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Abstract 

Research investigations reported in this thesis, aim to contribute to the efforts of 

developing reliable ovarian tumour classification tools using texture features extracted 

from B-mode ultrasound ovarian tumour scan images. This kind of research is 

necessitated by the shortage of highly trained sonographers and gynaecologists in order 

to reduce the heavy pressure on healthcare systems throughout the world. Our ultimate 

aim is to automate the error-prone process of the laborious manual examination of the 

ultrasound scan images, and we, therefore, exploit advances in Machine learning and 

computer vision to develop informative software to be integrated within clinical setup.  

Our research was guided by an extensive literature review of existing research in this and 

related fields, building on existing collaborations with medical expertise, and evidence 

from systems biology research that carcinogenesis results in changing the texture of cysts 

cellular network.   These considerations led to adapting image texture analysis approaches 

as an adequate source for Machine learning algorithms and software tools. Most existing 

research works in general biomedical image-based diagnostics are directed towards 

identifying one or few best performing texture features. Instead, our analysis aimed at 

extracting a suit of texture-based image features that together contribute to effective 

ultrasound ovarian tumour image classification. This open-minded strategy unearthed a 

plethora of texture-based features and in different image domains beyond the spatial 

domain, which depicts a visual image of the scanned tissue. There is a significant 

variation in the dimensionality of the texture features, included in our investigations, and 

although we use different well-known classifiers in evaluating performances, the focus 

of the comparisons made are not on the choice of classifiers.  

This thesis includes many contributions; the most significant ones can be summarised as 

follows: 

1. Established that even without pre-processing the scanned images spatial domain is a 

rich source of 7 microscale texture primitives that can distinguish malignant tumour 

scans from benign ones with accuracy well above being a case of random chance 

prediction (70% -83%). The simple majority rule fusion of an odd number of features 

yield accuracy in the range 83% - 90%.  

2. Developed a smart adaptive speckle-noise reduction scheme that applies noise 

reduction in blocks of the cropped tumour images (not the entire image) only if 
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(Skewness, Kurtosis) pair in the block satisfies a criterion determined by training. 

This adaptive pre-processing is shown to significantly improve the performance of 

all investigated texture schemes, not only the spatial domain ones. 

3. Modified the existing frequency domain texture feature (FFGF), by adaptively pre-

processing the cropped tumour image prior to computing its Fourier Spectrum, and 

using a different binarization scheme to extract the bright elliptical shape at the centre 

of the FFT spectrum. These modifications improved the accuracy of the original 

FFGF scheme 85.9% to more than 92%.   

4. When attempted to reduce the dependencies between the 3 ellipse parameters of 

FFGF has shown that even better accuracy (> 95%) can be achieved using a single 

parameter (the minor axes).  These results led to establishing that the FFT-spectrum 

image is a very rich source of texture information only obscured by its somewhat 

visually “meaningless” display. We found that all of the features extracted from the 

FFT-spectrum outperform their spatial domain counterpart, and the fusion of the 7 

FFT-spectrum based schemes achieved accuracy of > 97.5%. 

5. We further extended the list of texture-based image features beyond the spatial 

domain and beyond the FFGF schemes by extracting some of the previously defined 

texture features not only from the FFT-spectrum but also in any image transform 

domain such as the LBP domain. Again, the texture features in the LBP domain 

outperformed the spatial domain counterparts, with FFGF from the LBP domain 

achieving accuracy of 94% which even outperforms the modified FFGF.  

6. Finally, the extensive experiments simply opened a Pandora Box of image textures. 

Instead, of continue other image transform domain, we created two versions of an 

ML-based software that incorporate 9 spatial domain texture-based features (the 

original 7 + the Skewness + the Kurtosis) to be used for a prospective test of 100 

fresh cases, collected and examined histologically by an IOTA expert gynaecologist 

at Queen Charlotte and Hammersmith Hospital in London during the period (Oct 

2018 – Jan 2019). Version 2 incorporates the smart adaptive speckle noise removal 

resulted in an accuracy of 94%. 
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Chapter 1 

Introduction 

This thesis follows the recent trend in benefiting from advances in machine learning and 

artificial intelligence for digital health and in particular for the automatic analysis of 

medical images for computer-aided diagnostic systems. In this chapter, we first give an 

overview of the focus of our research investigations regarding the texture of ovarian 

ultrasound images. Then, we describe the motivating of this research, as well as the aim 

and objectives of this research. After that, the general framework of the thesis for 

proposing ovarian tumour classification using 2-D statics images will explain. Finally, 

the list of contributions and publications of this research. 

1.1 Overview  

The tissues and organs of the human body are made up of tiny building blocks, which are 

named cells. These cells are divided into two parts: normal and abnormal cells. The cells 

in the healthy body divide regularly, grow to make new cells, and die in an orderly way. 

However, cells start to divide and split into body tissues/organs in an uncontrolled 

manner; the cells are called abnormal or cancerous cells. There are different kinds of 

cancer, such as breast, colon, ovarian cancer, bowel, etc. (American Cancer Society 

2018). 

Ovarian cancer is the deadliest malignancy of the female reproductive system (American 

Cancer Society 2018). Moreover, it is a disease when part of cells in the ovary develops 

and changes in an out-of-control manner to become cancerous cells. The ovarian cancer 

is called the “silent killer” because it can be spread and developed before women are even 

aware that they have it, i.e. there are not specific symptoms of the ovarian carcinoma until 

getting to the advanced stage of cancer (Gajjar, et al. 2012).  However, successful 

treatment of ovarian cancer, and any type of cancer, greatly depends on early detection 

and diagnosis.  Early detection tools need to be established to meet the unmet needs of 

ovarian cancer patients and save their survives. There are different methods to identify 

ovarian cancer, such as medical ultrasound imaging, laparoscopy and a blood test known 

as (CA 125) to test the level of tumour marker and others (American Cancer Society, 

2018; Togashi, 2003). However, it is essential to distinguish between different categories 
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Figure 1- 1: Shows an example of US scan images of ovarian tumour. 

of ovarian cancer, for example, benign from malignant, not only to ensure the suitable 

treatment for malignant cases but additionally to avoid unnecessary diagnostic processes 

such as surgery for the non-malignant cases (Valentin, et al. 2006). 

This research is concerned with investigating and developing digital tools and techniques 

for the analysis of ultrasound scan images to facilitate the detection and classification of 

ovarian cancer (see Figure 1.1). Ultrasound scanning is the highest modality used in 

hospitals to distinguish between different ovarian tumours and also it is the prime triage 

method before treatment (Kinkel, et al. 2000). Even, however, it cannot essentially 

prevent the surgery which can help to narrow down the different analysis and determining 

the level of suspicion for malignancy, mostly together with the serum CA-125 level 

(Togashi 2003). Nevertheless, the performance of ultrasound imaging based on the 

morphology assessment is limited because of the significant number of false-positive 

results (Kupesic and Plavsic 2006) and increases the issue of how to correctly interpret 

the images (Gramellini, et al. 2008).  According to (Fishman, et al. 2005) the grey-scale 

scoring systems to detect ovarian cancer can result in many unnecessary operations. This 

is due to the limitations in the human eye visual system reader tiredness, interruption, and 

the most important is the overlapping between different images structures, which can 

camouflage disease in images, may cause errors in clarification. (Giger, Chan and Boone 

2008). Properties of an image can be quantified and measured through a technique called 

texture analysis, which analyses the pixel position and intensity. According to 

(Mayerhoefer, et al. 2008), the process of texture analysis can be applied to ultrasound 

images through the use of a computer. The computer is able to recognize specific 

anatomical structures in the image through mathematical patterns identified in the grey 

level distribution of the pixels in the image. 
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The technique of texture analysis is used extensively in the medical field, particularly in 

the past two decades. In addition, this technique is also used in other applications, such 

as remote sensing, etc. In the medical field, the output obtained from the image texture 

analysis can be inputted into a program that can assist in diagnosis, called the computer-

aided diagnosis (CAD). CAD is often used to improve the sensitivity and specificity of 

radiographic images (Dhawan, Atam P 2011). An important advantage of using CAD is 

that a computer method can reduce subjective interpretation, allowing for repeatability of 

results (Smyth, et al. 1997). The texture analysis technique can evaluate pixel intensity 

variation that refers to a specific physical attribute or variation in the image.  

Accordingly, the ultrasound images with texture variation (Davis 1980) , particularly in 

the medical context, reveal the overall structure of cells or tissues (Szczypinski, et al. 

2009), either with or without pathological changes (Mayerhoefer, Breitenseher, Amann, 

& Dominkus, 2008; Xian, 2010). Using the texture analysis, the interpretation of the 

ultrasound imaging results is primarily based on the underlying basis that abnormal cells 

or tissues produce distinct texture variation or intensity (modified ultrasound signal) from 

those of normal cells or tissues (Morris 1988). The texture of an ultrasound image can be 

defined as the smoothness and structure of the objects. The texture is critical as it is a 

primary characteristic of an image that is used for the analysis and interpretation of 

ultrasound images (Kurani, et al. 2004). Additionally, it is conducted to compute the 

texture and properties of the components in the image (Mathias, Tofts, & Losseff, 1999; 

Nailon, 2010), as well as to define critical textural characteristics for an ROI. Texture 

analysis is typically used in the medical field to help distinguish between normal, healthy 

regions, and regions that require treatment. It can also be used to differentiate between 

various tissues and organs (Castellano, et al. 2004). 

1.2 Research Motivation  

Ultrasound ovarian images have been playing an increasingly important role in the 

detection and diagnosis of the types of tumour, which is a crucial factor for the effective 

treatment of patients. The current manual examination system imposes a big challenge 

for most specialised medical centres due to limited numbers of expert radiologists needed 

to analyse a large number of various cases. In such situations, the possibility of 

misdiagnosis of abnormality/normality of ovarian tumours with tragic consequences 

could not be ruled out.   

On the other hand, early detection of ovarian cancer, or any type of cancer, remains a 

challenging task. Ultrasound has demonstrated utility in detecting an ovarian tumour in 
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asymptomatic women, also can help differentiate benign from malignant lesions. 

However, inexperienced ultrasound operators are always meeting difficulties in 

distinguishing between different kinds of tumours, which eventually lead to a lower rate 

of true diagnosis. Incorrect diagnosis may lead to unnecessary biopsies/surgery, or worse, 

missed cases. Automating certain aspects of ultrasound image analysis can help to provide 

supporting tools to help increase their diagnostic accuracy. This is the main motivation 

for the work reported in the thesis as part of a wider related research work conducted by 

the Buckingham biomedical image analysis team.   

A computer-based system for categorisation of ultrasound images could contribute to 

improved performance of decision support systems for the diagnosis of ovarian tumours. 

Such a computer-based system benefits from an interdisciplinary technology that 

combines image processing methods and experts’ knowledge for greatly, better accuracy 

of abnormality detection, hence greatly decreasing the false-negative rate and improving 

the true positive rate.  

1.3 Research Aim and Objectives   

In a medical diagnosis of ovarian cancer, medical experts examine ovarian ultrasound 

images to visually identify any characterising features of suspected tumours using some 

measurements in addition to clues from the tissue texture according to well established 

medical practices. A group of medical experts with extensive technical knowledge and 

experience collectively assess and finalise their findings of the ultrasound imaging results. 

In this study, we attempt to encapsulate, as much as possible, the knowledge of domain 

experts for designing and developing CAD tools through the implementation of machine 

learning strategy. In particular, the intended CAD tools are meant to be used for the 

gynaecological ultrasound imaging in detecting ovarian cancer and are therefore 

developed through the rigorous process of training and testing using ovarian ultrasound 

images with hybrid image features extracted automatically from different image domains 

of representation, e.g. spatial and frequency domains.  

Based on the knowledge gained from domain experts, we estimate and categorise the 

image texture information with the objective of establishing a mathematical model 

suitable for analysis by machine learning schemes. Most importantly, it was expected that 

the included features were either challenging for the human visual system or visually 

inaccessible for medical experts (such as features from the Fourier spectrum). 

Accordingly, we may need to incorporate a diverse set of image features as well as fuse 
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them at different levels to evaluate the diagnostic performance of developed the 

automated computerised machine learning tools.  

Following the feature extraction process using computational techniques, this study also 

performed feature quantification and analysis to identify any notable anatomical and 

textural changes in a tumour. The extracted features were then used as distinguishing 

attributes between different classes. The developed tools in this study were expected to 

significantly assist the medical experts in the decision-making process for feature 

classification cases at a specific level of confidence. These following points summarised 

the main objectives of our work:  

 To identify and define texture features to be extracted from ultrasound images in 

spatial, frequency and transformed domains followed by finding suitable 

algorithms that are capable of recognising different types of tumours with a high 

level of accuracy. The different mathematically defined texture features are 

expected to extend the list of the features beyond those that manually extracted by 

medical experts.  

 To design and develop ultrasound ovarian tumour image classification schemes 

based on the texture features, identified above, and evaluate their performances as 

well as those of fused combinations of them using appropriate datasets based on 

standard classifiers trained and tested according to standard experimental 

protocols.   

 To determine factors that influence the performance of different feature scheme 

in uncontrolled conditions. For example, we determine the impact of speckle noise 

in ovarian ultrasound images on the performance of the selected texture features 

in distinguishing different types of ovarian tumours. We then investigate various 

speckle de-noising schemes and design effective and adaptive solutions to 

suppress this type of noise if and when needed.  

 To exploit the gained knowledge from the realization of the above objectives and 

build the intended CAD software tools that can be integrated within a clinical 

framework. Since these tools are meant to support the clinician through the 

decision- making the process for diagnosis of ovarian tumours, we should attempt 

to test the performance our tools in a clinical setup through a prospective test.  
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1.4 Research Framework of the Proposed Ovarian Tumour 

Classification  

Computer-based analysis plays a major role in ultrasound image analysis and could 

provide high levels of accuracy as well as help the sonographer to obtain accurate results  

for better diagnosis. This section will explain the Computer-aided diagnostic of the 

proposed automatic image diagnostic, which can be shown in Figure 1.2: - 

 

 

 

 

 

 

 

 

 

 

Figure 1- 2: General framework for the proposed ovarian tumour diagnostic. 

 Stage One (Pre-processing): - For the duration of data acquisition processes, the 

ultrasound images will affect by random noise. This type of noise is an inherent 

property of medical ultrasound imaging, and because of this noise, the image 

resolution and contrast become reduced, which affects the diagnostic value of this 

imaging modality. Therefore, noise reduction is an essential pre-processing step 

to highlighting the details of different objects inside the region of interest.  

 Stage Two (Segmentation): Once we suppressed the level of the speckle noise, 

the ROI should be extracted from the image background. In fact, there are many 

techniques to segment the ROI, such as thresholding, region growing, etc. 

However, it has been mentioned in the literature that the segmentation of ovarian 

ultrasound images is still a complex, challenging, and it is an unsolved problem 

due to different issues. 

  Stage Three (Feature Extraction): - This stage is aimed to extract the most 

important texture features from the segmented images of ovarian tumours. 

Various feature extractions methods are used in both spatial and frequency 
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domains. These texture features are additional and different from radiologists 

features which have been extracted manually.  

 Stage Four (Classification): - this is the last stage in our work, which is fed the 

extracted features from ovarian ultrasound images to the classifier to make a 

diagnostic verdict. In this research, we are focused on binary classification, which 

is Benign and Malignant ovarian tumours. Every stage of our work will be 

described in detail in the following chapters. 

1.5 Thesis Contributions  

The following is a summary of the main contributions achieved in this research to 

overcome the limitations of existing ultrasound pre-processing and texture analysis 

techniques. 

1. Evaluating the Power of the state-of-art texture-based features alone to 

Discriminate Benign from Malignant Ovarian Tumours using ultrasound images. 

We illustrate and analyse the effectiveness of 7 texture techniques without pre-

processing. Then, the simple majority fusion method was applied to an odd 

number of texture features to improve classification accuracy. 

2. Developing an adaptive system to suppress the level of speckle-noise and 

enhancing the texture of Benign and Malignant cases. This adaptive system 

approach is applied pre-processing only when it is needed (i.e. local pre-

processing instead of globe pre-processing). The new adaptive system has 

improved the performances of the texture features. 

3. Proposing a new set of features based on the spectrum of Fast Fourier based 

Geometric Features FFGF. In this work, we modified on the exciting FFGF by 

applied our new adaptive pre-processing as well as using different binarisation 

method to extract the bright elliptical shape from the centre of the FFT spectrum. 

4. Proposing a new combination of feature extraction techniques based on the image 

spectrum of the FFT a new approach. In this approach, the spectrum of the FFT 

is used instead of binarized the central of the spectrum of FFT since it has a rich 

source of texture information. After applying the 7 texture feature methods based 

on the FFT image, we found that it outperforms their spatial domain counterpart. 

5. Proposing a new set of texture features using LBP transform domain, i.e. instead 

of using the histogram as features from the LBP, we used the LBP image as input 

image then applied another feature extraction technique on the LBP image. 
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6. Developing software for Prospective clinical evaluation of texture-based features 

analysis of US ovarian scans for discriminating Benign and Malignant tumours. 

1.6 List of Publications  

i. Dheyaa Ibrahim, Hisham Al-Assam, Hongbo Du, Jessica Farren, Dhurgham Al-

karawi, Tom Bourne, Sabah Jassim; Automatic segmentation and 

measurements of gestational sac using static B-mode ultrasound images. 

Mobile Multimedia/Image Processing, Security, and Applications. International 

Society for Optics and Photonics, USA, 2016, vol.9869. 

ii. Dhurgham Al-karawi, Ahmed Sayasneh, Hisham Al-Assam, Sabah Jassim, 

Page N, D Timmerman, Tom Bourne, Hongbo Du; An automated technique for 

potential differentiation of ovarian mature teratomas from other benign 

tumours using neural networks classification of 2D ultrasound static images: 

a pilot study. Mobile Multimedia/Image Processing, Security, and Applications. 

International Society for Optics and Photonics, USA, 2017, vol.10221. 

iii. Dhurgham Al-karawi, Chiara landolfo, Hongbo Du, Hisham Al-Assam, Ahmad 

Sayasneh, Dirk Timmerman, Tom Bourne , Sabah Jassim; Prospective clinical 

evaluation of Texture-based Features Analysis of Ultrasound Ovarian scans 

for Distinguishing Benign and Malignant Tumors.  Australasian Journal of 

Ultrasound in Medicine. Wiley Online Library.2019, vol.22. 

iv. Dhurgham Al-karawi, Hisham Al-Assam, Hongbo Du, Ahmad Sayasneh, 

Chiara Landolfo, Dirk Timmerman, Tom Bourne, Sabah Jassim; An Evaluation 

of the Effectiveness of Image-based Texture Features Extracted from Static 

B-mode Ultrasound Images in Distinguishing between Benign and Malignant 

Ovarian Masses. It's been submitted to IET Image Processing Journal. 

v. Dhurgham Al-karawi, Chiara landolfo, Hongbo Du, Hisham Al-Assam, Ahmad 

Sayasneh, Dirk Timmerman, Tom Bourne , Sabah Jassim; A machine-learning 

algorithm to distinguish benign and malignant adnexal tumours from 

ultrasound images. 29th World Congress on Ultrasound in Obstetrics and 

Gynecology, Berlin, Germany, 2019.  

1.7 Dissertation Layout 

The rest of the thesis is structured as follows: - 
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Chapter 2:  Presents a background knowledge about the medical images, and more 

details relevant to ultrasound image analysis, as well as highlights the current clinical 

techniques used to characterise ovarian tumours. Furthermore, it will explain a 

computational background of different methods of image processing which are related to 

this thesis. 

Chapter 3: This chapter presents the literature review of existing works on speckle-noise 

reduction techniques for ultrasound images. Also, reviews the methods on extracting 

regions of interest in medical ultrasound images. Moreover, it will review the current 

works on texture-based features for ovarian tumours classification using ultrasound 

images.  

Chapter 4:  This chapter provides the development of several image texture-relevant 

features based on spatial and frequency domains to categorise between benign from 

malignant ovarian tumours. As well as, the datasets used in this research and experimental 

protocols.   

Chapter 5: This chapter is divided into two parts; the first part is indicated the proposed 

new approach of speckle-noise reduction. The second part is proposed the development 

of a procedure to mitigate the second factor on variation in ROI sizes. 

Chapter 6: This chapter is described as a novel idea based on the spectrum of fast Fourier 

transform to classify binging from malignant ovarian tumours. As well as, we will explain 

our new texture feature based on different domains.  

Chapter 7:  Presents the software for the prospective clinical test based on hand-crafted 

features in comparison with Deep learning tools.  

Chapter 8: This chapter delivers a summary of the whole thesis and presents the 

conclusion of this study and future works. 
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Chapter 2 

 Medical and Computational Background 

The multidisciplinary nature of this research project adds to the challenge of writing up 

the thesis that reports the contributions made and the knowledge uncovered in a manner 

that is accessible to researchers and practitioners from the different disciplines. To meet 

the accessibility requirements, this chapter is entirely devoted to briefly explaining the 

relevant background materials from the participating disciplines insufficient details to 

enable readability of the rest of the chapters.  In section 2.1 and 2.2, we begin with a brief 

description of general medical imaging systems before introducing various types of 

ultrasound imaging systems and their use for diagnosing gynaecological abnormalities. 

Section 2.3 is given a general discussion about the technology fields of image 

processing/analysis, and machine learning will form the second part of the chapter. 

Finally, the chapter will focus on describing the technical aspects of developing 

automated image-based medical diagnostic systems in general, highlighting the 

ingredients and requirements of our intended system of ovarian tumour diagnostic from 

Ultrasound Ovarian scans.  

2.1 Medical Imaging Systems  

Medical imaging is a discipline within the medical field that mostly involves the use of 

various radiology technologies to help the clinics visualise human body organs/tissues for 

detection of medical abnormalities. Medical imaging is sometimes referred to as 

diagnostic imaging, due to the fact it is frequently used by the doctors in conjunction with 

other types of tests and procedures to arrive at a highly reliable diagnostic decision. 

However, the use of radiological scan images as a complementary aiding tool is by no 

mean limited to diagnosing different diseases but extends to a variety of healthcare 

objectives that include but not limited to assessing the degree of success of 

treatments/surgery, understanding/interpreting functionalities of organs/tissues, and 

routine population screening. There are different types of medical image modalities that 

are used to access and monitor mostly internal human body organs/tissues hidden behind 

skins, bone structures, and fat tissues. Although digital and thermal cameras are also used 

for medical examinations, radiology imaging is based on different principles that require 

the use of specialised devices/procedures to create/display images susceptible to digital 
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image processing/analysis.  By definition, radiology imaging is based on using certain 

waveform sub-bands of the electromagnetic spectrum depending on the nature of the 

organ/tissue to be scanned.   The list of radiography imaging schemes is growing, but the 

most common modalities are X-Ray Computed Tomography (CT) also referred to as 

Computed Axial Tomography (CAT) scans, Magnetic Resonance Imaging (MRI), 

Ultrasonography, and Nuclear medicine functional imaging modalities such as MRI and 

Positron Emission Tomography (PET). There are various methods to obtain and process 

these types of images, depending on the deployed equipment and on the nature of the 

scanned body region. In CAT scan, beams of X-rays spin around the target (e.g. internal 

organs, bones, blood vessels) from several angles and special sensors then detect the 

output signal after penetrating the object to form an image of the scanned object 

(Dougherty 2009). Instead of using radiation, the MRI modality uses a combination of 

magnetic fields and radio waves to generate images of the scanned body anatomy and 

their physiological processes. The US modality relies on sound waveforms to create a 

“cross-sectional” view of anatomical structures. Figure 2.1 shows the output from several 

kinds of medical image modalities. 

 

 

 

 

  

 

(a)                                        (b)                                                   (c) 

Figure 2- 1: Few imaging modalities (a) MRI knee (b) chest CT scan (c) US ovarian scans 

(Medical Image Modalities 2019). 

2.1.1 Medical Ultrasound Image 

An Ultrasound Scan (US) is sometimes called a Sonogram. It has been in use since the 

mid-twentieth century. Karl Theo Dussik, an Austrian neurologist, was the first to use the 

US as a medical analytical tool to image the brain (Edler and Lindstrom 2004). 

Nowadays, US is one of the most commonly used imaging technologies in medicine, 

especially in gynaecological abnormality/disease detection because ultrasound imaging 

is considered to be safe without ionising radiation, non-invasive, portable, and relatively 

Examples of Medical Image Modalities  
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inexpensive in cost when compared with other imaging modalities, for example, MRI and 

CT (Hoskins, Martin and Thrush 2010). Furthermore, the ultrasound scan is a real-time 

imaging system. US images are also tomographic, i.e. offering a “cross-sectional” view 

of anatomical structures. An ultrasound scan can be used in several different ways, such 

as monitoring an unborn baby, diagnosing a condition such as an ovarian tumour or 

guiding a surgeon during certain procedures (Chan and Perlas 2011).  

2.1.2 The Equipment of Ultrasound  

An ultrasound scanner involves of several components including a transducer (probe), a 

central processing unit (CPU), display screen, keyboard/cursor, disc storage devices and 

a printer. The transducer is a small hand-held device and comes in different shapes and 

sizes for use in different scanning purpose. The probe sends out a range of frequency 

sound waves into the body and afterwards listens for the returning echoes from the tissues 

in the body. The ultrasound image is directly visible on a video show screen (monitor). 

The image is created based on the amplitude (strength), frequency and time it yields for 

the sound signal to return from the area of the patient being examined to the transducer 

and the kind of body structure the sound travels through (Hoskins, Martin and Thrush 

2010). There are different kinds of ultrasound machine ranging from very large machines 

which are fixed in special clinical rooms, to small portable, lightweight machines that are 

mobile and can be carried by a sonographer. Figure 2.2 shows three different categories 

of the ultrasound machine. 

 

 

 

(a)                                                                (b) 

Figure 2- 2: (a) Example of Ultrasound Machine   (b) Different Types of US Probes. (Gurjar 

2017) 

2.1.3 Scanning Process  

Prior to scanning, a thin layer of jelly is applied on the probe and the skin. This layer 

helps to ensure that all the sound waves go into the body. The probe is composed of a 

transmitter and a receiver. While the transmitter emits an ultrasound pulse, the receiver 

collects the reflected pulse from tissues and organs within the body. The ultrasound 

machine then analyses the time it takes for the pulse to return (Hoskins, Martin, & Thrush, 
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2010; Powers & Kremkau, 2011). The scanning procedure is depicted in Figure 2-3 

below. 

 

 

 

 

 

 

Figure 2- 3: Sender /Receiver in Ultrasound probe (D.Wong 2011) 

The most common type of ultrasound image is named Brightness-Mode (B-mode). It is a 

two-dimensional sequence which is crossed section if images of the scanned part 

(Hoskins, Martin and Thrush 2010).  The real-time scanning could be taken in various 

planes as described below and shown in Figure 2-4. However, there are more types of 

ultrasound images, which are 3D, 4D, as well as Doppler. However, in this research, we 

are focusing on 2D ultrasound images.   

 

 

 

 

 

 

 

 

Figure 2- 4: Illustration of the transverse, sagittal, and coronal planes of the body. (Bodytomy 

2019). 
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 The transverse plane divides the body into cranial and caudal (head and tail) portions. 

 The coronal plane or frontal plane. It divides the body into the back and front 

portions. 

 The sagittal plane. It is divided the body into left and right. 

  

More details about the process of generating US scan images and the various devices 

deployed in this process can be found in (Hoskins, Martin and Thrush 2010). But now we 

will turn our attention in the next section to the use case of interest in this thesis, i.e. in 

the medical field of gynaecological. 

2.2 Background of Human Female Reproductive System  

The female reproductive organ consists of five parts: (vagina, uterus, fallopian tubes, 

Cervix, and ovaries), and each part has a different role, (Hamlett and Koob 1999). Figure 

2-5 is a diagram illustration of the different parts of this reproductive system. 

 

 

 

 

 

Figure 2- 5: The Female reproductive system  (anatomy 2019). 

The next section is to brief of the description of these 5 components of the reproductive 

system. 

i. Fallopian tubes: a couple of muscular tubes that extend from the left and right 

corners of the uterus to the edge of the ovaries. 

ii. Ovaries:  There are two ovaries, one on each side of the body. These ovaries 

contain ova inside follicles for maturation through the woman's reproductive life. 

iii. Uterus: This part is responsible for feeding the fetus until birth.  

iv. Cervix: This part is connecting tube between the uterus and the vagina. 

v. Vagina is a flexible, muscular tube connecting the cervix to the outside body part. 

In this thesis, we are focusing on automatic computerised ovarian tumour diagnosis, i.e. 

digital schemes for diagnosing abnormalities in the ovary parts of the female reproductive 

system by analysing 2D B-mode ultrasound images of the ovaries. The female 

reproductive has two ovaries, one on the left and right side of the uterus in the pelvic 
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region. Ovaries are responsible for producing the ova and the female sex hormones, such 

as (oestrogen and progesterone). These hormones control the development of the female 

body, including the body shape, the menstrual cycle, pregnancy, breasts and body hair 

grow. The shapes of the ovaries are ovoid, of length in the range from 3 to 5 cm and 

weight between 2 to 4 grammes (Hamlett and Koob 1999).  

2.2.1 Overview of Ovarian Cancer  

Cancer starts when the cells in a part of the human body become out of control; i.e. 

become abnormal cells.  There is a difference between the growth of cancer cells and 

normal cells. Instead of dying after a certain number of division rounds, cancer cells 

continue to divide, forming new networks of irregular cells that in some cases are referred 

to as a tumour. Besides, cancer cells can attack (grow into) other tissues, something that 

uncommon in the healthy cells.  

Emerging Systems Biology, evidence demonstrates that cancer cells actively rewire 

cellular networks during carcinogenesis (Modos, et al. 2017).  Subsequently, uncontrolled 

growth of the irregular cells and invading other tissues may result in cancerous mass 

(Gajjar, et al. 2012). Figure 2-6 illustrations the normal and cancer cells 

 

 

 

 

 

Figure 2- 6: Normal and Cancer cells (Media 2019). 

In general, the division of any cell in the body is controlled by a certain gene. If this gene 

misses its function, it might lead to the formation of a tumour. A tumour that is not cancer 

is known as benign while a cancerous tumour is known as malignant. Benign tumours do 

not infect the tissues around them nor spread to other parts of the body. However, 

malignant tumours have the ability to attack and destroy the tissues around them. Cancer 

cells can also spread via the bloodstream or the lymph system and reach to other parts of 

the body (Tan, Agarwal and Kaye 2006).  

Ovarian cancer is strongly related to age. Although it could grow at any age, it is most 

likely to occur in older women, especially from age 55 and over (American Cancer 

Society 2018). According to (Bell 1991) epithelial tumours occur in pre-menopausal and 
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post-menopausal age, and 85% of ovarian cancer cases are epithelial cell (Chan and Perlas 

2011). Through extensive study has carried out, the real reasons for ovarian cancer are 

still unidentified. The two most effective factors linked to the risk of rising ovarian cancer 

are age and the presence of certain gene mutations. Further factors that can affect the risks 

of increasing ovarian cancer are described below: 

 Infertility, the risk is lower in women who had birth, likened to women who did 

not have children (Permuth-Wey and Sellers 2009) . 

 The history of the family, women with a mother or sister detected with ovarian 

cancer, have a higher risk of developing ovarian cancer. Likewise, women with 

previous breast cancer have double the risk of ovarian cancer (Permuth-Wey and 

Sellers 2009). 

2.2.2 Histological Types of Ovarian Tumours  

Ovarian carcinoma is not a single disease, and there are more than 30 types and subtypes 

of ovarian tumours owned histological (diseased tissue) form and biologic behaviour. 

Based on that, the panel experts classify the ovarian tumours into three groups according 

to the kind of cells/tissue (Scully and Sobin 1999), Figure 2-7 shows histological types of 

ovarian tumours 

 

 

 

 

 

 

Figure 2- 7: Histological types of ovarian tumours. 

A-Surface epithelial-stromal tumours: - Tumours compose of more than one types of 

epithelium and stromal cells in a variety of combinations. Furthermore, these tumours 

arise from the surface epithelium of the ovary, or it is derivatives (the surface epithelial 

implication glands and the adjacent ovarian stromal). The surface epithelial-stromal 

tumours are classified according to the tumour type (mucinous, endometrioid, serous, 

clear cell, transitional cell) and further sub-classified as benign, borderline or malignant 

(Scully and Sobin 1999).  

Histological Types 

 

A- Surface epithelial-

stromal tumours 
B- Sex cord-stromal 
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C- Germ cell      
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B. Sex cord - stromal tumours: - this is the second group of the ovarian tumours. The 

sex cord - stromal tumours are accounted for by approximately 8% of all ovarian tumours 

and around 7% of all malignant ovarian tumours (Chen, et al. 2003). Fibromas and 

fibroatheromas tumours are the sub-types of the sex cord-stromal tumours, which are 

uncommon benign tumours of stromal origin. These types of tumours are accounted for 

by only 4% of all ovarian tumours but characterise the most common solid primary 

cancers of the ovary. However, Fibromas and fibroadenomas arise from spindle 

mesenchymal cells that produce collagen and can be associated with Meigs syndrome. 

Compared to Fibromas, fibroatheromas have a small population of theca cells that include 

intracellular lipid and potential to show estrogenic activity. (Yen, et al. 2013). 

C.  Germ cell tumours: - the germ cell tumours are the last group of the ovarian tumours 

histological. They are accounted for by 20-25% of all ovarian neoplasm however around 

3 % of these are malignant. The most common type tumour in this group is Teratoma as 

a benign tumour that rarely undergoes malignant degeneration. However, the most 

malignant ovarian germ cell tumours are composed of primitive or immature elements. 

(Tangir and Schwartz 2003).  

2.2.3 Stages of Ovarian Cancer  

There are four stages in ovarian cancer, generally determined by the location of the cancer 

cells (Kurtz, et al. 1999). In the first stage, also known as early cancer, only the ovaries 

may contain cancerous cells. In stage 2, the cancerous cells are either in the ovaries or the 

fallopian tubes, with the possibility of cells spreading to other tissues in the pelvis, like 

the uterus. In stage 3, the cancer is more widespread, with cancer cells found outside the 

pelvic area and into the abdominal area. At this stage, it is typical for the size of the 

tumours to be larger than in stage 1 or 2. When cancer cells spread further into other 

organs, such as the lungs or the liver, this is considered to be stage 4. Even if the other 

organs contain cancer cells, other than those originated from the ovaries, stage 4 masses 

are still identified as ovarian cancer.  Figure 2-8 illustrates the extent of the spread of 

ovarian cancer.  
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Figure 2- 8: Illustration of the extent of the spread of ovarian cancer - (a) - (d) for stages 1 to 4 

(UK Cancer Research 2018). 

Furthermore, there is another kind of tumour known as Metastatic tumour that started 

somewhere else (uterus, breast, pancreas, gastric, lung cancers) outside the ovaries but 

then spread to various body organs and arrived at the ovaries.  

2.2.4 Diagnosing Ovarian Tumours - Overview  

The established medical approach to diagnosing Ovarian cancer is based on several 

different types of tests, including a Physical examination, blood test (CA-125 level), 

biopsy, image testing, i.e. (ultrasound, CT scan, MRI), and so on. However, none of the 

tests on their own provide proof of presence or absence of ovarian malignancy. Providing 

appropriate treatment or relief depends on the accuracy and reliability of the diagnostic 

decision. The clinician also needs to have access to a reliable radiology assessment of the 

ovarian ultrasound scan, together with the blood test (CA-125). The timely availability of 

these assessments cannot be emphasised enough. The CA-125 is a protein in the blood 

that shows the level of CA-125.  
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As a tumour marker, this test is also useful in assessing the success of treatment because 

in some cases reduced the level of CA-125 is an indicator of successful treatment of 

cancer (American Cancer Society 2018). Nonetheless, the level of the CA-125 is not 

always a reliable indicator because not every woman who has ovarian cancer have a high 

level of CA-125 in her blood. Therefore, clinicians might consider doing further tests, 

such as ultrasound test to look at the size of ovaries, the normality/abnormality of the 

ovaries texture and if there are some cysts in the ovaries.  All of these signs are very 

important to discriminant between different types of tumour (American Cancer Society 

2018). 

2.2.4.1 Role of Ultrasound Imaging in Ovarian Cancer Diagnosis  

Ultrasound is presently one of the greatest widely used imaging modalities in medicine 

and has been used in medical imaging for over half a century (Hangiandreou 2003). It is 

usually considered as the ideal imaging modality for observation of the female pelvis 

(Quaia 2005). Technology developments have led to wide acceptance and use of 

ultrasound imaging. For example, the introduction of the transvaginal transducer has 

improved the diagnosis of ovarian tumours (Twickler and Moschos 2010). Analysis of 

ultrasound images can help to distinguish between benign and malignant lesions (Hamid 

2011).  

Each ultrasound image can be divided into two areas: a fan-shaped area and a marginal 

area. The fan-shaped area illustrations (see Figure 2-9) the image of interest obtained by 

ultrasound scan, but the marginal area contains other information, for example, the 

patient’s name, the date that the image was taken and the ultrasound machine setting. 

(Harrington 2007)  

 

 

 

 

 

 

 

 

(a)                                                                        (b) 

Figure 2- 9: (a) Ultrasound Image, (b) Fan Area and a Margin Area. 
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Ultrasound Images have some characteristics that are useful to diagnose ovarian tumours 

and to differentiate between benign, borderline and malignant tumours. The analysis of 

US images contains two parts. The first concerns are identifying morphologic features 

based on B-mode images like unilocular cysts, multilocular cysts, solid tumours, fluid, 

papillary projections, internal wall structure and acoustic shadows. The second part is 

based on Doppler images that provide information about blood flow. These indicators are 

useful for doctors to determine the severity of the mass or cyst. An advantage of using 

medical ultrasounds for identifying various diseases is that it is non-invasive, cost-

effective, and the image quality is continuously being improved. However, there are still 

limitations with the ultrasound method. For example, background tissues and body fat 

can add noise to the ultrasound image, making it difficult to focus on the tissues or organs 

of interest (Hiremath, Akkasaligar and Badiger 2013). Many sonographers utilise an 

automatic image analysis because it allows for more accurate images that can help with a 

diagnosis. 

2.3 Design and Development of Automatic Medical Imaging-based 

Diagnostic Systems 

Analysing medical images for diagnostic purposes is a typical example of pattern 

recognition and classification in computer vision. Over the years a variety of models for 

pattern recognition and classification have been developed in many different types of 

computer vision applications, all having a common multi-steps architectural design, but 

the steps are application domain dependent. Figure 2-10 below depicts the most common 

steps of such systems. 

 

Figure 2- 10:  Block diagram of the major steps of CAD. 

As shown in Figure 2-10, a typical CAD system consists of three or four major processing 

steps. The pre-processing step suppresses or removes random noises from the input image 

that was included during the data acquisition and enhances the image by highlighting the 

image details to enable extraction of useful features from the image at a later time. This 

step often requires the use of suitable and sophisticated image processing functions to 
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achieve the set objective. After pre-processing, some form of image segmentation is 

normally performed to take out the relevant area of the image, known as the region of 

interest (ROI). This is because not all parts of a given input image are of interest; keeping 

the irrelevant parts in an image can affect the performance of the system at some later 

step. This step also requires sophisticated solutions based on computer vision and 

machine learning techniques because of the technical challenges encountered when the 

border of such a ROI is difficult to identify. The feature extraction step processes the 

segmented ROI image to extract quantitative descriptive data details that reflect the 

characteristics of the organ that the ROI depicts. The technical challenges at this step are 

to find useful features whilst at the same time limiting their number as appropriate. The 

final step in a CAD system is to use the features extracted from the various training 

images to build an effective model of classification for separating normal cases from 

medical anomalies of various stages and types. This step requires the use of machine 

learning techniques, particularly suitable supervised learning techniques, in building such 

an effective classification model. With machine intelligent solutions, a typical CAD 

system aims to address two major issues: observer limitations in relation to constrained 

human visual perception, fatigue or distraction, and limited knowledge and experience, 

and the complexity of the clinical cases where structures of medical anomalies overlap 

with structures of healthy cases (Lemaitre, et al. 2015). 

2.3.1 Image Pre-processing  

 In many applications, the process of image data acquisition, the nature of the sensing 

devices (cameras) and the recording conditions often result in different quality images in 

terms of contrast, sharpness, and type of noise. Acquired images may also be of different 

sizes and/or resolutions. All these factors naturally expected to influence the analysis task 

to different extents, and the image pre-processing step is meant to counter/minimise the 

effect of these factors. Variation in image size is normally dealt with at the outset through 

existing software image re-sizing procedures while variation in the spatial resolution is 

dealt with by down-sampling or up-sampling using interpolations such as Bi-Cubic 

interpolation or even more sophisticated super-resolution techniques which are 

additionally useful in improving image quality (Al-Hassan 2014). In general, image input 

to pattern recognition schemes is assumed to be normalised in terms of size and 

resolution. Image quality enhancement is, generally, dealt with by domain-related 

procedures that require understanding the nature of the image degradation such as the 

type, characterises and source of the noise.    
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During ultrasound data acquisition, a certain type of background noise, known as Speckle 

noise, is widely known to corrupt the final image and the need arises for a noise reduction 

step. The primary objective of noise reduction in ultrasound imaging is to enhance the 

contrast between different tissues and organs. This step is meant to remove as many 

artefacts as possible while improving certain features of the image. This pre-processing 

step is also used in the manual diagnostic by physicians enabling them to understand and 

analyse the image better, for an efficient and more accurate diagnosis.  

De-noising is particularly beneficial for distinguishing between different tissue types and 

is essential for the next stages of segmentation (i.e. isolating the target tissue/organ from 

other tissues) and features extraction. In the manual procedures, speckle noise reduction 

helps to detect the region of interest (i.e. the tumour) by the sonographer more reliably 

(Tamilkudimagal and Kalpana 2011). We shall now briefly describe the nature and causes 

of speckle noise in Ultrasound images 

2.3.1.2 Speckle Noise and its Pattern and Physical Properties  

The phenomenon of speckle-noise has long been an issue in ultrasound imaging since the 

1970s (Abrahim, et al. 2012). Speckle noise is caused by interference of energy from 

randomly distributed scattering ultrasound waves dispersed from different locations and 

is generally observable as light and dark spots on an image. It differs from electrical noise 

because it is not arbitrary, despite its unusual appearance. Examining the object with a 

different transducer aperture, pulse length, or transducer angulation causes the speckled 

design to alter (Burckhardt, 1978; Goodman, 1976). 

Figure 2-11 depicts the most-utilised model that elucidates the changes that occur upon 

intonation of a tissue. The tissue is a sound-absorbing medium that has caterers sourced 

from uniform elements and structures similar to or smaller than the ultrasound 

wavelength, such as tissue parenchyma (Thijssen 1993). They function by scattering 

sound waves within the tissue. Furthermore, scattering or speckling occurs when tissue 

particles that are comparatively small against the wavelength (i.e. blood cells) or have a 

different impedance are nearby. Additionally, ultrasound tissue absorption is an element 

attributed to pulse energy loss in scattering and refraction. Such loss arises due to 

attenuation, which is elevated due to depth and frequency and encompasses absorption, 

reflection, and scattering. Ultrasound with a higher frequency causes improved absorption 

and results in diminished visualisation.    
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Figure 2- 11: The usual tissue model in ultrasound imaging. 

Moreover, ultrasound propagation through tissue is influenced by other characteristics of 

the tissue itself, such as propagation speed, attenuation, and backscattering. The 

relaxation of the biological molecules generally causes ultrasound absorption, thereby 

converting mechanical energy to heat. Meanwhile, attenuation can also originate from 

scattering itself, which is the omnidirectional reflection of small-sized invariability in the 

tissue. Therefore, it is an outcome of absorption and scattering, as seen in Figure 2-11, 

which shows increasing attenuation in parallel to frequency, highlights the reliance on 

frequency.  

2.3.2 Segmentation of US Images of Ovarian Tumour 

One of the most challenging tasks in digital image processing is the image segmentation 

stage (Khiyal, Khan and Bibi 2009). The process of image segmentation targets a specific 

region of interest, a particular tissue, or organ that is deemed necessary for diagnosis. The 

area of interest can be isolated manually or automatically before image analysis. 

Automatic image segmentation relies on the discovery of digital features (in the spatial 

and/or frequency domain) that exhibit different quantitative values/statistics in the RoI 

than outside it. Therefore, in natural images segmenting objects/RoIs is done relies on 

discovering thresholds to separate the objects from the so-called background. This is 

rather challenging for US images of the ovary for a variety of reasons, and a close look at 

samples of such scan images demonstrate the futility of using the traditional thresholding 

approach. In chapter 3, we shall nevertheless describe and review some existing automatic 

and semi-automatic segmentation schemes specifically proposed for US ovarian scan 

images.  

2.3.3 Feature Representation of Images  

After segmenting the Region Of Interest (ROI) in a medical image, significant features 

need to be extracted. Feature extraction is another important step in enhancing an 
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ultrasound image and is based on pattern recognition. The primary objective of feature 

extraction is to identify specific information from the original image and characterise this 

information using a lower dimension. Redundancy in data can occur when the amount of 

data is too numerous to be properly processed. In this case, the input data can be decreased 

and represented by a set of features. If feature extraction is done correctly, the features 

set will contain the important information and the entire original data set will not be 

required. This method, based on pattern recognition, continues to grow in the field of 

ultrasound imaging (Krishnamachari & Chellappa, 1997; Kumar & Bhatia, 2014).  

2.3.3.1 Texture-Based Image Features and Analysis 

The texture of an ultrasound image can be defined as the smoothness and structure of the 

objects. Texture in an image is critical as it is a primary characteristic of the image that 

helps distinguish different image objects and is therefore used for the analysis and 

interpretation of images in general biomedical images and ultrasound images in particular 

(Kurani, et al. 2004). For the purposes of the current study, the texture is defined in terms 

of the spatial distribution and variation of the pixel grey value (intensity) of B-mode 

images. Various techniques can be utilised to identify a variety of texture features. 

Texture analysis relies on efficient computation of the texture features and determining 

their properties of the components in the image (Mathias, Tofts, & Losseff, 1999; Nailon, 

2010), as well as to define critical textural characteristics for an ROI. Texture analysis is 

typically used in the medical field to help distinguish between normal, healthy regions, 

and regions that require treatment. It can also be used to differentiate between various 

tissues and organs (Castellano, et al. 2004). 

Texture analysis approaches are divided into the following categories: (1) Structural, (2) 

Statistical, (3) Model-based, and (4) transform methods. The structural approach was 

described by (Haralick, 1979; Levine, 1985) and is based on textures being represented 

by microtextures and macrotextures. Microtextures refer to well-defined texture 

primitives such as sharp corners and end of lines, whereas macrotextures are defined in 

terms of a gradient of spatial arrangements of the microtextures. In this method, the 

texture is described based on the primitives and the rules for placement. The main 

advantage of this approach is that it offers a sufficient representation of the ultrasound 

image. For this reason, this method is better suited for synthesis tasks, rather than analysis 

tasks. For analysis of bones where fine details in the bone microstructure need to be 

identified, a mathematical morphology analysis may be used (Chen & Dougherty, 1994; 

Serra, 1983). 
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In addition to the structural approach, a statistical approach can be used. While the 

structural approach analyses the texture of an image using a hierarchy, the statistical 

approach focuses on non-deterministic properties of the various levels of grey in the 

ultrasound image. This method is considered to have a higher level of discrimination 

compared to other methods, such as the transform-based method and the structural 

method. Statistical methods to analyse texture have also been used by (Julesz 1975) to 

identify texture within human tissues. 

Gray level images can be distinguished according to their texture, but only if different in 

the second-order moment. Automatic processing may be performed for second-order 

moments, but third-order moments require careful consideration. Texture analysis 

features commonly found at the second-order may be an obtained from a co-occurrence 

matrix, which has been proven effective in discriminating among textures found within 

ultrasound imagery. In fact, multidimensional cooccurrence matrices were demonstrated 

to outperform wavelet packet, which is a transformation based technique, and applied to 

texture classification schemes (Hassner & Sklansky, 1980; Haralick, 1979;  Lerski, et al., 

1993; Valkealahti & Oja, 1998). 

 The model-based texture analysis is used by a number of researchers (Chellappa & 

Chatterjee, 1985; Derin & Elliott, 1987; Manjunath & Chellappa, 1991). This method 

uses fractal and stochastic models that can help to understand the texture, and this is of 

particular importance for ultrasound image analysis. Image analysis can occur based on 

an estimation of the parameters of the model. However, estimation of the stochastic model 

parameters often requires complex computations, which can be difficult to achieve. The 

fractal model has proven to be helpful for analysing natural textures and is often used for 

the analysis and identification of textures (Pentland, 1984; Kaplan & Kuo, 1995; 

Chaudhuri & Sarkar, 1995). A limitation of the fractal model is that it cannot discriminate 

local image structures, and the orientation cannot be selected.   

Textures can also be analysed with transform methods. The most notable transform 

methods include Fourier (Rosenfeld & Weszka, 1976), Gabor (Daugman, 1985; Bovik, 

Clark, & Geisler, 1990), and the wavelet transform method (Mallat, 1989; Lerski, et al., 

1993; Lu, Chung, & Chen, 1997). These methods represent the image using a coordinate 

system that has been interpreted to be fairly similar to specific textural properties, such 

as size or frequency. The Fourier transform method is deficient in spatial localization and 

is not commonly used due to this failing. In contrast, the Gabor filter performs better in 

spatial localization compared to the Fourier transform, but its downfall is that it uses a 
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single filter resolution, which's hard to apply to natural textures. Of the transform 

methods, the wavelet transform method offers the most benefits. The wavelet transforms 

feature is more versatile to the other methods because the spatial resolution can be 

adjusted until the optimum scale is found. This allows for a better representation of 

textures. In addition, the wavelet function offers a variety of choices so that texture 

analysis can be used for any type of application. Due to this, the wavelet transform method 

may be the best method for segmenting textures. One major limitation of this method; 

however, as (Materka, Strzelecki, & others, 1998; Lu, Chung, & Chen, 1997) noted is 

that the wavelet transform is not translation invariant. However, various techniques can 

be utilised to identify texture features, which will be described in detail in next chapter. 

2.4 Classification Techniques   

Classification is the process which used to distinguish between different types of classes 

via labelling for each similar data set with a certain label to discriminate it from other 

classes. There are two stages in image classification, training and testing. The training 

stage is used a set of sample images with identified class labels to train the classifier for 

instant Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), decision tree 

(DT), etc. However, after the classifier is trained, the testing stage is used to predict the 

image class. Therefore, the classification results are dependent on the prediction class of 

image; thus, of the predicted class is similar to the known class of the test image, the 

classification is correct. Else, it is not correct. In this thesis, we have used the most two 

popular classifiers, which are Support Vector Machine (SVM), k-Nearest Neighbour (k-

NN). The usage of them in many areas of research, for instance, image classification, text, 

medical image recognition, face recognition, etc., make them popular classifiers. 

(Cristianini and Shawe-Taylor 2000) 

2.4.1 Support Vector Machine (SVM) 

The SVM method was first proposed in 1995 by Vladimir N. Vapnik and Cortes, with the 

algorithm later created by Vapnik (Cortes and Vapnik 1995). The basis of this method is 

that decision plane, which categorises objects into a positive and negative class, defines 

decision boundaries. Figure (2-12a) displays an example of the decision plane, where a 

boundary is shown between the red colour and blue colour. These two colours symbolise 

two classes. If any object falls on the left side, it will be classified as RED. Similarly, any 

object that falls on the right side is classified as BLUE. As the white circle in the figure 

demonstrates, because it falls on the right side, it will be considered BLUE. The line that 

separates the two classes is referred to as a hyperplane. 
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Many different types of hyperplane can separate two classes. The optimal separating 

hyperplane, as proposed by (Han, Kamber and Pei 2011), is the hyperplane that 

maximises the distance between the plane and each class’ closest data point, thus, 

maximising the separation of the classes. In Figure (2-12b), the optimal separating 

hyperplane is shown as a black line. The features along the boundaries are called “support 

vectors”. It is the support vectors that are used to differentiate the two classes.   

 

 

 

 

 

 

 

                        (a)                                                                                (b) 

Figure 2- 12: Diagram Representation of the Principle of SVM. (a) SVM attempts to Maximise 

the Margin from the Hyperplane to find the Best Separate between two Classes (red positives 

from blue negatives) (b) Optimal separating Hyperplane. 

There are different steps to classify a new case: - 

i. Two different subsets will be used, which are training and testing. The training 

was spilt form the dataset regarding class label to train the SVM and also to find 

the best hyperplane based on margin maximisation among two classes. 

ii. All training points consistent with the mean (μ) and the standard deviation (σ) was 

standardized to find the support vectors. This process is done on all training 

samples for each feature component domain:    

Si = xi−μ/ σ                                                           (2.1) 

iii. The score of the test case will be calculated based on the Lagrangian formulation  

𝑆𝑐(𝑥) = ∑ 𝛼𝑖 𝑘(𝑠𝑖, 𝑥) + 𝑏𝑛
𝑖=1                                          (2.2) 

 

Where Si is a support vector, αi is the weight of Si, n is the number of support vectors, k 

is a kernel function. In the case of a linear classifier, the kernel function k is simply the 

inner product <si, x> and the bias b.  
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i. If the score is less than zero, then x is classified as positive. Otherwise, it is 

classified as negative.  

2.4.2 k-Nearest Neighbour (kNN) Classifier 

The k-Nearest Neighbour (kNN) classifier method was first proposed by (Fix and Hodges 

Jr 1951)and is still being used today for pattern recognition. This works by classifying an 

unknown feature to the category in which the highest percentage of its neighbours 

belongs. In this first step, patterns that are used for training, also referred to as feature 

vectors, are oriented in the feature space that is multi-dimensional. The distance is 

calculated between the feature vector and the unknown feature using a distance metric. 

The most frequently used distance metric is the Euclidean distance metric (Webb 2003). 

The kNN algorithm for classification is outlined as follows: 

1. Compute the distance between test case X = (x1, x2, …, xn) and each training 

templateY = (y1, y2, …, yn) using a distance measure such as the Euclidean 

distance D2: 

                                        𝐷2 (𝑋, 𝑌) =  √∑ (𝑥𝑖 
𝑛
𝑖=1 − 𝑦𝑖 )

2                                     (2.3)                                 

2. Sort all distances in ascending order and identify k nearest neighbours of X: Y1, 

Y2, …, Yk, where k > 1 

3. Assign X the class label of the majority among Y1, Y2… Yk, 

In Figure 2-13, an example of the kNN algorithm is illustrated. If K is equivalent to 2, the 

green dot (unknown vector) will be categorised with the red triangles. However, if K is 

equivalent to 3, it will be categorised with the blue squares. Note that when K=5, the blue 

squares win, as the majority of the neighbours are also blue squares (i.e. 3 nearest blue 

squares, only 2 nearest red triangles.  
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Figure 2- 13: Illustration of the working of kNN classifier. 

2.5 Summary  

This chapter reviewed the background on medical imaging and computational besides its 

use as a reliable tool that helps to diagnose, treat and monitor patients. The US is 

considered as an ideal imaging system for gynaecological diagnosis abnormalities. 

Ovarian cancer is one of the most common malignancies in women and is the leading 

reason for death from gynecologic tumours. This means that finding effective computer-

based solutions to solve both problems is timely and desirable, and any positive 

contributions that can be made will bring benefit to improve patient care and reduce the 

loss of life.  

The interpretation of the ultrasound image, however, is highly dependent on the ability 

and experience of the observer. Very often, an observer makes a diagnostic decision with 

a level of certainty. In certain cases, the observer may not be entirely certain in his/her 

diagnostic decisions, and often in those cases, expert opinions, sometimes from more than 

one expert, maybe sought in assisting the diagnosis by combining the decisions into a 

final sensible outcome. This process will increase the level of confidence and lead to 

better diagnosis results. Also, quite often, there will be different opinions from different 

experts in diagnosing a specific case, resulting in an “inclusive case” that needs to be 

further examined.  

Regrettably, the limitations in the human eye-brain visual system, reader fatigue, 

distraction, and the presence of overlapping structures in images might cause detection 

and interpretation errors. This increases the number of false-positive and false-negative 

results. Therefore, there is a need to develop a computer-aided diagnosis system CAD for 

the purpose of detecting the gynaecological abnormality in an early stage. CAD could be 

used as a support tool for automating the measurements of the values for certain 

parameters in order to improve measurement precision and avoid Intra and inter-observer 

variations in manual measurements of the parameters. Besides, modern image processing 
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techniques that have been developed and matured in the past few decades may offer 

alternative and effective features that can be directly extracted from US images that are 

“outside” of the known parameters to medical experts. Indeed, we have already started to 

witness rapid developments of such “alternative” descriptive features in various fields of 

application in recent years. In the next chapter, we shall review existing work related to 

this thesis objectives. 
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Chapter 3 

Computerised Ovarian Tumor Diagnostic – A Literature 

Review 

In chapter 2, we gave a brief description of the different types of ovarian tumours. We 

also highlighted the crucial role of B-mode ultrasound images within the standard clinical 

approach to ovarian cancer diagnostic. Reliable interpretation and analysis of ultrasound 

images are dependent on the medical expertise and experience of the observer, which may 

be subject to considerable variation. Therefore, the manual process involves multiple 

subjective decisions that are subject to inter- and intra-observer differences which may 

lead to difficulties and even errors in the diagnosis stage, (see (Wang, et al., 2002; Giger, 

Chan, & Boone, 2008)). These concerns are compounded by the increased demand for 

rapid analysis of Ultrasound images necessitated by the desperate need for early detection. 

Shortage of highly experienced clinical experts can only be mitigated by developing 

reliable computerised ultrasound image classification algorithms as diagnosis decision 

support tools. In chapter 2, we also described the design strategy for such systems and 

discussed briefly their main requirements and ingredients. This chapter is a follow up on 

the previous one by reviewing existing work in relation to the various stages of automated 

diagnostic tools pipeline. We shall highlight the shortcomings/limitations if any, that this 

thesis aims to overcome and point out our approach to dealing with each stage. We first 

review in section 3.1 the literature relevant to the main challenges and solutions 

associated with pre-processing, and then discuss existing work in section 3.3 on tumour 

ROI segmentation. Most relevant existing feature representations of ROI from ovarian 

scan images will be reviewed and briefly described in section 3.4, prior to reviewing 

existing automated or semi-automated diagnostic decision systems for ovarian ultrasound 

images which will be explained in section 3.5.  

3.1. Ultrasound image Pre-processing  

Algorithms for the analysis of Ultrasound ovarian images must have consistent 

performance regardless of the source of the image data which might be generated by 

different devices operated by different persons who may have a different level of training. 

The process of image acquisition and transmission of the scanned images may result in 

variation in image quality that may have an adverse impact on the feature extraction step 
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and subsequently on the analysis of these images. Accordingly, some pre-processing need 

to be applied to the scanned images to ensure compatibility with the system requirement 

and reduce the adverse impact on analysis. 

Image size and formats need to adhere to a strict rule, and hence, reliable image re-sizing 

procedures are essential. The more serious issue that needs to be dealt with is that of 

enhancing image quality to a standard level range. The most concerning aspects of image 

quality is that of the presence of noise, artefact and other forms of image degradation. 

Noise and artefacts are generated in different types of medical image modalities, and in 

the previous chapter we pointed out that the main concern in this respect for US images 

is that of the presence of speckle noise.  

3.1.1 Image Noise - Nature characteristics 

Identifying the nature of the noise is vital when selecting the type of filter to use when 

rectifying an image. Noise is visible in the image through unwanted variation observed 

in brightness or colour. One example is electronic noise, which can be caused by the 

sensors of a digital camera or a scanners’ circuitry. Noise can appear because of a slow 

shutter speed or from light generated through high exposures (Hedrick and Hykes 1989). 

There are other types of noise, such as salt & paper, quantisation noise, and impulse noise. 

This study focuses on multiplicative noise, also known as speckle noise.  

Speckle is a type of locally correlated multiplicative noise that distorts ultrasound images 

and makes observations somewhat challenging. The problem has been around from the 

early days in the 1970's and has been the subject of many research efforts on how to deal 

with it. Its adverse effect is more apparent when dealing with small low-dissimilarity 

lesions. It is important to remove speckle from images while preserving vital information. 

Speckle noise reduction methods can enhance the image and allow for more accurate 

manual diagnosis of medical conditions (Tamilkudimagal and Kalpana 2011). 

Medical ultrasound images rely on biological tissues scattering or reflecting incident 

sound and the concepts of scattering and reflection are linked. If a particle reading is 

below a sound’s wavelength, it is identified as scattering, while when it is larger than the 

wavelength, it is known as reflection. This variation, like the acoustic waves, is caused 

by differences in the medium’s thickness or compressibility. Once the back-scattered 

acoustic pulses arrive back to the transducer, they receive acoustic energy with 

constructive and destructive involvement, which causes a granular pattern referred to 

speckle noise (Dangeti, 2003; Burckhardt, 1978). It has a negative impact on image 

quality because it hides and distorts essential features, especially around the edges. 
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Distortion makes image segmentation and post-processing operations more difficult and 

can reduce the diagnostic value of the image (Zhu, Ni, Li, & Gu, 2009; Xie, Jiang, Tsui, 

& Heng, 2006). Figure 3-1 shows the effects of speckle on ultrasound images of an 

ovarian tumour. The reduction of speckle noise is vital for effective automatic processing 

and analysis of ultrasound images. 

(A)                                                                         (B) 

Figure 3- 1: Illustration of speckle noise and its effect:  (A) Example of speckle noise and (B) 

US image of an ovarian tumour corrupted by speckle noise. (Dangeti 2003). 

3.2 A Review of Image De-Noising Algorithms  

Depending on the characteristics of the noise in an image, a variety of de-noising schemes 

have been deployed that generally adopt spatial and frequency domain filtering (Dangeti, 

2003; Zhu, Ni, Li, & Gu, 2009). In (Nobi 2011) presents an efficient and straightforward 

method for noise reduction from magnetic resonance (MR) images and ultrasound 

images. The authors in (Nobi 2011) proposed a modified median filter with additional 

features and shown that their results outperform three commonly used image filtering 

algorithms based on order-statistics filters (i.e. mean, median and midpoint).  

Wavelet transforms, and filters have been used for de-noising several types of biomedical 

images (N. a. Attlas 2014). These approaches have also been used for de-noising natural 

images. Generally, the work by suppressing certain high-frequency wavelet coefficients 

that isolated from edge coefficients that tend to form spatial clusters in the high-frequency 

sub-bands. Having removed such isolated coefficients, the de-noised images are obtained 

by inverting the wavelet transform using the modified sub-bands. Normally, the detailed 

Low-Low sub-band will not be modified. 

Another approach for de-noising, known as the non-local means scheme, has been 

recommended for use in reducing speckle noise in ovarian ultrasound images (Khazendar, 

et al. 2015). The non-local means scheme assumes that the presence of many intensity 

similar patches throughout an image are indicators of the effect of noise on the centre of 
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these patches and therefore reducing variation in the intensity of those central pixels helps 

reducing noise. It works by replacing individual pixels in the image by weighting the 

average of all pixels with comparable neighbourhoods. The benefit of using this filter is 

that all-important information is retained while speckle noise is reduced. This filter also 

takes advantage of the properties of the image, such as redundancy and self-similarity. 

The non-local means filtered image is further enhanced with a negative transformation 

that computes the absolute difference between the improved image and the original 

image. This results in clearer texture and improved quality, especially around the edges 

and important features. For Ultrasound Ovarian scans, this scheme seems to provide 

improved details within ovarian cysts. 

The Wiener filter is a well-known inverse transform that is used to estimate and remove 

unknown image degradation models, including noise.  In (Garg, et al. 2011) the Wiener 

filter was used to remove speckle noise by thresholding the discrete wavelet transform 

domain. First, the multiplicative noise was converted to additive noise by applying a log 

transform. Next, the image is Wiener filtered, the output of which is subtracted from the 

log-transformed observation.  

A comparative study was conducted, in (Attlas and Gupta 2014), using different types of 

de-noising filters for ultrasound images, including Weiner filter, Bayes wavelet filtering 

and Morphological filtering technique. Different statistical quantity parameters 

measurements were used to assess enhanced images. It was found that the Morphological 

filter outperformed the alternatives. Initially, the different filtering methods were 

compared with the de-noising schemes that combined discrete wavelet transform (DWT) 

with the Wiener filter and (DWT) with median filter, as well as, one combination of both 

Wiener filter and the median filter used together to remove the speckle noise. The authors 

in (Attlas and Gupta 2014) again compared the results using statistical measurements and 

found that the DWT performed better than the alternatives. 

In another study, a Wiener filter was combined using a wavelet domain with soft 

thresholding as a comprehensive technique (Sivakumar 2010). The authors in (Sivakumar 

2010) compared the efficiency of the wavelet-based techniques for de-speckling with 

other classical speckle reduction filters. Statistical quality measures were also used to 

determine the performance of these filters. The results were obtained by displaying the 

various filtered US images according to their statistical measures as representing the 

visual quality of the images. The Wiener filtering with Bayes Shrink thresholding 

technique in the wavelet- domain performed the best out of filtering techniques.  
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Another study, a hybrid filter was proposed by (Metha 2017) based on wavelet transforms 

and winner filter to reduce the effectiveness of the speckle noise in US images. The 

multiplicative noise was converted to additive noise by applying a log transform. After 

that, the wavelet was used to decomposition the images into four levels.  The statistical 

parameters and threshold value were computed for each sub-band.   Then, the soft 

thresholding used on all subbands and then inversed the WT to produce the de-noised 

image. The Weiner filter applied to the results of the WT images for the final de-noised 

image. 

In another study, different types of speckle-noise reduction methods were compared 

based on statistical quality measures to de-noised the US images of polycystic ovary. The 

authors in (G.Vasavi and S.Jyothi 2019) compared between median, Wiener, Gaussian, 

anisotropic diffusion, Non-Local Means (NLM) and others to find the best filter to 

remove the speckle noise. After evaluating all noise removal filters, the authors found 

that the NLM filter is outperformed the reset methods. 

Despite limited success, a recent survey conducted by (Zhu 2009) summarised and 

highlighted some significant disadvantages of existing de-noising research. Firstly, each 

filter is sensitive to a specific model of noise. Secondly, most filters succeed in reducing 

noise in smooth and background areas, but they do not perform as well when enhancing 

features like edges. Thirdly, most existing filters are not adaptive and have the “smoothing 

effect” on borders and other distinct image features. Therefore, noise removal for medical 

ultrasound images is still a challenging task as it may have undesirable effects on image 

texture, which in turn may have an unexpected effect of diagnostics.  

In this thesis, we shall show experimentally that diagnostics decision is tolerant to a 

certain level of speckle-noise, and we shall develop an adaptive speckle de-noising 

approach that is only applied to parts or all image whenever needed.  We shall 

demonstrate that this is an efficient scheme that inhibits sufficient amount of speckle noise 

in ultrasound images of ovarian tumours without adversely influencing the image texture.  

3.3 Segmentation of US Images of Ovarian Tumour 

One of the most challenging tasks in digital image analysis is that of segmentation stage 

(Khiyal, Khan and Bibi 2009). The process of image segmentation aims to isolate specific 

region(s) of interest (e.g. a particular tissue or organ) that is deemed necessary for 

diagnosis. Accurate segmenting ovarian tumour regions in ultrasound scan images is 
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expected to enable us to extract the most relevant digital texture features that discriminate 

different types/stages of tumour.  

The area of interest can be isolated manually, but success is dependent on the expertise 

of the specialist operator. In general, automatic image segmentation relies on the 

discovery of digital features (in the spatial and/or frequency domain) that exhibit different 

quantitative values/statistics in the RoI than outside it. In natural images, visually objects 

of interest are easy to distinguish from their surrounding regions in terms of colour, 

texture and semantics.  Therefore,  segmenting objects/RoIs in many such cases relies on 

discovering thresholds that separate the objects from the so-called background. The main 

shortcomings of these approaches to segmenting natural images relate to variation in 

image quality and recording conditions, the presence of noise and occlusions, among 

other factors.  In biomedical images and ultrasound ovarian scan images, the challenge of 

segmenting areas of abnormalities is rather much tougher than the case of segmenting 

natural images for a variety of reasons. Indeed, automatic ovarian tumour segmentation 

still requires further investigation, with (Sohail, Rahman, et al, 2010; Hamid, 2011; 

Khazendar, et al., 2014; Khazendar, et al., 2015; Aramendia-Vidaurreta, et al, 2016) 

reporting the subject as very challenging.  

Several approaches were nevertheless investigated and proposed for segmenting the ROI 

in ultrasound images in relation to detecting different kinds of ovarian abnormalities. In 

(Harrington 2007), the authors proposed a method that can automatically segment ovarian 

follicles. Although, ovarian follicles generally appear dark on an ultrasound image but 

not every dark connected region is a follicle. Instead of thresholding, the authors used 

Harrington’s geometric active contour models to isolate the dark regions in the 

ultrasound. Following this, to determine if the dark region is an ovarian follicle, a Bayes 

classifier method is used. Although this maybe a plausible method to segments cysts 

septum, unfortunately, the appearance of non-solid visible tissue inside a large dark area 

may not represent a common border between two chambers.   

Finally, we observe the need to extend our review to other ROI segmentation in 

Ultrasound images of non-ovarian tissue in relation to diagnostics of cancer in other body 

tissues/organs.   

In a study on segmenting prostate regions, (Rafiee, Salimi and Roosta 2008) suggested a 

similar semi-automatic US image segmentation method for automatically isolating the 

prostate boundary. Specific seed points are chosen from the prostate, followed by an 

active contour procedure. Numerous researchers have validated this technique and have 
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yielded similar results to a manual segmentation method conducted by experts. 

The left ventricle of the heart has furthermore been segmented using a method 

recommended by (Landgren, Overgaard and Heyden 2013). This semi-automated 

technique is based on the snake method, where two set points are identified, and 

segmentation occurs over a whole cardiac cycle. In an alternative study (Deshpande, et 

al. 2013) Offered another automatic segmentation method for two-dimensional foot 

ultrasounds. This method is completed in three steps. In the first phase, the image is 

enhanced through an anisotropic diffusion filter and the improvement of contrast. The 

second step involves segmentation through an active contour technique, yielding a binary 

image. In the final step, boundaries are enhanced, and undesirable regions or objects are 

taken out of the image.  

In (Saranya 2016) an automatic follicle detection system is proposed using an Adaptive 

Particle Swarm Optimization technique that overcomes the challenges in detecting 

follicles from the ultrasound ovary images. In this paper, an idea is introduced to optimize 

the objective function described by the modified Otsu method using the Particle Swarm 

Optimization (PSO) and proposed Adaptive Particle Swarm Optimization (APSO) 

approaches. The problem of thresholding is reduced to an optimization difficulty in order 

to search for the thresholds that maximize the between-class variance. This approach is 

when finding an optimal set of thresholds with a larger between-class variance than the 

other approaches. This method was applied to 158 ovarian images. They discussed the 

result in two ways: 1) measure some geometry feature and then compare the proposed 

model measurements with both expert measurements and other existing methods 

measurements. 2) Showing some segmented images. Based on the result, we can clearly 

see the effect of the proposed APSO method. 

Although, the above research investigations help understand the challenges of segmenting 

ovarian tumour from Ultrasound images, but our objectives are likely to benefit more 

from research into other types of ovarian abnormalities. The use of Ultrasound scans of 

the ovary during pregnancy is by far the most frequent practice, and segmenting the 

Gestation Sack (GS) is a major step in ant research that aim to computerise miscarriage, 

in (Ibrahim, Al-Assam and Du, et al. 2016), developed an automatic segmentation of the 

GS from a static B-mode image scan of the ovary for early identification of miscarriage 

cases. The algorithm has been developed through a multi-stage refinement that exploits 

the well-established geometric features, shape and content of the GS. Recognising the 

adverse effect of speckle noise on these features, the scheme begins by suppressing the 
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speckle noise and to enhance the image prior to applying wavelet transformation. Then, 

the mean value is applied as a threshold to binarise the image, followed by filtering 

unnecessary objects based on their circularity, size and mean of greyscale. The mean 

value of every object is afterward used to further select candidate objects from a number 

of potential candidate regions.   Despite considerable success, the detected region in some 

cases have a missing part of the boundary or do not fit the expected shape of a GS. As a 

result, a Region Growing technique was used as post-processing to improve identification 

of the GS.  Unlike the GS region, tumour cysts regions vary in shape, size and content 

from one case to another.     

In (Ibrahim, Al-Assam and Jassim, et al. 2017), the author of the above scheme 

investigated the use of a multi-level trainable machine learning segmentation technique 

with the aim of reducing false positives. It was noted that the histogram of oriented 

gradients (HOG) in blocks away from the GS exhibit different characteristics to blocks 

on the border or inside the GS. Therefore, the first step of their proposed segmentation 

scheme is based on training a neural network classifier with blocks from outside GS and 

blocks from the border of the GS. Besides segmenting the GS, this scheme helps estimate 

the size of the GS. Interestingly, they also used the second level of trainable segmentation 

to detect and measure the size of the Yoke Sack (YS) inside the GS. The efficacy of the 

proposed solution was tested by examining automatic size measurements of GS and YS 

in comparison with measurements obtained from the gynaecologist. Results from testing 

199 ultrasound images using the proposed solution show that it is effective in accurately 

measuring and identifying the correct stage of pregnancy. 

We note that the trainable segmentation approach, adopted in (Ibrahim, Al-Assam and 

Jassim, et al. 2017) for the GS segmentation,  together with the active contour shape 

approach may have the potential for success in relation to ovarian tumour region of 

interest. For that, we need to use one or more image texture features that can distinguish 

blocks of normal ovarian tissue from tumour (Benign or Malignant) blocks. However, the 

amount of work needed to develop such an automatic segmentation scheme is deemed to 

require somewhat extensive research that would be better taken after achieving success 

in showing the viability of using AI and machine learning for diagnostic purposes. We 

note that segmenting tumour masses is somewhat very different and more challenging 

than segmenting the GS and its content during pregnancy. In fact, the existing dataset for 

US ovarian tumour scan images displays wide disparity in tumour shape, size, and 

position, and it can be difficult to differentiate if the region of interest and background 
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region do not contrast (Zhang 2006; Ozgen 2011). Factors that impede and complicate 

automatic ovarian tumour segmentation includes: first, the image quality: it influences 

segmentation processes due to the unclear demarcation of the tumour border. Second, the 

size of a tumour: it may be observed to be large in the images of the dataset, and 

complicated by an unclear delineation of a tumour inside the fan area. Third, the 

similarity of texture: this may be present within tumour location and the neighbouring 

background in some of the images, leading to challenges in presenting an automatic 

demarcation of the tumour border, especially if there is only one static B-mode image. 

Fourth, different textures may exist inside one tumour: this may occur in some 

instances, whereby several elements having specific inner borders (e.g. multilocular cyst) 

may be present within one tumour. Finally, the combination of the above: a 

combination of all features may be observed in a single image. The above factors justify 

the adoption of a semi-automatic approach for tumour segmentation. Table 3-1, below, 

show samples that highlight some of the challenges. In this thesis, we shall not focus on 

this issue and opt for using manual cropping of the ROI by the medical operator. 

Table 3- 1: Lists some examples that illustrate the different problems mentioned above. 

The large size of a tumour Poor quality of the image Tumour and the background 

are the same texture 

 

 

 

 

 

 

 

 

 

Undefined the border for a 

tumour. 

The different textures inside a 

tumour. 

Large ovarian tumour 

undefined the border. 

 

 

 

  

 

The issues highlighted above are listed accordingly in Table 3-1. Despite such concerns, 

this work is adamant regarding the feasibility of automatic segmentation, but the scrutiny 

is directed more towards the reliability of the feature extraction processes. Therefore, the 

segmentation procedure was undertaken manually as per guidance from domain experts; 
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the resulting outcomes were then assessed and verified by the experts. ImageJ was utilised 

to perform manual segmentation due to its frequent use in biomedical image analysis. 

Additionally, Figure 3-2 illustrates instances of ovarian tumour images that were 

manually segmented, which are defined using yellow borders.  

 

 

 

 

 

Figure 3- 2: Manually segmented ovarian tumour regions marked by yellow borders. 

3.4 Texture Representation of Segmented Ultrasound Images  

Once the region of interest (ROI) is segmented, manually or automatically, and confirmed 

validity preferably in consultation with medical experts the process of feature extraction 

is the next step to create a feature vector representation of the segmented region and 

preferably quantifying texture of the image in a form that helps discriminate Benign 

tumours from Malignant ones. In the medical domain, interesting results have been 

reported on using image texture analysis for diagnostic purposes. In ultrasound images, 

many studies focus on characterising B-Mode images.  

Texture analysis of ultrasound images is governed by the principle that if the disease 

process affects the structure/texture of tissues, then the diseased tissue should reflect 

ultrasound wave signals differently to healthy tissue (Morris 1988), i.e. texture features 

extracted from the US scan of diseased tissue are expected to differ from those obtained 

from the US scanned healthy/normal tissue. The transformation of cancerous tissue, for 

example, results in the changes in the tissue characteristics due to nature of cancerous 

cells such cells continue to divide, grow and create own networks of cellular structures 

necessary for their growth. Therefore, it is expected that the textural features of cancerous 

tissue and healthy, as well as abnormal benign, tissue, be noticeably different.   

In chapter 2, we described the classification of different models of image texture 

descriptors. One such model was the structural-based texture divided into microtexture 

(e.g. sharp corners and end of lines primitives) and macrotextures defined in terms of a 

gradient of spatially arranged micro-texture primitives. Statistical texture models, on the 

other hand, focus on non-deterministic properties/moments of distributions of grey levels 

in the ultrasound image.  Other image texture representation methods include Model-
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based and transform-based methods. However, the statistical-based texture features have 

been more popular in analysing medical images for identification of texture within human 

tissues, (Julesz 1975). It is worth noting that these different models are not exclusive. For 

example, image structural and transform-based textures are often quantified through 

statistical analysis of the distributions of the obtained structural primitives and 

transformed coefficients. In the following subsections, we shall attempt to review several 

commonly investigated image texture features, but according to slightly modified 

categorisation, we highlight their use in representing abnormal regions of ovarian 

ultrasound images. In the next chapter, we identify a list of several such features 

extractable from the spatial domain of B-mode Ultrasound ovary scans, formally describe 

their computation, and test their performances in terms of distinguishing benign from 

malignant ovarian tumours. 

3.4.1 Statistical based Image Texture descriptors 

There are many image texture representations within this model. The simplicity and 

computational efficiency of statistical texture feature explain their popularity in general 

image analysis applications, including analysis of medical images (e.g. see (Khazendar, 

Shan 2016)). The simplest such statistical model is the histogram-based representation of 

image texture that consists of six parameters extracted from the image (or the RoI) spatial 

domain: mean, variance, skewness, kurtosis, energy and entropy. Together these features 

provide information about the shape and distribution of the image histogram, and it has 

been suggested that together, these measurements have a high discriminative power to 

distinguish between different images. Figure 3-3 shows examples of the histogram 

distributions for various ultrasound images. 

 

 

 

 

                               (a)                                                                        (b) 

Figure 3- 3: Histograms of ultrasound ovarian tumour image (a) Benign, and (b) Malignant. 

The simple Histogram texture descriptor suffers from the fact that a large number of 

different images can be constructed from a histogram. A more sophisticated statistical-

based texture feature representation of images that reduces the effect of this problem is 
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the so-called Histogram moments, a popular example of which is the seven Hu moments, 

(details in next chapters). An alternative statistical-based texture descriptor is provided 

by the Gray Level Co-occurrence Matrix (GLCM). The GLCM is second-order statistical 

texture representation defined by the conditional joint probabilities of all pairwise 

combination of spatial domain intensities, and it is often calculated in image blocks.  

These statistically-based texture descriptors have been used (either singularly or jointly) 

for retrieval and classification of abnormalities in ovarian ultrasound images, (see, e.g. 

(Sohail, Rahman, et al, 2010; Ibrahim, Dheyaa Ahmed, 2018)). 

For natural images, some or all these statistical moments are used for texture analysis and 

classifications in the spatial domain as well as frequency domain and many transform 

domains. In fact, histograms and probability distributions form a common representation 

of transformed data. Examples of transformed texture features that depend extensively on 

histogram analysis of non-spatial domain image representation include Gabor wavelet 

transform and Histogram of Oriented Gradient, as well as the texture model in the next 

subsection.   

3.4.2 Transform-based Texture Descriptors  

A variety of natural image transforms have been developed in the past as a 

complementary representation of image content and have been used for different image 

processing/analysis applications as well as security procedures. Such transforms include 

Frequency domain transforms (e.g. Fourier and wavelet), gradients and Local Bina 

Patterns transform (LBP). These types of feature vectors are commonly used in many 

texture-based image analysis applications, including for diagnosing certain types of 

ovarian tumours, (e.g. see (Khazendar, et al., 2014; Khazendar, et al., 2015)).  The LBP 

transform/concept was introduced by (T. M. Ojala 1996) in relation to face detection and 

recognition. The LBP transform of an image acts as a non-linear filtered version of the 

image, whereby each pixel is replaced by a byte representing the order relation between 

the pixel value and its 8-immediate neighbours scanned in a clockwise manner starting 

from to top left corner. If the neighbour is ≥ than the centre pixel, then the corresponding 

bit is replaced with 1 otherwise it is replaced with 0. This is normally referred to as the 

(8, 1), form LBP image code the analysis of which is a transformed based texture model.  

This LBP texture model is often quantified by different histograms of the LBP codes but 

the simplest being the 256-bin histogram created for the ROI image. This allows for easier 

identification of texture information in the ovarian masses because the LBP captures the 

local changes in the grey values throughout the image.  
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 A variant of this representation of transformed based texture is offered by a 59 bins 

histogram representing 58 bins for the so-called uniform LBP (bytes that have no 1’s or 

a single run of 1’s), and the 59th bin represents all other non-uniform LBP codes.  Pixels 

that have ULBP codes indicate primitive texture features, e.g. corners, spots, and end of 

lines/edges in digital images. Figure 3-4, below, illustrates two cropped images of 

ultrasound scans of ovarian tumours together with their LBP transformed images as well 

as their 256-bins and 59-bins histograms. 

 

 

 

 

 

 

 

                                                                  

                        

 

 

 

Figure 3- 4: LBP histograms for ultrasound ovarian tumour image of (a) Benign, (b) Malignant. 

3.4.3 Geometric based Texture Descriptors  

Geometric and shape characteristics of image objects include irregularity of their 

boundary, their dimensions and orientation, the curviness of textural/structural primitives 

inside them. Cellular structures created by cancerous cells growing within a suspect 

tumour region are expected to have a greater deal of irregularity than inside benign 

tumour. Fractal geometry is a well-established mechanism to understand and categorise 

geometric shapes that are self-similar at different scales, (Mandelbrot 1983), and hence 

provides the adequate means of measuring irregularity of cellular network structures. The 

main objective of fractal geometry is to distinguish dimensionality of 1-dimensional 

curves when embedded in and fill 2-dimensional shapes. The Fractal dimension (FD) of 

256 Bins 59 Bins 

b 

256 Bins 59 Bins 

 

a 
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a curved image shape is a real number that categorises the geometric complexity of its 

texture and is different from both intrinsic and Euclidean dimension. It is an indicator of 

roughness/jaggedness of the tissue texture so that larger FD indicates a more jagged shape 

texture. In Acharya et al (Acharya, Saba, et al. 2012b) used FD, GLCM and Histogram 

moments for characterisation and classification of ovarian tumour from 3D ultrasound 

scans.  

The FFGF Frequency domain ultrasound ovarian image texture descriptor, introduced by 

(Khazendar, Shan 2016), is an interesting low dimensional feature vector that can be 

characterised as a geometric descriptor.  Texture features are extracted from the 

centralised Fourier transform spectrum of the image through a process of binarization 

using thresholding high-frequency coefficients (as indicators of significant geometric 

texture primitives spread throughout the spatial domain image). At a certain threshold, 

this process results in an elliptical shape bright cluster, the dimensions of which form the 

FFGF descriptor. The FFGF and its modified versions were used for automatic 

classification of B-mode Ultrasound ovarian scans into Benign and Malignant cysts.  

Interestingly, groups of ULBP codes that have the same number of 1’s are obvious 

examples of geometric texture descriptors that have been used with success in analysing 

natural images for the detection of image tampering,  (Asaad 2017).  

This section revealed a variety of image texture feature models and descriptors, of 

different dimensionalities, some have been already used in analysing natural as well as 

biomedical images including ultrasound ovarian scan images. In the next chapter, we shall 

describe several of these descriptors and test their performances in predicting ovarian 

cysts abnormalities.    

3.5 Existing Computer-based Ultrasound Ovarian Tumour Diagnosis  

Gynaecologists have long recognised the benefits of analysing US images in detecting 

and diagnosing ovarian abnormalities, and developed schemes/rules to manually 

identifying morphologic features observed in B-mode images like unilocular cysts, 

multilocular cysts, solid tumours, fluid, papillary projections, internal wall structure and 

acoustic shadows. Moreover, Doppler ultrasound images were adopted to gain vital 

information about blood flow. Together, these indicators are useful to determine the 

severity of the cyst. The International Ovarian Tumour Analysis (IOTA) developed 

several scoring systems, through a refinement process, on using sonographic features. 

These models are the logistic regression models (LR1, LR2) (Timmerman, Van Calster, 
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et al. 2010), the risk of malignancy (RMI) (Tingulstad, et al. 1996), Simple rule 

(Timmerman, Ameye, et al. 2010), and most recently, the ADNEX model (Van Calster, 

et al., 2015; Kaijser, 2015). While the use of a scoring system helps to improve the test 

performance, according to (Gramellini, et al. 2008) the existence of several scoring 

systems can lead to inconsistencies in clinical decision emerging as a result of a number 

of factors most prominently variation in examiners expertise. Experienced ultrasound 

examiners use additional demographic information when estimating the types of tumours, 

while less experienced examiners may struggle to acquire the necessary ultrasound 

morphology information. Unfortunately, there is no consensus regarding the correct 

categorisation of morphology information. Moreover, a high percentage of tumours do 

not conform strictly to some or all the stated rules, and not all masses yield relevant 

information. Finally, the scoring systems work well with tumours that are easily 

classifiable using pattern recognition, but less well with those that are not (Timmerman, 

Ameye, et al. 2010).  These challenges, as well as the high cost to healthcare systems, are 

among the motivations for research into the use of computerised tools to assist in the 

process of decision making.  

Advances in scientific research into cancer have led to the emergence of the hypothesis 

that links the onset of cancer ovarian tissue with changes in the texture features in 

ultrasound scans of the ovary. This, together with the rapid increase in computational 

power, explains the recent interest in investigating and developing texture feature 

descriptors and designing algorithms to testing their viability for discriminating benign 

from malignant tumours.  Moreover, the rapid emergence of Machine learning as a source 

of efficient tools for analysing and discovering characterising patterns in massive 

amounts of natural and medical images.  

Having described the categorisation of image texture features and illustrated the plethora 

of such ultrasound image relevant texture, we shall know review existing research 

approaches that exploit the great opportunities provided of AI and Machine learning to 

develop automatic diagnostic support tools.  The various schemes, reviewed in this 

section, have a common structure in that all follow more/less the pipeline described 

above, while the main differences relate the choice of texture descriptor, or combination 

of them, the classifier employed in determining the performances of these descriptors, the 

experimental dataset used, and the main objectives of the proposed scheme including type 

of tissue targeted, the scanning modality and the abnormality of interest.  Most existing 

schemes use manual segmentation of the region of interest. For the pre-processing step, 
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generally no explicit discussion is made, but the problem of speckle-noise is dealt with 

by one of the above de-noising schemes, applied to all trained and tested images 

regardless of the intensity of the speckle noise.      

Research has been conducted to evaluate the power of different US image texture features 

in discriminating between Benign and Malignant tumours, classifying different types of 

ovarian tumours as well as detecting pregnancy abnormalities such as miscarriages. In 

(Sohail, Rahman, et al, 2010) an automatic method was proposed to classify three 

different types of benign ovarian tumours namely; Simple Cyst (187-images), 

Endometrioma (154-images) and Teratoma (137-images). In total, 478 images were used, 

and the statistical texture features were extracted using 64 features-based histogram 

moments, along with 56 features extracted from GLCM in four directions. Average 

classification accuracy of 86.90% was achieved in identifying different types of benign 

tumours.  

In (Acharya, Saba, et al. 2012b), investigated the performance of a Decision Tree (DT) 

classifier to classify ovarian tumours from 3D ultrasound ovarian scan images.  They 

extracted Higher-Order Spectra (HOS) features from the image that combines the Fractal 

Dimension with GLCM and Histogram moments. Due to the fact that this mixed texture 

feature is of high dimension, the authors apply dimension reduction based on feature 

selection. The images used were only from 20 patients (10 benign and 10 malignant), and 

the training benefitted from an abundance of images (1000 images from each benign and 

malignant tumours). The proposed scheme performed well and achieved 95.1% accuracy. 

In an alternative investigation, the authors used advanced imaging and a probabilistic 

neural network (PNN) classifier to achieve an even higher accuracy of 99.8%. This 

method involved using Hu’s invariant moments and Gabor transform parameters and 

entropies for feature extraction. However, again it was based on the same 20 patients were 

used to derive the 2,600 images in this study (Acharya, Mookiah, et al. 2014), and 3D 

colour Doppler images were used instead of B-mode ultrasound.  

The well-known SVM classifier was investigated, in (Khazendar, et al., 2014;  

Khazendar, et al., 2015) with Local Binary Pattern (LBP). and adapted to determine the 

strength of LBP histogram texture descriptor in distinguishing Benign from Malignant 

ovarian masses from a B-mode ultrasound scan of the ovary.  The authors, not only 

determined the performance of the LBP  but also introduced a simple but very useful 

concept of confidence in the prediction made during fresh testings. This concept differs 

from the apriori statistical confidence interval, in that it is defined at every single decision 
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using the relative distance from the support vector hyperplane. Three discrete confidence 

levels (low, medium, and high) are defined so that the further away a feature is from the 

SVM hyperplane the higher the confidence is. When their LBP scheme was trained and 

tested with a dataset of 177 patients and 187 ultrasound images, classification accuracy 

rates of 69%, 81%, and 90% were obtained at three different confidence levels (low, 

medium, and high), respectively. However, the average accuracy of 77%, at 95%, high 

confidence level, though welcome, was achieved at the expense of a large number of 

potential tumours misclassified.  

In another investigation using the same dataset in (Khazendar, Shan 2016), the authors 

extracted the geometric-based texture feature FFGF from the Fast Fourier Transform 

(FFT) domain. The study has different steps, first, pre-process the ultrasound images used 

a combination of noise removal methods, the second step was to transform an image into 

FFT frequency domain and compute its spectrum, the third step, binarise the FFT power 

spectrum, using a manually selected threshold. The final step determines the best ellipse 

fit of the highlighted shape in the centre of the binary spectrum image from which 3 

parameters were used as the feature vector representation of the tumour. The FFGF 3-

dimensional record of the ellipse are: (major axis, major axis, area). The SVM classifier 

was used to classify between different types of ovarian tumours with an average accuracy 

of 85%. The idea will be later modified in this thesis to extract other ellipse parameters; 

more details will be given in chapter 6. 

Another ovarian tumour diagnostic machine learning-based scheme was developed, in 

(Aramendia-Vidaurreta, et al, 2016) extracts and combine several texture-based features 

to be subjected to certain feature selection process followed by dimension reduction. This 

scheme incorporates the patient's age and uses a Neural Network Learning (NNL) 

approach for classification. When trained and tested on 145 patients (106 benign and 39 

malignant tumours), this scheme achieved an accuracy rate of 98.78 %.  The combination 

of feature selection, from several ones, dimension reduction, and use of NNL classifier 

make it difficult to determine the effect of each feature on decision-making. Moreover, 

no consideration is given to the confidence level of decisions. To some extent, this scheme 

works as a black-box decision-maker, which also characterises the recent trends in using 

Deep Learning Convolutional Neural Networks (CNN) medical diagnostic schemes.     

A recent survey conducted by (Kourou 2015), which shows the importance of ML and 

how it's significant to classify the cancer patients into high or low-risk groups has led 

many research teams, from the biomedical and the bioinformatics field, to study the 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bioinformatics
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application of machine learning (ML) methods. Therefore, these techniques have been 

utilized as an aim to model the progression and treatment of cancerous conditions. In 

addition, the ability of ML tools to detect key features from complex datasets reveals their 

importance. A variety of these techniques, including Artificial Neural Networks (ANNs), 

Bayesian Networks (BNs), Support Vector Machines (SVMs) and Decision Trees (DTs) 

have been widely applied in cancer research for the development of predictive models, 

resulting in effective and accurate decision making. Even though it is evident that the use 

of ML methods can improve our understanding of cancer progression, an appropriate 

level of validation is needed in order for these methods to be considered in the everyday 

clinical practice. The authors in (Kourou 2015)  present a review of recent ML approaches 

employed in the modelling of different types of cancer such as (breast, colon, lung, 

prostate and etc.). The predictive models discussed in (Kourou 2015) are based on various 

supervised ML techniques as well as on different input features and data samples. Given 

the growing trend on the application of ML methods in cancer research. 

3.7 Summary  

This chapter aimed to review the literature on existing work on the computational aspect 

of analysing ovarian ultrasound scans to develop machine learning algorithms that 

support gynaecologist in their decisions with regards to diagnosing benign and malignant 

ovarian cysts. Having outlined the pipeline framework for such machine learning tools, 

and guided by a basic understanding of how cancerous cells grow and create its own 

cellular network within human body tissue it became clear why most research 

publications in the field focus on developing classification schemes rely on the analysis 

of textural features extracted from ultrasound scans of the ovary. We reviewed existing 

work on the initial steps prior to texture features and explained that we would rely on 

manual segmentation by the medical experts at this stage and we shall deal with de-

noising in an adaptive way that depends on the effects of speckle noise on the extracted 

texture feature.  We then reviewed image texture features relevant to the intended task 

which revealed a rich source of such schemes on natural image analysis that could and 

have been incorporating some existing CAD systems that have been developed for 

distinguishing between benign and malignant masses. This review has led to modifying 

the categorisation of texture descriptors into three non-exclusive categories: Statistical-

based, transform-based and geometric-based descriptors. To some extents, this 

categorisation and the review of existing CAD schemes provide the road map for our 

work in the next 3 chapters. 
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Chapter 4 

Texture-based Ultrasound image Analysis for Ovarian Tumor 

classification 

This chapter is the first of 3 chapters that are aimed to develop automatic texture-based 

informative machine learning tool(s) suitable for use in support of correct preoperative 

diagnostic decision making of ovarian masses. The reviews and discussions covered in 

the previous chapter helped to draft a roadmap for conducting our research investigations 

to guide a realistic and effective implementation of a standard pipeline of procedures. 

Although each component of the pipeline is essential for the success of developing the 

intended tool, the most crucial component is that of choosing well-performing image 

features to be extracted from the ROI. For example, the challenge of automating 

segmentation of cysts regions can be deferred at this stage. On the other hand, the 

appropriate pre-processing step should be designed adaptively according to the effect of 

image quality and speckle noise on the performance of the extracted features.  Moreover, 

the choice of classifiers is an aftermath component. Accordingly, this chapter will be 

focusing on developing a set of feature vectors that singularly or together through fusion 

provide effective separation of the images of benign cysts from those of malignant ones. 

4.1 Introduction  

According to the evolving understanding of the way carcinogenesis results in changing 

cellular networks the texture of cysts, the starting assumption of our research is that these 

changes will be manifested in the Ultrasound scan images of the ovaries. To a large extent, 

this hypothesis is backed by the trends in existing research in this multi-disciplinary field. 

Hence, our research will be based on the analysis of a variety of texture descriptors 

extracted from B-mode ultrasound ovarian scan images. Pattern recognition research in 

the non-medical domain has led to a variety of models for quantifying texture features in 

natural images, and it is natural to use these models to extract texture features from 

medical images to derive a pool of texture descriptors. However, instead of focusing on 

the best performing texture features in any area of pattern recognition, we shall first select 

many known and well-understood list of texture features and try to estimate their 

performances.  
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Ultrasound imaging is an imaging modality and application that is extensively used in 

medicine and related areas of research. It offers various benefits in comparison with other 

modalities, such as a non-invasive manner of usage, mobility, low cost, and the potential 

for real-time imaging. However, the process of image transmission and acquisition causes 

images to distorting due to the noise. Noise and artefacts are generated in different types 

of medical imaging modalities, each causing specific and prominent signal and image 

deterioration. Ultrasound produces coherent imaging that is degraded by a category of 

noise termed as speckle noise, which can seriously affect image quality. Such output will 

subsequently alter the medical interpretation and performance of various computer-

assisted techniques. Moreover, the efficacy of the image properties may also hinder the 

different phases of feature extraction, analysis, segmentation, recognition and more, thus 

rendering them unconvincing. However, at this stage, we do not know what would be the 

effect of speckle noise on each of our yet to be selected features or if the effect is uniform 

on all features.  Therefore, we shall not apply any pre-processing procedure but will come 

back to this in the next chapter.  

4.2 Ultrasound Image Texture Feature Descriptors  

In chapter 3, we described and categorised commonly used image texture features, but 

here we shall describe the mathematical formulae for some known features that facilitate 

the computation of their descriptors. The chosen texture features may be classified by 

more than one of the models/categories reviewed in chapter 2.  

4.2.1. Statistics Histogram Properties  

Assume the image is a function f(x, y) with x and y space variables, where y, x=0,1,…,N-

1 and y=0,1,…,M-1. The function f(x, y) can take discrete values i = 0,1,…,G-1. In this 

case, G refers to the total number of intensity levels within the ultrasound image. The 

histogram will show the number of pixels in the entire image at each intensity level, as 

follows: 

                                                                                                                                                

 𝐻(𝑖)    = ∑ ∑ 𝛿(𝑖, 𝑗)                                                           (4.1)

𝑀−1

𝑦=0

𝑁−1

𝑥=0

 

 

Where 𝛿 (𝑖, 𝑗) is the Kronecker delta function 

                                               𝛿(𝑖, 𝑗) = {
1,      𝑖 = 𝑗
0,   𝑖 ≠ 𝑗.

                                                     (4.2) 
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This type of histogram that displays the pixel intensity levels provides a quick summary 

of the statistical data from the original image. Grey-level histograms are calculated based 

on single pixels, providing first-order image information. It is possible to calculate an 

estimate of the probability density of occurrence of the intensity levels by diving the h(i) 

by the total number of pixels contained within the ultrasound image.  

It is relatively easy to compute the histogram from the original image. The overall shape 

of the histogram can provide some details of the image itself. For example, if the image 

has low contrast, the histogram will appear narrowly distributed. Furthermore, in an 

image that has a specific region with low contrast, surrounded by regions with a wide 

range of intensities, the histogram will appear bimodal. Data from the histogram can help 

to determine the first-order statistical features of the ultrasound image. In some cases, 

texture can be characterised from the central moments (Papoulis and Pillai 2002) that are 

derived from the histogram.  If i is a random variable representing an image pixel 

intensity, p(i) is the histogram of the intensity levels in an image, and G is the total number 

of pixel in the image then the statistical properties of a histogram can be computed using 

the mean, variance, entropy, kurtosis, skewness, and energy (Materka, Strzelecki and 

others 1998) and together, they define the statistical properties of an image.  

 Mean: - is measured by averaging all the individual pixel intensities. The mean 

will determine the level of brightness in the image.  

 𝜇 = ∑ 𝑖𝑝 (𝑖)

𝐺−1

𝑖=0

                                                                           (4.3) 

 

 Variance - is the variability in the levels of pixel intensity from the mean.  

      𝜎2 = ∑(𝑖 − 𝜇)2𝑃(𝑖)

𝐺−1

𝑖=0

                                                            (4.4) 

 

 Skewness: - The histogram skewness describes the distribution of the histogram; 

especially if one of the sides has a longer tail. A positive or negative skewness value 

indicates that the intensity levels of the pixels are heavily weighted above or below the 

mean, whereas a skewness value of 0 indicated that the histogram is evenly distributed.  

                                               𝜇3 = 𝜎−3  ∑(𝑖 − 𝜇)3𝑃(𝑖)

𝐺−1

𝑖=0

                                                     (4.5) 
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 Kurtosis: - measure the height of the histogram peak and the angle of incline 

towards the peak.  

               𝜇4  = 𝜎−4 ∑(𝑖 − 𝜇)4𝑃(𝑖)

𝐺−1

𝑖=0

− 3                                         (4.6) 

 Entropy: - describe the randomness of the pixel intensities.  

                                𝐻 = − ∑ 𝑝(𝑖) log2[𝑝(𝑖)]

𝐺−1

𝑖=0

                                                  (4.7) 

 Energy: - The energy is also referred to as the uniformity of energy and angular 

second moment.  

                                                 𝐸 = ∑[𝑝(𝑖)]2

𝐺−1

𝑖=0

                                                                        (4.8) 

4.2.2 Local Binary Pattern LBP 

Local Binary Patterns (LBP) is an image transformation that maps each pixel intensity 

value into a byte that conveys the order relation between the pixel and its immediate 

neighbours in a specific orientation. In its simplest form, the LBP byte of an image pixel 

in position (x,y) is calculated bit-by-bit from left to right, using the order relation between 

the boundary pixels of a 3x3 window centred at (x,y) starting with the top left corner pixel 

and moving in a clockwise direction: if the border pixel value is greater than or equal to 

that of (x,y) then the corresponding bit is set to 1 else it is set to 0 (Ojala, Pietikäinen and 

Harwood 1996). Figure 4-1 below shows a hypothetical 3x3 image block to illustrate this 

concept and displays an image with its LBP transforms. 

 

 

 

                            (a)                                                                                  (b) 

Figure 4- 1: (a) Single LBP code for 3x3 block (P=8, R=1), (b) Image with its LBP transform. 

One of the advantages of the image information provided by LBP is its invariance against 

monotonic grey level changes. Moreover, the most interesting property is its 

computational simplicity. The histogram of the LBP provides various texture 

discriminative methods, depending on the grouping of the different LBP patterns 

depending on defining a similarity relationship among the patterns. Grouping the different 

patterns result in creating a histogram bin for each group so that the frequency of a bin is 
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the total number of appearances of all the 8-bit LBP patterns in that bin. The most 

common types of LBP methods are: 

I. Simple LBP (256) bins: 

An LBP that has a high level of similarity is an indication of the equality of the patterns. 

In this case, the LBP mapping provides a histogram that shows the frequency of each 8-

bit binary code. Each 8-bit code refers to a decimal grey-level value. The histogram is 

formed using 256 bins of the LBP map from the image. 

II-Uniform LBP (59 bins):  

The identification of similar aspects in local binary patterns is determined according to 

the number of transitions between 0 and 1 in the patterns as the primary mechanism of 

uniform LBP. Among the diverse patterns produced by the dominant approach in this 

regard is the so-called “uniform” pattern LBPu2P,R (P represents the pixels proximal to 

radius R); a local binary pattern must include no more than two bitwise transitions from 

0 to 1 or from 1 to 0 (with the equivalent bit string being deemed circular). Examples of 

uniform patterns are 00000000 (0 transitions) and 01111110 (2 transitions), while 

11101101 (4 transitions) and 01011011 (6 transitions) are non-uniform patterns. Every 

uniform pattern is associated with a different output label in uniform LBP (see Figure 4-

2), whereas just one label is allocated to all the patterns that are not uniform. Hence, 

patterns can be mapped based on the number of distinct output labels (Pietikainen, et al. 

2011).  

Spot Spot- Flat Line end Edge Corner  

Figure 4- 2: Different texture primitives detected by LBP. 

Removal of non-uniform patterns can be justified for several reasons. First of all, 

uniformity is exhibited by the majority of local binary patterns in natural images. 

Secondly, evidence suggests that the stability of uniform patterns is higher, in other 

words, they have a lower susceptibility to noise (Pietikainen, et al. 2011). Thirdly, the 

number of potential LBP labels is considerably reduced when only uniform patterns are 

taken into account, and fewer samples are needed to reliably estimate their arrangement. 
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Its main applications include textural classification, image extraction and face image 

analysis (Lei, Zhao, & Guo, 2015; Pietikainen, Hadid, Zhao, & Ahonen, 2011). 

4.2.3 Gabor Filter  

Gabor filters are designed for detecting specific frequency information around an image 

pixel/region in a given direction, and there strong and credible arguments by computer 

vision experts that the frequency and orientation of Gabor filters as similar to the human 

vision system (Daugman 1985). A two-dimensional Gabor filter is based on the Gabor 

Wavelet Transform. It acts as a Gaussian kernel in two variables modulated by a 

sinusoidal plane wave on the x-axis and thus consists of imaginary and real orthogonal 

components. It allows one to analyse an image, in terms of spatial variation, to build a 

texture discrimination model (Weldon, Higgins and Dunn 1996), (Ilonen, et al. 2008). In 

this model, images are transformed by a set of parametrised Gabor filters, applied at a 

different set of scales and orientations. The imaginary and real orthogonal components of 

Gabor filter (gf) are defined for the pair of scale and orientation (𝑙, 𝑘) by:  

                                𝑔𝑓(𝑙,𝑘)(𝑚, 𝑛) =
𝑓2

𝜋𝛾𝜂
exp (−𝑥′2 𝑓2

𝛾2
+ 𝑦′2 𝑓2

𝜂2
)exp (𝑗2𝜋𝑥′)                 (4.9) 

Where f is the sinusoidal factor frequency, θ is the direction of the normal to the parallel 

stripes of the Gabor function, x′ = m cos (θ) + n sin (θ) and y′ = −m sin (θ) + n cos 

(θ), γ is the sharpness along the major axis X, η is the sharpness along the minor axis Y, 

(m, n) represents the dimensions of the image, l is the scale, k signifies the orientation 

factor, and λ = η/γ represents the aspect ratio of the Gaussian. Normally a set of Gabor 

filters are used. These are Gaussian filters of various sizes that are modulated using 

sinusoidal plane waves set to multiple orientations. Kernel size is relative to the 

dimension of the Gaussian filter. That said, kernel size must be, at a minimum, six times 

the standard deviation with the nearest odd number chosen. The Gobor wavelet 

representation xl, k of an image is the twisted distortion of the image with a family of 

Gabor wavelets. (Ilonen and Kälviäinen 2005) (Ilonen, et al. 2008). 

4.2.4 Histograms of Oriented Gradient 

Features found within images may be identified using the histogram of oriented gradients 

(HOG). It is a method developed to quantify the gradient orientation in specific sections 

of an image. What guides HOG is the arrangement of local intensity gradients, which is 

used in item feature in an image even if there is no accurate data about equivalent gradient 

or edge positions. Successfully using this approach involves creating many cells within 



 

 55 

the image window, each containing an aggregate of the local one-dimensional histogram 

of gradient directions for age orientations over the cell pixels. The resulting representation 

is the summation of histogram entries. Furthermore, it is best to ensure the representations 

are contrast normalized before employing local responses to improve invariance 

illumination, shadowing size (blocks) and use of results to achieve block cell. The 

normalized descriptor blocks are the same thing as the HOG descriptors. The human 

detection chain is obtained by using a dense and overlapping HOG descriptive grid for 

tiling the detection window and using the combined feature vector. (Dalal and Triggs 

2005). As shown in Figure 4-3, the HOG your extraction algorithm operates through a 

series of steps. In the first step, the input image is segmented into the small interlinked 

cell, and for each cell a histogram of gradient directions for the pixels is generated 

 Step1: The gradient orientation is used to delineate every cell in angular bins;  

 Step 2: The weighted gradient is contributed to by the pixel of every cell to its 

equivalent angular bin;  

 Step 3: Neighbouring cells cluster into spatial areas known as blocks, which 

constitute the foundation for histogram aggregation and normalisation;  

 Step 4: The result of the block histogram is the group histogram that has been 

normalised, and the descriptor is indicated by a block histogram set. 

 

Normalization 

Combine The Features

Image Blocks

Histograms of Oriented Gradient 

 

Figure 4- 3: HOG process. 

4.2.5 Fractal Dimension (FD) 

In the 1960’s, Benoit Mandelbrt introduced the concept of fractals to model geometric 
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shapes that are self-similar at different scales (Mandelbrot 1983) . The large volume of 

subsequent research has demonstrated that such seemingly chaotic shapes can be 

generated through a deterministic iterative mathematical formula. The well-known 

example of the attractive shapes of Julia sets and their widespread use in the art are 

testaments to the success of fractal models of shapes. The interest in fractal geometry 

originated in how to distinguish dimensionality of 1-dimensional curves when embedded 

in and fill 2-dimensional shapes, and this led to the coining the Fractal dimension (FD) to 

distinguishes from both intrinsic and Euclidean dimension. The FD of an image shape is 

a real number that categorises the geometric complexity of its texture. It is an indicator 

of roughness/jaggedness of the shape texture so that larger FD indicates a more jagged 

shape texture. Different methods have been developed to calculate the FD of objects for 

use in segmentation and image texture analysis, but the Box Counting scheme originally 

suggested by Mandelbrt is the most common and simple practical one adopted for 

computer vision. It works, by (1) binarizing the image, (2) cover and count the RoI with 

boxes of different sizes, and (3) plot the sequence of points (box size, No. of boxes) in 2-

dimension and the slope of the best fit line is the FD of the image object. A linear 

regression model, which uses a logarithmic scale, is used to fit the line and determine FD. 

Figure 4-4 shows a fractal curve covered different box sizes at distinct levels, varying 

from lowermost to uppermost. Here, ri is the ratio of structure size to the total, and N(ri) 

is the number of units covering the structure.   Accordingly, FD is defined, (Mandelbrot 

1983) , by the limit: 

                                              𝐹𝐷 =  
log(𝑁(𝑟))

log(1/𝑟)⁄                                                       (4.10)        

 

                                                          𝑟1=1/3,N(𝑟1)=3 

  

                                                 𝑟2=1/9,N(𝑟2)=12  

          

                                                        𝑟3=1/27,N(𝑟3)=48 

 

Figure 4- 4: FD example (scale factor (1/r) and number of boxes (N(r))). 
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4.2.6 Hu’s Invariant Moments (IM)  

In 1962, (Hu 1962) Ming-Kuei Hu introduced a set of 2-dimensional moment invariants 

of images as the visual information theory model for image analysis. He showed that 

image recognition schemes based on these invariants are truly position, size and 

orientation independent, and are sufficiently flexible to learn almost any set of patterns. 

These invariants are defined in terms of doubly parametrised functions defined on the 

data domain in terms of weighted averages of pixel strengths. In total, seven invariant 

moments are deemed to be sufficient, including invariance under rotation, translation, and 

scaling. For any digitally sampled M × M grey image 𝑓(𝑥, 𝑦), define a set of two-

dimensional moments  

𝑚𝑝𝑞 =  ∑ ∑ (𝑥)𝑝 . (𝑦)𝑞 

𝑦=𝑀−1

𝑦=0

𝑥=𝑀−1

𝑥=0

𝑓(𝑥, 𝑦)  𝑝, 𝑞 = 0,1,2,3,4 … ..              (4.11) 

Some of these values are similar to the moment values extracted from image histograms.  

Hu’s has shown that the double moment sequence {𝑚𝑝𝑞} is uniquely determined by 

𝑓(𝑥, 𝑦); and conversely, 𝑓(𝑥, 𝑦) is uniquely determined by {𝑚𝑝𝑞}. 

The 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑 moments of 𝑓(𝑥, 𝑦) are defined by translated by an amount (a, b) 

as follows:  

𝜇𝑝𝑞      =  ∑ ∑   (𝑥 + 𝑎)𝑝 . (𝑦 + 𝑏)𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

                                (4.12) 

The central moments 𝑚𝑝𝑞 ́  of 𝑓(𝑥, 𝑦) 𝑑efined as the value of 𝜇𝑝𝑞 with a = - 𝑥 and b = -

�̅�, i.e.   

𝜇𝑝𝑞= ∑ ∑(𝑥 − �̅�

𝑦𝑥

 )𝑝 . (𝑦 − �̅�)𝑞𝑓 (𝑥, 𝑦)                                        (4.13) 

 

Where �̅� =
𝑚10
𝑚00

 and �̅� =
𝑚01

𝑚00

,  

It is important to note that central moments are independent of their orientation or 

position. However, there is a need to normalise these moments, prior to use for texture 

analysis. For 𝑝, 𝑞 =  0,1,2 …, the normalised central moments are defined by the 

expressions  𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
𝛾 ,   where 𝛾 =

𝑝+𝑞

2
+ 1.    

Finally, Hu’s moments-based texture feature vector consists of seven parameters defined 

in terms of the normalised centralised moments of the image 𝑓(𝑥, 𝑦), as follows:  

𝒎𝟏 = (𝜂2,0 + 𝜂0,2).                                                                                      
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𝒎𝟐 = (𝜂2,0 − 𝜂0,2)
2

+ 4𝜂1,1
2 . 

𝒎𝟑 = (𝜂3,0 − 3𝜂1,2)
2

+ (3𝜂2,1 − 𝜂0,3)
2

. 

𝒎𝟒 = (𝜂3,0 + 𝜂1,2)
2

+ (𝜂0,3 + 𝜂2,1)
2

. 

𝒎𝟓 = (𝜂3,0 + 3𝜂1,2)(𝜂3,0 + 𝜂1,2) + [(𝜂3,0 + 𝜂1,2)
2

− 3(𝜂0,3 + 𝜂2,1)
2

] + 

(3𝜂2,1 + 𝜂0,3)(𝜂0,3 + 𝜂2,1) [3(𝜂3,0 + 𝜂1,2)
2

− (𝜂0,3 + 𝜂2,1)]. 

𝒎𝟔 = (𝜂2,0 − 𝜂0,2) [(𝜂3,0 + 𝜂1,2)
2

− (𝜂0,3 + 𝜂1,2)
2

] + 

4𝜂1,1(𝜂3,0 + 𝜂1,2)(𝜂0,3 + 𝜂2,1). 

𝒎𝟕 = (3𝜂2,1 − 3𝜂0,3)(𝜂3,0 + 𝜂1,2)[(𝜂3,0 + 𝜂1,2)
2

− 3(𝜂0,3 + 𝜂2,1)
2

] − 

    (𝜂3,0 − 3𝜂1,2)(𝜂0,3 + 𝜂2,1)[(3𝜂3,0 + 𝜂1,2)
2

− (𝜂0,3 + 𝜂2,1)
2

]                                (4.14)  

 

In Figure 4.5, an example can be seen. The original image, its 45 grades rotated image 

version and its half sized image version, together with the seven Hu moments.  

 

Figure 4- 5: Hu’s moments. 

4.3. Performance Evaluation of Texture-based Schemes  

To evaluate the performance of a designed diagnostic model, besides selecting a classifier 

we need to have a sufficiently large experimental dataset of benign and malignant Static 

2D US ovarian scan images to train the chosen classifier. The dataset must include 

sufficient and near equal number of both benign and malignant tumours. We also need to 

use a sensible conventional training/testing protocol that determines the ratio of training 

to testing samples as well as the criteria for selecting these sets.  This section is devoted 

to describing these issues and to the various choices.  
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4.3.1. The Experimental Dataset 

Ultrasound images that were used in this study were obtained from the IOTA research 

(Timmerman, Ameye, et al. 2010). A total of 232 women patients gave consent to be 

included in the study and had ovarian tumours that were surgically removed between 

November 2005 and November 2013. All ovarian tumours were given a histological 

diagnosis. A total of 242 (2D B-mode) scan images (138 benign and 104 malignant 

tumours) were generated (Astraia software gmbh, Germany) at the Department of 

Gynaecological Ultrasonography, Campus Gasthuisberg, KU Leuven, Belgium. In May 

2012, the University of Buckingham’s School of Science & Medicine Ethics Committee 

granted ethical approval. Table 1 shows the histology classes of all the 242 images. (see 

Table 4.1).Image analysis was restricted to the gray scale portion of the image. For image 

processing, the MATLAB (Matlab R2017 MathWorks, Natick, Massachusetts, USA) 

software was used. The number of benign tumours (138) is noticeably larger than the 

number of malignant ones (104). To resolve this imbalance, we select randomly m (<150) 

images from each class. 

Table 4- 1: Histopathology of ovarian masses. 

Number of 

images 

Benign Tumours (138) 

27 Mature Teratoma 

24 Mucinous Cystadenoma 

16 Endometrioma/endometriosis 

5 Functional Cyst 

12 Ovarian Fibroma 

26 Serous Cystadenoma 

16 Serous Cystadnofibroma 

12 (1 abscess, 2 Brenner tumour, 2 Multilocular peritoneal 

inclusion cyst MPIC, 2 Mucinous Cystadnofibroma, 1 subserous 

adenomyoma, 2 hydrosalpinx, 2 simple cyst) 

                Malignant Tumours (104) 

18 Borderline mucinous tumour 

11 Borderline serous tumour 

38 Serous cyst/adenocarcinoma 

6 Mucinous cyst/adenocarcinoma 
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12 Endometrioid adenocarcinoma 

19 (1 Lymphoma, 7 metastatic tumours(3 intestinal, 1 breast, 1 

pancreatic, 1 gastric, and 1 lung cancers), 1 leiomyosarcoma, 1 

stromal tumour, 1germ cell tumour, 2 clear cell carcinomas, 2 

Carcinosarcomas, 2 Immature Teratoma, 1 endometrial cancer 1 

AIDS related lymfoma) 

 

4.3.2. Evaluation Protocols  

We use two protocols for training and testing: Leave-one-out (L1O) and the 50-50 

balanced training and testing sets. For each protocol, we first use the Randsample function 

in MATLAB to select a total of m=150 images out of the 242 images with 75 Benign and 

75 Malignant images.  To reduce the chance of biasness we repeat each experiment 30 

times.  

1. For each L1O protocol experiment, each pair of Benign-Malignant images are 

removed we use the remaining 148 images to train the SVM classifier and use the trained 

model to classify the pair of isolated images and record the success & failure cases.  Due 

to a large number of possible pairs (5625 in this case), it is customary to repeat this for a 

sufficient number of pairs (75 in our case). 

2. For each 50-50 protocol experiment, we randomly select 37 Benign and 37 

Malignant images for training the SVM classifier and use the remaining 76 mix of images 

to test the performance of the trained model counting the number of success and failure.   

4.3.3. Performance Measures 

For each protocol, the accumulated success and failure cases in each experiment will be 

used to obtain the performance of the individual feature vector schemes for that 

experiment. This is done as follows:  

Let TP (true positive) = No. of correctly diagnosed malignant masses, 

FP (false positive) = No. of benign masses incorrectly classified as malignant,  

TN (true negative) = No. of benign masses correctly classified, and 

FN (false negative) = No. of malignant masses incorrectly classified as benign.     

Then, performance is represented by the following 3 rates: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)                               (4.15) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )                                                            (4.16) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)                                                            (4.17) 
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Here, Sensitivity is the frequency of appropriately classifying diseased individuals, and 

Specificity is the frequency of appropriately classifying healthy individuals.  

4.4. Experimental Results and Discussion 

In this section, we present the results of the experiments conducted to evaluate the 

performance of each texture features, in discriminating between Benign and Malignant 

cyst, by training and testing two classifiers (SVM and kNN) with the images in the 

experimental dataset for the two different protocols. Each experiment will be repeated 30 

times to reduce dependence on the training/testing choices, and the average accuracy of 

these experiments provide the estimated performance of the chosen texture feature(s). 

4.4.1. Performance of Single Texture-Feature based Scheme 

Having repeated each of the described experiments 30 times, the performance of the 7 

proposed texture-based schemes are presented in terms of the average and standard 

deviation of accuracy, sensitivity, and specificity rates of the 30 experiments.  Table 4-2 

below, displays the performances of the 7 texture-based feature diagnostic schemes for 

both protocols when the binary SVM classifier is deployed to discriminate between 

benign and malignant ovarian masses.  

Table 4- 2: Classification results based on SVM classifier. 

 

Overall, the results show in Table 4-2 using SVM classifier that each of the texture 

features has reasonably high discriminating characteristics and demonstrates the viability 

of using artificial intelligence and machine learning as an effective supporting tool of 

    Performance 

Rate  

 

Feature vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

LBP (256 bins) 74.46% 

(3.076) 

79.41% 

(3.570) 

  75.23% 

(2.839) 

80.57% 

(2.358) 

73.88% 

(3.957) 

78.25% 

(1.258) 

7-Moments 74.94% 

(2.736) 

76.60% 

(2.025) 

75.34% 

(1.168) 

78.60% 

(1.685) 

74.54% 

(2.723) 

74.60% 

(2.638) 

Statistics Histogram 79.88% 

(4.097) 

80.79% 

(2.076) 

80.98% 

(1.914) 

81.64% 

(2.574) 

78.78% 

(1.605) 

79.94% 

(2.754) 

HOG 80.11% 

(2.074) 

82.64% 

(0.997) 

80.25% 

(3.714) 

82.96% 

(1.068) 

79.98% 

(2.254) 

82.33% 

(1.145) 

ULBP (59 bins) 81.29% 

(1.016) 

83.12% 

(1.002) 

82.26% 

(1.627) 

83.89% 

(1.574) 

80.33% 

(2.745) 

82.35% 

(1.247) 

Fractal Dimension  81.57% 

(1.963) 

83% 

(1.120) 

82.18% 

(2.675) 

83.25% 

(1.987) 

80.97% 

(2.599) 

82.76% 

(1.458) 

Gabor Filter 84.60% 

(0.132) 

86.70% 

(0.020) 

85.05% 

(0.322) 

86.85% 

(0.003) 

84.68% 

(0.742) 

86.55% 

(0.017) 
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digital health. The lowest accuracy being well above 70% and the fact that all features 

were extracted directly from the ROI, without enhancing/de-noising the images, clearly 

support this statement about texture feature analysis.  

These results reveal a variation in the performance of the different schemes with average 

accuracy in the ranges of (74.46 - 84.60) for the L1O protocol and (75.36- 86.70) for the 

50-50 protocol. Moreover, for each scheme, there is no significant difference between 

specificity and sensitivity rates attained with either protocol. This is more obvious in the 

case of the Gabor scheme. In ascending order of accuracy, these schemes are in the order 

(LBP256, 7-Moments, Stat-Hist, HOG, ULBP59, FD, and Gabor filter) with respect to 

the L1O protocol. This order changes slightly, with little significance, when the 50-50 

protocol is deployed. On the other hand, for all features the use of the 50-50 protocol 

results in better performance than the use of the L1O protocol but the improvement is 

only statistically significant in the case of the Gabor filter feature as result of the fact that 

the standard deviation values (for all the 3 rates) are remarkably low relative to  the other 

features.   

The relatively low performance of the LBP256 and the 7-Moments schemes can be 

attributed partially to the global nature of these statistical histogram-based features. 

However, the variation in mage size may have a significant impact on the adopted 

distance/similarity function between histograms and statistical parameters. The LBP256 

is sensitive to small changes, while moments are inherently location-dependent, more 

sensitive to several geometric transformations (rotation, translation, scaling) and non-

geometric transformations (smoothing).  Although LBP features statistical capture 

distribution of local variation in intensity, the scheme cannot reflect global spatial 

information. The histogram of the LBP256 suffers from the presence of significant 

redundancies reducing its discrimination in different classes, and this may explain the 

significant improvement in the performance of the LBP59 scheme.  Similarly, the 

improved performance of the Statistics histogram scheme over the 7-Moments may be 

due to the presence of dependency between the different moment values.    

The next improved performance is achieved by the HOG texture-feature scheme albeit 

marginally in the case of L1O protocol and modestly with the 50-50 protocol. This is 

probably due to the fact that the HOG feature expresses the location of intensity gradients 

that help identify edge directions in different image blocks.  It provides additional useful 

information on the shape and appearance of the structures within the image. Further 

marginal performance improvement is achieved by two almost equally performing 
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schemes: the ULBP59 and the FD schemes.  Interestingly, both features are linked to the 

geometry of image shapes/objects. While FD represents the degree of texture irregularity 

in terms of self-similarity of objects at different scales, the ULBP59 codes are linked to 

distinctive texture geometries (flat local regions, edges and corners). Finally, the Gabor 

filter scheme outperforms all other schemes in terms of accuracy and balanced level of 

errors in the two classes with respect to both protocols. More importantly, all the 3 

performance rates do not seem to depend on the selection of the training set of samples. 

This is demonstrated by the extremely small standard deviations in all cases and protocols 

this due to that the same amount of images are classified correctly for benign and 

malignant cases. Perhaps, these results reinforce the widely accepted assertion that Gabor 

filters provide a credible mathematical model of the Human Vision system.    

Next, we repeated the same experiments, but this time, we replaced the SVM with the 

kNN (where k value =1) classifier. Table 4.3 shows the overall classification accuracy 

rates achieved by each single feature scheme using kNN classifier. We have tested the 

same feature methods using kNN classifier based on both experimental protocols, as 

shown in Table 4-3. 

Table 4- 3: Classification results based on kNN (k value =1) classifier. 

A close examination of the results displayed in Table 4-2 and Table 4-3, shows that the 

SVM consistently outperforms the kNN classifier for both experimental protocols on all 

types of features for classifying benign and malignant tumours. Considering that most 

forms of the feature vector are of relatively high dimension, the impressive performance 

of SVM in high dimensional feature spaces is an example of its superiority over the kNN 

    Performance 

Rate  

 

Feature Vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

LBP (256 bins) 71.79% 

(3.637) 

73.33% 

(3.814) 

72.67% 

(2.145) 

75.62% 

(4.653) 

71.28% 

(3.010) 

73.04% 

(3.236) 

7-Moments 69.06% 

(2.733) 

72.03% 

(3.876) 

70.11% 

(2.231) 

72.21% 

(2.609) 

68.01% 

(2.278) 

71.85% 

(3.324) 

Statistics Histogram 70.82% 

(3.157) 

74.20% 

(1.453) 

70.89% 

(2.989) 

74.49% 

(2.121) 

70.76% 

(3.001) 

73.91% 

(2.985) 

HOG 72.60% 

(3.034) 

75.20% 

(1.450) 

72.79% 

(1.354) 

76.31% 

(1.023) 

71.93% 

(1.869) 

74.10% 

(2.235) 

ULBP (59 bins) 74.67% 

(2.952) 

77.08% 

(1.007) 

75.90% 

(2.364) 

77.87% 

(1.465) 

73.44% 

(2.250) 

76.29% 

(1.812) 

Fractal Dimension  75.17% 

(3.080) 

78.39% 

(1.008) 

76.29% 

(3.814) 

79.01% 

(1.001) 

73.79% 

(3.528) 

77.77% 

(1.654) 

Gabor Filter 79.41% 

(1.693) 

82.33% 

(0.897) 

80.21% 

(1.042) 

82.78% 

(1.078) 

78.62% 

(1.367) 

81.89% 

(1.147) 
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classifier. Furthermore, SVM outperforms kNN for the statistics histogram properties and 

seven moment's features that are both of low dimensionality. US scan images of 

malignant tumours tend to contain more detailed and complex structures compared to 

images of benign tumours. These results also indicate that fusion may provide even more 

improved accuracy. Therefore, the SVM and kNN classifiers are used based on various 

seven feature extraction schemes. 

4.4.2 Decision-based Fusion of Multiple Schemes 

All the features investigated above are based on different mathematical models of 

ovarian tumour structure and/or texture. The performances of their diagnostic schemes 

varied and though mostly satisfactory, it is not clear if they make similar decisions or 

not. This raises the possibility of combining these different schemes (perhaps using 

different classifiers) to compensate for individual weaknesses in a collaborative manner 

to improve decision credibility akin to seeking multiple medical expert opinions when 

diagnosing life-threatening diseases.  

The well-known and widely practised approach of combining different 

features/classification schemes is that of fusion which can be done at different levels 

(e.g. features level, score level, and decision level). Feature level fusion is not realistic 

in our case, because of significant differences in the structure of the features and 

normalising them would be highly complex. Fusion at the score level is more appropriate 

but again requires some kind of normalisation of the different scores, which would be 

difficult in our case due to the differences in the structure, and complexity of the feature 

vectors. Fusion at the decision level is by far the easiest to implement and at this stage 

could provide better informative advice on the suitability of the fusion approach. Here, 

we will assess the performance of decision level fusing of the above, different feature 

methods. Although there is no requirement on using different classifiers for a different 

feature vector, we will confine our investigation to using the same SVM and kNN (where 

k value =1) classifiers for all features. Moreover, instead of developing a complicated 

fusion rule, we will opt for the fusion by simple majority rule. This means that the final 

decision is based on the highest vote for the two classes by the various schemes, and 

therefore an odd number of feature schemes are to be fused. The use of the simple 

majority rule can be justified by the fact that the various schemes had comparably 

reasonable performances. Figure 4-6 presents the results of majority rule fusion of SVM 

and kNN classification by different odd numbers of features. 
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Figure 4- 6 : Performance measures obtained using the majority voting fusion using SVM & 

kNN (k value =1) classifiers. 

The experiment confirms the success of the decision-based fusion approach in improving 

accuracy for both protocols and the 3 fusion configurations over the best performing 

single scheme.  The absolute rate of best improvement for L1O is 2.23 when fusing all 7 

schemes while for the 50-50 protocol is 3.44 when fusing best 5 schemes. Moreover, in 

all cases, the standard deviation values for the 50-50 protocol remain close to 1% for the 

different rates, while the corresponding values for the L1O protocol are in the range 2-

3%. The fusion results confirm that in the case of the 50-50 protocol, the performance of 

the classifier is less dependent on the choice of the training/testing sets. 

However, it is apparent that SVM and kNN tend to make correct predictions for both 

benign and malignant tumours. However, the SVM outperforms kNN even when features 

are fused based on a simple method like majority voting. The difference in performance 

is because the kNN can have poor run-time performance when the training set is huge. It 

is very sensitive to irrelevant or redundant features since all features contribute to the 

similarity and classification. Also, kNN is sensitive to noise since it is based on the 

Euclidean distance.  

By examining the ultrasound images and the sensitivity and specificity of each classifier, 

it is apparent that the SVM and kNN usually predict both benign and malignant tumours 

accurately. However, the SVM is better than kNN, even when the features are fused 

using a simple method like majority voting. Also, this experiment, confirm the success 

of the decision fusion approach as the accuracy improved around 3% over the best 

0 10 20 30 40 50 60 70 80 90 100

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Fusion of All 7 schemes (kNN ) 81.9 2.025 83.99 2.272 79.81 2.165 83.7 1.249 84.16 1.765 83.25 1.098

Fusion of best 5 schemes (kNN ) 81.6 1.231 82.33 1.121 80.87 2.002 85.37 0.785 85.78 1.001 84.97 1.152

Fusion of best 3schemes (kNN ) 80 3.124 82.75 2.456 77.25 3.142 83.16 1.435 83.34 2.011 82.98 2.165

Fusion of All 7 schemes (SVM ) 86.83 2.874 87.89 2.238 85.77 2.368 89.82 1.025 90.7 1.005 88.94 1.159

Fusion of best 5 schemes (SVM ) 86.27 2.14 88.55 2.002 83.99 2.053 90.04 0.978 90.39 1.003 89.69 1.023

Fusion of best 3 schemes (SVM) 85.31 2.012 85.88 2.001 84.75 1.998 88.15 1.001 88.82 1.021 87.49 1.201
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performing scheme. These experiments illustrate a reasonable level of 

complementarities of these different features in representing tumour tissue texture. 

4.5 Summary  

We investigated several image texture-relevant feature vectors, extracted from B-mode 

Ultrasound scan images of ovarian tissue masses, to determine their discriminating 

powers in relation to distinguishing Benign from Malignant cysts. The results from these 

investigations are to feed into our ultimate objective of developing automatic informative 

machine learning tool(s) to be used in support of correct preoperative diagnostic decision 

making of ovarian masses.  In total, seven such texture analysis schemes were developed 

and used to train SVM classifiers, the performance of 7 such feature was evaluated for a 

dataset of IOTA scan images of 238 patients, and each and every scheme attained 

accuracy well above random decision. The Gabor filters, known to its effectiveness in 

modelling the human vision system, attained the highest stable accuracy of 86.76%.  

Decision level fusion of different combinations of these schemes resulted in nearly 90% 

accuracy. These results demonstrate the viability and effectiveness of using AI for the 

stated task.   

In this chapter, we confined our experiments to determine the contribution of each texture 

descriptor singularly and combined by decision level fusion without mitigating the effects 

of factors that are known to adversely influence pattern recognition and classification in 

computer vision.  The next chapter will focus on investigating the influence of such 

factors and means of mitigating their influences on the performance of the above schemes.  
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Chapter 5 

Mitigating Factors Influencing the Performance of the 

Texture-based Ovarian Tmours Diagnostic Schemes 

In the last chapter, we designed, developed and tested the performance of several ovarian 

tumour schemes using different texture-based feature vectors extracted automatically 

from the cropped mass regions. Although, in Chapter 3, we highlighted the potentially 

adverse effect of Speckle noise on the performance of automatic ovarian tumour detection 

and diagnostic. However, no action was included within the diagnostic schemes of 

Chapter 4 with regards to noise removal. This decision was based on a lack of clear 

knowledge of the effect of noise on the performance of each of diagnostic texture-based 

schemes. In the first part of this chapter, we aim to investigate this link. The marked 

variation in the size of the ROIs is another factor that may have an adverse influence on 

the performance of those schemes that involve the use of histogram descriptors.  

The chapter is organised so that first in section 5.1, we shall demonstrate that blanket 

speckle de-noising of all images at the training and testing stages may not enhance the 

chance of accurate diagnostic decisions for all images. In section 5.2, we define an image 

parameter that can be computed for any input US Ovarian image, as an indicator to 

whether the level of speckle-noise in an input image merits or not de-noising prior to 

feature extraction and recognition. In section 5.3, we shall use this measure to develop an 

adaptive speckle de-noising schemes and test the performance of the schemes, tested in 

Chapter 4, when using a blanket de-noising in comparison to using the adaptive de-

noising scheme.  The second part of this chapter aims to develop a procedure to mitigate 

the second factor on variation in ROI sizes in experimental datasets and test the effect of 

the developed procedure on recognition accuracy.   

5.1 Effect of Speckle-Noise on the Classification of US Ovary Scans 

Medical ultrasound imageries are sensitive to this specific type of noise that is known to 

reduce image contrast and make boundaries of the different regions in scanned tissues 

blurred/undetectable. Accordingly, it may have an adverse effect on automatic 

segmentation, texture feature extraction and possibly diagnostic related classification.  

While it is essential to incorporate the speckle-noise reduction scheme as a pre-processing 
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step for our intended texture-based US ovarian image classification, it is essential to 

quantify the effect of speckle noise on US ovarian scan images.    

5.1.1 Speckle Noise in Ultrasound Images  

Noise is visible in the image through unwanted variation observed in brightness or colour. 

One example is electronic noise, which can be caused by the sensors of a digital camera 

or a scanners’ circuitry. Noise can appear because of a slow shutter speed or from light 

generated through high exposures (Hedrick and Hykes 1989). There are other types of 

noise, such as salt & paper, quantisation noise, and impulse noise. These types of noise 

are distinguished by the nature of their distributions, and various filters have been 

developed for de-noising images. Identifying the nature of the noise is vital when 

selecting the type of filter to use when rectifying an image.  

Medical ultrasound images are known to be subject to a specific type of locally correlated 

multiplicative noise, known as speckle noise, due to the fact that biological tissues react 

to incident ultrasound waveform by a combination of scattering and reflection. If a 

particular reading is below a sound’s wavelength, it is identified as scattering. Otherwise, 

it is a reflection. This variation, like the acoustic waves, is caused by differences in the 

medium’s thickness or compressibility. Once the back-scattered acoustic pulses arrive 

back to the transducer, they receive acoustic energy with constructive and destructive 

involvement, which causes the appearance of a granular pattern referred to speckle noise 

(Dangeti, 2003; Burckhardt, 1978). Speckle noise reduces image quality because it hides 

and distorts essential features, especially around the edges, and makes image 

segmentation as well as post-processing operations less reliable and may reduce the 

quality of image diagnostic, (Zhu, Ni, Li, & Gu, 2009; Xie, Jiang, Tsui, & Heng, 2006).  

Level of image degradation in response to speckle noise in different image regions 

depends very much on the brightness of the region so that higher variation in pixel 

intensity will be noted in brighter regions than in darker regions. This could be observed 

simultaneously within an ovarian ultrasound image due to the natural variation of cell 

types in the scanned tissue as well as the level of tissue solidity in and around tumour 

regions.  Figure 5-1 illustrates the level of speckle-noise effect in different regions of an 

ultrasound ovarian tumour image. 
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Figure 5- 1: (a) A US image of an ovarian tumour corrupted by different levels of speckle-

noise: Low level in part (b),  High level in part (c). 

5.1.2 Impact of Speckle Noise in Ultrasound Images on Diagnosis  

Reducing speckle noise is vital for effective automatic processing and analysis of 

ultrasound images. It is widely believed that de-noising and improving the quality of 

ultrasound ovarian tumour images can lead to enhancement of diagnosis. Since we have 

several texture-based diagnostic schemes and the different textures may have different 

spatial distribution, then it is essential to determine the effect of speckle-noise removal 

on each scheme. Hence, we repeated the same set of experiments conducted in Chapter 

4, but this time, we applied a well-known speckle-noise reduction on the RoIs of all the 

training and testing images.  We shall now describe this speckle-noise suppression 

scheme.   

Speckle noise is multiplicative and non-Gaussian and hence is generally more difficult to 

remove than additive noise. A model of multiplicative noise is given by the formula: -  

                                                                   𝑦𝑖𝑗 =  𝑥𝑖𝑗+  𝑛𝑖𝑗                                                  (5.1) 

Where the observed noisy image (yij) is the product of the original unknown image (xij), 

and (nij) is the non-Gaussian noise image. Speckle noise is typically presumed to be data-

independent, as well as fixed with a unitary mean and unknown noise variance of 2 in 

most applications that incorporate multiplicative noise. A simple logarithmic 

transformation converts equation (5.1) to an additive noise model:   

𝑙𝑜𝑔( 𝑦𝑖𝑗) = 𝑙𝑜𝑔( 𝑥𝑖𝑗) + 𝑙𝑜𝑔( 𝑛𝑖𝑗)                                       (5.2) 

The Wiener filter (Wiener 1949) is a linear spatial domain filter but can be applied to 

(5.2) in two ways:  (1) in the Fourier transform (frequency) domain, and (2) in the spatial 

domain using the mean square technique. The first option is normally useful for both de-

noising and de-blurring, whereas the second option is just applied for de-noising. The 

frequency-domain option requires advanced knowledge of the spectra of noise power and 

a b c 
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the original image. However, the spatial domain option requires no prior knowledge as it 

is founded on a statistical least square principle that minimises the mean squared error 

between iteratively estimated (xij)’s in equation 5.2.   

The statistical properties (e.g. mean, variance, and higher-order moments) within 

ultrasound images fluctuate significantly from one region to another. Therefore, both 

global statistics over the entire image and local statistics over the kernel can be important 

to assess the success of de-noising. The global and local statistics post-Wiener filtering is 

characterised by:  

                                                                𝑌𝑖𝑗 = �̅�  +  
𝜎𝑘

2

𝜎𝑘
2+𝜎2 

 (𝐾𝑢𝑣 − �̅� )                             (5.3)                                    

Where Yij indicates the de-speckled image, the local mean is �̅�,  𝜎𝑘
2 is the local variance 

over the kernel K, Kuv refers to the pixel values in K, and 𝜎2  is the global variance. 

Therefore, the filter output is equal to the local mean if the central pixel is equivalent to 

the local mean. Otherwise, it is modified by both terms. The Wiener filtered image is 

finally subjected to the exponential transform to invert the logarithm operation and 

produce a de-noised image. In Table 5-1, we present the performance of the 7 texture-

based schemes with and without this blind de-noising procedure for both protocols. 

Table 5- 1: Performances of 7 texture feature methods with blind pre-processing and without 

pre-processing based on SVM & kNN (k value =1) classifiers. 

SVM Classifier 

Performance Rate 

 

Feature Vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 
L1O 50-50 L1O 50-50 L1O 50-50 

7-Moments 

No Pre-processing 

74.94% 

(2.736) 

76.60% 

(2.025) 

75.34% 

(1.168) 

78.60% 

(1.685) 

74.54% 

(2.723) 

74.60% 

(2.638) 

7-Moments 

Blind de-noising 

75.62% 

(3.118) 

76.90% 

(2.878) 

77.04% 

(3.201) 

76.88% 

(2.785) 

74.20% 

(3.210) 

76.92% 

(2.965) 

Statistics Histogram  

No Pre-processing 

79.88% 

(4.097) 

80.79% 

(2.076) 

80.98% 

(1.914) 

81.64% 

(2.574) 

78.78% 

(1.605) 

79.94% 

(2.754) 

Statistics Histogram    

Blind de-noising 

79.67% 

(4.147) 

79.80% 

(3.899) 

81.36% 

(3.085) 

80.72% 

(3.394) 

77.98% 

(4.101) 

78.88% 

(3.985) 

HOG 

No Pre-processing 

80.11% 

(2.074) 

82.64% 

(0.997) 

80.25% 

(3.714) 

82.96% 

(1.068) 

79.98% 

(2.254) 

82.33% 

(1.145) 

HOG 

Blind de-noising 

79.44% 

(2.214) 

80.36% 

(2.751) 

80.87% 

(2.852) 

81% 

(2.798) 

78.02% 

(2.927) 

79.73% 

(2.698) 

FD 

No Pre-processing 

81.57% 

(1.963) 

83% 

(1.120) 

82.18% 

(2.675) 

83.25% 

(1.987) 

80.97% 

(2.599) 

82.76% 

(1.458) 

FD 

Blind de-noising 

82.02% 

(3.758) 

83.45% 

(3.241) 

84.25% 

(3.475) 

85.90% 

(3.028) 

79.79% 

(4.025) 

81.01% 

(3.423) 

Gabor Filter 84.60% 86.70% 85.05% 86.85% 84.68% 86.55% 
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No Pre-processing (0.132) (0.020) (0.322) (0.003) (0.742) (0.017) 

Gabor Filter 

Blind de-noising 

84.03% 

(2.042) 

86.44% 

(2.734) 

84.98% 

(2.121) 

86.93% 

(2.378) 

83.08% 

(2.352) 

85.95% 

(2.565) 

LBP (256 bins) 

No Pre-processing 

74.46% 

(3.076) 

79.41% 

(3.570) 

75.23% 

(2.839) 

80.57% 

(2.358) 

73.88% 

(3.957) 

78.25% 

(1.258) 

LBP (256 bins) 

Blind de-noising 

75.51% 

(2.344) 

80.03% 

(2.864) 

77.13% 

(2.876) 

80.22% 

(1.234) 

73.01% 

(2.001) 

79.85% 

(2.212) 

LBP (59 bins) 

No Pre-processing 

81.29% 

(1.016) 

83.12% 

(1.002) 

82.26% 

(1.627) 

83.89% 

(1.574) 

80.33% 

(2.745) 

82.35% 

(1.247) 

LBP (59 bins) 

Blind de-noising 

82.11% 

(2.009) 

83.33% 

(2.211) 

83.04% 

(2.112) 

83.98% 

(2.342) 

81.19% 

(2.234) 

82.68% 

(2.009) 

kNN Classifier 

7-Moments 

No Pre-processing 

69.06% 

(2.733) 

72.03% 

(3.876) 

70.11% 

(2.231) 

72.21% 

(2.609) 

68.01% 

(2.278) 

71.85% 

(3.324) 

7-Moments 

Blind de-noising 

72.71% 

(2.865) 

74.40% 

(2.878) 

73.22% 

(2.006) 

73.85% 

(2.785) 

72.21% 

(3.474) 

74.96% 

(2.965) 

Statistics Histogram  

No Pre-processing 

70.82% 

(3.157) 

74.20% 

(1.453) 

70.89% 

(2.989) 

74.49% 

(2.121) 

70.76% 

(3.001) 

73.91% 

(2.985) 

Statistics Histogram   

Blind de-noising 

73.89% 

(4.147) 

75.59% 

(3.750) 

74.76% 

(3.085) 

76.82% 

(3.084) 

73.02% 

(4.101) 

74.36% 

(3.702) 

HOG 

No Pre-processing 

72.60% 

(3.034) 

75.20% 

(1.450) 

72.79% 

(1.354) 

76.31% 

(1.023) 

71.93% 

(1.869) 

74.10% 

(2.235) 

HOG 

Blind de-noising 

76.46% 

(2.074) 

77.37% 

(2.647) 

77.55% 

(3.094) 

77.91% 

(2.948) 

75.38% 

(3.103) 

76.83% 

(3.051) 

FD 

No Pre-processing 

75.17% 

(3.080) 

78.39% 

(1.008) 

76.29% 

(3.814) 

79.01% 

(1.001) 

73.79% 

(3.528) 

77.77% 

(1.654) 

FD 

Blind de-noising 

78.81% 

(3.272) 

80.41% 

(3.657) 

81.72% 

(3.884) 

82.25% 

(3.855) 

75.90% 

(3.995) 

78.57% 

(3.980) 

Gabor Filter 

No Pre-processing 

79.41% 

(1.693) 

82.33% 

(0.897) 

80.21% 

(1.042) 

82.78% 

(1.078) 

78.62% 

(1.367) 

81.89% 

(1.147) 

Gabor Filter 

Blind de-noising 

80.84% 

(2.005) 

81.55% 

(2.045) 

81.58% 

(2.101) 

83.25% 

(2.104) 

80.11% 

(2.302) 

81.85% 

(2.276) 

LBP (256 bins) 

No Pre-processing 

71.79% 

(3.637) 

73.33% 

(3.814) 

72.67% 

(2.145) 

75.62% 

(4.653) 

71.28% 

(3.010) 

73.04% 

(3.236) 

LBP (256 bins) 

Blind de-noising 

74.21% 

(2.003) 

76.21% 

(1.221) 

74.38% 

(2.312) 

76.44% 

(1.675) 

74.04% 

(2.344) 

75.98% 

(2.004) 

LBP (59 bins) 

No Pre-processing 

74.67% 

(2.952) 

77.08% 

(1.007) 

75.90% 

(2.364) 

77.87% 

(1.465) 

73.44% 

(2.250) 

76.29% 

(1.812) 

LBP (59 bins) 

Blind de-noising 

78.21% 

(2.987) 

79.26% 

(1.541) 

78.98% 

(2.300) 

79.98% 

(1.112) 

77.44% 

(2.123) 

78.55% 

(1.543) 

  

The results presented in Table 5-1, indicate that the performance of each of feature 

schemes do not differ clearly with and the without de-noising scenarios. For some 

features, the “with blind de-noising” scheme marginally outperforms the “without de-

noising” scheme, but for other features, the results go the other way around. Even when 

there is a noticeable difference in the performance, the relatively large standard deviations 

of accuracy render such difference as not being statistically significant.  This observation 

may be miss-interpreted to naively conclude that there is no genuine need for de-noising. 
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However, this may indicate that for each feature some subset of the images benefit from 

de-noising and contribute to better classification, while other images become more 

difficult to classify after de-noising and thereby cancelling out the earlier improved 

accuracy. This is an incentive to develop an adaptive speckle de-noising scheme that 

could be applied only when needed. This often means the need for a quantitative indicator 

to be used for determining the need for de-noising or otherwise. The previous observation 

about the variation in the level of noise caused degradation between different tissue 

regions, raises the following question: do we need a single adaption indicator to be 

obtained from the whole RoI or a regional-based indicator? In the next section, we should 

try to answer this question, to meet an overall objective of improving the accuracy of 

tumour classification and describe the approach we follow in defining the adaption 

indicator(s).  

5.2 Trainable Systems for Adaptive Speckle Noise Removal 

To design adaptive procedures, one needs to identify the image parameter(s) that can be 

used as indicators of the level of noise present in the image. Due to the fact we are 

interested in improving the diagnostic accuracy of texture-based schemes, it is natural to 

examine the values of some texture feature parameter values in a few cases where we 

ground truth is known. The limited amounts of experiments revealed that the statistical 

parameters of Kurtosis and Skewness of the intensity distribution in the RoIs provide a 

clear separation of images that need de-noising from those that do not. Images dominated 

by dark regions tend to have significantly/reasonably lower Kurtosis/Skewness values 

than images that are dominated by solid regions (i.e. bright), (e.g. see Figure 5-2).  

  

 

 

 

 

 

 

 

Figure 5- 2: Kourtosis & Skewness of tumour tissue images (A) little solidity; (B) 

predominantly solid. 
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Finding good thresholds for the adaptive procedure, however, is complicated by the 

difficulty in automatically deciding whether the RoI is predominantly dark or pre-

dominantly bright.  Several attempts on selecting an appropriate threshold revealed the 

futility of this approach. We, therefore, opted for using a trainable system that uses these 

two parameters in classifying images into a class of images that need speckle de-noising 

and a class that does not need it.     

Although, this approach seems to be sensible and the corresponding adaptive de-noising 

scheme may improve the accuracy of some or all the previously developed and tested 

texture-based diagnostic schemes it does not exploit the knowledge that RoI’s may 

include subblocks of solid as well as non-solid tissues resulting in cancelling out the effect 

of de-noising. Accordingly, we decided to use two models of a trainable system of 

adaptive de-noising: 

1. Model 1: Training based on the two parameters computed over the whole RoI, 

and adaptively applying/bypassing the de-noising scheme on the entire RoI. The 

pre-processing in this model is of global nature. 

2. Model 2: Training based on the two parameters computed in reasonable size 

subblocks the RoI, and adaptively applying/bypassing the de-noising scheme on 

each block. Here the pre-processing is applied locally with only a few blocks are 

de-noised, if any.  

Next, we describe these two models in more details and present their effects on the 

performance of each of the texture-based diagnostic schemes.    

5.2.1 Model 1: Adaptive Global Speckle Noise Reduction 

This model works in two stages. In stage 1, we train an SVM (see (Cortes and Vapnik 

1995) ) classifier on a dataset of 2-dimensional vectors (kurtosis, skewness) extracted 

from the RoI of images from two groups: class1 where the scanned ovarian tissue has no 

or little solid components; and class 2 where the scanned tissue is mostly brighter, 

showing complex structure, indicative of presence of   solidity. For this, we manually 

selected 10 images from each class, and these images were not used in testing.  Table 5-

2 displays two samples, from each class, that were used for training.  
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Table 5- 2: Samples of a class 1 and class 2 RoIs of ovarian ultrasound images. 

Class1 ROI Class 2 Solid ROI 

 

 

 

 

 

 

 

 

 

Figure 5-3 displays the flow diagram of the training system of this model.  In the testing 

stage, any new input region of interest is classified as class 1 or class 2, based on its 

(kurtosis, Skewness) vector representation, and if class 1 label is output then no de-

noising is applied, otherwise is will pre-processed for a reduced level of speckle noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 3: Model1: Speckle noise based on the whole image. 

The Wiener filter was implemented only on the image that had a solid ROI. The Wiener 

filter was applied in different kernel sizes of 3x3, 5x5, 7x7 and 9x9. The filter of 3x3 

kernel size, in particular, was found to be effective in retaining the edges and other 

properties to a certain extent and hence provided the best visual enhancement of the image 

and texture classification.    

Original 

image 
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5.2.2 Model 2: Localised and Adaptive Speckle Noise Reduction  

In some instances, RoI images include both solid and non-solid textured regions (see 

Figure 5-4. In these cases, a global de-noising may add some unintended artefacts while 

no de-noising may leave some degradations and blurred edges and, in both cases, the 

diagnostic decision may become unreliable. We, therefore, propose developed a localised 

and adaptive de-noising model could be built by dividing the images based into blocks to 

capture the local information (different level of speckle-noise) and act accordingly.  

 

 

 

 

 

 
 

 

 

Figure 5- 4: Ovarian tumour samples illustrate the different level of speckle-noise . 

Again, we use a training system to build Model 2 adaptive speckle de-noise procedure. 

In the training phase, 100 block samples from each class with optimal size 30×30, were 

collected (see Figure 5-6). A histogram was conducted on each, followed by the 

calculation of static measurements of skewness and kurtosis based on the histogram 

readings. These feature vectors were used to train an SVM pattern classifier to 

differentiate between in-class (no solid tissue) and out-of-class (solid tissue) patterns. 

Figure 5-5 shows samples of blocks used for training. 

 

 

 

 

 

 

 

 

Figure 5- 5: Samples of images used to train Model 2. 

In the testing phase, the aim was to capture solid areas in out-of-sample images. The size 

of the block was fixed over an image, and the trained classifier is used to determine which 

patterns show the solidity in the block. At each window position, the same set of variables 

were used in the training step, and they were fed into the classifier. The classifier output 
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determined whether the block needs to be processed or not. In the next section, we present 

the results of experiments conducted to test the performance of the texture-based 

diagnostic schemes post using the adaptive speckle de-noising with both models.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5- 6: Model2: Adaptive localized Speckle noise suppression. 

5.3 Adaptive Pre-processing – Experiment and Discussion  

We conducted a large number of experiments to test the effect of the two models of 

adaptive speckle denoising on pre-processing input Ultrasound Ovarian tumour regions 

for improved quality and minimal noise distortion suitable for diagnostic decisions using 

our proposed texture-based schemes. In these experiments, 7 texture-based feature 

schemes, introduced in chapter 4, were tested to evaluate the effects of the adaptive de-

noising models on the diagnostic performance of both SVM and kNN classifiers for both 

adopted experimental protocols (L1O & 50-50, see chapter 4). The results of these 

experiments are to be compared with the cases of applying no pre-processing and blind 

de-noising.  
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We first compare the performance of two related features (LBP (256 bins) and LBP (59 

bins)) post de-noising by model 1 with post de-noising with model 2 for both SVM and 

kNN classifiers.  These results are shown in Figure 5-7 and Figure 5-8, below. 

 

 

Figure 5- 7: Performance of the LBP (256) based scheme post adaptive de-noising. 

 

Figure 5- 8: Performance of adaptive pre-processing for the LBP (59) texture scheme. 

These results show that model 2 yield better performance than model 1 for both features 

and classifiers. The LBP (59 bins) scheme outperform the LBP (256 bins) scheme for 

both classifiers, and for both schemes, the SVM yield better accuracy than the kNN 

classifier. The use of adaptive de-noising improves the accuracy of both features and 

Avg STD Avg STD Avg STD Avg STD Avg STD Avg STD

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

Model 1 (SVM Classifer) 77.9 1.678 79.96 2.097 75.85 2.765 81.12 1.111 81.59 1.001 80.66 1.243

Model 2 (SVM Classifer) 80.05 1.095 81 2.876 79.1 2.009 82.08 0.789 82.19 1.102 81.98 1.006

Model 1 (kNN Classifer) 76.88 2.986 77.18 2.315 76.7 2.975 77.26 2.009 78.99 2.656 75.54 1.998

Model 2 (kNN Classifer) 77.93 1.987 79.78 2.009 76.08 1.999 78.22 1.8 79 1.112 77.45 1.002
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Model 1 (SVM Classifer) 83.21 1.211 83.55 1.456 82.87 1.983 84.01 1.067 84.59 1.413 83.44 1.499

Model 2 (SVM Classifer) 84.96 1.009 85.01 1.022 84.92 1.121 86.66 0.019 86.87 1.021 86.45 0.568
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Model 2 (kNN Classifer) 82.1 1.009 82.21 1.239 81.99 1.009 84.71 1.1 85.43 1.316 84 0.985

0
10
20
30
40
50
60
70
80
90

100

LBP (59 bins)



 

 78 

classifiers in comparison to both no de-noising and blind de-nosing schemes as presented 

in Table 5-1 above. In summary, one can conclude at least for these two features we must 

use adaptive de-noising.     

Opting for adaptive pre-processing techniques according to blocking allows for vital 

components in ovarian tumour diagnosis like solid areas (i.e. rich textures) to be 

identified. However, model 1 is advantageous and suitable for images that only contain 

solid textures. However, it is not suitable for images that include other types of textures 

(i.e. solid and not solid). The results led to the second model being proposed. Based on 

these results, the recommended algorithm according to the blocking model (2) resulted in 

a notable increase in subjective image quality and did not produce detectable artefacts. 

The algorithm displayed comparatively better performance than the model (1). When 

conducted the same experiments for the other 5 schemes, we got a similar pattern of 

performance to the LBP based schemes in relation to model 1 and model 2. However, we 

only present in Table 5-3 only when tested the other 5 feature extraction methods using 

Model 2 only for the other 5 methods, i.e. statistics histogram parameters, Gabor filter, 

histograms of oriented gradients (HOG), fractal dimension (FD) and Hu’s invariant 

Moments using SVM & kNN (where k value =1) classifiers. 

Table 5- 3: Performance of 5 texture-based diagnostic schemes post model 2 adaptive de-

noising based on SVM and kNN (k value =1) classifiers. 

SVM Classifier 

(Model 2) 

Performance Rate  

 

Feature vector 

Accuracy 

mean, (Stdev) 
Sensitivity 

mean, (Stdev) 
Specificity 

mean, (Stdev) 
L1O 50-50 L1O 50-50 L1O 50-50 

7-Moments 79.40% 

(2.234) 
80.37% 

(1112) 
80.08% 

(2.453) 
80.78% 

(2009) 
78.90% 

(2.341) 
79.97% 

(2.122) 
Statistics Histogram 81.51% 

(1.002) 
82.16% 

(1.021) 
81.70% 

(1.200) 
82.35% 

(0.127) 
81.32% 

(1.232) 
81.98% 

(1.001) 
HOG 83.91% 

(3.312) 
86.11% 

(1.111) 
88.02% 

(3.233) 
87.67% 

(1.009) 
79.81% 

(3.899) 
86.08% 

(1.010) 
Fractal Dimension (FD) 85.92% 

(2.134) 
86.47% 

(0.102) 
86.85% 

(2.344) 
86.91% 

(0.110) 
84.99% 

(2.131) 
86.03% 

(1.121) 
Gabor Filter 87.81% 

(2.221) 
89.64% 

(1.001) 
88.87% 

(1.237) 
90.60% 

(1.020) 
86.76% 

(1.554) 

88.63% 

(0.299) 
kNN Classifier 

(Model 2) 

7-Moments 76.64% 

(2.112) 
79.41% 

(1.231) 
77.24% 

(2.243) 
79.87% 

(2.121) 
76.05% 

(2.888) 
78.95% 

(2.211) 
Statistics Histogram 80.01% 

(1.231) 
79.99% 

(2.331) 
80.03% 

(1.431) 
80.76% 

(2.221) 
79.99% 

(1.765) 
78.56% 

(1.255) 
HOG 81.20% 

(1.221) 
84% 

(1.004) 
81.67% 

(1.284) 
84.24% 

(1.049) 
80.74% 

(1.376) 
83.76% 

(1.889) 
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Fractal Dimension (FD) 82.22% 

(1.343) 
83.63% 

(2342) 
83.32% 

(1.765) 
84.39% 

(2.912) 
82% 

(1.998) 
82.88% 

(2.982) 
Gabor Filter 83.28% 

(2.445) 
86.10% 

(1.009) 
85.36% 

(2.871) 
87.56% 

(0.111) 
81.62% 

(3.009) 
85.65% 

(1.090) 

 

First of all, these results further confirmed that the SVM classifier is showing better 

results than kNN classifier for all the 5 texture features. The performances of the feature 

extraction techniques as shown in Table 5-3, confirm that the adaptive de-noising 

approach based on blocking (Model 2) improves all texture feature methods in 

comparisons to both no de-noising or blind de-nosing results shown in Table 5.1 above. 

Except for the Statistics Histogram scheme, the improvement in performance for the 

SVM classifier is in the range of 2-4% in absolute accuracy. The performance of the 

Statistics Histogram schemes may be affected, more than other schemes, as a result of 

significant variation in RoI size. This factor will be explored in the final section of this 

chapter. 

Having established that the use of model 2 adaptive speckle de-noising improves the 

performance of each of the 7 texture-based feature schemes, it is natural to test the effect 

of this approach when we fuse several of these schemes at the decision level using simple 

majority rules. For that, we conducted a different set of experiments to evaluate the 

performance of several combinations of schemes (i.e. best three features, best five 

features and all seven features). Again, we used the SVM & kNN classifiers with both of 

our testing protocols. Results are shown in Table 5-4. 

Table 5- 4: Performance of different Majority Voting fusion schemes based on SVM and kNN 

(k value =1) classifiers. 

SVM Classifier 

 

 
 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

Fusion of best 3 schemes 

 
87.25% 

(1.033) 

90.37% 

(0.991) 

87.64% 

(1.761) 

90.76% 

(0.912) 

86.87% 

(1.098) 

89.99% 

(0.776) 

Fusion of best 5 schemes 

 

90.05% 

(1.760) 

93.01% 

(0.088) 

90.76% 

(1.842) 

93.12% 

(1.001) 

89.34% 

(1.773) 

92.91% 

(0.954) 

Fusion of All 7 schemes 

 

88.64% 

(2.009) 

89.82% 

(1.025) 

89.55% 

(1.643) 

90.70% 

(1.005) 

87.73% 

(2.009) 

88.94% 

(1.159) 

kNN Classifier 

 

Fusion of best 3 schemes 

 

82% 

(2.144) 

86.33% 

(2.564) 

83.15% 

(2.400) 

87.55% 

(1.998) 

80.85% 

(2.002) 

85.12% 

(1.644) 
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Fusion of best 5 schemes 

 

86.88% 

(2.200) 

88.33% 

(0.876) 

88.12% 

(2.641) 

88.67% 

(0.981) 

85.65% 

(2.198) 

87.99% 

(0.999) 

Fusion of All 7 schemes 

 

85.81% 

(3.895) 

87.70% 

(1.877) 

88.52% 

(3.865) 

88.77% 

(1.977) 

83.11% 

(2.990) 

86.64% 

(2.128) 

 

These results again confirmed that fusion at the decision level, even with simple majority 

rule, boasts the accuracy of texture-based diagnostic of ovarian tumour from ultrasound 

scan images. Moreover, there are marginal differences, if any, between Specificity and 

sensitivity rates for all fusion combinations. The SVM classifier leads to the best 

performance of over 90% for both training/testing protocols, which is comparable to the 

performance of well qualified medical experts.    

5.4 The Impact of RoI Size Variation on the Performance of Texture-

based Schemes  

In this section, we shall consider the effect of variation of RoI size on the performance of 

certain texture-based feature schemes for diagnosing the ovarian tumour. When RoI was 

segmented from the experimental dataset, we noted the significant variation in their sizes. 

This variation possibly reflects variation in tumour size at different stages of the disease, 

and in the clinical setting, this problem is expected to occur frequently. Size variation has 

obvious impact, not only on efficiency but on the actual entries of the various image 

texture feature vectors and by implication on the diagnostic decisions. This effect 

becomes particularly adverse for texture-based features that are defined in terms of 

histograms when there is a significant size variation within the training images and/or at 

between training and testing stages. Texture features, studied in this thesis, most affected 

by such variation are the LBPs and the Statistics Histogram.  In classification tasks, many 

researchers opt for normalising image size by resizing to a fixed-size image.  

However, when an image is resized, its pixel information change as a result of necessary 

interpolation procedure which may result in reduced image quality and loss of vital 

information, especial if the resizing ratio is significant. In our experiments, the variation 

in RoI size of the images is significant, ranging from (90 x 85 to 1201 x 1100). In all 

previous experiments, we did not adopt any resizing policy. Figure 5-9, below, illustrate 

such effect on the histograms when we enlarge or reduce the size of Ultrasound ovarian 

tumour RoI (a) demonstrations examples about small size image with its histogram (size 

120 x139) (b) resize the same image into (450 x450) with its histogram. 
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Figure 5- 9: Illustrations example of an image (a) small size of image with its histogram (b) 

LBP image with its histogram (c) increase the size of image with its histogram (d) LBP image 

with its histogram. 

Another example when the image is large (1201x1100) resized into (450x450) smaller 

than the original dimensions, the quality of the image will affect because we will lose 

much information. Figure (5-10) shows an example of the impact on rescaled the image 

when it displays the histogram. 

  

a c 

b d 
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Figure 5- 10: Displays example of image (a) large size of image with its histogram (b) LBP 

image with its histogram (c) reduce the size of image with its histogram (d) LBP image with it 

is a histogram. 

As we can see that in Figures (Figures 5.9 & 5.10), there is a clear difference between the 

investigated texture-based features of an input image and its resized image (i.e. the 

histograms, LBP histograms) due to resizing operations. Also, note the appearance of 

fuzzy or pixelated regions. Hence, the size normalisation process by resizing certainly 

has a strong influence on the feature extraction methods of (LBP 256 bins, Uniform LBP 

59 bins as well as static histogram features) reducing their power of discriminating 

between different types of ovarian cancer. Therefore, image resizing before extract 

features may cause more complex and class overlapped feature space, which in turn have 

an adverse effect on the classifier’s performances. The effect of resizing on the 

performance of the other texture features may not be negligible, but it is difficult to 

estimate.  

5.5 A Proposed Size Variation Mitigating Method 

Here we propose an alternative approach to image resizing, specifically applicable to the 

specific texture-based features discussed in this section. We propose to normalise these 

feature vectors rather than resizing the images prior to their extractions. This 

normalisation procedure is applied to each of the corresponding histogram vectors by 

dividing each bin value by the size of the image, i.e. if H is the feature’s histogram then 

we normalise the histogram using the formula:   

a c 

b d 
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                                                                                                    (5.4)                                                                                                  

Where M and N are the dimensions of the image, and i is the index of the bin. Then, will 

get new feature vectors to be fed it to classifier during both the training and testing stages. 

Finally, we conducted a new set of experiments to test the effect of our new idea on the 

performance of the three texture-based features effected by image resizing procedure: the 

LBP (256 bins), uniform LBP (59 bins), and the statistics histogram. As a result of the 

work in the previous sections, prior to this feature normalisation, we apply the adaptive 

pre-processing (model 2) on ROI image. Figure 5-11 & 5-12 below show the results of 

this new set of experiments for the SVM and kNN classifiers when trained and tested by 

the (L1O & 50-50) protocols.  

 

Figure 5- 11: Shows the classification performance of normalised-histogram texture-based 

features using SVM Classifier. 

  

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

LBP (256bins) 88.54 1.785 89.65 1.108 87.43 1.174 89.27 0.997 89.88 1.011 88.66 1.1

Uniform LBP (59 bins) 90.25 1.119 90.56 1.842 89.94 1.73 91.29 0.077 90.56 0.956 91.33 1.021

Statistics Histogram 85.04 0.725 85.79 1.01 84.3 1.057 88.73 1.02 89.03 1.17 88.44 1.751
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Figure 5- 12: Illustrations the classification performance of normalised-histogram texture-based 

features using kNN (k value =1) classifier. 

The results shown in Figure 5-11 & 5-12, demonstrate that the proposed idea of 

normalising the various histogram-based texture features yields significantly improved 

distinguishing between benign and malignant ovarian tumours with each of the three 

features that are defined in terms of histogram texture vectors. Overall, the increase in 

performance is in the range of 3-6% when compared to the results obtained in section 5.3 

(Figures 5-7, 5-8 and Table 5-3). 

Regarding the rest of texture-based feature schemes, used in the research such as (7-

Moments, HOG, Fractal Dimension, as well as, Gabor Filter), this normalisation 

approach is not applicable although the negative effect of RoI resizing may not be 

negligible. What may be needed is more sophisticated image resizing procedures that 

optimally retain the texture features in the original RoI image before re-sizing such as the 

Super-Resolution methods (Al-Hassan 2014). This is outside the realm of this thesis and 

efficiency may be an obstacle.  

5.6 Summary  

This chapter investigated factors adversely influencing the performance of the texture-

based classification scheme in medical images in an attempt to develop procedures that 

help to mitigate the adverse effects of these factors. In the first part of the chapter, the 

effect of the speckle noise on the performances of texture features was investigated. 

Applying Speckle noise suppression by known methods routinely on all images at 

training and testing was demonstrated to be at best of marginal effect. Due to the way 

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy 50-
50

Sensitivity
50-50

Specificity
50-50

LBP (256bins) 84.71 1.898 85 2.005 84.42 2.11 86.22 1.011 86.45 0.985 85.99 1.019

Uniform LBP (59 bins) 85.67 2.105 87.05 1.981 84.29 2.121 87.23 1.725 87.89 2.111 86.57 1.857

Statistics Histogram 84.62 1.647 85.65 1.134 85.13 1.524 85.48 1.254 86.84 1.374 84.12 1.521
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speckle-noise degrade different image regions that are known to have strong relevance to 

diagnosing in terms of presence/absence of solidity was clear guidance to develop an 

adaptive speckle noise suppression scheme(s).  We found that training approach is far 

more superior to using thresholds on relevant adaptation parameter(s), and a localised 

block-based adaptation approach (where de-noising are applied to blocks that need it) is 

more relevant to our task than global adaptation (whereby the entire RoI is de-noised only 

if necessary).  In both cases, the adaptation parameters were defined by the pair (kurtosis, 

skewness) of statistical parameters. In the second part of this chapter, we developed 

feature vector-based normalisation for texture-based diagnostic schemes that are 

histogram defined by histograms. We demonstrated that the proposed idea significantly 

increases the performances of the classification of ovarian tumours.  
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Chapter 6 

Classification in Frequency and Transform Domains 

The last two chapters were focused on developing and testing the performance of spatial 

domain texture-based image features for classifying Ultrasound Ovarian tumour images 

as benign or malignant. We also investigated the adverse impact of two factors that 

influence the performance of the developed schemes, namely the presence of speckle 

noise and significant variation in the RoI size. To mitigate the effect of these two factors, 

we proposed and tested a locally adaptive speckle de-noising procedure that led to 

significantly improved performance of each of the schemes, as well various decision level 

fusion of combinations of these features, and demonstrated the significant improvement 

in certain texture features as a result of using a feature normalisation procedure as an 

alternative to common approach of image resizing. Since ultrasound images, like digital 

camera images, can be represented equivalently by other domains such as frequency and 

transformed domains, then these domains expand, complement and enriches the pool of 

image features to be used for the classification.  This chapter investigates and tests new 

sets of frequency and transformed domain features that are capable of discriminating the 

different classes. The Discrete Fourier Transform (DFT), Wavelet Transforms (including 

Gabor transform), and the Discrete Cosine transform (DCT) are among the most 

frequently deployed invertible transforms used for image processing and analysis tasks. 

The Local Binary Pattern (LBP) coding, and the Gradient, as well as Laplacian operators, 

are examples of image transforms that encapsulate a variety of image texture information.  

In this chapter, we shall investigate and test the performance of several examples of 

texture-related features extracted from the DFT and LBP domain representations of 

ultrasound ovarian tumour scanned images. We shall demonstrate that these schemes 

have significant performance when trained and tested by the SVM and kNN classifiers 

on our experimental dataset.  

Section 6.1 describes the image texture features using Fast Fourier Transform for ovarian 

tumours from US images. Section 6.2 shows the experimental results and discussion. In 

section 6.3, refer to the combination of different texture features based on the FFT 

spectrum. Section 6.4 investigates the new transformation domains using the LBP 

images. Section 6.5 contains a summary of this chapter. 
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6.1 Fourier Transform-based Image Texture Features  

The spatial domain of a 2D digital image is represented by a matrix of digitized intensity 

values at pixels that are located at the centres of a regular rectangular grid on the scanned 

object. Each pixel value quantifies the aggregate of light reflected from the corresponding 

grid cell around the pixel. Natural light is made of a combination of waveforms carrying 

photons of a range of frequencies. The Fourier Transform theory is a mathematical 

technique, developed in the 18th century, capable of analysing the reflected light, from 

photographed objects, into its component frequencies in the same way as a prism analyses 

natural light into a rainbow. This theory is equally applicable to the analysis of another 

type of detectable electromagnetic radiation (or mechanically generated) waveform 

signals into their constituent waveform frequency range.  Here, we are interested in using 

Fourier transform to create the frequency domain of ultrasound images for use in ovarian 

tumour image classification. We shall first briefly describe the mathematics of Fourier 

transforms and highlight the main properties of the Fourier frequency domain of images 

that enable effective tumour classification. 

6.1.1 Fourier Spectrum of Ultrasound Images 

The continuous Fourier transform (CFT) is a mapping of the infinite-dimensional vector 

space of certain type of complex-valued functions decomposing them into linear 

combinations of sine and cosine waves of different frequencies.  The discrete Fourier 

transformation (DFT) is a version of CFT that is applicable to discrete signals such as 

images. The output of applying CFT/DFT on an image is a complex function defined for 

every pair (u,v) of frequencies real (and imaginary) values are obtained by the inner 

product of the entire given signal with the cosine (Respectively sine) wave functions.  In 

another word, the Fourier function at any frequency pair is dependent on contributions 

from the entire image pixel values. 

The discrete Fourier transformation can be calculated using the following formula 

(Gonzalez, Woods and Eddins 2004): Where f is the image, (u,v) is the frequency pair, 

and f (x,y) is the spatial pixel values. 

                              (6.1) 
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For computational simplicity, it is customary to represent he output complex number of 

the DFT is a 2-dimensional array indexed by a frequency pair (u,v): 

[𝑅𝑒(𝐹(𝑢, 𝑣)), 𝐼𝑚(𝐹(𝑢, 𝑣))]                                                       (6.2) 

The Fourier transform is invertible, and surprisingly the computation of a function f from 

its Fourier transform F has an almost identical formula with minor changes.  

The idea behind the use of DFT for image processing/analysis this is that the reflected 

frequency waveforms are dependent on the characteristics of the scanned object. The 

frequency waveforms that an object reflects are dependent on the textural and 

orientational properties of the object. In the case of ultrasound images, the textural 

properties are related to the geometry of the tissue components of the scanned ovary. 

Smooth regions in an image indicate smaller variation in grey values and this will be 

expressed more in the image DFT by low-frequency waveforms, but highly textured 

tissue regions reflect larger localised variations in pixel values and therefore have a 

stronger response to high-frequency waveforms. Observing and analysing such effects 

needs some form of visualisation.    

Due to the fact that Fourier coefficients are complex numbers, it is not possible to display 

the output of the DFT by an easy to interpret the digital image. Moreover, displaying it 

as a pair of images representing the cartesian coordinates does not convey useful 

information about the original image. However, using the polar coordinate form of the 

DFT output have been known to provide an alternative displayable informative pair of 

images:  

1. The DFT spectrum image defined by the modulus of F(u,v): 

               ∥ 𝐹(𝑢, 𝑣) ∥=  √(𝑅𝑒(𝐹(𝑢, 𝑣)))2 + (𝐼𝑀(𝐹(𝑢, 𝑣)))2                                        (6.3) 

2. The DFT phase image defined by the angle of F(u,v):  

                    𝜙(𝐹(𝑢, 𝑣)) = arctan(
Im(F(u, v))

Re(F(u, v))
)                                                                (6.4) 

Figure 6-1 shows an ovarian ultrasound image with its FFT spectrum and phase images.   
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(a)                                              (b)                                             (c) 

Figure 6- 1: (a) Original ultrasound ovarian tumour image (b) its DFT spectrum (c) spectrum 

phase. 

The computation of the DFT and its spectrum and phase images are somewhat 

demanding. Well-known relationships between sine and cosine functions, taught at 

secondary school trigonometric curriculum, have been used to develop a more efficient 

version of DFT, called the Fast Fourier Transform (FFT).  MATLAB and most 

programming languages provide system functions for computing FFT of an input 

signal/image and its inverse. 

The FFT spectrum of an image has been shown to provide a good indication of the FFT’s 

power in interpreting some aspects of the original image content. Though the Fourier 

spectrum of the above scan image looks featureless, however, it holds vital information 

on the direction of prominent features. The directions along which the spectrum is 

brighter correspond to the frequency orientation of image objects/texture discontinuity 

elements (e.g. edges and other geometric features). The discontinuities are indicated by 

highlighted rays that radiate from the central frequency at (0, 0) which represents the total 

energy (also known as the DC component in the image). Bright horizontal/vertical lines 

in the Fourier spectrum correspond to the image border as well as to object 

vertically/horizontally oriented. However, the spectrum image does not reveal any 

information about the position of the prominent objects/textures, i.e. it provides no spatial 

support. The spatial information on the image objects is visible from the phase images. 

Despite the above seemingly negative comments, we shall demonstrate that the FFT 

spectrum images do convey very useful information that enables their use for classifying 

Ultrasound ovarian tumour scans.  

Consider the following samples of Ultrasound Ovarian Benign and Malignant tumours 

displayed in Figure 6-2, below, with their FFT spectrums.  These images reveal 

interesting characteristics that we noted on a large sample of both classes of tumours that 

we attempt to exploit in various ways to develop frequency domain texture-based 
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Benign tumours with Its spectrum 

With  

Malignant tumours with Its spectrum 

With  

 

diagnostic tools. It is not difficult to note a kind of glare around the central region for both 

classes, and in the case of Malignant images blurring persist over a visible size disc, but 

in the cases of Benign tumour the brighter lines emerge fast out of the centre are sharper 

and distinguishable. In fact, the central region of the FFT spectrum also seems to 

encapsulate vital structural information that is useful in discriminating malignant tumours 

from benign ones.  

 

 

 

 

 

 

 

 

 

 

     

Figure 6- 2: Samples of FFT spectrum images for benign and malignant tumour RoIs. 

This observation was first investigated by (Khazendar, Shan 2016), who designed the first 

FFT domain-based Ovarian tumour classification scheme, called the FFGF, that achieve 

a high accuracy rate.  Next, we shall describe a modified version of Khaznadar’s FFGF 

scheme and demonstrate improved accuracy on an expanded dataset of the one used in 

(Khazendar, Shan 2016) . 

6.1.2 Geometric FFT based Diagnostic Schemes 

The FFGF Frequency domain ultrasound ovarian image texture descriptor was designed, 

developed, and tested by Dr Shan Khaznadar during her PhD research program of study 

at Buckingham University. The proposed scheme, introduced by (Khazendar, Shan 2016)  

is an interesting low dimensional feature vector that can be characterised as a geometric 

descriptor. Our current investigation on Frequency domain texture-based Ultrasound 

ovarian tumour image classification was initiated first to incorporate some modifications 

that take advantage of the adaptive speckle de-noising scheme and to analyse the 

performance of the 3 components of the FFGF features separately. Later in the chapter, 
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we investigate an additional set of texture-features that can be extracted directly from the 

FFT spectrum images. 

The rationale behind this that the most relevant detailed information, including the texture 

of the image, is represented by frequencies around the centre of the spectrum. The FFGF 

texture features are formed by geometric parameters associated with the centralised 

Fourier transform spectrum of the image. The FFGF parameters are extracted through a 

process of binarization via thresholding high-frequency coefficients (as indicators of 

significant geometric texture primitives spread throughout the spatial domain image). At 

a certain threshold, this process, with the help of simple morphological operations, results 

in a bright elliptical shape cluster, the dimensions of which form the FFGF descriptor. 

Figure 6-3, below, illustrates the block diagram of the FFGF of our modified version to 

be used for automatic classification of B-mode Ultrasound ovarian scans.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- 3: The process of FFGF features. 

The two main differences between the original and the modified FFGF schemes are: 

1. Pre-processing Step – Instead of using a blanket de-noising procedure, we use 

adaptive block-based de-noising (i.e. model 2) as described in chapter 5. Note that 

in  (Khazendar, Shan 2016) uses a version of non-local means based de-noising 

in contrast to the Wiener filter-based scheme adopted here. 

2. Binarization steps – Instead of using an ad hoc intensity threshold, as practiced in  

(Khazendar, Shan 2016). We binarize the FFT septum image using minimum 

Major, Minor, and Area 

Binarization 

Pre-processing Input Image FFT Spectrum  

 

Intensity Adjust. 
 

Im. Closed Extracted FES.   

 

Classification  

 



 

 92 

cross-entropy to determine an elliptically shaped object in the centre followed by 

a morphological operation to close the ellipse. The axes and size are good 

indicators of the orientation of dominating textures in the original image, and 

others. 

For more clarity, we now give a precise description of the steps of our modified fast 

Fourier-based geometric features (FFGF) as shown in (Figure 6.3): -  

Step 1: Transforming an image into FFT frequency domain and computing the 

spectrum. 

Step 2: Intensity adjustment 

One of the image enhancement method which is used to highlight the object of the image. 

i.e. it is used to modifying the intensity values of the image by mapping the intensity 

values to a new range.   

Step 3: Binarise the FFT power spectrum, using a minimum cross-entropy. 

The cross entropy was developed by (Kullback 1997). Let F = {𝑓1,    𝑓2,   … , 𝑓𝑁   } and G= 

{𝑔1,    𝑔2,   … , 𝑔𝑁   }be two probability distributions on the same set. The cross entropy 

between F and G is defined by  

                                   𝐷(𝐹, 𝐺) =  ∑ 𝑓𝑖 

𝑁

𝑖=1

 log
𝑓𝑖

𝑔𝑖
                                                                (6.5) 

 

The minimum cross entropy thresholding algorithm (Li 1993) chooses a number of 

thresholds by minimizing the cross entropy among the original image and the resulting 

image. Let I be the original image and h(i), i=1, 2,,L, be the corresponding histogram 

with L being the number of gray levels. After that, the resulting image, denoted by It, 

based on t as the threshold value is built through  

                                𝐼𝑡 (𝑥, 𝑦) {
𝜇(1, 𝑡),                 𝐼(𝑥, 𝑦) < 𝑡,    

 𝜇(𝑡, 𝐿 + 1), 𝐼(𝑥, 𝑦) ≥ 𝑡,      
                                       (6.6) 

Where  

                                   𝜇(𝑎, 𝑏) =  ∑ 𝑖ℎ(𝑖)

𝑏−1

𝑖=𝑎

 ∑ ℎ(𝑖).

𝑏−1

𝑖=𝑎

⁄                                                     (6.7) 
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The cross entropy is then calculated by   

       𝐷(𝑡) =  ∑ 𝑖ℎ(𝑖)𝑙𝑜𝑔 (
𝑖

𝜇(1, 𝑡
) +  ∑ 𝑖ℎ(𝑖) log (

𝑖

𝜇(𝑡, 𝐿 + 1)
)

𝐿

𝑖=𝑡

𝑡−1

𝑖=1

                           (6.8) 

The MCET determines the optimal threshold t* by minimizing the cross-entropy.  

                                         𝑡∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡 {𝐷(𝑡)}.                                                               (6.9) 

Step 4: IMCLOSE Morphologically operation  

The closing of an image is moreover a combinational operation of erosion and dilation. 

It is different from the opening operation in the sense of the order of occurrence of erosion 

and dilation operation. A is the closing mage which can be obtained by structuring 

element B that is defined in the flowing question: 

A.B = (A⨁ B) ⊝ B                                                  (6.10) 

The relation between erosion & dilation with closing is given in the above mathematical 

statement. It shows that closing operation is the dilation of an image A by the structuring 

element B and the resultant is eroded with the same structuring element. The boundary of 

the closed image is the points in the structuring element B that reaches the extreme points 

of the boundary of A when B is ‘rolled’ over A around outside of its boundary. The closing 

operation though smoothes sections of contours it in general blends narrow breaks and 

thin gaps. As a result, it eliminates small holes and fills gaps in the objects boundaries as 

displayed in Figure 6-4  

 

 

 

 

 

                                 (a)                                                    (b) 

Figure 6- 4: An example of Morphologically operation: (a) Bini image (b) image after closing 

the objects 

Step 5: Determine the best ellipse fit of the highlighted shape in the centre of the binary 

spectrum image. The regionprops function in Matlab is used to fit an ellipse to the 

spectrum by matching the normalised second central moments as a threshold. The three 

features were extracted from the fitted ellipse FFGF feature vector:  
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FFGF = [Major axis Minor axis Ellipse Area]. 

6.2 Experimental Results and Discussion  

The experiments were conducted by training and testing SVM & kNN classifiers on our 

experimental dataset of 242 scan images, according to the two evaluation protocols 

described in Chapter 4. Figure 6-5, below, displays the results of automatic identification 

of the probe set of images regarding the accuracy rate and the corresponding sensitivity 

and specificity measures. These results demonstrate the benefits of extracting feature 

vectors from the FFT domain when discriminating benign from malignant tumours. More 

importantly, it takes only three basic frequency domain features to achieve accuracy 

above 89.64%. Note that the SVM classifier outperforms the kNN (where k value =1)  

one, despite that expectation that for low dimensional feature factors the opposite is more 

likely.   This pattern was also notable in Khasnadar’s experiments, and the obvious 

explanation is that the low dimensionality of the FFGF vector is dependent on every pixel 

in the original image as a result of the way FFT is defined.   

 

Figure 6- 5: Classification results based on FFGF using SVM & kNN(k value =1)  classifiers. 

These results on the rather expanded dataset of Adnexal images that were used in 

demonstrate which was 85.90%; however, the modified FFGF improves significantly the 

performance achieved by its original version. This could be attributed to the use of the 

adaptive speckle de-noising in place of the blanket de-noising procedure used in 

(Khazendar, Shan 2016) as well as the use of entropy dependent binarization instead of 

the trial & error empirically determined threshold.  

mean Stdev mean Stdev mean Stdev

Accuracy Sensitivity Specificity

SVM (L1O) 91.93 1.96 92.94 0.619 90.82 0.398

kNN (L1O) 89.6 2.831 89.97 0.96 89.42 0.477

SVM (50-50) 92.84 1.914 93.52 1.777 92.17 1.652

kNN (50-50) 88.59 2.377 89.91 2.175 88.59 2.375
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A close visual examination of the elliptical shapes obtained from a large sample of the 

FFT spectrum images of Benign and Malignant RoIs revealed an interesting variation in 

the shape and size of these classes. Table 6-1, below, displays a sample of benign and 

malignant tumour RoI together with the extracted elliptical shapes.  

Table 6- 1: FFT and binary spectrums of ultrasound images of benign and malignant ovarian 

masses. 

 

Enhanced ROI FFT Spectrum Binary spectrum with best 

fitted ellipse 

 

 

 

 

 

(a) Benign Tumour 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Benign Tumour 

  

 

 

 

 

 

(c) Malignant Tumour 

 

 

 

 

 

 

 

 

 

 

 

(d)  Malignant Tumour 
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It is well known that malignant tumours tend to be larger than benign tumours due to 

increased solidity. In fact, malignant tumours tend to contain more complex ultrasound 

features, such as irregular borders, irregular echogenicity, solid parts and papillations. 

Interestingly, this is reflected as glares of greys near the centre of the spectrum being 

modelled by the extracted ellipse shape in the frequency’s spectrum and the FFGF 

features. Malignant tumour images tend to have more glares of grey and lead to a wider 

minor diameter of a larger ellipse compared (Table 6-1). The above discussions, 

motivated us to conduct further testing on using each extracted FFGF parameter from the 

binary spectrum separately, i.e.  Major axis, Minor axis, and area as shown in Table 6.2. 

Table 6- 2: Classification result based on Minor, Major and Area using SVM & kNN based on 

(k value =1) classifiers. 

         Performance Rate 

 

 

Feature Vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

MinorAxisLength 

(SVM Classifier) 
95.26 % 

(0.636) 

95.61% 

(0.061) 

95.75 % 

(0.779) 

95.87% 

(0.651) 

95.05 % 

(0.757) 

95.35% 

(0.876) 

MajorAxisLength 

(SVM Classifier) 

87.80 % 

(1.760) 

88.22 % 

(2.749) 

88.95 % 

(1.282) 

88.92 % 

(3.905) 

87.20 % 

(1.876) 

87.52 % 

(3.564) 

Area 

(SVM Classifier) 

89.25 % 

(2.913) 

90.15 % 

(1.978) 

90.73 % 

(3.314) 

91.30 % 

(1.003) 

87.77 % 

(3.175) 

89.91 % 

(1.023) 

MinorAxisLength 

(kNN Classifier) 

94.66 % 

(1.221) 
95.17% 

(2.053) 

95.40 % 

(1.009) 

95.52% 

(2.971) 

94.12 % 

(1.089) 

94.82% 

(3.918) 

MajorAxisLength 

(kNN Classifier) 

87.33% 

(2.541) 
87.01% 

(01.211) 

87.88% 

(2.111) 

88.01% 

(1.543) 

87.35% 

(2.652) 

86.02% 

(1.763) 

Area 

(kNN Classifier) 

87.37% 

(1.121) 
89.56% 

(1.001) 

87.54% 

(1.765) 

90.08% 

(0.899) 

87.18% 

(1.101) 

89.03% 

(1.098) 

 

These results confirm that the minor feature alone provides the best result that even 

significantly outperform the accuracy reported in the previous section for the 3-

dimensional FFGF feature scheme. The second-best was when the area is determined by 

the number of pixels in the region followed marginally by the major feature scheme. 

Interestingly, for each of the single parameter schemes, there are very marginal 

differences between the performance of the SVM and kNN classifiers. However, these 

significant performances, demonstrate that the FFT spectrum images of ultrasound 

ovarian tumour images have a very rich texture and structural information that are 

unfortunately obscured/hidden by its “misleading” visual representation. This 

observation raises a number of questions as to what other texture parameters can be 

extracted from the FFT spectrum and how effective such parameters are in developing 

additional frequency-domain diagnostic schemes for ovarian ultrasound images. Another 



 

 97 

experiment was done by using the same process of FFGF on other type of caner which is 

breast cancer (see chapter 8, section 8.3). 

6.3 Texture Analysis of FFT Spectrum Using Other Features  

This section is devoted to answering the questions raised at the end of the last section. 

Taking into account, the success of the spatial domain texture schemes we developed in 

chapter 4 we shall extract the same 7 types of texture features from the FFT spectrum 

images and test their discriminating powers perhaps in comparison to the results obtained 

in the previous chapters.   In the intended schemes, the FFT spectrum images are the 

source of feature vectors. Since the FFT spectrum does not provide spatial information 

on the objects in the original image; then we will segment the tumour RoI in the spatial 

domain and apply FFT on the smallest rectangular box containing the actual RoI and set 

the extra border pixel values to 0.  Also, we should not attempt to design a special 

procedure to remove the effect of speckle noise on the FFT spectrum. Instead, we shall 

apply the adaptive speckle noise suppression procedure on the RoI prior to applying FFT.  

 Figure 6-6, below, describe the automated system is proposed based on the Fourier 

transformation. The new CAD method begins with the pre-processing (model two) then 

convert the pre-processed image into FFT to disapply the image spectrum. In the third 

stage feature extraction stage where features are identified based on texture using 

different feature extraction methods which are (F1) LBP256 bins, (F2) uniform (LBP), 

(F3) Gabor filter, (F4) fractal dimension (FD), (F5) Histograms of Oriented Gradients 

(HOG), (F6) Hu’s invariant moments, and (F7) statistics histogram properties. Finally, 

the SVM & kNN classifiers are used to classify the different types of ovarian tumours. 
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Figure 6- 6: The block diagram of FFT Spectrum texture-based classification. 

In blow Figure 6-7 shows the histogram of LBP (256) based on the FFT spectrum. 

 

 

 

 

 

Figure 6- 7: Display example of LBP image using the FFT spectrum. 

Table 6-3 displays the performances of the 7 texture schemes extracted from the FFT-

spectrum when the experimental data was trained and tested by the SVM and kNN (where 

k value =1) classifiers according to the two agreed protocols. In these experiments, the 

adaptive speckle-noise reduction has been applied to the original cropped images prior to 

applying FFT. 

 

Malignant 

Input RoI Image 
Adaptive Pre-

processing (Model 2) 
FFT Image 

F2 F6 F1 F3 F4 F5 F7 

Extract Features from each technique, then train and test the SVM & kNN 

classifiers separately using the agreed protocols 

Benign 

Input Image FFT Image LBP Image LBP Histogram 
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Table 6- 3: Performance of Frequency domain texture-based diagnosing schemes based on 

SVM and kNN (k value =1) classifiers. 

 

These results are very interesting in that all the texture features extracted from the FFT 

spectrum achieved unexpectedly high accuracy, despite the fact that visually, the FFT 

spectrum does not seem to convey much information. These results need to be compared 

with the results achieved in chapter 5 when the adaptive speckle-noise reduction was 

used, which we are also using in these experiments. This comparison reveals that three of 

SVM Classifier 

    Performance Rate  

 

Feature vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 
Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

FFT_LBP (256) 76.73% 

(3.125) 

78.63% 

(2.912) 

80.40% 

(3.096) 

79.88% 

(2.711) 

74.95% 

(3.275) 

77.38% 

(2.003) 

FFT_LBP (59) 88.42% 

(2.435) 

89.51% 

(1.548) 

91.33% 

(2.131) 

90.05% 

(1.058) 

87.20% 

(2.061) 

88.98% 

(1.121) 

FFT_HOG 85.57% 

(3.153) 

85.81% 

(2.121) 

88.88% 

(3.241) 

87.62% 

(2.612) 

83.13% 

(3.712) 

84% 

(2.096) 

FFT_ 7 moments 79.27% 

(1.431) 

79.82% 

(1.008) 

79.95% 

(1.193) 

81.40% 

(1.201) 

78.59% 

(1.622) 

78.24% 

(1.101) 

FFT_ Statistics 

Histogram 

77.94% 

(1.410) 

78.35% 

(2.744) 

78.21% 

(0.502) 

79.10% 

(2.182) 

77.68% 

(1.080) 

78.85% 

(2.064) 

FFT_FD 90.22% 

(2.263) 

92.64% 

(1.901) 

90.82% 

(2.263) 

93.87% 

(1.807) 

90.46% 

(2.263) 

91.40% 

(1.139) 

FFT_Gabor 96.51% 

(1.513) 

97.32% 

(1.744) 

97.05% 

(1.301) 

98.77% 

(1.793) 

96.27% 

(1.144) 

95.87% 

(1.363) 

Feature Fusion based 

on all Methods 

97.23% 

(1.044) 

97.71% 

(0.949) 

98.13% 

(1.101) 

97.98% 

(0.711) 

96.33% 

(1.114) 

97.45% 

(0.783) 

kNN Classifier 

FFT_LBP (256) 75.33% 

(2.753) 

75.36% 

(1.720) 

76.68% 

(2.043) 

75.90% 

(1.827) 

73.98% 

(3.623) 

74.82% 

(1.993) 

FFT_LBP (59) 75.37% 

(2.939) 

78.43% 

(2.871) 

77.69% 

(2.275) 

79.18% 

(2.182) 

73.26% 

(2.574) 

77.69% 

(2.770) 

FFT_HOG 77.33% 

(3.594) 

80.52% 

(1.008) 

80.59% 

(2.999) 

81.05% 

(1.427) 

76.52% 

(3.820) 

80 % 

(1.300) 

FFT_ Hu’s invariant 

moments 

76.47% 

(2.077) 

78.34% 

(0.987) 

77.87% 

(2.380) 

78.64% 

(1.009) 

75.08% 

(2.777) 

78.03% 

(1.0140) 

FFT_ Statistics 

Histogram 

77.09% 

(1.998) 

78.17% 

(2.587) 

80.14% 

(2.287) 

79.00% 

(2.199) 

74.05% 

(2.089) 

77.35% 

(2.731) 

FFT_FD 84.86% 

(3.381) 

85.30% 

(2.997) 

88.63% 

(3.982) 

87.98% 

(3.008) 

81.01% 

(3.095) 

82.63% 

(2.709) 

FFT_Gabor 93.91% 

(1.713) 

94.14% 

(1.101) 

93.40% 

(1.981) 

94.89% 

(1.098) 

93.88% 

(1.729) 

94.40% 

(1.243) 

Feature Fusion based 

on all Methods 

94.67% 

(1.960) 

95.22% 

(1.002) 

96.46 % 

(1.824) 

96.34% 

(1.131) 

92.88 % 

(1.919) 

94.11% 

(1.129) 
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the FFT spectrum texture features (HOG, FD and Gabor) outperform their counterparts 

in the spatial domain and this is also true for the LBP-59 scheme but only with the SVM. 

The Gabor feature, in the FFT spectrum, on its own achieved the highest accuracy ever 

achieved by a single texture feature (>97% with SVM). Fusing all features led to a slight 

increase in accuracy (97.71%) compared to the single FFT-Gabor feature.   The improved 

performance of the Fractal Dimension feature in the FFT-spectrum over its performance 

in the spatial domain is equally significant for both SVM and KNN classifiers. Since FD 

is an appropriator indicator of texture irregularity, these results show that shape 

irregularity is easier to detect in the frequency domain.  

These results show that the other features in the FFT-spectrum compare less favourably 

with their counterparts in the spatial domain but the differences in accuracy are mostly 

marginal.  One may suspect that this is due to the fact that these experiments, ignored the 

impact of significant variation in RoI sizes, explained in (chapter 5, section 5.5). This 

problem only affects (FFT-LBP-256), (FFT-ULBP (59), and (FFT -Statistics Histogram). 

Here we report on additional experiments to evaluate the performance of those 3 features 

after dividing their histogram bins by image size. Figures 6-8 & 6-9 show the 

performances using both protocols  (L1O  and  50-50) with SVM and kNN  (where k 

value =1) classifiers, respectively.    

 

 Figure 6- 8: Shows the results using SVM classifier. 

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

LBP (256 bins) 85.73 1.801 86.81 1.22 84.65 1.522 86.02 1.122 87 1.301 85.04 1.201

Uniform LBP (59), 92.1 1.101 93.01 1.001 91.19 1.401 93.55 1.011 94.11 1.01 92.99 1.285

Statistics Histogram 84.91 1.392 85.86 1.434 83.97 1.394 85.3 1.701 85.74 1.333 84.86 1.712
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Figure 6- 9: Demonstration the results using kNN(k value =1)  classifier. 

First of all, these results confirm the effectiveness of our solution, for the size variation 

problem. Except for the LBP-59 in the FFT-spectrum, the other features remained 

outperformed by their spatial domain counterparts, but the gaps are more marginal. In 

summary, these results confirm the validity of our earlier assertion that the FFT spectrum 

image provides a rich source of texture-based diagnostic schemes with considerable 

performances.  Moreover, these results provide significant opportunities for testing 

texture-based diagnostic schemes in other transformed images. The next section is 

devoted to investigating this claim for a specific image transformation.   

6.4 Texture-based Diagnostic Schemes in the LBP Transform Domains  

In this final section of this chapter, we test the validity of the assertion associated with 

the above claim, by conducting similar experiments to those conducted in the last section 

by replacing the FFT spectrum with the LBP image/map as a transformed domain for 

feature extraction. We extracted the same 7 texture features that reflected energy changes 

affected by specific texture and shape structures of the tumours. We shall also investigate 

an LBP-FFGF geometric feature by constructing the FFT spectrum of the LBP image and 

use the binarisation procedure in section 6.1.1 to obtain the elliptical shape and its 

dimensions. 

In this work, the model two of pre-processing was used before applying the LBP 

transform. Then, different feature extraction methods which are (FFGF (MinorAxisLength), 

uniform (local binary pattern), Gabor filter, Fractal Dimension (FD), Histograms of 

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

LBP (256 bins) 82.83 1.322 83.25 1.875 82.42 1.734 82.86 1.432 83.72 1.231 81.01 1.722

Uniform LBP (59), 83.89 1.008 84.92 1.58 83.87 1.951 84.18 1.912 85.77 1.943 82.59 1.799

Statistics Histogram 79.86 1.262 80.52 1.552 79.21 1.965 81.61 1.643 82.34 1.277 79.89 1.399

0

10

20

30

40

50

60

70

80

90

100

kNN Classifier



 

 102 

Oriented Gradients (HOG), Hu’s invariant moments, and statistics histogram were used 

on LBP image to exacted texture features as shown in Figure 6-10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6- 10: Features extraction methods in the LBP transformed domain. 

Table 6-4, below, displays the performance of each of the 7 features extracted from the 

LBP transformed images, as well as their fusion, using SVM & kNN (where k value =1) 

with (L1O & 50-50) protocols.  

Table 6- 4: Performance of a combination of texture features extracted from LBP domain based 

on SVM and kNN (k value =1) classifiers. 

SVM Classifier 

Performance Rate  

 

Feature vector 

Accuracy 

mean, (Stdev) 

Sensitivity 

mean, (Stdev) 

Specificity 

mean, (Stdev) 

L1O 50-50 L1O 50-50 L1O 50-50 

LBP_FFGF 93.20% 

(1.913) 

94.56% 

(1.881) 

93.34% 

(1.233) 

95.22% 

(2.736) 

92.95% 

(1.091) 

93.89% 

(2.863) 

LBP_LBP59 bins 89.57% 

(1.840) 

91.57% 

(2.734) 

91.18 % 

(2.322) 

93.42% 

(2.547) 

88.69 % 

(2.211) 

89.73% 

(2.587) 

LBP_HOG 88.75% 

(3.333) 

88.86% 

(2.232) 

90.93% 

(3.211) 

89.75% 

(2.981) 

86.82% 

(2.129) 

87.96% 

(2.342) 

LBP_FD 90.09% 

(1.232) 

91.03% 

(0.987) 

90.32% 

(1.221) 

91.09% 

(1.001) 

89.87% 

(1.876) 

90.97% 

(0.879) 

LBP_Gabor 93.23 % 

(1.410) 

94.75% 

(0.341) 

94.85% 

(0.502) 

94.87% 

(0.765) 

91.62% 

(1.080) 

94.64% 

(0.654) 

Input Image Adaptive Pre-

processing (Model 2) 

 

LBP Image 

F2 F6 F1 F3 F4 F5 F7 

Extract Features from each technique, then fed it to SVM & kNN classifiers 

separately 

Benign Malignant 
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LBP_ Hu’s invariant 

moments 

80.78% 

(2.232) 

82% 

(1.651) 

81.54 % 

(2.742) 

82.13% 

(1.709) 

80.02 % 

(2.156) 

81.87% 

(1.923) 

LBP_ Statistics 

Histogram 

77.92% 

(2.232) 

78.29% 

(2.323) 

78.18% 

(2.232) 

79.61% 

(2.143) 

77.67% 

(2.232) 

76.98% 

(2.098) 

Feature Fusion based on 

all Methods 

93.66% 

(2.079) 

95.29% 

(1.414) 

94.46% 

(2.101) 

95.81% 

(1.842) 

92.86% 

(2.198) 

94.77% 

(1.177) 

kNN Classifier 

LBP_FFGF 92.32% 

(1.121) 

93.98% 

(1.066) 

92.43% 

(1.192) 

94.32% 

(1.341) 

90.21% 

(1.121) 

93.65% 

(1.753) 

LBP_LBP59 bins 86.10% 

(1.543) 

88.31% 

(1.001) 

86.87% 

(2.098) 

88.76% 

(0.998) 

85.34% 

(1.987) 

87.87% 

(1.098) 

LBP_HOG 84.38% 

(2.987) 

86.17% 

(2.112) 

85.89% 

(3.009) 

86.81% 

(2.876) 

82.87% 

(2.787) 

85.54% 

(2.016) 

LBP_FD 87.23% 

(1.098) 

87.94% 

(2.089) 

87.58% 

(1.112) 

88.98% 

(2.143) 

86.89% 

(1.098) 

86.90% 

(2.787) 

LBP_Gabor 89.54% 

(1.343) 

91.19% 

(1.239) 

90.39% 

(1.987) 

91.61% 

(1.125) 

88.69% 

(2.101) 

90.78% 

(1.143) 

LBP_ Hu’s invariant 

moments 

76.57% 

(3.642) 

78.98% 

(2.121) 

79.61% 

(3.112) 

80% 

(2.198) 

74.22% 

(3.176) 

77.87% 

(2.093) 

LBP_ Statistics 

Histogram 

76.55% 

(2.090) 

77.65% 

(1.101) 

77.71% 

(2.362) 

78.98% 

(1.098) 

76.39% 

(2.546) 

78.32% 

(1.243) 

Feature Fusion based on 

all Methods 

93.49% 

(2.521) 

94.53% 

(2.311) 

94.98% 

(2.822) 

95.19% 

(2.106) 

92% 

(2.131) 

93.87% 

(2.421) 

 

Again, the SVM classifier yields better performances than the kNN classifiers for each of 

these features, and this agrees with our previous observations. The SVM results 

demonstrate a similar pattern of performances to those achieved by features extracted 

from FFT-spectrum when compared with the performances of the spatial domain 

counterpart features. In relation to the top 3 performing features in the FFT-spectrum, the 

performance of LB_LBP-59 outperformed the FFT_LBP-59, while FFT_Gabor 

outperformed the LBP_Gabor and the performance of the FD features in both domains 

are almost identical. The LBP_FFGF (MinorAxisLength) achieves a 94.56% which is 

marginally lower than that in the spatial domain (see Table 6-2).  In comparison, the 

overall accuracy is increased to around 95.61 % after fusing all seven texture features 

based on majority voting. 

Again, the lowest-performing features in the LBP domain were the moments and the 

Statistics-Histogram features reaching 82% and 78%m, respectively. To determine the 

impact of not normalising the histograms in these features, more experiments were done 

to mitigate the effect of image size variation in the LBP domain for two texture feature 

schemes which are (LBP_LBP 59 bins & LBP_ Statistics Histogram). Figure 6-11 shows 

the overall accuracy, sensitivity and specificity using SVM & kNN classifiers based on 

(L1O & 50-50) protocols. 
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Figure 6- 11: Impact of normalising histograms in the LBP domain. 

6.5 Summary  

This investigations chapter was initiated by developing and testing a modification of an 

existing Frequency domain ultrasound ovarian tumour images to incorporate the adaptive 

speckle-noise scheme developed in chapter 5. Not only, the modified FFGF scheme 

outperformed the original scheme when tested with an expanded dataset, we have shown 

that single parameters of the 3-dimensional FFGF elliptical shape are sufficient to achieve 

significant accurate diagnosing of ovarian tumours.   

Noting the significant performance of the FFGF versions extracted from the FFT 

spectrum images that do not easily provide spatial information on image objects led to 

curiosity as to investigate other frequency domain texture features that can be 

automatically extracted and tested for their analytical characteristics. The experimental 

results confirmed that indeed, the FFT frequency domain representation of the Ultrasound 

ovarian tumour images is a rich source of effective and highly reliable frequency texture-

based tumour classification schemes. The success of these investigations provided strong 

motivation to search other image transform domain to further enrich the pool of texture-

based diagnostic schemes. The final set of experiments on texture features extracted from 

the LBP transform domain demonstrated beyond any doubt the success of our approach 

and provided more evidence to support this stated hypothesis that image transformed 

domains provide a significantly larger pool than the spatial domain.  

mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev mean Stdev

Accuracy
L1O

Sensitivity
L1O

Specificity
L1O

Accuracy
50-50

Sensitivity
50-50

Specificity
50-50

LBP_LBP 59 bins  (SVM) 91.42 0.998 91.86 1.101 90.98 1.01 92.631.119193.27 1.352 92 1.62

LBP_ Statistics Histogram(SVM) 83.75 1.112 84.38 1.025 82.12 1.084 84.84 1.385 85.67 1.298 84.02 1.421

LBP_LBP 59 bins  (kNN) 88.31 1.773 90.52 1.521 87.11 1.361 89.37 1.201 89.92 1.02 88.83 1.11

LBP_ Statistics Histogram(kNN) 82.11 1.108 83.22 1.817 81 1.72 82.6 1.73 83.19 1.009 82.01 1.25
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The successful outcome of these investigations indicates the huge potentiality of using 

machine learning to provide support for biomedical image analysis and the identification 

of gynaecological abnormalities.  
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Chapter 7 

A Prospective Clinical Test of the developed schemes 

The various investigations reported in the last three chapters were focused on designing 

effectiveness Machine Learning (ML) tools for diagnosing different types of ovarian 

tumours by analysing ultrasound ovarian Tumour scan images.  Many different types of 

hand-crafted image texture-based features, in the spatial as well as transform domains, 

have been investigated with the aim of capturing subtle differences between benign and 

malignant masses. Several spatial-domain image texture-based automatic diagnostic 

schemes have been developed and have been shown singularly to perform well when 

tested with an existing dataset of ultrasound ovarian scan images labelled with the 

established ground truth. This research is meant to feed into the wider program in support 

of gynaecology clinician that aim to provide effective and reliable computational tools, 

for early detection of abnormalities in the ovarian, for integration into clinical diagnostic 

systems. The acceptability of such developed tools by the medical community is reliant 

on conducting clinical tests of the performance of such tools.  Accordingly, the success 

reported in the various stages of our work motivated the launch of prospective testing of 

these schemes at the Department of Gynecology of Queen Charlotte’s and Chelsea 

Hospital in London.  

In section 7.1, we shall describe the clinical testing methodology, the adopted 

classification model, and the software interface highlighting the steps and the output 

format of the classification predictions. We shall also present the performance of the 7 

spatial domain texture-based schemes presented in chapter 4 without pre-preprocessing, 

singularly and in fused combinations and determine accuracy in comparison with the gold 

standard histology diagnosis. The analysis of these results, in the start of section 7.2, will 

be used to expand the list of texture features to 9 and create a second version of the 

software which will also allow testing the performance of the corresponding 9 schemes 

with and without the adaptive pre-processing. The section ends with results of the 

experimental results when using with the same test cases, and demonstrate significant 

success for both versions in matching the gold standard histology decision. To evaluate 

the performance of the fused scheme and fine-tune the developed software for use in a 

much larger prospective testing plan with other IOTA teams in Europe. Finally, the recent 

rapid deployments of deep learning tools for many applications including the field of 
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medical diagnostics, and the various claims of significant successes was a motivation to 

pilot an attempt to compare the results of our prospective test with a basic implementation 

of a Deep CNN learning scheme trained with the original experimental dataset. This will 

be done in section 7.3.   

7.1 Ovarian Tumor texture-based Software for Clinical Testing   

A prospective IOTA 7 study was designed to test the performance of the spatial domain 

texture-based techniques, developed and tested in chapter 4 and chapter 5, on adnexal 

masses collected over a period of 6 months (starting Oct 2018) in Queen Charlotte’s and 

Chelsea Hospital, London. Unlike the experiments, in the previous chapters no training 

is to be made with the B-mode static ultrasound images collected during the test, but 

instead, we needed to rely on the training conducted in the previous chapters. Next, we 

shall describe the process of selecting a trained classifier model and describe the software 

used in the test. 

7.1.1 Model Selection for the Prospective Test 

In the previous chapters, classifier training was repeated 30 times, and each time produced 

a different classification model. To facilitate the prospective test without using any of the 

test images for training a classifier, we must select a fixed classifier model (for each 

texture feature) to for use in making classification decision for each submitted test 

ultrasound ovarian tumour cropped image. We opted to choose randomly one of the 

classifier models obtained previously by training the SVM classifier using 242 images 

(104 malignant and 138 benign). Since the results of the experimental tests in the previous 

chapters did not reveal significant differences in performance of the various texture 

schemes,  between the 50-50 and Leave-one-out training/testing protocols, we opted to 

train the classifier model using the Leave-one-out protocol.  

The Randsample function in MATLAB was used to select a total of 150 images out of 

the 242 images (75 Benign and 75 Malignant), for training an SVM classifier for each of 

the 7 texture-based features. The output from this process is an SVM hyperplane model 

for each texture feature. Unlike the experiments in the previous chapters, we did not 

conduct any testing on the remaining 92 images. Therefore, the performance of the 

selected classifier models is not known in advance of the prospective test. When the 

performances were calculated, in the previous chapters, the training/testing process was 

repeated 30 times, and the average accuracy was shown to be significant, but with 

considerable standard deviation. Therefore, we do expect the performance of the chosen 
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models to be overfitting the features extracted from the specific 150 training images that 

may not be compatible with the unseen samples to be collected during the currently 

reported prospective test.  

7.1.2 The Clinical Test Methodology 

The prospective testing was conducted over the period Oct 2018 –Jan 2019. Transvaginal 

and transabdominal 2D B-mode static ultrasound images of 100 ovarian masses were 

included. All images belong to patients consecutively enrolled in the prospective IOTA 7 

study from Queen Charlotte’s and Chelsea Hospital in London. The entire prospective 

test was conducted and operated by the same highly experienced gynaecologist 

designated by the IOTA 7 team leaders from Leuven University Medical School and the 

Queen Charlotte’s and Chelsea Hospital.   

The most representative ultrasound ovarian scan image per test case-patient was selected 

by the operator (i.e. the gynaecologist who performed the ultrasound examinations). For 

all masses, the final histology was available for use as a standard gold test for comparison 

with the predicted classification by each of the texture features.  The operator uploads the 

select image into the ML software interface, (described in details next), marks the 

tumour’s ROI with dots and triggers the cropping of the RoI by the software. Finally, the 

ML software uses the chosen texture-based classifier models to output the class prediction 

by each texture-based scheme as well as the simple majority rule fused decision of all the 

schemes.  

7.1.3 The Software Interface 

In order to facilitate the prospective test in the clinical setting without the intervention of 

the system developer, we provided an executable programme that was uploaded in the 

clinic's computer system and designed an interface for use by the clinician. The interface 

is meant to enable the uploading of the ultrasound ovarian scan image of the patient, 

currently examined for ovarian tumour abnormality, and facilitate various steps of 

processing analysing the input image all the way to the predicted decision.  We shall now 

describe the main steps and facilities provided by the software.  Figure 7-1 illustrations 

the primary interface for the software. Therefore, there are different steps to do diagnostic.  
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First, the expert gynaecologist will click on the import the image.   

 

 

 

 

 

 

Send step the expert will mark the boundary of the tumour RoI and click on the crop 

button. The system will then crop the RoI. 

 

 

 

 

 

 

 

For the software, to output, it is a class prediction, the cropped image the expert needs 

to click on the Diagnosis button, and the software displays its majority rule based 

fused prediction.  

 

 

 

 

 

 

 

 

 

Figure 7- 1: Interface (a) import image, (b) mark RoI by expert and crop by software and (c) 

output a class prediction. 

a 

b 
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Moreover, the software offers the list of class predictions by all the texture schemes to be 

appended to an excel file to be used at the end of the prospective test for computing the 

performance of other fused combinations. Below is the format of this excel entry record: 

Table 7- 1: Presents the format of saving decision. 

 

7.2 Experimental Work and Prospective Test Results  

The prospective test resulted in collecting B-mode static ultrasound images for 100 

adnexal masses (44 malignant and 56 Benign). For each new case, the gynaecologist 

operator used the provided software to note the predicted class decision for the 7 spatial 

domain texture schemes and assessed the success/failure on the bases of majority rule 

fusion of all. However, the full list of predictions was saved to an excel file. Having 

analysed the results, and in anticipation of expanding the clinical test, a second version 

of the software was created first by expanding the list of schemes and then incorporating 

the adaptive pre-processing. We shall now present the results of testing these two 

versions.  

7.2.1 Performance of Version 1   

Here, we present of the results of version 1 experiment by analysing the content of the 

used excel file  (the content of which is shown in the appendix to this chapter) that 

recorded the list of class predictions output by the software that incorporated the 7 

texture-based schemes described in chapter 4 without any pre-processing. We indexed 

the 7 features as follows:  

F1: Gabor Filter; F2: Fractal Dimension; F3: HOG; F4: LBP-256 Bins; F5: 7-moments; 

F6: ULBP-59; F7: Statistics Histogram.  

The excel table also contains a column showing the histology-based diagnostic decisions 

as well as a column that show the success/failure of the majority rule prediction. We 

compared several combinations of an odd number of schemes (including that of all the 

7 schemes) with the histology-based diagnosis with highest confidence which are started 

from F1 (in the high significant bit) and lowest confidence F7 (in the lowest significant 

bit), this can reflect the general confidence of the features when converted to decimal, 

and this can normalise between (0 and 1 ) this work is ongoing. The results of these 

0 = Benign Tumours, 1= Malignant Tumours 

Image ID F1 F2 F3 F4 F5 F6 F7 Final Histology Machine Predication 

11799 P.tif 0 0 1 0 0 0 1 Benign correct 

12634 P.tif 0 1 1 1 1 1 1 Malignant correct 
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comparisons, for some of the better performing fusion combinations, are shown in 

Figure 7-2 below. 

 

Figure 7- 2: Performance of Version 1, based on 7 schemes without pre-processing for 

prospective tests. 

These results confirm the viability of using texture-based features for classification of 

ultrasound ovarian tumour images, albeit with lower accuracy than achieved in Chapter 

4. The reduction in performance of the adopted schemes may reflect the fact that the 

randomly chosen classifier models were over fitting to the choices of the given training 

samples. Moreover, some of the used features involve correlated components.   For 

example, the F5 and F7 scheme that is absent from the above list of well-performing 

fused combinations, include dependencies within some of their components (e.g. 

skewness and kurtosis). Moreover, the histograms defining the F4 and F6 share 58 of 

their bins. Hence, we decided to incorporate skewness and kurtosis as separate features 

within a 2nd version of the software. 

7.2.2 Performance of Version 2   

This version of the software was constructed by following the same procedures for 

version 1, but with the addition of two extra texture-based features, namely F8: 

skewness and F9: kurtosis.  Motivated by the investigations carried out in chapter 5, this 

version of the software incorporated a choice of testing with no image pre-processing 

or with an adaptive speckle de-noising scheme model 2 as explained in chapter 5.  

F1 Alone

F1,F2,F4 OR (F1,F4,F6)

F1,F2,F3,F4,F6

All Features

F1 Alone F1,F2,F4 OR (F1,F4,F6) F1,F2,F3,F4,F6 All Features

Accuracy 79% 83% 80% 76%

Sensitivity 88.64% 88.64% 72.73% 77.27%

Specificity 71.43% 78.57% 85.71% 75%
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In each scenario, we repeated the running of the software for all the previously cropped 

tumour regions from the 100 prospective test cases described above and recorded the 

list of the 9 class predictions in a new excel file. The final histology, recorded earlier 

during the running of version 1, was used again as the gold standard for all tumours. We 

remind the reader that all the 9 selected classifier model were based on SVM  to test the 

discriminating power of these 9 features (with and without pre-processing) in 

diagnosing Benign and Malignant ovarian tumour from Ultrasound ovary scans. Again 

due to the large sizes of these excel files, we display their contents in the appendix to 

this chapter.  

As before, we compared several combinations of an odd number of schemes with the 

histology-based diagnosis, and the results of these comparisons, for some of the better 

performing fusion combinations are shown in Figure 7-3 and Figure 7-4, below, for the 

case of without preprocessing and with adaptive de-noising, respectively. 

 

Figure 7- 3: Performance of Version 2, 9 schemes without pre-processing. 

F6, F8, F9

F1, F2, F6, F8, F9

F1, F3, F4, F5, F6, F8, F9

All Features

F6, F8, F9 F1, F2, F6, F8, F9 F1, F3, F4, F5, F6, F8, F9 All Features

Accuracy 90.00% 87.00% 89.00% 83.00%

Sensitivity 89% 77% 88% 86%

Specificity 91.64% 94.64% 90.07% 79.55%
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Figure 7- 4: Performance of Version 2, 9 schemes with adaptive de-noising. 

The results of Figure 7.3 demonstrate that expanding the list with those 2 single-valued 

features improved the performance of the software in predicting the class of the tested 

tumour cases by a with the best-fused combination achieving an absolute increase in 

accuracy of more than 10% over the best-fused combination in version 1. Interestingly, 

the added 2 features (F8 and F9) appear in all the top-ranking fused combinations. 

Another important observations that the top two fused combinations (F6,F8,F9) and 

(F1,F3,F4,F5,F6,F8,F9) not only achieve almost identical accuracy rates, unlike the 

other combinations there are hardly any gaps between their specificity and sensitivity 

rates (i.e. they both similar false rejection and false acceptance).    

The results shown in Figure 7.4 confirm the conclusions made in chapter 5 and 

demonstrate beyond any doubts the benefits in using adaptive pre-processing (i.e. 

adaptive speckle-noise reduction).  In contrast to the previous two experiments, the 

fusion of all features posts adaptive pre-processing has achieved a significant accuracy 

improvement from 83% to 93% with almost identical false rejection and false 

acceptance. The fused combination (F1, F2, F3, F4, and F8) which did not even appear 

in Figure 7.3 achieved the highest accuracy of 94% with an equal number of false 

rejected and false accepted cases.  The fused combination (F1, F3, F4, F5, F6, F8, and 

F9) did improve but only marginally, while the accuracy of the fused combination (F6, 

F8, and F9) suffered a marginal decline.  The last pattern of accuracy changes, together 

with the fact that the best performing fused combination does not include F9 (i.e. 

F6, F8, F9

F1, F2, F3, F4, F8

F1, F3, F4, F5, F6, F8, F9

All Features

F6, F8, F9 F1, F2, F3, F4, F8 F1, F3, F4, F5, F6, F8, F9 All Features

Accuracy 90.00% 94.00% 91.00% 93.00%

Sensitivity 93% 93% 91% 93%

Specificity 87.50% 94.64% 91.07% 92.86%
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Kurtosis) may be explained by the fact that Kurtosis value is the major criteria in 

deciding whether an image block needs speckle de-noising or not.  

The overall conclusion from these experiments shows the significant success of the 

prospective test which was aimed to evaluate the performance of our ML trained 

software that fuses several texture-based features to classify a set of unseen ovarian 

tumour cases in their clinical environment. In the next section, we report on a pilot study 

classify the prospective dataset of cases using a basic Deep Learning scheme and 

compare the results with the performance of our ML scheme. 

7.3 Deep Learning CNN System for Ovarian Tumour Classification -A 

Pilot Study  

Our research objectives evolved and greatly benefited from the huge advances in 

computer vision as well as machine learning that seem to have quickened during the course of 

this PhD program. ML and Artificial Intelligence (AI) both have concurrently displayed 

swift development over the past few years, whereby their techniques are key elements 

in medical field progression. Such techniques include medical image processing, 

computer-aided diagnosis, image interpretation, image fusion, and more. Their role in 

facilitating and aiding doctors for achieving disease and risk diagnosis and prediction 

with accuracy and speed is undeniable, alongside allowing timely disease prevention. 

Therefore, these techniques amplify doctors and researchers’ capacity to comprehend 

the manner one analyses ultrasound image textures to achieve the right decision. They 

include standard algorithms without learning, such as Support Vector Machine (SVM), 

Neural Network (NN), and K-NN, as well as deep learning algorithms, such as 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Generative 

Adversarial Networks (GANs), and others. Thus, this section is designed as a pilot 

study to investigate the use of deep learning approach in discovering wider range of 

image feature maps than hitherto studied in this thesis for use in classifying ultrasound 

ovarian tumour scan images into benign and malignant images. It is by no mean a 

comprehensive comparison of deep learning-based algorithms in medical image 

analysis issues using ML. We shall first highlight the key information and novel 

approaches associated with deep learning in the medical image processing and analysis 

landscape.  
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7.3.1 Deep Learning  

Traditional Machine Learning (ML) models are historically built to perform beneficial 

tasks as per features that are manually formulated and extracted from raw data or using 

attributes learned by comparable simple classifier models. In the case of deep learning, 

computers are wired to automatically learn beneficial representations and attributes 

(i.e. characterising feature maps) from the raw data/images directly, with no 

supervision or the manual and laborious phases. At present, a multitude of artificial 

neural networks (ANNs) are the common models for deep learning, but there are other 

alternatives. Deep Learning techniques are fundamentally characterised by their 

emphasis on feature learning in which data representations are automatically learnt, 

in contrast to other “classical” ML techniques. Feature discovery and task performance 

are thus amalgamated into one problem, whereby both tasks are enhanced concurrently 

within the same training procedure. For an easy to follow a review of the fundamentals 

of the field DL, the reader is advised to refer to (oplin 2018), (Goodfellow I 2016).   

Medical imaging and deep learning are linked by the common interest in convolutional 

neural network (CNN), e.g. see (Haykin 2009) which describe an excellent method of 

learning beneficial image representations and data structures. Prior to incorporating 

efficient CNN, the developer often develops a “less powerful” ML models. However, 

even then, the possibility of utilising attributes that are learned straight from the data 

results in most of the handcrafted image elements will be set aside and are rendered 

almost useless in comparison with CNN feature detectors. CNN's are endowed with 

powerful preferences according to their construction and comprehending the reasons 

for their classification decisions is extremely difficult, and to some extent, this is one 

of the main disadvantages of using DL in medical diagnostics. We shall first review 

the building blocks of CNN's in order to enable our pilot study.  

7.3.1.1 Convolutional Neural Networks  

CNN's is one of the neural network types, which is specialised as input data with a 

grid-like structure such as images with it. CNN's have been proven greatly effective in 

practical applications. Convolution is a mathematical operation which is used in at 

least one of its layers, instead of general matrix multiplication. CNN's are very like to 

regular neural networks; however, arranges its neurons in three dimensions – width, 

height, and depth. A neuron inside a layer is furthermore only linked to a small region 

of the layer before it, named the receptive field, and not fully connected as in a regular 

neural network. The building of CNN's involves several different kinds of sequential 
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layers, as shown in Figure 7-5, some of which will moreover be repeated. The most 

common kinds will be described below: 

(i) Convolutional Layers: In these layers, activations from prior undergo 

convolvation with a set of filters having small parameters typically of layers 

3×3 size. Each filter is precisely identical weights across the whole domain (i.e. 

translational equivariance at each layer) allows one to attain drastic decrement 

of a number of weights that require learning. Such weight-sharing is positioned 

by the fact that attributes present on one section of an image will also be present 

in other sections example for convolvation process shows in Figure 7.5. For 

example, the presence of a filter that can detect horizontal lines allows it to be 

utilised for such detection wherever they are present. Thus, the application of 

all convolutional filters across all input locations to a convolutional layer 

generates a feature map. (Ian Goodfellow 2016). 

 

 

 

 

 

  

 

Figure 7- 5: Explanation of the general structure of a CNN  

(ii) Rectified Linear Unit Layer (ReLU): Filters negative values to provide only 

positive values for much faster training time (Hijazi 2015). 

(iii)  Pooling Layer (POOL): Each feature map that is generated via data feeding 

using one or more convolutional layer results in them being pooled in a pooling 

layer. Such pooling operations utilise small grid regions as the input to generate 

single numbers for each of the regions, whereby the numbers are typically 

computed using the max function (max-pooling) or average function (average 

pooling). Even a minute shift in the input image leads to small changes in the 

activation maps, rendering the CNN some translational invariance. An 

alternative method for obtaining the downsampling impact of pooling is the 

incorporation of convolutions with stride length increments. Pooling layer 
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removal results in a simplified network arrangement without any performance 

being sacrificed (Springenberg 2014). 

(iv) Fully-Connected Layers: A fully connected layer takes all neurons in the 

previous layer are connecting them to each of its single neurons. It is attached 

to a loss-function classifier (SVM, SoftMax, Euclidean Loss etc.) which is then 

used to estimate the error of the final classification and is responsible for 

updating the network weights through the back-propagation. (Springenberg 

2014). 

7.3.2 Training of CNN's  

Training a CNN (Unger 2017) requires consideration of several building blocks. 

Which will be described now alongside the training process.   

 The score function gets raw data as input and outputs the class probabilities. 

The function has a set of parameters that can be controlled; in terms of CNN's, 

these parameters can be trained. The goal is to adapt the weights such that the 

class probabilities match the ground truth labels as closely as possible. 

Obtaining this end calls for the loss function, which determines how good the 

prediction matches the ground truth. High loss indicates poor classification, 

while low loss shows good classification. The most popular loss function used 

with CNN's is the cross-entropy loss with the form:  

  𝐿 = − ∑(𝑦𝑖  log 𝑞𝑖  )

𝑁

𝑖=1

                                                               (7.1) 

Where q is estimated using the SoftMax function, the SoftMax function outputs the 

class probabilities between 0 and 1, which sums up to 1. The process of finding these 

weights that minimize the loss function is thus an optimization problem.  

 The gradient of the loss function indicates the best direction to change the 

weights. Gradient Descent is the process of regularly performing a parameter 

update by calculating and evaluating the gradient. An issue associated with 

gradients is due to the lack of knowledge of how far one has to venture into the 

direction specified by the gradient. Ensuring that progress is made calls for the 

setting up of some step sizes, which are used to carefully follow the direction 

of the gradients. The step size is often referred to as the Learning Rate; the 

selection of a too-small step size yields little progress, while a too-big step size 

causes overshooting past the optimum. For better performance, the gradient 
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descent and parameter update are not performed for every training sample; it 

is only performed for the batches of training samples.  

 Backpropagation is the process of calculating the gradients through the 

recursive use of the chain rule layer by layer of a CNN.  

Before the training of a CNN, the training data need to be pre-processed in which the 

step consists of standardization to obtain the same range for every data sample. 

Additionally, as CNN's are trained for an explicit input size, the input needs to be 

resized or cropped to that specified size.  

 Meanwhile, Data Augmentation is as important as the pre-processing step, as 

the process helps to find a model capable of providing a good generalization 

for the input data. It is only applied on the training set, while the test set remains 

unchanged except for the pre-processing. Common image augmentations 

include cropping, translations, rotations and flipping of input, as shown in 

Figure 7-6. 

 

 

 

 

 

 

 

Figure 7- 6: Illustrations an example of data augmentation. 

If image cropping is performed, a window of the size taken as input for each 

network is cut out of a bigger image and used for training.  

The training process of CNN follows a pipeline. First, a batch of training samples is 

passed through the network to obtain class probabilities. With these probabilities and 

the labels of the images, the loss is calculated. Backpropagation is then used to 

calculate the gradient of the loss and afterwards parameter update is performed. These 

steps are repeated until the desired results are obtained, or no progress can be made in 

reducing the loss.  
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7.4 The Adopted CNN Architecture in This Pilot Study   

A wide variety of differing CNN architectures having dissimilar characteristics are 

currently present.  There are different CNN architectures in the literature for image 

classification such as Alexnet, VGGnet, Googlenet, Resnet50, etc.  

Resnet 50 is an example of extremely deep residual networks that was presented by 

He et al. (He 2016) and state of the art results was obtained on the ImageNet 

classification task (Russakovsky 2015). However, it has been noted that not much 

learning benefits are gained from using more than 30 to 50 layers since the gradient 

flow becomes numerically unstable in such deep networks. To alleviate the problem, 

a so-called residual block is presented, and layers take the form fˆ (x) = x + fˆ ′(x), 

where fˆ ′(x) contains the actual network layer. The main benefit in doing so is that the 

addition presents a second parallel branch into the network that guides the gradient 

flow from end to end.  

ResNets50 also have other interesting properties, e.g., their residual blocks behave like 

ensembles of classifiers (Veit 2016), and thereby have some synergy with our 

approach of fusing many texture-based classification schemes for our intended 

application. Accordingly, our pilot will adopt the Resnet50 CNN architecture. 

7.4.1 Experimental Results and Discussion 

Pretrained ResNet50 is designed for 1000 classes; therefore, we replace the last fully 

connected layer with 2 output (Benign and Malignant) to output 2 posterior 

probabilities. For our experiments, we load weights of pre-trained CNN provided by 

MATLAB.  

For an assessment of the performance of Resnet50. A 242 images (104 Malignant, 138 

Benign) tumours, then we divided the dataset into 90% for training form each class (94 

images Malignant tumour, and 124 images Benign tumours) and 10% for validation (10 

images Malignant tumour, and 14 images Benign tumours). Due to a small amount of 

dataset, we increased the number of training dataset using data augmentation by rotated 

the images between (0𝑜 −  3600) and augmented the training samples for every single 

image to 10 images, i.e. (94 images became 940 images for Malignant tumours, and 124 

images became 1240 for benign tumours) with and without pre-processing each one 

separately. After we generated new dataset then applied Resnet 50, the images should be 

resized to one size, which is 244 x 224 for the training and testing. We have done different 
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experiments with no image pre-processing or with an adaptive speckle de-noising scheme 

as we can see in Figures 7-7 & 7-8 the training progress after applying data augmentation.  

 

Figure 7- 7: Training progress using Resnet50 without pre-processing. 

As we can see that the performance of the validation is around 85% accuracy without 

pre-processing scenarios. These results are matched by some of the fused 

combinations of the hand-craft texture-based features.  Then we have trained the 

Resnet50 with pre-processing, which resulted in an increased validation performance 

reaching 95%, as shown in Figure 7.8, below. 

 

Figure 7- 8: Training progress using Resnet50 with pre-processing. 
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Testing without pre-processing

Testing with  pre-processing

Testing without pre-processing Testing with  pre-processing

Accuracy 79.00% 90.00%

Sensitivity 79.55% 90.91%

Specificity 80.36% 89.29%

Having completed the training steps with the 242 original datasets of Ultrasound 

tumour images, we then tested these trained Resnet50 models, and the results are 

shown in Figure 7-9 for with and without pre-processing. 

 

 

. 

 

 

   

 

 

Figure 7- 9: Testing results using Resnet50 with and without pre-processing. 

Based on the above Figure 7-9 we have shown the results of this prospective clinical 

100 test cases, demonstrates that the simple majority rule fusion of all the 9 features 

with and without the adaptive pre-processing outperform comfortably the 

corresponding CNN schemes. Also, as shown in Figure 7-7 and 7-8 the training 

progress that the clear overfitting when we tested the 100 images this due to different 

reasons: - Firstly the limitation of the dataset as deep learning often requires a massive 

dataset for the training (Camilleri 2017). Secondly, the different CNN architectures 

have been trained on millions of natural images. Thirdly, the effectiveness of the size 

of the image, i.e. the images should be one size. In the prospective test cases, images 

could be as large as 1200 x 1300 or as small as 90 x 85, resizing such images to 

224x224 lead to great loss of information will be lost and many artefacts may appear.  

These results demonstrate that applying Deep learning for the classification tasks 

investigated in this thesis is not an effective substitute to hand-crafted features without 

much more in-depth investigations into different architectures. Moreover, DL is low 

in interpretability as it is difficult to understand what discriminating features are 

extracted and other limitations which are explained in (Camilleri 2017).  

7.7 Summary  

This chapter was designed to conclude the undertaken PhD research investigations to 

develop Machine Learning algorithms that use texture-based image features for automatic 
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classification of Ultrasound ovarian tumour scan images into benign and malignant. The 

research was conducted in close collaboration with leading UK and EU clinical 

gynaecology experts, and therefore the outcome of the research was meant to feed into 

wider program in support of gynaecology clinician that aim to provide useful and reliable 

computational tools, for early detection of abnormalities in the ovarian. The work was 

done over the previous chapters resulted in several high performing combinations of 

texture features, but integrating these schemes within clinical diagnostic systems depends 

heavily on the acceptability of such tools by the wider medical community via standard 

clinical tests of the performance of such tools.  As an initial stage towards the standard 

clinical tests, some of the developed schemes were subjected to a prospective testing 

IOTA study at the Department of Gynecology of Queen Charlotte’s and Chelsea Hospital 

in London, and in collaboration with Leuven University Medical School. 

The various experiments conducted within this test confirmed the effectiveness of the 

various spatial domain texture-based scheme in predicting the class of the examined cases 

with a high level of success (well over 80% accuracy). These experiments also 

demonstrated that the adaptive speckle-noise reduction scheme leads to significantly 

improved accuracy reaching 94%.  

With the recent advance in Deep learning approaches to artificial intelligence and their 

rapid deployments in a variety of highly complex classification problems, we conducted 

a pilot to test the performance of the easy to implement DL model of pre-trained Resnet50 

in transfer model in classifying the prospective clinical test cases.  These experiments 

demonstrated that this DL model did not perform as well as our schemes with or without 

adaptive pre-processing. Taking into account the non-informative nature of the DL 

decision-making process, it would be safe to conclude that it is too early to adopt DL for 

the classification of ovarian tumour scan images.      
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7.8 Appendix (Chapter 7) 

Printout of Excel files showing the lists of software classification predictions for the 

various tests. 

Table 7- 2: Display version 1 of the prospective test based on 7 Extraction Methods without 

Pre-processing. 

Version 1.  Based on (7) Feature Extraction Methods without Pre-processing  

F1: Gabor Filter; F2: Fractal Dimension; F3: HOG; F4: LBP-256 Bins; F5: 7-moments; F6: 

ULBP-59; F7: Statistics Histogram 

0 = Benign Tumours, 1= Malignant Tumours 

Image ID F1 F2 F3 F4 F5 F6 F7 Final Histology Machine Predication 

11799 P.tif 0 0 1 0 0 0 1 Benign correct 

11935 P.tif 0 0 0 0 1 0 1 Benign correct 

12667 P.tif 0 0 0 0 0 0 0 Benign correct 

12700 P.tif 0 1 0 0 1 1 1 Benign Not_ correct 

12777 P.tif 0 0 0 0 0 0 1 Benign correct 

12919 P.tif 0 0 0 1 1 0 1 Benign correct 

12920 P.tif 1 0 1 0 1 0 1 Benign Not_ correct 

12930 P.tif 0 0 1 1 1 0 1 Benign Not_ correct 

12992 P.tif 0 1 0 1 1 1 1 Benign Not_ correct 

13062 P.tif 0 0 1 0 0 0 0 Benign correct 

13063 P.tif 0 0 0 0 1 0 1 Benign correct 

13190 P.tif 0 0 0 0 1 0 0 Benign correct 

13355 P.tif 0 0 1 0 0 0 1 Benign correct 

11972 P.tif 0 0 0 1 1 0 1 Benign correct 

13156 P.tif 0 0 0 0 0 0 1 Benign correct 

12958 P.tif 1 1 1 1 1 1 1 Benign Not_ correct 

12041 P.tif 0 0 0 1 0 0 1 Benign correct 

12165 P.tif 0 0 0 0 0 0 0 Benign correct 

12180 P.tif 0 0 0 1 1 0 1 Benign correct 

12220 P.tif 0 0 0 0 0 0 1 Benign correct 

12314 P.tif 0 0 0 1 1 0 1 Benign correct 

12366 P.tif 0 0 1 0 1 0 1 Benign correct 

12378 P.tif 0 0 0 1 0 0 1 Benign correct 

12462 P.tif 0 0 0 1 0 0 1 Benign correct 

12492 P.tif 0 0 1 0 1 0 1 Benign correct 

12666 P.tif 0 0 1 1 1 0 1 Benign Not_ correct 

13356 P.tif 0 1 0 0 1 1 0 Benign correct 

13519 P.tif 0 0 0 1 1 0 1 Benign correct 

13520 P.tif 0 0 0 0 0 0 0 Benign correct 

13559 P.tif 0 0 0 1 1 0 1 Benign correct 

13560 P.tif 0 0 0 0 1 0 0 Benign correct 

13569 P.tif 0 0 1 0 1 0 0 Benign correct 
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13601 P.tif 0 0 0 1 0 0 1 Benign correct 

13615 P.tif 0 1 1 0 1 1 1 Benign Not_ correct 

13728 P.tif 0 1 0 1 0 1 1 Benign Not_ correct 

14061 P.tif 0 0 0 0 1 0 0 Benign correct 

14098 P.tif 0 0 1 0 1 0 1 Benign correct 

14238 P.tif 0 0 0 0 0 0 0 Benign correct 

14337 P.tif 0 0 0 1 1 0 1 Benign correct 

14380 P.tif 0 0 1 0 1 0 0 Benign correct 

14448 P.tif 0 0 0 0 0 0 0 Benign correct 

14613 P.tif 0 0 1 0 1 0 0 Benign correct 

14621 P.tif 0 0 0 1 0 0 1 Benign correct 

14687 P.tif 1 0 0 1 1 0 1 Benign Not_ correct 

14812 P.tif 0 1 1 1 1 1 1 Benign Not_ correct 

14813 P.tif 0 0 0 0 1 0 1 Benign correct 

14814 P.tif 0 0 1 0 1 0 1 Benign correct 

15039 P.tif 0 0 0 0 1 0 1 Benign correct 

15189 P.tif 0 0 1 0 1 0 1 Benign correct 

15346 P.tif 0 0 1 1 0 0 0 Benign correct 

15588 P.tif 1 0 1 0 0 0 1 Benign correct 

15688 P.tif 0 0 1 1 1 0 1 Benign Not_ correct 

15774 P.tif 0 1 1 1 0 1 1 Benign Not_ correct 

15773 P.tif 0 1 1 1 1 1 1 Benign Not_ correct 

15786 P.tif 0 0 0 0 0 0 1 Benign correct 

14459 P.tif 0 1 1 0 0 1 1 Benign Not_ correct 

11797 P.tif 1 1 1 1 1 1 1 Malignant correct 

12699 P.tif 0 0 0 0 0 0 1 Malignant Not_ correct 

12831 P.tif 1 1 0 1 1 1 1 Malignant correct 

12929 P.tif 0 0 0 1 0 0 1 Malignant Not_ correct 

12954 P.tif 1 1 1 1 1 1 1 Malignant correct 

12969 P.tif 0 0 1 0 1 0 0 Malignant Not_ correct 

12970 P.tif 1 1 1 1 1 1 1 Malignant correct 

13064 P.tif 1 0 0 1 1 0 1 Malignant correct 

13142 P.tif 0 0 0 1 0 0 1 Malignant Not_ correct 

13278 P.tif 1 0 1 1 1 0 1 Malignant correct 

13291 P.tif 0 1 1 0 1 1 1 Malignant correct 

13308 P.tif 1 1 1 1 1 1 1 Malignant correct 

12015 P.tif 1 1 1 1 0 1 1 Malignant correct 

12379 P.tif 1 1 0 1 1 1 1 Malignant correct 

12380 P.tif 1 1 1 1 1 1 1 Malignant correct 

12287 P.tif 0 0 0 1 0 0 1 Malignant Not_ correct 

12487 P.tif 1 1 0 0 1 1 1 Malignant correct 

12634 P.tif 0 1 1 1 1 1 1 Malignant correct 

12646 P.tif 0 0 0 1 1 0 0 Malignant Not_ correct 

12665 P.tif 0 1 1 1 1 1 1 Malignant correct 
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13372 P.tif 1 1 1 1 1 1 1 Malignant correct 

13444 P.tif 0 0 0 0 0 0 0 Malignant Not_ correct 

13512 P.tif 1 1 1 1 0 1 1 Malignant correct 

13600 P.tif 1 0 1 1 1 0 1 Malignant correct 

13611 P.tif 1 0 1 1 1 0 1 Malignant correct 

13630 P.tif 0 1 0 1 1 1 1 Malignant correct 

13629 P.tif 0 1 0 0 1 1 0 Malignant Not_ correct 

13631 P.tif 0 1 0 1 0 1 1 Malignant correct 

13750 P.tif 0 0 0 0 0 0 0 Malignant Not_ correct 

14023 P.tif 1 1 1 1 1 1 1 Malignant correct 

14024 P.tif 1 1 1 1 1 1 1 Malignant correct 

14056 P.tif 0 1 1 0 1 1 1 Malignant correct 

14082 P.tif 1 0 1 1 0 0 1 Malignant correct 

14358 P.tif 1 0 0 1 1 0 1 Malignant correct 

14359 P.tif 1 1 0 0 1 1 1 Malignant correct 

14397 P.tif 0 1 1 1 1 1 1 Malignant correct 

14654 P.tif 0 1 1 1 1 1 1 Malignant correct 

14733 P.tif 1 0 1 1 0 0 1 Malignant correct 

14788 P.tif 0 0 1 1 0 0 1 Malignant Not_ correct 

14982 P.tif 0 1 1 0 1 1 1 Malignant correct 

14984 P.tif 1 1 1 1 1 1 1 Malignant correct 

15431 P.tif 0 1 0 1 1 1 1 Malignant correct 

15526 P.tif 1 1 1 1 0 1 1 Malignant correct 

15589 P.tif 0 0 1 1 1 0 1 Malignant correct 
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Table 7- 3: Display version 2 of the prospective test based on 9 Extraction Methods with and without Pre-processing. 

 

Version 2.  Based on (9) Feature Extraction Methods With & Without Pre-processing 

F1: Gabor Filter; F2: Fractal Dimension; F3: HOG; F4: LBP-256 Bins; F5: 7-moments; F6: ULBP-59; F7: Statistics Histogram; 

F8: skewness; F9:kurtosis 

0 = Benign Tumours, 1= Malignant Tumours 

Without Pre-processing  With Pre-processing  

Image ID F1 F2 F3 F4 F5 F6 F7 F8 F9 
 

F1 F2 F3 F4 F5 F6 F7 F8 F9 Final Histology 
Machine Predication 

(Without Pre-processing) 

Machine Predication 

(With Pre-processing) 

11799 P.tif 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 Benign correct correct 

11935 P.tif 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 Benign correct correct 

12667 P.tif 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Benign correct correct 

12700 P.tif 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 Benign correct correct 

12777 P.tif 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 Benign correct correct 

12919 P.tif 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 Benign correct correct 

12920 P.tif 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 Benign Not_ correct correct 

12930 P.tif 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 Benign correct correct 

12992 P.tif 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 0 Benign Not_ correct correct 

13062 P.tif 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Benign correct correct 

13063 P.tif 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 Benign correct correct 

13190 P.tif 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 Benign correct correct 

13355 P.tif 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 Benign correct correct 

11972 P.tif 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 Benign correct correct 

13156 P.tif 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 Benign correct correct 

12958 P.tif 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 Benign Not_ correct Not_ correct 

12041 P.tif 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 Benign correct correct 

12165 P.tif 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Benign correct correct 
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12180 P.tif 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 Benign correct correct 

12220 P.tif 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 Benign correct correct 

12314 P.tif 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 Benign correct correct 

12366 P.tif 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 Benign correct Not_ correct 

12378 P.tif 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 Benign correct correct 

12462 P.tif 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 Benign correct correct 

12492 P.tif 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 Benign correct correct 

12666 P.tif 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 Benign Not_ correct correct 

13356 P.tif 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 Benign correct Not_ correct 

13519 P.tif 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 Benign correct correct 

13520 P.tif 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 Benign correct correct 

13559 P.tif 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 Benign correct correct 

13560 P.tif 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 Benign correct correct 

13569 P.tif 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 Benign correct correct 

13601 P.tif 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 Benign correct correct 

13615 P.tif 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 Benign Not_ correct correct 

13728 P.tif 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 Benign correct correct 

14061 P.tif 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 Benign correct correct 

14098 P.tif 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 Benign correct correct 

14238 P.tif 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Benign correct correct 

14337 P.tif 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 Benign correct correct 

14380 P.tif 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 Benign correct correct 

14448 P.tif 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Benign correct correct 

14613 P.tif 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 Benign correct correct 

14621 P.tif 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 Benign correct correct 
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14687 P.tif 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 Benign correct correct 

14812 P.tif 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 Benign Not_ correct correct 

14813 P.tif 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 Benign correct Not_ correct 

14814 P.tif 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 Benign correct correct 

15039 P.tif 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 Benign correct correct 

15189 P.tif 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 Benign correct correct 

15346 P.tif 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Benign correct correct 

15588 P.tif 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 Benign correct correct 

15688 P.tif 0 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 Benign correct correct 

15774 P.tif 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 Benign Not_ correct correct 

15773 P.tif 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 Benign Not_ correct correct 

15786 P.tif 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Benign correct correct 

14459 P.tif 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 Benign correct correct 

11797 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

12699 P.tif 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 Malignant Not_ correct correct 

12831 P.tif 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 Malignant correct correct 

12929 P.tif 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 Malignant Not_ correct correct 

12954 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

12969 P.tif 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 Malignant Not_ correct correct 

12970 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

13064 P.tif 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 Malignant correct correct 

13142 P.tif 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 Malignant Not_ correct correct 

13278 P.tif 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 Malignant correct correct 

13291 P.tif 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 Malignant correct correct 

13308 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 
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12015 P.tif 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 Malignant correct correct 

12379 P.tif 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 Malignant correct correct 

12380 P.tif 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 Malignant correct correct 

12287 P.tif 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 Malignant Not_ correct correct 

12487 P.tif 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 Malignant correct correct 

12634 P.tif 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Malignant correct correct 

12646 P.tif 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 Malignant Not_ correct correct 

12665 P.tif 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Malignant correct correct 

13372 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

13444 P.tif 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Malignant Not_ correct Not_ correct 

13512 P.tif 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 Malignant correct correct 

13600 P.tif 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 Malignant correct correct 

13611 P.tif 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 Malignant correct correct 

13630 P.tif 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Malignant correct correct 

13629 P.tif 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 Malignant Not_ correct correct 

13631 P.tif 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 Malignant correct correct 

13750 P.tif 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Malignant Not_ correct Not_ correct 

14023 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

14024 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

14056 P.tif 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 Malignant correct correct 

14082 P.tif 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 Malignant correct correct 

14358 P.tif 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 Malignant correct correct 

14359 P.tif 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

14397 P.tif 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 Malignant correct correct 

14654 P.tif 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 Malignant correct correct 
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 14733 P.tif 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 Malignant correct correct 

14788 P.tif 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 Malignant correct correct 

14982 P.tif 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 Malignant correct correct 

14984 P.tif 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malignant correct correct 

15431 P.tif 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 Malignant correct correct 

15526 P.tif 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 Malignant correct Not_ correct 

15589 P.tif 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 Malignant correct correct 
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Chapter 8 

Conclusion and Future work 

Accurate and early diagnosis is between the crucial factors in the management of diseases 

and more so for cancer as it will determine kind of treatment in addition to prognosis. In 

fact, the main challenges in treating cancer patients are the fact that in most cases, the 

cancerous tumour is detected at advance stages of the disease when the only option 

available is the managing end of life. Ovarian cancer is a typical example of a disease 

where most cases are unfortunately diagnosed by chance and often too late for prolonged 

survival.  This thesis was designed to contribute to the efforts of developing reliable 

ovarian tumour classification tools that on the one hand exploit advances in Machine 

learning and computer vision and on the other hand are sufficiently informative to be 

integrated within clinical setup.  

Ovarian cancer blood test (CA-125) is usually used in conjunction with radiological 

results for the prediction of malignancy. Between the different kind of imaging modalities 

available to the radiologist, the ultrasound modality and in particular B-mode imaging is 

becoming the main imaging procedure for the triage of ovarian cancer. Despite its proven 

usefulness, the main issue with the manual examination is that it is operator-dependent, 

and thus the accuracy and reproducibility of the diagnosis very much subject to the 

experience of the operator. The shortage of highly trained sonographers and 

gynaecologists exasperates this problem and overburden healthcare systems throughout 

the world. Automating the process of examining and applying advanced image analysis 

of huge numbers of ovarian tumour scan images generated daily is a rather urgent task.  

This thesis is meant to contribute to this noble effort by complementing the automation 

of certain quantitative parameters that gynaecologist experts and radiologists manually 

determine using basic computer vision tools, with attributes that encapsulate image- 

content information that is not directly observable/accessible from the image without 

applying sophisticated mathematical transformations. Our work will be confined to 

greyscale (B-mode) ultrasound image modality for classification of ovarian tumours, with 

a view to providing software tool(s) that is able to assist clinicians in their diagnosis of 

ovarian cancer. However, many of the results and conclusions are expected to provide 

useful insights for other biomedical image modalities and for other types of tumours. 
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This chapter highlights the main findings of the research conducted in each of the 

identified tasks and draws conclusions and implications for research beyond the stated 

objectives. Future research directions will also be outlined, with a focus on enhancing the 

performance and reliability of the proposed systems in analysing the ovarian ultrasound 

images. 

8.1 Conclusion  

Ultrasound imaging is considered as one of the most important and effective imaging 

modalities in detecting gynaecological abnormalities; however analysing these images is 

highly dependent on operator experience, which is in short supply in most health services. 

Moreover, the limitations of the human eye-brain visual system as a result of tiredness 

and the presence of overlapping and obscured structures in US images may cause 

detection and/or interpretation errors. Automating parts of this process are thus essential 

for more effective healthcare systems, but for variety reasons, such systems should never 

aim to be a substitute for training more clinicians without whom the current research 

could not succeed.    

Having reviewed existing research in this field and considered the frequent discussions 

with our medical collaborators, it became clear that sonographers and gynaecologists try 

to detect changes to certain textural and structural image features as indicators of 

malignancy. This learning journey led to a kind of hypothesis on the direction of research 

which can be summarised as: “in order to reduce the operator-dependency, we need to 

adapt image texture analysis approaches and investigate several known image texture 

primitives and features with a focus on quantifying their tumour discriminating 

characteristics”. This hypothesis is also supported by an evolving systems biology 

assumption of the way carcinogenesis results in changing the texture of cysts cellular 

networks. 

Image texture analysis has been widely investigated in many computer vision 

applications, including satellite photography, biometric identification, face recognition, 

handwritten text analysis and document processing. The literature on such applications 

provides ample examples of texture features that are sufficiently successful for various 

tasks. In the medical domain, extensive research works have been carried out to 

investigate the use of the texture analysis technique in the characterisation and 

discrimination of biological tissue, such as liver, breast, thyroid, prostate, carotid plaques 

and many others, and has been proved to be valuable.  
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The main contributions are starting from our investigation, reported in chapter 4, was 

based on testing the performance of several texture-based features extracted mostly in the 

spatial domains of manually cropped Ultrasound ovarian tumour scan images. Training 

and testing the performance of some basic classifiers (SVM and kNN) with 7 such 

features extracted from a dataset of IOTA compliant B-mode ultrasound ovarian tumour 

demonstrated the effectiveness of all these machines learnt schemes in classifying Benign 

and malignant ovarian tumours. There was some considerable variation in the 

performance of these 7 schemes, but all achieved accuracy above 70% that could not be 

a case of random chance prediction. A close look at the nature of the predicting 

parameters of the various schemes helps explain the less than expected success of some 

schemes.  In fact, within some the features and among different features, there some 

redundancies and correlations are easy to identify, especially within the schemes whose 

predicting parameters were more of statistical nature. Moreover, in these experiments, no 

considerations were given to variations in image quality, as a result of the speckle noise, 

or to variation in cropped image size.  

Consulting with other experts’ opinion, when a diagnostic decision cannot be made with 

a high degree of confidence, is a common practice by clinicians. The fusion of multiple 

classifiers at a different level can provide a software equivalent to this practice. Indeed, 

further improved accuracy was achieved by simple majority rule decision fusion of 

combinations of the above schemes but was not satisfactory enough to mitigate the effect 

of the factors mentioned above.  

Chapter 5 was devoted to developing procedures that help mitigate the adverse effects of 

the above-mentioned performance influencing factors (i.e. Speckle noise degradation and 

variation in size of RoI). Removing noise are often used as a first stage enhancing the 

image before extracting texture features, but our investigations revealed evidence that the 

blanket application of de-noising might not have the desired effect in all cases. 

Consequently, we developed an adaptive speckle noise removal technique that adopts a 

smart strategy, so instead of de-noising the entire image, it acts adaptively and differently 

in different blocks of the same images. This strategy exploits the fact that tumour tissue 

contains different types of connected subregions with a concentration of different types 

of texture primitives, and accordingly, speckle-noise have different degradation effect in 

different blocks of the tumour tissues. This technique not only had the most significantly 

positive effect on the performance of all the above spatial domain texture-based schemes 

but we also demonstrated subsequently that it makes an equally significant contribution 
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to improve performance of texture features in non-spatial domains. The improved 

accuracy for all texture features by this smart approach to adaptive de-noising is 

supported by the experiments that are adaptively de-noising the entire tumour region 

which only made marginally improved accuracy to some but not all texture schemes. This 

approach was obviously influenced by the domain of application, but it provides more 

general advice that adaptive de-noising in other domains of biomedical images are likely 

to benefit from good knowledge of the spatial distribution of discriminating texture 

feature within the noisy image. In this respect, we node the important characteristic of 

our smart approach in that the adaptiveness criteria was obtained through training of 2 

parameters. 

The significant variation in tumour RoI size was the other influencing factors that were 

noted to have an adverse impact on the performance of some texture-based features, in 

particular, texture features whose parameters are of statistical nature including the LBP 

features. Instead of normalising the ROI sizes to one fixed size, we found that simply 

normalising the statistical parameters by dividing by image size helped to mitigate the 

adverse effect on the performance of all these types of features.  

With the exception of the Gabor filter-based scheme, all the other texture features 

discussed above were extracted from the RoI images spatial domain. Gabor wavelet filters 

are frequency domain image representation, and it is by no mean is the only frequency 

domain texture features that have been used for image analysis. In fact, at the outset of 

this research project, I was aware of the work of a fellow Buckingham PhD researcher on 

the FFGF Fourier transform-based ultrasound ovarian tumour scan image classification, 

and this thesis was meant to extend that research work.  

In chapter 6, I first reported our experimental work on a modified version of the FFGF 

scheme of Khaznadar et al (Khazendar, Shan 2016) which consist of 3 geometric 

parameters extracted from an elliptical shape obtained at the centre of FFT spectrum. The 

2 modifications made on the original FFGA led to improved accuracy, which was mostly 

due to the use of our smart adaptive speckle-de-noising pre-process step when the original 

used another non-adaptive de-noising procedure.  The obvious realisation that the 3rd 

geometric parameter (area) of the elliptical shape can be determined by the other 2 

parameters (major and minor axes), plus other observations motivated the next 

experiments which showed that each of this parameter singularly perform well, and in 

fact the “minor axes” feature outperforms the 3-parameter FFGF scheme. These 

significant results highlighted an important fact about the FFT-spectrum images, in that 
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it has a very rich texture and structural information that are not readily discernible from 

its somewhat visually obscured/hidden representation. This was a strong incentive to 

extend the list of texture-based image feature beyond the spatial domain and beyond the 

FFGF schemes by extracting some of the previously defined texture features not only 

from the FFT-spectrum but also in any image transform domain such as the LBP domain.             

The new and richer sets of texture features in the FFT-spectrum and LBP transform 

domains, demonstrated beyond any doubt the success of our approach and provided more 

evidence to support this stated hypothesis that image transformed domains provide a 

significantly larger pool than the spatial domain. These results are certainly one of the 

most interesting, perhaps surprising, and significant contributions of this thesis. The show 

beyond any doubt that despite their visual ambiguity, biomedical images can be analysed 

by ample sets of informative texture-based features that can be extracted from a variety 

of image representation/domains, and Machine Learning has a great role to play in early 

cancer detection. To some extent, this thesis has only a modest opening in the Pandora 

Box of image textures.  

Towards the end of these investigations that were carried out in collaboration and support 

of clinical experts from IOTA, the time has come to put the results of these experiments 

into the test within a clinical setup for the eventual purpose of providing software decision 

support tools for gynaecologists in different hospitals and medical centres. In chapter 7, 

we reported on a prospective test that was designed to evaluate the performance of various 

versions of our ML software (but only limited to 9 texture features automatically 

extracted from) B-mode ovarian scan images for100 cases. The evaluation was based on 

comparing the simple-majority-rule predictions by various fused combinations of 7(9) 

spatial domain texture features with the standard gold histology-based diagnostics. The 

prospective test was deemed very successful when presented to the IOTA conference, 

and 94 % accuracy was finally achieved by version 2 with the smart adaptive pre-

processing.  

Although, Deep Learning tools for medical diagnostics applications started to appear on 

the scene during the second part of my PhD program of research, we went beyond the 

original objectives of the thesis and developed a pilot investigation to compare our results 

with the performance of the well-known Resnet50 DL model trained with the original 

242 IOTA dataset and tested with the 100 prospective cases.  The results of this pilot 

testing revealed that the Deep Learning approach was outperformed by our hand-crafted 

9 spatial domain features in both scenarios: the with and the without adaptive pre-
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processing.  One possible reason may be due to the significant variation in tumour RoI 

size, and DL require re-sizing the images to a fixed size. However, without much more 

in-depth investigations into different DL architectures, we cannot claim that no DL 

architecture can be found to outperform our schemes.     

8.2 Future Work  

Achieving optimal performance in such a complex goal requires that the scope of our 

reported work be further extended in several directions. Ultimately the objective should 

set to prepare for full-scale clinical testing to cover a much larger number of cases beyond 

those considered here. Ideally, future work should be dedicated to the improvement and 

further development of the currently proposed methods to increase overall accuracy. In 

particular, we will explore the following areas of research, perhaps in collaboration with 

other researchers.  

 Firstly, extend the software used in the prospective test to be used in different 

hospitals for real world diagnostic environments. Am aiming to add new ideas of 

texture feature schemes based on FFGF, as well as a full list of features to be 

extracted from the FFT-spectrum as well as the LBP transformation domain. 

Collaborations must be expanded to test the software performance in more hospitals. 

Also, we should include the concept of the confidence level of decisions as part of 

the necessary ingredients of a computational Decision Support System (DSS) to deal 

with gynaecological abnormalities. 

 Significant experience has been gained about the strength of many of the texture 

features to help develop machine learning-based trainable effective scheme for 

automatic segmentation of the RoI ovarian tumour images. In particular, we 

anticipate that we could benefit from the training process that we developed to 

determine an effective speckle de-noising adaptiveness criteria.  

 The most important part of the future research direction is to extend our work two 

classes, which are Benign and Malignant ovarian tumour, into multiclass ovarian 

tumours identification. In fact, there is more interesting in distinguishing between 

different types of benign and malignant tumours.  

 In Version 2 software used within the prospective testing, we added the two features 

(skewness and Kurtosis) as separate features of the statistics histogram feature that 

include them. This extension led to improved performance and raised the possibility 

of splitting other multi-parameters texture features such as the different components 
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of the ULBP-based features in many different ways. This specific example, of 

splitting features, open the way for exploiting the emerging paradigm of Topological 

Data Analysis which expand the analysis beyond counting the number in such LBP 

bins by analysing the spatial distributions in the image. A pilot study conducted, 

separately in collaboration with another Buckingham PhD researcher, has led to 

significant success in classifying benign and malignant tumours. This would be a 

rather extensive piece of future work that I plan to do in collaboration with 

Buckingham TDA research group.       

 Investigate the effectiveness of using different types of US images such as colour 

Doppler images and 3D US scan. As shown in Figure 8-1. 

 

 

 

 

              (a)                                            (b)                                              (c) 

Figure 8- 1: Different US images (a) 3D scan of benign tumour (b) 2D colour (c) Doppler 

Image. 

8.3 Work in Progress 

I have tested the idea of FFGF (see chapter 6, section 6.3) to test the amount of solidity 

(where the images belong to malignant tumours contain more solids than the benign 

tumours) using other type of cancer (breast cancer) based on ultrasound images. The 

adaptive pre-processing model 2 used then applied FFT-spectrum on the de-noised image. 

Later, extracted one feature only (Minor axis length) for the classification purpose. Table 

8-1 shows example of breast cancer for benign and malignant cases.  
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Table 8- 1: Samples of FFT spectrum images for breast cancer. 

Benign Tumours Its Spectrum Malignant Tumours Its Spectrum 

 

 

 

 

   

 

 

 

 

   

 

 

The experiments were conducted by training and testing SVM classifier on our 

experimental dataset of 250 scan images (100 malignant and 150 benign tumours), 

according to the 50-50 evaluation protocol described in Chapter 4 (section4.3). Figure 8-

2, below, displays the results of automatic identification of the probe set of images 

regarding the accuracy rate and the corresponding sensitivity and specificity measures. 

These results demonstrate the benefits of extracting feature vectors from the FFT domain 

when discriminating benign from malignant tumours.  

 

Figure 8- 2: Shows the results for the brest cancer using FFGF ( Minor axis length). 

The successful outcome of these investigations indicates that the FFGF based on minor 

axis length is given also high-performance accuracy, sensitivity and specificity when 

tested on another type of cancer. Future investigations will carry out using the whole FFT 

spectrum and other combinations of texture features. 

Mean Stdev Mean Stdev Mean Stdev

Accuracy Sensitivity Specificity

FFGF (Minor axis length) 93.72 1.012 94.35 1.1 93.03 1.501
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