimate to the original undistorted image. There 

are two well-known restoration techniques, namely inverse filter and wiener filter. The sim-

plest approach is the inverse filter (Bovik, 2009), where the degradation function H is inverse 

to the blurred image G in the frequency domain, i.e. the Fourier transform estimate  ̂      of 

the original image can be computed by  

 ̂        
 

      
                                                       (2-10) 

The restored image  ̂ in the spatial domain can be recovered by the inverse Fourier transform 

of the frequency domain estimate  ̂       However, in some cases the inverse filter may not 

exist due to the degradation function        containing zero or near zero values at the fre-

quency domain coordinate      .  

To overcome this problem in 1942 Weiner et al (Bovik, 2009) proposed a new restoration 

method, which is called minimum mean square error or wiener filter. Wiener restoration filter 
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is the most important technique for removing blur, and estimate  ̂      of the transform of 

the original image can be computed by 

 ̂       [
 

      

       

|      |   
]                                          (2-11) 

where the function         is the complex conjugate of the degradation function        

and   is the scalar constant.    

The following images illustrate the benefits of applying these two methods on low and badly 

degraded images. 

 

 

   

Image with Low Blurring  Weiner filter Inverse filter 

   

Image with Sever Blurring  Weiner filter Inverse filter 

Figure 2.4: Restoration Techniques for images with low/severe blur degradation. 

 

 

2.3 Super Resolution 

Super Resolution is a promising digital imaging technique, which attempts to obtain an image 

with higher resolution from input LR image/images that are also of degraded quality. It offers 

more spatial domain detailed version of images captured at a distance that are usually of low-

resolution, and subject to quality degradation due to a variety of factors including sensor 

quality and/or environmental factors at the time of recording. Consequently, SR covers the 

combined objectives of resolution enhancement techniques (interpolation and registration) as 
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well as those of image restoration techniques. In fact, conventional SR techniques incorporate 

those techniques to deal with the simultaneous challenges of low-resolution and low quality 

images. The goal of SR algorithms is to recover lost high frequency components in a single 

(or multiple) LR image(s) in a way that approximates the perceived/imagined HR image as 

closely as possible.  

Super-resolution enhancement methods attempt to accumulate information from a sequence 

of low quality/ resolution images to reconstruct one super resolved image. However, enough 

images would not always be available. Therefore, during the last few years, some researchers 

(Freeman, et al., 2002), (Zhang, et al., 2012), (Kulkarni, et al., 2011) have focused on recon-

structing HR images from a single low quality low-resolution input image. 

The use of super resolution techniques is not limited to surveillance scenarios, but can be 

used for other purposes such as image inpainting. In (Meur & Guillemot, 2012) SR has been 

used as post processing to improve inpainted image quality after inpainting technique, where 

inpainting technique is first applied to the input image for filling the missing region.  

Image inpainting is an image processing challenge that also deals both requirements of SR, 

i.e. filling missing data and restoring image quality that may result from the inpainting first 

steps. Inpainting is concerned with the restoration of damages and cracks in old imag-

es/photographs. The concept of inpainting is essentially a type of interpolation and the word 

“inpainting” refers to filling-in missing region (holes or damage such as cracks or scratches) 

in an image or video by using the information from the surrounding regions of the damage. 

Such techniques exploit knowledge of optical flows surrounding the damaged region(s) and 

hence depend on solutions of Partial Differential Equations such as the Navier-Stokes equa-

tion (Sochen & Fishelov, 2006), (Bertalmio, et al., 2001), (Fei, et al., 2008). On other hand, 

recently image inpainting based on sparse representation has been proposed for recovering 

the missing or damaged regions of an image (Jialun & Xianghong, 2013), (Shen, et al., 2009). 

The quality of the output image depends on the size and structure of the missing/damaged 

regions. If the region is large and lots of information is missing, then the inpainted image will 

be of low quality. The main difference between SR and inpainting is that the missing data in 

the case of SR is spread across all image rather than at certain regions. Hence SR technique is 

more suitable than inpainting for the situation the missing data spread randomly on all low-

resolution image where interpolation technique uses to recover the missing pixels from avail-

able data points in the low-resolution image and enlarge the size for SR procedure.    
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 2.3.1 Super Resolution Model 

Super resolution is an inverse problem for the solution, in that one assumes that the LR imag-

es are the outcome of applying a set/sequence of image operators on an imagined HR image. 

It is necessary to formulate an observation mathematical model, that determines how the ob-

served LR image(s) relate to (or are obtained from) the HR image. Consider a HR image   of 

size           with the parameters   &    representing the down-sampling factors in the 

observation model, the horizontal and vertical directions respectively. Each observed LR im-

age of size       is represented by    where           and   is the total number of 

LR images. Obviously, the observed LR images are blurred and down-sampled images of the 

HR image  . Mathematically the SR problem can therefore be modelled as a solution of: 

 

                         For          

or 

                                                                             (2-12)                                                                    

where   and   represents blur and down-sampling matrix respectively. The process for con-

structing a super resolved image from multiple LR images involves three steps (Chaudhuri, 

2001) as illustrated in Figure 2.5. The first step is registration of the LR images; second, in-

terpolation and the third step is restoration. These steps can be implemented sequentially or 

simultaneously according to the reconstruction methods adopted. 

  

Image 

Registration
Interpolation Restoration 

Multiple LR 

Images
Super Resolved 

Image

 

Figure 2.5: Three basic steps of super resolution image reconstruction. 

 

The fundamental problem addressed in resolution enhancement, as presented in the above 

model, is an example of an inverse problem wherein the HR image is estimated from the de-

graded observations (LR images). Generally, such a reconstruction process is an ill-posed 

problem because of the insufficient number of LR images; ill conditioned registration where 

small variations in the observed images can cause large changes in the reconstruction; un-

known blurring operator make the solution from the reconstruction constraint is not unique. 
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In mathematics different regularization approaches are proposed to stabilize the inversion of 

such an ill-posed problem, such as (Farsiu, et al., 2004), (Bannore, 2009) & (Zibetti, et al., 

2008). Where the regularization term (i.e. ‖  ‖ 
  ) is often referred to as smoothing term, 

takes control of the ill-conditioned nature of the problem, and makes the solution more stable 

and as close as possible to the true solution. Therefore, the problem of SR in equation (2-12) 

is solved as: 

          ‖    ‖ 
   ‖  ‖ 

                                       (2-13) 

where     is the regularization parameter and   is a regularization matrix where a high 

pass filter is a common choice for the operator   and 2D Laplacian operator with ( = 4-

neibourhood) has been used for the stabilization matrix (Fanaswala, 2009). The regularization 

parameter   controls the measure of smoothness in the final solution of equation (2-13) and it 

is choosing best suited to the particular application in which it is involved. Where a large val-

ue of   affects the reconstruction output image and leads to a smoother image and some in-

formation may be lost. While too small values of   lead to an unstable solution and make the 

approximate solution far from converging with the true solution. Hence, there needs to be a 

proper balance of smoothness and preservation of information when regularization is imple-

mented. The regularization parameter   could be either chosen manually (i.e. by visual in-

spection) or automatically, such as  -curve. In  -curve method the error between the original 

test and the reconstruction HR image is requiring (see (Fanaswala, 2009) and (Bannore, 

2009)). However, the performance of regularization approaches degrades rapidly when the 

desired magnification factor is large or the number of the input LR images is small, which 

make the results overly smooth and lacking important high-frequency details. 

 

2.3.2 Existing SR Techniques 

Super resolution has been extensively studied and a lot of research is available in the litera-

ture, where over the last few years numerous SR methods have been developed and applied to 

a variety of image classes with differing degrees of success. Reconstruction-based iterative 

algorithm has proposed to reconstruct a HR image from multiple LR images (e.g. (Irani & 

Peleg, 1991), (Irani & Peleg, 1993) & (Peleg, et al., 1987)).  

Irani and Peleg (Irani & Peleg, 1991) proposed the iterative back-projection (IBP) technique 

that seems to extend and generalise methods originally developed for computer-aided tomog-
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raphy. Initially, more than one observed LR image are input to the proposed SR method, from 

which an initial up-sampled HR image    is created by interleaving and interpolation. At the 

n-th iteration the SR procedure generates a set of simulated LR images (e.g. by down sam-

pling) from the current HR image   and then the HR image is updated until the error be-

tween the simulated LR images and the observed LR images is minimized. The updates are 

carried out by passing the error through a back-projection operator and this method can be 

expressed by the following equation:- 

           ∑         
     

                                          (2-14)  

where     is the back-project operator,   is the number of LR images and   is the integer’s 

number. In their later work (Irani & Peleg, 1993), the iterative method applied for enhancing 

image frames using motion information when part of a tracked object was occluded in some 

frames and appears in others. The authors found that fusing information on tracked objects 

from number of registered frames enables reconstruction of occluded regions and improves 

image resolution. The iterative method will be described in greater detail in Subsection 2.3.3, 

where it is used to generate super resolved images from only two input LR images and the 

interpolation technique used to fill the missing pixels in the initial image   .  

Another exiting category of SR approaches is non-iterative algorithms that generally have 

lower complexity and have expanded on image interpolation. For example, Chu et al. (Chu, et 

al., 2009) presented gradient-based adaptive interpolation method that depends on the local 

gradient of the original image and on the Euclidean distances between the interpolated pixel 

and its neighboring pixels (with size    ). The distances have been used to find three 

nearest pixels around the interpolated one after rank it from the closest to the farthest. Local 

gradient has been evaluated by averaging two sobal masks of size 3 (one horizontal and one 

vertical). The authors utilized the frequancy domain registration algorithm (Vandewalle, et al., 

2006) to estimate the motions of the LR images and map these images onto the HR grid. The 

gradient-based adaptive interpolation method is used to form an HR image from the grid 

image. The wiener restoration technique has been applied to reduce the effect of blurring and 

noise caused by the system. In (Luong, et al., 2006) proposed a non-local interpolation meth-

od for image interpolation. Here, the estimation of the unknown pixel value is not based on 

its local surrounding neighbourhood, but overall of the particular image, based on repetitive 

characters of the image (i.e. parts of the image repeat themselves on an ever-diminishing 

scale). This method is perfectly suitable to some applications such as text images and satellite 
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images. On the other hand, a discriminative super resolution (DSR) technique has been pro-

posed (Zou & Yuen, 2010) to overcome the problem of very LR face images where the face 

region is smaller than       pixels by finding the relationship between the LR images and 

the corresponding HR training images. Then super resolve image recovered by applying the 

relationship operator on the input LR image. 

 

2.3.3 Back-Projection Iterative Interpolation Super Resolution 

Super Resolution techniques are used to overcome the problem of image resolution, where 

the back project iterative interpolation super resolution (IISR) method in the spatial domain is 

one of the most approaches used to enhance/reconstruct image resolution from the infor-

mation in the LR images. The iterative method starts with an initial guess      of the output 

HR image and then the down-sampling process is simulated to generate new LR images 

{   
   

} based on the initial guess of the model, which corresponds to the observed input im-

ages    . These LR images are then compared with the observed ones and the error between 

them is used to improve the initial guess by projecting back each value. This algorithm can be 

used to reconstruct an HR image from    &     images only, where each image contains 

different information, as well as displaying an inability to fill all the pixels in the HR image. 

These images are created from the original image   after blurring as: 

                                                         (2-15) 

The initial approximation for the HR output image is estimated by combining/fusing the two 

LR images over a finer grid  ̂ and bi-cubic interpolation method used to interpolate the miss-

ing pixels in the finer grid to obtain a single blurred image  ̂       of higher spatial sam-

pling rate. Fusing the image information from    and     to generate the image  ̂ is formu-

lated as: 

(1) Transfer each pixel      in the LR1 image     (        )   ̂        by:- 

            

(2) Transfer each pixel       in the LR2 image   (        )   ̂        by:- 

                

The iterative step is then applied to remove possible artefacts from the initial approximation. 

The imaging process is simulated to obtain LR images by taking even and odd valued indices 
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from the initial approximation after blurring the initial image. The difference images between 

the input LR images and the simulated LR images are combined, leaving the other pixels 

equal to zero to obtain an error image of the same size as the original image or initial approx-

imation. Then the wiener restoration technique is used to reduce the effect of blurring and 

noise. Finally, the de-blurred error image is used to improve the initial image, which yields an 

HR image      and the new image is input to the next iteration cycle. The iterative update 

scheme of the output HR image can be expressed by  

            ((       
   

)   )                              . 

where   is the number of the LR images,  denotes up sampling by a factor s and P is a back- 

projection restoration filter. The SR scheme terminates either when the energy of the error 

term (       
   

) is reduced below a certain threshold or the number of iterations reaches 

a fixed maximum number, or by minimizing the mean square error between hypothetical and 

reconstructed images. 

Generally, the iterative interpolation method is used to improve the information in the low-

resolution images. However, the question arising in this method can be used in the frequency 

domain for improving image resolution. In Chapter 4, we will test the viability of the iterative 

method to modify the wavelet subband of the input images.  

 

2.3.4 Compressive Sensing Approach to SR 

Signal and image reconstruction has been shown to benefit from the recently introduced field 

of compressive sensing and underpins the suitability of an efficient innovative category of 

SR approaches. Compressive sensing is a newly emerging mathematical theory that relaxes 

the strict conditions imposed by the S-N sampling theory for the recovery of sparse signals. It 

provides a different perspective in solving a set of linear equations when the number of rows 

is much less than the number of columns (i.e. underdetermined linear systems of equations). 

Underdetermined linear systems are either inconsistent or have infinitely many solutions that 

belong to an affine space. In the latter case, if we are seeking optimised solutions (such as 

sparse solutions or solutions that have the least square modulas) then we know that a unique 

solution exists and can be found. The least square method is a well established algorithm to 

find a unique solution vector that has the minimal Eucledian length but is ill-conditioned. 
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Moreover, our SR problem can be formulated in terms of sparse solutions to equations like 

(2-12). The corresponding   -minimization problem is known to be efficient, and in some 

cases this solution is also sparse. Compressive sensing is about the conditions on 

underdetermined measurement matricies (referred to in the literature as dictionaries), under 

which one can find the unique sparse solution of the underdetermint system, and efficient 

algorithms by which we can reconstruct the solution.  

The compressive sensing topic exploits the empirical observation that many types of signals 

and images can be quite accurately approximated by sparse expansion in terms of suitable 

bases, by a relatively small number of non-zero coefficients. The recent advances in 

compressive sensing theory and the development of efficient   -minimization procedures to 

obtain sparse solutions for certain underdetermined linear systems, has led to the emergence 

of new SR schemes to recover high quality super resolved images from a single LR degraded 

image. In the past few years, many people have been using the new theory of sampling on 

single image SR problems to reconstruct an HR image. Yang et al in (Yang, et al., 2008) & 

(Yang, et al., 2010) proposed a method to reconstruct super resolved images using a pair of 

overcomplete dictionaries in which columns are constructed, through a learning process, from 

a number of randomly selected patches of high and low resolution tarining datasets. In 

Chapter 4 we will describe this method in more details, and subsequently will invetigate and 

test its performance in our non-training based system for face recognition in uncontrolled 

conditions. In (Zeyde, et al., 2010) and (Studer, 2010) the authors presented the K-means 

singular value decomposition (K-SVD) for generating learning dictionaries to scale-up LR 

images using sparse coding. This is an iterative algorithm that alternates between a sparse 

coding of the training samples for a current dictionary and dictionary update step, to produce 

dictionaries that better fit the data. The K-SVD algorithm performs a singular value 

decomposition (SVD) for each of the K different sub-matrices; hence the name of K-SVD (K 

is used as the number of columns in the dictionary; and SVD will be defined in the following 

chapter). 

Bilgazyev et al. (Bilgazyev, et al., 2011) proposed an SR algorithm based on sparse 

representations, where sparse representation of the input LR image is computed using the 

dictionary built for LR images, and the HR image of high frequency components is estimated 

using the given sparse representation with respect to the HR dictionary. The estimated high 

frequency components of the HR image are then added to the LR input image to create an SR 

image. In this approach, the high and low dictionaries are prepared using dual tree complex 
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wavelet transforms from a set of training images. In (Xiaoqing, 2011) a two stage SR 

technique has been developed to reconstruct an HR image from a sequence of LR images. 

The first stage uses sparse representation to magnify each input LR image based on the 

learning dictionary. In the second stage, the output HR image is obtained by fusing the 

intermediate HR image sequence based on projection onto the convex sets (POCS) method.  

 

An important concern and focus of CS research is the recovery of a sparse signal from a 

relatively small number of measurements of the signal. Understanding conditions of the 

underdetermind matrices which are identified in the CS literature will help to develop/or 

design novel dectionaries for recovering an SR image where these dictionaries satisfy 

statistical properties of the new theory of sampling. In the following chapter we will focus on 

the mathematical conditions of CS dictionaries and introduce some examples of different 

random dictionaries which are satisfy the well known property needed for sparse signal 

recovery.  
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Chapter 3 
 

THE MATHEMATICAL CONCEPT OF COMPRESSIVE 

SENSING 

 

Over the past few years has arisen significant interest in sparse representation of signals, in 

which this representation captures useful characteristics of the signal from the sensing matrix, 

which is known as the dictionary. The central challenge for sparse recovery is the construc-

tion of preferably non-adaptive, relatively small numbers of linear measurements that can 

guarantee the reconstruction of a sparse or approximately sparse signal. Such a set of linear 

measurements are represented by rows of an overcomplete dictionary. This chapter is primar-

ily concerned with studying the mathematical properties of the underdetermined dictionary 

that are relevant to the recovery of a sparse image from a down sampled degraded version of 

images. 

This chapter first presents (Section 3.1) a very brief, but purposefully sufficient, historical 

introduction to the mathematical concepts of compressive sensing (CS), as a natural advanced 

extension of Harmonic and non-Harmonic Fourier and wavelet analysis of image signals that 

adopts an innovative approach to sensing and sampling which fits well with the aims of com-

pression. Moreover, we discuss the obvious links to classical problems in linear algebra relat-

ing to finding the sparsest solution of underdetermined systems of equations formed by the 

action of overcomplete dictionaries. In Section 3.2, we review the necessary and/or sufficient 

structural conditions that CS dictionaries are expected to satisfy in relation to the task of re-

covering a sparse vector/signal using   -minimization. Furthermore, a variety of random 

measurement matrices known to satisfy the Restricted Isometry Property will be briefly de-

scribed in section 3.3. Finally, in section 3.4 the summary and conclusions will be covered.  

 

3.1 A Brief History of Compressive Sensing   

Compressive Sensing, also known as sparse recovery, is a novel paradigm of signal sampling 

that emerged recently; but its roots can be traced back more than two centuries through the 
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mathematical field of Harmonic and non-Harmonic Analysis. Basically, CS relies on the 

main common assumption, adopted for image/signal compression, that bounded signals and 

images can be well approximated by sparse expansion in terms of a suitable set of atoms (i.e. 

signal building blocks). The new CS theory of sampling greatly relaxes the stringent require-

ments of the classical Shannon-Nyquist Theorem, which stipulates that perfect reconstruction 

of a signal require sampling at a rate below the Nyquist rate. Moreover, the two frameworks 

differ in the manner in which they deal with signal recovery. In the classical sampling 

framework signal recovery is achieved through a linear interpolation process, whilst in CS the 

signal recovery is typically achieved using the optimization method. Here we shall give a 

very brief historical account of how CS emerged. 

 

Over the centuries, mathematical tools and transforms have been developed and refined to 

enable the removal of redundancies in signals, provide concise representation of these signals, 

and facilitate efficient processing and analysis of certain types of signals. In fact, the mathe-

matical fields of functional and numerical analysis is dedicated to, among other things, inves-

tigating the properties, capabilities and limitations of such transforms in terms of signal rep-

resentation/expansion. Examples of such tools include Fourier transforms, discrete Cosine 

transforms and wavelet transforms. The Fourier basis {  }   
    describes a signal      in 

terms of its global frequency content; by projecting it onto   lowest frequency, atoms (base 

vectors). However, the lack of localization makes it difficult to represent discontinuities be-

cause Fourier atoms do not have bounded support (i.e. window function with good localiza-

tion in time and frequency domain). In 1946 (Gabor, 1946) Gabor resolved this problem by 

introducing a new approach to analysing signals, in which time and frequency play symmet-

rical parts, where the information conveyed by a frequency band in a given time-interval can 

be analysed in various ways. This has led to the emergence of wavelet transforms with ample 

classes of wavelet atoms (called wavelet filter banks). Different classes of wavelet atoms can 

provide multi-resolution analysis of signals into their frequency subbands in a variety of ways, 

and allow perfect reconstruction of the signal in an efficient manner. Digital versions of the 

Fourier, Cosine and wavelet transforms are among the most common tools in signal and im-

age processing and analysis.  

 

In the last two centuries, classes of Fourier and wavelet atoms (also known as dictionaries) 

have been used for representing a signal, where the coefficients are computed as linear com-
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binations of the given atoms. Each of these dictionaries is known to be suitable for specific 

purposes. Bases of Fourier atoms are well suited for analysing harmonic signals such as mu-

sic, whereas bases of wavelet atoms are more suited for detecting discontinuities and small 

features such as points and noise. Therefore, these kinds of dictionaries are not well equipped 

for representing high-dimensional signal data that normally has complex structures. Many 

other dictionaries have been developed over the last few years, such as ridgelets and curvelets 

for other specific purposes, (Candes & Donoho, 2000), (Rubinstein, et al., 2010). It has been 

recognised that combining different bases of atoms into overcomplete dictionaries can pro-

vide richer multi-purpose signal analysis tools (Rubinstein, et al., 2010). Designing such dic-

tionaries together with designing efficient algorithms to recover sparse signals from the ob-

served effect of such dictionaries are the main concerns of research in compressive sensing.   

 

There is an obvious and strong synergy between CS and Numerical Linear Algebra. In fact, 

the objective of designing CS-compliant dictionaries and developing recovery algorithms can 

be expressed in terms of the problem of solving underdetermined systems of equations, where 

the number of equations is smaller than the number of variables. In this case, the columns of 

the system’s measurement matrix are the atoms of the corresponding CS-dictionaries. In line-

ar algebra, we know that underdetermined systems of full row rank have infinitely many so-

lutions forming a hyperplane, but if we are interested in optimizing such as the case that the 

solution is small (i.e. sparse) then a unique solution exists (Trefethen & Bau III, 1997), (Levy, 

2010). This connection is at the core of applying CS theory to sparse signal recovery and sig-

nal/image analysis, and is exploited in this thesis for face recognition from degraded low- 

resolution images.    

 

The link between compressive sensing and data/signal compression stems from the fact that. 

The latter exploits the fact that signals/images can be well approximated in terms of a suitable 

basis (e.g., DCT and wavelet atoms) by vectors that have a relatively large number of coordi-

nates of small quantities and replacing these coordinates produces a sparse representation of 

the signal/image. For example, image/video compression tools (e.g. MPEG and JPEG) use 

DCT and wavelet transforms as the first step in obtaining approximately sparse representation 

of any input image or video frame. The main disadvantage of this traditional approach to 

compression is their asymmetric performance in the sense that decompressing the im-

age/video is much faster than compressing incoming streams. This is primarily the result of 

the computationally expensive quantisation step, which aims to obtain a sparse version of the 



CHAPTER 3: The Mathematical Concept of Compressive Sensing 

 46 

transformed coefficients. This has raised the legitimate question of whether we can immedi-

ately obtain the sparse representation (i.e. the significant measurements) of the signal without 

sampling at high rates that are assumed necessary.   

 

The term “Compressed Sensing” was first introduced by Donoho (Donoho, 2006), and 

emerged as a result of investigating the conditions under which this question can be answered 

positively and developing algorithms to recover the required sparse signal from a 

significantly smaller number of measurements of the signal than that stipulated by the Shan-

non-Nyquist Theorem. However, the objectives of CS theory can be traced back to the late 

1940s and early 1950s when there developed a great interest in non-harmonic Fourier expan-

sion of signals as well as the development of wavelet transforms that evolved from the work 

and observations of Gabor. These efforts have led to the emergence of the theory of finite 

frames, introduced in 1952 by Duffin and Schaeffer (Rubinstein, et al., 2010), which is the 

mathematical theory in which CS is deep rooted.  A Frame is an overcomplete matrix that has 

more atoms than the dimensions of the signal, suitable for studying some problems in the 

non-harmonic Fourier series. In 1986 and 1990 Daubechies (Daubechies, et al., 1986), 

(Daubechies, 1990) introduced the fundamental concept of frames and studied the wavelet 

transform from the angle of frame theory. Nowadays, frame theory provides an extensive 

framework for the analysis and decomposition of signals in a stable and redundant way, 

where finite frames are regarded as the best generalization of orthonormal bases. As men-

tioned above, representations of signals with orthogonal dictionaries were prevalent for years 

in signal processing techniques, e.g. wavelet for compression. However, redundancy and 

over-completeness of frames provide more flexibility as well as robustness than the or-

thonormal bases. Here, the frame constructed by the redundant/overcomplete system is used 

to fit a particular problem in a manner not possible by a set of linearly independent vectors. 

Many interesting and useful dictionaries form tight frames, which ensure the representation 

of signals as a linear combination of the atoms (i.e. the inner product of the signal with the 

dictionary columns).   

Over the last decade compressive sensing has become a key concept in various areas of ap-

plied mathematics and computer science for solving a class of underdetermined problems in 

computer vision. The list of applications of CS is growing fast and includes image/signal pro-

cessing for improve image resolution, medical imaging and many others. In this thesis, we 

shall investigate the use of CS in dealing with the computer vision challenge of super resolu-
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tion applied for the purpose dealing with the problem of face recognition in uncontrolled 

conditions where the captured face image is of low-resolution and of degraded quality. 

 

3.1.1 Orthonormal Basis and Frames 

This section provides a brief review of some of the key concepts in mathematics that were 

fundamental in developing the CS theory. Throughout this section,    stands for the real 

vector space of m-dimensional arrays of real numbers with coordinate wise addition of vec-

tors and coordinate wise multiplication by scalars.   

The inner product of two vectors             and             is defined as: 

       ∑     

 

   
  

For          the   -norm of a vector      is defined as: 

‖ ‖  
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The   -norm is known as the Euclidean norm, whereas the   -norm is referred to as the Man-

hattan norm or the city-block norm. Note that norms can be used to define a distance function 

on the points in   . However, not every distance function is associated with a norm. Differ-

ent norms defined on an m-dimensional space   , endows    with a different geometry 

structure complementing its algebraic structure. For example, geometrically the   -norms on 

the space    associate different spatial shapes with unit the   balls {      ‖ ‖   }, see 

Figure 3.1, below:  
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Figure 3.1: Unit cells in    for three norms 
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Compressive sensing relies on two fundamental principles; sparsity (sparse signal) and on an 

overcomplete dictionary. The basic notion of sparsity states that a vector has at most   non-

zero coefficients and it is measured by the   -norm. Thus the   -norm can be defined as: 

 

Definition 3.1 (  -norm): Let          
     be a vector, then   -norm for   is  

‖ ‖  ∑    

 

   

 

where         is a function and 

    {
          
          

 

 

This norm does not really constitute a mathematical norm due to the fact that it violates one 

of the essential axioms in the definition of norms. In fact, ‖  ‖  | |‖ ‖ when   is a nega-

tive scalar and v is an element of a vector space   does not hold. Nevertheless, we shall abuse 

the language and refer to it as the   -norm due to the fact that it satisfies the property of sub-

linearity as in the following lemma which will be used later to prove theorem (3.3). 

Lemma 3.1(Sub-linearity of   -norm): For any vectors   and   of length-  in the space   

‖   ‖  ‖ ‖  ‖ ‖  

Definition 3.2 ( -sparse): A vector   [

  

  

 
  

]     is called  -sparse, if  

‖ ‖  |{       }|    

In addition, let  

   {  ‖ ‖   }  

A set of vectors   {          } is called a basis for    if the vectors in the set span 

   and are linearly independent. This implies that each vector   [

  

 
  

] in the space has a 

unique representation as a linear combination of these basis vectors as 
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or 

           Where     {  }   
                                     (3-1) 

An important special case of a basis is an orthonormal basis, defined as a set of vectors 

{  }   
  satisfying 

             {
        
        

  

and                    ‖  ‖                              for            

A frame generalises the concept of basis, in that it is spanning set of vectors with an extra 

property that is relevant to CS conditions on signal recovery. Note that a spanning set of vec-

tors that has more vectors than the dimension of the spanned vector space generally involves 

redundancy. While each vector in a vector space has a unique representation as a linear com-

bination of vectors in a basis, it will have infinitely many representations with respect to a 

frame of vectors. In general, the frame can be defined as: 

 

Definition 3.3 (Frame): A family of vectors        
  in    or   , corresponding to a matrix 

       ,where     is called a frame, if there exist constants             such 

that for all     ; 

    ‖ ‖  ‖∑ 〈    〉
 
   ‖     ‖ ‖                                (3-2) 

Equivalently,                

   ‖ ‖  ‖   ‖     ‖ ‖  

The constants     and     are the lower and upper boundaries for the frame, respectively. 

The condition       implies that the rows of   must be linearly independent. If the frame 

boundaries are chosen as         then the frame is called Tight frame (TF) and  

   ‖ ‖  ‖∑ 〈    〉
 

   
‖

 

 

A tight frame          
 for which           is called a Parseval frame (PF). In oth-

er cases, the underdetermine matrix   is called Equal-norm frame (ENF) if all the elements 
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have the same norm i.e. ‖  ‖   , for all            &    . However, if    , then the 

frame is called unit-norm (UN).  

The research area of finite frames        
  has a vast number of applications. The coefficients 

vector of ∑ 〈    〉
 
    can be utilized for transmission  by the operator   ∑ 〈    〉

 
    i.e. it 

maps the signal into a higher dimensional space, or utilizes for edge detection of an image  , 

or for recovery of missing data. Moreover, the finite frames have been developed and used as 

codes for erasures and additive noise. The noise and erasures are one of the most common 

problems of signal transmissions and these types of errors typically occur when analogue sig-

nals are transmitted in an unreliable environment. The general model for frame-coded trans-

missions contains three parts; linear encoding of a vector in terms of its frame coefficients, 

transmission, and reconstruction. Frames have been used as block codes, which replace the 

coefficients of a vector with respect to an orthonormal basis by a larger number of linear co-

efficients in the expansion with a stable spanning set. 

On the other hand, finite frames play a central role in the design and analysis of sparse repre-

sentation, where by using suitable chosen representation systems          
 allows us to 

find the sparse sequences        
 with small numbers of non-zero coefficients and to expand 

the data   by   ∑   
 
     . Therefore, if the frame   satisfies the unique representation 

property (Casazza, 2013) of order    then  -sparse signal   can be uniquely recovered. The 

unique representation property can be defined as the following: 

 

Definition (3.4) (Unique Representation Property): A frame          
  is said to have 

the unique representation property of order   if any   frame elements of   are linearly inde-

pendent. 

 

Finally, we consider simple examples of frames. Let        be a standard basis matrix,  

and then the frame can be generated by adding zero-vectors of length   to the basis system   

to obtain a finite frame  ̂ of size    , where     with equal boundaries, 

 ̂  

[
 
 
 
 
       
       
       

                         
       ]
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This is a Parseval frame and ‖∑ 〈   ̂ 〉
 
   ‖

 
 ‖ ‖  for all vectors in the space   .  

Other examples can be constructed by adding multiple copies of vectors in a given basis, e.g. 

   

[
 
 
 
 
 
            

  

√ 

 

√ 
       

    

√ 

 

√ 

 

√ 
    

                                

       
 

√ 
 

 

√ ]
 
 
 
 
 

       Or      

[
 
 
 
 
       
       
       

                        
       ]

 
 
 
 

 

The matrix   is a Parseval frame in which vector norms converge to zero as   converges to 

infinity, while    is  -tight frame where each vector    appears twice. 

 

Recall that the main premise of CS theory and its applications is concerned with signals that 

are either inherently sparse or can be made sparse using some reversible transformations, and 

the objective is to recover sparse signals from a small number of linear measurements (coding) 

of their samples. Ideally, the measurements should be non-adaptive and requiring no prior 

knowledge of all the signal samples (all pixel values in the case of images). The principle of 

sparse coding (sparse representation) assumes that a natural signal can be compactly ex-

pressed/and represented efficiently as a linear combination of the column vectors of a pre-

specified dictionary where most of the linear coefficients are zero. Therefore, the fundamen-

tal principle of CS relies on frame-like matrices, which are called Dictionaries and again can 

be defined (Rubinstein, et al., 2010) as a generalization of vector space basis. Therefore, CS 

dictionaries are represented by overcomplete     matrices, where     and whose col-

umns form a pool of    bases that span the entire vector space. This means that any vector 

in    can have multiple representations in terms of different bases in   . Since    , then 

the multiplication of CS dictionaries by vectors in    yields an underdetermined system of 

linear equations where the number of rows is significantly less than the number of columns.  

A system of   linear equations with   unknowns can be defined in general as: 

                      

                      

 
                       

 

Alternatively, the system can also be written in the form of matrices as follows:    
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 [

  

  

 
  

]  [

                

                

 
                

] [

  

  

 
  

] 

or 

                                                                 (3-3) 

The assumption here, is that we only have the observed output vector   and we are interested 

in recovering a unique solution which is the sparsest, i.e. has the smallest (minimum)   -norm. 

In general, solving a system of linear equations of the form (3-3) is dependent on the relation-

ship between   and  . When    , and if   is invertible then the equation (3-3) has the 

unique solution       . If     then the system is redundant and may not have a solu-

tion. However, in the case of      (i.e. our case of the system being underdetermined) then 

if a solution exists then there would be infinitely many solutions belonging to a hyperplane of 

dimension    .   

Example1.  

In this example we illustrate that the underdetermined system of few equations than variables 

has no unique solution. Let the set of two equations and four variables as the form: 

          
           

 

From this system, we can get one equation by addition: 

                                                               (3-4) 

Which is equivalent to                                 
 

 
         

To solve this equation two assumptions exist. First, for example let     then the variable   

is equal to   and the two variables   and   can be determined by substituting         in the 

first\or second equation to the above system to get the equation: 

          

If     then     . Hence, the first sparse solution is of the form           . However, if 

the variable     then       and that leads to the second sparse solution which is equal 

to              
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The second assumption to the equation (3-4) is that if     then      as well as the two 

variables         are equals   and   respectively after substituting   and   in the first equa-

tion of the system and assuming    . Therefore, the third sparse solution is             

However, if we assume         , and      then        and the four sparse solu-

tion is equal to                Therefore, the above underdetermined     system of equa-

tions has 4-solutions of 2-sparse.  

In this example, the equation of the hyperplane was easily found and it was easy to search for 

sparse solution(s). Note that we find more than one sparse solution, which is not ideal for CS 

applications.  

The CS problem of finding the sparsest solution for the given vector   and measurement ma-

trix   {          }      such that      exactly or approximately can be reformu-

lated as finding a vector       with a minimum possible number of nonzero entries. That is 

            ‖ ‖                                                (3-5) 

 

Example 2. 

Consider the     underdetermined system of two equations as the form: 

(
  
  

 
     
   

)(

 
 
 
 

)  (
   
  

) 

To solve this system, summation of the two equations generates one equation as:  

         

and assume that two of these variables are equal to zero to find another variable. Therefore, in 

any cases      and   are equal to zero. To find the value of the fourth variation   in the 

above system, we substitute all of these variables in the first or second equation and get 

     , hence the solution is (0,0,1/4,0). 

Now if we assume     and   are equal zeros in the above linear system then we will get two 

values for the variable   which are       and        i.e. any other assumption than 

        we cannot get a solution. Therefore, the above-underdetermined linear equa-

tion has a unique solution of 3-sparse which is equal             . 
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Solving (3-5) is an optimization problem with an exponential computational complexity. It is 

an NP-hard problem because no-deterministic algorithm is known to solve the problem in 

polynomial time. However, the differences between the above     matrices in examples 1 

and 2 indicate that imposing some conditions may guarantee the existence of unique solutions 

of (3-5). For example, one can observe that in example1 the last two columns are linearly de-

pendent, whereas every pair of columns of the matrix   in example 2 is linearly independent. 

Studying the necessary and/or sufficient conditions that dictionaries need to satisfy (3-3) in 

order to have a unique solution is at the heart of CS research. Moreover, even if we construct 

such matrices then we still need to deal with the equally difficult challenge of designing effi-

cient algorithms that can be used to recover the unique sparse solution for high dimensional 

systems. In short, the questions are: first, under what conditions does the CS problem have a 

unique sparse solution? Second, is there a simple test to verify the condition(s)?. These issues 

will be discussed in the next section, but before that, we briefly discuss a common approach 

that mathematicians follow to circumvent NP-hardness.       

Mathematicians more often than not work by analogy and try to learn from other similarly 

stated problems (in this case linear optimisation) that we know how to solve. The problem of 

finding the best line or curve fit for a set of observed experimental data is by far the most 

popular computational optimisation problem that has significant similarity to that of finding 

the sparsest solution of the underdetermined system of equation (3-3). In fact, the class of op-

timisation problems referred to here, includes the well known the   -minimisation (  )-

problem:  

          ‖ ‖                                                 (3-6) 

It is well known that when   is assumed to be a small vector (e.g. its length is minimal) then 

the Least Square Method (LSM) can be used to solve (3-6). The solution is based on the use 

of the Moore-Penrose pseudo-inverse matrix              , (Alves & Hussein, 2012), 

i.e. 

              

where    is transposing the matrix    However, the LSM is ill-conditioned, doesn’t yield a 

sparse vector, and it is not desired in many applications. Note that the    –minimisation solu-

tion    is the contact point with the Euclidean ball, as illustrated in Figure 3.2 below, which 

does not coincide with the actual sparse signal  . 
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An alternative optimisation model that has common formulation to the   -minimisation is 

provided by the use of the   -norm instead, i.e. the following   -minimisation problem: 

          ‖ ‖                                                (3-7) 

This is a convex optimisation problem, which is amenable to linear programming. More im-

portantly, it has been shown that subject to certain conditions on the dictionary the solution of 

the   -minimisation coincides with the sparsest solution. Note that the solution    by   -norm 

is coincide with the actual sparse signal   differs than the solution by   -norm (see Figure 3.2 

below). This is because the geometry of the Euclidean ball does not lend itself well to detect-

ing sparsity.  

(0,0)

 

Figure 3.2:   -minimization versus   -minimization 

 

The Linear Programming simplex method (Chen & Donoho, 1994) is a guaranteed algorithm 

to solve the problem (3-7) of sparse signal recovery from CS measurements. The simplex 

method starts from an initial basis   consisting of   linearly independent columns of   for 

which the corresponding solution      is feasible (non-negative). Then improves the current 

basis iteratively by, at each step, swapping one term in the basis for one term not in the basis, 

with the goal of improving the objective function. Finally, the solution is achieved when no 

improvement is possible in the iterative improvement of a basis. While   -minimization con-

vex optimization technique is a powerful method for computing sparse representations, there 

is a variety of greedy/iterative methods for sparse signal recovery (e.g. see (Fornasier, 2010), 

(Eldar & Kutyniok, 2012), (Kutyniok, 2013), (Tropp & Wright, 2010)). The most commonly 

used iterative greedy approaches include Orthogonal Matching Pursuit (OMP) and Iterative 

Hard Thresholding (IHT).  
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3.2 Compressive Sensing Dictionaries and Algorithms 

This section is devoted to the study of the main properties of CS-compliant dictionaries that 

enable the recovery of the unique solutions of the   - optimisation problem (3-7) which also 

solves (3-3). We assume that we are seeking  -sparse solutions   with   being sufficiently 

smaller than the number of columns of  , i.e.     . In general, the discussion presented ear-

lier about CS dictionaries, or finite frames, is linked to how the columns of   can provide 

different  -sparse representations of vectors in   . Therefore, CS-compliance properties will 

be linked to linear combinations of   columns of the dictionaries.   

 

3.2.1 Sparkness of a matrix 

The spark of a matrix       , was introduced by Donoho and Elad in (Donoho & Elad, 

2003), and is defined as the minimum number of columns of   that are linearly dependent. 

The matrix is said to have full spark if                      i.e. the matrix   has a full 

full row rank. In (Kutyniok, 2013) the definition of spark is reformulated by using a null 

space             {      }, i.e. as 

            {           { }}                                (3-8) 

Clearly,                . 

Therefore, the value of spark is very informative and large values are evidently very useful 

because if the matrix   has spark = (      then there are no  -columns that are linearly 

dependent.  

The following theorem provides the guarantee of recovery of the unique  -sparse solution of 

the underdetermined system.  

 

Theorem 3.1 (Duarte & Eldar, 2011): For any vector     , there exists at most one sparse 

signal      such that      if and only if  ‖ ‖            ⁄ . 

 

Proof: Based on the proof of (Duarte & Eldar, 2011) the both directions will prove by con-

tradiction. 

( ) Suppose first that there exists a sparse signal   such that      for any       and as-

sume             where   ‖ ‖ . This means that there exists at most   -columns that 
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are linearly independent. Thus from equation (3-8) there exists a vector        such that   

is   -sparse vector. Because       then we can write           where           and 

           hence        . Thus, there are two  -sparse solutions of      and 

that contradicts with the expected result. Therefore, we must make spark ( )   . 

( ) For the converse, let us assume that spark ( )    and suppose for some   there exists 

         such that           which implies           hence            . 

Now let         then     . Since spark ( )     then all sets of up to   -columns of 

  are linearly independent and     therefore      . 

 

This theorem provides an efficient strategy for constructing suitable CS dictionaries by com-

bining/concatenating certain sets of    bases. However computing the spark of a dictionary 

is NP-hard. On the other hand, the absence of this property can be checked statistically by 

testing a randomly selected large set of  -columns for independence. 

 

3.2.2 The Null Space Property (NSP) 

Let   be a     dictionary, and     be a positive. The order   NSP property of the dic-

tionary   is related to the size of any   coordinates of the vectors in the null space of  , 

            {      }. We first need to explain some notations.  

 

Let   {       } be any subset of size  , we define the  -sparse version of a vector   in 

  , defined by   as the  -dimensional vector whose i-th coordinate is    if       and   oth-

erwise. .  

For instance, let the vector                and   {       }  {       }  where 

          then the vector     obtained from   by:  

     {       }                                

On the other hand, we obtain the vector   
  by replacing    with   if       and keeping the 

others. For the above example: 

     {                 }                                     

Definition (3-5). An      dictionary   is said to satisfy the NSP of order   if there exists a 

constant         such that for each size   set   {       } and each vector        { },  
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‖  ‖   ‖   ‖                                                        (3-9) 

An equivalent description of NSP is to say, if every  -columns of the overcomplete diction-

ary   is linearly independent then every      -sparse   can be recovered uniquely from    

by   -norm. This is a version of the so-called NSP, which is known to be necessary and suffi-

cient for   -recovery.  

 

Lemma 3.2: Let        be an over-complete matrix and satisfies NSP property of order   

then every  -columns of   are linearly independent. 

 

Proof (by contradiction). Assume there is a set of  -columns of   that are linearly depend-

ents.  

Let, the   {          }  {       } is the index of the linearly dependent vectors 

             in the dictionary   of size    , where (   ). 

 

By the definition of the linearly dependent vectors, there exists a scalars               not 

all zero such that the column vectors {              } in D can be written as a linear combi-

nation as: 

                         

Now, let                    and the vector    can be written as sparse vector of length n 

                            

In addition 

      

However,    do not satisfy the inequality (3-9). Hence, D does not satisfy NSP property of 

order k. 

 

Remark. Note that the matrix in Example 1, above, does not satisfy the condition in this the-

orem because the last two columns are linearly dependent. While, the matrix in Example 2 

complies with this condition.  
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The following theorem provides a method for recovering the sparsest solution, which links 

the linear independence of certain numbers of columns to the uniqueness of sparse solutions 

of the    -minimization. 

 

Theorem 3.2 (Fornasier & Rauhut, 2010): The     dictionary   satisfies NSP of order   

if every  -sparse solution   can be recovered by   -minimization.  

 

Theorem 3.3: If every 2  columns of   are linearly independent then      has a unique 

 -sparse solution.  

 

Proof. Suppose that every 2  columns of   are linearly independent and assume there are 

two  -sparse solutions    and    in     such that          . Which implies that 

           and since    &    are both  -sparse solutions, then by lemma (3.1) 

‖        ‖  ‖  ‖    ‖  ‖          

Hence,            , so there is a linear dependence between    columns of  , and that 

contradicts with the assumption in the theorem.  

                                  

Using this theorem to test for satisfying NSP, unfortunately, is an exhaustive search, which is 

not feasible. Therefore, NSP is rather restrictive and below we shall discuss a property that 

includes a larger space of dictionaries that meet the requirements of compressive sensing. 

However, a simple statistical test procedure can be used to show non-compliance with NSP. 

Simply, one can test a sufficiently large sample of  -column sub-matrices of   for invariabil-

ity. This statistical test can also be used as an indicator of compliance with the theorem if a 

sufficiently large sample shows positive response.  

 

3.2.3 The Restricted Isometry Property  

In 2006, Candes and Tao (Candes & Tao, 2006) introduced another CS related property 

which is less stringent than the NSP property. This is known as the Restricted Isometry Prop-

erty (RIP) and it provides a sufficient condition for unique sparse solution using   -recovery. 

The     dictionary        is said to satisfy the Restricted Isometry Property (RIP) of 

order   if there is a constant       , such that for any  -sparse signal       
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      ‖ ‖ 
  ‖  ‖ 

        ‖ ‖ 
                               (3-10) 

The smallest such    is called the Restricted Isometry Constant (RIC) of order  . Properties 

of sub-matrices by the columns of a dictionary that depend on the sparsity value of   have 

been shown to indicate satisfy ability of RIP. Another way to expressing the RIP definition is 

by using condition number, in fact, it has been shown that if   satisfies RIP of order  , then 

any   -columns sub-matrix of   must be well-conditioned (Baraniuk, et al., 2008) and 

(Rauhut, 2010). However, again checking this property for all   -columns is computationally 

infeasible, as it requires exhaustive checks of all (
 
  

) sub-matrices. Therefore, a simpler way 

of ensuring recovery of sparse vector using   -minimization, and checking sufficient condi-

tion, is by computing the condition number of a sufficiently large set of randomly selected 

  -submatrices from the CS matrix  . 

 

The condition number of   can be calculated using the singular value decomposition (SVD) 

of a matrix. Here, we present the definition of singular values of any matrix, which generalis-

es the concept of eigenvalues to non-square matrices. 

 

Definition 3.6 (Singular Value Decomposition): 

Let        a matrix, then the singular values             of   are the square roots of the 

descending order sequence of the eigenvalues            of the Gramian square     ma-

trix       , i.e.    √   for      . 

The Eigenvectors of the matrix   can provide a very useful decomposition of  . The Singu-

lar Value Decomposition of the matrix   is of the form: 

                                                                                                                                (3-11)                  

and   and   are orthogonal     and     matrices respectively, such that  

           {          }  and    {          }  

where    
 

  
    for all   and     , and    is the unit eigenvector where the eigenvector is 

defined as      . While   is a     rectangular matrix with non-negative real numbers 

on the diagonal and zero elsewhere. The diagonal entries      denoted by    are the non-zero 

singular values of   arranged in decreasing order.  
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The condition number of the matrix   can be defined as: 

                                                                       
    

    
                                            (3-12)                                       

where      and      represent the maximum and minimum singular values of  , a high-

condition number points to an ill-conditioned matrix whereas a low-condition number points 

to a well-conditioned matrix (Chen & Dongarra, 2005). This condition of the CS matrix will 

be used as a measure of the strength of the RIP property.  

 

The following four steps illustrate a procedure to calculate the condition number, and implic-

itly compute the SVD, of any matrix: 

 

Procedure (Computing the condition number of a matrix  ) 

1. Compute       for a matrix  . 

2. Compute the eigenvalues from             and the eigenvectors       . 

3. Find the singular values of   by    √    and sort them by decreasing order. 

4. Calculate the ratio of the maximum and minimum singular values of the matrix. 

 

The statistical version of the Restricted Isometry Property (STRIP), which was introduced by 

Gan et al. (Gan, et al., 2009), performance bound in terms of the mutual coherence   of the 

dictionary, which is an indicator of the dependence between columns of the matrix. 

  

3.2.4 Coherence 

Another numerical parameter that relates to compliance with CS requirements is the coher-

ence of a matrix        which provides information about the likelihood of guaranteed re-

covery of the sparse solution, and is defined as the largest absolute normalized inner product 

of pairs of columns    and   , i.e.  

                                                              
|〈     〉|

‖  ‖ ‖  ‖ 

                                            (3-13)                      

The coherence of a matrix   of size     is in the range       √
   

      
    where the low-

er bound is known as the Welch bound (Kutyniok, 2013). However, when    , the coher-



CHAPTER 3: The Mathematical Concept of Compressive Sensing 

 62 

ence value has been shown ((Welch, 1974) and (Duarte & Eldar, 2011)) to be bounded below 

by      
 

√ 
. 

 

In order to be able to provide the relation between the Mutual Coherence and Restricted 

Isometry Property we need first introduce the following Lemma that will be used to prove 

this relationship. 

 

Lemma 3.3: Let                be a vector of length   then                          

[ ∑|  | 
 

 

   

 ∑|  |
 

 

   

]   ∑ ∑|    |

 

   

   

   

 

Proof.  

[ ∑|  | 
 

 

   

 ∑|  |
 

 

   

]    |  |  |  |    |  |    |  |
  |  |

     |  |
    

                                                |  |
  |  |

    |  |   |  ||  |   |  ||  |    

                                                           |    ||  |   |  |
  |  |

    |  |    

                                                |  ||  |   |  ||  |     |    ||  | 

                                                ∑ ∑ |    |
 
   

   
    

 

Theorem 3.4 (Li, et al., 2012): If the dictionary        has unit-norm columns and coher-

ence       , then   satisfies the RIP of order   with          , for all     ⁄   . 

 

Proof. The proof of this Theorem with details have not mentioned by (Li, et al., 2012) or oth-

er references. Therefore, we will prove the Theorem by assume the matrix   of size     

has  -coherence. The definition of RIP (3-10) is equivalent to the following inequality: 

| ‖  ‖ 
  ‖ ‖ 

  |    ‖ ‖ 
  

For any  -sparse vector   of length n, 

| ‖  ‖ 
  ‖ ‖ 

  |  |         ‖ ‖  
 |        

The dot product    for the matrix   with columns               is equal 

                    . Hence, 

| ‖  ‖ 
  ‖ ‖ 

  |  = |  ∑       ∑         ‖ ‖ 
    

   
 
   | 



CHAPTER 3: The Mathematical Concept of Compressive Sensing 

 63 

Now, let 

 ∑     
 
    ∑     

 
                                                  

Based on the properties of the inner product, we obtain that: 

 ∑    

 

   

 ∑    

 

   

  |  |
         |  |

            |  |            

                                              ∑ ∑ |    |
 
   

   
               

                                       ∑ |  |
         

     ∑ ∑ |    |
 
   

   
               

Therefore,  

| ‖  ‖ 
  ‖ ‖ 

  |  | ‖ ‖ 
            ∑ ∑ |    |

 
   

   
           ‖ ‖ 

   |  

Since  ‖  ‖    then             and that lead to: 

| ‖  ‖ 
  ‖ ‖ 

  |   |  ∑ ∑|    |

 

   

   

   

       | 

Since, the matrix   has  -coherence and |       |    then we get that: 

| ‖  ‖ 
  ‖ ‖ 

  |    ∑ ∑ |    |
 
   

   
   , then by Lemma 3.3, we get that  

                                 (∑|  |)
 
 ‖ ‖  

    

                                   ‖ ‖ 
  ‖ ‖ 

            Since   ∑|  |  ‖ ‖  √ ‖ ‖  

                                     ‖ ‖ 
  

Therefore, for any  -sparse vector   the RIP inequality satisfy the definition of Restricted 

Isometry Constant (RIC) by          , because    is the smallest constant. 

 

In practice, statistical  -coherence for a hundred randomly selected sub-matrices from the 

overcomplete CS dictionary will be used to ensure sparse recovery. Coherence, Condition 

number and Spark, will be our preferred measures to estimate the strength of RIP of the vari-

ous dictionaries in the thesis. 

 

3.3 A Selection of RIP Dictionaries 

Compressive sensing-compliant dictionaries are pre-dominantly generated using certain 

known random distributions, which are among the most dominant in the applications. How-

ever, there are many deterministic RIP dictionaries that have been proposed in the literature 
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such as deterministic binary dictionaries via algebraic curves over finite fields (Li, et al., 

2012), and partial bounded orthogonal matrices in which the sensing operators are obtained 

by choosing   rows uniformly at random from a normalized     Fourier transform matri-

ces (Rauhut, 2010). 

In spite of, the fact that random matrices are important in many applications, randomness has 

drawbacks. First of all these matrices are only known to satisfy the RIP property of order  , 

where               and   is a constant, but with high probability (Li, et al., 2012). 

Moreover, there is no efficient algorithm testing the RIP. These provide the incentive to con-

struct new overcomplete dictionaries that satisfy the property of CS by design and avoid these 

difficulties.  

Now, we briefly describe well-known different random methods for constructing dictionaries 

that are known to be CS-compliant in terms of RIP. These include Gaussian, Toeplitz and 

Circulant Random Matrices. The suitability of these dictionaries for the objectives of this the-

sis will be investigated in the remaining chapters of the thesis. In particular, these dictionaries 

are used to reconstruct super resolution images from low-resolution face images, and we shall 

test the consequences for face recognition in uncontrolled conditions.  In Chapter 4, we shall 

describe other dictionaries, which will be introduced, and their RIP credentials in terms of the 

above indicators of coherence and condition numbers will be investigated. 

 

3.3.1 Gaussian Random Matrix 

A widely used RIP dictionary is the Gaussian Random Matrix (GRM). For Gaussian Random 

Matrix with normalized columns  ‖  ‖   , the entries       of the size       matrix 

(     are independently sampled from a normal distribution              . The proba-

bility density function of the normal distribution with mean  ̅ and variance    is defined as 

follows:- 

     
 

√    
 

  
 

(
   ̅
 

 )
 

 

GRM satisfies the sufficient condition for CS property with a (near) optimal order   and 

therefore allows sparse recovery using   -minimization. In the following chapters, we shall 

implement a procedure recover a super resolved image from an image with lower resolution 

via sparse representation by using two overcomplete Gaussian dictionaries of different size, 

both  constructed from a zero mean Gaussian distribution with variance    . 
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3.3.2 Toeplitz - Circulant Random Matrix 

The Gaussian matrix is known to provide an optimal condition for the minimal number of 

required samples for sparse recovery (Rauhut, 2010). However, some CS applications often 

do not allow the use of “completely” random matrices, but impose certain constraints on the 

adopted measurements and limit the amount of randomness that can be used such as the en-

tries of the first row of the matrix are only random. Practically this points to the use of a 

structured random measurement matrix. In (Bajwa, et al., 2007) they have shown that the use 

of under-determined Toeplitz-structured matrices for acquiring signals is sufficient to recover 

under-sampled sparse signals. These matrices satisfy the RIP condition but with high proba-

bility and have been proposed for certain applications such as wireless communications and 

radar (Rauhut, 2010), (Yu, et al., 2010). Toeplitz and Circulant matrices of the size     are 

of the form, respectively: 

  [

                 
                 

 
               

], and    [

                 
                   

 
              

] 

 

In both types, every left-to-right descending diagonal is a constant and the Toeplitz matrix is 

a special case of a Circulant matrix. In fact, Toeplitz matrices can be embedded in a Circulant 

matrix, as illustrated below  

 

 

 

 

 

 

 

Figure 3.3: Example of Circular Matrix of size     with {  }   
  numbers. 

For image reconstruction, the overcomplete dictionaries are generated as TCRM matrices, by 

selecting the first row using the standard Gaussian distribution with zero mean and variance 

one. The rest of the rows are permuted versions of it as required above. 
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3.4 Summary and Conclusion 

Compressive sensing is a new paradigm in image acquisition/processing with specific impli-

cations for resolution enhancement and aims to reconstruct a sparse signal from a few non-

adaptive linear measurements well below Shannon-Nyquist requirements. Basic mathemati-

cal concepts of CS theory have been studied in this chapter with focus on the fundamental 

properties that ensure unique sparse recovery for underdetermined matrices. New proof to the 

Theorem (3.4) that describes the relation between coherence and sufficient CS property has 

been constructed. In addition, the relationship between NSP property and linear independence 

vectors in a dictionary has been illustrated and proved. Finally, we have described examples 

of overcomplete random dictionaries that satisfy the RIP property and are used to reconstruct 

super resolve images in the following chapters. 
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Chapter 4 
 

IMAGE QUALITY/RESOLUTION ENHANCEMENT USING 

CS-BASED SUPER RESOLUTION 

 

Image super resolution (SR) techniques play an important role in many applications, such as 

medical imaging, surveillance systems and particularly in face recognition where resolution is 

one of the most influential factors affecting face recognition at a distance. As described earli-

er, the term “super resolution” refers to the process of producing a high-resolution (HR) im-

age from a single or a collection of low-resolution (LR) images. The performance of face 

recognition systems depends, among many other factors, on the quality (i.e., discriminating 

ability) of a set features extracted from the face image, and not necessarily on the quality of 

the image itself. Therefore, it makes sense to investigate the use of SR to enhance face image 

features with an ultimate aim of increasing the accuracy of face recognition at a distance. 

First, we will focus on the use of super resolution techniques to enhance face image quality 

with respect to image resolution and degradation. 

Over the past few years, several image-resolution enhancement techniques with different de-

grees of success, depending upon application requirements, have been proposed in the litera-

ture. Examples of such techniques include the traditional non adaptive interpolation tech-

niques (e.g. bilinear, bi-cubic and nearest interpolation) where the unknown pixel values are 

estimated based on their neighbouring pixels (Levy, 2010), iterative methods (e.g. back-

projection iterative interpolation SR method) (Bannore, 2009), (Irani & Peleg, 1991), and SR 

based on sparse representation from compressive sensing (CS) dictionaries (Yang, et al., 

2010), (Yang, et al., 2008), (Zhang, et al., 2012), (Studer, 2010). In this chapter, the CS Dic-

tionaries based SR technique will be studied with the aim of reconstructing a higher resolu-

tion version of a low-resolution image. 

 

Yang et al. (Yang, et al., 2010) and (Yang, et al., 2008), used domain-relevant HR images to 

create dictionaries to super-resolve LR images. The approach of using training image data to 
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create CS dictionaries is not convenient or scalable since one has to find application-relevant 

training images. The aim of this chapter is to question the need for image-learnt dictionaries 

for resolution enhancement tasks. In other words, this chapter will investigate the possibility 

of creating compressive sensing dictionaries that do not depend on training images. We pro-

pose a number of approaches to create dictionaries that satisfy CS property and are independ-

ent of training data. These proposed approaches will be used for two purposes: 1) to enhance 

quality and resolution of low-resolution images; and 2) to overcome the problem of differ-

ences in resolution between probe and gallery images that are typically encountered in face 

recognition in uncontrolled conditions. In the second scenario, we will investigate the super 

resolving of images as well as face feature vectors obtained from images for face recognition 

at a distance. The following summarises the main contributions of this chapter, and in turn, of 

the thesis.  

First: we introduce the concept of constructing full spark non-adaptive dictionaries as well as 

random orthonormal block matrices, i.e. without using image information, that satisfy by de-

sign the Restricted Isometry Property (RIP) sufficient for recovery of compressively sensed 

images. 

Second: we use existing dictionaries such as Toeplitz Circular Random matrices as well as 

random dictionaries generated by Gaussian random numbers for image resolution enhance-

ment. These dictionaries have been previously used in CS to recover a unique k-sparse vector 

(see Chapter 3, Section 3.3), but not for image resolution enhancement. We will compare the 

performance of the proposed dictionaries with those that are learnt from face image databases, 

using elaborate procedures, in terms of the quality of their super-resolved images. Moreover, 

the “strength” of meeting the required CS properties (RIP) for the proposed dictionaries will 

be illustrated. 

Third: we construct overcomplete dictionaries on the high/low frequency domain of the train-

ing images to enhance the high/low frequency components of the input LR in terms of image 

quality. Although the CS dictionaries created using images in the spatial domain produce 

slightly better quality super resolved images than the proposed dictionaries, we will investi-

gate, in the next chapter, the effectiveness of the proposed CS dictionaries in recovering high 

frequency feature vectors of LR images for face recognition at a distance as well as syntheti-

cally degraded LR images using common models of image degradation. 
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We shall demonstrate that the proposed CS dictionaries constructed without using training 

images as well as the variety of existing random dictionaries are able to improve image quali-

ty as much as, if not better than the learning dictionaries. Hence, we will argue that there is 

no need to use training images to construct dictionaries. We will show that the non-CS based 

iterative SR method in the spatial domain is able to reconstruct image with good quality from 

multiple LR images. Furthermore, we evaluate the use of iterative SR method in the wavelet 

domain, but this approach does not always produce good quality images compared to its 

counterpart in the spatial domain. Therefore, in this thesis, the performance of the non-CS 

based iterative SR method in the spatial domain as well as the standard interpolation method 

will be used to compare the effectiveness of the proposed dictionaries. We will demonstrate 

that the various types of CS dictionaries based SR technique are able to improve image quali-

ty and image resolution better than the iterative SR method in the spatial domain and even 

better than bi-cubic interpolation method.    

The rest of this chapter is organised as follows. We begin with an introduction to image super 

resolution process. Then in section 4.2, we describe the proposed iterative SR (IISR) method 

in the wavelet domain and test its ability to reconstruct images with good quality. Following 

which, we shall explain the use of SR by learning dictionary in spatial and wavelet domains 

to enhance face image quality. The proposed approaches to construct dictionaries that do not 

depend on training images are introduced in section 4.5. In section 4.6, we will briefly dis-

cuss and compare the various proposed dictionaries and the learning dictionaries in terms of 

their strength in meeting the CS properties. Finally, the results of experiments conducted on 

two databases to evaluate the efficiency of the proposed dictionaries to enhance face image 

quality will be presented in section 4.7. 

 

4.1 Image Super Resolution  

Super resolution is an inverse problem for obtaining a HR image from a degraded LR im-

age(s). SR enhancement techniques are used as a pre-processing step to recover lost high-

frequency components of LR images in such a way that the result approximates the original 

image as closely as possible. Generally, SR techniques used to obtain a HR image from an 

observed LR input image   can be modelled as a solution   of the matrix equation: 

                                                               (4-1) 
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where   is the point-spread function with a blurring effect,   is the down-sampling function 

and   is the additive noise. The main challenge in recovering   is the modelling of the un-

known blurring function  .  

Gaussian low-pass function is a well-known frequency-domain smoothing filter that has a 

blurring effect on images (Gonzalez & Woods, 2002) and is defined as follows: 

                    
                                              (4-2) 

where                 and   is the standard deviation of the Gaussian curve. Gaussian 

function can be considered a suitable model of blurring/degradation to use in SR procedures, 

but this function has a low level of blurring effect on images and does not reflect the severe 

degradation conditions seen in surveillance scenarios. Another suitable model of degradation 

can be based on the use of atmospheric turbulence function of different strengths, which re-

sult in more severe degradation effect than the Gaussian functions. Turbulence function is a 

degradation function which models the environmental conditions caused by variations in 

temperature, wind speed and exposure time. In the frequency domain, the turbulence func-

tions (Gonzalez & Woods, 2002) are of the form: 

                  
 

 ⁄
                                            (4-3)                                              

where    is a constant that reflects the severity of blurring. We label degradation based on the 

experimental results as severe if                 medium (similar to most Gaussian blur-

ring functions) if                and minor if            . The small images in Figure 

4.19 are the down sampled degraded images after applying   for different values of   . In all 

the experiments, we shall adopt two models of degradation; the first is a Gaussian filter of 

size seven and the second is atmospheric turbulence with blurring of different extents. SR 

algorithms aim to maximize peak signal to noise ratio (PSNR) or minimize the mean squared 

error between the hypothetical HR image and the reconstructed SR image. Therefore, this 

chapter focuses on the performance of SR methods in terms of image quality, and later in the 

following chapter for face recognition under uncontrolled conditions. 

 

4.2 Iterative Super Resolution Method in the Wavelet Domain  

The performance of face recognition schemes are adversely affected by image degradation 

such as blurring of the edges that represent the most discriminating facial features. Therefore, 
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in this section, the iterative SR technique, described in Chapter 2, will be used in the wavelet 

domain to address the problem of image resolution and to reconstruct a HR image from the 

wavelet subbands of two degraded LR images. The two distorted LR images (    and    ) 

of an individual are obtained from the original image by applying the degradation function   

in equation (4-3) with different   -values and then down sampling the image by taking even 

and odd indexed pixels.   

The following steps explain the IISR method in the wavelet domain.  

1. Transform the two LR images into wavelet domain by decomposing each image into 

four subbands of different frequency ranges (approximate and detailed subbands) us-

ing discrete wavelet transform (DWT). 

2. Combine the low subband (LL) of each of the two images to generate a LL subband 

of large size than the subband of LR image by: 

a. Place the coefficients of each LL subbands into a HR grid (i.e. fusion subband) 

based on the information that transfer the image into LR images, (see Chapter 

2).     

b. Use bi-cubic interpolation to complete the HR grid by interpolating the miss-

ing pixels (unknown coefficients). Note that the size of the combined subband 

depends on the size of the wavelet subband of the LR images, wavelet filter, 

level of decompositions, as well as depends on the size of the enlarge input 

images that we want it. 

3. Perform step 2 for the three non-LL subbands. 

4. Apply the inverse discrete wavelet transform (IDWT) to generate initial HR image. 

5. Use the back project iterative method to remove possible artifacts and/or blurring deg-

radation of the inversed image and obtain an image with higher resolution. 

Different wavelet filters of the same family (daubechies-2 (db2), daubechies-4 (db4), 

daubechies-6 (db6), and daubechies-8 (db8)) have been tested at wavelet decomposition lev-

els from 1 to 3. The choice of wavelet filter has been considered based on the wavelet filter 

length to test the effect of such on the used images. In order to, objectively evaluate the per-

formance of the iterative SR algorithm in the spatial and wavelet domain; a number of exper-

iments were conducted on the test images shown below in Figure 4.1.  

The well-known bi-cubic interpolation method was used as a baseline to enhance the resolu-

tion of the input LR images. The reconstruction reliability is quantified using the well-known 

quality measure PSNR, whilst the original test images are used as ground truth to calculate 
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PSNR values. The average PSNR values obtained by each of the SR methods are presented in 

Figure 4.2. 

 

 

 

Figure 4.1: Original Test Images 

It can be seen from Figure 4.2 that the IISR methods in the spatial and wavelet domain pro-

duce superior quality improvement when compared to the standard bi-cubic interpolation 

technique. However, the IISR method in the spatial domain slightly outperforms the IISR in 

the wavelet domain for each wavelet decomposition levels and for each level of degradation 

function.  

The various charts in Figure 4.2 show the quality of the super resolved images by IISR meth-

ods and bi-cubic technique decreases with increased level of blurring. Furthermore, with 

mild/medium and severe degradation, there is a small difference in terms of reconstructed 

image quality between different wavelet filters for each levels of wavelet decomposition.  

  

 

Figure 4.2: Average PSNR values for the super resolved images from two LR images with different   -

Turbulence blurring and with different wavelet levels. 
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Super resolved images for two different subjects are presented in Figure 4.3 and Figure 4.4. 

The results of other test images (in Figure 4.1) and other levels of degradation are similar to 

these images and therefore are not shown here. Hence, we shall only demonstrate the out-

come of the experiments on these images where the LR images have low levels of degrada-

tion. 

From the results in Figures (4.3 and 4.4), we can observe that the IISR algorithm in the spa-

tial domain produced sharper results and demonstrated less visual blurring than the image 

interpolation. Furthermore, IISR in the spatial domain provides more image details than the 

one enhanced in the wavelet domain. The super resolved images by wavelet domain algo-

rithm with different filters produce images with number of artifacts or geometric degradation. 

However, the reconstructed image by Haar filter (db2) in level one wavelet decomposition is 

slightly better than one reconstructed by other wavelet filters. Since the size of the filter has 

an effect on the image, where the Haar filter of length 2 is able to capture sharp changes (high 

frequency) in the LR images better than the others filters. 

In general, the experimental results show the effectiveness of IISR techniques in the spatial 

domain and its ability to achieve better results in terms of both measured quality and visual 

perception. Furthermore, there is no significant difference in terms of the quality of super-

resolved images based on the 4-wavelet filters at different decomposition levels. The interpo-

lation method yielded the worst performance overall. Hence, the IISR method in the spatial 

domain will be used to super-resolve images in all the experiments in this chapter. 
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     Original image                        LR1 & LR2, k1=0.01                                    IISR                         BC 

                                    Level 3  

                                    Level 2  

                                    Level 1  
                                    IISR-db2                  IISR-db4               IISR-db6              IISR-db8 

Figure 4.3: Example 1, comparison between super resolved image by interpolation method & IISR approaches 

in the spatial and wavelet domain from LR images with low-level of degradation. 
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     Original image                       LR1 & LR2, k1=0.01                                         IISR                     BC 

                                    Level 3  

                                    Level 2  

                                     Level 1  
                                         IISR-db2                  IISR-db4               IISR-db6              IISR-db8 

Figure 4.4: Example 2, comparison between super resolved image by interpolation method & IISR approaches 

in the spatial and wavelet domain from LR images with a low-level of degradation. 

 

4.3 Super Resolution by Learning Dictionary in the Spatial Domain 

Influenced by the latest advances in sparse representation theory and algorithms, the Learning 

Dictionary approach is an underdetermined matrix design process that uses training image 

patches to create dictionaries. Yang et al. in (Yang, et al., 2010), and (Yang, et al., 2008)  

prepared a pair of learning dictionaries to reconstruct a SR image from a single LR input im-

age, based on sparse signal representation; we will refer to this method as LD-Sp. The learn-

ing dictionaries based on SR method has two main stages; the first stage prepares the two dic-

tionaries DH and DL and the second stage super resolves a single input LR image to produce a 

HR image using the two dictionaries. Figure 4.6 illustrates the two stages of SR by LD-Sp 

algorithm, which we will explain in detail. 
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Stage 1: Prepare two Overcomplete Dictionaries 

The compact dictionaries DH and DL in general can be generated from large matrices of the 

form    {          } and    {          } of sampled HR image patches     and their 

corresponding LR image feature patches    by the following procedure:  

1. Build    for sufficiently large number of random raw patches of size     and turn 

each patch into a column vector. The patches (the patches overlap) are carefully se-

lected from a set of HR training images of the same statistical nature to the input LR 

image (in this case face images). 

2. Generate a LR image set by:  

2.1 blurring and down sampling the HR training images, and 

2.2 using standard interpolation technique to enlarge the down-sampled images. 

3. Apply feature extraction procedure, which consists of four 1D filters chosen as first 

and second order gradient filters, to the up-sampled version of the LR images to gen-

erate four feature images for each image.   

4. Generate    by the randomly selected patches from the feature images that extracted 

from the up-sampled LR images, and subtract the mean pixel value from each patch to 

ensure that the dictionary represents image textures. Then, turn the four feature image 

patches into a single vector by concatenation to arrive at the final representation of the 

LR patch.  

5.  Generate the large size matrix   [

 

√ 
  

 

√ 
   

] where   and   are the dimensions of the 

HR and LR image patches in vector form, and 

6. Use the learning strategy of the single dictionary (Yang, et al., 2010), (Lee, et al., 

2007) shown in Figure 4.5, which is an iterative algorithm starting with an initial dic-

tionary, to generate and fix the size S of the two dictionaries   
    and   

   from the 

large dictionary   . 

 

 

 

 

 

 



CHAPTER 4: Image Quality/Resolution Enhancement using CS-based Super Resolution 

 77 

 

 

  

 

 

 

      

 

Figure 4.5: Single Dictionary Strategy Algorithm 

 

Stage 2: Reconstruct a HR image 

To reconstruct the output HR image, the SR scheme works as follows: (1) Up-sample the in-

put LR image using bi-cubic interpolation technique. (2) Apply the one dimension gradient 

filters to highlight the edges in different direction to the interpolated image and generate four 

feature images. (3) Starting from the upper left corner of the feature images, divided the im-

ages into overlap patches. Then (4) recover HR image patches by: 

 For each LR image patch   (or features extracted from it) finds a sparse representa-

tion   with respect to low-dictionary DL by   -minimization problem (i.e. by using 

linear programming algorithm). This algorithm start with an initial basis of linear in-

dependent vectors and iteratively improve by swapping one column in the initial ma-

trix by one in the dictionary (see Chapter 3) since the solution to the linear program-

ming is identical to finding this basis. 

 The coefficients   of this representation with the corresponding patches in    use to 

generate the output HR image patch       as a linear combination of k-columns 

to the dictionary. 

The computed sparse representation adaptively selects the most relevant patch bases in the 

dictionary to best represent each patch of the given LR image. For global reconstruction, re-

strict the use of the iterative back-project (IBP) method to a single image to remove possible 

artifacts from the local sparse and to eliminate the reconstruction errors in the HR image.  

In general, the standard single LR image IBP scheme works as follows: 

1. Generate the initial HR image    (here the image obtained from the local sparse is the 

initial image), and at the n
th

 iteration,     

2. Convolve the image      with an appropriate degradation function. 

3. Down sample the resulting image to obtain      , and 

1. Start with initial dictionary   with Gaussian random matrix. 

 

2. Fix   and find  ,   where       ‖    ‖ 
   ‖ ‖  

 

3. Fix   and update      ‖    ‖ 
  

 

4. Iterate steps 2, 3 until converge. 

5. Find the    and   from    [

 

√ 
  

 

√ 
  

] 
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4. Obtain the error image    of the same size of the initial image from up sampling the 

difference(        ). 

5.  Update the HR image by calculating                  where   is the restora-

tion filter which is used to remove blurring effects in the image   . 

6. Finally, input the new HR image to the next iteration cycle. 

The iteration procedure terminates either when the error term (        ) is less than/or 

equal a certain threshold or the number of iterations reached a fixed maximum number. In 

(Makwana & Mehta, 2013), interesting variants of the IBP have been proposed. They pre-

sented an approach based on combining the IBP method with the Canny edge detection and 

Gabor filter. At each iteration, the authors added additional terms representing high frequency 

information in    by using Canny edge information and Gabor filter to the back-project error 

image for improve image quality. 
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Figure 4.6: Illustrates the two stages of SR by learning dictionary method in the spatial domain. 
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4.3.1 Feature Representation for LR Image Patches 

The high-frequency components of the LR image are the most important for predicting the 

lost high frequency content in the target HR images. The first and second-order gradients of 

the LR image have been used during sparse coding and in the process of creating the     dic-

tionary to highlight/model the edges in different directions (Chang, et al., 2004). The first or-

der     and second order    
  gradient vector of the centre value     in the     block (see 

Figure 4.7) can easily be derived as follows: 
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Therefore, the four 1-dimension filters used to extract the derivatives are: 

                    
                                        

                   

where the superscript “ ” means transpose. Applying these four filters on the image patches, 

we get four description feature vectors for each patch, which are concatenated into one vector 

as the final representation of the LR patch.  

 

               

                

                    

                    

                    

 

Figure 4.7: A     local neighbourhood in the LR image for computing the first and second order gradients of 

the pixel at the centre value Z13. 

 

The following section gives a brief explanation of the SR method based dictionaries in the 

wavelet domain to super-resolve each wavelet subbands of a degraded LR image. A number 

of experiments on the test images in Figure 4.1 with different   of degradation have been 

conducted to assess the viability of this method in terms of image quality. 

 



CHAPTER 4: Image Quality/Resolution Enhancement using CS-based Super Resolution 

 81 

4.4 Super Resolution by Learning Dictionary in the Wavelet Domain  

The fact that facial features used in recognition systems are associated with high/low fre-

quency content suggest that building dictionaries in the LL and non-LL frequency wavelet 

subbands to enhanced subbands of hypothetical HR face images could result in an improved 

image quality. Therefore, this section investigates the use of SR based learning dictionaries in 

the wavelet domain, hereafter referred to as LD-WD, to reconstruct feature vectors (i.e. 

wavelet subbands) that are extracted from an input LR image. Here, the learning dictionaries 

will be building based on wavelet subbands obtained from a training set of HR face images. 

The inverse wavelet transformation will be used to reconstruct an image of higher resolution 

than the corresponding LR input image. In terms of face recognition, enhanced wavelet coef-

ficients will be used in the following chapter for face identification at a distance. 

 

In a similar manner to SR based on LD in the spatial domain, we can build two overcomplete 

dictionaries    and    for each wavelet subband of the training image sets. The high-

dictionary    will be generated using randomly selected patches from the corresponding 

subband of the training set of HR images. To create the corresponding    for each subband, 

we synthetically generate the LR patches by blurring the HR training images with a Gaussian 

filter and down sampling them. The SR reconstruction process of a subband of a given LR 

face image is achieved by first dividing the subband into patches with an overlap of one pixel 

to avoid discontinuities during reconstruction. Secondly, a sparse representation of these 

patches is computed using DL and the corresponding high patch bases DH will be combined 

according to the sparse vector in order to generate the output subband. Finally, for global re-

construction, we used the back project iterative method after inverse DWT to eliminate the 

reconstruction errors in the HR image results. The sparse representation is obtained by mini-

mizing: 

 ̂      ‖ ‖   

 
‖       ‖ 

                                        (4-4)                                      

where the parameter       , is responsible for balancing the sparsity of the solution and 

the reliability of the approximation  , and   is formed by the concatenation of four 1- dimen-

sion filters, while   is a sparse vector. 

 

The pair of dictionaries    and    in the SR method by LD-WD depends on the high fre-

quency patches from the training images set, which are randomly selected from each of the 



CHAPTER 4: Image Quality/Resolution Enhancement using CS-based Super Resolution 

 82 

images databases; both high resolution and low resolution images. For each patch of size 5, 

we subtract the mean pixel value. In all the experiments, we fix the dictionaries to the size 

      where      for    and       for    and we selected 114 face images as 

training images from the Extended Yale-B database, which is described in the following sec-

tion 4.7. 

To estimate the effectiveness of the LD-WD method in terms of image reconstruction, we 

conducted experiments to measure and compare image quality of the super-resolved image by 

using PSNR measure. In these experiments, we also used SR by LD-Sp and the bi-cubic in-

terpolation method to test whether improvement in image quality could be achieved by such 

existing methods.  

It can be seen from Figure 4.8 that, at each level of degradation and wavelet decomposition, 

SR based wavelet dictionaries achieves superior improvements than interpolation technique. 

However, SR by LD-Sp in the spatial domain produces a slightly better image than LD-WD. 

Furthermore, it can also be seen that there is a small difference between all the wavelet filters. 

Therefore, the type of wavelet filter (filter length) has no effect on the reconstructed image; 

hence, we will use the shorter wavelet filter db2 and level 3-wavelet decomposition scheme 

in all the experiments. These results are consistent with the results of the super resolved im-

age by using the iterative interpolation SR method in the spatial or wavelet domain. 
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Figure 4.8: Comparison of PSNR values for super resolved images, between bi-cubic method & CS dictionary 

based SR method in the spatial/and wavelet domains. 

 

The viability of SR method by LD-WD in terms of image quality was further tested by sub-

jective visual comparison of the enhanced images by the learning dictionaries based super 

resolution methods in the spatial domain and in the wavelet domain. The comparison has 

been conducted on four LR test images shown in the second column of Figure 4.9. To simu-

late the intended uncontrolled scenarios, the LR images were generated from the good images 

by blurring them with Gaussian blurring degradation and down sampling. As can be seen 

form Figure 4.9, the quality of super-resolved images based on LD in the spatial domain is 

better than the one enhanced by LD in the wavelet domain. The images enhanced by diction-

aries in the wavelet domain algorithm are with artifacts compared with the enhanced image in 

the spatial domain LD-Sp (see the cropped region of the first image shown). The analysis of 

the visual inspection of the images in Figure 4.9 is supported by the respective PSNR values.  

In summary, the above experimental results shows the effectiveness of SR methods in the 

spatial domain (i.e. SR by LD-Sp and IISR-Sp), which produce better results, in terms of su-

per resolved image quality, than enhancement techniques in the wavelet domain. Hence, SR 

methods in spatial domain will be used in all the experiments of this chapter. 

 

 

 

 

 

15

20

25

30

35

40

A
v
er

ag
e 

P
S

N
R

 Level 3 

LD-Sp LDWD-db2 LDWD-db4 LDWD-db6 LDWD-db8 BC



CHAPTER 4: Image Quality/Resolution Enhancement using CS-based Super Resolution 

 84 

 

 

  
  PSNR=39.13 PSNR=37.74 

 

 

  
  PSNR=40.20 PSNR=39.53 

 

 

  
  PSNR=30.32 PSNR=29.77 

 

 

  
  PSNR=27.42 PSNR=27.22 

(a) (b) (c) (d) 

Figure 4.9: Comparisons of PSNR values between enhanced images, (a) First column: the original image. (b) 

Second column: the LR image generated by blurring and down sampling the original image. (c) Third column: 

super-resolved image by a factor of 2 using SR by LD-Sp method. (d) Fourth column: the super resolved image 

by a factor of 2 using SR by LD-WD method. 

 

4.5 Novel Approaches to Construct Compressive Sensing Dictionaries 

Compressive sensing based SR method, developed in (Yang, et al., 2010), have provided 

good evidences that the degraded LR image could be reconstructed by a sparse expansion in 

terms of suitable dictionaries built from large training images. This led us to investigate CS 

dictionaries in further detail with focus on the construction of new non-adaptive overcom-
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plete dictionaries in such a way that could eliminate the need for a large training HR image 

set. In particular, we are interested in studying dictionaries that satisfy CS-related properties 

relevant to the recovery of sparse signal, such as those discussed in Chapter 3. In this section, 

we briefly describe our approaches for generating dictionaries that are independent of training 

images, but designed to implicitly be of full spark. These dictionaries will be used to recover 

SR images from a degraded LR image, with the aim of using them for face recognition at a 

distance – face recognition experiments will be discussed in the next chapter. 

 

4.5.1 Iteratively Constructed Full Spark Dictionaries  

Full-spark dictionary is a class of full row rank overcomplete     dictionary, where 

      so that each m-column’s sub-matrix is a basis of   . Here we describe an example 

of how to construct such matrices by starting with an invertible      matrix and iteratively 

appending a set of linearly independent  -column vectors in     while maintaining the full 

spark property after every addition. One way to maintain the full spark is to insist that every 

new column can only be generated by the full columns of the previously inserted sub-

matrices.  

Our generic full spark dictionary, referred to as LID, is of the form:   

  [   
    

      
        

 ]                                         (4-5) 

where for          , the         are distinct real numbers > 1,  and   
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                                   (4-6) 

Note that        and the last sub-matrix of   is an     matrix with    . Then, the 

    LID dictionary is obtained from the resulting matrix after normalising its columns us-

ing the   -norm.  

For experimental purposes, the LID1 high-dictionary    is generated using integer numbers 

     and the other    dictionary, which is denoted by LID2, is generated using real num-

bers between       . For simplicity, the low-dictionary    was created from a Standard 

Gaussian Random Matrix (SGRM). 
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4.5.2 Constructed RIP Orthonormal Dictionaries 

This is a class of overcomplete dictionaries in      where    , which satisfy RIP by de-

sign where the ideal well-conditioned dictionary can be constructed by concatenated pairs of 

orthonormal matrices   &   of size     and     respectively, and the non-zeros diago-

nal entries of these matrices is a     rotation matrix (RM), otherwise are zeros. For ran-

domly selected sets of thetas,   {           } in the range [0, 2 ], the rotation matrix can 

be defined as: 

   [
        

         
]                                               (4-7)  

While, the orthonormal matrices   and   are represented as: 

  [

      
      
           

      

]                      [

      
      
           

      

] 

Therefore, the new proposed dictionary denoted by ROM can be described as the form: 

                                                              (4-8) 

Where   is an     well-conditioned matrix with non-zero diagonal values and zero else-

where, the diagonal entries are randomly selected in decreasing order, such that the ratio be-

tween the maximum and minimum value is less than 2.5. Note that this construction is based 

on the use of singular value decomposition, and the condition on the ratio of maximum and 

minimum coefficients in the diagonal matrix is a requirement to ensure the satisfaction of the 

RIP condition (see chapter 3). 

 

4.6 Comparisons of RIP parameters for Different Dictionaries 

In this section, the comparisons of “strength” of the sufficient CS conditions for the proposed 

and existing dictionaries such as various random dictionaries and learnt dictionaries will be 

illustrated. The first set of comparisons we conducted were for the “strength” of RIP for the 

LD-Sp, LID1 and ROM dictionaries, based on statistical testing for NSP. This is due to the 

fact that an exhaustive search is not feasible since there are (   
  

)       

            
 sub-matrices of 

the dictionary. Hence, we opted to evaluate the determinants as indicators of linear independ-

ence, for a hundred randomly selected sub-matrices. The results are displayed in Figure 4.10 
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below. Although in theory, the LD-Sp dictionary may satisfy NSP, practically and computa-

tionally this is not the case because the determinants of most of these sub-matrices are close 

to zero. In contrast, the results of all the determinant values of the example LID1 dictionary 

are comfortably away from zero, as well as the determinant value for non-zero m-columns in 

the sparse ROM dictionary being > 0.034, which indicates the proposed dictionaries LID1 and 

ROM statistically satisfy NSP. 

 

  

                                                                                

Figure 4.10: Determinant of a hundred sub-matrices from: ( ) Learning Dictionary ( ) Proposed LID1 

Dictionary. 

To follow up on the above observation that the results from the LD-Sp dictionary may be 

somewhat ill-conditioned, we conducted a similar statistical experiment as above but this 

time calculating the condition numbers of the randomly selected sub-matrices for 5-

dictionaries ROM, GRM, TCRM, LID1, and LD-Sp. These condition numbers are expected 

to be bounded by RIC of order 2 , with  =12. Table 4.1 shows the per dictionary mean and 

standard deviation of the condition numbers for a hundred randomly selected sub-matrices of 

different sizes, ranging from       to the full size of       . 

 

submatrices 

Different Dictionaries 

LID1 LD-Sp ROM GRM TCRM 

mean std mean std mean std mean std mean std 

25x25 2.09 1.73 3.34E+16 1.79E+17 1.24 0.33 277.61 1.11E+03 85.19 155.68 

25x50 1.80 0.93 1.42E+15 1.79E+14 1.19 0.14 4.96 0.61 4.34 1.38 

25x75 1.71 0.68 1.20E+15 9.16E+13 1.19 0.14 3.25 0.24 2.85 0.32 

25x100 1.65 0.55 1.14E+15 5.69E+13 1.19 0.14 2.59 0.14 2.60 0.25 

Full matrix 1.84 1.00E+15 1.48 1.43 1.45 

Table 4.1: The mean and standard deviation for condition numbers, for a hundred random sub-matrices of dif-

ferent sizes. 
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This is an added indicator of the successful recovery of sparse vectors. These results again 

demonstrate that the LID1 and ROM are well-conditioned matrices in comparison to all other 

dictionaries for the various sub-matrices. Although there is no efficient algorithm to test the 

sufficient RIP property (Li, et al., 2012) of the random matrices, the condition number for the 

full matrix indicated that the GRM and TCRM matrices have small and similar condition 

numbers as well as are slightly better than the constructed dictionaries.  

Moreover, the condition number of the LD-Sp is extremely large for all cases, which makes 

these dictionaries very ill conditioned. In fact, LID1 and ROM are well conditioned dictionar-

ies as a full matrix where the condition number is small and equal to 1.84 which is less than 

2.5 while the condition number for the full LD-Sp dictionary is large, nearly 1.00E+15, 

which makes this dictionary highly ill-conditioned.  

Furthermore, we conducted similar statistical tests, but this time of coherence numbers. Fig-

ure 4.11 illustrates that for the LD-Sp dictionary, all the  -coherence of the sub-matrices are 

very small and slightly outside the lower boundary   
 

√ 
    , which implies that this dic-

tionary goes far to satisfy the RIP. In comparison, the coherence values for almost all sub-

matrices from LID1 and random matrices are comfortably inside the boundary [
 

√ 
  ].  

 

   
                                         (a)                                                                                          (b) 

   
( )                                                                                            ( ) 

 

Figure 4.11: Mutual Coherence for sub-matrices from: (a) LD-Sp dictionary, ( ) LID1 dictionary, ( ) TCRM 

dictionary and ( ) GRM dictionary. 
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Finally, the coherence values for the full dictionaries as well as their spark are displayed in 

Table 4.2. It is well known that the highest sparsity recovered signal for any dictionary equal 

(1+row rank)/2.  

 

CS Properties 
Different Dictionaries 

LID1 LD-Sp ROM GRM TCRM 

Row Rank 25 24 25 25 25 

Coherence-all matrix 0.9958 < 0.2 0.2553 0.7438 0.7318 

Table 4.2: Spark and Coherence Properties for Different Overcomplete Dictionaries. 

 

The results demonstrate that the constructed dictionaries LID1 and ROM have a large value of 

spark with a row rank equals to 25 as the random matrices, which implies that there are no  -

columns that are linearly dependent on the dictionaries, whilst the LD-Sp dictionary has a 

high probability of finding linearly dependent columns where a row rank equals 24.    

 

4.7 Database Description 

This section gives a brief description of two publicly available face biometric databases that 

are used in our experiments to evaluate the suitability of the different dictionary methods 

based SR, including the proposed dictionaries as well as state-of-the art methods, to super 

resolve face images from a single or set of LR images with two models of blur degradation. 

The first database is UBHSD video database (Al-Obaydy & Sellahewa, 2011). This database 

contains 20 subjects from both genders recorded by different quality video cameras: a high-

definition (HD) camera and a standard-definition (SD) camera. The videos of each subject 

were recorded in two sessions with a gap of at least two days between the recording sessions. 

Each recording session includes videos captured in controlled indoor conditions (videos cap-

tured in the same room under semi-controlled lighting with a uniform background), and in 

uncontrolled outdoor environment. In each recording session and at each location (indoor lo-

cation and outdoor location), three image frames of each subject were obtained at four differ-

ent ranges/distances from the camera, where range 1 (R1) being the nearest to the camera, 

while range 4 (R4) is the farthest from the camera. Thus, twelve frames are selected to cap-

ture a subject at four distance ranges. The UBHSD database consists of blurred face images, 

faces with eyes closed and slightly varying poses, and includes head movements and facial 

expressions whilst the subjects walk in a natural way. Each subject has 96 face images.  
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Hence, the total number of face images in the database is 1920. All face images are converted 

to gray scale and resized         pixels. Figure 4.12 shows examples of face images from 

the UBHSD database.  

 

    

 

    
High Definition, Range 1- 4                                             High Definition, Range 1- 4 

    

 

    
Standard Definition, Range 1- 4                                         Standard Definition, Range 1- 4 

(a)                                                                                 (b) 

Figure 4.12: Examples of cropped and rescaled face images from HD and SD videos captured in: (a) Indoor 

Condition (b) Outdoor Condition. 

 

The second database is the widely used Extended Yale B database (Lee, et al., 2005), 

(Georghiades, et al., 2001). This database consists of       face images of    individuals 

each having 64 images, in frontal pose. The cropped and normalized face images of size  

        were captured under various laboratory-controlled lighting conditions. The imag-

es in the database are divided into five illumination subsets according to the angle   of the 

light-source with respect to the optical axis of the camera as shown in Table 4.3. 

 

Subsets Angles No. Of Images 

1      263 

2         456 

3         455 

4         526 

5          455 

 

Table 4.3: Different illumination sets in the extended Yale B database 

 

We selected three images per subject from subset one, which contain images of good quality, 

as HR images to construct the learning dictionary for super resolved images. The total num-

ber of HR images in the training set for the dictionary is 114 and includes images of both 

genders. Figure 4.13 shows some examples of training face images taken from the Extended 

Yale B database.  
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Figure 4.13: Example of three out of 114 training face images. 

 

4.8 Image Quality Evaluation and Discussion 

The aim of this section is to test the performance of various CS dictionaries in super resolving 

image. In general, super resolution approaches are expected to produce better quality images 

than the well-known interpolation method. Therefore, we compared the effectiveness of the 

various SR dictionary methods, the IISR method and the bi-cubic method by measuring the 

quality of their super resolve images using variety of quality measures. Two groups of exper-

iments have been conducted and are reported in this section. 

 

4.8.1 Experiment 1: Results of UBHSD video Database 

We conducted experiments to measure and compare image quality in the super-resolved im-

ages with respect to the original good quality images in the data set, using PSNR measure 

quality. The original face images of size         were down-sampled to size       to 

create LR test images. Note that, the LR images in this database not generated from any mod-

el of blurring degradation. The test images were super-resolved using various SR techniques. 

The original images of the UBHSD database were used as the ground truth to measure the 

quality of super-resolved images. 

It can be seen from Figure 4.14 that, at each distance range, for each session and in different 

conditions (indoor and outdoor), the various CS dictionaries based SR as well as the non-CS 

based iterative interpolation SR method produce better quality improvement than the standard 

bi-cubic interpolation method. However, there is only a small difference in terms of image 

quality between the non-adaptive (i.e., independent of the face images) CS dictionary meth-

ods such as LID1, LID2, GRM, TCRM, and ROM that. On the other hand, the image learnt 

dictionaries that depend on training images (LD-Sp) as well as the iterative SR method are 

able to achieve slightly better results than the non-adaptive CS dictionaries, but this im-

provement is not significant. Hence, generally, the proposed non-adaptive CS dictionaries as 

well as the random matrices are able to improve the quality/resolution of the LR images as 

well as the learning dictionaries based SR method. 
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HD and SD video data from indoor, session 1    

              
HD and SD video data from outdoor, session1 

 
HD and SD video data from indoor, session 2 

 
HD and SD video data from outdoor, session 2 

Figure 4.14: A comparison of PSNR values for super resolved images in the different distance ranges. 
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4.8.2 Experiment 2: Results of Extended Yale B database   

The viability of various dictionary based SR techniques to reconstruct super resolved images 

from any degraded LR face images are tested in this section. Two sets of experiments were 

conducted on the frontal face images from the Extended Yale B database, where the degraded 

LR images were generated by blurring the good quality images in set 1 and set 2 using one of 

two models of degradation followed by down sampling by a factor two. In the first set of the 

experiments, Gaussian filter of size 7 will be used to model blur degradation. However, the 

Gaussian function in general has a low level of blurring effect on an image. Therefore, in the 

second set of the experiments, atmospheric turbulence degradation function with different 

strengths, which has a complex degradation effect on an image, reflect the degradation visible 

in uncontrolled environment conditions such as wind speed, and captured at a distance, will 

be used to model blur degradation. 

 

Low Resolution Image with Gaussian Blurring Degradation 

The first stage of the experiments is to test the performance of SR method by LD-Sp that re-

lying on training images, IISR method and bi-cubic technique on all the face images in the 

Extended Yale B database. Figure 4.15 illustrates average PSNR values where     and     

are the low-resolution images obtained by taking even and odd indexed pixels respectively 

from blurred original images with Gaussian filter. From Figure 4.15 we can observe that the 

SR method by LD-Sp produce superior improvement in terms of PSNR when compared to 

the standard bi-cubic (BC) interpolation method. However, the performance of iterative in-

terpolation SR method slightly outperforms the SR by LD-Sp for each subset of the Extended 

Yale B database. Furthermore, the performance of the SR methods in subset 5 is slightly 

higher than other sets in the database due to the effect of the blur on the poor illumination 

quality images in subset 5, which is either very little or there is no effect, hence the illumina-

tion seems to remain an added challenge. This will be part of future investigations and will be 

linked to face recognition tasks. Therefore, we will use SR methods to recover super resolve 

images from LR images with well lit in set 1 and set 2. 
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Figure 4.15: PSNR values for super-resolved images from LR faces in the Extended Yale B database. 

 

The second stage of the experiments used contrast and correlation quality measures (de-

scribed in Section 1.4) as well as PSNR to evaluate the performance of SR by various types 

of dictionary methods and compare the results with the well-known interpolation method and 

IISR method. Figure 4.16 shows the results on the reasonably lit face images in sets 1 and 2 

of the database. The results demonstrate that for each quality measure, the bi-cubic method 

produced a lower quality image than the dictionary-based methods. Moreover, there is no 

significant difference between LD dictionary in the spatial domain and the various dictionar-

ies constructed without using training image information. Furthermore, the performance of 

SR by different dictionaries produced the same than or slightly better quality image than the 

iterative interpolation SR method. Hence, from all the values of the different quality 

measures led us to the conclusion that the SR by non-adaptive CS dictionary methods that do 

not depend on training images and the SR by LD-Sp are able to achieve superior improve-

ment in terms of image quality than the standard interpolation method.  
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(a) 

 

(b) 

 

(c) 

Figure 4.16: Average values of (a) PSNR measure (b) Contrast measure, and (c) Correlation measure, for the 

super resolved images that reconstructed using different dictionary methods, IISR method, and interpolation 

method.   

 

Note that the above quality measures require a reference image to calculate the quality of a 

given image. However, in operational situations, the original HR image that was used as a 

reference to calculate the above quality measures is not available or very hard to obtain (there 

would be no need to super-resolve a LR image if the original HR image was available). For 

this reason, we used an adaptive (i.e., no-reference) quality measure, known as “histogram 

intersection” (HI), which uses the histogram of a wavelet subband of an image to measure its 
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quality. In the third stage of the experiments, the histogram intersection will be used to test 

the performance of different overcomplete dictionary methods and compare the results with 

the non-CS based iterative interpolation method and the interpolation technique. First, we ex-

plain the histogram intersection based image quality measure. 

Histogram intersection (AL-Jawad, 2009) is a quality measure between the actual histogram 

(AHistogram) and theoretical Laplacian distribution histogram (THistogram) of the wavelet 

subband coefficients define as the sum of the corresponding minimum histogram values: 

HI ∑                                   
                          (4-9) 

Where THistogram is calculated based on the standard deviation (STD) of the actual histo-

gram as shown below: 

              
 

  
   

|   |

 
 
                                    (4-10) 

  STD (Actual Histogram) and   Mean (Actual Histogram), where    . AL-Jawad in 

(AL-Jawad, 2009) used HI as a quality measure for images that are degraded by varying 

lighting conditions and demonstrated that the HI values in the LH wavelet subband give a 

good indication whether the image is nearer to the ideal well-lit condition or not. For the 

well-lit images (i.e. images from set 1 or set 2), the AHistogram is nearer to the THistogram, 

while for darker images the AHistogram is further away from THistogram. In our work, we 

use HI to measure image quality for the super resolved images. The wavelet transform has 

been applied to level one to extract HI values. The theoretical Laplacian distribution (4-10) 

has been calculated based on the STD of non-LL subband (LH) and will be compared with 

the actual one. 

We can observe from the Figure 4.17 that: 

 the intersection value for the enhanced images by interpolation method and iterative 

SR method reached around to 6.72 and 10.64 respectively, while the intersection val-

ue for the super resolved images for example by the proposed ROM dictionary 

reached to 12.85. This demonstrates that the performance of various types of diction-

aries outperforms the standard BC interpolation technique and IISR method. 

  the histogram intersection values reveal that the proposed dictionaries such as LID1, 

ROM, and LID2 and the random dictionaries GRM and TCRM that are independent 

of image data are able to improve image quality and produce the same, if not slightly 

better, results than LD-Sp that depends on images data. 
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 The results illustrate there is a small difference between the different dictionaries that 

constructed without using image information.      

      

 

Figure 4.17: Average values of the histogram intersection quality measure for the super resolved images that 

are recovered using different CS dictionary based methods, non-CS based iterative SR method and bi-cubic 

method. 

 

Overall, we can conclude from the above experiments that the improvement in resolution 

comes from the proposed CS dictionary methods based SR rather than bi-cubic method and 

IISR method as well as produce slightly better image quality than SR method by learning dic-

tionary. Moreover, the choice of dictionary had no significant impact on the quality of the 

super-resolved images when super-resolving images with low degradation (i.e., images with 

Gaussian degradation).  

These results led us to the following question; could the non-adaptive CS dictionary methods 

as well as the learning dictionaries reconstruct image resolution from degraded LR image 

with sever blur degradation?. The next stage of experiments in our work aims to answer to 

this question. The non-CS iterative interpolation SR method and bi-cubic interpolation will 

be used as a benchmark for comparisons. 

 

Low Resolution Image with Turbulence Degradation 

Dictionary based SR methods to super-resolve image with good quality from degraded LR 

image with different level of degradation was tested. The LR test images were generated 

from the images in set 1 and 2 of the Extended Yale B database by blurring the original im-

age using Turbulence function followed by down sampling. The reconstruction reliability is 

quantified using PSNR, Contrast, Correlation, and histogram intersection. Figure 4.18 pre-
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sents the average quality obtained by each of the SR methods for a reasonably wide set of 

blurring degradations, ranging from minor degradation corresponding to   =0.01 to severe 

degradation corresponding to   =0.09. We can see from Figure 4.18 that: 

 at each level of degradation, there is no significant difference in the quality of images 

recovered by various types of dictionary methods;  

 the various dictionary methods are able to improve image quality and produce better 

results than the bi-cubic interpolation technique. However, histogram intersection 

quality values presented slightly different indication for severe degradation (i.e. 

  >0.07), where bi-cubic technique produced slightly better quality image than the 

SR methods, but this improvement is not significant.   

 Based on the histogram intersection values, the various types of dictionary methods 

produce superior improvement than the non-CS based IISR method for all levels of 

degradation, including no blurring.  

 unsurprisingly, and regardless of the method used in the SR procedure, all measured 

values of super resolved image quality decrease as the level of blurring increases, and 

 the PSNR, Contrast, and Correlation quality values of the images enhanced by bi-

cubic technique decrease with increasing level of degradation. However, the histo-

gram intersection values are slightly varied where the quality of the images enhanced 

by bi-cubic increases with increasing level of degradation in the LR images.  

 

In general, the experimental results illustrate that the CS dictionary based SR method are able 

to reconstruct image resolution and image quality from any degraded LR images and yield 

significant improvement than the non-CS based IISR method and the well-known interpola-

tion technique. 
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Subset1                                                                         Subset2 

 
Average PSNR Values 

 
Average Contrast Values 

 
Average Correlation Values 

  
Average Histogram Intersection Values 

 

Figure 4.18: Comparisons of different measured values for super resolved images in the Extended Yale B   

database.  
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Finally, in order to test the level of success of the CS-based SR schemes, we conducted a sub-

jective comparison between enhanced images by the various dictionary methods, the non-

dictionary iterative SR method, and bi-cubic interpolation method. Moreover, wiener restora-

tion technique (see chapter 2) to remove possible blur degradation in the enhanced image by 

bi-cubic interpolation method was used for the comparisons. Figure 4.19 shows an example 

of an original HR image, its degraded and down sampled versions, and the super resolved 

images using the various schemes. The degraded LR images were obtained from the HR im-

age by applying the degradation function in equation (4-3) for different   values ranging 

from low to severe, followed by down sampling. As can be seen in Figure 4.19 below, the 

improvement can be noticed in the SR images by CS dictionary methods, including LD-Sp 

and in the IISR method over the LR images and the standard interpolation method as well as 

over the restored interpolated image. Furthermore, at every level of degradation, the proposed 

dictionaries and the random matrices can produce good quality images similar to, or slightly 

better than, those produced by dictionaries that rely on training image data.  

Overall, the difference between the reconstructed HR images using various dictionaries is not 

discernible by the human eye and the images are quite similar to each other. This leads to the 

conclusion that the training image set is not necessary to create the dictionaries for image su-

per resolution.   
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                        Original HR image 

 
LR, no blur-

ring 

 
 GRM                          TCRM                      LID1                     LID2  

 
LD-Sp                      ROM                         IISR                      BC 

 

 

 
LR,   =0.01 

 
                                  GRM                       TCRM                        LID1                   LID2 

 
               LD-Sp                      ROM                        IISR                         BC                Restoration BC-image 

 

 

 
LR,   =0.03 

 
                                GRM                          TCRM                     LID1                      LID2 

 
                LD-Sp                      ROM                        IISR                         BC                Restoration BC-image 
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LR,   =0.05 

 

 

 
                                  GRM                       TCRM                      LID1                     LID2 

 
                 LD-Sp                      ROM                        IISR                         BC                Restoration BC-image 

 

 

 
LR,   =0.07 

 
                                   GRM                     TCRM                      LID1                       LID2 

 
                LD-Sp                      ROM                        IISR                         BC                Restoration BC-image 

 

 

 
LR,   =0.09 

 

 

 
                                  GRM                      TCRM                     LID1                         LID2 

 
                 LD-Sp                      ROM                        IISR                         BC                Restoration BC-image 

Figure 4.19: Comparison between SR approaches by different dictionaries, non-dictionary iterative method and 

bi-cubic interpolation method. 
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4.9 Summary and Conclusion 

We investigated and tested the performance of CS dictionaries such as random dictionaries, 

dictionaries created using a set of HR training face images, and the proposed overcomplete 

dictionaries constructed based on CS properties and are independent of training image data, 

to super resolve degraded low-resolution images with different models of degradation. In ad-

dition, the viability of the SR techniques in the wavelet domain to super-resolve images was 

studied.   

The results effectively support the use of SR based techniques that employ CS dictionaries, 

including the non-adaptive dictionaries that satisfy CS theory over the well-known interpola-

tion technique and non-CS based IISR method to super-resolve images. More importantly, 

there is no need to use image sets to construct dictionaries, because the non-adaptive diction-

aries perform equally well, if not better, than the learning dictionaries that depends on image 

information. Moreover, a visual inspection of the super resolved images using the various SR 

procedures reveals a significant improvement in the quality of the super resolved images 

compared to using the BC method.  

We investigated the RIP property for various underdetermined matrices, and in order to find 

possible explanations for those matrices to satisfy the property of the CS, we conducted a 

number of tests of numerical matrix parameters relevant to the RIP condition. We noted that 

the learning image-based dictionaries are highly ill conditioned matrices and are far from sat-

isfying the RIP related conditions discussed in the literature. Perhaps the use of training im-

ages (image patches) with the same statistical nature of the input face image (image patches 

of the LR image) compensate for the lack of RIP property. In the next chapter, we shall eval-

uate the performance of our dictionary methods for face recognition in terms of identification 

accuracy rates. 
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Chapter 5 
 

FACE RECOGNITION FROM DEGRADED LR IMAGES 

 

Face recognition under uncontrolled conditions, e.g. in distance surveillance scenarios and 

post-rioting forensics, whereby captured face images are severely degraded or blurred and of 

low-resolution, forms a tough challenge due to a range of factors. These factors include, but 

not limited to, difficulties in determining a model for image degradation that encompasses a 

range of realistic capturing conditions as well different qualities of cameras. The investiga-

tions conducted in Chapter 4 have demonstrated the importance and suitability of the recently 

developed compressive sensing based super resolution methods for recovering images with 

good resolution and quality. This chapter extends the work in last chapter by focusing on the 

use of compressive sensing (CS) theory to develop scalable face recognition schemes that do 

not require training, by using, various overcomplete dictionaries that were used in the previ-

ous chapter to construct a super resolve face and feature image from any degraded face image. 

It shall be demonstrated that the non-adaptive image-independent, implicitly designed, dic-

tionaries as well as a variety of random dictionaries for the recovery of unique  -sparse signal, 

can yield significant face recognition accuracy rates that are as good as if not better than 

those achieved by the recently proposed image-based learnt dictionaries. This will remove the 

need for training images in developing face recognition schemes. However, we shall also re-

veal a problem that is associated with current approaches to the design of non-adaptive dic-

tionaries in that they may not work well in super-resolving wavelet feature vectors in compar-

ison to the way they succeed in super-resolving the corresponding spatial domain signals. In 

contrast, learnt dictionaries can be built in the wavelet domain and perform well. For compar-

ison, we also test the performance of a non-CS based iterative SR method, bi-cubic interpola-

tion method and matching in low-resolution (i.e. no super resolution is applied to LR degrad-

ed face images are matched against HR gallery).  
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5.1 Existing Works in the Literature 

Face recognition in uncontrolled conditions arises primarily in fighting crime through surveil-

lance using CCTV cameras. In contrast to recognition in controlled conditions, which has 

witnessed significant improvement over the last three decades, very little progress has been 

made in attaining acceptable recognition rates due to the degraded nature of the CCTV cap-

tured images (Grgic, et al., 2011). CCTV cameras are at a distance from the imaged scenes 

and therefore capture low-resolution, blurred low-quality face images, with variable lighting 

and pose conditions.  

In any face recognition systems, one need to extract a set of feature vectors (one or more for 

each of the enrolled subjects) called the gallery, representing the digital templates that are 

obtained during the enrolment stage. For recognition under controlled conditions, these tem-

plates are extracted from good quality images of reasonable resolution, and when a claimant 

presents him/herself, a reasonably good quality image using similar devices to those used at 

enrolment is input. The same feature extraction procedure is applied and the output will be 

matched against all the gallery templates using a distance/similarity function defined in the 

given feature space. The identification is then determined as that of the nearest neighbour. 

The situation is fundamentally different in the uncontrolled scenarios primarily due to obvi-

ous differences in the recording conditions and quality of devices used for enrolment and 

matching. Recognising faces in such a scenario, and in particular when matching small, LR 

degraded images against a gallery of high-resolution (HR) face images of a good size needs 

to incorporate some pre-processing, resolution-enhancing procedures. Therefore, image SR is 

deemed necessary for face recognition in these cases.  

In unrestricted face recognition, SR has been used as a pre-processing method to improve im-

age quality and obtain an HR facial image. He et al in (He & Zhang, 2010) developed an SR 

technique that constructs a HR face image from a sequence of LR images, or from a suffi-

cient number of LR images with enough different sub-pixel information, to be processed us-

ing Gabor feature based recognition. The developed scheme achieves a 95% recognition rate 

when applied to the AR face database and the number of LR was 16 as well as the perfor-

mance of this method reducing if the number of LR images decreasing or the performance 

keeps unchanged if the number reaches a threshold. Al-Azzeh et al. (Al-Azzeh, et al., 2008) 

proposed an SR method to generate super-resolved video sequences from LR video sequenc-

es; frames acquired from the enhanced video sequences are then used to train and test the per-
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formance of the principal component analysis (PCA) based face recognition system. Alt-

hough SR techniques for face recognition aim to improve the recognition rate after recon-

structing a HR image, Hennings-Yeomans et al. (Hennings-Yeomans, et al., 2008) proposed a 

method to perform SR and recognition simultaneously. The authors used face features as pri-

or information and SR prior to extracting a HR template that simultaneously fits the con-

straints of SR, as well as of the face features. Then, from the template, new feature vectors 

are computed for recognition.  

The theory of CS, as explained previously in Chapter 3, demonstrates how a sampled signal 

can be faithfully reconstructed through   -optimization techniques, and in Chapter 4 we in-

vestigated various CS dictionaries that help to obtain a super-resolved image of reasonable 

quality from a LR image. In real-life, CS has many applications. It has been used to solve the 

problem of variation in illumination between the probe and gallery data (where the images 

are of the same size). In (Yang, et al., 2007) and (Ganesh, et al., 2009), the authors built a 

dictionary from the training images by arranging the given images in columns of a single ma-

trix                 . The represented object appears as a sparse representation of a 

test image with respect to the training images (i.e. dictionary) of multiple objects. Ideally, the 

test image   of subject   can be represented in terms of all of the images in the training set as 

      where                                    . The performance of this method has 

been evaluated on the AR database and Extended Yale B database without any illumination 

model to reduce the effect of lighting on the faces. Furthermore, in (Ganesh, et al., 2009) hu-

man faces are recognized from partial occlusions and the test image is expressed as a sparse 

linear combination of the training images plus a sparse error due to occlusion. On the other 

hand, CS has been used to solve the problem of image resolution based SR methods to recon-

struct image with higher resolution (Yang, et al., 2008), (Yang, et al., 2010).  

The rest of this chapter is devoted to testing the performance of CS based SR method applied 

to LR face images in terms of accuracy rates of a face recognition scheme. We shall conduct 

sets of experiments to compare the performance of a known face recognition scheme when 

we first pre-process the input LR face image by super resolving it in the spatial domain. We 

shall also investigate the use of CS-based super-resolution in the wavelet subbands of the LR 

images using different types of dictionaries.  
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5.2 Face Feature Extraction 

We shall now describe the feature extraction scheme, adopted for our face recognition exper-

iments. There is a variety of feature extraction scheme associated with face recognition (see 

Chapter 2). Here we shall use wavelet-based feature extraction schemes due to the multi-

resolution nature of wavelet transforms, which provide a multi-streams face recognition 

scheme, one for each wavelet subband. Here we shall be using the simplest, and by far the 

most efficient wavelet filter, the Haar filter to decompose face images to level 3. The fact that 

most facial features are horizontal which are associated with high frequency content of LH 

subband (Sellahewa & Jassim, 2010), then the coefficients in the LH subband will be used as 

the main ingredients of face feature vector in our experiments. Z-score normalized LH sub-

band coefficients of Haar wavelet transform at decomposition level three is used as a feature 

vector for recognition. We have also conducted similar experiments using feature vectors as-

sociated with the other subbands LL, HL & HH, but some of the recognition results will be 

presented in Appendix.  

Note that the images at the enrolment are HR and their wavelet feature vectors form the Gal-

lery. However, the images input for matching have to be first super-resolved before extract-

ing the wavelet features for matching. In another case, super resolve the wavelet features of 

the input images directly for matching schema. The block diagram, below depicts the recog-

nition scheme.  

 

5.3 Databases and Experimental Protocol  

Throughout this chapter, two face datasets of face images are used to evaluate the suitability 

of SR overcomplete dictionaries for use in face recognition from LR degraded images. The 

first dataset consists of images by two different quality cameras and at different distances re-

sulting in face images that are of low resolution and/or inherently degraded. The second da-

taset is obtained by applying different types of image degrading procedures followed by 

down-sampling to good quality high resolution face images from a benchmark face database 

commonly used to test performance of face recognition scheme. The second dataset provides 

a good opportunity to test performance of our proposed CS-based face recognition scheme 

from synthesised LR images subjected to different models of image degradation. 

 

1. The UBHSD: This is a Buckingham University recorded database of face images, which 

consists of 160 videos captured at four different ranges and each range contains 3-frames 
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for each subject. The videos were recorded in two sessions and each session includes 

videos captured in indoor and outdoor locations with two different cameras; a high defi-

nition (HD) and a standard definition (SD) camera (see Chapter 4 for more details). Vid-

eo signals captured by digital imaging devices are generally digitized at resolution levels 

lower than that of still images, hence the quality of a frame extracted from a video se-

quences is lower than that obtained from a still imaging device. Moreover, the images 

captured at a distance are usually of lower resolution, which leads to low recognition ac-

curacy, especially when the gallery is based on face images captured at short distances 

near the camera. This database was recorded at Buckingham University primarily to 

compare the performance of face recognition schemes when different video camera defi-

nition standards are used (HD cameras Vs SD cameras), see (Al-Obaydy & Sellahewa, 

2011). Here we shall, test the viability of using CS-based super-resolution to compensate 

for the low resolution and low quality when frames are captured at different distances us-

ing both HD and SD cameras according to an evaluation protocols described below.  

 

2. The Synthesised Extended Yale B: This Extended Yale-B database is a benchmark da-

tabase of face images that is widely used to test the performance of face recognition 

schemes in the presence of extreme variation in lighting conditions (see Chapter 4 for 

full description). The cropped and normalized         frontal face images were cap-

tured indoor under 5 different laboratory-controlled lighting conditions relating to the di-

rection of the source of light. The effect of these different lighting conditions relates to 

the amount of shadowing in the face images ranging from very mild to severe shadowing. 

In the latter cases, a large proportion of the face is obscured. However, the experiments 

in this thesis are not designed to test the performance of face recognition in terms of 

lighting conditions but rather in terms of LR and low quality images. The sets of images 

needed for our experiments will be synthesised from the collection of reasonably lit sec-

tions of the database. Therefore, we will be taking face images that have no or very mild 

shadowing, i.e. images from subset 1 and 2 (see Chapter 4) and subject them to a combi-

nation of different degradation functions and down sampling to simulate different models 

of degradation that could be associated with uncontrolled recording conditions. This is 

done by first degrading these “good quality” images using various blurring and degrada-

tion functions at different levels ranging from mild Gaussian blurring to severe environ-

mental degradations. The LR degraded images are obtained by down sampling the deg-



CHAPTER 5: Face Recognition from Degraded Images 

 109 

radation images by a factor of two. We shall conduct face recognition for each level of 

degradation by first super-resolving these LR degraded images.  

 

5.4 Experimental Results and Discussion 

In this section, we will test the performance of various types of dictionary based SR for im-

proved accuracy of a face recognition scheme. The experiments will conducted on the two 

image databases described above. For each database, we shall present two groups of experi-

ments. The objective of the first group is to evaluate the performance of the wavelet face 

recognition scheme post the CS based SR pre-processing schemes which is used to recon-

struct an HR image from a single degraded LR image. Whilst the objective of the second 

group of experiments is to test the performance of the SR methods for reconstructing wavelet 

subbands of decomposed LR face image, which are used as a feature vectors for face recogni-

tion. 

  

5.4.1 Results of UBHSD Database  

In this section, we present and analyse the results of applying our proposed face recognition 

for UBHSD database. The evaluation protocol adopted by (Al-Obaydy & Sellahewa, 2011) to 

test performance of the wavelet-based face recognition UBHSD database involves four con-

figurations for each video recording scenario: Matching Outdoor, Matching Indoor, Un-

matched Outdoor, and Unmatched Indoor. Since our focus is on face recognition post super 

resolution, our experiments are conducted only for two configurations, namely the Matching 

Indoor and Unmatched Indoor as described below:   

 Matching Indoor Configuration: have four test cases (e.g. MI1, ..., MI4) and for each 

test case            , face images from range Ri for each subject in session 1 are 

selected as gallery images G, so gallery set in range Ri consist of 60 images (3 images 

per subject). While, face images from all four ranges in both indoor and outdoor vide-

os in session 2 are used as probe images, so probe set consists of 480 images (24 im-

ages per subject). Moreover, both the gallery and probe images in this configuration 

from the same video resolution (i.e. either both are from the HD video camera or both 

are from the SD camera).  

 Unmatched Indoor Configuration: for each test case  , similar to the Matching con-

figuration, the gallery set contains face image from range Ri for each subject in ses-
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sion 1, while probe sets always takes images from all four ranges indoor and outdoor 

videos in Session 2. However, in this configuration, the gallery and probe images are 

from different video resolutions (i.e. one from HD and the other from the SD camera). 

In the two configurations, there is no overlap between the gallery and probe sets. Ta-

ble 5.1 below shows the gallery and probe sets for these two configurations. 

 

Configuration 

Session 1 Session 2 

HD video SD video HD video SD video 

Indoor Indoor Indoor Outdoor Indoor Outdoor 

               MIi 

HD 

              UIi 

G, Ri  P,R1- 4 P,R1- 4   

G, Ri    P,R1- 4 P,R1- 4 

  

               MIi 

SD 

              UIi 

 G, Ri   P,R1- 4 P,R1- 4 

 G, Ri P,R1- 4 P,R1- 4   

Table 5.1: The configuration for the UBHSD video database 

 

5.4.1.1 Face Recognition on Super Resolved Face Images 

Dictionary based SR method is used in four different combinations of gallery/probe image 

resolutions to super-resolve LR images of size       to their original size of         

pixels for images captured at a distance. The LR faces images of this database are of different 

qualities and generated by down sampling the images that captured from SD camera. Note 

that, the degradation in these images is inherent in images captured by the SD camera at dif-

ferent distances and is not simulated by any degradation function. The learning dictionary in 

the spatial domain (LD-Sp) has been constructed using the training image set, which contains 

three good images per subject from subset one of the Extended Yale B database, unattached 

from gallery/probe images. The reason for not using the images captured by the HD video 

camera at the nearest distance for training the LD dictionary is to do with the fact that the HD 

images are used as gallery/probe images. In what follows, LR images are of size       

captured by SD camera and in such cases, we always apply SR, using various dictionaries, or 

bi-cubic interpolation to increase resolution to        . In addition, the identifiers of the 

CS-dictionaries are exactly as set previously, in Chapter 4. Note that when the LR images are 

used as gallery images, the actual gallery consists of their super-resolved versions of 

size       . The corresponding experimental results are presented in Table 5.2, below:  
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Gallery   Probe 

Set        Set 

SR 

methods 

Capturing distance Range 

Range1 Range2 Range3 Range4 

SD128      SD64 

LD-Sp 76.25 68.33 71.25 69.79 

LID1 76.04 68.12 71.25 69.58 

GRM 76.04 68.33 71.45 69.79 

TCRM 76.04 68.54 71.45 69.79 

LID2 76.04 68.12 71.25 69.58 

ROM 76.25 68.12 71.25 69.58 

IISR 75.78 68.05 71.06 69.51 

BC 76.66 68.75 71.66 69.79 
 

SD64      HD128 

LD-Sp 75.62 71.04 71.25 67.91 

LID1 75.41 71.04 71.25 68.33 

GRM 75.41 71.04 71.25 68.54 

TCRM 75.41 71.04 71.45 68.54 

LID2 75.41 71.04 71.04 68.33 

ROM 75.41 71.04 71.45 68.33 

IISR 75.62 70.83 71.45 68.33 

BC 75.62 71.25 71.25 68.75 
 

HD128      SD64 

LD-Sp 68.95 65.62 72.08 74.58 

LID1 68.54 65.62 71.87 74.58 

GRM 68.75 65.41 72.08 75 

TCRM 68.75 65.41 71.87 74.58 

LID2 68.54 65.41 71.87 74.58 

ROM 68.54 65.83 72.08 74.37 

IISR 68.47 65.97 72.02 74.49 

BC 68.75 66.66 72.50 75 
 

SD64      SD64 

LD-Sp 76.25 68.54 71.25 69.58 

LID1 76.04 68.12 71.66 69.16 

GRM 76.04 68.12 71.66 69.79 

TCRM 76.04 68.12 71.66 70.00 

LID2 76.25 67.91 71.66 69.79 

ROM 76.04 68.12 71.66 69.37 

IISR 75.78 67.84 71.60 69.31 

BC 76.04 68.95 71.45 69.79 

Table 5.2: Recognition accuracy rates (%) for the UBHSD database using different SR dictionaries to super 

resolve Full--face image, reported results on LH3 subband. 

 

1. The SR by GRM, TCRM, ROM, and SR by the learning dictionary LD in the spatial 

domain, produced almost identical accuracy rates with very marginal differences.  

2. Surprisingly, in almost all distance ranges and evaluation protocols, the bi-cubic in-

terpolation method achieves the highest accuracy and in only few cases, this highest 

accuracy is achieved by one or two other SR schemes. Moreover, even when an SR 

scheme outperforms the BC interpolation scheme at range 3, the difference is almost 

negligible.  

3. Compared to the results obtained by Al-Obaydy & Sellahewa, 2011, shown below, 

one can see that in general BC-interpolation and SR based face recognition provide a 
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good cost effective alternative to using HD cameras. Note that in Al-Obaydy & Sel-

lahewa experiments all images have the same size of 128 128.  

 

Gallery   Probe 

Set         Set 

Gallery Image Range 

Range1 Range2 Range3 Range4 

SD       SD 76.04 68.12 71.46 69.38 

SD       HD 75.83 71.04 71.25 68.33 

HD       SD 68.75 65.83 72.08 75.00 

HD      HD 68.75 70.62 73.54 72.29 

Table 5.3: Rank one Recognition rates by (Al-Obaydy & Sellahewa, 2011) 

 

In order to explain the surprising observation that for all the evaluation protocols and at all 

the distance ranges, the BC interpolation is sufficient to achieve the best face recognition ac-

curacy rates. We calculated the quality of the face images extracted at each distance range 

using images of the same face HD videos, captured at the same distance range, as the refer-

ence images. In the following Table (see Table 5.4), we present the average quality of 40 im-

ages at each distance range in terms of PSNR, contrast, and correlation measures.  

 

Measure Quality 
Images Ranges 

Range1 Range2 Range3 Range4 

PSNR 25.20 25.11 25.14 24.94 

Contrast 0.9051 0.88 0.87 0.86 

Correlation 0.5090 0.46 0.42 0.41 

Table 5.4: Average quality of images captured at difference ranges by SD camera in an inside location.  

 

All the measures have a decreasing trend in terms of distance range. The results also indicate 

that except for the correlation measure, the face images captured by the SD camera are 

somewhat mildly degraded relative to the corresponding images captured by the HD images. 

This may explain that the SR schemes succeed in improving the resolutions of the images and 

maintaining the already reasonable image quality but not better than the usual BC interpola-

tion method. In fact, this indicates that success of CS-based SR schemes can be more appar-

ent when the LR images are of poor quality. Indeed, this kind of observations are supported 

by the results of experiments conducted in Chapter 4 which confirmed that SR outperform the 

interpolation resizing schemes in terms of quality of output images when input LR images are 

somewhat severely degraded. Being a measure of similarity of the face images at different 

distance range to the HD images of the same subjects, the correlation values have an impact 

on discriminating power of face images at different distances. Therefore, we expect that the 
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low correlation values, at different distance range, have some impact of face accuracy rate. 

Consequently, this could to explain the rather relatively low and similarity of accuracy rates 

achieved by all schemes. This hypothesis will be revisited further, later in this chapter and the 

next chapter, on datasets of images subjected to a wide range of degradation.  

As mentioned above, we repeated these experiments by using each of the other wavelet sub-

bands (LL3, HL3 and HH3) as the face feature vectors. The resulting table of accuracy are pre-

sented as an Appendix at the end of thesis (see Appendix A). In general, most of the remarks 

above remain more or less equally valid for these subbands. In terms of the performance of 

each subband, except in few cases, the recognition rates follow a well known trend known 

about wavelet based schemes (see e.g. (Sellahewa, 2006) and (Abboud, 2011)) of descending 

order of accuracy with LH3 subband having the best performance, HL3 subband the next best, 

LL3 subband slightly lower, and the HH3 the worst. This is normally explained by the fact 

that most face features are horizontal and the LH3 by definition encapsulates the high fre-

quency coefficients in the horizontal direction. The exception to this order may be associated 

with variation in face orientation, lighting conditions and/or distance from camera. Indeed, 

we can observe that the HL3 subband performs better than the LH3 subband at distance range 

2 or 3 in some of the evaluation protocols.   

A well-known practice in wavelet-based face recognition is to fuse several subband schemes 

at the score level for improved accuracy as demonstrated by many researchers (e.g. (Abboud, 

2011), (Al-Assam, 2013), and (Jassim & Sellahewa, 2005). A sensible fusion approach in this 

case needs to be adaptive in terms of the evaluation protocol, image quality and/or distance 

range. However, such an approach will require extensive experimentation and to some extent 

is unlikely to be influenced by the main theme of this thesis which on the effect of CS-based 

super-resolution.       

 

5.4.1.2 Face Recognition on Super Resolved Wavelet Face Feature Vectors  

In the above reported experiments, we followed the tradition of applying the SR methods in 

the spatial domain, and we applied wavelet-based face recognition schemes. Since, our face 

feature vectors are simply the wavelet-subbands at decomposition level 3, one wonders if ap-

plying SR methods directly in those frequency domain subbands can improve the quality of 

the feature vectors directly and thereby improve accuracy rates. This is also motivated by the 

observation that the BC interpolation is sufficient in achieving the best accuracy.   
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In order to investigate this idea, we need to generate a pair of dictionaries        for each of 

the various types of CS-based SR schemes to be used to reconstruct a super-resolved version 

of the wavelet subband under consideration. Unfortunately, except for the image based learn-

ing schemes, the process of generating such pairs of dictionaries will produce the same pair 

of dictionaries generated for the spatial domain super-resolution. However, in the next set of 

experiments, we shall continue to test the use of these dictionaries to super-resolve the vari-

ous wavelet subbands of the LR images as if they were wavelet-based dictionaries but the 

same spatial domain denotation. In the case of the image-based training pair of dictionaries, 

and for each wavelet subband we simply use the collection of all the corresponding wavelet 

subband of the high-resolution training face images and their LR images to train the wavelet-

based pair of dictionaries that we shall refer to as the LD-WD scheme. Constructing the LD-

WD pair of dictionaries is simply based on the same procedure, described in Chapter 4 that 

was used for the spatial domain except that the wavelet subbands are considered as the input 

images.  

Figure 5.1 below shows the charts of accuracy rates obtained from the experiments conducted 

on the evaluation set of UBHSD images where we super resolved LH3 subband to be used as 

feature vectors for recognition using the above described dictionaries including the LD-WD 

as well as the spatial version of the LD pair of dictionaries. For each pair of dictionaries, the 

super-resolution procedure is the same as the one described in chapter 4, section 4.4, but the 

iterative back project method is used to reconstruct the output wavelet frequency subband, 

and recognition is based on matching the super-resolved subband for any input LR image to 

that of the gallery. The identification results obtained the other reconstructed subbands (i.e. 

LL3, HL3, & HH3) follow similar patterns and trends to those shown and discussed for the 

LH3 subband. To avoid cluttering of tables and charts, these results are given in Appendix B. 

The experimental results in Figure 5.1 demonstrate that the accuracy rates of identification at 

different distances have increased when using the SR technique based on learnt-image dic-

tionaries in the wavelet domain (LD-WD) as compared to the spatial domain LD-Sp. The 

maximum accuracy rate for the four different combinations of gallery/probe image resolu-

tions reached 77.91%. However, the procedure of using the other SR-dictionaries to super-

resolve the LH3 subband of the LR images have all failed to improve the quality of the wave-

let feature vectors, and the accuracy rate. In fact, at each distance ranges LD-WD produces 

superior performance in comparison to the various CS-dictionaries that were constructed in 

the spatial domain such as LD-Sp, LID1, LID2, GRM, TCRM, & ROM but used to super-
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resolve the LH3 subband of the LR images. Interestingly, the performances of all spatial do-

main based dictionaries are comparable in most cases with negligible differences.   

 

    

  SD128 -Gallery & SD64 -Probe video data sets                 SD64 -Gallery & HD128 -Probe video data sets 

    

  HD128 -Gallery & SD64 -Probe video data sets                 SD64 -Gallery & SD64 -Probe video data sets 

 

Figure 5.1: Comparisons between different SR dictionaries that used for super resolve LH3 wavelet subband of 

the LR image from UBHSD data. 

 

Comparing these results to the performance of different dictionaries that used to super resolve 

full-face images in the spatial domain, reported in Table 5.2 above, we observe that:   

1. When the gallery consist of images captured by the SD camera, the accuracy rate 

achieved by super-resolving the LH3 subband using the LD-WD scheme is superior to 

all the SR schemes that super-resolve LR images in the spatial domain, except in the 

first configuration at distance range 1. 

2. In contrast, when the gallery consists of HD captured high-resolution images, the 

above trend is reversed. In fact, super-resolving the spatial domain LR images with all 

the dictionaries as well as the BC–interpolation yield higher accuracy rates compared 
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to all the schemes that super-resolve the wavelet subbands of the LR probe images in-

cluding the LD-WD scheme. 

Finally, the failure of the spatial domain based non-adaptive CS-dictionaries to improve the 

quality of wavelet feature vectors, except in the last configuration where gallery and probe 

images are both LR images, is most likely due to incompatibility of the dictionaries with the 

nature of the wavelet subband coefficients that are known to have Laplacian distributions. 

The success of the CS dictionaries in term of recognition accuracy when applied to super re-

solve the spatial domain of the LR images raises the need to design CS non-deterministic dic-

tionaries suitable for use in the frequency domain. However, this will be considered as future 

work. 

 

5.4.2 Results of Extended Yale B Database – Gaussian Degradation 

The aim of this section is to test the effect of CS based SR methods for face recognition from 

frontal distorted LR still face images. For that, we need to simulate different level of blurring 

based distortion, applied to images in the extended Yale-B database.  

We follow the same strategy adopted for the UBHSD experiments and conduct two sets of 

the experiments. The first set of experiments tests the performance of the various SR methods 

when used to reconstruct full-face image in the spatial domain. The second set of experiments 

tests the performance of the various SR methods when used to enhance the wavelet subbands 

that obtained from the input LR image. The second set of experiments includes the testing of 

the performance of the wavelet version of the image-learning dictionary, i.e. the LD-WD. As 

explained above, the LR images are generated from good quality images in subset 1 and sub-

set 2 of the this database by first convoluting the original image by Gaussian filter with mild 

blur degradation of size 7 followed by down sampling by a factor of two. The Gaussian func-

tion as described in equation (4-2), in two dimensions is defined as follows:  

                    
                                         (5-1) 

The spatial domain Gaussian filters with different sizes (e.g. (   ), (   ), (   ) … 

(     )) are known to have different blurring effect on the images. Increasing the size of 

the Gaussian filter yields increased level of blurring, and in what follows we shall test the 

performance of CS-based SR face recognition schemes when LR input images are blurred by 

a     Gaussian filter. Note that Gaussian functions in general do not reflect severe degrada-
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tion that often seen in surveillance conditions, and therefore later in the chapter we consider 

other than Gaussian degradation models. In fact, experience from other research projects in 

the department has shown that the impact of increasing the size of the Gaussian filter on face 

recognition is rather marginal until they reach a large size whereby the image becomes use-

less (see (Hussein, 2014)). Therefore, we restrict our experiments in the next section to 

Gaussian degradation by filter of size    .  

 

5.4.2.1 Face Recognition on Super Resolved Face Images 

We tested the accuracy rate for the various wavelet based face recognition schemes which 

applies CS-based SR experiments, the gallery images (one image per subject) are select from 

a set of face images recorded in well-lit conditions and not subject to shadowing degradation 

or facial expressions (i.e. subset 1), were designated as the gallery set. For testing images, the 

other images in these reasonably lit sets (1 and 2) will be subjected to blurring by a Gaussian 

filter of size    , followed by down sampling by a factor of two. In total, for each degrada-

tion model we have 532 test images of size       for each recognition experiment. Table 

5.5 shows the face recognition accuracy rates achieved in these experiments by each of the 

wavelet schemes for the subbands at level 3. The results for test images from each of the two 

well-lit subsets of images are given separately. Note that, the images in the two subsets differ 

in the direction of the light source and hence images in subset 2 may have very small 

amounts of shadowing while those in subset 1 have no detectible shadowing.  

 
 

Subsets 
Feature 

Extraction 

Super Resolution Methods 

LD-Sp LID1 GRM TCRM LID2 ROM IISR BC 

Subset 1 

LL3 98.68 98.68 98.68 98.68 98.68 100 95.26 98.68 

LH3 92.10 92.10 92.10 92.10 92.10 92.10 92.36 92.10 

HL3 92.10 92.10 90.78 92.10 90.78 92.10 92.10 92.10 

HH3 78.94 78.94 78.94 78.94 78.94 78.94 78.42 78.94 
 

Subset 2 

LL3 78.72 78.72 78.72 78.72 78.72 79.82 79.16 77.63 

LH3 100 100 100 100 100 100 100 100 

HL3 95.61 95.83 96.27 95.61 96.05 100 95.83 95.83 

HH3 98.02 98.24 98.24 98.24 98.24 98.24 97.80 99.56 

Table 5.5: Recognition accuracy rates (%) for the Extended Yale B database using different SR dictionaries to 

super resolve Full--face image in the spatial domain. 

 

These results demonstrate that for each subband and each subset, there is no significant dif-

ference in identification accuracy rates between the CS learnt dictionary LD-Sp that is creat-

ed using training high-resolution and high quality images, and the various types of CS-
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dictionaries that constructed without using images. Moreover, the various dictionaries that are 

used to super-resolve the LR images can achieve high accuracy rates, which in some cases 

reaches 100% at least for one subband (e.g. LH3 subband feature are used in subset 2 or when 

ROM dictionary was used in subset 1). In addition, the performance of different dictionary 

methods based SR in terms of face recognition produced marginally better results, if not the 

same, than what was achieved by the non-CS iterative SR method and/or bi-cubic method.  

To compare the average accuracy achieved in these experiments by LH3 recognition scheme 

post the use of the various SR schemes with the previous results that achieved for the UB-

HSD database. We calculated the PSNR, contrast and correlation measures for 20 Gaussian 

blurred images in each of the two subsets, and reference images being the high quality images 

in the Extended Yale-B database (see the results in Table 5.6, below). In general, these results 

also support the previously hinted at hypothesis that when the LR images are mildly degraded 

simple bi-cubic method is sufficient to get excellent accuracy. Having relatively, high PSNR 

and contrast explain the observation that all SR schemes almost the same performance. While 

the relatively high correlation values (0.81 for subset 1 and 0.82 in subset 2) in comparison to 

the low correlation value for the UBHSD database (ranging from 0.41-0.50) explains the high 

accuracy rate achieved here (92% for subset 1 and 100% for subset 2).  

Subsets 
Measures of Quality 

PSNR Contrast Correlation 

Set 1 27.62 0.92 0.81 

Set 2 27.29 0.92 0.82 

Table 5.6: Average quality values of different quality measures for 20 images in the presence of degradation. 

Finally, we point out that fusion of two or more wavelet schemes would be expected to 

achieve the optimal accuracy. 

 

5.4.2.2 Face Recognition on Super Resolved Wavelet Face Feature Vectors 

We conducted another set of experiments, in similar manner to what was done in the second 

set of experiments on the UBHSD database, to test the impact of SR in the wavelet domain 

on the quality of face feature vectors of LR Gaussian blurred images and on the face recogni-

tion accuracy. Again, we note that only the genuinely wavelet-based pair of SR dictionaries is 

the LD-WD obtained from the subbands of the wavelet decomposed images of an election of 

the good quality images in subset 1. All other SR-pairs of dictionaries are generated inde-

pendently of images which were used in the last set of experiments to super-resolve the spa-
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tial domain LR blurred images. Table 5.7 shows the identification accuracy rates for the ex-

periments conducted on the face images in subset 1 and subset 2 where we super resolved 

different subbands to be used as feature vectors for face recognition. We can see from these 

results that again the SR by LD-WD improved the recognition accuracy at different wavelet 

subbands in subset 2, and in subset 1 only when the reconstructed HH3 subband is used for 

matching. Just as in the case of the UBHSD database experiments, the LD-WD method pro-

duced superior improvement than SR by LD-Sp as well as the other dictionaries that con-

structed without using images information. However, for the Extended Yale-B database the 

difference in accuracy rates between LD-WD and other various dictionaries that were created 

in the spatial domain (i.e. LD-Sp, LID1, LID2, ROM, GRM and TCRM) is reduced. In fact, 

there is no significant difference between them when LL3, LH3, and HL3 in subset 1 are used 

for recognition. Again, for subset 1 and subset 2 there is little difference in identification ac-

curacy rate between the dictionaries that constructed in the spatial domain. 

 

Subsets 
Feature 

Extraction 

Super Resolution Methods 

LD-Sp LD-WD LID1 GRM TCRM LID2 ROM 

Subset 1 

LL3 98.68 100 100 100 100 98.68 98.68 

LH3 97.6 97.36 98.68 98.68 97.36 97.36 98.68 

HL3 93.40 94.73 94.73 93.42 93.42 96.05 93.42 

HH3 52.36 77.89 57.89 52.63 52.63 53.94 55.26 
 

Subset 2 

LL3 72.24 76.97 69.51 69.95 71.27 70.17 69.95 

LH3 96.12 99.06 96.92 96.71 96.49 96.05 96.49 

HL3 94.90 99.12 95.83 94.73 90.57 96.49 96.27 

HH3 65.74 96.49 69.51 66.88 59.86 67.32 70.61 

Table 5.7: Comparison between different SR dictionaries that used for super resolve wavelet subbands of the 

LR image from Extended Yale B data. 

 

This pattern of performance can be explained in the same way we explained the results of the 

experiments conducted on the UBHSD to test the impact on wavelet feature vectors.  

 

5.4.3 Results of Extended Yale B Database – Turbulence Degradation  

Gaussian degradation function has low level of blurring effect on any image. On the other 

hand the atmospheric turbulence degradation function, described in chapter 4, of different 

strengths has different complex degradation effect on an image that could be more reflective 

of the sever degradation seen in surveillance scenarios can be used as an alternative to the 

Gaussian model of degradation. The turbulence function as described in equation (4-3) is de-

fined as follows: 
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 ⁄
                                          (5-2) 

The induced degradation level is dependent on the value of   , where different value of   re-

sults in three categories of degradation: Minor degradation when            , Medium deg-

radation when               , and Sever degradation when               . The variation in 

the level of blur degradation has vey affect on the contrast quality of any image and sever 

blur degradation could change the appearance of the face drastically. Therefore, for practical 

purposes we can use these values of    and contrast quality measure for estimating the level 

of degradation to the surveillance image. 

  

5.4.3.1 Face Recognition on Super Resolved Face Images 

Super resolution based on different CS dictionaries to reconstruct a good quality image from 

any degraded LR image for face recognition was also tested. As described before datasets of 

LR face images were generated from the original images in subsets 1 and 2 after blurring 

with the Turbulence function using different   values and down sampling by a factor of 2. 

We repeated the same set of experiments to super-resolve the LR probe images for face 

recognition using the various SR schemes including the IISR and the BC interpolation 

schemes. For the sake of comparison, these experiments also include the use of matching in 

the low resolution, where the degraded LR images are matched against the gallery images 

after down sampling the gallery images by a factor of 2.  

Figure 5.2 below, shows the accuracy rates for the different subbands separately for each of 

subset 1 and subset 2 of face images, at each level of degradation. These charts reveal the fol-

lowing observations: 

1. Almost identical accuracy rates for all the SR dictionary methods as well as the IISR 

scheme.  

2. For each subset, at least for one subband all the SR dictionary methods as well as the 

IISR scheme achieve 100% accuracy.  

3. The performance of all the SR dictionary methods as well as the IISR scheme on sub-

set 1 differs from that on subset 2. The performance of these schemes is only higher 

for subset 1 than for subset 2, and with a big margin, only when the LL3 subband is 

used as the face feature vector. When the other subbands (LH3, HL3 or HH3) these 

schemes attain higher accuracy on subset 2 than on subset 1. This pattern may be at-

tributed to the combined effect of two factors: the slight differences in lighting condi-
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tions between the images in the two subsets, and the quality of LL subband is affected 

the further the lighting source is from the straight direction. The lighting condition of 

subset 2 results in the appearance of some shadows around some facial features and 

the LL filter (also known as the approximated filter) reduces further the contrast in 

these regions. It is also worth noting that the gallery is constructed entirely from im-

ages in subset1.   

4. Except for the HH3 wavelet subband, the accuracy rates for all the SR dictionary 

methods as well as the IISR scheme remain the same over all degradation levels.   

5. For the HH3 subband, the performance of the accuracy rates for all the SR dictionary 

methods as well as the IISR scheme improves as the value of   increases, i.e. as deg-

radation worsen.  

6. On the other hand, matching using bi-cubic interpolation scheme or the LR images 

decreases when   increases beyond 0.03.  
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Subset 1                                                                               Subset 2 

 

 LL3-wavelet subband                                                                

 

          LH3-wavelet subband                                                              

 

HL3-wavelet subband                                                  

 

HH3-wavelet subband                                                             

 

Figure 5.2: Recognition accuracy rates using different dictionary methods and in comparison with matching in 

low-resolution, bi-cubic interpolation method as well as non-dictionary iterative SR method. 
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In order to determine if the above pattern of accuracy of the various SR schemes as well as 

the BC interpolation scheme is influenced by the use wavelet-based face feature vectors, for 

the differently degraded LR face images. We conducted face recognition with exactly the 

same degraded LR images but using Principal Component Analysis (PCA) on the spatial do-

main face feature vectors. PCA is usually used to reduce the dimensionality of the spatial 

domain face data, simply using the eigenvalues corresponding to the most-significant eigen-

values of the covariance matrix of the face images in the training set (Turk & Pentland, 1991). 

In our experiments, the face images in the gallery set has been used for training the PCA and 

the output feature vector after applying PCA technique is of size 37.    

The results of the conducted experiments are shown in Figure 5.3, and demonstrate that 

across different degradation functions, the pattern of accuracy rates, for the different testes 

schemes, is similar to those shown above for the LL3 subband. However, the difference be-

tween the accuracy rates for subsets 1 and 2 is less significant than in the previous Figure (i.e. 

Figure 5.2). For both subsets the performance of the PCA recognition scheme post the bi-

cubic interpolation method, deteriorates significantly as the   degradation value increases. 

The same is true when the PCA is applied to the LR images. On the other hand, the SR meth-

ods provide significant improvements in performance of the PCA face recognition system 

even when the degradation is severe. Consequently, we expect that the pattern of accuracy of 

face recognition post SR schemes is to some extent is independent of the face feature extrac-

tion scheme.  

 

 

PCA-Subset 1                                                       PCA-Subset 2 

 

Figure 5.3: Recognition accuracy rates (%) for the Extended Yale B database based on PCA. 
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In summary, various CS dictionaries based on SR methods can improve the performance of 

face recognition for images with low-resolution and low quality. The non-adaptive dictionar-

ies that are constructed without using image information can achieve identification accuracy 

rates that are good and in some cases slightly better, if not equal to, the learning dictionary 

based on the training images in the spatial domain. Moreover, the efficiency of the SR based 

different dictionary techniques are not affected by different degradation levels while main-

taining the accuracy rates at the same level. 

 

5.4.3.2 Face Recognition on Super Resolved Wavelet Face Feature Vectors 

In this section we present the results of experiments we conducted on the differently degraded 

and down-sampled Extended Yale-B images, in a similar manner to those conducted in the 

earlier section for the UBHSD database that tests the effect of super-resolving the wavelet 

subband rather than the spatial domain images. Various CS dictionary methods based SR that 

are constructed in the spatial and wavelet domains to reconstruct the feature vectors (LL3, 

LH3, HL3, & HH3) of any degraded LR images from the Extended Yale B database was tested 

for face recognition. The results shown below in Figure 5.4, and demonstrate similar patterns 

observed in the experiments conducted on the UBHSD database (Figure 5.1). We can see 

from Figure 5.4 that the accuracy rate achieved by the various SR dictionaries including the 

LD-DW wavelet domain training dictionary. Here we are not including the performance 

when using the bi-cubic interpolation or using LR matching with gallery being down-sampled. 

From Figure 5.4 we note that at each level of degradation and for each wavelet subbands 

from the two subsets, the SR method by LD-WD outperforms the scheme that uses the LD-Sp 

as well as the various types of non-adaptive spatial domain dictionaries (i.e. not learnt using 

large sets of images wavelet subbands). Moreover, except for the LL3 and HH3 subband fea-

ture vectors, increased level of degradation yields decreased identification accuracy rates by 

almost all dictionaries (including the LD-WD). In the LL3, and to less extent in the HH3, ac-

curacy rates remain more or less the same at different degradation level.  

As in the case of the similar experiments on UBHSD database, these results demonstrate the 

success of the LD-WD scheme, at all degradation levels, in improving the quality of the su-

per-resolved subbands, more than what was achieved by the other SR dictionaries. However, 

in this case the difference is somewhat less significant than the case of the UBHSD database. 

Again, we believe that this pattern of quality enhancement of the wavelet feature vectors is 

most likely due to incompatibility of the dictionaries with the nature of the wavelet subband 
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coefficients that are known to have Laplacian distributions. This observed success, albeit 

marginal, of the CS dictionaries in term of recognition accuracy when applied to super re-

solve the spatial domain of the LR images re-enforces our earlier remark about the need to 

design CS non-deterministic dictionaries for use in the frequency domain as a future work. 

Finally, we observe that the performance of the various schemes differ significantly between 

the two subsets for the LL3 feature vectors. Again, this is most likely due to the variation in 

lighting condition between the two subsets. 

            Subset 1                                                                               Subset 2 

   
              LL3-wavelet subband                                                          LL3-wavelet subband 

   
               LH3-wavelet subband                                                             LH3-wavelet subband 

   
           HL3-wavelet subband                                                             HL3-wavelet subband 

   
          HH3-wavelet subband                                                            HH3-wavelet subband 

 

Figure 5.4: Comparisons between the various SR dictionary in the spatial / and wavelet domain to super re-

solved wavelet subbands of the degraded LR image from the Extended Yale B data. 
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5.5 Summary and Conclusion 

In this chapter, we investigated the effect of image super-resolution on face recognition 

where the capture face images may be subject to low resolution as well as different level of 

image degradation. In general, the biometric community agree that face recognition from 

quality degraded low-resolution images, associated with recording in uncontrolled environ-

ments, is a tough challenge that needs to be tackled due to increased interest in security and 

safety applications. Here we considered two possible ways that such scenario may arise: 

recognition of faces from video frames recorded by different quality cameras captured at dif-

ferent distances, and recognition from simulated low quality low resolution images obtained 

from high quality and resolution images by applying different models of degradation fol-

lowed by down-sampling. Different sets of experiments were conducted to test the perfor-

mance of a variety super resolution schemes for dealing with those two cases. The first set of 

experiments, aimed at comparing the use of super-resolution instead of using High definition 

video cameras to overcome the problem of face recognition at 4 different ranges. The per-

formance of HD camera have been shown by Al-Obaydy & Sellahewa (Al-Obaydy & 

Sellahewa, 2011) not to provide added benefits in terms of recognition accuracy at close 

range distances.   

We investigated the use of various overcomplete CS dictionaries such as learnt dictionaries in 

the spatial or in the wavelet domain using sufficiently large training set of face images, non-

adaptive image-independent random or implicitly designed dictionaries that are known to 

“satisfy” the RIP condition.  

The results of the first set of experiments demonstrate that Super-resolving the wavelet LH3 

subband of LR image captured by SD camera, using the overcomplete wavelet based LD-WD 

dictionary that was learnt from the LH3 subbands of a selected set of good quality training 

images does certainly obviate the need for costly HD cameras for face recognition at a dis-

tance. Moreover super resolving the LR images using the spatial CS-based dictionaries, in-

cluding the LD dictionary, have similar performance, which is better if not equal to the HD 

cameras for recognition but with a slightly lower accuracy to that achieved by the LD-WD 

dictionary. These conclusions are based on comparing the results with those obtained by Al-

Obaydy & Sellahewa, 2011. All these results are based on using a single wavelet subbands, 

and significantly, higher accuracy can be achieved by fusing at the score level two or more 

subbands. 
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The video frames used in the first set of experiments, are not severely degraded, and hence 

we cannot be assured that the SR approaches can be used to deal the challenge of face recog-

nition when the images are severely degraded besides being of low resolutions, such as the 

images captured by CCTV cameras. Therefore the second set of experiments, were designed 

to test the performance of wavelet-based and PCA-based face recognition schemes post SR 

procedures, using various dictionaries, on a simulated data set of degraded LR images ob-

tained from two subsets of the Extended Yale-B database that only differ slightly in lighting 

conditions. The simulated degradation was obtained by two models of blurring (Gaussian and 

Environmental distortion) with different input parameters to control the severity of the degra-

dation. The conclusions from this set of experiments have resulted in a similar performance 

patterns to those obtained from the first set of experiments, but with higher accuracy rates 

achieved by single wavelet subbands. In particular, these experiments have confirmed that 

CS-based super-resolution using non-adaptive dictionaries, as well as learnt dictionaries both 

in the spatial and wavelet domain, help mitigating the adverse effect of a wide range of image 

degradations on face recognition, especially in the case of severe image degradations. In fact, 

these accuracy levels are hardly affected by different degradation levels and maintained the 

accuracy rates at the same level. The results of using PCA instead of wavelet based recogni-

tion schemes have illustrated that the performance of CS-compliant dictionaries is independ-

ent of the feature extraction schemes.  

More importantly, in both sets of experiments the non-adaptive dictionaries that were con-

structed without using image information can achieve face recognition accuracy levels as 

good as, if not better than, those achieved by dictionaries that depend on the spatial domain 

training set by super resolved image from the LR image in the spatial domain. These results 

remove the need of training face images for recognition purposes. However, the rather supe-

rior performance of the learned dictionary LD-WD in super-resolving the wavelet subbands 

of the LR images, in comparison to the other non-adaptive dictionaries, reveal that the current 

approaches to the construction of non-adaptive dictionaries are not suitable to super-resolve 

every type of signals and certainly improve the quality of wavelet subbands of images. This 

may be due to the incompatibility of the non-adaptive dictionaries with the characteristics of 

wavelet coefficients that are known to have Laplacian distributions. Moreover, the success of 

the CS non-adaptive dictionaries in term of recognition accuracy when used to super-resolve 

the spatial domain of LR images raises the need to investigate new design strategies for the 

construction of CS non-adaptive dictionaries suitable for use in the frequency domain. Alt-

hough, this is outside the objectives of this thesis, it will be part of the follow up future work. 
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Finally, the various simulated degradation models, including the severe ones, do not reflect 

the scenario of CCTV cameras, because the quality of images are effected by a complex set 

of factors including variation in lighting/environmental conditions, pose, and movement of 

subject relative to the camera and sources of light as well as camera quality. However, the 

results from both sets of experiments is a strong motivation to investigate the use SR based 

techniques that employ CS dictionaries for recovering images from a database of genuine 

CCTV face images with different resolution cameras. This will be the main objective of the 

next chapter. 
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Chapter 6 
 

COMPRESSIVE SENSING & SUPER RESOLUTION FOR 

CCTV FACE IMAGES 

 

In the previous two chapters, we have shown that compressive sensing based super resolution 

methods help to improve image quality and image resolution as well as face recognition rates. 

However, in those chapters we were dealing with frontal LR face images whereby the model 

of image degradation were based on different levels of Gaussian blurring as well as environ-

mental image parameterized frequency domain degradation exponential filters. In fact, for 

these experiments the LR face images were generated from good quality images obtained 

from a benchmark face image database by applying different levels of Gaussi-

an/environmental blurring/degradation functions followed by downsampling. However, deg-

radation of CCTV images is difficult to model due to a variety of complex combinations of 

factors influencing the process of capturing face images in ways that are highly unlikely to be 

modelled by simple exponential domain frequency functions. Moreover, CCTV surveillance 

video images generally include faces with varying poses, illumination and different resolution 

due to the distances between the camera and the photographed person(s). Face images cap-

tured at a distance from the CCTV suffer from reduced image resolution, which results in loss 

of high frequency facial components with adverse impact on recognition rates. Therefore, 

identifying an individual from CCTV camera remains an extremely challenging problem that 

significantly accedes the challenges dealt with in the previous chapters. In this chapter, we 

shall nevertheless investigate the use of overcomplete SR dictionaries that satisfy compres-

sive sensing properties to restore surveillance images and test the performance of wavelet-

based face recognition using the super-resolved face images. We shall first attempt to approx-

imate the model of CCTV image degradation by parameterized exponential frequency do-

main environmental distortion functions, and demonstrate modest accuracy rates of face 

recognition that are significantly higher than the state of the art schemes. For testing purposes, 

we simulate a very challenging recognition scenario by using a database of 130 moving sub-
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jects where the face images/or video is recorded under different resolution, illumination, ex-

pression and in varying poses.  

 

6.1 Introduction 

Face recognition has been investigated extensively in recent decades and has many applica-

tions, such as passports and driving license cards. Most, face recognition algorithms have rea-

sonable recognition accuracy in controlled environments, but their accuracy drops dramati-

cally in uncontrolled environments. Much research in the area of face recognition has been 

concentrated on recognizing faces under one challenge. such as across changes in illumina-

tion (Xie, et al., 2008), (Jassim & Sellahewa, 2005), (Vuini, et al., 2007) or across different 

poses (Prince, et al., 2008), (Zhang & Gao, 2009), (Shiau, et al., 2010) while little has been 

done for dealing with combined effect of several challenges (Peng, 2011), (Biswas, et al., 

2011). The case of combined challenges is more evident when using CCTV cameras. In fact, 

the quality of images captured from the CCTV video camera in uncontrolled conditions is 

much lower than that obtained from that of still imaging. With increasing demands for sur-

veillance camera-based applications, the need to recognize faces captured on such devices, 

which are mostly of low-resolution in uncontrolled poses/illumination, is in demand. In this 

chapter, we are concerned with face recognition where the face images are captured by 

CCTV cameras.   

Face recognition systems generally perform well when the gallery and probe images have the 

same resolution and size as well as taken under similar controlled imaging conditions. How-

ever, differences in information content between LR images (obtained from surveillance 

cameras) and HR images (i.e. images captured during enrolment) greatly degrades the per-

formance of existing face recognition algorithms. Two approaches have been adopted to ad-

dress this challenge; match cross resolution images by downsampling HR images to the level/ 

size of LR images before matching; or alternatively use the SR technique to enhance the LR 

face image before matching. However, in the first case the information needed for face 

recognition (such as texture, edges and other high frequency information) is compromised in 

the process of downsampling the images. In the second approach (Al-Azzeh, et al., 2008) the 

objective of the SR method is to construct high frequency details that are missing in the LR 

image.  
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In the earlier chapters, we discussed different SR schemes, including compressive sensing 

based schemes that uses learnt as well as non-adaptive over-complete dictionaries. (Peng, 

2011) and (Zou & Yuen, 2010) proposed SR algorithm to reconstruct an HR image for face 

recognition by training a dataset of HR and LR image pairs  {  
    

 }
   

 
  to learn first the rela-

tionship/or the mapping   between the pairs of images; then the SR image is reconstructed by 

applying R on the testing LR image. The face LR images are generated from the surveillance 

face data.   

In the rest of the chapter, we test the performance of our compressive sensing based SR ap-

proaches using the previously investigated CS-relevant dictionaries to super resolve face im-

age from surveillance images for face recognition. For comparison, we shall also test the per-

formance of the standard interpolation method. 

 

6.2 Experimental Database and Testing Protocol 

In order to evaluate the performance of the various overcomplete CS dictionaries based SR 

method for face recognition on the surveillance images with different resolutions; the public-

ly available surveillance cameras face (SCface) database (Grgic, et al., 2011) will be used, 

where various quality and resolution cameras have. SCface database is a set of static face im-

ages, which contains 130 subjects from both genders, recorded in an uncontrolled indoor en-

vironment using five different quality surveillance video cameras, namely cam1, cam2, cam3, 

cam4 and cam5. A high quality camera is also used to capture an HR frontal image for each 

individual in indoor controlled conditions. Moreover, this database was collected with the 

cameras placed slightly above the subject’s head and during the recordings; the subject was 

not required to look at a fixed point. In each recording session, the image of each subject was 

captured at three different distances from the cameras, close (distance 3), mid (distance 2) 

and far (distance 1) of 1.00, 2.60 and 4.20 meters respectively. Hence, the total number of 

images in the database is 4,160 images, varying in resolution, pose, illumination and expres-

sion. Figure 6.1 shows sample images from the SCface database that captured by cam1 at the 

three different distances. Although the images from a distance 3 are near to the camera and 

with higher resolution than images at distances two and one, the pose variation is more seri-

ous.   
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(a)                             (b)                           (c)                           (d) 

Figure 6.1: Images from SCface database. (a) The first column images from distance 1. (b) Second column: 

images from distance 2.  (c) Third column: images from distance 3. (d) Last column:  HR frontal images. 

 

All images in the SCface database are originally coloured, but for our experiments are trans-

formed into grey-scale images, the faces are cropped and resized to       pixels. Figure 

6.2 shows the cropped and rescaled face images for the same person in the first row in Figure 

6.1 on five different quality surveillance cameras.  

Super resolution techniques, in the previous chapters, have been used to improve the quality 

of under-sampling LR images by increasing their spatial resolution and attempting to filter 

out image degradation such as blurring (or environmental distortion) at different levels. The 

success of this step depends on some knowledge/estimation of the degradation present in the 

probe CCTV images. This is the first challenge that we shall deal with.  
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Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 

Figure 6.2: Examples of cropped and rescaled face images from SCface database. The first row images from 

distance 1; second row: images from distance 2; third row: images from distance 3. 

 

6.3 Towards a Model of CCTV Image Degradation  

The image quality is significantly affected by a number of factors related to the recording 

conditions, including environmental factors, camera specification, the orientation of the cam-

era relative to the photographed object, and distances between from the photographed object. 

The modelling of image degradation for surveillance images at any distance, such as the im-

ages in the SCface database captured by the five different cameras, depends on a number fac-

tors including camera quality and environmental factors. Knowledge of good model of deg-

radation is essential for super-resolution. In fact, all SR techniques use an inverse filtering at 

some stage to improve the quality of super-resolved images, the appropriate filter must be 

based on estimation of the degradation transform. A possible solution could be based on con-

ducting an extensive set of experiments to figure out the structure of the frequency spectrum 

of a large set of CCTV images in order to estimate a parameterized frequency domain func-

tion that models different levels of image degradation of CCTV video frames.   

Below, we display the Fourier spectrums for some images from SCface database, captured by 

different cameras at different distances. Figure 6.3 and Figure 6.4 illustrate that lightening 

condition, distance, and camera type have varying effect on the Fourier spectrum of the im-

ages. Note the distortion around the u and v axes compared to the Fourier spectrum of the 

original HR image. It is clear that the distortion around the vertical axis in particular decreas-

es as the distance to the camera decreases. A more systematic investigation into this will, and 

should, be the subject of future work.   
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                                HR image     Fourier Spectrum 

Camera 1 

      

Camera 2 

      

Camera 3 

      

Camera 4 

      

Camera 5 

      

                                            (a)                                         (b)                                        (c) 

Figure 6.3: Example 1, Fourier Spectrum for: HR image from SCface database and for each image captured for 

the same person by different cameras from (a) distance 1 (b) distance 2 (c) distance 3. 

                     
                              HR image     Fourier Spectrum 

Camera 1 

      

Camera 2 

      

Camera 3 

      

Camera 4 

      

Camera 5 

      

                                           (a)                                          (b)                                        (c) 

Figure 6.4: Example 2, Fourier Spectrum for: HR image from SCface database and for each image captured for 

the same person by different cameras from (a) distance 1 (b) distance 2 (c) distance 3. 
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Conducting the necessary investigation to determine the frequency domain degradation filter 

require extensive and challenging work which, to large extent, is outside the scope of this 

thesis but would be the subject of future work. Hence, we need a simpler alternative strategy. 

When mathematicians are faced with such difficult problems either one reduce the complexi-

ty of the problem by solving a less challenging provisions of the problem or attempt to ap-

proximate the required model of degradation by known, albeit different, models. Hence, we 

shall use an indirect method to link/approximate the CCTV degradation function to/by a 

known degradation function through a common, and easy to compute, image quality measure. 

In fact, the work done in the last two chapters is reasonably sufficient for our work here. 

Therefore, in this chapter, we adopt a general approach to approximate the required degrada-

tion functions using an existing simple, and easy to compute, image quality measure that has 

“monotonic” relationship with the environmental degradation function, studied in the last 

chapter. Ideally, the monotonic relationship remains valid for CCTV images, so that one can 

then approximate the unknown CCTV degradation model by linking to an appropriate   val-

ue for environmental degradation.  

First, we observe that most images in the SCface database have poor contrast and it would be 

natural to measure their contrast value with reference to the provided high quality images in 

the database for the same persons. Hence, it is natural to compare the contrast value of an in-

put LR image (relative to the HR face images) with the contrast that can be obtained when 

different ranges of   -values are used to degrade HR images. Another, related image quality 

measure that could be investigated for linking environmental degradation functions in terms 

of   -values is that of correlation. Here we recall that the contrast and correlation values can 

be obtained using the following formulae deduced from the universal image quality index 

(see chapter 1, section (1.4)): 

            
   

    
      and                  

     

  
    

  

Where,   {  |         } and   {  |           } be the column vectors represent-

ing the pixel values of reference image   and an input image  , respectively, 
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and   ̅ &  ̅ are the mean of image   and image   respectively. 
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To study the relationship between   -distortions and contrast/or correlation quality measure, 

20-HR images were selected randomly from the SCface database which were captured by 

good quality camera, degrade using increasing   -Level of environmental turbulence function, 

and then computes the corresponding contrast and correlation values using the original image 

as a reference. Figure 6.5 below show the chart obtained from this experiment. It can be seen 

that the image quality, based on both measures, is decreasing with an increased level of   -

value distortions.   

 

 

Figure 6.5: Contrast and Correlation measures Vs.   -Level degradation - Images from the Scface database 

 

We repeated the same experiment, but this time we used 20 face images that were selected 

randomly from set 1 of the extended Yale B database, degrade by different   -levels of deg-

radation and down-sample by factor two. Figure 6.6, shows the corresponding chart for this 

second experiment. 

 

 

Figure 6.6: Contrast and Correlation measures Vs.   -Level degradation – Images from the Extended Yale B. 

0.916948 

0.848807 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
v

er
a

g
e 

Im
a

g
e 

Q
u

a
li

ty
 

k1-Level of degradation 

contrast

correlation

0.900619 

0.806487 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
v

er
a

g
e 

im
a

g
e 

q
u

a
li

ty
 

  k1-level of degradation 

contrast

correlation



CHAPTER 6: Compressive Sensing & Super Resolution for CCTV Face Images 

 137 

This experiment reveals a similar relationship to that obtained using images from the SCface 

database. In both cases, contrast and correlation are almost affected similarly by any   -

degradation, and the only difference is that in the case of the SCface database the decrease in 

the contrast/correlation is slower as the   -value increases. This could be because the HR 

camera used in SCface database is of higher quality than that was used for recording the Ex-

tended Yale-B. We conclude that it is more sensible to use chart 6.6 when approximating the 

CCTV degradation model in terms of the   -value of the environmental degradation function.  

For any LR image, we super resolve first, but before inverting the degradation filter, we cal-

culate the contrast and use chart 6.6 to deduce the   -degradation level. Accordingly, we can 

deduce that: 

1. Low   -degradation level in the range [      ] corresponds to high contrast quality 

in the range          

2. Mild   -degradation level in the range      , 0.04] corresponds to average contrast 

quality in the range           and  

3. Severe   -degradation level in the range (        ] corresponds to low contrast qual-

ity in the range  <      

The above investigation assumes the availability of an HR image for every person photo-

graphed by the CCTV camera. However, in the real world, the HR face image may not be 

available and we need to estimate the degradation level of an input CCTV image without a 

reference image. In this case, the Mean square error (MSE) can be used as a measure of 

quality to assess the quality of the LR image. This could be done by finding the error between 

the input image and the convolution of the input LR image by blurring filter, e.g. median or 

adaptive median filter, acting as its own reference image. However, this will not be pursued 

any further. In the next section, we shall use the contrast measure to estimate the   -value 

corresponding to the estimated frequency domain degradation present in any input probe im-

age. The estimated   -value will then be input to each of the super-resolution procedures, 

with different dictionaries, to design the inverse frequency domain filter to improve the quali-

ty of the probe super-resolved image. In section 6.5 we shall present tables to illustrate the 

improvement in the values of contrast, correlation as well as PSNR (which is related to the 

MSE value) parameters post the SR step. 

 



CHAPTER 6: Compressive Sensing & Super Resolution for CCTV Face Images 

 138 

6.4 Face Recognition Experiments for the SCface Database 

Our recognition experiments on the SCface database are conducted for each of the three im-

age sets corresponding to the three distances (close, mid and far). To test the performance of 

images depending on an assumption one makes in terms of image quality/resolution, distanc-

es and camera. Here, we present two experimental configurations:   

1. The first configuration: one HR frontal image per subject are selected as reference im-

ages whose extracted feature vectors from the gallery set, while the feature vectors of 

five images corresponding to five different cameras per distance for each subject are 

used for matching 

2. The second configuration: five images taken by cameras 1 to 5 for 130 persons at dis-

tance 2 or at distance 3 are used as gallery images, while the probe set always takes 

images from distance 1, which are of lower resolution. 

The main step in any biometric system is the feature extraction and matching. For this, we 

follow the same feature extraction scheme adopted throughout the thesis: 

1. Use Haar wavelet to decompose the incoming face image to level 3, 

2. Select any subband and normalise its coefficient using the standardised z-score nor-

malisation to form the corresponding face feature vector, and 

3. Use city block distance for matching. 

In both recognition configurations, we shall use super-resolution to make the gallery and the 

probe having the same (higher resolution). In all the experiments, the resolution of gallery 

image is set to         pixels. Figure 6.7 and Figures 6.9 & 6.10 respectively illustrate 

identification accuracy results for the two gallery-probe configurations listed above. 

 

6.4.1 Face Recognition Experiments – Configuration 1 

For matching an LR probe with an HR gallery image, the SR technique has been used to ob-

tain images with higher resolution than the input LR probe image, which is then used for 

matching with the HR gallery. Various CS dictionaries based SR methods as well as a stand-

ard bi-cubic interpolation method has been used on sets of probe images with different reso-

lution to reconstruct HR images. In general, the facial images of SCface have very challeng-

ing illumination, pose variation and also LR, which leads to the very low benchmark perfor-

mance (Grgic, et al., 2011), (Peng, 2011). Where the experimental results by (Grgic, et al., 
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2011) showed that when the frontal images were used as a gallery, which of the same size of 

the input probe image, the results are quite low, ranging from below 1% to about 8% as well 

as the distance from the camera has an effect on the recognition performance. While, the re-

sults by (Peng, 2011) indicated that when the images from distance 2 or 3 used as gallery im-

ages and the super resolved images from distance 1 used as probe images, the identification 

rate of distance 3 is much lower than distance 2 and the improved results in distance 2 are 

limited which are no more than 15%.  

Figure 6.7 below, shows the recognition accuracy results for different subbands at level 3 of 

wavelet decomposition. The various charts display rank-one recognition accuracy rates at 

each distance for the 4 level 3 subbands LL3, LH3, HL3 and HH3. As can be seen, the distance 

from the camera has some influence on the performance of face recognition where the accu-

racy rates at distance 3 are lower than other two distances. Note that images taken at distance 

3 capture more of the top part of the head, thus covering the parts of the face normally seen in 

frontal gallery images and include many face features. The results in Figure 6.7 show that 

there is a small difference in accuracy rates between the various CS dictionary methods at 

each distance. However, the proposed LID1 dictionary (see Chapter 4) in distance 1 yields 

better accuracy rates than the bi-cubic method and other dictionaries that do not depend on 

images when LL3, HL3 and HH3 wavelet subbands features are used. Moreover, the perfor-

mance of the LID1 is far superior to LD-Sp dictionary based on images when we use LL3, 

LH3, HL3 & HH3 subbands as feature vectors for images in distance 1.  

Although, the modest improvement of LR surveillance images for recognition is rather no-

ticeable, the results in general are still disappointingly low. However, these results illustrate 

that dictionary based SR methods can achieve higher results than the recognition accuracy 

rate without using the SR method to the LR (Grgic, et al., 2011) where the results have never 

exceeded 10% recognition rates. 
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LL3-wavelet subband                                                  LH3-wavelet subband 

         

HL3-wavelet subband                                          HH3-wavelet subband 

 

Figure 6.7: Rank-one recognition accuracy rates for SR images from different resolution enhancement methods. 

 

Comparing the performance when using different subbands we, note that the best perfor-

mance is achieved when we use the LL3 feature vector scheme, followed by the HL3 scheme, 

which perform better than the other two subbands. This is somewhat different from the re-

sults achieved by the investigations reported by the various publications on wavelet-based 

schemes (Sellahewa & Jassim, 2008), (Al-Assam, et al., 2011) where normally the LH3 out-

perform even the LL3. This seems to indicate that the degradation in the case of CCTV cam-

eras has a more adverse impact of higher frequency coefficients, associated with image fea-

tures, and in particular, the horizontal features. The SR images of SCface can be seen to have 

much more artefacts (mostly in the horizontal directions, see Figure 6.12 & Figure 6.13), 

leading to the poor quality of local features and in particular with the horizontal facial fea-

tures associated with significant coefficients in LH3 subband being more affected by the ge-
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ometrical degradation than vertical features, thus, reducing the accuracy. While the LL3 sub-

band feature gives the best results, thereby being a more suitable face descriptor for recogni-

tion under an uncontrolled environment since LL3 is the approximation of the spatial domain 

image. 

 

Rank-based Identification  

For a given rank     the recognition rate, represent the probability of correctly identifying 

an individual from a gallery. The above results show improved accuracy rates for recognition 

of CCTV images when SR-dictionaries are used as compared to existing schemes (see (Grgic, 

et al., 2011)). In this section, we present the results of investigations to determine accuracy 

rates for a range of ranks (ranging from rank1 to rank 15) identification when the various SR-

dictionaries are used on face images from the SCface database surveillance cameras with 

varying resolution and poses. The experimental results, shown below in Figure 6.8, demon-

strate that the identification recognition rates are increased at each distance and the accuracy 

rate reaches around 54% from 15% in distance 1 when the LL3 wavelet subbands are used as 

the feature vector.  
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Distance 1                                               Distance 2                                         Distance 3 

   

(a) LL3-Wavelet Subband 

  

(b) LH3-Wavelet Subband 

 

(c) HL3-Wavelet Subband 

 

(d) HH3-Wavelet Subband 

 

Figure 6.8: Rank-N identification accuracy rates for SR images from different resolution enhancement methods 
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Although recognition with a rank higher than 5 may seem undesirable, however when dealing 

with recognition in a surveillance scenario often we can benefit from cross checking with 

recognition from videos captured by different CCTV cameras in nearby locations.   

 

6.4.2 Face Recognition Experiments – Configuration 2 

For the second dataset configuration, Figure 6.9 and Figure 6.10 show identification accuracy 

rates when the enrolment reference images are from distance 2 or from distance 3 

respectively and the probe image captured is always far from the camera (i.e. at distance 1). 

We can see from Figure 6.9 that there is very slight difference in terms of recognition 

between the SR dictionaries and the standard bi-cubic interpolation method. On the other 

hand the random dictionary GRM in some cases (when LH3 & HH3 are used as feature 

vectors) can improve accuracy rates more than the image training-based dictionary. The 

results also demonstrate that CS based SR methods produce better identification accuracy 

rates when the gallery image set contains images from a distance 2 than distance 3 (i.e. the 

gallery set contains images from distance 3). In spite of this the improved results in rank one 

(around 24%) which higher than the performance of the non-dictionary SR method referred 

to in the introduction (Peng, 2011) where the achieved recognition rates are around 10% to 

15%. 

Generally speaking, SCface is a very difficult database and from our experiments, it can be 

seen that the proposed LID1 dictionary based on the SR method can slightly improve 

recognition performance and performs better than the existing dictionary which is based on 

training images. In addition the performance of the SR method in terms of face recognition in 

distance 3 is less than other distances due to the pose variation problem. 
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LL3-Wavelet Subband                                                      LH3-Wavelet Subband 

   

 HL3-Wavelet Subband                                                      HH3-Wavelet Subband 

 

Figure 6.9: Rank-N recognition rates for the SCface database, SR dictionaries and bi-cubic method used to en-

hance LR images from a distance one where the gallery images from distance 2. 

 

LL3-Wavelet Subband                                                LH3-Wavelet Subband 

  

HL3-Wavelet Subband                                                HH3-Wavelet Subband 

 

Figure 6.10: Rang-N recognition rates for the SCface database, SR dictionaries and bi-cubic method used to 

enhance LR images from a distance one where the gallery images from distance 3. 
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Fusion of Different Subbands    

Multi-stream face recognition approaches that fuse different subbands of wavelet transformed 

face images under varying illumination (Sellahewa & Jassim, 2010), (Abboud, 2011), (Jassim 

& Sellahewa, 2005) have been shown to improve face recognition. In (Sellahewa & Jassim, 

2010) proposed adaptive fusion method for improving face recognition, which demonstrated 

that the best improvement in recognition accuracy was achieved when LL and LH subband 

scores are fused. Based on the above results in Figure 6.7 as well as in Figures (6.9 and 6.10) 

that demonstrated the single stream low frequency approximation subband is a suitable face 

descriptor for recognition. In this chapter, fusion of match scores (rank one recognition) from 

approximation and detail subbands for the super resolved image (i.e. after reconstructing an 

HR image by using CS based SR methods) has been investigated to observe the effect of the 

multi-stream fusion approach on identification accuracy rate. Here several fusion parameters 

are selected using fixed weights. Our experiments have been conducted on the second dataset 

configuration and the identification accuracy rates based on score fusion of LL3 with LH3 

subband are given in Table 6.1 and Table 6.2. The experimental results showed that the mul-

ti-stream fusion of the two subbands slightly outperform the best single stream (LL3 subband) 

when the higher weight is given to the low-frequency subband (    
=0.9) and the lower 

weight is given to the horizontal frequency subband (    
=0.1), but this improvement is not 

significant.  

 

Gallery set Probe set LL3+LH3  SR methods 

Distance 2 Distance 1 

WLL3 WLH3 LD-Sp GRM TCRM LID1 ROM LID2 BC 

1 0 23.53 24 24.92 24 23.53 23.69 23.07 

0.9 0.1 24 24.61 24.76 24.15 24.61 24.61 23.38 

0.8 0.2 23.53 23.84 23.69 24 23.69 23.38 23.38 

0.7 0.3 22.61 22.46 22.61 22.15 22.61 22.61 22.15 

0.6 0.4 20.92 22.15 22.15 22 21.69 20.46 20.92 

0.5 0.5 19.23 20.61 20.15 19.84 20.30 18.76 19.38 

0.4 0.6 16.61 18.76 18.15 18.76 18.30 17.38 17.84 

0.3 0.7 13.84 18 16 17.23 17.23 15.23 14.92 

0.2 0.8 11.53 14.46 13.07 13.38 13.38 12.15 12.76 

0.1 0.9 9.07 11.53 11.38 11.69 11.84 11.07 11.38 

0 1 6.92 9.53 9.07 9.84 9.53 7.69 8.76 

Table 6.1: Rank one identification accuracy (%) for the LL and LH based multi-stream subband fusion ap-

proach of super resolution images from LR Probe images of distance 1. Gallery set contains distance 2 images. 
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Gallery set Probe set LL3+LH3  SR methods 

Distance 3 Distance 1 

WLL3 WLH3 LD-Sp GRM TCRM LID1 ROM LID2 BC 

1 0 16.76 17.38 17.23 17.23 16.92 17.69 17.23 

0.9 0.1 17.23 17.23 17.84 17.38 17.69 18 17.53 

0.8 0.2 17.07 16.61 16.76 17.07 17.07 17.23 17.38 

0.7 0.3 16.15 16 16.15 16.46 16.30 16.46 16.15 

0.6 0.4 14.30 14.15 14.15 14.15 14.46 14.46 15.07 

0.5 0.5 12.46 12.92 12.76 12 12.61 12.30 12.76 

0.4 0.6 10 10 10.92 10.30 10.15 10.46 10.92 

0.3 0.7 8.15 8.46 9.07 8.15 8.30 8.61 8.76 

0.2 0.8 5.69 6.30 6.61 6.46 6.30 6.30 6.46 

0.1 0.9 4.30 4.92 5.38 3.84 4.61 4.76 4.92 

0 1 2.92 2.76 4 2.76 3.07 3.23 3.38 

Table 6.2: Rank one identification accuracy (%) for the LL and LH based multi-stream subband fusion ap-

proach of super resolution images from LR Probe images of distance 1. Gallery set contains distance 3 images. 

 

We repeated the experiment by fusing the LL3 subband with the HL3 at the score level, and 

the results are displayed in 6.3 and 6.4 Tables. As can be seen again the best performance is 

achieved with the weighting combination (    
= 0.9 and     

    ), and the results for 

this combination is marginally different from those obtained when fused the LL3 with the 

LH3 subbands. However, for all the other weighting combinations for which     
  , the 

fusing of LL3 and HL3 outperforms the scheme that fuses LL3 and LH3. This reflects the fact 

that the single HL3 subband scheme outperforms the LH3 subband scheme possibly because 

of the observed degradation of the images in the horizontal directions.  

 

Gallery set Probe set LL3+ HL3  SR methods 

Distance 2 Distance 1 

WLL3 WHL3 LD-Sp GRM TCRM LID1 ROM LID2 BC 

1 0 23.53 24 24.92 24 23.53 23.69 23.07 

0.9 0.1 24.15 23.84 24.92 23.53 24.15 23.69 23.23 

0.8 0.2 23.38 23.84 24.46 23.69 23.38 23.38 22.76 

0.7 0.3 22.76 23.38 23.23 23.69 23.07 22.92 22.76 

0.6 0.4 22 22.92 22.46 22.30 22.92 22.61 22.30 

0.5 0.5 22.61 22.76 22.15 22.30 21.84 22.46 22 

0.4 0.6 21.84 21.53 22.46 21.53 21.38 21.84 22.15 

0.3 0.7 20.76 20.61 20.92 20.30 20.76 21.38 21.07 

0.2 0.8 19.84 19.53 19.38 20 19.69 20.30 20.92 

0.1 0.9 18.15 18.61 17.84 18.30 18.15 18.61 18.46 

0 1 16.30 16.76 15.69 16.30 16.92 16.15 16.30 

Table 6.3: Rank one identification accuracy (%) for the LL and HL based multi-stream subband fusion ap-

proach of super resolution images from LR Probe images of distance 1. Gallery set contains distance 2 images. 
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Gallery set Probe set LL3+ HL3  SR methods 

Distance 3 Distance 1 

WLL3 WHL3 LD-Sp GRM TCRM LID1 ROM LID2 BC 

1 0 16.76 17.38 17.23 17.23 16.92 17.69 17.23 

0.9 0.1 17.38 17.53 17.84 17.53 17.53 18 17.38 

0.8 0.2 17.38 17.38 17.07 17.38 17.23 17.69 17.53 

0.7 0.3 16.76 17.38 17.53 17.07 17.07 16.76 17.38 

0.6 0.4 16.76 16.76 16.92 16.61 16.92 16.76 16.61 

0.5 0.5 16.46 16.61 16.61 16.76 16.92 16.61 17 

0.4 0.6 15.53 16.46 15.23 15.38 15.84 15.53 16 

0.3 0.7 14.30 13.84 14 14.15 14.15 14.15 14.30 

0.2 0.8 13.07 13.38 13.23 12.92 13.23 12.92 13.53 

0.1 0.9 11.69 12.30 12 12 11.69 11.84 11.84 

0 1 9.69 10 9.23 8.92 9.23 10.15 8.92 

Table 6.4: Rank one identification accuracy (%) for the LL and HL based multi-stream subband fusion ap-

proach of super resolution images from LR Probe images of distance 1. Gallery set contains distance 3 images. 

 

Overall, the multi-stream fusion of the two subbands of the super resolution images from sur-

veillance input images illustrates the conclusion that the improvement of the performance of 

face recognition using the multi-stream approach is slight, if any. 

 

6.4.3 Recognition with Binary Feature Vectors 

In all the above experiments, the coefficients in each wavelet subbands of SR images after 

normalisation are used as a feature vector for recognition purposes. However, binaries wave-

let coefficients with error correction codes (Hussein, 2014) have been used as a pre-

processing technique for identifying individuals, and studied to detect and correct errors in 

binary feature vectors (which resulted from variation in recording conditions such as illumi-

nation conditions) and improve face recognition. In this chapter, different binarization ap-

proaches have been applied to observe the effect of the binaries wavelet feature vector of the 

reconstructed super resolve image for identification accuracy rates.  

There are a number of ways of binarising images, but here a global binary approach based on  

global threshold (i.e. global mean of each subband), and local binary approach that is based 

on a local threshold to each     overlap blocks (i.e. local mean to each block) of the wave-

let coefficient subband are tested. Global and/or Local binaries, single-stream wavelet sub-

bands   are calculated according to the following formula:  

       {
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Where   is the global or local mean feature vector and the hamming distance is used to calcu-

late the distance between pairs of feature vectors corresponding to the same subbands. The 

binaries face feature vectors (even without using error correction codes), are shown to gener-

ally perform better than the non-binaries feature vectors for other kinds of image degradation 

due to illumination or mild blurring effects (Hussein, 2014). However, the results of our ex-

periments demonstrate that binaries feature vectors do not seem to be suitable for the recon-

structed image by different SR approaches. In general, binaries feature vectors do not give 

better results than the non-binaries feature vectors. Recognition accuracy rates of the different 

approaches for binary coefficients of the super resolved image are given in Figure 6.11, be-

low. Note that, here we are not applying error correction and it is possible that error correc-

tion may result in improved performance. However, this would require an investigation into 

the error model associated with images from CCTVs in terms of distances and other record-

ing conditions. 

 

 

(a) Distance 1                                                        (b)  Distance 2 

 

 

(c) Distance 3 

Figure 6.11: Shows recognition accuracy (%): Global / and Local binaries feature vectors of the reconstructed 

super resolve images are applied where the Low-resolution-SCface images at varying distances and the gallery 

set contains high-resolution frontal images. 
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6.5 Post-Super Resolution Image Quality  

The second stage of the experiments is to compare the performance of SR dictionaries that do 

not need training images with the existing LD dictionary in the spatial domain that depend on 

face image information and with the well-known bi-cubic interpolation method in terms of 

enhancing the resolution of the input LR image from three different distances. The recon-

struction fidelity for our super resolved face images in the SCface database was quantified 

using four measures quality such as adaptive quality measure that not depends on HR refer-

ence image i.e. Histogram intersection as described in Chapter 4, PSNR, Contrast, and Corre-

lation. The HR images from mug-shot camera are used as the ground truth to calculate quality 

values. Table 6.5 below shows the average values per measure face image quality. It can be 

seen from Table 6.5 that there is no significant difference between SR by different dictionar-

ies independent of the tested images and bi-cubic method. However, quality values by Histo-

gram intersection showing different results, where at each distance ranges the SR by different 

dictionary methods are able to improve image quality higher than bi-cubic method. Moreover, 

the LD-Sp dictionary produces lower quality images at each distance (i.e. close, middle & far 

distance). In general, our experiments show that the dictionaries, which are not dependent on 

images slightly, improve image resolution. 

 

  Gallery Probe images 
SR methods 

LD-Sp GRM TCRM LID1 ROM LID2 BC 

Frontal images 

128x128 

Distance 1 0.69 0.71 0.71 0.71 0.71 0.71 0.70 

Distance 2 0.70 0.73 0.73 0.72 0.73 0.72 0.72 

Distance 3 0.63 0.67 0.66 0.66 0.66 0.66 0.65 

(a) 

Gallery Probe images 
SR methods 

LD-Sp GRM TCRM LID1 ROM LID2 BC 

Frontal images 

128x128 

Distance 1 0.17 0.20 0.20 0.20 0.21 0.20 0.21 

Distance 2 0.13 0.16 0.15 0.15 0.16 0.15 0.16 

Distance 3 0.12 0.15 0.14 0.14 0.15 0.14 0.15 

(b) 

Gallery Probe images 
SR methods 

LD-Sp GRM TCRM LID1 ROM LID2 BC 

Frontal images 

128x128 

Distance 1 12.50 12.83 12.80 12.80 12.83 12.75 12.28 

Distance 2 12.41 12.87 12.83 12.81 12.83 12.76 12.27 

Distance 3 11.19 11.76 11.69 11.68 11.70 11.64 12 

(c) 
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  Gallery Probe images 
SR methods 

LD-Sp GRM TCRM LID1 ROM LID2 BC 

Frontal images 

128x128 

Distance 1 11.83 12.19 13.50 11.86 12.58 13.01 7.21 

Distance 2 11.42 12.01 12.15 11.42 12.18 12.26 9.27 

Distance 3 8.83 9.98 9.30 9.59 10.47 10.58 10.14 

(d) 

Table 6.5: Quality values of SR images: (a) Contrast measure, (b) Correlation measure, (c) PSNR measure, and 

(d) Histogram Intersection measure. 

 

Finally, for more testing about the viability of our overcomplete SR dictionaries that con-

structed without using face images, but satisfy CS properties, to overcome the problems of 

images captured at distances from lower quality/resolution web cameras in terms of super 

resolve image quality. We selected randomly two different subjects from the SCface image 

database as presented below in Figures 6.12 and 6.13, where the face images captured at dif-

ferent distances, close (distance 3), mid (distance 2), far (distance 1) from surveillance cam-

era 1. As can be seen the difference between the recovered HR images by using SR dictionar-

ies independent on images is slightly noticeable by the human eye and a significant im-

provement in image quality can be seen when the LID1 dictionary is used. Although there is a 

small difference between the dictionary methods in terms of quality, TCRM produced more 

artifacts than GRM and reduced slightly the quality of the image. On the other hand, despite 

of the SR method by LD-Sp dictionary that depends on the training image set being able to 

recover the HR image, but this method generates more aliasing around the mouth and eyes, 

and that affect on the image quality. Therefore, the super resolved image by LID1 is better 

than the one enhanced by the existing dictionary LD-Sp although the LID1 as noticeably gen-

erates a relatively blurred image. In addition, the quality of the LID1 images is slightly higher 

than bi-cubic interpolation images. 

In summary, the above results reveal a significant improvement noticeable in SR images over 

the LR images as well as a greater improvement in resolution from the SR by LID1 dictionary. 
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  LR-Distance2                             LID1                               LID2                             GRM  

 
                       LD-Sp                        TCRM                         ROM                             BC 

 

 

             
  LR-Distance1                             LID1                                LID2                            GRM  

 
                           LD-Sp                           TCRM                             ROM                              BC 

Figure 6.12: Example 1, Comparison between SR approaches by different dictionaries and bi-cubic method to 

reconstruct the low-resolution images at three different distances from SCface database. 
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Figure 6.13: Example 2, comparison between SR approaches by different dictionaries and bi-cubic method to 

reconstruct the low-resolution images at three different distances from SCface database. 
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6.6 Summary and Conclusion 

Face images captured from surveillance video are usually of low quality and therefore it is 

hard to provide detailed information of face features. Super resolution based CS dictionary 

approaches have been presented to reconstruct an HR image from a single image for improv-

ing the recognition performance of LR images obtained from CCTV cameras. Comprehen-

sive experiments on images from SCface database that mimic real world conditions are per-

formed. Our results show that the SR dictionaries which do not need training images are suit-

able for application to surveillance footage and on the one hand are superior when compared 

to matching in LR process (Grgic, et al., 2011) whilst on the other hand are slightly higher 

than learning dictionaries in some cases. The artefacts that generated as a result, visually dis-

tracting to humans and are more effective on machine recognition algorithms. The rank-one 

identification recognition rates are still likely to be poor, despite the improvement provided 

by CS dictionary methods.  

Image super resolution should be carried out by using some a priori information about the 

degradations in the input LR images where with this information the solution to the recon-

struction problem can carry out easily. However, this information in general is not available 

for the surveillance image at a distance. Therefore, there is a need to develop a model of deg-

radation that encapsulate the distortion to the frequency domain of images captured by CCTV 

cameras at different distances, instead of using the approximation approach described above. 

The estimation of frequency domain distortion can be used for enhancements (i.e. remove 

distortion/blurring from the observed image) through inverting the appropriated frequency 

domain filter instead of the restoration technique that uses Weiner filter.  
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Chapter 7 
 

CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Conclusions 

Face recognition is one of the most desirable biometric-based identification or verification 

systems. It has a number of real world applications such as surveillance systems, law en-

forcement and airport security, where it is an important tool in crime fighting and robbery. 

The performance of face recognition degrades considerably when the input images are of 

low-resolution, of small size and have degraded quality, as is often the case for images taken 

by surveillance cameras or from a distance, where the decrease in resolution leads to losing 

discriminatory properties that distinguish one person from another.  

 

In this thesis, we investigated the problems related to degrade low-resolution face images of 

limited quality and how their influences on the whole face recognition system can be ad-

dressed by super resolution techniques based on the recently developed compressive sensing 

theory. The main aims of this thesis are to study and understand the properties of compressive 

sensing and use the gained knowledge to (1) develop various approaches to designing new 

super resolution dictionaries that satisfy the compressive sensing conditions and can be used 

to overcome the resolution limitation in the probe input images and create images with high-

resolution. (2) Test the performance of different overcomplete dictionaries such as exiting 

matrices and the proposed dictionaries to address the consequences of face recognition under 

uncontrolled conditions, and (3) test the need for using image sets which rely on a sufficiently 

large and representative range of face images for a sample of persons for constructing learn-

ing dictionaries. The work done and the achievements of this thesis can be summarized as 

follows: 

 

1. At the outset of this study, we reviewed the existing work in the literature regarding su-

per resolution techniques; compressive sensing and the sparse recovery based super res-

olution methods. The non-CS based iterative optimization method and the overcomplete 
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dictionaries constructed from image patches belonging to certain face image dataset 

have studied to improve image quality in the spatial domain from single or multiple de-

graded low-resolution images with different strengths of blur degradation. Moreover, 

we have also investigated the impact of super resolution methods to improve image res-

olution in the frequency domain by enhancing wavelet coefficients of the input low-

resolution image. The experiments demonstrated that the super resolution techniques in 

the spatial domain achieve better results in terms of measured quality. These results 

raised the following question: are the existing random dictionaries which are construct-

ed without using image database and guarantee the recovery of unique  -sparse signal 

able to improve image super resolution; this was investigated next.  

 

2. We proposed overcomplete super resolution dictionaries constructed based on compressive 

sensing theory and not depend on face image information as well as the various known ran-

dom matrices investigated to recover image with good quality from the degraded low-

resolution image, and the images patches dictionaries have been used for comparison. 

We first demonstrated that, the different super resolution dictionary methods in terms of 

image quality are able to reconstruct high-resolution images and produce superior re-

sults than the iterative method and bi-cubic resolution enhancement technique. Secondly, 

the performance of various dictionaries decreases with an increased level of blurring of 

the input low-resolution image. Thirdly, the random and proposed dictionaries produce 

similar, if not more, improvement than the existing dictionaries that depend on image 

patches, which leads us to the most important conclusion of removing the need face im-

age information in the training sets to construct dictionaries in terms of super resolution 

image quality. 

 

3. Motivations by the above observations and conclusions, we have investigated the use 

various super resolution dictionaries to construct full-face images in the spatial domain 

for face recognition under uncontrolled conditions and at a distance. The results demon-

strated that the various types of dictionaries could improve the performance of face 

identification and the pattern of accuracy is not depend on the feature extraction 

schemes, which the accuracy reached 100% for the LH, HL, and HH wavelet subbands 

in subset 2 and about 100% for PCA for one subset. In addition, the accuracy rates are 

not affected by different geometrical blurring degradation in the low-resolution image 

where the identification accuracy rates remain at the same level. However, the standard 
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interpolation technique could achieve best accuracy rates than the SR methods when the 

input low-resolution with slightly good quality (i.e. with low degradation). Therefore, 

the success of SR dictionary methods can be apparent when the low-resolution images 

are of poor quality. Moreover, the performance of dictionaries that do not rely on image 

patches firstly can yield significant improvement in accuracy rates than the matching in 

low-resolution without using super resolution techniques to the probe images and are 

much more apparent as the image quality deteriorates from mild to severe degradation. 

Secondly, it produces similar if not slightly better than the learnt images dictionaries. 

This confirms that the training images set to construct dictionaries are not necessary for 

face recognition systems.  

 

4. We have proposed learning overcomplete dictionaries that are generated based on the 

wavelet coefficients subbands of the training face images set as well as the various 

overcomplete dictionaries that are constructed in the spatial domain have investigated to 

super resolve the feature vectors that are extracted from the degraded low-resolution 

image for face recognition. Two models of blurring with different parameters used to 

obtain the degradation of the low-resolution image. We first demonstrated that the per-

formance of the proposed learning dictionaries in the wavelet domain outperform than 

the various overcomplete dictionaries in the spatial domain including the non-adaptive 

dictionaries that constructed without image information and the non-adaptive dictionar-

ies are not suitable for use in the frequency domain. However, the significant improve-

ment in terms of identification accuracy rates can be achieved by using different com-

pressive sensing dictionary methods for super resolve full-face image in the spatial do-

main. Where the accuracy rate for the various subbands in subset two ranges from a 

minimum of 78% to a maximum of 100% while, this range dropping to 46% (minimum) 

–  87% (maximum) when the different dictionaries are used to recover the feature vector 

of the LR images with severe degradation. Secondly, the level of blur degradation in the 

input LR image has a significant effect on the performance of SR dictionary methods to 

reconstruct the feature vectors LH3 and HL3 where the identification accuracy rates de-

crease with increased levels of blurring. Thirdly, there is a little difference in identifica-

tion accuracy rate between the various SR dictionaries in the spatial domain. 

On the other hand, SR dictionaries in both domains have also investigated to reconstruct 

the feature vector of the LR images from standard definition video camera for face 

recognition. Our results have demonstrated that the CS based super resolution dictionar-



Chapter 7: Conclusions and Future Research 

 

 157 

ies in the wavelet domain could obviate the need for costly high definition cameras for 

face recognition at a distance by super resolved LH3 wavelet subband of the images 

captured by less expensive standard definition cameras.  

 

5. Necessary and/or sufficient structural compressive sensing conditions of the overcom-

plete matrices that are relevant to the recovery of a sparse image from the degraded low-

resolution image have been studied. The Restricted Isometry Property has been investi-

gated for various overcomplete dictionaries and a number of statistical tests of numeri-

cal matrix parameters relevant to this condition have been conducted/and demonstrated 

that. The existing dictionary that is learned from face image is a highly ill-conditioned 

matrix where the condition number is high, equalling 1.00E+15 and far from satisfying 

the property of compressive sensing where the row rank condition is low, therefore the 

probability of finding linearly dependent columns is high in this matrix. However, the 

new dictionaries that do not depend on face image information are well-conditioned ma-

trices and satisfy the necessary and sufficient compressive sensing property, where they 

have a reasonably low-condition number between             and with full row rank.   

 

6. The earlier results inspired us to go further to investigate the influence of compressive 

sensing and super resolution techniques for addressing surveillance images from CCTV 

camera’s, where the quality of the surveillance images are affected by a complex set of 

factors including variations in resolutions, illumination and poses. The distor-

tion/degradation of CCTV images in general is unavailable and difficult to model as 

well as these images have poor contrast. Hence, in this thesis contrast measure and envi-

ronmental degradation function was investigated to approximate the unknown degrada-

tion model for super resolution schema. Our results confirmed and provided strong evi-

dence that the compressive sensing theory can be able to develop a face recognition 

scheme without using a training image set to construct super resolution dictionaries. The 

overcomplete dictionaries that do not need training images produced better results in 

terms of quality measure and in identification accuracy rates than learnt dictionaries 

based on a training database and also than the standard interpolation method. In addition, 

the identification accuracy reached 65% in rank15 when the LL wavelet subband was 

used as the feature vector, which is higher than the existing matching without using the 

SR method. 
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7.2 Future Research Directions 

The work reported in this thesis, not only demonstrated the viability of non-adaptive com-

pressive sensing dictionaries & super resolution to overcome the problem of small size low-

resolution images and improve face recognition under uncontrolled conditions. However, also 

highlights several potential research directions to be explored in the future. Some examples of 

future research directions are listed below: 

 

 More investigations and experiments need to be conducted to reconstruct a high-

resolution image from a single or multiple low-resolution images by using another 

class of structured random dictionaries that does not depend on the training images 

such as Random Partial Fourier matrices and Bernoulli Random matrices for face 

recognition.  

 

 Uncontrolled condition may arise due to facial expression changes from one or more 

motion of the muscles of the face such as happiness, fear, anger, sadness or surprise. 

Where humans are capable of showing their feelings and may be unaware that the 

surveillance cameras are recording their facial images. These motions adversely affect 

face image appearance, which leads to large differences between face images of the 

same person and deterioration image quality. We shall, in our future work, use super 

resolution dictionaries to overcome the problems of the different situations of a hu-

man face due to the expression variation in uncontrolled conditions.       

   

 The initial results of super resolution technique based on dictionaries that are not de-

pendent on a training image set to overcome the problem of low-resolution image 

from CCTV cameras for face recognition show promising results. However, identify-

ing an individual from CCTV cameras remains an extremely challenging problem. 

Therefore, further investigation and experiment is needed to improve identification re-

sults. Using super resolution dictionary methods to reconstruct the face regions such 

as eye, nose & mouth region instead of full image and fusion at the feature level of the 

feature vectors is extracted from the reconstructed regions to improve face recognition. 

In this respect, we need to have an open mind in using different feature extraction 

techniques for different facial regions, and fusion may test at different levels such as 

score level and decision level. 
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 The rather disappointing accuracy results achieved when the non-adaptive dictionaries 

were used to super resolve the wavelet face feature vectors, as compared to the LD-

WD, which was trained on wavelet subbands of HR images, reveal the need to devel-

op non-adaptive dictionaries that are compatible with the structure of wavelet sub-

bands.   

 

 The limited set of experiments to make observations on the structure of the Fourier 

spectrum show the need to develop a model of degradation that encapsulate the distor-

tion to the frequency domain of images captured by CCTV cameras at different dis-

tances, instead of using the approximation approach described in chapter 6. The esti-

mation of frequency domain distortion can be used for enhancements (i.e. remove dis-

tortion/blurring from the observed image) through inverting the appropriated frequen-

cy domain filter instead of the restoration technique that uses Weiner filter. In the fu-

ture work, we will try to develop models of degradation in the frequency domain 

based on the degradation of the Fourier spectrum of available LR images by design-

ing/ or developing special filters in the frequency domain for image enhancement.  

 

 Address the problem of face recognition from CCTV cameras by developing the per-

formance of CS based SR method to recover an HR image from more than one LR 

image of the same subject from different cameras by using image registration tech-

nique. Image restoration will be used for fusion or combine two face images, hence 

the beginning step of CS dictionaries based SR method is to determine the relative 

shifts between the LR images and each pixel of each LR image is put into one particu-

lar image based on the restoration information.  

 

 The problems that image inpainting deals with have many common characteristics 

with the problem of low resolved and low quality images. An interesting future inves-

tigation we intend to conduct would include the development and testing of a hybrid 

scheme that combines current inpainting solution with CS-based super-resolution 

techniques. Some existing inpainting techniques (Bertalmio, et al., 2000), 

(Tschumperle & Deriche, 2005) that used to fill in missing certain region/hole in an 

image introduced some blurring effects when the missing regions are filled in is large, 

and since the quality of the inpainted image has a critical impact on the quality at the 
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final resolution. The author of this thesis strongly believes that the super resolution 

dictionary methods, which differ from the inpainting techniques where the missing 

region in the super resolution is spread across all images, could be used to improve 

image resolution reconstructed from inpainting technique.  

 

 Use compressive sensing dictionaries and super resolution in the spatial domain for 

other biometric traits. For example, one can investigate the use of compressive sens-

ing based super-resolution for deteriorated fingerprint images in forensic applications. 

We can also attempt to reconstruct full iris images that are recorded at a distance with 

low-resolution as well as trying to apply various dictionaries to super-resolve the fea-

ture vectors for iris recognition.   
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APPENDIX 

 

A Performance of Wavelet-based Face Identification on Super Resolved 

Image from UBHSD database 

 

Gallery    Probe 

Set        Set 

SR 

methods 

Gallery Image Range 

Range1 Range2 Range3 Range4 

SD128      SD64 

LD-Sp 66.87 65.83 65.83 62.70 

LID1 66.66 65.62 65.41 62.50 

GRM 66.47 65.93 65.03 62.70 

TCRM 66.87 65.83 65.63 62.70 

LID2 66.87 65.62 65.83 62.50 

ROM 66.66 65.62 65.62 62.70 

BC 66.87 65.62 65.83 62.50 
 

SD64      HD128 

LD-Sp 68.12 62.70 61.45 61.87 

LID1 68.33 62.70 61.45 61.87 

GRM 68.12 62.70 61.45 61.87 

TCRM 68.33 62.70 61.45 61.87 

LID2 68.33 62.70 61.45 61.87 

ROM 68.12 62.70 61.45 61.87 

BC 68.33 62.72 61.40 61.87 
 

HD128      SD64 

LD-Sp 59.58 62.29 64.58 66.87 

LID1 59.37 62.29 64.37 66.45 

GRM 59.46 62.50 64.79 66.66 

TCRM 59.58 62.50 64.58 66.66 

LID2 59.37 62.50 64.79 66.45 

ROM 59.37 62.29 64.37 66.45 

BC 59.58 62.50 64.58 66.66 
 

SD64      SD64 

LD-Sp 67.08 65.62 65.41 63.12 

LID1 66.66 65.62 65.20 62.91 

GRM 67.08 66.04 65.41 63.12 

TCRM 67.08 68.83 65.20 63.12 

LID2 67.08 68.04 65.20 63.12 

ROM 66.87 65.41 65.41 62.70 

BC 66.87 68.04 65.20 62.70 

Table A.1: Recognition accuracy rates (%) for the UBHSD database using different SR dictionaries to super 

resolve Full--face image, based on LL3 subband. 
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Gallery    Probe 

Set        Set 

SR 

methods 

Gallery Image Range 

Range1 Range2 Range3 Range4 

SD128      SD64 

LD-Sp 69.37 69.16 69.79 58.75 

LID1 69.37 69.16 69.58 58.54 

GRM 69.16 69.37 69.58 58.54 

TCRM 69.58 69.37 69.79 58.95 

LID2 69.37 69.16 69.58 58.95 

ROM 69.58 69.16 69.37 58.75 

BC 69.16 69.16 69.58 58.54 
 

SD64      HD128 

LD-Sp 69.37 63.33 73.33 61.45 

LID1 68.95 63.54 73.95 61.04 

GRM 69.16 63.95 74.16 61.04 

TCRM 69.16 63.54 74.16 61.04 

LID2 69.37 63.33 73.95 61.45 

ROM 69.16 63.54 74.58 61.25 

BC 69.37 63.33 73.33 61.45 
 

HD128      SD64 

LD-Sp 65.41 69.58 64.58 68.95 

LID1 65.83 69.58 64.79 69.16 

GRM 65.04 69.75 64.56 69.16 

TCRM 65.83 70.20 64.79 69.37 

LID2 65.83 69.58 64.79 68.95 

ROM 65.41 69.58 64.79 68.95 

BC 65.41 69.58 64.58 68.95 
 

SD64       SD64 

LD-Sp 69.58 68.12 69.79 60 

LID1 69.58 68.54 69.58 59.16 

GRM 69.58 68.12 69.79 60 

TCRM 69.79 68.54 69.79 59.90 

LID2 69.58 68.12 69.58 60 

ROM 69.16 68.33 69.16 59.37 

BC 69.79 68.12 69.58 59.37 

Table A.2: Recognition accuracy rates (%) for the UBHSD database using different SR dictionaries to super 

resolve Full--face image, based on HL3 subband. 
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Gallery    Probe 

Set        Set 

SR 

methods 

Gallery Image Range 

Range1 Range2 Range3 Range4 

SD128      SD64 

LD-Sp 53.95 48.75 46.87 45.20 

LID1 53.12 49.37 46.66 45.41 

GRM 53.95 49.58 46.87 45 

TCRM 54.16 50 46.87 49.20 

LID2 53.12 49.37 46.66 45 

ROM 53.54 49.58 46.45 45.41 

BC 53.95 48.75 46.66 45.20 
 

SD64      HD128 

LD-Sp 57.91 47.50 44.79 40.62 

LID1 57.91 48.75 45.41 41.04 

GRM 57.50 47.08 46.04 40 

TCRM 57.29 48.12 45.20 40.62 

LID2 57.91 47.50 44.79 41.04 

ROM 57.50 47.29 45.83 41.25 

BC 57.91 48.75 46.04 40.62 
 

HD128      SD64 

LD-Sp 52.70 50.20 49.79 47.91 

LID1 53.54 50.62 50 47.91 

GRM 53.33 50.41 50.03 48.83 

TCRM 53.12 51.04 50 48.54 

LID2 53.54 51.04 50 48.54 

ROM 52.91 50.62 50.20 48.12 

BC 53.54 50.41 50 47.91 
 

SD64      SD64 

LD-Sp 54.58 48.95 46.66 42.91 

LID1 53.95 49.58 46.87 42.91 

GRM 54.79 49.79 46.87 43.54 

TCRM 69.79 68.54 69.79 59.90 

LID2 53.95 48.95 46.87 43.54 

ROM 54.58 49.37 46.87 44.58 

BC 54.79 49.79 46.87 42.91 

Table A.3: Recognition accuracy rates (%) for the UBHSD database using different SR dictionaries to super 

resolve Full--face image, based on HH3 subband. 
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B Performance of Face Identification on Super Resolved Feature Image 

from UBHSD database 

 

 

  

SD128 -Gallery & SD64 -Probe video data sets              SD64 -Gallery & HD128 -Probe video data sets 

 

HD128 -Gallery & SD64 -Probe video data sets              SD64 -Gallery & SD64 -Probe video data sets 

Figure B.1: Comparisons between different SR dictionaries that used for super resolve LL3 wavelet subband of 

the LR image from UBHSD data. 
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SD128 -Gallery & SD64 -Probe video data sets          SD64 -Gallery & HD128 -Probe video data sets 

  

HD128 -Gallery & SD64 -Probe video data sets          SD64 -Gallery & SD64 -Probe video data sets 

Figure B.2: Comparisons between different SR dictionaries that used for super resolve HL3 wavelet subband of 

the LR image from UBHSD data. 
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SD128 -Gallery & SD64 -Probe video data sets              SD64 -Gallery & HD128 -Probe video data sets 

 

HD128 -Gallery & SD64 -Probe video data sets              SD64 -Gallery & SD64 -Probe video data sets 

Figure B.3: Comparisons between different SR dictionaries that used for super resolve HH3 wavelet subband of 

the LR image from UBHSD data. 
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