
This is the accepted version of the following article: Yi-Cheng Zhu MD, Hongbo Du MSc, MPhil, Quan 

Jiang MD, Tao Zhang PhD, Xu-Juan Huang MD, Yuan Zhang MD,Xiu-Rong Shi MD,Jun Shan MD.,Alaa 

AlZoubi PhD. 2021 Machine learning asssisted doppler features for enhancing thyroid cancer 

diagnosis : a multi-cohort study. Journal of ultrasound in medicine. which has been published in final 

form at https://doi.org/10.1002/jum.15873. This article may be used for non-commercial purposes 

in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. 

 

 

 

https://doi.org/10.1002/jum.15873


Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer 1 

Diagnosis: A Multi-cohort Study 2 

Yi-Cheng Zhu, MD , Hongbo Du, MSc, MPhil, Quan Jiang, MD , Tao Zhang, PhD, Xu-Juan 3 

Huang, MD, Yuan Zhang, MD, Xiu-Rong Shi, MD, Jun Shan, MD., Alaa AlZoubi, PhD 4 

Abstract 5 

Background: This pilot study aims at exploiting machine learning techniques to extract colour 6 

Doppler Ultrasound (CDUS) features and to build an artificial neural network (ANN) model 7 

based on these CDUS features for improving the diagnostic performance of thyroid cancer 8 

classification. 9 

Methods: A total of 674 patients with 712 thyroid nodules (TNs) (512 from in-ternal dataset 10 

and 200 from external dataset) were randomly selected in this retrospective study. We used 11 

ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the 12 

automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral 13 

ratio, and number of vessels) and grey-scale Ultrasound (US) features defined by the ACR 14 

Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic 15 

performance of the model, the performance of another ANN model based on the grey-scale US 16 

features alone (TUS-Net), and that of radiologists. 17 

Results: The TDUS-Net (0.898, 95%CI: 0.868-0.922) achieved a higher area under the curve 18 

(AUC) than that of TUS-Net (0.881, 95%CI: 0.850-0.908) in the internal tests. Compared with 19 

radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists 20 

(AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. 21 

Conclusions: Applying a machine learning model by combining both gray-scale US features 22 



and CDUS features can achieve comparable or even higher performance than radiologists in 23 

classifying thyroid nodules. 24 

Keywords: Thyroid nodules; Ultrasound; Doppler Ultrasound; Machine Learning; Artificial 25 

Neural Network 26 
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Introduction 28 

The growth and progression of a malignant tumour largely depend on its blood flows1. 29 

Angiogenesis occurs in the thyroid during disease processes, including goitres, Graves’ disease, 30 

thyroiditis, and cancer2. The multiplicity of vessels and disordered patterns can be detected by 31 

non-invasive colour Doppler ultrasonography (CDUS). CDUS images contain blood flow 32 

information over the entire area of the grey-scale ultrasound (US) image. This technique can 33 

detect the abnormal vascularity associated with thyroid cancer, which ranks ninth in global 34 

cancer incidence3. However, as with the current clinical practice, colour signals in CDUS 35 

thyroid images can only be evaluated subjectively or semi-subjectively4,5, which may lead to 36 

intra- and inter- observer variability that in turn has limited the wider use of CDUS as a routine 37 

clinical tool. Therefore, an automatic and accurate quantitative criterion of tumour vascularity 38 

analysis becomes crucial for accurate cancer diagnostics. 39 

The development of computer-aided diagnosis (CAD) systems has arisen in recent decades as 40 

non-invasive methods to supplement radiologists’ interpretation and over-come the subjective 41 

interpretation limitations6. Yoo et al. compared the diagnostic performance of an experienced 42 

radiologist, a CAD system alone, and the radiologist assisted by the CAD system in classifying 43 

thyroid cancer7. The results showed that visual interpretation by the radiologist had higher 44 

specificity (95.0%), while the sensitivity for both CAD and radiologist interpretation was 45 

comparable. However, Choi et al. evaluated the diagnostic performance of their CAD system 46 

and that of an experienced radiologist for differentiating malignant and benign thyroid nodules 47 

(TNs)8. They found that the CAD system, in general, achieved a slightly higher sensitivity 48 

(90.7%) than what the radiologist achieved (88.4%), whereas the radiologist achieved a higher 49 



specificity (97.4%) than that of CAD (71.8%). Nevertheless, the diagnosis of TNs using 50 

machine learning methods needs constant improvement and further studies.  51 

Currently, there are few research in investigating quantitative doppler features for up-lifting the 52 

diagnostic performance of thyroid cancer classification. Ardakani et al. evaluated seven gray-53 

scale US features and five CDUS features to classify hot and cold thyroid nodules using support 54 

vector machine algorithms. However, one of the CDUS features (vascularity pattern) were 55 

assessed by full visual estimation, which may not precisely reveal the value of vascularity 56 

pattern. Therefore, as a pilot study, this paper analyses the CDUS thyroid images for accurate 57 

thyroid cancer classification through three steps. Firstly, we developed automatic methods to 58 

detect and extract different quantitative doppler features of the blood flow signals from CDUS 59 

images of TNs. Secondly, we used Artificial Neural Network (ANN) technique to build a model 60 

for malignant and benign TN classification using both the extracted doppler features and grey-61 

scale US features indicated by the ACR Thyroid Imaging Reporting and Data System (TI-62 

RADS) scores9. Finally, we evaluated the contribution (i.e. the added value) of the CDUS 63 

features in improving the diagnostic accuracy in differentiating malignant from benign TNs.  64 

Materials and Methods 65 

Study population 66 

A total of 489 patients (381 female and 108 male) with 512 TNs from Pudong New Area 67 

People’s Hospital (PNAPH) and a total of 93 patients with 100 TNs from Heqing Com-munity 68 

Healthcare Centre (HCHC) and 92 patients with 100 TNs from Jinyang Community Healthcare 69 

Centre (JYHC) were included in this retrospective multi-centre study. All the included nodules 70 

were selected on a random basis with 50% of benign TNs and 50% of malignant TNs. We used 71 



the data from PNAPH as the internal dataset and the data from HCHC and JYHC as the external 72 

dataset. All the included TNs underwent fine-needle aspiration biopsy (FNAB) and/or surgery 73 

pathology in one month after the US examinations. TNs with benign cytologic results received 74 

follow-up for more than 6 months. Exclusion criteria applied include 1) nodules with cytologic 75 

results of equal to or higher than Category 4 Bethesda grading and without pathology 76 

confirmation after surgery; 2) lack of a complete record of conventional US images and/or 77 

colour Doppler images; and 3) nodules with Hashimoto’s disease. The patient selection 78 

workflow is shown in Figure 1. The mean age of the patients in the internal dataset and external 79 

dataset was 52.28 ± 12.48 years (29-85 years) and 53.31 ± 12.74 years (29-85 years) 80 

respectively. The ethics committees of the centres involved (PNAPH, HCHC and JYHC) 81 

approved this study and waived the requirement for written informed consent due to the nature 82 

of the retrospective study. The ethics committee of the University of Buckingham also approved 83 

this pilot study with the centres as the third-party data provider. 84 

Scanning technique 85 

US machines of four different brands (i.e., Siemens, GE, Philips, and Toshiba) were used for 86 

the acquisition of the internal and external datasets. Grey-scale US and CDUS examinations 87 

were performed with the same machines. A 5-15 MHz linear transducer was applied for both 88 

grey-scale imaging and CDUS imaging. All examinations were conducted by the same 89 

radiologist with 5 years of experience in thyroid grey-scale US and CDUS for the internal 90 

dataset. The examinations of the external datasets were conducted by one radiologist with more 91 

than 15 years of thyroid ultrasound experience in HCHC and one radiologist with more than 15 92 

years of thyroid ultrasound experience in JYHC respectively.  93 



All patients were asked to lie in a supine position, with their necks slightly extended. Transverse 94 

and longitudinal US images were acquired for every TN. Grey-scale US features, such as size, 95 

shape, echogenicity, margin, calcifications, halo sign, and composition, were captured and 96 

assessed. Two radiologists with over 10 years of experience in thyroid US imagery graded each 97 

TN in consensus based on the ACR TI-RADS classification scheme for both internal and 98 

external datasets. In cases of disagreement, a senior radiologist with enriched experience 99 

(longer than 15 years) in thyroid US imagery was consulted, and the final TI-RADS 100 

classification was agreed upon. The CDUS settings were chosen to optimize sensitivity to low-101 

velocity and low-volume blood flow signals. The region of interest (ROI) on each US image 102 

was scanned slowly with minimum probe pressure. All the US and CDUS images were recorded 103 

and stored in our internal database in JPG format. 104 

Automatic Colour Doppler Feature Extraction  105 

We stored all US thyroid images in our internal database for analysis. All CDUS measurements 106 

were limited to the ROIs of the examined TNs. A software tool written in MATLAB (version 107 

2019b; MathWorks Inc., Natick, MA) was developed to support this study. The tool has two 108 

main functions: (a) to enable manual cropping and segmentation of ROI, and (b) to quantify the 109 

Doppler signals within the ROI. The ROI was extracted by cropping the nodular region from 110 

the CDUS image for an accurate ratio estimation. We developed a free-hand cropping tool for 111 

function (a) that enables the radiologist (user) to locate and click, on the edge of the nodule 112 

boundary, a collection of points 𝑿′ = {(𝒙′, 𝒚′)𝟏, (𝒙′, 𝒚′)𝟐, … , (𝒙′, 𝒚′)𝒎}   to extract the ROI. 113 

Using the software tool, one radiologist with more than 5 years’ experience in thyroid US 114 

cropped all ROIs manually. Afterwards, a senior radiologist with more than 15 years of 115 



experience in thyroid imaging checked the cropped images. 116 

Vascularity Ratio Estimation 117 

The second main function (b) extracts the “ratio of vascular flow areas” within the ROI of each 118 

CDUS image through the following steps. First, pixels of various colours are detected and 119 

segmented from grey-scale pixels. The CDUS image contains blood flow information in terms 120 

of pixels of colours made from the three primary colours: red, blue, and green. We studied the 121 

intensity values in the three channels (RGB) of each pixel at the identified points located inside 122 

or on the edge of the nodule region and then identified the coloured pixels. The original CDUS 123 

image was read in RGB format as 𝑰 = {𝑹, 𝑮, 𝑩} . The coloured pixel has an inequivalent 124 

intensity distribution across the RGB channels. That enabled us to subtract the intensity values 125 

of a pixel in the red and blue channels from the value in the green channel in determining 126 

whether their difference was large enough to be considered as a coloured pixel. This analysis 127 

was run on every pixel I(x,y) on the studied CDUS image I within the identified ROI as 128 

𝒊𝒔𝑪𝒐𝒍𝒐𝒖𝒓𝒆𝒅(𝑰(𝒙,𝒚)) ∶=  {

   𝟏   𝒊𝒇 |𝑮(𝒙,𝒚) − 𝑹(𝒙,𝒚)| > 𝒕𝒉𝒓

   𝟏   𝒊𝒇 |𝑮(𝒙,𝒚) − 𝑩(𝒙,𝒚)| > 𝒕𝒉𝒓

   𝟎   𝒆𝒍𝒔𝒆                                      

 129 

where 𝑡ℎ𝑟 referred to a threshold that defined the minimum tolerance on the colour difference 130 

and can be defined empirically (𝑡ℎ𝑟 is set to 48 in the present study). 131 

A bit-map can be derived from this function which determines the coloured areas within the 132 

ROI. We have further performed closing morphological operation with a 2-pixel disk 133 

structuring element in closing the narrow bright boundaries caused by the blood flow vortex. 134 

The flag value of each pixel within the ROI after the closing morphological operation was 135 

denoted as 𝑖𝑠𝐶𝑜𝑙𝑜𝑢𝑟𝑒𝑑(𝑥, 𝑦)′. As we marked Xwhole as a set of all pixel coordinates within the 136 



ROI, the total vascularity ratio (VRwhole) was eventually calculated as the ratio of the coloured 137 

area against the entire ROI area. 138 

𝑉𝑅whole =  
∑ 𝑖𝑠𝐶𝑜𝑙𝑜𝑢𝑟𝑒𝑑(𝐼(𝑥,𝑦))′(𝑥,𝑦)∈𝑋whole

|𝑋whole|
 139 

Estimation of Vascularity Location (peripheral and intra-nodular areas) 140 

The correlation between increased central or peripheral vascularity and thyroid cancer is 141 

somehow controversial. Some researchers suggested that increased central vascularity is a 142 

supporting feature of thyroid cancer10-12, whereas others did not find any relationship between 143 

intra-nodular blood flow signals and thyroid malignancy13,14. Therefore, it is interesting to 144 

investigate whether useful features regarding blood flow locations may provide any added value 145 

in identifying thyroid cancers. To determine the blood flow in different regions of each TN, the 146 

primary ROI was then divided into peripheral and intra-nodular areas. We proposed an objective 147 

method to determine the peripheral and intra-nodular regions by defining appropriate “offsets”. 148 

“Offsets” is adopted to adjust the region areas without distorting the overall shape and contour 149 

of the ROI. The inner part refers to the core region (called as “intra-nodular area”) of the 150 

primary ROI, while the outer part is the peripheral of the primary ROI (called as “peripheral 151 

area”) (Figure 2). The offset changed as a percentage of the largest diameter of the primary ROI. 152 

In this study, we tried a range of offsets in 1% increments. In principle, the percentage of offsets 153 

could be set from 1% to 99%. However, we did not exceed the offsets of 25% because previous 154 

study indicated that a 10% offset is already sufficiently indicative15. Nevertheless, we 155 

conducted this sensitivity analysis to evaluate the existing claim and probe the optimal offset 156 

for this study. At each offset level, the whole ratio (percentage of blood flow in an entire nodule), 157 

intranodular ratio (rate of blood flow in the intranodular area of a nodule), and peripheral ratio 158 



(rate of blood flow in the peripheral area of a nodule) were measured. The final optimum offsets 159 

(21%) were determined by using Mann-Whitney analysis when all P values of whole ratio, 160 

intranodular ratio, and peripheral ratio resulted in the most significant difference (P <0.05) 161 

between benign and malignant TNs. 162 

Vascularity Number Estimation 163 

Vascularity density is considered to have a high correlation with tumour angiogenesis16,17. 164 

Therefore, whether the density of blood flow signals within the thyroid nodules is a significant 165 

influencer of malignancy is under our investigation. We introduced one final CDUS feature, 166 

called the “number of vascularity”. We calculated the number of the connected components on 167 

the bit-map of detected blood flow areas, with a connectivity of 8. This feature reflects various 168 

ways blood flow activities are distributed within the nodule area even it is quite constrained 169 

within a 2D slide image. 170 

Eventual Doppler Feature Vector 171 

We compose the colour Doppler features: i.e. whole ratio, intranodular ratio, peripheral ratio, 172 

and number of vascularity as explained above, into a combined feature vector of four 173 

dimensions. In the experimental studies to be presented later, we further combine these features 174 

with TI-RADS features for building an enhanced classification model. 175 

Developing ANN-based Thyroid Cancer Recognition Models 176 

In this study, we used a neural network classifier for malignant and benign thyroid nodule 177 

recognition. Before building the network, we adopted data normalisation as follows. Each of 178 

the dimensions in the feature derived was normalised into a range of [0,1] by using the Min-179 

Max rescaling (division by range). The general normalisation formula is: 180 



𝑧′ =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
 181 

where z and z’ denote the feature value before and after the normalisation in respective and 182 

[𝒛𝒎𝒊𝒏, 𝒛𝒎𝒂𝒙] denotes the range of the feature. As both the TI-RADS scores and the vascularity 183 

features were designed to have a minimum value of 0, the formula was further simplified as 184 

𝒛′ =
𝒛

𝒛𝒎𝒂𝒙
 . 185 

The network, by nature, acted as a regression solver in finding the best fitting function from the 186 

input neurons to the output neurons. We adopted a shallow feedforward network with tan-187 

sigmoid transformation functions in the hidden layers and linear transformation function in the 188 

output layer. The generic ANN architecture consisted of an input layer of the size L (where L = 189 

5, 6, 7, or 9, see later), a hidden layer with 10 neurons and an output layer of two neurons which 190 

produced the sigmoid likelihoods of the nodule for being malignant and benign, respectively. 191 

We used the skilled conjugated gradient back-propagation method, the Gauss-Newton 192 

algorithm, and gradient descent to train the network thyroid models. 193 

Using the generic architecture as designed earlier, we further trained two network models for 194 

comparing the proposed CDUS features against the gray-scale US ACR TI-RADS features. The 195 

first network model (TUS-Net) adopted the 5 normalized TI-RADS scores (based on 196 

radiologists’ interpretations of the US images) as the inputs. The second network model 197 

(TDUS-Net) took the combination of the 5 normalized TI-RADS scores and the 4 CDUS 198 

features (Figure 3) as the input. Figure 4 outlines the network model structures. We used 10-199 

fold cross-validation in analysing the performance of the classifier. In other words, the given 200 

data set was divided into 90% for training and validation and 10% for testing for each fold. 201 

Statistical Analysis 202 



Statistical analysis was performed by using SPSS software (version 24.0; SPSS, Chicago). 203 

Grey-scale US characteristics and vascularity variances between malignant and benign TNs 204 

were evaluated using the chi-square test or Student’s t-test. Categorical variables were 205 

compared using the nonparametric Wilcoxon Mann-Whitney U test, and continuous variables 206 

were compared using the independent t-test. Receiver operating characteristic (ROC) analysis 207 

was used to obtain the cut-off value of the diagnostic performance of radiologists, TUS-Net and 208 

TDUS-Net. The statistical differences between the diagnostic performance of radiologists, 209 

TUS-Net and TDUS-Net was evaluated by DeLong Test. Significance was defined as P <0.05. 210 

Results 211 

Baseline and B-mode ultrasonic features 212 

Of the 512 nodules, 256 (50.0%) were benign, and 256 (50.0%) were malignant. There was no 213 

significant difference in sex distribution between patients with benign and malignant TNs (P 214 

=0.20). The average diameter was 15.75 ± 8.41 mm (mean ± SD; range, 3.2-69.3 mm) for the 215 

internal dataset, whereas the average diameter was 15.50 ± 8.66 mm (range, 2.8-45.29 mm) for 216 

the external dataset. There was no significant difference in size between the 2 groups (internal 217 

dataset: P =0.051; external dataset: P=0.147). Lobulated or irregular margins were more 218 

common in malignant TNs, which had a solid or almost completely solid composition and a 219 

taller-than-wide shape ratio (P <0.001 for all) (Table 1). Benign TNs tended to have smooth 220 

margins and wider-than-tall shape ratio (P <0.001 for all). 221 

Doppler features 222 

The blood flow whole ratio and ratio of vascularity at different locations of the 512 nodules and 223 

200 external test nodules were reported in Table 2. Objectively, 3% of external test benign 224 



nodules and 15.2% of 512 benign nodules showed no detectable flow, whereas 7% of external 225 

test malignant nodules and 12.1% of malignant thyroid nodules were absent with blood flow 226 

signals. The ratio of displayed vascularity was significantly different between benign and 227 

malignant TNs. In the internal dataset, the mean blood flow whole ratio of benign nodules was 228 

12.51±16.82, whereas the mean blood flow whole ratio of malignant nodules was 5.03±8.78 229 

(P<0.001) (Table 2). The intranodular ratio of benign thyroid nodules (11.12±15.41) was higher 230 

than that of malignant thyroid nodules (4.45±8.01) (P<0.001). There was also a significant 231 

difference in the peripheral ratio be-tween benign and malignant TNs (P<0.001). In the external 232 

dataset, the whole ratio of benign nodules (20.58±21.69) were more than two times higher than 233 

that of malignant nodules (8.55±11.88) (P<0.001). Both the intranodular ratio and peripheral 234 

ratio of benign nodules were significantly higher than that of malignant nodules. (all P<0.001) 235 

(Table 2). The ratio of vascularity displayed was not correlated with nodule size in either 236 

malignant TNs (R=-0.069, P =0.269) or benign TNs (R=-0.044, P =0.484). 237 

There was a negative relation between the number of vessels and thyroid cancer (R=-0.92, P 238 

=0.037). The more vascularity a thyroid nodule had, the less likely it was a malignant thyroid 239 

nodule (Figure 5). The mean number of vascularity in 256 malignant nodules and 256 benign 240 

nodules was 5.17±5.78 and 16.26±8.43, respectively. There was also a negative correlation 241 

between the number of vascularity and malignant TNs (R=-0.182, P =0.010) in the external 242 

dataset. The mean number of vascularity in 100 malignant nodules and 100 benign nodules was 243 

5.43±5.00 and 7.86±7.14. Both results confirmed a statistically sig-nificant difference regarding 244 

the number of vessels between malignant and benign TNs (internal dataset: P =0.037, external 245 

dataset: P =0.011). 246 



Comparison of the diagnostic performance between TUS-Net, TDUS-Net and radiologists 247 

In the internal dataset, the TDUS-Net achieved a higher sensitivity (79.18%), specificity 248 

(89.88%), and accuracy rate (84.59%) than that of TUS-Net (sensitivity:77.84%, specifici-249 

ty:87.8%, and accuracy rate:83.21%). The area under the curve (AUC) of TDUS-Net and TUS-250 

Net was 0.898 (95% CI: 0.870-0.926), and 0.881 (95% CI: 0.850-0.908) respectively. There 251 

was a statistically significant difference between TDUS-Net and TUS-Net (P =0.0491). The 10-252 

fold cross validation results were shown in Table 3. Among the 10-fold results, Model 8 253 

achieved a higher performance with a sensitivity of 91.67%, a specificity of 96.30%, and an 254 

accuracy rate of 94.12%. In addition, Model 8 achieved the most balanced sensitivity and 255 

specificity performance. Therefore, we selected and evaluated TDUS-Net model 8 on the 256 

external test set. The TDUS-Net in the external dataset achieved a sensitivity of 78.00%, a 257 

specificity of 95.00%, and an accuracy of 86.50% (Figure 6). 258 

Regarding the diagnostic performance of radiologists, the radiologist B with 10 years’ 259 

experience achieved a higher sensitivity (78.91%), specificity (92.58%), and accuracy (85.74%) 260 

in the internal dataset than the radiologist with 5 years’ experience (68.17%, 79.49%, and 73.73% 261 

respectively). For the external test datasets, the TDUS-Net achieved the highest sensitivity 262 

(78.00%), specificity (95.00%), and accuracy (86.50%), followed by the radiologist with 10 263 

years’ experience (sensitivity: 73.00%, specificity: 89.00%, and accuracy: 81.00%), the average 264 

performance of the radiologists (sensitivity: 71.00%, specificity: 82.00%, and accuracy: 265 

76.50%), and the junior radiologist A (sensitivity: 69.00%, specificity: 75.00%, and accuracy: 266 

72.00%) (Table 4). The senior radiologist achieved a higher specificity (92.58%) and accuracy 267 

(85.74%) than the TDUS-Net for the internal dataset. There was statistically significant 268 



difference between TDUS-Net and the average performance of the radiologists (P =0.0001), 269 

and between TUS-Net and the average performance of the radiologists (P = 0.0014). Compared 270 

with the less experienced radiologists, the TDUS-Net achieved higher performance in 271 

classifying thyroid cancers in both internal and external dataset. 272 

Discussion 273 

This retrospective pilot study showed that the TDUS-Net model reached the competitive or 274 

even better diagnostic performance of the experienced radiologists, with slightly higher 275 

sensitivity in the internal dataset (AUC of 0.898 [95%CI: 0.868-0.922]) and sig-nificantly 276 

higher sensitivity, specificity, and accuracy in the external dataset (AUC of 0.925 [95%CI: 277 

0.880-0.958)). Furthermore, we investigated whether colour Doppler can provide the additional 278 

value to uplift the diagnostic performance. Our results indicated that compared to the use of 279 

grey-scale US alone (TUS-Net), TDUS-Net had a higher di-agnostic performance than TUS-280 

Net in terms of sensitivity, specificity, and accuracy (TDUS-Net: 79.18%, 89.88%, 84.59%; 281 

TUS-Net: 77.84%, 87.8%, 83.21%). To the best of our knowledge, this is the first multi-centre 282 

research to investigate the added value of CDUS in classifying thyroid cancers.  283 

CDUS is a technique used to evaluate tumour vascularity and has been largely used as a 284 

diagnostic tool for distinguishing benign and malignant TNs18. That may be due to the finding 285 

that the survival and growth of malignancies depend largely on the available blood supply19. 286 

Because vascularity in malignant thyroid nodules may have marked differences from that in 287 

benign nodules20,21, it is vital to quantify vascularisation. Intra-observer and inter-observer 288 

variabilities were commonly found in vascularity analysis since only subjective or 289 

semiquantitative assessment methods have been adopted in clinical practice22,23. A semi-290 



objective study was developed and presented by Cosgrove et al. to identify the vascularity 291 

quantity of breast nodules with a vascular score24. Their results showed that the presence of 292 

dramatically abnormal blood flow was correlated with malignant breast tumours in terms of 293 

both the number of vessels as well as the flow velocity and pattern within the malignancies. 294 

Fein et al. established a new approach for quantifying vascularity in tumours25. They adopted a 295 

computer-assisted image analysis system to calculate three colour Doppler parameters, known 296 

as the ratio of colour pixels in the ROI (CPD), ratio of pixels with the limit colour indicating 297 

the non-identification of pixels (LCD), and the average of all absolute colour values (MCV). 298 

Their method was better than the approach of colour pixel counting reported by Cosgrove et 299 

al.24 and had a faster speed and more accurate diagnostic accuracy in classifying malignant and 300 

benign nodules. However, the limitations of that method were also noticeable. For example, 301 

colour values may not match the correct flow velocity due to aliasing, which affected the 302 

accuracy of MCV using a low-scale maximum. In addition, the noise was another influential 303 

limitation. In other words, some colours lack corresponding blood flow signals in the image, 304 

which may also affect the accuracy of the vascularity evaluation. Fukunari et al.26 developed a 305 

4-grade scale to evaluate vascularity in benign TNs and thyroid follicular carcinomas. A total 306 

of 7.9% of adenomatous nodules showed grade 4 (moderate to rich) blood flow signals, whereas 307 

40.9% of follicular carcinomas showed moderate to rich blood flow signals. The results 308 

contradicted ours because only follicular carcinomas were included in their study. In contrast, 309 

our study was not limited to follicular thyroid carcinoma, but included two additional types of 310 

malignant TNs, and therefore closer to the clinical reality. 311 

This study proposed an entirely objective method to extract colour Doppler features in thyroid 312 



nodules through using Computer Vision techniques. Four quantitative Doppler features, namely, 313 

whole blood flow ratio, blood flow ratio in the peripheral area, blood flow ratio in the 314 

intranodular area, and the number of vascularity, were investigated. Kim et al.27 roughly defined 315 

the blood flow locations shown on colour Doppler US images as scant, peripheral, central, and 316 

mixed type. The peripheral type referred to those presented with more blood flow signals in the 317 

peripheral area than those in the central area, and the central type was vice versa. Their study 318 

claimed no statistically significant difference in the central and peripheral colour Doppler 319 

features in benign and malignant thyroid nodules. Only one malignant and one benign nodule 320 

in their study was categorised as the central type and peripheral type blood flow. However, their 321 

study only included 27 solid, round, isoechoic thyroid nodules. The study sample was rather 322 

small and did not represent variety of nodules. Our study showed that more blood flows were 323 

found in benign nodules than in malignant nodules in terms of the whole ratio, blood flow ratio 324 

in the peripheral area, and blood flow ratio in the intranodular area (all P<0.001). This was the 325 

first study to calculate the number of vessels in a full objective way. In previous studies, 326 

semiquantitative methods such as Adler’s classification was widely adopted in visually 327 

counting the number of vessels in breast nodules28, solid renal tumors29, soft tissue tumors30, 328 

cervical cancer31, and thyroid nodules32. Xia et al.32 adopted Alder’s classification to divide the 329 

number of vascularity in thyroid nodules into four categories, namely, grade 0 (no blood vessel), 330 

grade I (low blood flow with rod-like blood flows), grade II (medium blood flow with 3-4 blood 331 

vessels and at least one blood vessel is longer than the radius of the nodule), and grade III (rich 332 

blood flow with ＞4 blood flow signals). This grading scheme is rather crude and heuristically 333 

defined. Their study showed the majority of malignant thyroid nodules presented low blood 334 



flows whereas the majority of benign nodules were absent with blood flow or had low blood 335 

flow, which indicated that there was no significant difference between malignant and benign 336 

TNs in terms of vascularity quantity. However, the results of our study revealed that there was 337 

a negative association between the number of vessels and thyroid cancer (R=-0.92, P =0.037). 338 

The more vascularity a thyroid nodule had, the less likely it was a malignant thyroid nodule. 339 

The way of calculating the number of vessels can explain the conflictions of the results between 340 

ours (100% objective) and Xia’s team (semi-subjective). 341 

The trained TDUS-Net in our study based on 5 TI-RADS features with the 4 CDUS features 342 

showed a promising diagnostic performance. The diagnostic performance of TDUS-Net was 343 

comparable to the skilled radiologists’ performance in the internal dataset and higher than that 344 

of radiologists in the external dataset tests regardless the radiologists’ experience. Previous 345 

studies confirmed the assistance of colour Doppler ultrasound in machine learning for 346 

improving other cancer diagnosis, such as breast cancer. Afaf et al.33 ex-tracted quantitative 347 

colour Doppler radiomics features (the vascular fractional area and blood flow velocity index) 348 

and further combined these two Doppler features with nine conventional ultrasound features in 349 

classifying breast cancer. Their model achieved a sensitivity of 96.9% and a specificity of 350 

76.8%. Wu et al.34 developed a machine learning model, which was based on nine quantitative 351 

grey-scale ultrasound features and three colour Doppler features. The three colour Doppler 352 

features were the fractional area of flow in the nodule, mean flow velocity, and flow volume in 353 

the nodule. Three vascularity features showed a statistically difference between triple-negative 354 

breast cancer and non-triple-negative breast cancer (p<0.05). The combined model showed the 355 

highest diagnostic performance of a sensitivity of 86.96% and a specificity of 82.91%. Similarly, 356 



our results also confirmed the added value of colour Doppler features in improving thyroid 357 

cancer diagnosis, but our Doppler features represent the amount of vascular activities in specific 358 

locations. 359 

Our study has certain limitations. First of all, although it is a multi-centre study, the scope is 360 

limited to reflect the pilot study nature, and hence the amount of data samples is still relatively 361 

small, especially with the external datasets. Secondly, the performance of our model is expected 362 

to increase by expanding the datasets to real-world data. The included data sample was balanced 363 

of 50% malignant nodules and 50% of benign nodules, whereas the real-world data would be 364 

more proportion of benign nodules and less proportion of malignant nodules. Thirdly, we only 365 

included thyroid nodules with pathological results confirmed by FNAB. However, in clinical 366 

practice, most benign nodules did not receive FNAB, which means a selection bias existed in 367 

our study. Also, manual ROI selection would also result in significant variability. Therefore, a 368 

larger real-world data sample with more thyroid cancer subtypes and innovative methods (such 369 

as automatic ROI selection) would be our future research.  370 

Conclusions 371 

In conclusion, the automatic extracted colour Doppler features can provide added value in 372 

differentiating benign and malignant thyroid nodules. Applying a machine learning model 373 

combining both conventional ultrasound features and colour Doppler features can reach 374 

comparable or even higher than radiologists in terms of sensitivity, specificity, and accuracy in 375 

classifying thyroid cancer. The improved technical performance has significant potential for 376 

enhancing the ability of radiologists in thyroid cancer diagnosis, especially for junior 377 

radiologists. 378 
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Figures 475 

Figure 1. Flowchart of patient selection in the study. 476 

 477 

 478 

Figure 2. Illustration of the segmentation of peripheral and intranodular regions of a thyroid 479 

nodule. (A) refer to the original ROI of a thyroid nodule; (B) refer to the secondary ROI 480 

obtained when defining the best n% offset; (C) refer to the intranodular regions of the thyroid 481 

nodule; and (D) refer to the peripheral area of the thyroid nodule. 482 

 483 

 484 



Figure 3. Illustration of 4 colour Doppler features. (upper) conventional ultrasound images; 485 

(left) number of vascularity; (the second left) whole ratio of blood flow; (the third left) blood 486 

flow ratio in peripheral areas; (right) blood flow ratio in intranodular areas. 487 
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 489 

Figure 4. Study workflow of building the TUS-Net and TDUS-Net. 490 



 491 

 492 

Figure 5. Number of vessels in malignant and benign thyroid nodules. 493 

 494 

 495 

Figure 6. Diagnostic performance of radiologists, TUS-Net, and TDUS-Net. 496 
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