QUASI-EINSTEIN METRICS ON HYPERSURFACE FAMILIES

STUART JAMES HALL

Abstract. We construct quasi-Einstein metrics on some hypersurface families. The hypersurfaces are circle bundles over the product of Fano, Kähler-Einstein manifolds. The quasi-Einstein metrics are related to various gradient Kähler-Ricci solitons constructed by Dancer and Wang and some Hermitian, non-Kähler, Einstein metrics constructed by Wang and Wang on the same manifolds.

1. Introduction

1.1. Motivation and definitions. This article is concerned with a generalisation of Einstein metrics that in some sense interpolates between Einstein metrics and Ricci solitons, namely, quasi-Einstein metrics.

Definition 1.1. Let M^n be a smooth manifold and g be a complete Riemannian metric. The metric g is called quasi-Einstein if it solves

$$\text{Ric}(g) + \text{Hess}(u) - \frac{1}{m} du \otimes du + \frac{\epsilon}{2} g = 0,$$

where $u \in C^\infty(M)$, $m \in (1, \infty]$ and ϵ is a constant.

It is clear that if u is constant then we recover the notion of an Einstein metric; we will refer to these metrics as trivial quasi-Einstein metrics. By letting the constant m go to infinity we can also recover the definition of a gradient Ricci soliton. In line with the terminology used for Ricci solitons, we will refer to the quasi-Einstein metrics with $\epsilon < 0$, $\epsilon = 0$ and $\epsilon > 0$ as shrinking, steady and expanding respectively.

There has been a great deal of effort invested in finding non-trivial examples of Ricci solitons on compact manifolds. However, they remain rare and the only known examples are Kähler. Due to work the work of Hamilton [13] and Perelman [19], non-trivial Ricci solitons on compact manifolds must be shrinking gradient Ricci solitons. The first non-trivial examples were constructed independently by Koiso and Cao on \mathbb{CP}^1-bundles over complex projective spaces [3, 15]. These examples were subsequently generalised by Chave and Valet [7] and Pedersen, Tønneson-Freidman and Valent [18] who found Kähler-Ricci solitons on the projectivisation of various line bundles.

\footnote{©2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/}
over a Fano Kähler-Einstein base. The reader should note that what we call
a Ricci soliton is referred to as a quasi-Einstein metrics in the papers [7] and [18]. Recently Dancer and Wang generalised these examples by constructing
some Kähler Ricci solitons on various hypersurface families where the hyper-
surface is a circle bundle over the product of Fano Kahler-Einstein manifolds [9]. The solitons found by Dancer and Wang were also independently con-
structed by Apostolev, Calderbank, Gauduchon and Tønneson-Freidman [1].

In the complete non-compact case Feldman, Ilmanen and Knopf [11] found
shrinking gradient Kähler-Ricci solitons on certain line bundles over \(\mathbb{CP}^n \).
Steady gradient Kähler-Ricci solitons were first constructed on \(\mathbb{C}^n \) by Cao [3] (the \(n = 1 \) case was first found by Hamilton [12]). Cao also found
steady gradient Kähler-Ricci solitons on the blow up of \(\mathbb{C}^n / \mathbb{Z}_n \) at the ori-
gin. Expanding gradient Kähler-Ricci solitons have been found by Cao on
\(\mathbb{C}^n \) [4] and by Feldman, Ilmanen and Knopf on the blow ups of \(\mathbb{C}^n / \mathbb{Z}_k \) for
\(k = n + 1, n + 2, \ldots, 11 \). Examples were also found by Pedersen, Tønneson-
Freidman and Valent on the total space of holomorphic line bundles over
Kahler-Einstein manifolds with negative scalar curvature [18]. As in the
compact case, these examples have been generalised by Dancer and Wang
who constructed shrinking, steady and expanding Kähler-Ricci solitons on
various vector bundles over the product of Kähler-Einstein manifolds [9].

In the recent work [6] Case suggested that there should be quasi-Einstein
analogues of Dancer-Wang’s solitons. He points out that the quasi-Einstein
analogue of Koiso-Cao, Chave-Valent and Pedersen-Tønneson-Freidman-
Valent type solitons was already constructed by Lü, Page and Pope [16].
The purpose of this article is to show that Dancer-Wang’s solitons indeed
have quasi-Einstein analogues. However it is better to think of these met-
rics as quasi-Einstein analogues of various Hermitian, non-Kähler, Einstein
metrics constructed by Wang and Wang on these spaces [20]. The Wang-
Wang Einstein metrics generalise a construction originating with Page [17]
and Berard-Bergery [2]. We now state the precise results we wish to prove.
Non-trivial steady or expanding quasi-Einstein metrics can only occur on
non-compact manifolds [14]. In the non-compact case we have the following
which is the quasi-Einstein analogue of theorem 1.6 in [20]:

Theorem 1.2. Let \((V_i, J_i, h_i), 1 \leq i \leq r, r \geq 3, \) be Fano Kähler-Einstein
manifolds with complex dimension \(n_i \) and first Chern class \(p_i a_i \) where \(p_i > 0 \)
and \(a_i \) are indivisible classes in \(H^2(V_i, \mathbb{Z}) \). Let \(V_1 \) be a complex projective
space with normalised Fubini-Study metric i.e. \(p_1 = (n_1 + 1) \). Let \(P_q \) de-
note the principal \(S^1 \)-bundle over \(V_1 \times \ldots \times V_r \) with Euler class \(\pm \pi_1^1(a_1) + \sum_{i=2}^{r} q_i \pi_i^1(a_i) \), i.e. \(q_1^2 = 1 \).

(1) Suppose \((n_1 + 1)|q_i| < p_i \) for \(2 \leq i \leq r \) then, for all \(m > 1 \), there
exists a non-trivial, complete, steady, quasi-Einstein metric on the
total space of the \mathbb{C}^{n_1+1}-bundle over $V_2 \times \ldots \times V_r$ corresponding to P_q.

(2) For all $m > 1$ there exists at least one one-parameter family of non-trivial, complete, expanding, quasi-Einstein metrics on the total space of the \mathbb{C}^{n_1+1}-bundle over $V_2 \times \ldots \times V_r$ corresponding to P_q.

For the compact case we have the following analogue of theorem 1.2 in [20].

Theorem 1.3. Let $(V_i, J_i, h_i), 1 \leq i \leq r, r \geq 3$, be Fano Kähler-Einstein manifolds with complex dimension n_i and first Chern class $p_i a_i$ where $p_i > 0$ and a_i are indivisible classes in $H^2(V_i, \mathbb{Z})$. Let V_1 and V_r be complex projective space with normalised Fubini-Study metrics. Let P_q denote the principal S^1-bundle over $V_1 \times \ldots \times V_r$ with Euler class $\pm \pi_1^* (a_1) + \sum_{i=2}^{r-1} q_i \pi_i^* (a_i) \pm \pi^* (a_r)$, i.e. $|q_1| = |q_r| = 1$.

Suppose that $|q_i|(n_1 + 1) < p_i$ and $|q_i|(n_r + 1) < p_i$ for $2 \leq i \leq r - 1$ and that there exists $\chi = (\chi_1, \chi_2, \ldots, \chi_r)$ where $|\chi_i| = 1, \chi_1 = -\chi_r = 1$ such that

$$\int_{-(n_1+1)}^{(n_r+1)} \left(\chi_1 x + \frac{p_1}{|q_1|} \right)^{n_1} \left(\chi_2 x + \frac{p_2}{|q_2|} \right)^{n_2} \ldots \left(\chi_r x + \frac{p_r}{|q_r|} \right)^{n_r} xdx < 0,$$

(1.2)

then, for all $m > 1$ there exists a non-trivial, shrinking quasi-Einstein metric on M_q, the space obtained from $P_q \times S^1 \mathbb{C}P^1$ by blowing-down one end to $V_2 \times \ldots \times V_r$ and the other end to $V_1 \times \ldots \times V_{r-1}$.

We remark that the Futaki invariant (evaluated on the holomorphic vector field $f(t) \partial_t$ in the notation of the next section) is given by

$$\int_{-(n_1+1)}^{(n_r+1)} \left(\frac{p_1}{q_1} - x \right)^{n_1} \left(\frac{p_2}{q_2} - x \right)^{n_2} \ldots \left(\frac{p_r}{q_r} - x \right)^{n_r} xdx.$$

If this integral vanishes then Dancer-Wang construct a Kähler-Einstein metric on M_q.

Finally we note that none of the metrics we find are Kähler. Indeed there is a rigidity result due to Case-Shu-Wei [3] that says, on compact manifolds, Kähler-quasi-Einstein metrics are trivial i.e. Kähler-Einstein.

Acknowledgements: I would like to thank Prof. Andrew Dancer for many interesting conversations about quasi-Einstein metrics and Ricci solitons. I would also like to thank Maria Buzano, Jeffrey Case and Tommy Murphy for useful comments on this paper. I would also like to thank the anonymous referee for useful suggestions and corrections to the previous version.

2. Proof of main theorems

2.1. **Derivation of equations.** We use the same notation as above. We consider

the manifold
$M_0 = (0,l) \times P_q$. Let θ be the principal $U(1)$-connection on P_q with curvature $\Omega = \sum_{i=1}^r q_i \pi^* \eta_i$ where η_i is the Kähler form of the metric h_i. We form the 1-parameter family of metrics on P_q

$$g_t = f^2(t) \theta \otimes \sum_{i=1}^r g_i^2(t) \pi^* h_i$$

and we then form the metric $\bar{g} = dt^2 + g_t$ on M_0. The group $U(1)$ acts on M_0 by isometries and generates a Killing field Z. We define a complex structure J on M_0 by

$$J(\partial_t) = -f^{-1}_t Z$$
on the vertical space of θ and by lifting the complex structure from the base on the horizontal spaces of θ.

Lemma 2.1. Let M_0 be as above and let $v = e^{-\frac{u}{m}}$. Then the quasi-Einstein equations in this setting are given by:

$$\frac{\ddot{f}}{f} + \sum_{i=1}^r 2n_i \frac{\dot{g}_i}{g_i} + m \frac{\dot{v}}{v} = \frac{\epsilon}{2},$$

(2.1)

$$\frac{\ddot{f}}{f} + \sum_{i=1}^r \left(2n_i \frac{\dot{g}_i}{g_i} - \frac{n_i q_i^2 f^2}{2 g_i^4} \right) + m \frac{\dot{f}}{f v} = \frac{\epsilon}{2},$$

(2.2)

$$\frac{\ddot{g}_i}{g_i} - \left(\frac{\dot{g}_i}{g_i} \right)^2 + \frac{\dot{f}}{f} + \sum_{j=1}^r 2n_j \frac{\dot{g}_j}{g_j} - p_i g_i + \frac{q_i^2 f^2}{2 g_i^4} + m \frac{\dot{v}}{g_i v} = \frac{\epsilon}{2}.$$

(2.3)

In order that (M,g,u) be a quasi-Einstein manifold, as well as equation (1.1), u must also satisfy an integrability condition that essentially comes from the second Bianchi identity (c.f. Lemma 3.4 in [9]). The form we use here is given in Case 6 using the Bakry-Émery Laplacian:

$$\Delta_u := \Delta - \langle \nabla u, \cdot \rangle.$$

Lemma 2.2 (Kim-Kim [14] Corollary 3). Let (M,g,u) be a quasi-Einstein manifold then there exists a constant μ such that

$$\Delta_u \left(\frac{u}{m} \right) + \frac{\epsilon}{2} = -\mu e^{\frac{u}{m}}.$$

(2.4)

In the notation above (recalling $v = e^{-\frac{u}{m}}$) this condition becomes

$$\mu = v \ddot{v} + v \dot{v} \left(\frac{\dot{f}}{f} + \sum_{i=1}^r 2n_i \frac{\dot{g}_i}{g_i} \right) + (m - 1) \dot{v}^2 - \frac{\epsilon}{2} v^2.$$

(2.5)

The constant μ enters into the discussion of Einstein warped products when m is an integer. If (M,g,u) is a quasi-Einstein manifold with constant μ coming from (2.4) and (F^m, h) is an Einstein manifold with constant μ, then $(M \times F^m, g \oplus v^m h)$ is an Einstein metric with constant $-\epsilon/2$ as in equation (1.1) (c.f. [14]).

Introducing the moment map change of variables as in [9] and [20] yields the following set of equations:
Proposition 2.3. Let \(s \) be the coordinate on \(I = (0, l) \) such that \(ds = f(t) dt \), \(\alpha(s) = f^2(t) \), \(\beta_i(s) = g_i^2(t) \), \(\phi(s) = \nu(t) \) and \(V = \prod_{i=1}^{r} g_i^{2n_i}(t) \). Then the equations (2.1), (2.2), (2.3) and (2.5) transform to the following:

\[
\frac{1}{2} \alpha'' + \frac{1}{2} \alpha' (\log V)' + \alpha \sum_{i=1}^{r} n_i \left(\frac{\beta''_i}{\beta_i} - \frac{1}{2} \left(\frac{\beta'_i}{\beta_i} \right)^2 \right) + m \left(\frac{\alpha \phi''}{\phi} + \frac{\alpha' \phi'}{2 \phi} \right) = \frac{\epsilon}{2},
\]

(2.6)

\[
\frac{1}{2} \alpha'' + \frac{1}{2} \alpha' (\log V)' - \alpha \sum_{i=1}^{r} n_i q_i^2 + m \frac{\alpha' \phi'}{2 \phi} = \frac{\epsilon}{2},
\]

(2.7)

\[
\frac{1}{2} \alpha' \beta'_i + \frac{1}{2} \alpha \left(\frac{\beta''_i}{\beta_i} - \left(\frac{\beta'_i}{\beta_i} \right)^2 \right) + \frac{1}{2} \alpha \beta'_i (\log V)' - p_i \beta_i + q_i^2 \alpha + m \frac{\alpha' \beta'_i \phi'}{2 \beta_i} = \frac{\epsilon}{2},
\]

(2.8)

\[
\phi \left(\phi'' + \frac{\phi' \alpha'}{2} \right) + \phi \phi' \left(\frac{\alpha'}{2} + (\log V)' \alpha \right) + (m - 1)(\phi')^2 - \frac{\epsilon}{2} \phi^2 = \mu.
\]

(2.9)

Equating (2.6) and (2.7) we obtain

\[
-m \frac{\phi''}{\phi} = \sum_{i=1}^{r} n_i \left(\frac{\beta''_i}{\beta_i} - \frac{1}{2} \left(\frac{\beta'_i}{\beta_i} \right)^2 + \frac{q_i^2}{2 \beta_i^2} \right)
\]

(2.10)

Following [9, 20] we look for solutions that satisfy

\[
\frac{\beta''_i}{\beta_i} - \frac{1}{2} \left(\frac{\beta'_i}{\beta_i} \right)^2 + \frac{q_i^2}{2 \beta_i^2} = 0.
\]

This condition can be geometrically interpreted as saying that the curvature of \(\bar{g} \) is \(J \)-invariant in the sense that \(\overline{\text{Im}}(J, J, J, J) = \overline{\text{Im}}(\cdot, \cdot, \cdot, \cdot) \) where \(J \) is the complex structure on \(M_0 \). Imposing this forces \(\phi \) to be a linear function of \(s \). We write \(\phi(s) = \kappa_1(s + \kappa_0) \) for some constants \(\kappa_0, \kappa_1 \in \mathbb{R} \). Hence (2.9) becomes

\[
\alpha' + \alpha((\log V)' + \frac{(m - 1)}{(s + \kappa_0)}) = \frac{\epsilon(s + \kappa_0)}{2} + \frac{\mu}{\kappa_1^2(s + \kappa_0)}.
\]

(2.11)

Accordingly there are two classes of solution \(\beta_i \):

\[
\beta_i = A_i(s + s_0)^2 - \frac{q_i^2}{4A_i}
\]

or

\[
\beta_i = \pm q_i(s + \sigma_i)
\]

where \(A_i \neq 0 \) and \(\sigma_i \) are constants. We note that the case \(\beta_i = -q_i(s + \sigma_i) \) corresponds to the metric \(\bar{g} \) being Kähler with respect to the complex structure. Hence the rigidity result of Case-Shu-Wei rules out having any solutions of this form (in fact choosing \(\beta_i \) of this form leads to inconsistency).
If we input $\beta_i = A_i(s + s_0)^2 - \frac{q_i^2}{4A_i}$ into (2.8) we see that
\[
\alpha' + \alpha \left((\log V)' + m(\log \phi)' - \frac{1}{(s + s_0)} \right) = \frac{\epsilon}{2}(s + \kappa_0) + \frac{E^*}{(s + \kappa_0)}
\]
where
\[
E^* := \frac{8A_i p_i - \epsilon q_i^2}{8A_i^2}.
\]
Comparing with equation (2.11) we see that solutions are consistent providing $\kappa_0 = s_0$ and
\[
\frac{\mu}{\kappa_1^2} = E^* = \frac{8A_i p_i - \epsilon q_i^2}{8A_i^2}.
\]
Solving gives
\[
\alpha(s) = V^{-1}(s + \kappa_0)^{1-m} \int_0^s V(s + \kappa_0)^{m-2} \left(E^* + \frac{\epsilon}{2}(s + \kappa_0)^2 \right) ds. \quad (2.12)
\]

2.2. Compactifying M_0. We recall that $V_1 = \mathbb{CP}^{n_1}$ and we are adding in the manifold $V_2 \times \ldots \times V_r$ at the point $s = 0$. We refer the reader to the discussion immediately after equation (4.17) in [9]. In a nutshell, in order for the metric to extend smoothly we require that
\[
\alpha(0) = 0, \alpha'(0) = 2, \beta_1(0) = 0 \text{ and } \beta'_1(0) = 1.
\]
As we are using $\beta_1(s) = A_1(s + \kappa_0)^2 - \frac{q_1^2}{4A_1}$ we must have $A_1 = \frac{1}{2\kappa_0}$ and $|q_1| = 1$. We also have normalised so that $p_1 = n_1 + 1$ hence the consistency conditions become
\[
E^* = \frac{\mu}{\kappa_1^2} = \frac{\kappa_0}{2} (4(n_1 + 1) - \epsilon \kappa_0) = \frac{8A_i p_i - \epsilon q_i^2}{8A_i^2} \text{ for } 2 \leq i \leq r.
\]

2.3. Steady quasi-Einstein metrics. In this case $\epsilon = 0$. Setting $V_1 = \mathbb{CP}^{n_r}$ and compactifying we obtain a \mathbb{C}^{n_1+1}-vector bundle over $V_2 \times \ldots \times V_r$. In order that $\beta_i(0) > 0$ on $I = [0, \infty)$ we must have $A_i > 0$ and
\[
E^* = \frac{\mu}{\kappa_1^2} = \frac{\kappa_0}{2} (4(n_1 + 1)) = \frac{p_i}{A_i} \text{ for } 2 \leq i \leq r.
\]
Hence $A_i = \frac{p_i}{E^*}$ and
\[
\beta_i(s) = \frac{p_i}{E^*} (s + \kappa_0)^2 - \frac{E^* q_i^2}{4p_i}.
\]
It is clear that in order for $\beta_i(0) > 0$ we must have
\[
(n_1 + 1)|q_i| < p_i \text{ for } 2 \leq i \leq r.
\]
In order to ensure the metrics are complete it is sufficient to check that the integral
\[
t = \int_0^s \frac{dx}{\sqrt{\alpha(x)}} \quad (2.13)
\]
diverges as $s \to \infty$ (this says that geodesics cannot reach the boundary at infinity and have finite length). If we compute the function $\alpha(s)$ we see that
it is asymptotic to a positive constant K. Hence the above integral diverges and we obtain a complete quasi-Einstein metric for all $m > 1$ generalising the non-Kähler, Ricci-flat ones constructed in [20]. Choosing a different value of E^* simply varies the metric by homothety.

2.4. Expanding quasi-Einstein metrics. Here we take $\epsilon = 1$ to factor out homothety. Again the manifolds in question are \mathbb{C}^{n_1+1}-vector bundles over $V_2 \times \ldots \times V_r$. Here the consistency conditions become

$$E^* = \frac{\mu}{\kappa_1^2} = \frac{\kappa_0}{2}(4(n_1 + 1) - \kappa_0) = \frac{8A_i p_i - q_i^2}{8A_i^2}$$

for $2 \leq i \leq r$.

If $|q_i|(n_1 + 1) \leq p_i$ then we choose $0 < E^* < 2(n_1 + 1)^2$,

$$\kappa_0 = 2(n_1 + 1) + 2\sqrt{(n_1 + 1)^2 - \frac{E^*}{2}}$$

and

$$A_i = \frac{1}{2E^*} \left(p_i + \sqrt{p_i^2 - \frac{E^*q_i^2}{2}}\right) .$$

In order that $\beta_i(0) > 0$ we require $2\kappa_0 A_i > |q_i|$ for $2 \leq i \leq r$. This can be seen as

$$2 \left(2(n_1 + 1) + 2\sqrt{(n_1 + 1)^2 - \frac{E^*}{2}}\right) \frac{1}{2E^*} \left(p_i + \sqrt{p_i^2 - \frac{E^*q_i^2}{2}}\right) > \frac{2(n_1 + 1)p_i}{E^*} > |q_i| .$$

In the case that $|q_i|(n_1 + 1) < p_i$ we note also that

$$\left(1 + \sqrt{1 - \frac{E^*q_i^2}{2p_i^2}}\right) > \left(1 + \sqrt{1 - \frac{E^*}{2(n_1 + 1)^2}}\right) ,$$

hence,

$$2 \left(2(n_1 + 1) - 2\sqrt{(n_1 + 1)^2 - \frac{E^*}{2}}\right) \frac{1}{2E^*} \left(p_i + \sqrt{p_i^2 - \frac{E^*q_i^2}{2}}\right) >$$

$${\frac{4p_i(n_1 + 1)}{2E^*}} \left(1 - \sqrt{1 - \frac{E^*}{2(n_1 + 1)^2}}\right) \left(1 + \sqrt{1 + \frac{E^*}{2(n_1 + 1)^2}}\right) = \frac{p_i}{(n_1 + 1)} > |q_i| .$$

Therefore if we have the strict inequality $|q_i|(n_1 + 1) < p_i$ then we can also choose

$$\kappa_0 = 2(n_1 + 1) - 2\sqrt{(n_1 + 1)^2 - \frac{E^*}{2}} .$$

If $|q_i|(n_1 + 1) > p_i$ then we can choose $0 < E^* < 2(n_1 + 1)^2 \min(p_2^2/q_2^2, \ldots, p_r^2/q_r^2) .$

If we also choose

$$\kappa_0 = 2(n_1 + 1) + 2\sqrt{(n_1 + 1)^2 - \frac{E^*}{2}}$$

then
and

\[A_i = \frac{1}{2E^*} p_i + \sqrt{p_i^2 - \frac{E^*q_i^2}{2}}, \]

then \(\beta_i(0) > 0 \). We can also choose \(E^* < 0 \) in this case. Completeness follows as \(\alpha(s) \) is asymptotic to \(Ks^2 \) for a positive constant \(K \) and so the integral (2.13) diverges. Hence we find complete, quasi-Einstein analogues of the non-Kahler, Einstein metrics constructed in [20].

2.5. Shrinking quasi-Einstein metrics. In order to factor out homothety we take \(\epsilon = -1 \) and so the consistency conditions are

\[\frac{\mu}{\kappa_i^2} = \frac{\kappa_0}{2}(4(n_1 + 1) + \kappa_0) = \frac{8A_i p_i + q_i^2}{8A_i^2} \]

for \(2 \leq i \leq r \).

We split the discussion into the compact case and the non-compact, complete case. For the compact case we consider \(I \) to be the finite interval \([0, s_*]\). We set \(V_r = \mathbb{C}P^{n_r} \) and at the point \(s = s_* \) we add in the manifold \(V_1 \times \ldots \times V_{r-1} \). For the metric to extend smoothly we require that \(q_r = 1, p_r = n_r + 1 \) and \(-1 = 2A_r(s_* + \kappa_0) \). Putting these into the consistency conditions we see that

\[\kappa_0(4(n_1 + 1) + \kappa_0) = (s_* + \kappa_0)^2 - 4(n_r + 1)(s_* + \kappa_0) \]

and hence

\[s_* = \sqrt{\kappa_0(4(n_1 + 1) + \kappa_0) + 4(n_r + 1)^2} - \kappa_0 + 2(n_r + 1). \]

We note that if \(n_1 = n_r \) then \(s_* = 4(n_1 + 1) \). For the time being we note that \(s_* = s_*(E^*) \) and \(\beta_i \) is completely determined by \(E^* \) once we have chosen the value of \(q_i^2 \) and the sign of \(A_i \). The value \(A_i \) is given by

\[A_i = \frac{1}{2E^*} \left(p_i + \chi_i \sqrt{p_i^2 + \frac{E^*q_i^2}{2}} \right), \]

where \(\chi_i = 1 \) if \(A_i > 0 \) and \(\chi_i = -1 \) if \(A_i < 0 \). In order to have a quasi-Einstein metric we must be able choose a value of \(E^* > 0 \) such that the integral

\[\int_0^{s_*(E^*)} \prod_{i=0}^r \left((s + \kappa_0)^2 - \frac{q_i^2}{4A_i^2} \right)^{n_i} (s + \kappa_0)^{m-2} \left(E^* - \frac{1}{2}(s + \kappa_0)^2 \right) ds = 0. \]

Changing coordinates to

\[x = \frac{1}{2}(s + \kappa_0) - ((n_1 + 1)^2 + \frac{E^*}{2})^{1/2}, \]

then the above integral becomes (ignoring constants)

\[F(E^*) = \int_{-(n_1+1)}^{s_*(E^*)} \prod_{i=0}^r P_i(x)((n_1+1)^2 + \frac{E^*}{2})^{1/2})^{m-2}(x^2+2x((n_1+1)^2 + \frac{E^*}{2})^{1/2})+(n_1+1)^2)dx. \]
where
\[P_i(x) = \left(x^2 + 2x((n_1 + 1)^2 + \frac{E^*}{2})^{1/2} + (n_1 + 1)^2 + \frac{2p_i(\sqrt{p_i^2 + E^*q_i^2} - p_i)}{q_i^2} \right)^{n_i} \]
and
\[x_*(E^*) = (n_r + 1) + \left(\frac{E^*}{2} + (n_r + 1)^2 \right)^{1/2} - \left(\frac{E^*}{2} + (n_1 + 1)^2 \right)^{1/2}. \]

We will compute the limit \(\lim_{E^* \downarrow 0} F(E^*) \) and the limit \(\lim_{E^* \to \infty} F(E^*) \).

We begin with 0. We note that as \(m > 1 \) the function \(f(x) = (x + (n_1 + 1)^{m-2} \) is integrable on \(-(n_1 + 1) \), \(x(E^*) \) \) so by the dominated convergence theorem we can evaluate the integral of the limit. This is given by
\[
S \int_{-(n_1+1)}^{2(n_r+1)-(n_1+1)} \prod_{\chi_i = -1} (x + (n_1 + 1))^2 \prod_{\chi_j = 1} \left[\frac{4p_i^2}{q_i^2} - (x + (n_1 + 1))^2 \right]^{n_j} (x + (n_1 + 1))^m \, dx,
\]

where
\[S = (-1)^{\sum_{\chi_i = -1} n_i}. \]

The hypothesis on the \(p_i \) and \(q_i \) mean that the sign of \(\lim_{E^* \downarrow 0} F(E^*) \) is that of \(S \).

For \(E^* \to \infty \) we consider
\[
\lim_{E^* \to \infty} F(E^*)(E^*)^{\frac{1}{2}(1-m-\sum_{\chi_i = -1} n_i)} = K \left(-1 \right)^{\sum_{\chi_i = -1} n_i} \int_{-(n_1+1)}^{(n_r+1)} \prod_{i=1}^{\sum_{\chi_i = -1} n_i} \left[\chi_i x + \frac{p_i}{|q_i|} \right]^{n_i} x \, dx,
\]

where \(K \) is a positive constant. Hence if we can choose \(\chi_i \) so that
\[
\int_{-(n_1+1)}^{(n_r+1)} \prod_{i=1}^{\sum_{\chi_i = -1} n_i} \left[\chi_i x + \frac{p_i}{|q_i|} \right]^{n_i} x \, dx < 0,
\]

we can find an \(E^* > 0 \) such that \(\alpha(s_*) = 0 \). A discussion similar to that in [9] and [20] shows that this is enough to ensure we have smooth quasi-Einstein metrics.

3. Examples and future work

We end with an example of theorem 1.3, some discussion of the geometry of the quasi-Einstein metrics constructed and a discussion of possible sources future compact examples.

3.1. An example. We consider an example that is also considered in [9]. They consider a \(\mathbb{CP}^1 \)-bundle over \(\mathbb{CP}^2 \times \mathbb{CP}^2 \). In theorem 1.3 this corresponds to taking \(r = 4, n_1 = n_4 = 0, n_2 = n_3 = 2 \) and \(p_2 = p_3 = 3 \). Hence to apply the theorem we must consider \(|q_2|, |q_3| < 3 \). They take \((q_2, q_3) = (1, -2) \). The Futaki invariant is given by
\[
\int_{-1}^{1} (3 - x)^2 \left(\frac{3}{2} + x \right)^2 x \, dx
\]
which they calculate is 7.8. This means that
\[\int_{-1}^{1} (3 + x)^2 \left(\frac{3}{2} - x \right)^2 x \, dx = -7.8 < 0 \]
and we have non-trivial quasi-Einstein metrics on this space for all \(m > 1 \).

3.2. Remarks on the geometry of the quasi-Einstein metrics. In [9] section 4, the authors comment on the geometry at infinity of their examples of steady and expanding gradient Kähler-Ricci solitons. In particular they conclude that their steady examples are asymptotically parabolic and that the expanding examples are asymptotically conical. We recall that the examples of steady quasi-Einstein metrics constructed in theorem 1.2 have \(\alpha(s) \sim K \) for some positive constant \(K \) and so the following asymptotic behaviour holds (ignoring multiplicative constants)
\[f(t) = O(1) \text{ and } g_i(t) \sim t. \]
In the expanding case we recall that \(\alpha(s) \sim K s^2 \) and so we have
\[f(t) \sim e^t \text{ and } g_i(t) \sim e^t. \]

3.3. Future families. The space \(CP^2\sharp CP^2 \) fits into the framework of theorem 1.3 as a non-trivial \(CP^1 \)-bundle over \(CP^1 \). On this space there is the Page metric, the Koiso-Cao soliton and the quasi-Einstein metrics of theorem 3 (originally due to Lü-Page-Pope). The space \(CP^2\sharp 2CP^2 \) also admits a non-Kähler, Einstein metric due to Chen, LeBrun and Weber [8] and a Kähler-Ricci soliton due to Wang and Zhu [21]. It would seem reasonable that there should be a family of quasi-Einstein analogues to these metrics. The metrics on \(CP^2\sharp 2CP^2 \) are not cohomogeneity-one but do have an isometric action by \(T^2 \). One observation is that the Lü-Page-Pope quasi-Einstein metrics are conformally Kähler (as any \(U(2) \)-invariant metric on \(CP^2\sharp CP^2 \) is). The Chen-LeBrun-Weber metric is also conformally Kähler (a fact originally proved by Derdzinski [10]) and so one might hope that the same would be true for analogues of the Lü-Page-Pope metrics on \(CP^2\sharp 2CP^2 \). Both the Page and Chen-LeBrun-Weber metrics are conformal to extremal Kähler metrics which satisfy a PDE that ‘occurs naturally’ in Kähler geometry. It would be an interesting first step to try and find an analogous PDE/ODE for the Kähler metrics that are conformal to the Lü-Page-Pope metrics. The author hopes to take up the existence questions in a future work.

References

Department of Applied Computing, The University of Buckingham, Hunter Street Buckingham, MK18 1EG, United Kingdom
email: stuart.hall@buckingham.ac.uk