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Abstract 

 

 ABSTRACT 

The Mouse Genetics Project (MGP) is a large-scale mutant mice production and 

phenotyping initiative that builds on the success of the Human Genome Project (HGP) 

to discover the functionality of all genes and their role in human diseases. The MGP 

aims to produce over 20,000 mutant lines of mouse model to investigate and quantify 

the impact of gene knockouts on the various organs. Due to the great deal of overlap 

between human and mouse genomes, most the acquired knowledge can be translated 

into diagnostics, biomarker identifications and eventually treatment for complex 

genetic-based diseases.  

The skin is by far the largest organ in the mammalian body, and a complex structure of 

multiple layers consisting of different distinguishable cells and objects. Dermatology 

specialists have long associated many diseases with changes in different skin layers 

such as changes to the number of nuclei in the dermis and epidermis layers, the 

orientation of hair follicles, curvature of the outer border of the epidermis, and many 

more.  

The manual quantification and analysis of such features/objects for a high throughput 

phenotype research project such as the MGP is an error-prone, time consuming and 

very costly in terms of resources and staff training. Recent rapid advances in 

biomedical image processing/analysis as well as the emergence of a variety of machine 

learning tools provide an exciting motivation to developing effective and efficient 

automatic solutions. Automation is as challenging as the manual methods but the 

challenges are of different nature. Therefore, this thesis is devoted to investigate, 

develop and test a number of automatic algorithms to quantify the above mentioned 

features/objects in mouse skin layers and experimentally identify the genetic causes of 

changes to these parameters in relation to skin diseases.  

Our investigations and solutions had to deal with a number of technical challenges such 

as staining errors that lead colour overlapping between neighbouring 

layers/components, damages to the outer layers during preparation of images, the 

difficulty of establishing the ground truth for the large volume of image dataset, 

significant overlapping of nuclei objects, misalignments of tissues with the large 

volume of dataset. The main contributions of the thesis include:
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1. Proposing an adaptive system that combines colour deconvolution and fuzzy c-

mean methods to segment the three main skin layers in H&E images, namely the 

epidermis, dermis and fat cell layers, after establishing the limitation of existing 

solutions to overcome the challenges highlighted above. 

2. Developing automatic methods for segmenting and counting nuclei in the 

epidermis and dermis layer in mice skin and demonstrating the ability of the 

proposal in identifying overlapping nuclei and separating them. Furthermore, we 

automatically identify a list of candidate genes responsible for abnormal changes 

to the number of nuclei.  

3. Introducing a simple method to align the epidermis outer border in all images 

and designing an easy geometric-based formula to quantify the orientation of 

hair follicles with respect to the aligned epidermis as an indicator of skin 

abnormality. This led to identifying a list of candidate genes responsible for 

abnormal changes to the orientation of hair follicles. 

4. Defining a simple mathematical model of the vaguely defined epidermis 

curvature as an indicator of skin abnormality and proposing a reliable scheme to 

quantify it. 

5. Providing empirical evidences of the success for each of the above schemes by 

comparing the automatically determined quantification outputs with the ground 

truth determined by domain expert biology researchers.  

6. Demonstrating the high potential of non-invasive, unsupervised machine 

learning techniques in the successful isolation of potentially interesting 

(knockout genes) relevant to genetic causes of skin abnormalities. This would 

facilitate high-throughput analysis in cutaneous research, with potential 

applications for screening drugs. 
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Chapter 1 : Introduction 

 

1.1 Research Introduction  

Biological image processing and analysis techniques have increasingly become an 

essential source of tools that support scientists in evaluating the effects of 

environmental exposure and assessing physiological/biological changes in living 

beings tissues/organs by examining associated images captured with a variety of 

signals within the electromagnetic spectrum. In healthcare systems, the use of MRI, 

Ultrasound, Mammograms, X-rays and Gamma-rays images using a specialized 

sensors and devices are becoming a common practice for diagnostics and treatments 

(Suganya et al., 2018). The use of these tools is naturally applicable to the evaluation 

of the effect of treatments and drug efficiency in the context of the drug discovery 

(Shuaib et al., 2018). Microscopic images have for long been used by life scientists in 

their research endeavours to acquire and develop basic understanding of biological 

processes including the development of tumour and other type of tissue/organ 

abnormality, to be fed into medical practices as well as training (Bhattacharyya et al., 

2019). Over the last few decades, rapid growth in healthcare demand led to the 

emergence of high throughput research activities that are characterized by gigantic 

amounts of data/images to be analysed effectively at a rate beyond the capabilities of 

current research workforce (Wallentin and Lindahl, 2019). The growth in the number 

of large-scale research centers throughout the world especially after the successful 

completion of Human Genome Project is only a testimony to this phenomenon 

(Panagiotara et al., 2019). However, the development in image processing/analysis 

techniques remained lagging behind due to a variety of reason including shortage of 

researchers in the field and lack of interest in multi-disciplinary activities, in particular 

(Sklansky and Bisconte, 2013). However, the rapid advances in computer vision and 

machine learning is creating ample opportunities for developing automatic image 

analysis techniques to meet the growing demands of high throughput research 

initiatives (Esteva et al., 2019). 

This thesis is meant to contribute to the development of automated microscopic image 

analysis techniques/tools for deployment in large scale biomedical research efforts for 

determining genetic causes of skin tissue abnormalities. In particular, the research 

project for this thesis came into being as part of discussions between Buckingham 
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computing and biology researchers and their colleagues at the Sanger Institute, 

Cambridge, on automating certain image processing/analysis high throughput tasks 

conducted at the Sanger institute within their Mouse Genetics Project (MGP). The 

MGP is a large-scale mutant mice production and phenotyping initiative designed to 

integrate established knowledge of the mouse genome and of disease models. The 

techniques of diagnosis, and reducing time and laboratory costs, especially when there 

is a high throughput data need to analysis and process, such as our used data set. 

Where the data set in this thesis was 7000 H&E microscopic image(Takahashi et al., 

2019), which divided into two types, control type and mutant type. 

1.2 General Description of the Research Project 

The focus of this research project, being designed to contribute to the collaborative 

work described above in relation to the MGP, is naturally on investigations leading to 

the development of computational effective schemes for automatically measuring 

progressive structural changes in mouse skin suspected of being caused by 

pathological mechanisms. Such schemes are to be used to annotate microscopic H&E 

images of mice skin in order to overcome the capabilities of manual methods. Manual 

methods are a challenging task and it used by many research studies for a variety of 

skin features quantification.  

The skin of a mammalian is the largest of its organs, and although apparently simple, it 

is a highly-organised tissue that is made up of three layers: subcutaneous adipose layer 

as the deep layer (Driskell et al., 2014), the dermis layer forming a connective tissue 

above the adipose layer, and the epidermis as the top layer (Yousef and Sharma, 2018).  

The organisation and structure of mammalian skin is widely researched for many 

aspects of dermatology and treatments usually assessed through quantitative 

measurements of certain features and objects, several of which change/deteriorate 

quantitatively due to disease or inactivated genes. Although the overall skin structure 

is consistent throughout the body, its thickness and other skin features are different 

depending on function and location (Honari, 2017). Cutaneous integrity is known to 

degrade with chronological age, a process exacerbated by environmental stress with 

cosmetic and pathological implications (Sauermann et al., 2002). Strategies to mitigate 

or restore damaged matrix are highly desirable, thus objective morphological criteria 

and histological analysis are required to assess skin integrity. Most of the changed 

biological features, such as disorders, hyperplasia, underlying metabolic, connective 
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tissue and inflammation can be revealed by close examination of the skin, i.e. the skin 

is the appropriate tissue to study.  

Among the features of general interest that are relevant to our research are the number 

of nuclei presents in the epidermis layer as well as in the dermis layers, hair follicles 

embedded in the outer band of the epidermis, and the spatial structure of the epidermis 

surface. In all cases, enumeration and quantification of these objects and their shapes 

are indicators of skin abnormalities.   

The main focus of our research is on quantifying changes to the number of nuclei in 

the dermis and epidermis layers, the orientation of hair follicles, curvature of the outer 

border of the epidermis. Accordingly, the research work conducted through my PhD 

program was devoted to investigate, design, and develop reliably effective automatic 

image processing/analysis algorithms to quantify the above mentioned features/objects 

extracted from images of mouse skin tissue within their known layers. Furthermore, 

machine learning based experiments were conducted to identify the genetic causes of 

changes to these parameters in relation to skin diseases.  

Automating the detection of the above mentioned objects and quantifying the features 

can only be done after pre-processing the images by segmenting the different skin 

layers and their sub-layers. For microscopic images conventional segmentations of 

natural images are adversely affected by many factors including inadequate fixed 

image magnification, potential staining errors, overlapped objects, smugness, and/or 

missing parts.  

Moreover, proving the effectiveness of any proposed scheme rely greatly on knowing 

the ground truth on a sufficiently large and diverse set of H&E skin microscopic 

images. Consultation with domain experts is necessary but is not straight forward. 

Moreover, interpreting and mimicking the way the trained life-science researchers or 

technicians present added requirements. The fuzzy nature of the way the human make 

relevant decisions is only one obvious difficulty. More specifically, we need 

appropriately computable functions to quantify concepts like shape of a nuclei-like 

object or a hair follicle, or the curvature of the complex epidermis layer.   

In the analysis of skin histology, nuclei are important factors. For example, nuclei 

shape and organisation in the epidermis and dermis can qualitatively discriminate 

different ages, and measuring skin integrity to discriminate disease and a healthy state 

is an important tool for investigators (Brüne and Schiefenhövel, 2019). 
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The difficulty of the task and the consuming time in the classical manual analysis of 

skin morphology are the main motivation to contribute automatic methods, to measure 

alteration in two of three main skin layers by quantifying changes in the nuclei of each 

of two layers, and in particular the number and shape in the dermis and epidermis 

layers. 

Overall in this study, we aimed to identify features that characterized disease-related 

changes in the skin, using novel automated methods to enhance, segment and analyse 

images acquired from microscope platforms in mouse samples, in biopsies technique. 

For such research, a number of metrics are desired, including nuclei distribution  

(particularly changes in nuclei in different layers, dermis and epidermis), nuclei 

counting (to assess knock out genes function), quantifying the hair follicle orientation 

(for example, in assessing skin diseases), and measuring the curvature of epidermis 

layer (to assess the disorder of epidermis layer).   

The reported work in the rest of the thesis have been greatly incentivised to exploit the 

growing new technology advances by combining computational non-machine learning 

methods and unsupervised machine learning of image processing techniques. We shall 

demonstrate, the benefits of this approach in (1) achieving the main objectives of this 

research project by facilitating the specific needs of the MPG for high-throughput 

image analysis tools for the quantification of the above-mentioned components of skin 

images, and in identifying genes causing certain skin abnormalities using the 

sufficiently large MGP knockout generated dataset of H&E skin mouse images. 

Ultimately, these analysis methods will facilitate accurate measurement of novel skin-

restorative modalities. 

1.3 The Research challenges 

Throughout our investigations, we encountered many technical challenges in 

developing fully automatic mice annotation solution from H&E microscopic images. 

The main challenges, that could not be tackled by the above mentioned existing 

solutions, can be summarized as follows: 

1- H&E staining issue. However the H&E stain is consistent and accurate but, it has 

several issues in term of the image quality, where the stain variation is the main 

tissue of the H&E stains i.e. the differences in pH (potential of Hydrogen), the 

stain age, usage degree, thickness and temperature (Larson et al., 2011; Zhu et al., 

2015). All those factors may affect directly on the properties of the stain, which 
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lead to make the processing of the image is difficult to process or untreatable, 

such as the following reasons. 

• Information loss. Overlapping in the colour intensity of the background and 

foreground of image. Which causes loss of important information in the H&E 

images, such as nuclei in epidermis layers, which is displays in Figure 1.1 

(A). 

• Incorrect segmentation. The stain problems cause overlap colour between the 

skin layers that cause overlapping of the skin layers, such as overlap the 

epidermis and dermis layers.  This lead to segment two layers (epidermis and 

part of dermis layers) as one layer, which is wrong segmentation as deems in 

Figure1.1 (B). 

2- Variability placement of mouse skin layers. In the datasets we are dealing with, 

images show mouse skin layer placed in different angles. To make a fully 

automatic segmentation and analysis easier, the layers of skin needs to be aligned 

first. This step is mandatory in some cases in this thesis (as a part of Chapter 6). 

For example, automatic epidermis alignment to quantify the orientation of the hair 

follicles, which associated with the epidermis layer. The alignment was important 

stage to make the images comparable, because it needs to compare the orientation 

based on the angles of the follicles. 

Figure 1.1 Stain error in different layers. A) Stain error in epidermis layer. B) Stain error in dermis layer 

3. Ground truth. To evaluate our automatic methods, a robust ground truth that 

reports accurate measurements and associates diseases to images of the mouse is 

needed. In my thesis the ground truth I got for only in Chapter 6 the orientation of 

the hair follicle by expert annotators from Sanger Institute. In the other Chapters l 

A B
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haven’t got any ground truth from Sanger institute, such as ground truth for the 

nuclei numbers in different layers. 

4. Initial segmentation of different ROIs. This research deals with different mouse 

layers. For example, Figure 1.2 (A, B) shows three different ROIs in three 

different mouse layer in the same view. Accurate annotations of the objects of 

interest rely on accurate and fully automatic initial segmentation of ROI. 

 

 
Figure 1.2 Different ROIs in mouse skin layer. (A, B) Epidermis ROI  (red line), dermis ROI (blue line), fat 

cell ROI (green line) 

5. Wild type samples. The aim of this research is to find the disorder of the 

microscopic skin images, to do that it need to have two types of samples, wild 

and mutant type. Our data set is 7000 H&E images divided to 6500 as wild type 

and 500 images as mutant type. Where those numbers of wild samples is not 

enough to perform an accurate analyse to extract features of them. 

6. Damage samples. In the our data set there are many damage samples of H&E 

images in the wild and mutant types. Where the accuracy of our results was 

affected by the damage samples, because they effect directly in the accuracy of 

the segmentation and quantification in different layers. For example, it was 

damage in layers segmentation and nuclei quantification in several layers as 

shown in Figure 1.3 (A, B, C). 

 

 

BA
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Figure 1.3 Damage samples of H&E images. A) Damage in epidermis layer. B) Damage in dermis layer. C) 

Damage in fat   cell layer 

1.4 Thesis Aim and objectives 

Having identified the targets of our computational tasks, and the main challenges that 

we encountered during this project, we can state the overall aims and objectives of this 

research project as follows: 

Overall aim. Develop a framework for a high throughput multiple image analysis 

tasks to facilitate the automatic annotating and quantification of skin abnormality 

related components/features suitable for integration into the Knockout genes research 

aspects of the MGP.      

To fulfil this overall aim, we state the following items as the main objectives: 

Objective 1. Develop and test the performance of automatic scheme(s) for 

microscopic skin image layers and sublayer segmentation.  

A B

C
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Objective 2. Develop automatic scheme(s) for segmenting and counting nuclei in both 

the dermis and the epidermis layers, and sublayer segmentation. Test the performance 

of the developed schemes by comparing with the manual work of domain experts. 

Objective 3. Develop automatic scheme(s) for segmenting hair follicles in the 

epidermis and determining their orientation with respect to a fixed alignment of the 

epidermis. Test the performance of the developed schemes by comparing with the 

manual work of domain experts. 

Objective 4. Develop an efficient computational model of the human expert concept of 

epidermis curvature, and design a procedure to compute this parameter. Again, test the 

performance of this model by comparing with the manual work of domain experts. 

Objective 5. Test the ability of using machine learning based on changes to the output 

parameters from each of the 3 previous automatic schemes, to determine genes known 

to cause skin abnormality/disease known to be associated with these parameters. 

In all the first 4 objectives, the developed schemes are expected to overcome, or reduce 

the effect, of the challenges described in the last section. 

1.5 The Contributions of the Thesis 

1- Automatic layer and sub-layer segmentation of H&E mice skin images by 

fusing colour deconvolution method and fuzzy clustering.  

2- The above fusion method relies on counting the histogram peaks of the images 

to improve the layers segmentation accuracy and overcome the effect of 

unintended staining errors.  

3- The improved segmentation accuracy helps in proposing effective predictors of 

different sets of angles, features, distance and index-based measurements for 

quantifying hair follicles orientation, nuclei counting and epidermis curvature. 

4- Developing simple, yet effective, methods to automatically align in a fixed 

image direction the epidermis layer in all H&E images. 

5- Developing a hair follicles detection and quantification of their orientation. 

6- Automatic detection and counting of nuclei in epidermis and dermis layers. 

7- Develop a simple computational scheme for the automatic quantification of a 

parameter that models what experts interpret as the epidermis layer curvature. 

8- And finally, identifying a list of candidate genes that might be responsible for 

abnormal changes in the numerical outputs of the last 3 schemes relating to 

nuclei counts in the epidermis and dermis layers, hair follicles orientation, and 

curvature of the mice skin layers. 
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Besides, we anticipate that eventually, the analytical techniques developed in this 

thesis, could have a wider implication once prepared in formats suitable for integration 

into clinical systems diagnosis and treatment assessments. The novel combinations of 

image processing/analysis techniques and pipelines will save time and are expected to 

produce more reliable results that will ultimately help or improve the speed and quality 

of dermatology and cosmetic treatments. 

Contribution points 1 and 7 have led to the following publications: 

1- Saif Hussein, Joanne Selway, Sabah A. Jassim, Hisham Al-Assam, "Automatic 

layer segmentation of H&E microscopic images of mice skin", in Mobile 

Multimedia/Image Processing, Security, and Applications 2016, (SPIE, Bellingham, 

WA 2016), 98690C. 

2- Hussein, Saif and Jassim, Sabah A. and Al-Assam, Hisham (2017) Automatic 

Quantification of Epidermis Curvature in H&E Stained Microscopic Skin Image of 

Mice. In: Medical Image Understanding and Analysis. MIUA 2017. 

Communications in Computer and Information Science, 723. Springer International 

Publishing, Cham, pp. 935-945. ISBN 978-3-319-60964-5. 

1.6 Thesis Outlines 

Based on the proposed aims of this thesis several works were carried out in a 

sequential manner. The thesis outline is organised as follows: 

• Chapter 2 provides the biological and computational background to our research. 

• Chapter 3 briefly describes our research framework and methodology the 

research process. The chapter also explains the experimental protocol and details 

about datasets and ground truth that are used in this study. The chapter serves as 

a roadmap for the research works presented in the following key chapters. 

• Chapter 4 describe the first contribution of this thesis towards layer segmentation 

method. Firstly, developed method based on colour deconvolution was proposed 

to automatically segment the three main layers of mice skin. Then an 

unsupervised segmentation method based on an improved the layer segmentation 

was proposed to segment the layers. Over all contribution in this chapter was 

proposing the fusion segmentation method, which merge two methods and chose 

the appropriate method based on the peaks of image. 

• Chapter 5 presents second contribution, which is to segment the nuclei in 

epidermis and dermis layers automatically based on unsupervised technique. 
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This chapter consist of two methods for segmenting the nuclei, automatic 

method for nuclei segmentation in the epidermis layer, which include automatic 

nuclei separation based on features extractions and distance transform associated 

with watershed. Then another method has proposed in this chapter, which was 

nuclei segmentation in the dermis layer based on unsupervised technique, and 

improvement was introduced based on the shape feature extraction. 

• Chapter 6 provides another contribution was done in this thesis, which was 

quantifying the orientation of the hair follicle in the epidermis layer. To address 

the main issue in this chapter, there are two automatic methods was proposed. 

First method was automatic alignment method of the epidermis layer. Second 

method was automatic segmentation of the hair follicle in the epidermis layer. 

Finally, based on two proposed methods, the main contribution in this chapter 

was proposed to measure the orientation of the hair follicles. 

• Chapter 7 describes the last contribution was quantifying the curvature of the 

epidermis layer. Where the distance for each point between the reference line 

and the epidermis was used to measure the changes in the epidermis curvature. 

• Chapter 8 summarises the main conclusions obtained in this research. In 

addition, the suggestions for further study are drawn in the end.
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Chapter 2 : Biological and Computational Background 

 

This chapter is devoted to briefly describing the biological and technical backgrounds for 

this research project. It is not about providing a comprehensive review of the state-of-art 

literature on image processing techniques for problems relevant to this research. This 

chapter could be skipped by readers of the relevant biological or technical backgrounds.  

The technical background part of this chapter is therefore mainly concerned with image 

processing techniques for segmenting images.  

2.1 Biological Backgrounds 

This part of the chapter aims to provide a basic understanding about the biological 

relevance of microscopic image annotations to be achieved through this research. This part 

mainly describes the mouse genome projects and highlights their main findings and 

importance for human health. I also explain the justification for annotating a huge volume 

of H&E images of mice, and hence the need for specially developed automated solutions 

for the annotation and the desire of discovering any strong links between the automatic 

annotation results and classification of abnormality of skin features as results of gene 

knockouts. 

A genome is an organisms complete set of DNA codes that includes all its genes, and 

provide the information required to construct and maintain the organism. Each cell in the 

human that has a nucleus that keeps a copy of the entire genome (Genetics Home 

Reference, 2003). It has been confirmed that some rare diseases happen because a single 

gene stops working (Genes in Life | Genetics 101, 2016). Due to such a close relation 

between genes and the diseases. 

Scientists hope to use genetic information to help in diagnosing, curing and may be 

preventing such diseases. Two genome projects were initiated to define the gene 

sequences functionalities and their relations to diseases and abnormalities. The first one is 

MGP (Wellcome trust Sanger Institute, 2016) and the second is HGP (National Human 

Genome Researche Institute, 2015).  



 

12 

 

Chapter 2                                                                                                          Backgrounds 

 

2.1.1 The Human Genome Project 

The well-known international Human Genome Project (HGP) that was completed over the 

period 1990-2003, aimed to define the human genome series and recognize the genes it 

contains. It produced a full sequence for 3 billion DNA base pairs, and recorded all the 

human genes of the 25,000 (Genetics Home Reference, 2003). The most successful 

common scientific accomplishment was finding the genes sequence. The final project 

enables scientists to find accurately any problems in a single gene by applying a huge 

number of tests of available gene (Chong et al., 2015). 

Despite the success of HGP, the long-term ambitious goal of determining the functionality 

of all genes and its relation to human diseases are yet to be reached. This requires 

launching different projects that attempt to model human diseases in terms of genetic 

information, while addressing ethical and legal concerns. 

2.1.2 The Mouse Genome Project 

To achieve clear understanding about gene functionalities in relation to diseases, the 

mouse has been chosen as a mammalian model system for genetic research. This is 

because of significant similarities between the human and mouse in terms of genetic and 

physiologic makeup (von Scheidt et al., 2017). The following facts justifies this project:   

1- There are similarities between humans and mice in physiology, development, 

illnesses and body plan. 

2- Mice are small in size, and the large litters ease the maintenance of a large number. 

3- 95% of human genes are similar to those of the genome of mice (von Scheidt et al., 

2017).  

4- Availability of techniques to change gene expression accurately and efficiently 

(Sundberg, 1994; Nakamura et al., 2013; Severin et al., 2017). 

In 2011, the International Mouse Phenotyping Consortium (IMPC) was launched as a 10-

years project which aims to discover the functionality for every mouse gene by generating 

and systematically phenotyping 20000 knockout mouse strains (IMPC, n.d.). The first 

stage of the project aims to produce and phenotype 5000 mouse lines from 2011 to 2016 

while the rest 15000 mouse lines should be completed by the 2021 (Adissu et al., 2014). 

Before the IMPC project, the WTSI started the MGP in 2006 as a one of the first program 
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for large-scale gene function analysis in mammalian system (White, Gerdin, Karp, Ryder, 

Buljan, Bussell, Salisbury, Clare, Ingham, Podrini and others, 2013). Later, the Sanger 

Institute become one of the founding members of the IMPC. Manipulation of the mouse 

genome involves a process called gene knock out (a biological process by which an 

existing copy of a gene is knocked out and replaced with an artificial piece of DNA). The 

inactivated gene will lead to change in a mouse’s phenotype causing specific behavioural 

and other biochemical and physical characteristic changes (National Human Genome 

Researche Institute, 2015). 

2.1.3 Wellcome Trust Mouse Genetics Project 

Mice genetic background and phenotype data is generated by Wellcome Trust Sanger 

Institute (WTSI), for the benefit of the entire scientific community (Wellcome trust Sanger 

Institute, 2016). Our collaboration with WTSI focuses on the phenotyping of a subset of 

genetically knockout mice. The program at WTSI to functionally annotate the mouse 

genome is illustrated Figure 2.1.  

 
Figure 2.1 Overview of the functional annotation process by the Mouse Genome Project (MGP) at the start of 

this project. Many more lines are now available to study. Image courtesy of the WTSI (Wellcome trust Sanger 

Institute, 2016) 

The primary phenotype data from WTSI aims to identify novel genes which related with 

diseases, such as cancer and developmental genetics. There are other research projects that 

focus on the functions of genes in the mouse genetics area by WTSI, relevant to mouse 
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behaviours, cancer and developmental genetics (Liakath-Ali et al., 2014). Access Data is 

available via the mouse resources portal (http://www.sanger.ac.uk/mouseportal/). 

2.1.4 Secondary Phenotyping from WTSI Resources 

Secondary phenotyping is about the detection of interesting features in gene-knockout 

tissue sections to detect early phenotypes. One example of secondary phenotyping is the 

assessment of genetic determinants of bone mass and strength, which can be involved in 

the pathogenesis of osteoporosis (Brommage, Powell and Vogel, 2019). Using high 

throughput investigation of mouse skeletons, biomechanical testing and statistical analysis 

of 100 mice generated by the MGP pipeline, nine new genetic determinants of bone mass 

and strength were found (Liakath-Ali et al., 2014; Brommage, Powell and Vogel, 2019). 

In this thesis, we are interested in the assessment of genetics determinants of skin tissue in 

relation to abnormalities and skin diseases. 

2.2 Skin Structure and Skin Histopathology 

Mammalian skin tissue consists of three layers: Firstly, the external layer is the highly 

organised epidermis, secondly the dermis (connective tissue), and finally adipose layer 

(the subcutis) as illustrated in Figure 2.2. 

Figure 2.2 Structure of skin layer (Bragazzi et al., 2019) 

2.2.1 Skin Function 

The most obvious function of skin is to maintain a barrier that prevents the loss of fluids 

and protects against penetration by micro-organisms and UV radiation (Goldman, 2008). 

http://www.sanger.ac.uk/mouseportal/
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However the skin provides several other functions: it regulates body temperature by blood 

flow and limits the inward and outward passage of water. The secretion of sweat and 

lipids causes the elimination of a number of harmful substances resulting from metabolic 

activity. The skin also provides flexibility and strength to protect the body from friction 

and impact wounds. Also, the skin can act as a sensory organ as it has a large number of 

nerve fibres and nerve endings. The skin also produces vitamin D when it is exposed to 

the sun, which is an important substance in bone health (Gherardi, 2008; Gawkrodger and 

Ardern-Jones, 2016). Where the skin consists of three layers (epidermis, dermis and fat 

cell) and each layer contains objects such as the hair follicle in the epidermis and the 

nuclei in different layers. 

2.2.2 The Epidermis 

The epidermis is the external layer, which act as chemical and physical barrier between 

the exterior perimeter and the interior of the body (Plotczyk and Higgins, 2019). And is 

consisting of Merkel cells, melanocytes and Langerhans cells, and it is include of layers of 

keratinocytes. Four layer in the epidermis: corneum, spinosum, basal and granulosum as 

shown in Figure 2.3. 

Protect the body from several stressors environmental were the main purpose of epidermis 

layer, such as water loss, damage injuries and infections. The sweat glands in the dermis 

layer and the hair follicles in the epidermis layer were a good example for continuous 

interactions between dermis and epidermis layer. 

Epidermal thickness depends on body site, e.g. on the eyelids it is about 0.05 mm, but on 

the soles of the feet and the palms of the hand (plantar skin), it is 0.8±1.5 mm 

(Gawkrodger and Ardern-Jones, 2016). In thick epidermis, an additional layer called 

lucidum can be seen, which represents a transition between the granulosum and the 

corneum  (Bigby, 2011).  
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Figure 2.3 Upper layers of the skin.  The four epidermal layers with dermis (Goldman, 2008) 

2.2.2.1 Existing methods 

Traditional skin studies utilize manual methods for the quantification of skin feature 

parameters. Recently, there has been a move towards automating the quantification of 

different skin associated features in relation to skin diseases, in order to increase 

efficiency by reducing processing time, improve accuracy by reducing human error, and 

by reducing laboratory costs. We aim to demonstrate that quantifying changes in 

epidermis curvature is of some scientific interest and clinical relevance. Unfortunately, our 

literature review did not unearthed directly related algorithms. We shall review existing 

methods on quantifying other types of skin features/objects and their linkage to skin 

disorder in certain diseases. 

Epidermis layer was segmented automatically in (Lu and Mandal, 2015) as part of a 

diagnosis and analysis system to identify skin cancer particularly melanoma. Pathologists 

stipulate that important cues about melanoma are concentrated in specific skin areas (such 

as the entire epidermis, keratinocytes and sample of melanocytes), and hence priority is 

given to segmenting these objects. Discriminating features, extracted from these objects, 

with the support vector machine are used for classification.  

Measuring melanoma tumor parameters in microscopic images of the epidermis was 

addressed in (Xu et al., 2017) by proposing a four steps method: (1) Mahalanobis 

distances associated with colour features is used to identify melanoma regions, (2) multi-

thresholds was employed to segment the epidermis, (3) Bayesian classification was 

applied to identify the skin granular sub-layer of the epidermis, and (4) multi-level of 

approach is used to measure melanoma area by utilizing the Hausdorff distance, by 
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calculation of mismatch distance between epidermis layer and  melanoma depth of 

invasion. 

For treatment of melanoma, the depth of the tumor is a very important factor in identifying 

and targeting the tumor accurately. Depth measurement of tumor in epidermis was 

investigated by (Noroozi and Zakerolhosseini, 2015). This method has many stages, which 

start with segmenting the cornified layer by applying the entropy feature of the ridges in 

the images. Then active contour associated with colour features is used to segment the 

cells nuclei in epidermis. Finally Fourier feature extraction with index filter is applied to 

recognise the Melanocytes from specimen lymphocytes.   

 

Measuring epidermis depth was also investigated in (Xu and Mandal, 2015a) using a set of 

steps. The method begins with segmenting the epidermis by employing shape feature and 

Otsu's thresholding.  Then thickness of epidermis layer is calculated by using Euclidean 

distance of intersection points of perpendicular line which is connect the boundary of 

epidermis (top and bottom sides) Next, the method able to recognize the inaccurate 

segmentation by matching the extracted thickness with threshold, the value of the 

thickness must be smaller than or equal the obtained threshold to be accurate, otherwise it 

will be inaccurate segmentation. Ultimately segmentation refinement was done utilizing k-

mean techniques to improve the accuracy.  

Note that quantifying the follicle orientation, in the last chapter, relied on using an 

appropriate simple method to determine the two bounding curves of the outer component 

of the epidermis.      

In relation to our objectives, the relevant solutions above for epidermis related 

quantification are those that quantifying epidermis thickness measurement, but none 

attempt to quantify epidermis curvature measurement.  This may be attributed to the fact 

that, unlike our work, these research were not aiming to investigate the genetics causes of 

skin abnormalities and skin disorders diagnostics. Moreover, some of these relevant work 

do not support segmentation of the epidermis sub-layers, which is an important stage to 

have accurate curvature representation.  



 

18 

 

Chapter 2                                                                                                          Backgrounds 

 

2.2.3 The Dermis 

The dermis is consider as the main part of the skin, where a thickness of about 1- 3 mm. 

Dermis has many functions such as mechanical resistance and flexibility to the skin, 

interacting with outer layer (epidermis) to protect and maintain the dermo-epidermal 

junction and keep save pilosebaceous units, sweat glands and nerves (Jensen and Proksch 

2009),(Haake et al., 2001). 

2.2.4 The Subcutis (or Hypodermis) 

The inner layer of the skin is the subcutis.it include a clear fat cells and connective tissue, 

where it lies down the dermis. And it is also known as the adipose tissue layer.  Human 

body include several of fat depots, where the largest fatty deposits are lie downward the 

skin in the human body, and surround fat in the organs in the body (visceral fat) (Burns, 

2010). The thickness of the subcutis varies in different parts of the body: this layer can be 

up to 3 cm thick on the human abdomen. The striated muscles separate the Subcutaneous 

fat from the rest of the body (Burns, 2010).  

There are two type of adipocyte in the human body, white and brown adipocyte, which 

have different properties, for example white adipocytes have less cytoplasm due to the 

large fat store within the cell. Brown adipocytes have a large amount of cytoplasm with a 

centrally located nucleus and smaller pockets of fat stores within each cell. The location 

and function of white and brown fat in the human body is different. White adipocytes 

function as energy stores and brown adipocytes function as energy consumers. Normal 

skin contains only white adipocytes, however, the size and number of adipocytes can 

change in different pathological states, so a decrease or increase in fat can indicate an 

abnormality e.g. obesity or diabetes (Britannica, 2018). 

2.2.5 Dermal-epidermal Interface (Dermoepidermal Junction) 

The boundary between the epidermis and dermis include of a specialized aggregation of 

attachment molecules and connective tissue, collectively known as the basement 

membrane (Gawkrodger and Ardern-Jones, 2016). This structure is complex and is of 

considerable interest as genetic defects in its composition leads to a variety of diseases, 

and it also serves as a target of autoimmune attack (Goldman, 2008). The dermoepidermal 
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junction flattens during ageing (Farage et al., 2010), which accounts in part for some of 

the visual signs of ageing. 

2.2.5.1 Existing Solutions on Skin Layers Segmentation 

There are a number of simple segmentation techniques, such as a threshold on image 

intensity or edge detection, that have been used for segmenting skin layers. The simplest 

method to segment an image into different regions is the use of a global threshold, 

especially if the regions are different enough in terms of intensity values to allow the 

separation of the object and the background (N and S, 2016). 

Colour skin image of human face was segmented by using HSV (hue, saturation, value) in 

(Zainuddin, Naji and Al-Jaafar, 2010), and succeeded in greatly reducing  false negative 

cases by employing colour space technique to cluster colour. Four colours were clustered 

in the face skin images: standard-skin style, light-skin style, redness-skin style and 

shadow-skin style. The 3D colour space was then transformed to 2-D to perform the 

information. Pixels and regions based segmentation were essential stage to improve the 

accuracy. 

In another study, the epidermis layer was segmented using  microscopic H&E skin images 

based on threshold and shape in(Xu and Mandal, 2015b). Then epidermis thickness is 

calculated by measuring the distance between main axis of image and groups line 

perpendicular of epidermis segmented mask. After that the k-means method is used to fine 

segmentation to have accurate segmentation. Many methods were used in the previous 

examples that are nor suitable for our work. First, none accurately segmented the main 

mice skin layers, and second none used a connected mask to segment the mice skin layers, 

which is essential for our work. 

Epidermal segmentation has been evaluated manually by measuring the thickness in 

(Sandby-Moller, Poulsen and Wulf, 2003), and the relationship between the thickness of 

the stratum corneum and the cellular epidermis was investigated to find any correlation 

between age, gender, body site, pigmentation, blood content, smoking history and skin 

type. Biopsies were taken from different areas such as the dorsal forearm, shoulder and 

upper quadrant of the buttock. The results showed a significant influence of these factors 
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on epidermal thickness segmentation. Although this study provided objective 

measurements, the number of subjects was not sufficient, and a limited number of 

parameters were measured. This study, nevertheless, reinforces the need for automated 

unsupervised techniques to assess skin in high throughput histopathological analyses. 

Another interesting work for segmentation is based on using active contour method to 

separate the layer of mice skin in (Osman et al., 2013). Prior to that, some pre-processing 

operation has been done, such as contrast enhancement to highlight the objects, that are 

not prominent in the image, and then the median filter was applying to reduce the noise. 

Subsequently, the image is added to itself, by adding intensity values for each pixel in the 

image with the corresponding pixel intensity in the same image. This helps produce an 

output image more suitable to detect the epidermis in the image, by turning the epidermis 

region darker than other regions. Next the image is converted from RGB colour to HSV 

colour space, while the saturation channel was selected for the segmentation process 

because the region of interest (epidermis and dermis) contained saturated colours in the 

HSV colour space. Then Otsu threshold method has been applied on the saturation image 

to segment into two components: white pixels being the region of the epidermis and 

dermis, and black pixels being the background. The largest object is selected from the 

binary image that represents the initial curve. Finally, the morphology operator has been 

applied using “open” operation, to make the initial curve as an input to active contour 

algorithm, which covers the whole area of the dermis and epidermis in the original image.  

Being the nearest to what we need, we implemented the above algorithm and found that 

the active contour method was appropriate method for their own objective of segmenting 

the adipocyte cells in the fat cell layer. These cells are immediately adjacent to the 

epidermis and dermis, so by isolating these two layers and using subtraction of the 

segmented epidermis and dermis from the saturation image, quantifying the adipocyte 

cells became straightforward.   

However, the algorithm does not perform well enough to segment other layers or to 

segment sublayers of the main layers. In particular, we found that this algorithm fails to 
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segment the two sub-layers of the epidermis, the basal and the cornified layer. The 

following example illustrate in Figure (2.4) this shortcoming of the above algorithm. 

 
Figure 2.4 Output of Osman's method segmentation. A) Input colour image. B) Output segmentation 

Since this sub-layer segmentation is essential for our main investigations on abnormalities 

in the orientation of hair follicles and the number of nuclei in different layers, then we 

need to develop a more sophisticated multi-layers and sublayer segmentation schemes.  

2.2.6 Hair Follicle 

The hair follicle is a unique structure (Figure 2.5) that is constantly undergoing growth 

(anagen) period, regression (catagen), resting (telogen) and shedding (exogen) throughout 

the lifetime of an individual. Bulge stem cells, located at the insertion of the arrector pili 

muscle (APM), give rise to progenitor cells that proliferate during anagen producing a 

downward expansion of outer root sheath (ORS) encasing a specialised area of 

mesenchyme called the dermal papilla, together forming the hair bulb. Within the hair 

bulb are rapidly dividing matrix cells that produce the hair shaft and inner root sheath 

(IRS). The hair shaft and IRS are formed in distinct and concentric layers, analogous to 

onion skin, in which keratin proteins are prominently, expressed resulting in hair 

keratinisation and the formation of the rigid hair structure (Paus and Cotsarelis, 1999; 

Stenn and Paus, 2001; Schneider, Schmidt-Ullrich and Paus, 2009). 

Hair follicles development occurs during embryogenesis when signals from the dermis 

stimulate the epidermis to produce a thickening of columnar cells, called the placode. 

Signals from the placode then induce formation of a dermal condensate below the placode. 

Down growth of the placode ensues encasing the dermal condensate, eventually forming 

the dermal papilla. Epithelial cells ultimately differentiate into specific layers resulting in 

hair shaft generation. Appearance of Wnt/β catinin signalling is crucial for initial hair 

A B
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follicle development (Paus and Cotsarelis, 1999; Stenn and Paus, 2001). Hair follicles may 

respond to inflammatory damage in a limited number of ways depending on the type, 

location, intensity and duration of the inflammatory attack. Premature catagen induction, 

dystrophic anagen, programmed organ deletion. Sometimes the response permits ongoing 

(although imperfect) hair shaft growth or a temporary shift in the hair cycle to allow time 

for follicle recovery. However, other times permanent hair follicle loss will ensue 

(Hadshiew et al., 2004).  

               

 
 

 

 

 

 

 

 

 

Figure 2.5 Hair follicle anatomies (Harries et al., 2009) 

The skin image displays significant information about colour across images and the spatial 

arrangement of changes in intensity. The disorder in growth development of hair follicle 

in terms of colour and size in the skin surface, as well as the disruption of orientation in 

the epidermis layer, is of great interest to analyse skin abnormalities (DiTommaso et al., 

2014), (Scott, 2015). 

Unknown functionality or lack-of-function of hair phenotypes in physical mouse mutants 

were the main reasons to study the phenotypes of hair. Previous studies have provided a 

helpful mechanistic view to show that causes of disorders of human hair growth are 

largely unknown. For instance, such reasons could include a set of genodermatoses 

(hypotrichosis simplex, monilithrex) or due to immunological conditions (e.g. alopecia 

areata), as well as hormone-dependent distortions, hair shaft disorders, hirsutism and 

hypertrichosis. The skin of mutant mice contributes credible evidence for identifying 

mechanisms of disease, which is comparable to the human structure (Sundberg and King, 

1996; Nakamura et al., 2013; Scott, 2015).  
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2.2.6.1 Existing Methods of determining Hair Follicle Orientation 

In previous studies such as (Guo, Hawkins and Nathans, 2004; Wang, Badea and Nathans, 

2006; Devenport and Fuchs, 2008; Ravni et al., 2009; Wang, Chang and Nathans, 2010), 

large number of hair follicles has been quantified, in terms of the 2D structure of skin 

tissue. Furthermore, the WT and Fz6-1 backgrounds were assessed, according to the 

relative orientations of follicle-associated structures and the orientations of hair follicles, 

while in the mutant type of mice in Frizzled (Fz6) or Celsr1 and Vangl2 lead to 

disorientation of hair follicle.  

The above mentioned studies employ different methods, guided by genetic information, to 

quantify the hair follicle orientation in an image. The adopted methods depend on the 

planar cell polarity to determine the angles of hair follicle relative to the skin surface, and 

then assess changes in these angles to match with the phenotype depend on knock out 

genes (Chang and Nathans, 2013; Ahtiainen et al., 2014; Chang et al., 2015; Chang, Philip 

M. Smallwood, et al., 2016; Cetera et al., 2018). 

Inactive Frizzled6 (Fz6) gene in mice disruptes the hair orientation in (Wang, Badea and 

Nathans, 2006), which results in groups of hundreds hairs appear as waves in some area 

over the skin. By analyzing hair follicles growth orientation, it is found the orientation of 

WT grow in a particular order, while in the mutant mice the grown hair follicle orientation 

appear in random pattern. The process of determined automated model to quantify the 

orientation of follicle is done essentially based on the average of neighbors orientation of 

hair follicles constrained at a certain time. In mammals, hair follicles are associated with 

many objects such as: Merkel cells, arrestor pili muscles (APMs), cutaneous sensory 

nerves and sebaceous glands, each of which connect with the hair follicle from different 

directions. Relying on the association of each of these objects provide a different method 

to quantify the orientation of the hair follicle. In this work (Wang, Badea and Nathans, 

2006), the follicle angles have been measured according to four associated objects as 

mentioned earlier. The most interesting issue was measuring the angles according the 

subcutaneous glands. Although this study provides objective measurements for hair 

follicles in the skin, the method used was not perfect, because it was still a manual system 

which is time consuming and not cost-effective. This study, therefore, reinforces a need 
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for the use of automated, unsupervised techniques to assess skin in high throughput 

histopathological analyses. 

2.2.7 Nuclei in the Skin 

The nucleus is the site of the storage, which has genetic information that responding to the 

signals cell. Nuclei are changes in the condition such as skin cancer. 

(Woodcock and Ghosh, 2010).  

2.2.7.1 Relevant Work 

Nuclei are deemed to influence the cellular rate of metabolism. In (Yang, Li and Zhou, 

2006), it was shown that changes in the number of nuclei in skin tissue are one of the 

important skin features that reflect changes in metabolism i.e. an increase in number 

correlates with metabolic diseases such as cancer.  

The advantage of the computerised method, over manual counting of nuclei in skin layers, 

is that it can conduct the task for large number of segmented epidermal and dermal tissues 

in a short time, and free from observer bias. Moreover, the images can be stored and used 

again as future reference. While in the manual method when the stain has been used on an 

image, it highlights some features in the image tissue, the rest of the details depend on the 

use of a stain. These observations explain the strong research interest in general automatic 

image segmentation. Next paragraph review relevant work on segmentation of nuclei like 

objects and discuss their effectiveness. 

In general, image segmentation method rely on using a variety of image 

features/information to partition images into visibly different regions containing 

interesting details. Existing nuclei segmentation techniques combine the use of colour 

thresholds and/or edge detection. The use of colour thresholds alone is not expected to be 

effective enough to segment the nuclei in the epidermis layers in H&E stained skin 

sections because of homogeneity of colour intensities in the overall image, which might 

affect the thresholding process.  

The use of edge detection for segmentation, implicitly assumes that image objects of 

interest have distinct boundary components separating them from background or other 

objects. Such an approach was adopted by (Sadeghian et al., 2009) to segment useful 

information in an image, such as nuclei in the epidermis layer, by applying edge detection 
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filters to separate image objects from the background whereby the different disjoint image 

regions differ in terms of colour intensity.  

The assumption that edges bound regions of image with closely related colour intensity is 

far from being true always. On the other hand, discovering regions of nearly uniform 

colour intensity maybe amenable to clustering image intensities. Hence, colour 

segmentation such as the work in (Rich and Whittaker, 2005; Cisneros et al., 2011) is 

widely used to separate image content into different regions through clustering by the k-

mean method. The K-mean clustering in colour segmentation overcomes problems 

associated with the widely used pixel intensity threshold alone. Success of colour based 

clustering algorithms, including the K-mean, is reliant on the image having sufficient 

variation of colour (Muthukannan and M, 2010). This is not guaranteed in our application, 

but we should nevertheless exploit any level of colour variation.  

Figure 2.6 illustrates segmentation output results from existing methods, such as Canny 

edge detection (Figure 2.6C), colour segmentation using k-means clustering of L*a*b* 

colour space of the image (Figure 2.6B) (Muthukannan and M, 2010). The results of these 

techniques do not always individually yield effective segmentation of the nuclei in 

different skin layers, but each of these techniques may help with highlighting certain 

image features in other images stained with other staining methods. 

A supervised machine learning cell segmentation algorithm was introduced in (Mao, Zhao 

and Tan, 2006) that uses a combination of two analysis algorithms. Firstly, an algorithm 

for marker detection was developed for the watershed to isolate touching cells or 

connected objects, such as overlapping nuclei. The classification of the output patterns 

relies on shape information and photometric data of the image, and was employed to 

produce a robust marker detection method. Secondly, the RGB image is transformed into 

the YIQ colour space (where Y is greyscale pixel value, I is the hue channel and Q is the 

saturation channel) for classifying pixels according to membership of the cells. The Otsu’s 

threshold method is applied to the greyscale image (i.e. the Y channel) to binarise the 

image based on the histogram distribution of the pixel intensity. In this paper the touching 

cells were isolated successfully by using watershed method. The isolation of overlapping 

nuclei was one of our aim in Chapter 5, so we had used the watershed method to achieve 

this aim. 



 

26 

 

Chapter 2                                                                                                          Backgrounds 

 

 

Figure 2.6 Nuclei segmentation with existing methods. A)  Original H&E stained image. B) k-means clustering 

output image (k=3). C)  Canny edge detection 

 

2.3 Histology Staining Methods in Skin Analysis 

Examining skin tissue slides under the microscope in terms of detection of its content 

objects require histological staining (Wei et al., 2019). The use of special stains highlights 

features and different structures within a specimen. In terms of analysis, staining can also 

facilitate image segmentation. Several staining methods are used in histopathology for 

highlighting different features in skin tissue sections (Gherardi, 2008), and the main ones 

used in this study is explained below: 

Haematoxylin & eosin (H&E) is a general stain. It can allow assessment of overall 

structure. Acidic substances (i.e. nuclei) are stained blue and alkaline substances (the 

majority of other tissues) stain shades of pink. Figure 2.7 illustrates a skin tissue section 

stained with H&E (provided by The Wellcome Trust Sanger Institute [WTSI] Mouse 

Genome Project [MGP], unless otherwise stated all other tissues were generated in the 

Buckingham Institute for Translational Medicine). This staining is widely used in 

morphological analysis, where each skin layer can be discriminated, which helps to 

measure the depth of layers. 

A

B

C
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Figure 2.7  Skin image in H&E stain (Goldman, 2008) 

2.3.1 H&E Staining of Skin 

Using the H&E stained tissue, highlights its crucial features in several pathological 

condition. The need to show detail of huge information about the structure and 

organisation tissue was essential advantage to use the staining method (Bancroft and 

Gamble, 2008). Many projects have used the H&E stained histological sections, for 

instance the morphometric of skin layer, such as depth, shape, area and length (Bapure, 

2012). Also a useful information can be reveal by using stain, such as hair follicle 

orientation in the skin, number and size (Bancroft and Gamble, 2008). In addition, the 

staining can help to use in assessing the extracellular matrix (ECM) and general structure 

of the dermis whence, structure and organisation for collagen (de Vries et al., 2000). 

Customarily, manual methods are used to qualitatively assess in histological changes, this 

process is time consuming and the result follow to observer's view bias.  An Automated 

techniques in this chapter have been develop to split a skin layer and sub-layer indifferent 

methods with identify and count the nuclei in the those layers, to determined early 

phenotypes of interesting in a high- throughput genetic screen. 

2.4 Biological Image Processing and Analysis 

Digital images, including the microscopic ones, encapsulate a huge amount of information 

about their content, and the interpretation of the information in these images need 

effective image analysis solutions. Image processing techniques are operators that 

transform the original image (input image) to produce an output image that is more 

suitable for analysis (Gonzalez, Woods and Eddins, 2004). 
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Computer vision incorporates different important functions for the quantification of image 

content information within using automatic and semi-automatic algorithms to enable 

various image analysis tasks with high levels of accuracy, speed and throughput. 

Biomedical microscopic images normally require own pre-processing steps so that useful 

features can be extracted reliably. Depending on the type of problems, segmentation or 

detection of certain part of the image is often essential. Biological images come in many 

different forms, and even within the field of microscopy images can be acquired from 

many different types of microscopes and other devices such as whole-slide scanners. 

Extracting the complex information contained in these images is a demanding task, and 

manual methods tend to be inaccurate and not necessarily reproducible. Therefore, the 

biologist or physician increasingly needs automated image processing and analysis 

techniques to get an accurate result to reach an informed decision to help with diagnosis 

and appropriate management (Meijering and van Cappellen, 2006; Toennies, 2017). 

MATLAB is a powerful scripting environment that readily allows the deployment of a 

broad range of image analysis operators, and is very powerful in prototyping novel 

analysis pipelines. Image analysis methods devised for extracting cutaneous features and 

analysis, are written in MATLAB 2014b. 

2.4.1 Image Acquisition (Image Sources) 

It possible to acquired Biological images from different sources, and most are turned into 

digital form, which may require enhancement prior to analysis. Before capturing 

biological images there are many processes to prepare the tissue or cells for 

photomicrography. These included fixation, sectioning and staining to preserve and 

highlight specific features of the section. 

2.4.1.1 Microscopy 

The human eye can distinguish wavelengths in the visible range of 400 to 750 nm (Rädler 

et al., 2019). In addition, perceiving the contrast in an image or object depends on the 

variance in intensity for two different regions (A1, A2) in an image, given by 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = log10(A1, A2)                                                 (𝑒𝑞2.1) 
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The constraint in wavelength, contrast and resolution does the human view eye insensitive 

to find tiny objects, and unable to find some polarization states, where the resolution of 

human eyes is ~0.1 mm (Rittscher, Machiraju and Wong, 2008). 

The microscope is contributed, to beat restraints of the human vision. It was several kinds 

of dissimilar microscopic techniques that one can employ to view small items in any 

tissue, also analysis any kind of structures.   

Microscopic are based on sample types, which fall into three categories: single molecules, 

tissues and nuclei .It was several imaging mechanism that are utilized to develop 

dissimilar biological specimens; in this thesis the following methods are described: 

• Fluorescence illumination: fitting for fluorescent specimen such as nuclei in tissue 

culture or fluorochrome-stained sections.  

• Brightfield illumination: utilized to study stained tissue, naturally coloured 

specimens, fibres and hair. Polarized illumination: applied to study birefringent 

samples with a systematic structure such as thin mineral sections, hairs and fibres, 

bones and feathers. 

 2.4.1.2 Slide Scanners (Digital Pathology Platforms) 

Visualising skin tissues generate huge images with very high-resolutions that are often 

obtained by using slide scanners, by performing line-scanning followed by image 

stitching. Scanners device as the Aperio ScanScope provide images of up to 40x optical 

magnification and allow “virtual microscopy” (Masson-Lecomte et al., 2019). This 

technique has advantages in that it incorporates a huge amount of information in one file, 

and can show the entire tissue in one image that can be analyzed in one pass. However, the 

size of these images might slow down batch processing, and they cannot be easily 

analyzed by traditional image analysis techniques and require expensive commercial 

software, which requires expert optimisation and is generally not fast enough to give 

timely results.  

Figure 2.8 shows the Aperio whole-slide scanner and a typical display of the software. 
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Figure 2.8 Aperio ScanScope S canner (Molin, Thorstenson and Lundström, 2014) 

2.4.2 Image Processing 

These stages start with segmenting the image into interesting partitions and extracting the 

features that require quantification and analysis. Object detection is a common biological 

image processing task that forms the second stage of automated bio-image analysis. Image 

pre-processing comprises a range of image processing techniques as described in the 

following sub-sections. 

2.4.2.1 Related Work  

The general approach of the proposed thesis is to apply the proposed methods on the H&E 

images from the WTSI MGP to enable investigation of the effect of different genes and 

identify the interesting genes. 

Biological images contain a variety of objects, which may need to be extracted and 

quantified. Many of the existing tools do not cater for the array of objects found in the 

research or pathology context and there are difficulties in doing this in a time-efficient 

manner (Gauthier et al., 2019). For example, there are few whole-slide application tools, 

and few resources for cutaneous research. Automated image analysis exists within the 

computational field, but is limited in biological applications (R. Dougherty and 

Shmulevich, 2012). Automation has two major advantages: firstly it prevents bias and 
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secondly the process can applied to a large number of images(Kueh et al., 2008). 

Biological images are often complex and contain noise that necessitates image processing 

to enhance the image and allow extraction of meaningful quantitative information. 

Attempts have been made to automate biological image analysis as following paragraphs. 

Layer segmentation is an essential pre-processing stage prior to quantifying objects in 

different layers, such as segment nuclei in the epidermis and dermis layers. While the 

changes to these objects in numbers and shapes may be due to genetic mutations or skin 

disease such as melanoma diagnosis (Mokhtari et al., 2014).  

While developing a computer-aided system for the diagnosis of cervical intraepithelial 

neoplasia Wang et al. (Wang et al., 2009), used the SVM machine learning to segment the 

relevant tissue layers.  

Another system was developed by Mokhtari et al. (Mokhtari et al., 2014) to segment the 

epidermal layer, for measuring melanoma depth of invasion in microscopic images. 

Morphological operations and global thresholding was used to segment the skin layers. 

Lu et al. (Lu and Mandal, 2012) developed method to segment 40X magnification of H&E 

images different layers, based on shape analysis and global threshold. Where the k-mean 

cluster was used to improve the epidermis segmentation.  

Segmentation of 10X magnified images were investigated by Haggerty et al. (Haggerty et 

al., 2014), who was employing a contrast enhancement and thresholding based technique 

to segment the epidermis layer.   

Automatic method for segmentation and counting a hair follicles in the skin has been 

developed based on edge detection and Otsu thresholding (Shih, 2015).  

Parvin et al. (Parvin et al., 2007) proposed a multi-pass voting technique for inferring the 

centres of cell nuclei based on statistical feature shape.  

Qi et al. (Qi et al., 2012) proposed a single-pass voting (SPV) technique for nuclei 

detection, which only performs one round voting followed by mean shift clustering to 

detect nuclei seeds.  

The fuzzy cluster was used to detecting the nucleated red blood cells automatically in the 

(Das, Maiti and Chakraborty, 2018). In the ultrasound muscle images, the curvature has 

been quantified automatically based on wavelet method (Namburete, Rana and Wakeling, 

2011). 



 

32 

 

Chapter 2                                                                                                          Backgrounds 

 

Another interesting work for layer segmentation is based on using active contour method 

to separate the layer of mice skin in (Osman et al., 2013). All above work are support 

epidermis layer segmentation perfectly, but it doesn't support sub-segmentation of the 

epidermis layer into basal layer and cornified layer as we need in our research. 

2.4.2.2 Image Segmentation 

Segmentation is a process that is used to subdivide an image into different regions or 

objects. Segmentation depends on properties and structure in the image and the pixels 

related to the object region (Gonzalez, Woods and Eddins, 2004), biological image 

analysis and quantification needs objects to be detected and the features of objects 

identified. After segmentation the segmented region can be analysed then a meaning 

assigned to this region (Cisneros et al., 2011), the inputs in the segmentation method are 

images and the outputs are attributes extracted from those images. Segmentation 

approaches are divided into two categories. The first category applies to colour images 

and the second category applies monochrome images (Hosea, Ranichandra and Rajagopal, 

2011), segmentation of monochromatic images is based on properties of image intensity 

values such as discontinuity and similarity. The image segmentation techniques in 

different domains are explained next.  

 Colour Deconvolution Model-Based Segmentation 

Colour deconvolution is one of the frequently used image processing function to separate 

overlapping spectra. It is useful in highlighting the region of interest and this method is 

suitable for H&E(haematoxylin & eosin) stained images (Ruifrok, Johnston and others, 

2001), we had to use H&E images because all our datasets in H&E. And it is suitable to 

analysis microscopic images because it highlighting the region of interest such as nuclei in 

the epidermis layer. The image pixel values, representing the stain concentration, can be 

computed by measuring the optical density (OD) of the image to determine the highest 

pixel intensity in the specimen (Ruifrok, Johnston and others, 2001). In the haematoxylin 

& eosin (H&E), where the H channel (blue) highlights the epidermis layer, the majority of 

which consist of overlapping nuclei (Nava and Jaffe, 2005; Cuadros et al., 2007; Kimm et 

al., 2007), while the E channel (red) displays the texture of skin layers (Arvis et al., 2011), 

as shown in Figure 2.9. 
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                Figure 2.9 Colour deconvolution. A) Original H&E image. B) H channel. C) E channels 

 

The intensities were detected from transmitted light (A) and (c) as absorption factor, by 

using the Lambert-Beer’s law (Peters et al., 2019). 

IC=I0, C exp (-Ac )                                                                   (eq2.2) 

Where I0,c represents light intensity, Ic is the light intensity after passing through a 

specimen, and c is the point to detection channel. 

For individual channels of RGB the optical density (OD) can be defined as  

                                ODC =-log10(IC/I0,c)= Ac                                                             ( eq2.3) 

 

It was evident that there was a clear linear relation between OD and every channel with 

intensity of absorbing material, so it can be capable of splitting several stains in a 

specimen. 

Every stain is represented by optical density for the illumination in RGB, i.e. for each 

channel of the RGB image in pure stain term has an OD. For example, measure a stain 

with haematoxylin only, led to OD values of 0.08, 0.20 and 0.18 for B, G and R. 

The vector will be proportional to the amount of stain, while OD will be calculated for 

each channel. In this case, there were three channels, while the relative values of the 

vector describe the actual OD for the detection channels. The matrix of colour can be 

described as following form. 
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[𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑]

[𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟑]
[𝒙𝟑𝟏 𝒙𝟑𝟐 𝒙𝟑𝟑]

                                                (eq2.4) 

Each row relates to a different stain and each column represent the optical density, which 

was detected by the RGB channel for every stain. Measuring the absorption of RGB with 

a single stain led to the determination of the OD values for every channel. For example, 

the matrix of OD combination of hematoxylin (H), eosin (E) is: 

 

[𝟎. 𝟏𝟖 𝟎. 𝟐𝟎 𝟎. 𝟎𝟖]    𝐇

[𝟎. 𝟎𝟏 𝟎. 𝟏𝟑 𝟎. 𝟎𝟏]    𝐄
[𝟎. 𝟏𝟎 𝟎. 𝟐𝟏  𝟎. 𝟐𝟗]        

                                        (eq2.5) 

 

To obtain separate information for every stain’s contribution, the ortho-normal 

transformation of RGB needs to perform for partition of stains to obtain separate 

information for the contribution of respective stains. The transformation needs to be 

orthogonal and normalised to get a correct balance of absorption factor for each stain. For 

normalisation, the division operation taken place for every OD by its total length. 

�̂�11=𝒙11/√𝒙𝟏𝟏
𝟐 + 𝒙𝟏𝟐

𝟐 + 𝒙𝟏𝟑
𝟐                                                      (eq2.6) 

�̂�31= �̂�31/√𝒙𝟑𝟏
𝟐 + 𝒙𝟑𝟐

𝟐 + 𝒙𝟑𝟑
𝟐                                                     (eq2.7) 

�̂�21= �̂�21/√𝒙𝟐𝟏
𝟐 + 𝒙𝟐𝟐

𝟐 + 𝒙𝟐𝟑
𝟐                                                      (eq2.8) 

 

Which leads to normalised OD array M: 

[
�̂�𝟏𝟏    �̂�𝟏𝟐   �̂�𝟏𝟑
�̂�𝟐𝟏   �̂�𝟐𝟐   �̂�𝟐𝟑
�̂�𝟑𝟏  �̂�𝟑𝟐    �̂�𝟑𝟑

]                                                       (eq2.9) 

The OD matrix M that was normalised as above merge of haematoxylin, eosin and DAB 

is: 

[
𝟎. 𝟔𝟓    𝟎. 𝟕𝟎  𝟎. 𝟐𝟗
𝟎. 𝟎𝟕   𝟎. 𝟗𝟗   𝟎. 𝟏𝟏
𝟎. 𝟐𝟕  𝟎. 𝟓𝟕    𝟎. 𝟕𝟖

]                                                     (eq2.10) 

R            G            B 
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If vector C is 3*1 for 3 stains at an individual pixel, then OD values at that pixel is y = 

CM. 

It is clear from the above that C=𝑀−1[y]. In this sense, the multiplication operation 

between OD- image and inverse of OD matrix, that was defined as matrix D for the 

colour-deconvolution, which led to orthogonal representation. 

C=D [y].                                                               (eq2.11) 

Matrix D is a colour deconvolution corresponding to matrix M for the haematoxylin, eosin 

and DAB matrix is: 

[    
    𝟏. 𝟖𝟖  − 𝟎. 𝟎𝟕      − 𝟎. 𝟔𝟎
−𝟏. 𝟎𝟐        𝟏. 𝟏𝟑      − 𝟎. 𝟒𝟖
−𝟎. 𝟓𝟓   − 𝟎. 𝟏𝟑          𝟏. 𝟓𝟕

]                                  (eq2.12) 

In the resulting matrix, it can be observed that the diagonal elements of the matrix are 

larger than unity, while the negative elements are off the diagonal. To obtain the 

haematoxylin stain from colour from the above matrix (11), which indicates the OD 

(eq2.4) values for every stain in the image has to subtract a portion of the blue OD and the 

green OD from the red OD. To extract the eosin OD, a portion of the blue OD and the red 

OD must be subtracted from the green OD, while to get the DAB OD, a portion of the 

green OD and the red OD must be subtracted. In this status, the stains used will be pure 

green, blue and red stains, and the matrix above (11) will be the unity matrix. 

Automatic classification of nuclei was contributed by using colour deconvolution in H&E 

stain images of three kinds of malignant lymphoma: mantle cell lymphoma, follicular 

lymphoma and chronic lymphocytic leukaemia (Orlov et al., 2010). 

The colour deconvolution method was used for the extracted haematoxylin stain, which 

represented nuclei in the colour image, which led to performing cell detection and 

segmentation by using a novel contour based minimum model (Wienert et al., 2012; 

Irshad et al., 2014). 

A novel method has been introduced to normalise the stain in image of histopathology, 

such as tumour segmentation based on breast histopathology. Colour deconvolution was 

employed as a pre-processing stage of derived colour for nonlinear mapping image. The 

colour deconvolution method was a better method to obtain individual stain concentrations 

in a mixed stain image. Instead of using matrices of standard stain, which are probably 
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inappropriate for the provided image, the proposed method utilises colour classifier, which 

is a new description of colour staining to determine the image matrix of a stain (Khan et 

al., 2014).  

 Recent work of interest involved automated segmentation of microscopy stain images, 

which used the colour deconvolution method for obtaining the haematoxylin stain, in 

order to segment oropharyngeal cancer tissue micro-arrays (TMAs) and to identify stromal 

tissues and epithelium. Mathematical morphology was used for segmentation, while 

colour deconvolution was a main method to segment the haematoxylin stain from the 

H&E image, which focuses on the dark area of the nuclei. Unsupervised methods, the 

voting-based consensus function and Evidence Accumulation Clustering (EAC), were 

then applied to recognise stromal regions and layers (Fouad et al., 2017).    

    Fuzzy C-Mean Model-Based Segmentation 

The fuzzy c-mean method provided an accurate technique for crusting the image, by 

employing two values per pixel, which were the membership and distance. Based on these 

two values, it was determined in which cluster the pixel belongs. While the membership 

grade represents the degree to which the pixel belongs to each cluster, where the higher 

the value of membership indicates a higher probability of this pixel belonging to this 

cluster. In contrast, the low value of distance point to high probability of this pixel 

belonging to this cluster, as a result, each cluster consists of a pixel, which has a high 

membership grade with low distance (Babu et al., 2010; Ng et al., 2015).   

The objective function was defined as follows: 

     𝑱
𝒎=∑ ∑ 𝝁𝒊𝒋

𝒎 ‖𝒙𝒊−𝑪𝒋 ‖
𝟐𝑵

𝒋=𝟏
𝑫
𝒊=𝟏

                                                                            (eq2.13) 

 

Where 

• m is any real value larger than 1 

• Jm is the objective function. 

• D is the number of data points. 

N is the number of clusters. 
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• M is fuzzy partition matrix exponent for controlling the degree of fuzzy overlap, 

with m > 1. Fuzzy overlap refers to how fuzzy the boundaries between clusters are, 

that is the number of data points that have significant membership in more than one 

cluster.  

• Xi  is the ith data point. 

• Cj  is the centre of the jth cluster. 

• μij  is the degree of membership of xi in the jth cluster. For a given data point, xi, 

the sum of the membership values for all clusters is one. 

The following steps show how FCM work in order: 

1- Randomly initialize the cluster membership values, μij. 

2- Calculate the cluster centers: 

  

𝑪𝒋=

∑ 𝝁𝒎
𝒊𝒋𝑿𝒊

𝑫
𝒊=𝟏

∑ 𝝁𝒊𝒋
𝑫
𝒊=𝟏

       (eq2.14) 

3- Update μijaccording to the following: 

𝝁𝒊𝒋 =
𝟏

∑ (
‖𝑿𝒊 −𝑪𝒋‖

‖𝑿𝒊 −𝑪𝒌‖
)

𝟐
𝒎−𝟏

𝑵
𝒌=𝟏

   (eq2.15) 

4- Calculate the objective function, Jm. 

5- Repeat steps 2–4 until Jm improves by less than a specified minimum threshold or 

until after a specified maximum number of iterations. 

The FCM method with orientation sensitive in H&E images is employed for automatic 

segmentation of the epidermal and dermal layers and other tissue, for instance 

melanocytic cells and nests which refer to the presence of cancer cells (Babu et al., 

2010). The proposed method was produced to assist the diagnosis function for dermato-

pathologists. The automatic segmentation method technique of H&E stained images 

was created by applying the FCM for clustering the human skin tissue to find the region 

of interest which leads to determination of the abnormalities for human skin identified 

by medical practitioners when manually segmenting the ROI, (Mandal, Gupta and Kar, 

2016). 
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    Thresholding 

The technique of thresholding is widely used in biological image segmentation because of 

the simplicity of implementation. This process results in a fast image analysis if the 

threshold value can be chosen automatically and adaptively to be applied to all images. 

The idea of a threshold is that the object and background in a given image f (x, y) have 

intensity levels grouped into two modes. These modes are separated by the threshold t in 

the intensity histogram of that image Figure 2.10 such that any point at which f (x, y) is 

greater than the threshold T is an object otherwise it is considers as a background (Dhara, 

Suryono and Widodo, 2017)(Esfahlani and Sayama, 2018). 

 

 
Figure 2.10 Thresholding. Thresholding achieved by applying the threshold function M to the input image f (x, 

y) and producing the thresholded output T (x, y) so that T (x, y)= M (f (x, y)). a) Grayscale image with the 

corresponding histogram underneath, b) Binary image 
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    Euclidean Distance Transform 

The distance transform is a method that usually only deals with binary images. Grey scale 

image is the result of the transformation with the same style of input image. The grey scale 

intensities of each point in the foreground area are changed to display the distance from 

each point to the nearest boundary. One of the most common distances is Euclidean 

distance transform, which finds the nearest straight line between two points, and it used to 

measure the points separation in the image, by determining the distance between the 

nearest nonzero pixel and each pixel in the binary image, as shown in eq (2.16) and in 

Figure 2.11. 

Where 

First point is (𝐴1, 𝐵1,), second point (𝐴2, 𝐵2,),  

Euclidean distance = √(𝑨𝟏, −𝑨𝟐)𝟐 + (𝑩𝟏 − 𝑩𝟐)𝟐  (Maurer, Qi and Raghavan, 2003) (eq2.16) 

 

 
Figure 2.11 Two-dimensional Euclidean distance transforms 

    Watershed Transform 

Watershed is one of most common methods for segmenting the medical image and other 

types of images to extract the particular object from the image. Topographic surface on the 

grey scale mode is made by the algorithm of the watershed, where the heights is technique 

to represent the intensity of pixels. The catchment basin of the image is the local minima 

region, where the water flooding starts and increases until the surrounding area floods. 

The boundary between the two basins is a watershed as shown in Figure 2.12. In the 

topographic surface, the “water” flooding process will stop, when the level of water has 

reached the highest peak, which leads to splitting the image into particular regions. The 
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image gradient maps or Euclidean distance transform can be used with watershed 

segmentation to process the image (Chakkaravarthy and Chandrasekar, 2019) 

 

 
Figure 2.12 Watershed transform with watershed lines and catchment basins (Bai, Li and Wang, 2017) 

2.4.2.3 Colour Segmentation     

Colour-based segmentation is the process that segments or subdivides an image into 

regions depending on the colour-texture pattern distribution in that image (Russ and Neal, 

2016). This process is about finding homogenous colour regions, and those not similar to 

the segmented region. Biological image segmentation should be accurate and robust, and 

subdivide an image to target objects and non-objects for further quantification. 

Colour segmentation is different from one colour space to another as there are many 

colour spaces representing colour in image. Example of colour spaces are: RGB that 

includes three channels red, green and blue; CIELAB represents lightness, where A and B 

are two colour dimensions in this colour space. There are many other colour spaces, 

however the above are widely used in image analysis (Ford and Roberts, 1998). 

Biological image segmentation is a difficult task because images are rich in colour and 

texture. Colour quantization facilitates the segmentation process, using a criterion for 

extraction of a few representative colours, where neighbouring regions can be 

differentiated in the image (Russ and Neal, 2016). 

2.4.2.4 Mathematical Morphology 

Morphological techniques can be used in the pre-processing and post-processing of 

geometrical structure in an image. Techniques can be applied to binary images and 

greyscale images. Mathematical morphology transforms the image according to the size, 
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shape and connectivity. Binary morphology techniques control how the shape fits or 

misses the exact shape of the object in the image by using different morphological 

operations that help image analysis before and after segmentation (Gonzalez, Woods and 

Eddins, 2004; Fisher et al., 2005; Meijering and van Cappellen, 2006). 

➢ Erosion and Dilation 

In the binary image, there are two common operators of mathematical morphology that are 

typically applied. The boundaries of foreground part will erode in the erosion operator. 

While the boundaries of foreground area will enlarge in the dilation operator. 

➢ Closing and Opening 

The processing by using close is same to the dilation operator which it reduce the 

background and expand the boundaries of foreground object in the same region.  The 

closing operator can be utilized with two operations the erosion and dilation.  

The closing operator in the similar shape background region doesn’t affect to the 

structuring element. But the remaining areas are changed. In a simple define for the close 

operator is dilation then erosion, for both operations with the same structure element as 

shown in Figure 2.13. 

 
 Figure 2.13 Principles of binary morphological erosion, dilation, closing and opening operators 

2.5 Comparing Manual versus Automatic Measurements 

To examine the correlation and the closeness between the automatic and manual measures, 

three different metrics are used. 

not X

X
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2.5.1 Regression line 

Describe the relationship between the actual and prediction measures is through fitting a 

regression line. We can use the R2 (coefficient of determination) statistical measure, which 

can tell how the data is close to the fitted regression line to evaluate the correlation 

between the actual and predicted measurements (Frost, 2013). The R2 can be calculated 

using the following formula 

 

𝑅2 = (
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑  𝑥2 − (∑ 𝑥)2][𝑛 ∑  𝑦2 − (∑ 𝑦)2]
⁄ )2     (eq2.17) 

Where x and y are two variables and n is the number of observations. 

Roughly speaking, the higher the R2 the better the fit. However, even the R2 can explain 

the relationship between the two variables, it cannot give any information about the bias of 

the predicted variable. The R2 is used as initial evaluation results in my thesis, such as in 

Chapter 5,6,7 to compare our automatic method and ground truth. Due to R2 method does 

not give any information about the bias of the predicted variable, I used Angle of 

Regression Line (ARL) method to confirm out results.  

To address the above problem, the Angle of Regression Line (ARL) is used. ARL gives 

beneficial information about the nature of relationship between the two variables. Usually, 

around 45° ARL indicates a good correlation of the predicted values to the actual ones. 

Smaller or larger than 45o ARL shows the bias of the estimated values. 

However, the R2 measure is good to show how two variables are related but not how much 

their values are close or agreed (Bland and Altman, 2010). For this reason, we have 

decided to use the Bland Altman analysis method as explained in next section for the 

closeness between different measurements. 

2.5.2 Bland-Altman analysis 

To further confirm our results The Bland-Altman (BA) analysis (Bland and Altman, 2010) 

is utilized to estimate the agreement between the results of the manual and automatic 

methods as I used in Chapter 5,6,7. The BA analysis is done as follow: 

1. Calculate the mean and differences between the manual and automatic 

measurements. 
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2. Plot the difference between the measurements against their mean. 

Calculating the bias (mean of differences (�̅�)) and the standard deviation (σ) of the 

differences between the two sets of measurements. 

3. Calculate the lower and upper Limit of Agreement (LoA) as follow:  

• Upper LoA =  �̅� + 1.96σ                          (eq2.18) 

• Lower LoA =  �̅� - 1.96σ                            (eq2.19) 

For the normally distributed differences, 95% of differences lie between the upper and 

lower LoAs. In general, when the automatic measurements are close to the manual ones, 

the bias, upper and lower LoAs should be close to the zero. 

2.5.3 Mean absolute error 

To predict  error between our automatic result and ground truth. The Mean Absolute Error 

(MAE) is used as a metric to estimate the agreement between prediction and actual values 

as I used in Chapter 5,6,7. MAE for an n observations values could be given by the 

following formula. 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛
𝑖=1       (Chai and Draxler, 2014)                       (eq2.20) 

 

Where 𝑓𝑖 is the prediction value and 𝑦𝑖 is the ground truth value. 

All the above mentioned statistical measures will be used to evaluate the differences 

between the ground truth measurements and the automatically estimated measurements for 

the proposed methods. 

2.6 Object Classification Based On Machine Learning 

Machine learning is increasingly becoming one of the essential fields of general practice 

and activity within computer science (Weir et al., 2012). One of the effect applications of 

various machine learning tools is in image analysis and segmentation. Using different 

algorithms and features extracted from the image, a model could be built to classify a 

specific objects such as nuclei in different layers based on extracted nuclei features by 

appropriate training an effective classifier for the recognition.  In our research we use the 

support vector machine, which is a type of non-probabilistic binary classifier, which firstly 
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presented by (Cortes and Vapnik, 1995) and since then have been used in many machine 

learning applications. It has been shown that SVM outperforms other classifiers such as 

Random Forest for nucleic segmentation in different layer of mice skin (Wen et al., 2017). 

The classification of objects in standard SVM is based on decision boundary (hyperplane). 

Positive class objects are lying on one side of the line while the negative class objects are 

lying on the other side, which deems in (Figure 2.14). Out of many possible hyperplanes 

that divide the two classes, there is only one that maximise the margin. Indicated distance 

between the hyperplane area and the nearest site points on either part is recognized as a 

margin, which deems in (Figure 2.14). To decide a classification, the SVM is depending on 

the closest features to margin, which they are recognized as support vectors (filled circles 

and square which displayed in Figure 2.14) (Weir et al., 2012). The class of an example is 

determined by which part of the hyperplane the example appears. 

 

 

 

 

 

 

2.7 Existing Biological Image Analysis Tools 

There are many existing tools for digital image processing and analysis, such as open-

access software. 

2.7.1 Free Open-source Software 

ImageJ is a freely available tool used widely in biomedical image analysis. ImageJ is java- 

based open-source platform that has a list of plug-ins that make it helpful in a range of 

fields in science and engineering, including medical imaging and microscopy. Figure 2.15 

a illustrates the user interface of this program. One important feature in ImageJ is that it 

supports a variety of standard image formats, including 48-bit colour composite images. 

LOCI is a bundle of plug-ins that was developed to open many different image formats 

from bioscience, (www.loci.wisc.edu). ImageJ has a number of useful tools for intensity 

processing such as image filtering (as illustrated in Figure 2.15 b and c), background 

Figure 2.14 SVM classifier (Li et al., 2013) 
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subtraction and histogram manipulation, as well as a number of automated segmentation 

techniques such as Otsu thresholding, mixture modelling, maximum entropy, colour-based 

thresholding and k-means clustering (Collins, 2007; Baecker, 2010). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 2.15 Noise reduction using ImageJ. a) The ImageJ window. b) An example of an image containing noise before 

using mean filters, c) the image filtered with a mean filter. Taken from (Baecker, 2010) 

  

b

b

c
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2.8 Summary 

We reviewed the biological and technical backgrounds relevant to the research carried out 

in the thesis. The first part of this chapter develops a basic understanding of the genome 

projects. It also highlights the needs of MGP to sort of efficient and effective automatic 

image annotations to deal with information extraction from huge number of generated 

images. 

The image segmentation techniques will help to segment the layers in the microscopic 

image, which is the first stage before do extracting the interesting objects, such as hair 

follicles. In addition these techniques may play important roles in post-processing of any 

segmentation results before we can extract a beneficial information from it. 
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Chapter 3 :  Framework and Methodology 

Having reviewed the biological and the technical backgrounds of the whole project in 

Chapter 2, this chapter focuses on high-level presentation of the main computational ideas 

and procedures adopted in the rest of this thesis. The descriptions are given in this chapter 

will help in understanding the logic behind our research approach in solving different 

problems throughout this thesis. This chapter describes the general framework of the 

research to highlight the philosophy behind the proposed solutions. It then presents the 

data sets and ground truth, and highlights the difficulties and the degree of complexity 

associated with ground truth. Different experimental protocols and evaluation methods 

used in this thesis are also discussed in this chapter. 

The rest of this chapter is organised as follows. Section 3.1 gives an overview of the main 

steps followed in our proposed methods. In Section 3.2, an explanation of the data used is 

given. Section 3.3 highlights the ground truth available for our research. The experimental 

protocols for each problem are discussed in Section 3.4. Finally, a summary of the chapter 

is given in Section 3.5. 

3.1 Research Framework 

The main goal of this research is to produce fully automated solutions of high throughput 

data to annotate the microscopic H&E images of mice skin and to reveal/extract useful 

information (image and genetic features) from such annotations. The block diagram in 

Figure 3.1 illustrates the summary and outlined of the main stages of the thesis: 

1- Automatic segmentation. In this thesis, many automatic segmentation is 

proposed based on the ROI and I state them in the following points: 

2- Segmentation improvement. Several improvement on the segmentation has been 

done based the ROI.  

Besides the above fusion scheme for improving layer segmentation, we may need 

to improve nuclei segmentation. First, the problem of nuclei overlapping in the 

epidermis layer is the main reason to improve the segmentation, by proposing 

automatic separation method to separate the overlap nuclei in the epidermis as 

ROI to obtain accurate number of nuclei. Secondly, not all segmented objects in 
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the dermis are nuclei. The improvement to segment nuclei accurately in this layer 

is done by filtering the nuclei objects only to count them later depending on 

known biological fact about them. 

3- Measuring and counting. When the final improvement of the segmentation is 

accomplished, nuclei counting in different layers, then different performance 

metrics are calculated from the orientation of the hair follicles, and measuring the 

curvature of the epidermis layer. 

4- Applying experimental protocols. Depending on the annotated measurements 

taken from different objects in the skin layers, different protocols are applied to 

evaluate the goodness of the automatic annotation results. 

5- Identifying cases of skin structure abnormalities, which leads to defining a list of 

candidate genes associated with the abnormalities. 
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Figure 3.1 Research framework 

3.2 Data sets 

The data set used in this research includes H&E images of over 500 mice, which are 

including 7000 images. All images are colour images and their sizes are 1444*908 pixels. 

The data set is further divided into two sets. The first set includes 500 images of WT mice, 

providing the normal images of mouse skin. The second set contains 6,500 images of 

mutant mice obtained from 300 mutant lines (gene-knockout) where each mutant line has 

14 images (7 males and 7 females). The data sets are provided by the WTSI, Sanger MGP 

(Liakath-Ali et al., 2014; Takahashi et al., 2019) The data publicly available for research 

use and hence we follow terms and conditions about data use as shown in Figure 3.2. 
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Figure 3.2 The two mouse H&E images views  selected for the research 

3.3 Ground Truth 

In addition to the mice H&E image dataset, a ground truth file that contains the manual 

annotation for images was also provided by the Sanger Institute. The ground truth file 

contains a description for every mouse that determines its sex, barcode, genotype and also 

the genetic backgrounds. There are three types of genotype, WT (+/+) if no mutation in 

the gene, heterozygous (-/+) when the gene knockout is on one copy of the gene, if the 

gene knockout applied for both copies of the gene, this is called homozygous genotype (-/-

). The file also contains a description for the full phenotype that results from a different 

gene knockout. 

Unfortunately, the available ground truth file does not include all the needed information 

for our research. For the nuclei counting in different layers, there are no recorded 

measurements for the mice in terms of numbers, shape of the nuclei and also hair follicles 

orientation and the curvature in the epidermis layer have the same issue.  

3.4 Experimental Protocols  

In this thesis, there are different natures for the problems addressed, a number of 

experimental techniques and evaluation metrics are used to fit the requirements of the 

research. In the next subsections, descriptions about the evaluation techniques are given. 

3.4.1 Identifying Genetic Markers using Reference Range (RR) 

To robustly and reliably identify the genes that are associated with changes in a nuclei 

numbers, orientation of the hair follicles and the curvature, for the mice mutant group, the 

RR methodology based on percentiles is followed (White, Gerdin, Karp, Ryder, Buljan, 
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Bussell, Salisbury, Clare, Ingham, Podrini, Houghton, et al., 2013) to establish the normal 

range of WT variations. The RR is applied separately on the accumulated WT. The RR is 

established from the measurements obtained from applying the automated method on the 

500 WT mice (normal) images. The Lower Bound (LB) and the Upper Bound (UB) of the 

95% confidence interval of the WT measurements are set at the 2.5 and 97.5 percentile 

values respectively (White, Gerdin, Karp, Ryder, Buljan, Bussell, Salisbury, Clare, 

Ingham, Podrini, Houghton, et al., 2013). 

To decide if a given mutant data is hit (i.e. it is outside the RR, which means the genes 

may be linked to the abnormalities), we calculate the so-called hit ratio of that mutant line. 

The hit ratio represents the percentage of images that falls outside the RR out of the total 

number of images in the mutant line (i.e. how many animals out of 7 per mutant line?). 

For example, the hit rate of a mutant line is 100% if all the 7 images of that line fall 

outside the RR. In this research, we set the hit rate threshold at 60% i.e. to consider a 

mutant line as a true hit, at least 5 out of 7 mice must fall outside the RR (White, Gerdin, 

Karp, Ryder, Buljan, Bussell, Salisbury, Clare, Ingham, Podrini, Houghton, et al., 2013). 

3.5 Summary 

In this chapter, a brief, and yet informative, description of the research framework of 

automatic annotation of mouse H&E images was presented. The framework includes the 

general ideas and thoughts to be applied in the following chapters. We also described the 

data sets and the ground truth that our proposed solutions will be tested upon. Finally, we 

described the main experimental protocols that will be used to evaluate the performance of 

the proposed methods solutions. In the next chapter, the first part of our work, which 

includes segmenting the main layers of mouse skin of H&E images, will be presented.
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Chapter 4 : Layers Segmentation of Mice Skin 

This chapter presents an automated high-throughput solution to segmenting mice skin 

layers using microscopic images. Such segmentation can be considered as a first stage 

to quantify cutaneous features that are known to be linked to certain skin diseases. For 

example, abnormalities in the nuclei in different layers (Feng et al., 2019) . 

Furthermore, the existence of large datasets of skin images of gene knockout mice has 

made it possible to detect the genetic basis of some phenotypes in different dermal 

layers. However, using traditional manual methods to extract features related to a 

specific phenotype is time-consuming and could be subject to large inter-observer 

variabilities due to the subjective decisions made by different manual annotators. 

Therefore, there is a need to automated systems that are capable of generating 

reproducible results. The first stage of such systems would be segmenting the different 

layers of skin images. 

This chapter has two main contributions: 

1. Developing and test the performance of an adaptive skin multi-layers 

segmentation based on complexity of texture parameters. We shall illustrate that 

efficient methods such as color deconvolution are effective in segmenting 

images with simple texture whereas more sophisticated methods such as fuzzy 

C-mean clustering are needed to reliably segment images with complex texture. 

For the adaptive texture-complexity measure, we propose a simple model based 

on the number of image histogram peaks. 

2. Proposing a hybrid system that combines the efficiency of colour deconvolution 

with the robustness of fuzzy C-mean clustering is proposed to segment skin 

layers from microscopic images.  

The rest of the chapter is organised as follows. In Section 4.1, we talk about skin 

histopathological images of the WTSI Biobank datasets. In Section 4.2 describes the 

details of our proposed adaptive solution. In Section 4.3 we present experimental 

results achieved by performing colour deconvolution and fuzzy set clustering methods. 

The final section 4.4 concludes the chapter.  

4.1 Introduction 

The previous chapters illustrate that the WTSI (Wellcome Trust Sanger Institute) 

Biobank maximises the value of data on knockout mice for credible investigation of 
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the genetic basis of some complex diseases via the development of high-throughput 

analysis (see Section 2.2 for details). The skin tissue Biobank is a resource of 

thousands of samples from mice in the pipeline that can be used to follow up any novel 

findings from primary and secondary phenotyping (H. et al., 2016).  

Mammalian skin in general is comprised of three main layers, the outer epidermis, the 

dermis, and the deeper hypodermis, as shown in Figure 4.1 (Goldman, 2008).  

Disorder in skin layers due some diseases, such as skin cancer (Feng et al., 2019), is 

the main motivation for distinguishing between normal and abnormal skin layers. 

Hence, the need to segment the layers of the skin individually as a first step in 

characterising the objects associated with the different layers. 

 

Figure 4.1 Microscopy H&E image of mouse skin (Goldman, 2008) 

Accurate segmentation of skin layers is an important stage for the automatic 

measurements of relevant objects in each layer such as quantifying changes in the 

nuclei of dermis layer and hair follicle in epidermis layer as shown in Figure (4.1), and 

curvature quantification. Therefore, this chapter is mainly focussed on segment the 

three main layers in mice skin. 

It can be argued that the quality of the layers segmentation has a direct impact on the 

quality of the measurements/features to be extracted from each layer. For example, if 

the segmentation does not produce a complete layer, it leads to inaccurate measure of 

the objects in the layer, such as incomplete epidermis layer in accurate counting of 

nuclei in this layer as shown in Figure 4.2. 

Epidermis 

Dermis 

Hair follicle 

Nuclei 
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Figure 4.2 Incomplete layer segmentation. Microscopic H&E image (left image). Incomplete epidermis 

layer segmentation (right image) 

Overlapping between the skin layers is another challenge to segmenting the layers.  

Figure (4.1) illustrates that layers of similar colour intensities are intertwined with each 

other. These issues make it difficult even for domain experts to precisely locate the 

borders of the layers. This means that manual measurement of skin layers will 

eventually encounter inter-observer and intra-observer variations if it was done 

manually. 

Staining used in H&E images is known to be error prone, resulting in incorrect 

segmentation, particularly incomplete segmentation of layers or segmenting two layers 

as one (see Figure (4.3)). 

 
Figure 4.3 H&E stain error. A) Original image. B) Incorrect segmentation for two layers as on layer that are 

epidermis and dermis. C) Correct segmentation 

An automated computer-based solution has to overcome the challenges highlighted 

above (overlapping and staining errors). 

4.2 Our Proposed Method 

Herein, we describe the development of two new layer segmentation methods so that  

adaptively one or the other can be used to segment automatic partitioning of H&E 

stained mouse skin images into their different skin layers: the colour deconvolution 

technique and the fuzzy system.  We shall also define the adaptation parameter in 

A

C

B
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terms of the complexity level of texture present in an input image to decide which of 

the two method is to be applied.  

Designing new methods is due to the fact, that our investigation require the ability to 

segment not only the main layers but also the sublayers of these main skin layers Our 

proposed method is divided into three parts. 

1. Investigating the effectiveness of a simple and efficient colour deconvolution 

based scheme to segment the layers in mice skin images, and determining is 

strength as well as shortcomings and limitations. 

2. Increasing the reliability of the segmentation by using a fuzzy C-mean clustering 

algorithm to address the shortcomings/limitations of the colour deconvolution. 

Proposing a hybrid system that combines the efficiency of colour deconvolution with 

the robustness of fuzzy C-mean clustering is proposed to segment skin layers from 

microscopic images. To combine the two methods, we propose a simple model to 

assess the complexity of the skin images, based the number of peaks in their 

histograms as illustrated in Figure (4.4). 

 

Figure 4.4 Research framework for layer segmentation  

4.2.1Colour Deconvolution based Segmentation 

Colour deconvolution is a method which separates overlapping spectra in cytological 

and histological (RGB) colour images into three new channels, compatible with 

(haematoxylin & eosin) H&E stain. This is considered one of the most successful 

segmentation methods related to the separation of different skin layers (Ruifrok, 
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Johnston and others, 2001) as described in Chapter 2.  However, it does not fit our 

essential requirement of ability to segments sublayers. 

4.2.1.1 Epidermis layer segmentation 

The epidermis layer consists of multiple layers, and for our work on skin related 

abnormalities we need to separate the epidermis into two layers, basal layer and 

cornified layer. This will enable our investigations on quantifying changes in the 

curvature of the cornified layer as clarified in (Chapter 7), as well as other disease-

related skin abnormalities. The first step of the proposed segmentation algorithm is to 

segment the basal epidermis layer.  

Segmentation of the basal layer of the epidermis     

We applied the colour deconvolution transformation on the microscopic RGB images 

with H&E stain, which highlighted interesting layers such as epidermis and dermis. 

Whereas colour deconvolution is suitable with H&E(haematoxylin & eosin) stain 

image (Ruifrok, Johnston and others, 2001) (see chapter 2 for more details). The steps 

algorithm is stated in the following Pseudocode 4.1. 

The colour deconvolution technique does highlight the H and E channel in separate 

images. As shown in Pseudocode 1 we used the colour deconvolution one which 

represents the H channel, which is highlighted in the epidermis layer. 

The output of applying the colour deconvolution transformation as shown in (Figure 

4.5B) is fed into a thresholding stage that separates the darker pixels (Basel layer 

pixels) from the background brighter pixels. The MATLAB Otsu Threshold function 

automatically implements clustering-based image thresholding (Chen et al., 2012), 

results in reducing a grey-level image to a binary image that highlight significant 

objects/structures (Figure 4.5E). The algorithm works well on simple images that have 

Step 1: Input RGB images. 

Step 2: Apply colour deconvolution. 

Step 3: Choose colour deconvolution one. 

Step 4: Add image to itself twice. 

Step 5: Binarisation images using Otsu's threshold. 

Step 6: Dilation followed by an erosion using the disk structuring element with 

15  pixels (to segment basal layer accurately as a complete mask). 

Step 7: Segment object with maximum perimeter. 

pseudocode 4.1 Pseudocode 4.2 Steps for basal layer segmentation by using colour deconvolution 
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bimodal histograms with two classes of pixels (foreground pixels and background 

pixels). In such cases, it computes the optimum threshold dividing the two classes so 

that their combined spread (intra-class variance) is minimal, and inter-class variance is 

maximal. A further pre-processing operation needs to be applied to segment the basal 

sub-layer, which has a maximum perimeter, and is determined by computing the 

boundaries of the labelled component and calculating distance between each adjoining 

pair of pixels around the border of the region. Similarly, the distance is computed for 

all the pixel positions for each object, and the object that has a maximum total 

distance, is considered a maximum perimeter. However, this process needs to be 

followed by the morphological operations of dilation and erosion in order to remove 

unwanted holes in the basal mask (Figure 4.5F). 

 
Figure 4.5 Automated image analysis methods to segment the basal layer of the epidermis. A) Original 

image. B) Image deconvolution colour one. C, D) Addition operation was used for image to itself twice. E) 

Binarisation using Otsu's threshold. F) Filtering out t 

The entire process described above will be used to convert the H&E images into binary 

images, in order to demonstrate the region of interest for the basal layer of the 

epidermis. 

Segmentation of the Cornified Layer of the Epidermis and Dermis 

The cornified layer of the epidermis, also known as the stratum corneum, forms a 

barrier to save underlying tissue from infection, dehydration, chemicals and 

mechanical stress (Ovaere et al., 2009). Inability to correctly maintain the skin barrier 

function due to the dysregulation of epidermal components can lead to skin disorders 

(Malik et al., 2019). Due to the possibility that the change in the structure and function 

of the cornified layer could lead to disease, the development of an automated method 

to segment and measure the depth of this sub-layer provide potential benefits to 
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histology-based research (Sanz-Gómez, Freije and Gandarillas, 2019). The 

segmentation algorithm for the isolation of the cornified layer is divided into two 

stages: 

Stage one   

In this stage, the cornified layer of the epidermis was segmented using deconvolution 

colour two, which highlights epidermis texture. The following block diagram show the 

algorithm steps for the stage one processing (Figure 4.6). 

 
Figure 4.6 Algorithm steps for the stage one 

As shown in Figure 4.6 we used Colour deconvolution two which represents the E 

channel, which highlights the dermis layer. 

We used the inter-mode threshold to binaries the image because the inter-mode 

threshold is more effective on images with histograms that have extremely unequal 

peaks i.e. the inter-mode highlight the texture of dermis layer which make it easy to 

segment. The threshold found is considered as the minimum value in bimodal (Barreto, 

Tita and Orlandi, 2019). Next, a set of morphology operations were applied to avoid 

unwanted objects, for example filling the holes, to make a connected mask, the dilation 

in diamond shape 21 pixels as the size of dilation used to segment accurate complete 

mask. If dilation is more than 21 pixels, the algorithm will segment another layer with 

dermis layer such as fat cells layer. If dilation is less than 21 pixels, algorithm will not 

segment a complete mask of dermis layer i.e. the output segmentation will be part of 

Binarisation images 

using inter-mode 

threshold

Colour 

deconvolution two

Filling the holes 

(background pixels) the 

all objects in the image

Dilation in diamond 

shape with 21 pixels

Segment object with 

maximum area
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the dermis mask. Finally, counting the number of white pixels (i.e. logical value=1) of 

each binary object and selecting the one with the maximum area, as shown in Figure 

4.7 

 
Figure 4.7 Automated image analysis methods to segment the mask one. A) Image deconvolution H&E 

colour two. B) Threshold using inter-modes method. C) Morphological operations. D) Select the object, which 

has a maximum area 

 Stage two  

The Pseudocode 4.2 of the stage two is showing in the following box 

In the second stage, the epidermis mask from stage one (Figure 4.8A) is multiplied by 

the logical invert of the basal layer mask (Figure 4.8B). Then the morphological 

operation was applied to segment the cornified layer (Figure 4.8D). 

The dermis layer was then found by the multiplication operation for each pixel 

between the logical invert of the epidermis layer mask (Figure 4.8E). 

Step 1: Logic invert of basal mask. 

Step 2: Multiplications for each pixel between logic invert of basal mask 

with dermis and epidermis mask.  

Step 3: Segment the object which has a minimum Y (cornified layer). 

Step 4: Multiplication for each pixel with logic invert the epidermis layer 

to segment the dermis layer. 

Pseudocode 4.2 Steps for segmenting dermis layer using colour deconvolution 
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Figure 4.8 Automated image analysis methods to segment the cornified layer. A) Dermis and epidermis 

mask. B) Epidermis (basal layer) mask. C) Multiplications between A&B masks. D) The object, which has a 

minimum Ywhich is, Cornified layer with epidermis. E) Dermis 

4.2.1.2 Segmentation of the adipose layer 

The adipose layer is located beneath the dermis (Wang et al., 2013).  The following 

diagram is describe the steps to segment the fat cell layer (Figure 4.9). 

 

 
                                     Figure 4.9 Steps to segment adipose layer 

 

The green channel from the colour H&E image was selected (Figure4.10A), and the 

Otsu automatic threshold is applied (Figure 4.10B). Next, a morphological operation 

was performed by segmenting the object, which has the maximum area to avoid 

unwanted objects from the binary image (Figure 4.10C). Finally, a set of 

morphological operations was used to segment the fat cell layer or subcutaneous layer 

Binarisation images 

using Otsu threshold

Green channel from 

colour H&E images

Segment object which 

has a maximum area 
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such as dilation 20 pixels, to segment accurate subcutaneous mask and avoid segment 

another layer with subcutaneous such as dermis layer. The images shown in Figure 

4.10 (D and E).     

 
Figure 4.10 Automated image analysis methods to segment the adipose layer. A) Green channel image. B) 

Automatic threshold image. C) Selected the object, which has maximum area. D) Set of Morphological 

operations. E) Colour adipose image 

4.2.1.3 Discussion 

Colour deconvolution is one of the most common method used image processing 

function to isolate overlapping colour. It is suitable for H&E (haematoxylin & eosin) 

stained images (Bulten et al., 2019). Two types of threshold were employed to 

segment the layers, Otsu and inter-modes thresholding. Otsu thresholding was used to 

segment the epidermis layer, because the Otsu thresholding highlights the epidermis 

rather than dermis layer. While the inter-modes thresholding was used to segment the 

dermis layer, because the inter-modes threshold highlights the dermis rather than 

epidermis layer. The colour deconvolution method, thresholding and segmentation 

allowed the development of an effective automatic layer segmentation system for H&E 

images in our proposed method.  

We noticed that when the histogram of the H&E image is somehow complex i.e. there 

are more than two peaks in the histogram, the colour deconvolution method described 

above method does not work (around 30%) as illustrated in Figure 4.11B and C. 

Therefore, there is a need to find another method that is capable of segmenting 

complex images with more than two peaks in the histogram. However, our literature 

survey showed that the fuzzy c-mean method does exactly that, and hence we describe 

in the next section. However, the fuzzy c-mean method does not work well on simple 
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images, which suggest the need for combine the colour deconvolution method with the 

fuzzy cluster to achieve good accuracy on all images but using an adaptive approach, 

whereby, depending on some texture complexity indicator one of the two algorithms is 

applied. 

A B

D E F

C

 
Figure 4.11 Method of segmentation A.) Original H&E image. B) Colour deconvolution H channel 

segmentation of epidermis layer. C) Image segmentation using Otsu threshold. D) Red channel of H&E image. 

E) Cluster segmentation based on fuzzy c-mean method. F) Epidermis layer 

4.2.2 Layer Segmentation based on Fuzzy C-Mean Method 

As explained above, the colour deconvolution does not work well on images that have 

complex texture, e.g. when there are overlaps, in terms of colour intensities, between 

the dermis and epidermis layers in skin images.  

To address this issue, a more robust method to cluster the pixels is needed. The Fuzzy 

C-mean method (FCM), as described in Chapter 2 - Section 2.4, groups image pixels 

in particular clusters according to distance and membership. It was shown by (Zhang et 

al., 2017) that the FCM is capable of segmenting the skin layer  of human images 

correctly. Therefore, it is a natural choice for our investigation. It is possible, for 

example that the overlap areas of the dermis and epidermis layers appear in visible 

clusters. However, our version of the FCM algorithm works in steps:  (1) segment the 

epidermis layer and sub-segmentation into two layers (the basal layer and cornified 

layer), (2) segment the dermis layer, and (3) finally segment the fat cell layer (adipose 

layer). The following is a block diagram for this algorithm (Figure 4.12). 
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Figure 4.12 Block diagram shows three layers segmentation steps 

4.2.2.1 Initial Segmentation with threshold level 

The threshold level of three clusters of fuzzy c-means clustering have used as 

automatic segmentation method. The threshold level was found by determining the 

average between the maximum of the small peak and the minimum of middle peak  

(Xiong et al., 2006; Chen, Li and Zhou, 2007). The binary output is 0 when the level 

of threshold was located between the small peak and the middle peak whereas the 

output is 1 when the level located between the middle peak and the large peak.  

The three clusters resulting from the Fuzzy C-Mean method are illustrated in Figure 

4.13. Cluster one highlights the epidermis layer and the nuclei in all layers. Cluster two 

shows a texture for all layers as seen in Figure 4.13D, and cluster three highlights the 

background of the image as shown in Figure 4.13C. 

 

Segment the epidermis layer 

and sub-segmentation into two 

layers (the basal layer and 

cornified layer)

H&E colour image Segment the dermis layer

Segment adipose layer
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Figure 4.13 Outcome the FCM based on histogram. A) Original image. B) Red channel. C, D, E) Three 

clusters by FCM method based on the histogram of red channel of H&E stain image in the mouse skin with 20X 

magnification 

We argue that the threshold level has managed to capture the area of interest, without 

losing important textural details of the skin layers. On the other hand, the Otsu's 

method (Du, Chen and Xi, 2019) split the histogram into two classes, the foreground 

and background, which minimises the variance inter-class, so that will result in losing 

parts of the area of interest.  

4.2.2.2 Epidermis layer segmentation 

The first stage of layer segmentation involve splitting the epidermis layer by sub-

segmenting it into two layers, namely the basal layer and the cornified layer. This 

procedure was initiated by using the FCM method of the red channel based on the 

histogram of H&E image by contributing an automatic method to detect the peaks of 

the red channel image as a following Pseudocode 4.3.  

 

 

 

 

 

C

D

E

Histogram for Red channel of H&E image

A

B

Step 1: Input RGB images. 

Step 2:  Determined red channel of H&E image. 

Step 3:  Apply fuzzy c-mean method with three clusters. 

Step 4:  Output three clusters. 

 Pseudocode 4.3 Steps for epidermis layer segmentation using FCM 
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It can be clearly observed that the red channel of the image consists of more than two 

peaks of representation for distribution values for the pixels in the image.  

Subsequently the FCM technique was applied on the red channel of the image, to 

construct three clusters of the image, as shown in Figure 4.13 (C, D, and E). Cluster C 

represents the background of the whole image, while cluster D shows the texture for 

skin layer segmentation, and cluster E displays clearly the epidermis layer, where we 

are interested. The reason for utilising three clusters instead of two clusters was 

because of the results of FCM for two clusters, which is shown in Figure 4.14 (B, C), 

where image B represents the cluster which consists of the texture for all skin layer, 

which makes it hard to separate the epidermis layer and sub-layer, because there were 

overlap between the dermis and epidermis layer with approximate similar colour 

intensity, that is why we did not use two clusters in the FCM method. As mentioned 

previously, we used three clusters, where the image E cluster in Figure 4.13 clearly 

shows the epidermis layer with the nuclei of dermis layer. 

 
Figure 4.14 Result of FCM methods for two clusters based on red channel. A) Red channel. B, C) two 

cluster 

Pre-processing phase of three clusters 

There is a pre-processing phase of the three resultant fuzzy clusters, as illustrated in 

Figure 4.13(C, D and E). The E cluster which has the epidermis layer also contains the 

ROI (region of interest), and the cluster consists of the objects in greyscale colour as 

imaged contents and a black pixel as the background of the image. It is clear that the 

number of black pixels overshadows the number of colour pixels in image E. As a 

result, counting the number of black pixels involved a precise calculation technique to 

identify the best cluster for the epidermis layer segmentation. The number of black 

pixels represents the majority of the image, as evidenced by the overwhelming black 
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colour on the image, so it can be inferred that the epidermis cluster E has the 

maximum number of black pixels (1196184) compared to the results of other clusters 

of the fuzzy method which were (980474) pixels in cluster D and (445646) pixels in 

cluster C.  The following is a block diagram for this algorithm (Figure 4.15). 

 

 
Figure 4.15 Block diagram show the steps of epidermis segmentation 

Following this, a set of morphological processing was used such as a dilation operation 

by adding three pixels to the boundary of object, in order to highlight the epidermis 

layer of the selected greyscale image B in (Figure 4.16). The image is then binarized 

by applying the fuzzy threshold with three classes of clustering, i.e. the threshold based 

on three peaks in the histogram of images, and it will generate two levels of images 

based on three peaks, where the output of binary image was 0,and the level of 

threshold between the small peak and the middle peak (Mandal, Gupta and Kar, 2016) 

as illustrated in Figure 4.16C. The level between the middle peak and the large peak as 

shown in Figure 4.16D is not used because it segments the binary border of the objects 

in the image, while the level was selected based on the middle peak and the large peak, 

which consists of most of the pixels with a high value of greyscale, representing light 

colours. After thresholding, the object which has a large perimeter was selected, which 

represents the epidermis layer in Figure 4.16E. A set of morphology operations was 
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applied, such as the thinning operation by three pixels, which keeps the curving of the 

binary mask, to avoid noise of the epidermis layer, as shown in Figure 4.16F.  

Figure 4.16 Epidermis layer segmentation. A) Cluster image, which has maximum numbers of zero pixels, 

which represent the epidermis layer cluster. B) Dilation the image with 3 pixels. C) Threshold based on FCM for 

three clusters, which produce two levels of threshold, the first level in image C, where the position of level in the 

histogram is between a small peak and a middle peak, the output binary image will be 0, which represents the 

core of the epidermis layer. D) The second level of threshold is based on the histogram of the image, where the 

level position is between the middle peak and the large peak, then the output binary image will be 1, which 

represents the boundary of the epidermis layer. E) Segment the epidermis layer by selecting the object, which 

has a larger perimeter in the image 

Segmentation of Epidermis Sub-layers 

The sub-segmentation of the cornified layer from the epidermis layer starts with the 

use of the dilation operation for the epidermis mask layer of 10 pixels with (disk) 

structure to cover exactly the epidermis layer, if dilation use more than 10 pixels, it 

will segment another layer with epidermis such as dermis. If dilation use less than 10 

pixels, it will loss part of epidermis mask as shown in Figure 4.17(B). The aim is to 

make a mask cover of the sub-layer, located at the boundary part of the epidermis 

layer. A multiplication operation for each pixel was then applied between the 

epidermis layer after dilation and the invert of the epidermis layer before dilation to 

filter the cornified sub-layer by avoiding the epidermis layer, which can be seen as the 

output in image D of Figure 4.17. Following this, labelling of the objects in the image 

is carried out in order to select the object which has a minimum Y of the image for a 

final segmentation in Figure 4.17 (E, F).  



 

 68 

Chapter 4                                                                                        Layers Segmentation 

 

This algorithm is summarized in the following pseudocode 4.4. 

Step 1: Input binary mask of epidermis layer. 

Step 2: Dilation operation for the epidermis mask layer of 10 pixels with 

(disk) structure. 

Step 3: Inverting of epidermis layer mask before dilation. 

Step 4: Multiplication operation between two masks (step 2 and step 3). 

Step 5: Sub-segment the cornified layer (part of epidermis) by obtaining the 

object which has a minimum Y. 

 

Pseudocode 4.4 Steps for sub-segmentation of epidermis layer 
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Figure 4.17 Sub-segmentation of epidermis layer. A) Binary mask of epidermis layer. B) Dilation of 

epidermis layer by 10 pixels. C) Inverting of epidermis layer mask before dilation. D) Multiplication operation 

between two masks (B, C). E) Sub-segment the cornified layer (part of epidermis layer) by obtaining the object 

which has a minimum Y. F) Colour mask of cornified layer, based on the original colour image 

4.2.2.3 Dermis Layer Segmentation  

The second threshold level of the FCM method was utilised in Figure 4.20D, which is 

located between a middle peak and large peak in the histogram of H&E colour image, 

where cluster three is used as displayed in Figure 4.19 (C), which highlights the dermis 

layer and other textures as black pixels in the image. The first threshold level was not 

used in image B in (Figure 4.19), because it is clear that in image B, the black pixel 

doesn’t cover the entire dermis layer, so it is not useful for the purpose of this study. 

The close gaps has been filled using the holes structure in image E (Figure 4.19), after 

which, the biggest perimeter object was segmented in image F (Figure 4.19). 

Following this, three pixels erosion were removed (by using erosion) from the 

boundary of the dermis mask, to avoid unwanted objects, which are not in the dermis 

layer, as shown in Figure 4.19 (G). 

A filtering operation was applied to the dermis mask by using the epidermis mask to 

segment the dermis layer without the epidermis layer with 5 pixel dilation to cover 
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dermis layer, as displayed in Figure 4.19 (H). Finally in image I, the large perimeter 

object was segmented to obtain a final dermis layer, as shown in Figure 4.19 (J). 

The following is a block diagram for this algorithm (Figure 4.18). 

 

 

Figure 4.18 Block diagram show the steps of epidermis segmentation 

 

H&E colour image
Applying fuzzy 

threshold 

Select the second level 

of threshold

Filling gaps using holes 

structure
logic Inverse of image

Dilation by 5 pixels in 

disk structure

Segment object which 

has a maximum 

perimeter (dermis layer)

 Multiplication for each 

pixel between inversion 

of epidermis and dermis 

large perimeter object 

was segmented to obtain 

a final dermis layer
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Figure 4.19 Dermis layer segmentation. A) H&E image B) Threshold one of FCM method, where it is located 

between the smallest peak and the middle peak, therefore it is not useful in this work because it doesn’t cover the 

dermis layer. C) Threshold two of the FCM method based on the histogram, where it is located between the 

middle peak and the largest peak. D) Invert of image C to enable processing of the image in the next stages. E) 

Image after erosion by 3 pixels in disk structure. F) Larges perimeter objects have been selected. G) Dilation 

operation was applying based on 5 pixels in disk structure. H) Multiplication operation for each pixel between 

the inversion of epidermis mask and the dermis mask. I) Final binary mask of dermis layer. J) H&E dermis layer 

segmentation 

4.2.2.4 Fat Cell Layer Segmentation 

The fat cell layer is segmented by using the second threshold level of the FCM method 

as illustrated in image A of Figure 4.20, while the output of inverting image A was 

represented in image B, to provide a manipulated image to use in the image processing 

techniques. Next, a multiplication operation was conducted for each pixel in the image 

between the dermis layer mask, as shown in image C and the binary image B, and the 

result was represented in the image D, which consists of the fat cell layer with some 

noise objects that don’t belong to the fat cell layer. Finally, dilation by 80 pixels (to 

cover all subcutaneous layer accurately) with the disk structure, and the noise was 

ignored by segmenting the object that has the largest perimeter in the image as 

displayed in image E and F of Figure 4.20 as a final segmentation. This algorithm is 

summarized in the following Pseudocode 4.5.  

B

A C
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D
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I

J



 

 72 

Chapter 4                                                                                        Layers Segmentation 

 

 

Figure 4.20 Fat cell layer segmentation. A) Threshold second level based on FCM. B) Inverting image A to 

enable the image processing method. C) Binary mask of dermis layer segmentation. D) Fat cell layer with noise 

does not belong to the fat cell layer. E) Segmentation of fat cell layer without noise. F) Fat cell layer with H&E 

stain 

4.2.2.5 Discussion 

The FCM method was a creative technique used to segment skin layers in the H&E, 

however, it has some shortcoming that results in wrong segmentation for some images 

such as (10 out of 100 images). For example, image B in Figure 4.21, illustrate 

incorrect segmentation, because the FCM seem to be constrained by the intensity 

change in the illumination of the pixels (Yambal and Gupta, 2013). Furthermore, the 

damage stain samples were fundamental issues of the segmentation methods, as shown 

A

B

C

D

E

F

Step 1: Input RGB images. 

Step 2: Apply fuzzy cluster threshold method. 

Step 3: Select the second level of threshold. 

Step 4: Invert the output image of step3  

Step 5: Multiplication operation between dermis layer mask and the output 

mask from step4. 

Step 6: Dilation operation by 80 pixels with the disk structure. 

Step 7: Segmenting the object that has the largest perimeter in the image as 

finial fat cell layer segmentation. 

 
Pseudocode 4.5 Steps for Fat cell layer segmentation 
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in Figure 4.22 (A, B, C). Another issue of FCM is to related to the speed of the 

algorithm being too slow consuming more time than the colour deconvolution method, 

as used in Subsection 4.2.1. The time consumed for segmenting 10 randomly selected 

images, for two methods, is shown in Figure 4.23. Evidently, the time consumed in the 

FCM technique is more than that of the colour deconvolution method. The delay in 

implementation was likely due to the iteration steps with calculations, such as 

computing the membership for each pixel and the distance between the centroid and 

the cluster (Yambal and Gupta, 2013). 

 
Figure 4.21 Incorrect segmentation.) A Original H&E image. B)  Incorrect mask segmentation 

 
 

 
Figure 4.22 Stain error of H&E imagae of mice skin. A)  Damage in epidermis layer. B) Damage in fat cell 

layer. C)Damage in in dermis layer 
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C
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Figure 4.23 Comparison of time consumed between FCM and Deconvolution methods 

4.2.3 Adaptive combination of colour deconvolution FCM clustering 

As stated earlier, the colour deconvolution seems to work well on simple images 

whereas the fuzzy C-mean clustering works well on more complex ones. The section 

proposes an automatic method to check the histogram of the red channel of the image 

for the number of peaks. If it there is less than two peaks, the image will be 

automatically fed into the colour deconvolution method. Otherwise, it will be 

forwarded to the fuzzy C-mean clustering as shown in Figure 4.24. 

The number of peaks of the image were determined automatically depending on the 

image histogram, where the three parameters have been used to determine the peaks 

are prominence, width and distance, whose values were 40, 2 and 20 respectively. The 

prominence (length of peak) is selected to have a vertical drop of more than 40 from 

the peak on both sides without encountering either the end of the signal or a larger 

intervening peak. The width is selected at 2, in order to find peaks whose width is at 

least 2. Finally, the distance between peaks is set at 20, in order to ignore smaller 

peaks that may occur in close proximity to a large local peak.  
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Figure 4.24 Automatic fusion segmentation method based on the histogram of image, where fuzzy 

represents the method for the image that has three or more peaks and the colour deconvolution method 

for the image which has two or less peaks 

4.3 Experiments and Results 

H&E stained skin images from 16-week-old female genetically matched wild-type (30) 

animals and individual genotype (462 different gene knock-out) animals were used. 

The development data set contains 7,000 H&E stained images at 20X magnification 

and a resolution of 1444X908 in a Tagged Image File Format (TIFF). The design of 

the MGP pipelines (use of diets and genetic backgrounds etc. is beyond the scope of 

this project but can be reviewed in (Collins et al., 1998). Our results consist of three 

parts, the first part shows the colour deconvolution method results. Second part display 

the results of FCM technique and the third part present the results of fusion contrubtion 

method. We used MATLAB to impement all our contribtuions in all chapters and we 

used desktop computer dell i5, with 1 T hard derive. 

4.3.1 Results of Colour Deconvolution Method 

The methods explained in this chapter were applied on the 7,000 H&E images 

described above. However, as the manual verification of all images by a domain expert 

is a time-consuming process, we decided to evaluate the results by a random sampling 

in 7 rounds, where in each round 100 images were randomly selected from each 1,000 

images. The boundaries of binary masks of the output were superimposed on the 

original images and then manually establish the correctness of the segmentation by a 

domain expert. The final segmentation output for three main skin layers and the 

RGB image Red cannel

 Two peaks or 
less

Three peaks or 
more

Histogram 
of image

Colour 
deconvolution 

method

Fuzzy 
c-mean
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epidermis layers from a representative H&E images is illustrated in Figure 4.25 and 

the accurate of the layers segmentation was shown in the tables (4.1- 4.4). 

 
Figure 4.25 Layer segmentation of H&E images. A) Original image. B) Epidermis layer segmentation. C) 

Dermis layer segmentation. D) Adipose layer segmentation 
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Table 4.1 Results of a seven round sampling experiment for segmentation of the basal layer 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
Table 4.2 Results of a seven-round sampling experiment for segmentation of the cornified layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Epidermis layer (basal layer) 

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 75 20 5 

Round2 66 25 9 

Round3 62 28 10 

Round4 69 23 8 

Round5 81 14 5 

Round6 65      24 11 

Round7 74 18 8 

Average 70.28 21.71 8 

Epidermis layer (cornified layer) 

 

Experiences 

Accurate 

segmentatio

n 

(%) 

Part of mask 

 (%) 

Incorrect 

segmentation 

(%) 

Round1 71 25 4 

Round2 68 24 8 

Round3 66 22 12 

Round4 64 30 6 

Round5 73 20 7 

Round6 77 17 6 

Round7 80 15 5 

Average 71.28 21.85   6.85   
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Table 4.3 Results of a seven round sampling experiment for segmentation of the adipose layer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.4 Results of a seven-round sampling experiment for segmentation of the dermis layer  

 

 

 

 

 

 

 

 

 

  

Adipose layer 

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentat

ion 

(%) 

Round1 69 20  11  

Round2 73 18  9  

Round3 67  25 8  

Round4 75 16  9  

Round5 77  17 6  

Round6 63 32   5 

Round7 78 14  8  

Average 71.71 20.28 8 

Dermis layer 

 

Experiences 

Accurate 

segmentatio

n 

(%) 

Part of mask 

(%) 

Incorrect 

segmentatio

n 

(%) 

Round1 73 19 8 

Round2 82 11 7 

Round3 60 30 10 

Round4 66 20 14 

Round5 69 21 10 

Round6 62 29 9 

Round7 75 18 7 

Average 69.57 21.14 9.28 
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Each experiment selected 100 images randomly from 7,000 H&E images. The accurate 

segmentation in the tables (4.1- 4.4) indicate perfect split of layers, particularly 

(70.28%) for accuarte segmentation in the epidermis layer (basal layer) as shown in 

Figure 4.25F and in the table (4.1), (71.28%) for accuarte segmentation in epidermis 

layer (cornified layer) as shown in Figure 4.25E and in the table (4.2), (71.71%)  in the 

adipose layer (subcutaneous laye) as shown in Figure 4.25D and in the table (4.3), 

(69.57%) in the dermis layer  as shown in Figure 4.25C and in the table (4.4).  

While the part of mask is not fully accurate, meaning that the layer were segmented 

only partially as shown in Figure 4.27B (i.e. not a complete mask, just a part of the 

layer), as shwon in table (4.1) where the value (21.71%) indicates to part of the layer 

in the epidermis layer (basal layer), the value (21.85%) in the table (4.2) indicates to 

part of the layer in the epidermis layer (cornified layer), the vaule (20.28%) as shown 

in table (4.3) indicates to part of the layer in the adipose layer and the value (21.14%) 

as shown in the table (4.4) indicates to part of the layer in the dermis layer.  

There was also an incorrect segmentation of layers, which is wrong layer segmentation 

as shown in Figure 4.27A and in the table (4.1) where the value (8%) indicates to 

wrong layer segmentation in the epidermis layer (basal layer), where the value (6.85%) 

indicates to wrong layer segmentation in the epidermis layer (cornified layer), where 

the value (8%) indicates to wrong layer segmentation in the adipose layer, where the 

value (9.28%) indicates to wrong layer segmentation in the dermis layer. We have 

compared the masks of the results manually with the original images to determine an 

accurate result. As a result, the incorrect segmentation was determined, the images and 

H&E staining of the skin was found to have issues. For example, there were some 

slides which had issues in relation to illumination and non-uniform illumination 

problems can affect RGB values and affect their comparability with other H&E in the 

dataset (Zhang et al., 2011). One other example of errors is from damage to the tissues, 

which can yields inaccurate segmentation. 

Figure 4.26 illustrates a damaged dermis when compared to a normal skin image in B 
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Figure 4.26 H&E images. A) Damage snapshot. B) Non-Uniform illumination image 

 

  A B 

Figure 4.27 Segmentation errors. A) Incorrect segmentation. B) Part of 

mask 
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4.3.2 Results of FCM Method 

We used the image feature and image number as mentioned before. The result was 

achieved by implementing randomly 7 rounds, where in each round 100 images  

were randomly selected from 1000 images as shown in the following tables (5-8). 

 

Table 4.5 Results of a seven-round sampling experiment for segmentation of the basal layer by using fuzzy 

method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 
 

Table 4.6 Results of a seven-round sampling experiment for segmentation of the cornified layer by using    

fuzzy method 

 

  

 

  

 

 

 

 

 

 

 

 

 

  

Epidermis layer (basal layer) 

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 85 10 5 

Round2 95 3 2 

Round3 93 4 3 

Round4 96 2 2 

Round5 90 6 4 

Round6 94 2 2 

Round7 97 2 1 

Average 93 4 3 

Epidermis layer (cornified layer) 

 

 

Experiences 

Accurate segmentation 

(%) Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 89 5 6 

Round2 95 2 3 

Round3 88 5 7 

Round4 82 10 8 

Round5 96 3 1 

Round6 95 4 1 

Round7 90 4 6 

Average 90.71  4.71  4.57  
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Table 4.7 Results of a seven-round sampling experiment for segmentation of the dermis layer by using 

fuzzy method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 

Table 4.8 Results of a seven-round sampling experiment for segmentation of the adipose layer by using 

fuzzy method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Dermis layer 

 

Experiences 

 

Accurate segmentation 

(%) 

 

Part of mask 

(%) 

Incorrect 

segmentati

on 

(%) 

Round1 93 4 3 

Round2 88 8 4 

Round3 90 6 4 

Round4 92 3 5 

Round5 87 10 3 

Round6 91 6 3 

Round7 95 3 2 

Average 90.85 5.71 3.42 

Adipose (fat cell) layer  

 

Experience

s 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 96 3 1 

Round2 93 5 2 

Round3 89 9 2 

Round4 95 3 2 

Round5 90 7 3 

Round6 97 2 1 

Round7 95 3 2 

Average 93.57 4.57 1.85 
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As in the experiments in section 5, the 100 images were selected randomly from 7,000 

H&E images of our data set, as shown in tables 4.5, 4.6, 4.7 and 4.8. The accurate 

segmentation meant that the layers of skin had parted perfectly, while the correct 

segmentation meant that the layer had split, but it did not include a complete mask, just 

part of the layer, due to some pixels beyond to the wrong cluster. Where the incorrect 

segmentation indicates segmentation of the wrong layer. The comparison was then 

achieved manually between the original H&E images and the automatic layer 

segmentation mask to assist the accurate result. 

4.3.3 Results of Adaptive Combined Method 

The same 100 images used above were used again in this section. The hybrid method 

is fusion method between the colour deconvolution and FCM method as shown in the 

following tables (4.9-4.12). 

 

Table 4.9 Results of a seven-round sampling experiment for segmentation of the epidermis layer (basal 

layer) by using fusion method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Epidermis layer (basal layer) 

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 95 3 2 

Round2 97 2 1 

Round3 97 3 1 

Round4 96 3 1 

Round5 95 3 2 

Round6 98 1 1 

Round7 97 2 1 

Average 96.42 2.42 1.28 
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Table 4.10 Results of a seven-round sampling experiment for segmentation of the epidermis layer 

(cornified layer) by using fusion method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.11 Results of a seven-round sampling experiment for segmentation of the dermis layer by using 

fusion method 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Epidermis layer (cornified layer) 

 

Experiences 

Accurate 

segmentation  

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 98 1 1 

Round2 97 2 1 

Round3 98 1 1 

Round4 98 1 1 

Round5 96 3 1 

Round6 97 3 1 

Round7 97 3 1 

Average 97.282 2 1 

Dermis layer 

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

 (%) 

Incorrect 

segmentation 

(%) 

Round1 95 4 1 

Round2 96 3 1 

Round3 94 4 2 

Round4 97 2 1 

Round5 96 4 2 

Round6 98 1 1 

Round7 95 3 2 

Average 95.85 3 1.42 
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Table 4.12 Results of a seven-round sampling experiment for segmentation of the adipose layer by using 

fusion method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown the results of the adaptive combination method (%96.42 for basal layer, 

%97.282 for cornified layer, %95.85 for dermis layer, and %96.57 for adipose) are 

significantly better than the results of using FCM and colour deconvolution method, 

because it address the FCM shortcoming issues. Although the FCM method is better 

than the colour deconvolution method but in some cases such as (10 out of 100 

images) the FCM method segment a part of layer while the colour deconvolution 

segment a complete layer as shown in Figure 4.28. Because of the segmentation in 

FCM sometimes causes loss of a part of mask layer such epidermis layer, due to some 

pixels beyond to the wrong cluster as shown in Figure 4.28C, where the image D show 

correct segmentation by colour deconvolution method. Despite three peaks in image B 

in Figure 4.28, the colour deconvolution do correct segmentation as shown in Figure 

4.28D 

 

 

 

 

Adipose (fat cell) layer  

 

Experiences 

Accurate 

segmentation 

(%) 

Part of mask 

(%) 

Incorrect 

segmentation 

(%) 

Round1 98 1 1 

Round2 96 2 2 

Round3 97 2 1 

Round4 96 3 1 

Round5 95 4 1 

Round6 97 2 1 

Round7 97 2 1 

Average 96.57 2.28 1.14 
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Figure 4.28 Fusion segmentation method. A) Colour image. B) Red channel of image A. C) Epidermis layer 

segmentation using FCM. D) Epidermis layer segmentation using colour deconvolution method 

4.4 Conclusion 

In this chapter, we designed and developed an adaptive system that uses one of two 

automatic methods, (the colour deconvolution and fuzzy c-mean methods) depending 

on parameter that measures the texture complexity of the images in terms of the 

number of peaks in the histogram of the red channel. The automatic solutions aimed to 

segment and sub-segment the three main layers of mice skin with H&E images, 

namely the epidermis, dermis and fat cell layers (Figure 4.29). We showed that this 

adaptive hybrid solution that combines the efficiency of colour deconvolution with the 

robustness of fuzzy C-mean clustering works well on images with different texture 

complexity and outperforms the deconvolution and fuzzy c-mean methods 

individually. The chapter also demonstrated the use of different kinds of thresholding 

such as the Otsu and the inter-modes to overcome the challenges of colour overlapping 

between the epidermis and the layers are far from satisfactory. The following benefit 

from the success of segmentation proposed in this chapter, by enabling the 
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Image histogram

B
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quantification of different features/objects associated with individual skin 

layers/sublayers as a mean of finding underlying genetic basis of some diseases. 

 
Figure 4.29 Segmentation of three main layer in the mice skin in H&E images by using fuzzy c-mean 

method. A) Colour H&E image which consist of three main layers. B) Epidermis layer segmentation. C) Dermis 

layer segmentation. D) Fat cell layer segmentation. E) Basal layer sub-segmentation. F) Cornified layer sub-

segmentation  
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Chapter 5 : Automatic Nuclei Segmentation Based on Fuzzy 

C-Mean 

Quantifying changes to the shape and number of nuclei in skin tissue is essential for 

assessing the state of some genetic-based disease situation, such as skin cancer. 

Observed changes in the distribution of nuclei clusters and the shape of the nuclei in 

different layers can be caused by certain skin diseases that can actively or passively 

control their shape and/or positions (Brandt et al., 2006; Melcer and Gruenbaum, 

2006; Huber and Gerace, 2007; Edens et al., 2013). Moreover, the gene knockout of 

mice skin image has made it possible to detect the genetic basis of some phenotypes in 

different layers. This chapter exploit the results of skin layers segmentation to facilitate 

the identification and counting the number of nuclei in two layers: the epidermis layer 

and dermis layer.   

Traditional manual methods to nuclei counting is time-consuming and could have 

notable inter-observer variabilities due to the subjective decisions made by different 

manual annotators. Therefore, there is a need to automate systems for nuclei counting 

in different skin layers that are reproducible results. This chapter has three main 

contributions: 

1. Develop an automated nuclei segmentation method in the epidermis layer that 

overcomes the overlapping of nuclei problem.   

2. Propose an automatic nuclei segmentation scheme in the dermis layer. 

3. Use the nuclei counting schemes for a dataset of wild-type and mutant images 

for identifying genes causing changes in nuclei count, in relation to skin 

abnormalities. 

The rest of the chapter is organised as follows. In Section 5.1 we describe the problem 

of segmenting nuclei in mouse skin images at different layers. In Section 5.2 algorithm 

framework of our approach is presented. Section 5.3 evaluate the performance of our 

automatic algorithms and in comparison with manual segmentation and present 

experimental results on identifying genes causing skin abnormalities from nuclei 

counts. Conclusions of the contributions were described in Section 5.4. 

5.1 Introduction and Problem Statement 

The recent development of high-throughput production of targeted, genetically altered 

mouse lines has enabled a systematic phenotypic screening and gene discovery. 
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Identifying genes correlated with changes in nuclei in different layer is a key step 

towards understanding the genetic basis of skin cancer.  

Accurate identification of any changes in nuclei is of a significant biological and 

clinical relevance. For example, mutations in the PTCH1 and SMO genes in human 

have been associated with basal cell carcinoma which is a type of skin cancer that 

develops in the epidermis layer  (Marzuka and Book, 2015) (Lang et al., 2019; 

Verkouteren et al., 2019). Figure 5.1, below, illustrates abnormal types of skin tumour 

linked with groups of nuclei throughout the epidermis while showing a normal 

epidermis. 

 
Figure 5.1 Types skin cancer. Melanoma and basal cell carcinoma (Findlay and Ally, 2015) 

Melanoma has also been reported as another type of skin cancer that develops in the 

dermis layer with mutations in the BRAF and NRAS genes (McConnell et al., 2019). 

That causes a tumour in the dermis, lead to increasing the nuclei in this area, also 

illustrated in Figure 5.1. It is likely that there are further, unidentified genes in which 

mutations may also cause a skin cancer. Therefore, the identification of genes 

associated with nuclei number in different layers may provide insight into both specific 

and generalised skin abnormalities. 

H&E stain technologies that used to show the skin details such as nuclei, using 

chemical staining method in histopathology. Due to huge variability in various 

chemical formulations, thickness, lab protocols and different image scanners, 

automatic image analysis method of microscopy is prone to errors (Bayramoglu et al., 

2017). In addition, accurate measurement of nuclei from typical H&E stain, is 

adversely effected as a result of overlapping of colour intensity between nuclei and 

surround area as illustrated in Figure 5.2.  
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Figure 5.2 Microscopic H&E image. Microscopic human image (Mathias et al., 2015) (on the left). 

Microscopic     mice image (on the right)    

While it is clear that abnormality in the human image, as shown in Figure 5.2 (on the 

left side), is clearer than in the mice images. The tumour area in the human tissue 

image is highlighted by the group of nuclei with almost constant intensity and similar 

shape, making the task of segmenting the tumour that much easier. Whilst in the case 

of mouse skin image the nuclei have almost the same intensity with the background 

area or surround texture, and therefore human annotation while examining the images 

under a microscope is used to determine changes in the number of nuclei and to 

diagnose tumour abnormalities.  

In general, automatic segmentation of nuclei in different mouse skin layers is a 

technically challenging task due to difficulties in locating related and shape within the 

image caused by colour intensity overlapping of different tissues such as blood cells 

and vessels, etc. In particular, automatic nuclei segmentation in the epidermis layer is 

difficult due to the potential overlapping of nuclei colour intensity with the 

surrounding tissue. Another challenge is that of overlapping between nuclei, which 

lead to more than one nuclei being identifies as the same object, which require 

schemes to separate them. All these problems are expected to have impact on the 

accuracy of nuclei counting.  

The challenge of segmenting the nuclei in the dermis layer is somewhat different in 

that separable objects in the dermis could include nuclei, and other objects such as 

blood cells/vessels, etc. 

However, nuclei can be categorized from the rest of these objects in terms of their near 

circular shape. These added challenges must be addressed, besides all pervious issues, 

when designing fully automatic solutions.  
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All the aforementioned challenges do not only impose difficulties for machine-based 

solutions but even for expert analysts with whom inter- and intra-analyst variations in 

manual measurement results could happen. In turn, this leads to difficulties in 

obtaining a solid ground truth on manual measurements to objectively assist the 

evaluation of the automatic solutions. Given the volume of images that are generated 

by the high-throughput screening, an automated solution for annotation and triaging of 

images for human analysis will not only reduce costs in time and human resources, but 

also eliminates the likelihood of human errors and inconsistency in manual 

measurements. 

5.2 Algorithmic framework of Nuclei Segmentation 

Our proposed method of counting nuclei in the dermis and epidermis layers will adopt 

the use fuzzy cluster techniques (Xiao and Peng, 2013; Bizrah et al., 2014; Bibiloni, 

González-Hidalgo and Massanet, 2016; Radojević, Smal and Meijering, 2016; Dias et 

al., 2017). Accordingly, after layers segmentation method is applied to segment the 

epidermis and dermis layers, as explained in Chapter 4, our method segment the nuclei 

in the epidermis and dermis layers is completed by six key procedures in Pseudocode 

5.1: 

 
Pseudocode 5.1 Steps for nuclei segmentation of dermis and epidermis layer 

Figure 5.3 illustrates the main stages of the proposed framework.  

1- Segmenting the nuclei in the epidermis layer using fuzzy cluster method. 

2- Identifying the overlapping nuclei in the epidermis layer using circularity   

test and aspect ratio features. 

3. Separate overlapping nuclei in the epidermis layer by using watershed with 

distance transform method. 

4- Segment the nuclei in dermis layer using fuzzy cluster method. 

5- Refine the initial segmentation using shape feature extraction. 

6- Count the nuclei in two layers epidermis and dermis. 
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Figure 5.3 Main procedures of proposed method 

The following sections describe details of the processes in the above 6 stages.  

5.2.1 Nuclei Segmentation in the Epidermis Layer 

Segmenting the nuclei in the already segmented epidermis layer works in four stages: 

Stage 1. Start by applying fuzzy c-mean clustering on the image red channel, to 

determine the best cluster (see Chapter 4, Section 3.2). See Figure 5.4 for illustration 

clusters. Next apply fuzzy threshold on the best cluster to have two images as shown in 

Figure 5.5.   

Automatic nuclei 

segmentation in epidermis 

layer

5.2.1

Automatic identifying of 

overlap nuclei in the 

epidermis layer

5.2.1.1

Automatic separation the 

overlap nuclei in the 

epidermis layer

5.2.1.2

Automatic nuclei 

segmentation in dermis 

layer

5.2.2

Refining nuclei 

segmentation in dermis 

layer

5.2.2.2

Genes identification

5.3.2

 



 

 93 

Chapter 5                                                                                    Nuclei Segmentation 

 

 
Figure 5.4 Selection the best cluster of output of fuzzy c-mean cluster .A) Red channel of colour image. B) 

Cluster one (best cluster in our work) which is highlight the epidermis layer. C) Cluster two which is highlight 

the image background. D) Cluster three which is highlight the texture of all layers (see Chapter 4, Section. 3.2)) 

 

 
Figure 5.5 Fuzzy c-mean output. A) Particular select cluster from Red Channel. B) Output of FCM threshold 

(level was selected depend on small and middle data point class (see Chapter 4, Section. 3.2)), which represent 

the texture of epidermis layer and other nuclei in other layers. C) Output of FCM threshold (selected level 

depends on middle and large data point class) 

Stage 2. Pixel-by-pixel subtract image in Figure 5.5B, which represents the texture of 

the epidermis layer and other objects, and image in Figure 5.5C which represent the 

epidermis layer as a solid mask and nuclei in the dermis layer, where the output is 

shown in Figure 5.6C. The reason for applying the subtraction operation relates to the 

nature of image in Figure 5.6B has a solid object (epidermis layer mask) while image 

in Figure 5.6A has the texture or the boundary of the objects (epidermis layer mask). 

The subtraction operation avoids the border of nuclei and extracting the core object 

from the solid mask (St-Charles and Bilodeau, 2014; Prajapati and Jadhav, 2015). 

A

CB D

A

B C
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Stage 3. Pixel-by pixel multiply image in Figure 5.6D, which shows the epidermis 

layer only as a solid mask, with image in Figure 5.6E, which clarify the inversion of 

the output of step 1 (output of subtraction operation). The multiplication operation 

results in avoiding any object outside the epidermis layer. Following this, erosion 

morphology (by 1 pixel, with disk structure) is applied on the nuclei, to avoid 

overlapping among the nuclei, as displayed in image in Figure 5.6F.  

Stage 4.  Remove noise-like objects (not nuclei) or the error object stain was addressed 

by learning the machine by labelling all objects in the epidermis layer, and avoiding 

the noise object by make them a background. After many attempts to determine the 

noise objects, we found a threshold area for whole objects in the epidermis layer, i.e. 

we found that each object has an area of more than 150, error stain object or not nuclei 

as shown in Figure 5.7.  

 
Figure 5.6  Proposal methods for nuclei segmentation. A and B have been explained in Figure 5.5 as B and C 

respectively). C) The output of the subtraction operation between image A and B. D) Epidermis layer mask using 

fuzzy c-mean method. E) Inversion of image C, which was the output of the subtraction operation. F) Output of the 

multiplication operation between image D and E 
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Figure 5.7 Removal of noise objects. A) Epidermis layer before removing the noise objects. B) Epidermis layer 

after removing the noise objects 

5.2.1.1 Identification of overlapping nuclei in the epidermis 

Automatic identification of overlapping nuclei of the epidermis layer will be 

employing the circularity and aspect ratio features. The circularity feature was also 

employed to determine the relationship between the tumour of lung adenocarcinomas 

and the feature of computed tomography (CT), which contains the measurements of 

histogram and texture analysis (Koo et al., 2017). Moreover, in (Guven and Cengizler, 

2014), the circularity and aspect ratio parameters were deemed appropriate for 

classification of overlapping nuclei in Pap smear samples. 

The above feature parameters associated with nuclei-like objects are defined by the 

following equations extracted from an ellipse fitting of the object (see Neal, 2017): 

 

The procedure works on each segmented epidermis image, by determining the mean of 

circularity and aspect ratio parameters calculated for all the segmented nuclei-like 

A B

Major Axis =2*a                                                                     (eq5.1) 

Minor Axis =2*b                                                                    (eq5.2) 

Aspect Ratio = a/b                                                                 (eq 5.3) 

Area = π*a*b                                                                          (eq 5.4) 

Perimeter ≈ 𝜋 (a + b) [3
(𝑎−𝑏)2

(𝑎−𝑏)2[√−3
(𝑎−𝑏)2

(𝑎+𝑏)2+4+10]

+ 1]          (eq 5.5) 

and 

Circularity = 4 π* 
[𝐴𝑟𝑒𝑎]

[𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟]2                                              (eq 5.6) 
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objects in the image, and objects that have circularity and aspect ratio larger than the 

corresponding means will be declared as an overlapped of more than one nuclei to be 

separated by the procedure in the next section.  

On examining few cases, we found that we actual overlapped nuclei were considered 

as single nuclei. To avoid this kind of errors, we designed another test to identify the 

overlapping nuclei.  This complementary procedure, repeats the first procedure but 

replacing the mean of the aspect ratio with the means of two other parameters of the 

segmented objects: the major axis and perimeter. Again, overlapping was declared 

when coordinates of array (circularity, major axis, perimeter) were larger than the 

corresponding means, (see Figure 5.8).  
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Figure 5.8 Block diagram shows the proposal algorithm of automatically identifying overlapping nuclei in 

the epidermis layer before performing overlapping nuclei segmentation   

Improvement of identifying the overlapping nuclei was achieved by a second 

comparison, as presented in image of Figure 5.9D, which used the circularity, major 

axis and perimeter of the overlapping nuclei. This is because those features are 

sensitive to the length of the object as opposed to the width, where the length of the 

overlapping nuclei is always longer than the length of single nuclei as displays in 

Figure 5.10, in the first comparison the aspect ratio was employed, which used the 

major and minor axes. 
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Figure 5.9 Determination of overlapping nuclei. A) H&E original image. B) Nuclei segmentation in the 

epidermis layer. C) Identification of the overlapping nuclei in the epidermis layer. D) Improving the 

identification of overlapping nuclei in the epidermis layer  
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Figure 5.10 Identifying the overlapping nuclei segmentation. A) H&E image with overlapping nuclei and 

single nuclei. B) Single nuclei segmentation. C) Overlapping nuclei segmentation 

5.2.1.2 Separating Overlapped Nuclei in Epidermis Layer  

Having identified the overlapping segmented nuclei, as shown in Figure 5.11, it was 

then required to separate the overlapping nuclei to obtain an accurate counting the 

nuclei in the epidermis layer. Our search for appropriate overlapping splitting 

revealed that the watershed associated with the Euclidean distance transform method 

was the common method. Then H-minima watershed transformation was used for 

shape marker (Cheng, Rajapakse and others, 2009). The nuclei in the tissue of colon 

carcinoma was segmented by utilising the region growing technique, then the 

overlapping nuclei were separated by applying the watershed method based on 

Euclidean distance (Rogojanu et al., 2010). An automatic method for nuclei 

segmentation was proposed by using fuzzy combined with the active contour mode, 

where the fuzzy method provides the initial contour, which led to detection of the 

contour of nuclei. Touching and overlapping nuclei of breast cancer in the affected 

tissue were then segmented using the developed watershed method by using a 

concave vertex, based on Euclidean distance transform (Mouelhi, Sayadi and 

Fnaiech, 2013). The nuclei of pleural effusion were automatically segmented to 

diagnose the advanced stages of cancer by using the k-mean cluster method 

associated with LAB colour space. The overlapping and touching issues was 

addressed by applying the watershed method based on Euclidean distance transform, 

where the method of ellipse fitting was used to isolate the boundary of the nuclei 
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(Win, Choomchuay and Hamamoto, 2017). Accordingly, we deploy this procedure 

for separating the overlapped nuclei obtained in the previous section. The following  

is the procedure to segment overlapping nuclei as shown in Pseudocode 5.2: 

 

 
Figure 5.11 Automatic methods for identifying the overlaping method. A) Overlapping nuclei segmentation. B) 

enlarged sample of overlapping nuclei segmentation 

In step 2 in the pseudocode above we using Euclidean distance transform (see Chapter 

2) as displayed in Figure (5.12, A, D), the reason for that was to prepare the 

overlapping nuclei for the next stage which uses the watershed transform by making 

make two catchment basins in each overlapping nuclei, one basin for each nucleus. 

 

 

 

 

 

 

A

B

Step 1: Input images with nuclei segmentation in the epidermis layer. 

Step 2: Apply distance transform to find the nearest boundary of overlap nuclei. 

Step 3: Apply watershed transform to segment the overlap nuclei by set the 

watershed line to zero. 

 

 

 
Pseudocode 5.2 Steps for overlapping nuclei segmentation 
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Figure 5.12 Euclidean distance transform of overlapping nuclei. A) Binary overlapping nuclei. B) Inversion 

of binary overlapping nuclei. C) Calculation of Euclidean distance transform. D) Complement of distance 

transforms 

In step 3 we using the output of distance transform in step2 as input to the watershed 

transform (see Chapter2) which segment two basins of overlapping nuclei as shown in 

Figure 5.13, by setting the watershed line (Figure 5.14) to zero, which is located 

between the two basins.  

 
Figure 5.13 Segment the overlapping nuclei. A) Image of distance transforms. B) Segmentation of overlapping 

nuclei 
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Figure 5.14 Watershed map. A) Two images combined the watershed image and nuclei segmentation. B) 

Segmentation of overlap nuclei  

In some cases two types of errors were found, the first error was that the overlapping 

were nuclei still not separated because of the watershed and distance transform doesn’t 

recognise the object as two nuclei, such as the nuclei in Figure 5.15A, where the 

algorithm doesn’t segment the overlapping nuclei which is quite evidently two nuclei, 

based on ground truth as viewed in Figure 5.15C. The second error was the wrong 

segmentation, for example in Figure 5.15B the overlapping object has four nuclei 

based on ground truth, and after segmentation the overlapping will be five nuclei as 

shown in Figure  5.15A) which is incorrect. 
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Figure 5.15 Error segmentation of overlapping nuclei. A) Watershed map. B) Ground truth for four 

overlapping nuclei. C) Ground truth for two overlapping nuclei 

5.2.1.3 Performance of our automatic nuclei segmentation in the epidermis 

layer 

a) Feature Extraction  

There are two categories of image properties related to features that were used in my 

work, together with various combinations of these categories. The first category is 

based on the number of pixels belonging to a given region. In Matlab, this is 

implemented by the (Area) function, which extracts the binary object in the image and 

counts the number of its pixels. The second category is (MajorAxisLength) which was 

employed to find the length of the major axis for a fitting ellipse of the binary object. 

b)   Classification 

We extracted five features from each segmented region (candidate nuclei): the Area 

and Major and Minor Axis of the best fitting ellipse, circularity, and aspect ratio. We 

then used these five features into a known classification scheme that train and test the 

performance of our nuclei counting scheme in the epidermis over our experimental 

dataset of mouse skin images. Herein, the Support Vector Machine (SVM) classifier 

was used for skin nuclei classification, because the SVM is the best machine learning 

technique to separate two different classes. In our case we used SVM to classify nuclei 

objects and non-nuclei objects.  
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5.2.1.4 Classification Results 

To test the performance of our nuclei segmentation in the epidermis layer scheme, a 

number of experiments are conducted using our datasets of microscopic H&E images 

and adopting a number of training-testing protocols.  

We selected 100 randomly of dataset H&E images, we selected 20 images for training 

and 80 images for testing.  

In these experiments, the Support vector machine (SVM) method is used to obtain our 

optimal criteria to be used in our proposed nuclei segmentation scheme. The support 

vector machine (SVM) is one of the most widely used supervised classifiers which 

aims to find an optimal separating hyper-plane among different classes of a given n-

dimensional dataset (training set). The optimal separating hyper-plane is the one that 

has a maximum distance to the nearest data samples (the so-called support vectors) in 

the training set. Such optimisation technique endeavours to maximise the margin 

between the hyper- plane and the support vectors, expecting a better classification 

accuracy. 

A linear SVM classifier is used to classify the segmented objects in the epidermis layer 

of H&E images into nuclei and not nuclei objects, based on the five features explained 

above.   

SVM is used to determine the best shape of each nuclei in the images based on two 

above filters. Score of the classification was found by eq(5.7) (Cristianini, Shawe-

Taylor and others, 2000). Figure 5.16 shows the SVM hyper-plane, and the support 

vector example. 

𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑎𝑖𝑘(𝑉𝑖 ,𝑥1)𝑛
𝑖=0 + 𝑏                                                                           (eq5.7) 

 

Where V is the support vectors set, n is the size of V, a  is the alpha weight of V, K 

kernel function (a dot product <𝑉𝑖, 𝑥1> in this case) and b is the bias. 
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Figure 5.16 Example of an SVM classifier with an optimal hyper-plane between the two classes of support 

vectors. The grey vectors represent non-nuclei objects in the epidermis layer, and black vectors represent the 

nuclei objects in the images. The hyper-plane separate 

Figure 5.17 shows the results of comparing the ground truth and the automatic 

segmentation before the improvement over 20 randomly-selected images where the 

blue bar represent the ground truth and the red bar represented the number of nuclei 

generated automatically. The x-axis is indicating the 20 images selected randomly and 

the y-axis represent numbers of nuclei segmentation in the epidermis layer.  

For each candidate nuclei, we extracted the five features: the Area and Major and 

Minor Axis of the best fitting ellipse, circularity, and aspect ratio. The features are then 

fed into a liner SVM and an overall accuracy of 88.78% was achieved. 

 
Figure 5.17 Nuclei segmentation in the epidermis layer: Comparison of automatic method to the ground 

truth 

Figure 5.18, on the other hand, shows the accuracy of the SVM classification using the 

five features explained above after identifying and splitting the overlapping nuclei in 
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the epidermis. An overall accuracy of 94.21% accuracy was achieved on the same 20 

images. This improvement in results confirms the effectiveness of our scheme to 

segment overlapping nuclei in epidermis layer. 

 
Figure 5.18 Overlapping nuclei segmentation in the epidermis layer after segmentation improvement: 

Comparison of automatic method to the ground truth 

 

5.2.2 Nuclei Segmentation of Dermis Layer 

In Chapter 4, the dermis layer was segmented, by applying a hybrid segmentation 

based on colour convolution and fuzzy clustering procedure. Our proposed nuclei 

segmentation in dermis layer, exploits the results of the Epidermis FCM threshold 

procedure (Figure 5.6C, displayed below as Figure 5.21A) because it does additionally 

detect the nuclei-like objects within the dermis layer. The algorithms work in two 

steps. 

5.2.2.1 Detection of Nuclei-like objects in the Dermis Layer 

Figure 5.19, show the block diagram of Nuclei segmentation of the dermis layer, 

which starts with the Dermis layer image (segmented in chapter 4, and displayed 

below as Figure 5.20C) as input. Hence, our algorithm first isolates the highlighted 

nuclei-like objects in the dermis layer by inverting the epidermis FCM threshold image 

(see Figure 5.20B) and multiplying with the dermis layer image (Figure 5.20C). Figure 

5.20D, illustrated the result of this step for the sampled case. Finally, the nuclei-like 

objects are then segmented by multiplying the current image again with dermis layer 

image. Although, the output from this step (as illustrated in Figure 5.20F) detects the 

required objects, it includes other objects that need to be illuminated by a refinement 

procedure.    
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5.2.2.2 Refining Nuclei Segmentation of Dermis Layer 

The segmented nuclei-like objects in the dermis layer needs to analysed to determine 

the genuine nuclei objects and illuminate the many unwanted objects in the output 

image from the last section. To perform this refinement step, we need to extract a 

suitable feature from the highlighted objects that clearly separate genuine nuclei-like 

objects from the non-nuclei objects (to be excluded).  The area of the objects is an 

obvious easy to extract objects feature that could identify whether an object is noise or 

not. Several trial and error experiments on many images, revealed that the area of non-

nuclei or noise was larger than 300. Hence, our refinement procedure first excludes 

any object that has an area of 300 pixels or more. Unfortunately, the output still 

includes non-nuclei objects, and circularity is another object features that was 

employed in the refinement step to further exclude some objects that are of appropriate 

size but not nuclei in the dermis layer. This choice is based on existing knowledge of 

the anatomy of mice skin, that the nuclei in the dermis are of circular shape, and not all 

objects in the dermis are nuclei, some of them were blood and lymph vessels as shown 

in Figure 5.21 (Wang et al., 2014). The output from this step for our illustrated sample 

image is shown in Figure 5.20G 

The whole steps of the proposed algorithm is displayed in the block diagram of Figure 

5.19, while the various images in Figure 5.20 show the output at the various steps.   
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Figure 5.19 Block diagram of nuclei segmentation in the dermis layer 
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Figure 5.20 Nuclei segmentation in the dermis layer. A) Nuclei segmentation in all layers. B) Complement of 

image A. C) Dermis layer segmentation. D) Outcome of multiplication image C and image B. E) Nuclei 

segmentation with white background. F) Nuclei segmentation with black background multiplication image E and 

C. G) Improved nuclei segmentation by exclude the objects, which have area value 300 or more 

Figures 5.21, below, displays the segmented nuclei-like objects on the RGB image of a 

sample skin tissues and point to a non-nuclei object as well as genuine nuclei objects. 

Figure 5.22, on the other hand show all the segmented genuine nuclei in the sampled 

skin tissue image.  
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    Figure 5.21 Nuclei and not nuclei segmentation 
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Figure 5.22 Nuclei segmentatoin in the dermis layer 

5.2.2.3 Performance of the Nuclei Segmentation in the Dermis layer 

Results of the SVM classifier were found, where the accuracy of the classification 

were 89.20% (before refining) and 95.02% (after refining) respectively. Figure 5.23 

and Figure 5.24 show the difference in results between the automatic method and the 

ground truth. A blue bar is indicate to the ground truth, which we identify the nuclei 

segmentation manually in 20 images. A red bar is point to our automatic method, 

which is evaluated using SVM. We noted that an improvement in result as shown in 

Figure 5.24 due to apply our refining scheme to segment nuclei in the dermis layer. 
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Figure 5.23 Nuclei segmentation in the dermis layer: Comparing automatic method and ground truth 

 
Figure 5.24 Nuclei segmentation in the dermis layer: Comparing automatic method and ground truth 

after segmentation improvement in dermis layer 

 

The nuclei were then quantified by counting as the final goal and the nuclei 

measurements were extracted from a large number of images of mutant mice to be 

used in identifying a list of genes responsible for changes in the dermal nuclei.  

5.3 Experiment Results and Analysis 

In that last two sections, nuclei segmentation procedures, we used the supervised 

machine learning SVM classifier to test their performances based on certain extracted 

features from the segmented nuclei. We also, compared the results of using our 

automatic schemes with those obtained manually for a sample of 20 images. In this 

section, we present the results of two sets of experiments. The first set is centred on 

comparing the automatic measurements to those obtained manually while the second is 
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dedicated to identifying genes responsible for changes in nuclei numbers in the dermis 

and epidermis layers. Due to the difficulty of manually labelling all the images in our 

dataset of mouse skin tissue images, we selected randomly a sample of 100 images that 

were annotated by an expert to be used as a ground truth. 

5.3.1 Comparing Manual vs. Automatic Measurements 

 First of all, the number of nuclei in the two layers (epidermis and dermis) were 

calculated by applying the two proposal methods for 100 randomly selected images. 

The manual counting method was carried out by marking and counting the nuclei in 

the same set of 100 images by a domain expert. In the first evaluation, we check the 

correlation between the manual and automatic measurements using R2 and ARL 

schemes (see Section 3.4.2.1 for further details). Figures 5.25A and B show the scatter 

plot for the manual versus automatic measurements for nuclei counting in two layers 

dermis and epidermis. The figures demonstrate close linear correlation between the 

manual and the automatic. However, the count of nuclei in the dermis layer still shows 

more consistency than the nuclei in the epidermis layer due to the underlying difficulty 

in identifying the nuclei in epidermis as explained earlier.  

 

To further analyse the effectiveness of the proposed solutions, we compare the manual 

versus the automatic of the nuclei counting for dermis and epidermis, Table 5.1 shows 

the comparison results using four parameters: namely R2, ARL, MAE, and the 

standard deviation (σ) of absolute error between the ground truth and the automatic 

measurements (see Section 3.4.2 for further details). 

A B 

Figure 5.25 Correlation of manual versus automatic counting. A) Nuclei counting in the dermis layer. B) 

Nuclei counting in the epidermis layer 
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Table 5.1 Manual versus automatic nuclei counting in dermis and epidermis layers 

Measure R2 ARL MAE σ 

Nuclei counting in dermis layer 0.93 53.2° 0.135 3.53 

Nuclei counting in epidermis layer 0.87 49.8° 0.28 2.82 

 

The table shows noticeable difference between the manual and the automatic 

measurements especially for the nuclei counting in dermis and epidermis layers, which 

shows the counting in dermis is better than in epidermis. This is probably due to the 

observed of effect of staining in showing the nuclei in the epidermis layer mostly 

overlapping with the surround tissue. While the nuclei in the dermis are mostly 

prominent within their surrounding tissue which explain the need for two separate 

methods. However, nuclei counting errors in the dermis layer is due to the fact that not 

all objects are nuclei. 

To further assess the correlation between the manual and automatic measurements, we 

examined their closeness using the Bland Altman analysis (BA) (see Section 3.4.2.2). 

 Table 5.2 Manual versus automatic for nuclei counting in dermis and epidermis layers 

 
 
 

 

 

Table 5.2 shows the lower and upper LoA for all proposed measurements. Figure 5.26 

and Figure 5.27 shows the BA analysis scatter plot for the final nuclei counting in 

dermis and the final counting in epidermis respectively, which is display closeness 

between automatic method and ground truth (see section 3.4.2 for further details) by 

using 100 images randomly. 

Again, the results in Table 5.2 confirm the conclusion of Table 5.1 and show that nuclei 

counting in dermis are better accuracy from nuclei counting in epidermis, the reason 

behind that is LoA range for nuclei segmentation in the dermis layer, which is start from 

-37.93 to 36.91 and most of the points located inside the range as shown in Figure 5.26. 

While the LoA for the nuclei segmentation in the epidermis layer is bigger with range 

between -79.44 to 92.42 with some points outside the range as shown in Figure 5.27. 

 

 

 

 

Measure 
Upper 

LoA 

Lower 

LoA 

Nuclei counting in dermis layer 36.91 -37.93 

Nuclei counting in epidermis layer 92.42 -79.44 
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Figure 5.26 Bland Altman analysis for manual versus automatic for nuclei counting in the dermis layer 

 
   
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.27 Bland Altman analysis for manual versus automatic for nuclei counting in the epidermis layer  
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5.3.2 Genes Identification Experiments 

Having demonstrated high accuracy rates of the two algorithms for segmented nuclei 

in the epidermis and dermis skin layers, in this section we report the results of our 

experiments to identify the genetic basis of abnormalities in the nuclei in two layers 

dermis and epidermis i.e. what are the genes that may lead to an increase or decrease 

the nuclei counting? These experiments will be apply the proposed methods on the 

whole dataset of the 7000 H&E skin images (described in Section 3, Chapter 3). To do 

this, first needs to establish what is normal and what is not when it comes to nuclei 

counting of mice skin. This is typically done based on the RR approach to identify the 

Lower Bound (LB) and the Upper Bound (UB) of the nuclei counting obtained from 

WT animals (see Chapter 3 Section 4.1 for further details). For illustration purposes, 

Figures 5.28 show the distributions of the nuclei counting obtained from 500 WT 

images. The LB and UB of the RR are the vertical black lines on the two sides on the 

charts. Next, two main steps were achieved to identify the interesting genes step1 and 

step2 

	 	

UB 

97.5
% 

LB 

2.5% 

 
Figure 5.28 Normal distribution of nuclei in the dermis layer for WT population with LB and UB 

obtained from RR 
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Step 1: 

Nuclei number of every mutant mouse were compared against the relevant LB and UB 

to establish whether the measurement falls within or outside the RR. Similar to WT 

images, Figure 5.29 shows the distribution of the 261 mutant mice. The vertical black 

lines represent the LB and UB of the RR (74 to 220), obtained from the nuclei number 

in dermis of WT (normal) cases. 

Out of 6500 mutant mice images analysed, 5850 (90.03%) were found to be within the 

RR established by the WT measurements, and 650 images (9.6%) of mutants fell 

outside the RR for nuclei in dermis layer. However, it is important to highlight that not 

all samples that fall outside the RR are necessarily true hits (abnormal cases). 

Arguably the above number includes many false cases due to two main reasons. First 

is related to any incorrect nuclei detection, which leads to incorrect nuclei counting. 

Secondly, although correctly identified abnormal cases may belong to a specific gene 

for which the total number of cases of abnormal nuclei number is less than the hit rate 

threshold (see Section 3.4.1 for further details). 

	

UB	of	RR 

obtained 

from	WT 

mice 

LB	of	RR 

obtained 

from	WT 

mice 

Rbbp7/ 

Rbbp7 

Traf3ip3/	
Traf3ip3 

 

Figure 5.29 Normal distribution of nuclei in dermis layer for mutant population with RR bound 
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 Step 2: 

To filter out the false cases, we calculated the so-called hit ratio of each mutant line 

(see Section 3.4.1 for details). Out of the 650 outlier cases, only 56 cases were 

considered as true hits (i.e. hit ratio > 60%) as shown in Table 5.3 where the “-” mark 

is used to indicate that the ratio is below 60%. 

The following steps identified interesting genes: 

1- Datasets collection from Sanger institute, where each animal has unique Access 

Point Name (APN) and sanger number with genes and genotypes as shown in 

Figure 5.30. 

 

 

 

 

 

 

 

 

 

 

2- Images collection by Sanger institute which consists of each slice of image (a 

group of images of the same animal) and with type of slices such wild type 

(normal cases) or mutant (abnormal cases) for more details see (Chapter3 in 

Section3). 

3- We applied our scheme on the data sets to count nuclei per image and analyse 

results i.e. determined the distribution data to identify LB and UB for wild type 

images (see Chapter3 in Section3). Then it is apply the LB and UB to the 

mutant type (step 1), to locate images if they are outside of RR (i.e. larger than 

UB or smaller than LB), we considered as interesting cases or inside RR (i.e. 

between UB and LB), we considered as normal cases as shown in Figure 5.31. 

4- Determine hit ratio i.e. count a true cases and ignore false cases, by calculating 

the hit ratio, if it is larger than 60% (for example 5 out 7 images inside RR) we 

considered as true case, otherwise we considered false case (step2). Based on hit 

ratio we identify the interesting genes as final objective i.e. match our results 

(true cases) with Sanger institute data sets to identify the genotype.  

Figure 5.30 Sanger institute data sets 
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Table 5.3 Possible gene hits in the dermis layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table above shows a list of 8 genes that could be potentially responsible for   

abnormalities in the nuclei in dermis layer, 3 genes show increasing in the nuclei and 5 

genes show decrease in the nuclei in the dermis. 

To large extent this confirms the effectiveness of our developed method in identifying 

the list of genes responsible for changes in the nuclei number in the dermis layer. 

Interestingly, the table shows a possible novel gene called ‘Traf3ip3/Traf3ip3’, which 

is currently shows that the knockout this gene causes increase in nuclei, which cause 

the tumour, which is melanoma cells (Nasarre et al., 2018). 

To identify the interesting genes in the epidermis layer, we utilize the same approaches 

in Section 5.5.2 to show the effective genes as illustrated in Table 5.4.  

  Name of allele 
Nuclei in the dermis layer 

Prmt3/Prmt3 >UB 83% 

Traf3ip3/Traf3ip3 >UB 100% 

Ppp3ca/Ppp3ca >UB 73% 

Psat1/+ Normal - 

Rhot2/Rhot2 Normal - 

Amotl1/Amotl1 Normal - 

Clk1/Clk1 <LB 95% 

Ido1/Ido1 Normal - 

Cntfr/+ <LB 100% 

Amfr/+ <LB 85% 

Rbbp7/Rbbp7   <LB 86% 

S100b/S100b Normal - 

Lpar5/Lpar5 <LB 86% 
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Table 5.4 Possible gene hits in the epidermis layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where the above table 5.4 shows 12 genes with abnormal cases in the epidermis layer, 

9 genes function to increase the nuclei number and 3 genes function to decrease the 

nuclei. 

From two tables (table 5.3 and table 5.4) there is one common gene call "Prmt3/Prmt3" 

which show clearly in the both layers dermis and epidermis causes increasing the 

nuclei as shown in Figure 5.31. 

Name of allele 
Nuclei in the epidermis 

layer 

Phenotype Hit Ratio 

Prmt3/Prmt3 >UB 86% 

Amfr/Amfr >UB 100% 

Dusp3/Dusp3 >UB 86% 

Abcd1/Abcd1 >UB 70% 

Pik3cb/Pik3cb >UB 94% 

Pabpc4/Pabpc4 >UB 89% 

Coq9/Coq9 >UB 91% 

Kng2/Kng2 >UB 100% 

Rcor2/Rcor2 >UB 94% 

Pld5/Pld5 Normal - 

Suv420h1/Suv420h1 Normal - 

Psat1/+ Normal - 

Myo5a/Myo5a <LB 100% 

wi/wi <LB 74% 

Cish/Cish <LB 81% 
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  Figure 5.31 Images of genotypes with that influence number of nuclei compared to wt 

5.4 Conclusion  

Automatic methods for nuclei segmenting and counting have developed for the 

epidermis layer and dermis layer in mice skin. Building on the work in chapter 4, the 

output of the our hybrid method procedures provided the obvious starting input of the 

algorithms in that it provided effective segmentation of the two layers dermis and 

epidermis containing the nuclei objects. However, we applying appropriate 

thresholding to segment the nuclei in two layers (epidermis and dermis), where the 

output still includes many non-nuclei objects besides the problem of overlapping 

objects. We incorporate two subsequent filtering using certain known nuclei features 

(circularity, aspect ratio, major axis, perimeter) to effectively automatically identify 

overlapping nuclei in the epidermis layer, which were then separated using the 
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Prmt3/Prmt3
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watershed transformation. Knowledge about the circularity shape of nuclei together 

with their expected sizes in mouse skin tissue was also essential in eliminating the 

largest proportion of non-nuclei objects in the dermis layer. The performance of the 

various steps and procedures were evaluated using the SVM classifier. The result of 

nuclei segmentation in the epidermis layer, assessed by SVM, achieved an overall 

accuracy of 88.78%. The corresponding accuracy for the identification of overlapping 

was 94.21%. Results of the SVM classifier on the performance of our second 

algorithm of segmenting and quantifying the nuclei in the dermis layer were equally 

significant at 89.20% and after refining was 95.02%. In all cases the true acceptance 

and true rejection rates were close to each other and to the overall accuracy, 

demonstrating the significance of the contribution of this chapter.   

Subsequently, the proposed method helped in isolating a potentially interesting 

(knockout genes), further indicating the potential of the proposed methods. The 

evaluation of our performances shows success and viability for incorporation into lab 

systems based on domain expert. The development of effective, non-invasive and 

wholly unsupervised techniques would facilitate high-throughput analysis in cutaneous 

research, with potential applications for screening drugs.  

The next two chapters will be devoted to developing equally effective automatic 

algorithms to quantify the other skin layer factors associated with skin abnormalities. 
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Chapter 6 : Hair Follicle Orientation of Mice Skin 

Having developed algorithms to count nuclei in the epidermis and dermis skin layers 

and investigated their benefit to identifying genes that may cause skin abnormality, in 

this chapter, we investigate factors relating to another skin object for the same end. 

Hair follicles cover most of the surface of mammalian bodies, and it has been shown 

that the orientation of follicles is associated with some genetic disorders such as 

hypotrichosis simplex or monilithrex (Sundberg, 1994). The Mouse Genetics Project 

(MGP) provides a valuable resources to identify the exact genes responsible for 

changes in the orientation of hair follicles (Chang, Philip M Smallwood, et al., 2016). 

The main aim of this analysis is to identify and quantify the hair follicles in the 

epidermis layer using automated high throughput analysis. We shall present an 

algorithm to quantify the orientation of hair follicles in the epidermis layer, and assess 

changes in their orientation in relation to genetic determinants of skin organisation i.e. 

genetic causes of relevance skin disease such as hypotrichosis simplex or monilithrex 

(Sundberg, 1994). This chapter has two main contributions: 

1. Developing an automatic method compute the orientation of hair follicle with 

respect to a fixed alignment of the epidermis layer.  

2. Design an effective segmentation and quantification of hair follicles’ orientation 

in the epidermis of wild type (WT) and mutant type mouse skin images:.   

The rest of this chapter is organised as follows. In Section 6.1 the problem statement of 

quantifying hair follicle orientation is described, highlighting the main challenges. In 

Section 6.2 we present our automatic method and explain the adopted image 

processing and analysis techniques in details. Section 6.3, report and analyse the 

experimental results for identifying genes associated with changes in hair follicles’ 

orientation in the epidermis of mice skin. Finally, in Section 6.4, the chapter is 

concluded by discussing and concluding the effectiveness and efficiency of the 

proposed solution.    

6.1 Problem Statement 

The orientation of the hair follicles with respects to the epidermis is perceived to be an 

indicator of the presence/absence of skin abnormalities for a variety of reasons. Where 

the orientation of hair follicle has steady in the normal cases, while in abnormal causes 

hair follicle disorientation in the skin (Wang et al., 2016). Figure 6.1, illustrates the 

differences in orientations of hair follicles in healthy and abnormal skin conditions. 
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The main challenge in the chapter “How to automatically measure the angle of 

orientation of hair follicle with respect to a fixed alignment of the epidermis layer and 

accurately quantify the orientation of follicles per image from an H&E image of a 

mouse skin tissue”. 

Manual quantification of hair follicle is time consuming and tedious. This is due the 

large number of hair follicles that need to be processed in each image, and there can be 

a huge number of H&E images that are continuously generated by the problem domain 

(i.e. MGP) and other skin abnormality related research objectives.    

 
Figure 6.1 Placement of the hair follicle in the normal and abnormal image. A) Normal image. B) Abnormal 

image 

Before we discuss our automatic proposal method of quantifying the orientation of hair 

follicles in the epidermis, we must understand the way this task is manually conducted. 

We first note that our experimental 20X magnification microscopic skin images clearly 

highlight the structure of the various layers of mouse skin, namely the epidermis, 

dermis and subcutaneous layers. Hence, the human lab researcher first needs to select a 

suitable way on measuring the hair follicle orientation manually. Traditionally, 

quantify hair follicles is done by measuring, under the microscope, the angles between 

the hair follicle (HF) and epidermis layer (van der Veen et al., 1999), as shown in 

Figure 6.2. Because it was possible to identify the HF in skin layers, and it is a 

particularly attractive goal for 20X magnification screens because of their clear 

dynamic nature and their easy accessibility (Awgulewitsch, 2003; DiTommaso et al., 

2014). 

A Epidermis layer

Hair follicle

A Epidermis layer

Hair follicle

B
Epidermis layer Hair follicle

B
Epidermis layer Hair follicle
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Figure 6.2 Quantify the hair follicle manually 

To develop an efficient automatic scheme of high accuracy, however, we first need 

segment the hair follicles in the epidermis and then develop a criterion for determining 

orientation of the segmented objects with respect to the surrounding epidermis layer.  

Automatic segmentation and quantification of the hair follicle from H&E images with 

20X magnification is made more complex by variation in their positions within the 

epidermis. We can identify the following challenges:  

First: The source images in our study are full multi-layers skin images and hence 

accurate segmentation of ROI, i.e. the hair follicle in the epidermis areas, is an 

essential and critical pre-processing step. The use of the automatic scheme of Chapter 

4, for epidermis layer segmentation, will result in narrowing the research space. 

However, colour intensity of hair follicles is close to surround tissue and their 

separation requires a great deal of concentration of the mind and a good level of 

experience, see Figure 6.1. 

Second: There is a significant variation in the alignments of the epidermis across the 

different input images. Figure 6.3, displays two images with different epidermis 

alignment. This makes hair follicle orientation difficult to compare between images,  

unless we realign the epidermis in the input image to an agreed direction. 

Third: A hair follicle is a curved shape, quantifying its orientation (i.e. its angle to the 

aligned epidermis) is unstable unless we fix a criterion for computing hair follicle 

orientation angle independently of the follicle curvature through its length, to be used 

for all follicles within each and all images.    
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Figure 6.3 Quantify the hair follicle manually 

6.2 The proposed Method for Quantifying Hair Follicle Orientation 

In this section, we propose a system to detect morphological features of the hair 

follicle in the epidermis layers of the skin. We introduce image-processing techniques 

to segment the hair follicle and quantify the orientation of follicle. Our adopted 

methods for quantifying the hair follicle consists of three main parts. Naturally, first 

step will be the use of the algorithms of chapter four to partition regions of interest in 

histopathological skin images into three layers (i.e. epidermis, dermis and subcutis).  

This would be followed by an algorithm that segment hair follicles from the region of 

the epidermis layer, and align the epidermis layer in a normalised direction from left to 

right sides of the image, the top and bottom. Thirdly, we develop and test the 

performance of algorithms for the automatic quantification of biologically relevant 

parameters associated with orientation of hair follicle in epidermis layers in images 

generated by the MGP.  

Figure 6.4 illustrates the main stages of the proposal method. The process at each stage 

will be further explained in the following subsections, and for the sake of completeness 

the first subsection will remind the readers of the epidermis segmentation method. 
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Figure 6.4 The main stages of the proposed method 

6.2.1 Epidermis Layers segmentation 

Within Chapter 4, we proposed and tested a set of algorithm that use the fuzzy c-mean 

clustering for automatic partitioning of H&E stained mouse skin images into different 

skin layers individually. This step will be implemented prior to enabling the 

segmentation of the hair follicles and other associated objects in the epidermis layer. 

6.2.2 Hair Follicle Segmentation 

The developed scheme to segment the hair follicles consist of three procedure to be 

implemented sequentially: (1) isolating two bounding curves of the outer thin sublayer 

of the epidermis layer, (2) align these two curves, and (3) segment the hair follicles. 

We shall now describe these procedures. 
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6.2.2.1 Evaluation of the Top and Bottom Curve Section of the Epidermis 

Layer 

The border of the epidermis binary mask was found by subtracting two epidermis 

masks: the original mask and a second mask derived from the first by one pixel erosion 

morphology thereafter to be called the erosion mask. The very outer curve bounding 

this sublayer will be referred to as the top curve, while the bottom curve is the curve 

that separate the sublayer with the interior of the remaining part of the epidermis. The 

shape of the bottom curve is associated with the hair follicles in the epidermis layer 

(Huang, 2008; Koch et al., 2011; Jiang et al., 2012; Yamasaki et al., 2012; Wu et al., 

2014; Praveen and Agrawal, 2015). The positions of the hair follicles by appearance of 

deep pocket like sections along this curve. The C, D and F images in Figure 6.5, 

illustrate the steps of this procedure. 

 
Figure 6.5 Automatic methods to align epidermis layer in H&E images. A) Original image. B) Segmented 

Epidermis layer. C) Epidermis layer border. D) Top line of epidermis. E) Align the top curve by using slop of 

first point and last point in the object. F) Bottom object of epidermis layer. G) Align the bottom object by using 

slop of first point and last point in the object. H) Addition operation for top object and bottom to gather them as 

the epidermis layer 

6.2.2.2 Alignment of the Top and Bottom Curve Section of the Epidermis 

Layer 

Pre-processing to improve the quantitative analysis was required prior to the next step 

of hair follicle segmentation, in order to make the orientation of follicle comparable for 

all images. This is mainly aimed to realign the top and bottom curves obtained above 

to a normalised position, in order to enable effective comparisons of images in both 

BA C

D E

H

F

G
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types (wild type and mutant). It necessary to align all images and to develop a 

reasonable analytical result (Hughes et al., 2013; Zhang et al., 2013; Mustra, Grgic and 

Zovko-Cihlar, 2014). The procedure first identifies the first point and the last point for 

both the top and bottom curves (Figure 6.6). The pixel that has the minimum x-

coordinate value defines the first point in the top curve and the last point is represented 

by the pixel of the maximum x-coordinate value. A line is then drawn from the first 

point to the last point of the top curve. Following this, the slope of the curve was 

determined by using the first and last points for each curve, and then the angles were 

identified by the slope according to the x-axis. Finally, we rotate the image by angle 

value to align the image as displayed in Figure 6.5 (E, G). Similarly, we determine the 

first and last point of the bottom curve and rotated similarly. Subsequently, the 

alignment for the top curve and the bottom curve was added to the same image, i.e. the 

new image has two aligned curves, as shown in Figure 6.5H. Furthermore, the aligned 

image was transferred to a larger image matrix, to ensure that hair follicles located at 

the edge of the image were not lost. In addition, the top curve and the bottom curve 

together in the same image are represented by the epidermis layer in mice skin. The 

following block diagram shows the whole processes to align the epidermis layer in 

Figure 6.7.  

 
Figure 6.6 Identifying first point and last point in the curve  
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Figure 6.7 Block diagram for automatic aligning the epidermis layer 

6.2.2.3 Segmenting the Hair follicle 

At this stage, the hair follicle of the epidermis layer was segmented by using the 

proposed algorithm. After applying the alignment algorithm of the epidermis layer (top 

and bottom curve), which is associated with the hair follicle, the alignment image was 

used as the input for the next stage, which was to segment the hair follicle. The 

algorithm for segmenting the hair follicle begins with thickening the top curve of the 

epidermis layer. This step was required to investigate the thickness, which will be used 

to partition the hair follicle later. The following Pseudocode 6.1 is clarify the steps to 

segment the hair follicles. 

Pseudocode 6.1 Steps for segmenting hair follicle 

Conducting several experiments on the segment of the top curve to obtain an efficient 

division for hair follicle so that is does not affect the accuracy of segmentation of hair 

follicles. While we were testing the segmentation by visual effects, we found that 100 

pixels is an appropriate representation for thickening the curve whilst retaining the 

curved shape, and to divide the hair without affecting the accuracy of the follicles, as 

displayed in Figure 6.8(A, B). Afterwards, the disk 2 of morphological dilation and 

erosion was used to close unwanted pixels inside the object in the image, as shown in 

Identify first 

point and last 

point of top and 

bottom curves

Image 

segmentation with 

two curves top and 

bottom

 Slop found by 

two points first 

and last

First point 

found by 

minimum value 

of X

Lastt point 

found by 

maximum 

value of X

 Angle degree 

found by slop

 Slop found for 

bottom curve

 Slop found for 

top curve

 Angle degree 

found by slop 

for bottom 

curve

 Angle degree 

found by slop 

for top curve

Rotate curves 

by angles

Rotate bottom 

curve by 

bottom angle

Rotate top 

curve by top 

angle

Merge two 

curves in one 

image

Transfer two 

curves in larger 

image to cover all 

hair follices

	

Step 1:  Thicken the top curve by 100 pixels.  

 

Step 2:  Dilate and erode the top curve by 2 pixel with disk shape. 
 

Step 3:  Invert the output curve of step 2. 

 

Step 4: Multiply each pixel of the top curve ( step3) with each pixels in the bottom 

curve, then the hair follicles are segmented. 
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Figure 6.8B. The filtering process was used on the two images, first processing the 

image which has the top curve, as shown in Figure 6.8B, and then the second image 

which has the bottom curve that consists of the hair follicles, as displayed in Figure 

6.8C. Figure 6.8D shows the inversion of the pixels of the top curve to 0 and multiply 

each pixel with each pixels in the bottom curve, then the hair follicles were segmented. 

 
Figure 6.8 Automatic segmentation of hair follicle of H&E images. A) Top line of epidermis layer. B) 

Thicken the line by adding 100 pixels around it. B) Align bottom line of epidermis layer. D) Hair follicle 

segmentation 

6.2.3 Quantification of Hair Follicle Orientation 

Having segmented the hair follicle in the epidermis layer, we then implemented our 

orientation quantification algorithm on the hair follicle which was able to label each 

follicle, as shown in block diagram in (Figure 6.9) and (Figure 6.10). The block 

diagram in Figure 6.10, show this algorithm steps. 

 

Figure 6.9 Block diagram for quantifying the orientation of hair follicle 

This algorithm determines the first point and last point for each follicle (Figure 6.10), 

by identifying the coordinate points for the first pixel per labelled follicle,  represented 

by the minimum x-coordinate, and similarly the follicle’s last point is represented by 

the minimum y-coordinate. Note that the origin of the image in MATLAB is at the top 

left corner. Next, the middle point of the straight line joining the first and the last point 

is determined. We then determine the length of the follicle as the maximum Euclidean 

distance between all points in the follicle. This will be estimated as the distance 

between the middle point and the second point which represents the tip end of the 
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follicle. The second point is the furthest point on the follicle boundary from the line 

between first and last points, see Figure 6.10 as an illustration. Finally, the orientation 

of the hair follicle is determined by the angle that the line from the middle point to the 

second point makes with the x-axis which represent the alignment line of the 

epidermis. Accordingly, the slope of this line, represents the orientation of the hair 

follicle, see Figure 6.11. 

 
              Figure 6.10 Determining the middle point and second point for each hair follicle 

 

Middle point

Second point

First point

Last point
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Figure 6.11 Automatic quantity the orientation of hair follicle in epidermis layer of H&E images. A) Hair 

follicle segmentation. B) Determined the first point and last point for each hair follicle gland. C) Quantify the 

orientation of hair follicle to angles by using the slop for each hair follicle gland 

6.3 Experiment Results and Analysis 

We conducted two sets of experiments, the results of which are presented in this 

section. The first experiment is designed to compare the automatic hair follicle 

orientation measurements to those obtained manually, while the second experiments is 

designed to identify genes responsible for changes in the hair follicles orientation using 

H&E images of WT and Mutant type mouse skin tissue. Due to the difficulty of 

manually counting the hair follicles in all the experimental images, in these 

experiments a random sample of 100 images were selected by an expert to be used for 

ground truth comparison. To examine consistency among the measurements, 

throughout these experiments, we calculated R2, ARL, MAE and standard deviation of 

absolute error between the ground truth and the automatic measurements (σ) (Section 

3.4.2).   

6.3.1 Manual vs. Automatic Measurements 

Two comparisons of manual Vs. automatic hair follicle measurements were conducted. 

In the first one, we compare the accuracy of segmenting follicle from epidermis layer, 

while the second one deals with the angle of follicle orientation measurements. 

6.3.1.1 Manual vs. Automatic Method of Hair Follicle Segmentation 

To assess the accuracy of the hair follicle segmentation, between the automatic 

segmentation and the ground truth, we counted the number of segmented hair follicles 

C

BA
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in the test images for both automatic and manual segmentation. The mean (μ) of the 

number of hair follicle segmentation and the standard deviation (σ) across all testing 

images were calculated. The results are displayed in Table 6.1. From the table above it 

is clear that our automatic method is highly successful in segment hair follicles from 

epidermis layer. In Figure 6.12, there are two lines of bars, the red bars representing 

manual count of the follicles, and the blue bars are the automatic count. It is clear that 

two bars were close in parallel during 100 images that confirming good success. To 

examine consistency among the measurements, we calculated R2 (see Section 3.4.2), 

and it was 80%, shows the close correlation between the manual and the automatic in 

most cases. 

Table 6.1 Comparing mean and standard deviation of follicle counts automatic Vs. ground truth 

 

 

 

 

 

 

 

 
Figure 6.12 Manual and automatic comparison to hair follicle segmentation 

6.3.1.2 Manual vs. Automatic Method of Hair Follicle Orientation 

The proposed algorithm quantifies the orientation of the hair follicles in term of the 

angle it make with the angles. Each of the experimental images consists of more than 

one hair follicle, some images have two or three hair follicles. Therefore, in our 

algorithm, we use median value of the computed angles for all follicles in the input 

image. In this case, the median angle sets the orientation in the image as that of the 

middle value. For example, when we quantify three hair follicle orientations in an 

image by three angles, if an error occur in one angle value while the other two angles 

Measure 
Automatic Manual 

μ σ μ σ 

Hair follicle 

segmentation 

1.92 0.91 

 

2.18 1.05 
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were correct, then the middle value of the orientation of hair follicle is selected based 

on median (see Figure 6.13 (A, C)). 

 
Figure 6.13 Successful and unsuccessful follicle segmentation. A) Good segmentation. B) Bad segmentation. 

C) Dual segmentation, the middle follicle wasn't accurate but the other were accurate 

Furthermore, our experiments have shown that our algorithm results in choosing the 

accurate orientation value with a high probability as indicated by the values of R2 (see 

Figure 6.14), ARL, MAE and σ, see Table 6.2. 

A B

C
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Figure 6.14 Correlation of manual versus angles of hair follicles measurements 

 
Table 6.2 Manual versus automatic measure angles for hair follicles orientation 

 

 

 

However, after assessing the correlation between the manual and automatic 

measurements, we need to examine the closeness between them using the BA analysis 

(Section 3.4.2). 

 Table 6.3 shows the lower and upper LoA for all measurements. 

 Table 6.3 Manual versus automatic measures the angles of the hair follicles 

 

 

 

Figure 6.15 shows the BA analysis scatter plot for measuring hair follicles orientation, 

which is display closeness between automatic method and ground truth (see section 

3.4.2 for further details) by using 100 images randomly. Again, the results in Table 6.3 

confirm the conclusion of Table 6.2 and show that the hair follicle orientation was 

quantifying successfully, the reason behind that is LoA range for angles of the hair 

follicle orientation in the epidermis layer, which is start from -5.25 to 4.24 and most of 

the points located inside the LoA range, which indicated to the correct cases as shown 

in Figure 6.15. While some points located outside LoA range (Figure 6.15), which 

indicated as incorrect cases. 

 

 

 Measure  R2 ARL MAE σ 

Hair follicle orientation 83% 45.8° 0.018 0.18 

Measure 
Upper 

LoA 

Lower 

LoA 

Hair follicles orientation 4.98 -5.24 
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Figure 6.15 Bland Altman analysis for manual versus automatic for measuring hair follicles orientation 

6.3.2 Genes Identification 

In this section, we report the results of applying the hair follicle counting and 

orientation methods on the whole experiment dataset of 4000 H&E images. The goal is 

to identify the genetic basis of abnormalities in the orientation of the hair follicles i.e. 

what are the genes that may lead to increase or decrease in the orientation of angles? 

To do this, first needs to establish what is normal and what is not when it comes to hair 

follicles orientation in mice skin tissue. This is typically done based on the RR 

approach to identify the LB and UB of the nuclei counting obtained from WT animals 

(see Section 3.4.1 for further details). Subsequently, the process of identifying genes 

associated with abnormalities in orientation in the epidermis layer goes through the 

following two steps: 

 Step 1 

Hair follicles orientation of every mutant mouse were compared against the relevant 

LB and UB to establish whether the measurement falls within or outside the RR for 

WT images. The LB and UB of the RR, obtained from the orientation of follicles of 

WT (normal) cases, were shown to be (-25 to 34). 

Out of 4000 mutant mice images analysed, 3200 (80%) were found to be within the 

RR established for the WT measurements, and 800 mice (20%) of mutants fell outside 

the RR interval. However, it is important to highlight that not all samples that fall 

outside the RR are necessarily true hits. Arguably the above number includes many 

false cases due to two main reasons. Firstly, any incorrect follicles detection, may lead 

to incorrect measurement of angles. Secondly, even when the follicles of an image are 

	

Upper	LoA 

Lower	LoA 

Bias 
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correctly measured as abnormal, the total number of abnormal orientation angle cases 

for the associated specific gene remains less than the hit rate threshold (see Section 

3.4.1 for further details). Hence, our analysis requires an additional experiment step. 

 Step 2 

To filter out the false cases, we calculated the so-called hit ratio of each mutant line 

Out of the 800 outlier cases, only 80 cases were considered as true hits (i.e. hit ratio > 

60%) as shown in Table 6.4 where the “-” mark is used to indicate that the ratio is 

below 60%, we did same steps of Chapter 5 Section 5 to identify interesting genes. 

Table 6.4 Possible gene hits. In hair follicles in the epidermis layer 

The table above shows a list of 7 genes that could be potentially responsible for 

abnormalities in the orientation of hair follicles in the epidermis layer, 6 genes show 

increased orientation and 1 gene show decreased orientation in the epidermis. To some 

extent, this confirms the effectiveness of our developed method in identifying the list 

of genes responsible for changes in the orientation in the epidermis layer. Figure. 6.16 

shows an example of these interesting genotypes, particularly Traf3ip3/Traf3ip3, 

which yields increased orientation angles while Lix1l/+ is associated with a decreased 

orientation angles of hair follicles. 

Name of allele 
Orientation of the hair follicles 

Phenotype Hit Ratio 

1300010M03Rik/1300010M03Rik >UB 86% 

Traf3ip3/Traf3ip3 >UB 71% 

Aldh18a1/+ >UB 100% 

Adam3/Adam3 >UB 86% 

Tmem98/+ Normal - 

Lrrc67/Lrrc67 Normal - 

Secisbp2(c)/Secisbp2(c) >UB 71% 

Actr6/+ >UB 71% 

Kcnv2/Kcnv2 >UB - 

Inpp1(b)/Inpp1(b) 

 

>UB 100% 

Lix1l/+ 

 

<LB 86% 
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Figure 6.16 Images of genotypes with that influence of changes in orientation of hair follicle compared to 

wild type from development data set (4000 images at 20X) magnification) 

Experimental results on a large set of H&E images of 500 WT and 4000 mutant mice 

have demonstrated the effectiveness of the proposed solution in separating images of 

abnormal orientation of the hair follicles from those of normal ones.  

Analysing the results led to identifying 7 genes associated with abnormality in 

orientation of hair follicle, whereby (Aldh18a1, 1300010M03Rik, Adam3, 

Secisbp2(c), Actr6 and Inpp1(b)) are related with increased orientation and only one 

gene (Lix1l) related with decreased orientation. These results were positively 

confirmed by domain experts. 

6.4 Discussion and Conclusion  

Hair follicles play an important role in the histological changes in mouse skin tissues 

that can be observed in their microscopic images. The disorder in the follicle is caused 

by several cases, including mutation phenotype and health conditions such as 

inflammation of the follicle. In this chapter, we investigated and developed automatic 

methods to segment and quantify the orientation of hair follicles in epidermis layer. 

Testing the reliability and effectiveness of the developed schemes with a sufficiently 

large dataset of H&E microscopic skin images of WT and Mutant type mice, has 

demonstrated a remarkable success.  

	

Traf3ip3/Traf3ip

3 

	

Lix1l/+ 

	

+/+ 
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Having identified the technical challenges associated with the task computing hair 

follicles orientation, our systematic approach helped dealing with these challenges and 

led to several contributions: 

1. Highly successful segmentation of the outer sublayer of the epidermis layer that 

include the hair follicle glands from which the follicle glands are easy to isolate.  

2. Defined a simple procedure to align the segmented sublayer of the epidemies in 

normalise manner that could be applied to any image and facilitate an effective 

uniform definition of follicle orientation. 

3. Designed a procedure for evaluate the orientation of each segmented follicle and 

output a single orientation value representing all follicles in skin section image.   

Our experimental work with a random sample of 100 images, demonstrated an 

excellent correlation between our automatic schemes and the ground truth determined 

manually by domain expert. The success and effectiveness of the developed algorithm 

was further manifested by the experiments that were designed to identify the genetic 

phenotype of skin abnormalities where 7 genes were identified, in terms of the  

changes of follicle orientation, and confirmed by domain experts.  
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Chapter 7 : Automatic Quantification of Epidermis 

Curvature in H&E Stained Microscopic Skin Image of 

Mice 

The skin can reveal evidence of inflammation, hyperplasia, connective tissue disorders 

and underlying metabolic changes resulting from local and systemic influences. In the 

last two chapters, we investigated and developed effective algorithms for nuclei 

segmentation and counting and determining hair follicle orientation, and demonstrated 

the effectiveness for identifying genes that may cause some of the skin abnormalities.  

In this chapter, we conclude our investigations by developing automatic quantification 

of changes to another important skin structure parameter for the same end points of the 

last two chapters. Changes in the epidermis layer curvature is known to be associated 

with many skin disorders, such as ichthyoses and generic effects of ageing (S.C., 

2002). Hence, the focused contributions of this chapter are: 

• Quantify the curvature in the epidermis layer, and also 

• Assess changes in the curvature to identify interesting gene. 

Naturally, our methods starts by using the epidermis layer segmentation algorithm 

developed in chapter 4, and the method used in last chapter to segment and align the 

two bounding curves of the outer epidermis sub-layer. The epidermis curvature-based 

parameter will be quantified the amount of deviation of the bottom curve length from 

the length of alignment line, using the sum of distances between the curve’s points and 

the alignment line. 

The rest of this chapter is organised as follows: In Section 7.1, the problem statement 

of this chapter is described. Section 7.2 presents our proposed automatic method. 

Section 7.3 reports and analyses the results of experimental work to identify the genes 

associated with curvature changes in the epidermis layer in mice skin images. Section 

7.4 discusses a source of errors in the proposed solution with analysis of the genetic 

experimental results. Finally, conclusions from these investigations are summarized in 

Section 7.5. 

7.1 Problem Statement 

Several studies showed that the curvature of rete ridges can be varied in ageing or 

obesity (Honda et al., 2007). Other studies found that several skin disorders are 

associated with changes in epidermal junction characterization, such as psoriasis 

(Kurugol et al., 2011). Quantifying the disorder in the epidermis layer refer to the 
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accurate changes in curvature in this layer from an H&E image of a mouse. Automatic 

curvature quantification is concerned with effective computer based solutions to 

accurately measure the change in the epidermis curve. Manual measuring of the 

epidermis curvature is time consuming, prone to errors, and a tedious process. This is 

because the outer boundary of the epidermis is quite complex in that it is non-smooth 

even at tiny scales. Besides the high throughput nature of the task due to the huge 

number of H&E images that are regularly generated from the problem domain (i.e. 

MGP). Furthermore, staining often causes difficulties in exact epidermis location, 

resulting in error segmentation of the region of interest by inexperienced observer. 

Figure 7.1 shows an example of staining issue in epidermis layer which displays the 

changes in locations of epidermis. In our proposed method to overcome this issue by 

introduced automatic method to give a deterministic and consistent result. 

 
Figure 7.1 Manual measuring of epidermis curvature to different images 

Automatic quantification of epidermis curvature in mouse images faces the following 

challenges:  

1. The stained tissues in many images of our dataset suffer from loss of parts of 

certain layers such as epidermis layer, which cause overlap with the 

neighbouring layer (i.e. the dermis) as shown in Figure 7.2. 
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Figure 7.2 Damage in epidermis layer 

2- The epidermis layer consists of two sub-layers, the cornified and basal (more 

details in Chapter 4). The relatively low resolution of image dataset (of 20X 

magnification) causes difficulties in distinguishing the Cornified sub-layer, 

which leads to overlap between the cornified and the epidermis, i.e. subtle 

differences between intensity values of nearby pixels. In Figure 7.3, displays the 

overlap between cornified and epidermis. 

 
Figure 7.3 H&E image with overlap between basal and cornified layers. Epidermis layer touching the 

edge image 

3- The proximity of the curvy shape of the epidermis layer in most our dataset 

images, being too close to the top edge of the images, confuses the segmentation 

process.  This problem is illustrated too in Figure 7.3. 

7.2 The proposed Method 

In this section we shall describe our proposed method for automatically computing the 

curvature along the epidermis layer as a significant factor for identifying genes 

associated with changes in  curvature values.  Before presenting the algorithm, we 

need to point out that the term “curvature” used here is loosely related to the 

mathematical concept of curvature determined with the second derivative of the 

EpidermisBasalCornified
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function that fits the curved shape that modelling the points of the epidermis.  

Unfortunately, determining the best curve fit of the epidermis is a very challenging 

task due to the very large number of such points besides many other technical 

challenges relating to variation in alignments of different sections and influence of 

image magnification.  Hence, we shall quantify the epidermis curvature in terms of the 

way it winds and curves around a straight line that tightly connects the epidermis (i.e. 

around its skeleton). This approach was developed to reflect the way life scientists 

measure this parameter.  

The proposed algorithm works in three key stages described below as shown in 

Pseudocode 7.1, the first two steps describe the computation of the curvature while the 

last step is concerned with quantifying the change in epidermis curvature between two 

samples. For the sake of clarity we illustrate the algorithm by the example in Figure 

7.4.  

Pseudocode 7.2 Steps for epidermis curvature quantification 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

	

1. Segment the epidermis layer by the procedure described in Chapter 4, and segment its 

outer band bounded by the upper and lower curves described in chapter 6. 

2. Quantify the curvature of the epidermis layer by measuring the difference between 

the epidermis outer band and a straight line (an artificial reference line) connecting 

the two far sides of the epidermis outer band.  

3. Use the output curvature measurements extracted from the images in the large dataset 

of H&H skin images of mutant mice to identify a list of genes responsible for 

changes in the epidermis curvature. (The range of computed curvature over all 

images is expected to distinguish the curves in the wild type from the mutant types) 
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Figure 7.4 Epidermis Curvature quantification algorithm for identification of genes causing significant 

changes 

We shall now, give details of the way the 2nd step of our algorithm to quantify the 

curvature of a segmented epidermis by measuring the difference between the epidermis 

curve and a straight line (an artificial reference line) connecting the two far sides of the 

epidermis edge. 

Curvature computing Algorithm  

Input -the border band of the epidermis. 

Step1. Select the bottom border of the epidermis mask (cornified sub-layer) - Figure 

(7.5C) 

Step2. Connect the far two sides using a theoretical reference line (the red line in 

Figure (7.5D), and determine its equation in the form:  

                 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0                                        ( eq7.1) 

Step3. Starting from the initial point of the selected border curve, calculate the array of 

distances between the points (u,v) on the curve and the reference straight line using the 

formula: 

D(u,v) = 
|𝐴𝑢+𝐵𝑣+𝐶|

√𝐴2+𝐵2
                                      (eq7.2) 

For details see (Libby, 2017). 

To reduce the effect of noise, if D(u,v) is less than a chosen threshold then set it to 

0.01 

Automatic layers 

segmentation and sub-

segmentation 

Chapter 4

Automatic curvature 

quantification 

7.2

Identifying interesting 

genes

7.3.2

Analysis of the genetic 

experiment results

7.4.1
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Step4. Calculate and output the mean of the D array as the epidermis curvature. 

 
Figure 7.5 Representative images for each step of the automated image analysis method to find the 

curvature in the epidermis layer. A) Epidermis layer segmentation and sub-segmentation (cornified layer). B) 

Border for the cornified layer. C) Bottom line segmentation. D) Theoretical red line on bottom curvature 

7.3 Experiment Results and Analysis 

Two sets of experimental results are presented in this section. The first set is aimed to 

compare the automatic measurements with manual. While the second set of 

experiments is devoted to the identification of genes responsible for changes in 

curvature. 

7.3.1 Manual vs. Automatic curvature quantifications 

A random samples of 100 images has been selected by domain expert to be used as a 

ground truth due to the difficulty of measuring the curvature manually for the entire 

large dataset of H&H mouse skin images. To assess the accuracy of measuring the 

epidermis curvature, the distance between the automatically measured and the ground 

truth points was calculated in micrometer (mm). The scale for the conversion from 

pixel to micrometer for the mouse 20X image adopted in this research is 0.5 mm for 

every pixel (Mann et al., 2005).  

As explained above, we quantify the curvature of the epidermis layer by measuring the 

distance between each points and reference line, which is connected between the first 

and the last point in the epidermis edge mask. In the manual measuring, the distances 

between all peaks and the reference line in the epidermis layer. In both cases, the 

averages of the corresponding distances are used as the curvature measure. 

To evaluate the proposed curvature method of the epidermis layer versus the manual 

measurements taken by a domain expert. In the evaluation, we check the correlation 

between the manual and automatic measurements using R2 and ARL (see Chapter 3 for 

further details).  Figures 7.6 shows the scatter plot for the manual versus automatic 

B C

Original H&E image

A

Epidermis layer

Basal layer

Cornified layer

D
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measurements for curvature based on distance in the epidermis. The values and figure 

of ARL and R2 show the close correlation between the manual and the automatic in 

most cases. 

 
 Figure 7.6 Correlation of manual versus automatic measurement 

Furthermore, Table 7.1 reports the comparison results based on two parameters, 

namely R2, ARL between the ground truth and the automatic measurements  (see 

Chapter 3 for further details). Again these results show that the proposed method is 

successful to quantify the curvature in epidermis layer.  

Table 7.1 Manual versus automatic curvature measuring in the epidermis layers 

However, after assessing the correlation between the manual and automatic 

measurements, we need to examine the closeness between them using the BA analysis 

(see Chapter 3). Table 7.2 shows the lower and upper LoA for all proposed 

measurements. 

Table 7.2 Manual versus automatic for curvature measuring epidermis layers 

 

 

 

 

  Measure R2 ARL 

Curvature measuring in the epidermis 0.91 52.13° 

   Measure 
Upper 

LoA 

Lower 

LoA 

Curvature measuring in the epidermis 0.087 -0.061 
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Figure 7.7 shows the BA analysis scatter plot for measuring the curvature in epidermis 

layer, which is display closeness between automatic method and ground truth (see 

section 3.4.2 for further details) by using 100 images randomly. 

Again, the results in Table 7.2 confirm the conclusion of Table 7.1 and show that the 

curvature of epidermis layer was quantifying successfully, the reason behind that is 

LoA range for the mean of the distances of the epidermis layer, where the range is (-

0.061 to 0.087) and most of the points located inside the LoA range, which indicated to 

the correct cases as shown in Figure 7.7. While some points located outside LoA range 

(Figure 7.7), which indicated as incorrect cases. 

 

Figure 7.7 Bland Altman analysis for manual versus automatic for curvature measuring in the epidermis 

layer 

7.3.2 Genes Identification 

In this section, we report the results of applying the proposed method on the whole 

dataset of 5700 H&E images. The ultimate goal of the experiment is to identify the 

genetic basis of abnormalities in the epidermis curvature i.e. what genes may cause an 

increase or decrease in the value of curvature of the epidermis? We used the RR 

approach to identify the LB and UB of the curvature measurements obtained from WT 

animals (see Section 3.4.1 for further details).   

After that, the process of identifying the genes associated with abnormalities in 

epidermis curvature follows the two stages below. 

 

Upper LoA 

Bias 

Lower LoA 
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Stage 1 

Curvatures of every mutant mouse were compared against the relevant LB and UB to 

establish whether the measurement falls within or outside the RR. Similar to WT 

images. The LB and UB of the RR (0.60 to 1.26), which obtained from the curvature 

of WT (normal) cases. However, it is important to highlight that not all samples that 

fall outside the RR are necessarily true hits. Arguably the above number includes many 

false cases due to two main reasons. First is related to any incorrect layer 

segmentation, which leads to incorrect measurement of curvature. Second reason is 

that although the case is correctly measured as abnormal but this case might belong to 

aspecific gene where the total number of cases of abnormal curvature for it is less than 

the hit rate threshold (see Chapter 3 for further details). 

 Stage 2 

To filter out the false cases, we calculated the so-called hit ratio of each mutant line 

(see Chapter 3 for details). Out of the 780 outlier cases, only 90 cases were considered 

as true hits (i.e. hit ratio > 60%) as shown in Table 7.3. Here the “-” mark is used to 

indicate that the ratio < 60%. 
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      Table 7.3 Possible interesting genes 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table above shows a list of 18 genes that could be potentially responsible for 

abnormalities in the curvature in the epidermis layer, 10 genes show increased (>UB) 

curvatures and 8 genes show decreased (<LB) curvature in the epidermis. To some 

extent, this confirms the effectiveness of our developed method in identifying the list 

Name of allele 
Curvature in the epidermis layer 

Phenotype Hit Ratio 

Abcd1/Abcd1   >UB 75% 

Slc44a5/Slc44a5 >UB 100% 

 Mgst3(b)/Mgst3(b) >UB 100 % 

Tmem98/+ >UB 100% 

1190002H23Rik/1190002H23Rik   >UB 100% 

Plekhg1/Plekhg1  >UB 100 % 

Amotl1/Amotl1  >UB 95% 

1500011B03Rik/1500011B03Rik  Normal  - 

Gpc6/Gpc6   >UB 100% 

Pld5/Pld5 Normal - 

Clk1/Clk1 >UB 95% 

Fam96a/Fam96a  Normal  - 

 Usp4/Usp4 Normal - 

 Tm9sf4/Tm9sf4 >UB  100% 

 Coq9/Coq9  <LB 80% 

Pik3cb/+ <LB 90% 

Pfn1/+ <LB 77% 

2010107G12Rik/2010107G12Rik Normal - 

Psat1/+ Normal - 

Blzf1/Blzf1 Normal - 

Secisbp2/+ <LB 92% 

Orc3/+ <LB 89% 

Pfn1/+ <LB 87% 

Mapk10/Mapk10 <LB 81% 

Anp32e/Anp32e <LB 78% 

Farsa/+ Normal - 
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of genes responsible for changes in the epidermis curvature. Figure 7.8 shows an 

example of these interesting genotypes, particularly Slc44a5/Slc44a5, which results in 

increased curvature and Secisbp2/+ that is associated with a decreased curvature. 

 
Figure 7.8 Automatic estimation of interesting genes for curvature in epidermis layer 

7.4 Discussion   

We developed an automated epidermis “curvature” quantification algorithm that 

exploits the results of segmentation of the epidermis layer and its border (edge) 

component, developed in the previous chapters, and computes the epidermis curvature 

as the mean of distances between the points of the lower bounding curve of the edge 

and a reference line joining the two ends of the epidermis edge. This algorithm avoids 

the complex mathematical computation of the curvature of a curve along its entire 

length while reflecting the way life scientists determine the curvature manually. 

Experimental work to compare the computed curvatures for a sample of 100 H&E 

images of mouse skin, and the ground truth as determined manually by domain expert, 

have demonstrated the validity of our interpretation of the curvature concept and as an 

effective replacement for the error-prone tedious manual approach.  
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This method was then applied to H&E images from the WTSI MGP to enable 

investigation of the effect of different genes or environmental factors such as diet, on 

the morphology of the epidermis, in a high-throughput screening experiments.  

As it is not feasible to manually check the segmentation accuracy of 5,714 images, we 

took random samples of 500 images. By close manual examination, we found that 16 

images out of the 500 images were not segmented successfully, as shown in Figure 7.9 

the segmentation algorithm therefore achieved an accuracy about 96.8%. Due to the 

overlap between layers and sub-layers, such as epidermis and cornified, there was 

incorrect segmentation in the cornified sub-layer as illustrate in Figure 7.9. 

 
Figure 7.9 Segmentation accuracy. A) H&E image. B) Incorrect segmentation 

The border segmentation of sub-layer was another challenge need to be solved, as we 

mentioned in Section 7.2, the ROI is touching or too close from the top edge of image. 

This causes split the top curve of cornified layer into many curves which is incorrect 

segmentation (Figure 7.10), to address that, we select the bottom segmented curve to 

be quantifying based on the distance and reference line. 

 
Figure 7.10 Incorrect border segmentation of cornified layer (sub-layer of epidermis) 

7.4.1 Analysis of the Genetic Experimental Results  

Having conducted all the genetic investigations to determine the interesting genes that 

cause changes to the 3 skin layers feature parameter, in this section we shall compare 

the results of the various experiments.  

Recall that in each of the experiments conducted for the 3 parameters, we used RR to 

decide presence/absence of abnormalities associated with each gene. This was 

determined by identifying the confidence interval, where outside the interval indicate 

presence of abnormality (White et al., 2013). 
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In order to make the comparison easy, we shall display all our data distributions and 

charts obtained for the various experiments, i.e. analysis nuclei numbers in epidermis 

and dermis layer, hair follicles orientation and changes in epidermis curvature 

measurements. 

 
Figure 7.11 Normal distribution of nuclei in epidermis layer for wild and mutant populations with RR 

bound, wild type on the left side and mutant on the right side 

Figure 7.11 was showed the data distribution for the nuclei counting in the epidermis 

layer into two types, wild (WT) and mutant. Lower Bound (LB) and the Upper Bound 

(UB) of the RR are determined based on wild type (58 to 210), which are pointed as 

two vertical red lines in Figure 7.11. Then the interesting genes has determined based 

on LB and UB in the mutant type as shown in the right side in Figure 7.11 (see 

Chapter 5 Section 5 for more details). 

 
Figure 7.12 Normal distribution of nuclei in dermis layer for wild and mutant populations with RR 

bound, wild type on the left side and mutant on the right side 

Figure 7.12 was showed the data distribution for the nuclei counting in the dermis 

layer into two types, wild (WT) and mutant. Lower Bound (LB) and the Upper Bound 
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(UB) of the RR are determined based on wild type (74 to 220), which are pointed as 

two vertical red lines in Figure 7.12. Then the interesting genes has determined based 

on LB and UB in the mutant type as shown in the right side in Figure 7.12 (see 

Chapter 5 Section 5 for more details). 

 
Figure 7.13 Normal distribution of median angles of the hair follicles for wild and mutant populations with 

RR bound, wild type on the left side and mutant on the right side 

Figure 7.13 was showed the data distribution for the hair follicles angles in the 

epidermis layer into two types, wild (WT) and mutant. Lower Bound (LB) and the 

Upper Bound (UB) of the RR are determined based on wild type (-25 to 34), which are 

pointed as two vertical red lines in Figure 7.13. Then the interesting genes has 

determined based on LB and UB in the mutant type as shown in the right side in 

Figure 7.13 (see Chapter 6 Section 5 for more details). 

 
Figure 7.14 Normal distribution of the distances in the epidermis layer for wild and mutant populations 

with RR bound, wild type on the left side and mutant on the right side 

Figure 7.14 was showed the data distribution for the distances of the epidermis 

curvature into two types, wild (WT) and mutant. Lower Bound (LB) and the Upper 
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Bound (UB) of the RR are determined based on wild type (0.6 to 1.2), which are 

pointed as two vertical red lines in Figure 7.14. Then the interesting genes has 

determined based on LB and UB in the mutant type as shown in the right side in 

Figure 7.14 (see Chapter 7 Section 4 for more details). 

Considering the data distributions in the above Figures, we note that the best analysis 

to identify interesting genes was obtained with the analysis of nuclei counts in the 

dermis layer. This could be partially attributed to the fact that the dermis layer is rare 

to lose by damage sample even other layers are damaged in the same image (Figure 

7.15). Compared to the epidermis parameters, this means we had more correctly 

segmented images to be analysed. Epidermis layer more likely to damage which lead 

to deficits samples for correct analysis in relation to hair follicle & curvature 

parameters (see Figures 7.16 and 7.17). In fact, we found that hair follicles are not 

available in all images due to damaged epidermis, or it doesn't exist i.e. deficits of 

samples. 

Moreover the list of interesting genes discovered in the dermis layer (see Chapter 5 

Section5) include a possible novel gene called ‘Traf3ip3/Traf3ip3’, which when 

knockout there would be increase in nuclei causing the tumour of melanoma cells 

(Nasarre et al., 2018). 

 

Figure 7.15 Correct samples of the dermis layer while damage in fat cells layer 
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Figure 7.16 Samples without hair follicles 

 
Figure 7.17 Damage in the epidermis layer 
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7.5 Conclusion 

Biological image processing and analysis provide techniques that help scientists to 

evaluate the effects of physiological changes in a research context. These techniques 

may also be used to evaluate the effect of the treatments and drug efficiency in the 

context of the drug discovery. All of these analysis techniques could also be applicable 

clinically. In all applications, novel combinations of image processing/analysis 

techniques and pipelines will save time and are expected to produce more accurate 

results that will ultimately help or improve the speed and quality of dermatology and 

cosmetic treatments. This chapter described a successful method for quantifying the 

curvature of the epidermis to help identifying genes responsible for changes in the 

curvature and it was a successful method. Experiments on a large set of microscopic 

images of mutant and WT mice demonstrated the effectiveness of the proposal.
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Chapter 8 : Conclusions and Future work 

The specific aims and objectives for this thesis research project arose in the context of 

collaborative discussions between the then Buckingham Applied Computing 

department, the Buckingham Institute of Translation Medicine and researchers at the 

Sanger Institute, Cambridge, on automating certain image processing/analysis high 

throughput tasks conducted at the Sanger institute within their Mouse Genetics Project 

(MGP). The MGP is a large-scale mutant mice production and phenotyping initiative 

designed to integrate established knowledge of the mouse genome and of disease 

models.  

Our specific area of research was targeting skin disease related phenotyping tasks, by 

analyzing their large dataset of H&E skin tissue microscopic images. Accordingly, our 

initial research work was focused and acquiring a working knowledge of the main 

features/objects in the H&E mouse skin tissue images, the parameters of which are to 

be investigated computationally for their causal effects on skin diseases. Mammalian 

skin tissue  a complex structure of multiple layers containing different types of cells 

and objects that are visibly distinguishable under the microscope using well-known 

staining procedures. Dermatology specialists have long associated many diseases with 

deterioration of certain feature parameters associated with certain objects/cells visible 

in different skin tissue layers. The main focus of our research, was concerned with 

quantifying changes to the number of nuclei in the dermis and epidermis layers, the 

orientation of hair follicles, curvature of the outer border of the epidermis. 

Accordingly, the research work conducted through my PhD program was devoted to 

investigate, design, and develop reliably effective automatic image processing/analysis 

algorithms to quantify the above mentioned features/objects extracted from images of 

mouse skin tissue within their known layers. Furthermore, machine learning based 

experiments were conducted to identify the genetic causes of changes to these 

parameters in relation to skin diseases.  

Automating the initial tasks of detecting the nuclei cells and the hair follicles presented 

the first challenge of preprocessing the images by segmenting the different skin layers 

and their sub-layers. Conventional threshold based and standard color based clustering 

proved to be of limited use in microscopic images due to a number of factors including 

potential staining errors resulting in overlaps, smugness, and/or missing parts. 

Inadequate fixed image magnification makes some of these tasks more complex to 

automate. Such a challenge necessitates the search for segmentation techniques that 
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tolerate fussiness of separating borders of different layers/sub-layers. However, 

proving the effectiveness of any proposed scheme, in these tasks or the subsequent 

ones, rely greatly on knowing the ground truth on a sufficiently large and diverse set of 

H&E skin microscopic images. Overcoming such difficulties can only be overcome in 

close consultation with domain experts, i.e. adopting a multi-disciplinary research 

approach. 

Once, the various skin layers are reliably segmented, i.e. the regions of interest are 

determined, biologically established knowledge of shapes and other characterizing 

factors become essential, but again overlapping of detected objects presented a non-

obvious challenge that had to be dealt with appropriately. Moreover, interpreting and 

mimicking the way the trained life-science researchers or technicians determine the 

overlap of nuclei, the orientation of hair follicles, or epidermis curvature present added 

challenges. The fussy nature of the way the human make relevant decisions in these 

cases is only one aspect of the challenge. A more specific aspect of this type of 

challenges is how to appropriately model a computable mathematical function to 

quantify concepts like shape of a nuclei-like object or a hair follicle, or the curvature of 

the complex epidermis layer?  In this respect, our developed schemes need to be able 

to take into effect staining errors on overlapping as well as the effect of unavoidable 

rapture of the epidermis, in different places, on curvature quantification as well as hair 

follicle orientation.  

We developed appropriate computation schemes that deal with all the above 

challenges, and demonstrated their effectiveness by experiments on sufficiently large 

set of the images to show high accuracy agreement with the ground truth established 

manually by an expert life science research scientist. Using each of the developed 

schemes with over 5000 MGP generated H&E skin mouse images, at the Sanger 

Institute, and appropriate classification algorithms resulted in identifying genes that 

cause the relevant skin abnormalities. Thereby, the work carried achieved the main 

originally set objectives with high accuracy. 

In short, this thesis  demonstrated the utility of combining computational non-machine 

learning methods and unsupervised machine learning of image processing techniques. 

And the use of the automated high-throughput image analysis tools that are designed 

primarily to detect, segment and quantify various components of skin images.  Then 

extracting the interesting changes in the skin object such as change in the nuclei 

numbers, hair follicle orientation and morphological feature to the nuclei in the skin. 
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8.2. Novel Contributions 

In this section we shall first give details of the main novel schemes developed in each 

of the chapters beyond the introduction and background chapters. We then highlight 

the significance of the work conducted in thesis.  

8.2.1 Image Preprocessing Tasks 

Chapter 4 focused on extracting/segmenting the skin layers that are epidermis, dermis 

and subcutaneous layer. Our results led to a successful design of techniques that 

combine fuzzy c-mean cluster and color deconvolution, to segment the three main 

layer of mice skin and sub segment the epidermis layer in two layers basal and 

cornified. This automatic method, exploits the number of peaks in the histogram of the 

red channel of H&E skin images to determine appropriate mathematical morphology 

operations for accurate segmentation. The level of success was established 

experimentally by comparing the automatic segmentation with the ground truth (as 

determined by a domain expert researcher) on a sample of 100 set of the H&E skin 

images. 

8.2.2 Quantification of skin objects/features for phenotype detection   

Chapters 5, 6 and 7, reports the results of the investigations conducted for the 

development of a high-throughput automated image analysis system to detect 

interesting skin disease related cutaneous phenotypes in gene-knockout mice provided 

by WTSI.  

In Chapter 5, nuclei in the epidermis layer and the dermis layer were segmented with 

high accuracy, when compared with the ground truth. Fuzzy clustering with 

mathematical morphology operations have shown to overcome the staining-related 

challenges faced by conventional methods. The overlap nuclei in the epidermis layer 

was separated as well. Using watershed transform with distance function was sufficient 

to deal with the problem of overlapped epidermis nuclei and apply adequate 

separation. Improved nuclei segmentation in the dermis layer benefit from using 

biologically established facts. The novelty in this improvement, is the using two filters 

to identify candidate overlap nuclei before separating them. The first filter base on the 

mean of two features, the circularity and aspect ratio, and the second filter  been used 

the output image of the first filter, and then the mean of three features (circularity, 

major axis and perimeter) was used to extract the final candidate overlap nuclei. 

In Chapter 6, was dedicated to the development of automatic methods for segmenting 

hair follicles in the epidermis layer, aligning the epidermis layer, and quantifying the 
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orientation of the hair follicles against the aligned epidermis in relation to certain skin 

abnormalities. Orientation of a hair follicle, turned out to depend on the shape of the 

follicle which in turn depend on the accuracy of its segmentation.  The shape of an 

accurately segmented follicle can be approximated by an elongated pocket where the 

two furthest away point can be used to determine its orientation. Problems with 

segmentation of the epidermis, damage to the epidermis were overcome by using the 

median of the orientation of the segmented follicles was used to determine the overall 

regional tissue follicles orientation.  

In Chapter 7, the initial challenge was the need for a mathematical model for the 

curvature of the epidermis layer to reflect the way the human expert interpret curvature 

of a tissue of such complexity. Naturally, the way a tissue is curled locally around 

itself throughout the entire tissue is an indicator of the curvature value.  Realizing that 

the actual area of a surface compared to the area of a plane that cuts through the 

surface can indirectly represent the curvature. Thus, we selected a reference line 

between the first point and end point in the top curve of the epidermis mask. Then 

quantification  applied by measure the distance between each point in the curve and the 

reference line by the well-known mathematical equation representing the distance 

between a line and a point. Again the comparison with the ground truth as measured by 

the domain expert demonstrated that this model is reasonably reflective of the manual 

practice. This was confirmed by the experiments that used changes in the curvature in 

knockout gene tissue image to identify genes that could cause skin abnormalities.  

8.2.3 The Significance of this Work 

This approach is naturally applicable to the evaluation of the effect of treatments and 

drug efficiency in the context of the drug discovery. Such analytical techniques could 

also be integrated into clinical systems diagnosis and treatment assessments. In all 

applications, novel combinations of image processing/analysis techniques and 

pipelines will save time and are expected to produce more accurate results that will 

ultimately help or improve the speed and quality of dermatology and cosmetic 

treatments. 

The high-throughput analysis application of our developed techniques is particularly 

evident in all chapters. However all the techniques can be utilized in this manner 

because of their automated and adaptive nature. The results from using the image 

analysis and quantification techniques have proved that these methods are reliable and 
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accurate. Moreover, the techniques are easy to use and utilize for this type of 

translational research. 

8.3 Applicability to the Human Images and other Mouse Data 

All the works described in this thesis was designated to segment and annotate different 

region in the H&E images of the mouse skin, and extract some useful information 

from them. The direct and indirect benefits of the work achieved by the thesis as well 

as the impacts of our work can be summarized as follows: 

1. Helping the identification of novel genes related to specific diseases such as skin 

cancer or other abnormalities. Even any defined gene is obtained from 

manipulation of the mouse dataset, should be highly relevant to the human skin 

diseases because of the significant similarity between the human and the mouse 

genetic backgrounds. 

2. Providing Life Science researchers with consistent and accurate software tools to 

segment, annotate and quantify parameters of different mouse’s skin 

regions/objects. 

3. Our layer segmentation solutions can be applied on the human H&E images for 

assisting researchers in accurate diagnoses, as we applied on the human image as 

shown result in Figure 8.1.  

To provide some evidence for this claim, we investigated the initial applicability 

of two of the proposed methods in this thesis to the microscopic human images 

after some adjustments. Results of applying the layer segmentation method on 

H&E image of humans can be seen in Figure 8.1. Our layer segmentation methods 

seem to provide good solutions for human H&E images especially when the skin 

layers are very difficult to be identified. Furthermore, the main steps of the 

proposed nuclei segmentation method were applied on the human H&E image 

with skin cancer and the result is shown in Figure 8.2. The result indicates that the 

nuclei segmentation method is indeed applicable to a human H&E image. With 

some adjustment, the nuclei can not only be detected and counted, but also 

segment the tumor (group of nuclei). We note that due to unavailable access to a 

sufficiently number of human H&E images, only one image is used in this case as 

a proof of concept. 

4. Besides applicability of the corresponding parts on human medical images and 

different animal datasets, the algorithms and ideas developed here can be 

generalised to solve other problems in different microscopic imaging such as PAS 
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staining. 

 

Figure 8.1 Human layer segmentation. A) Input image. B) Layers masks. C) Layers segmentation 

 

 

 

 

A 
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     Figure 8.2 Nuclei segmentation (Tumour) from human H&E skin with cancer image 

8.4 Future work 

One future objectives include making the developed methods adaptive to different 

datasets. For example we shall attempt to develop appropriate image transformations 

that could be applied all the image dataset the same color distribution using color 

normalization (Reinhard et al., 2001). This technique  been used in the 

histopathological study to map the color distribution of bad stained images, e.g. over 

stained or under stained onto an image that exhibit characteristics of a well stained 

image (Magee et al., 2009). 

We would also like to contribute a method for automatic identifying the damage in 

skin layer (Schmitz et al., 2018), such as damage in the dermis layer and damage in fat 

cells in subcutaneous layer as shown in Figure 8.3. The first step start with layer 

segmentation to separate the main skin layers as individual layer, which l have done in 

the chapter 4 by using a fusion method of layer segmentation.  Next step need to use 

one of the texture classification methods based on texture feature. Then the texture will 

classify by using random forest method (Aygün, Yalç\in and Güne\cs, 2017). The 

method should be identify an image, which  the damage layer, and ignore the image, 

because the image wasn’t comparable with other undamaged images. 

A B C 
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Figure 8.3 Example of layer damage. A) Damage in dermis layer. B) Damage in epidermis layer 

In a future work, l would like to apply deep learning method on my development 

dataset to segment and quantify the nuclei in the epidermis and dermis layer. And l 

would like to compare the accuracy and time consume between the unsupervised 

techniques which I have already developed in chapter 4 and supervised method which 

it is deep learning method, and evaluate the best method of them based on results 

(Caicedo et al., 2018)(Wollmann et al., 2018). 

As a future work for this research we would like to facilitate the use of various 

combination analysis tools to be used as a biological tool to assess the skin integrity. 

The graphical user interfaces (GUI) is important for the biologist to have a simple 

effort by following the GUI instruction, to get the analysis result quickly and gain an 

accurate result of analysis without bias that could affect the diagnosis. This can be 

used in the future as a part of WTSI pipeline to take a part in the phenotyping process, 

and also can be used as plug in for free analysis sources as imageJ to be available and 

accessed in biological image analysis. It would also be useful for training purposes. 

Finally, a combination of image processing and analysis techniques can be used 

automatically in the high-throughput analysis to evaluate skin conditions in different 

diseases such as skin cancer, inflammatory disorders and cosmetic dermatology. The 

analyses in this field can be continued by developing an image analysis source to help 

solve concerning issues of time consumption and inaccurate assessments. And also 

there are opportunities for using such system in other application of medical image 

analysis e.g. ultrasound, magnetic resonance image MRI, x-ray images by modifying 

these techniques to help the researchers in this field (Holland and Marchand, 2002).
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