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Abstract 21 

Breast and thyroid cancers are the two common cancers to affect women worldwide. 22 

Ultrasonography (US) is a commonly used non-invasive imaging modality to detect 23 

breast and thyroid cancers, but its clinical diagnostic accuracy for these cancers is 24 

controversial. Both thyroid and breast cancers share some similar high frequency 25 

ultrasound characteristics such as taller-than-wide shape ratio, hypo-echogenicity, and 26 

ill-defined margins. This study aims to develop an automatic scheme for classifying 27 

thyroid and breast lesions in ultrasound images using deep convolutional neural 28 

networks (DCNN). In particular, we propose a generic DCNN architecture with transfer 29 

learning and the same architectural parameter settings to train models for thyroid and 30 

breast cancers (TNet and BNet) respectively, and test the viability of such a generic 31 

approach with ultrasound images collected from clinical practices. In addition, the 32 

potentials of the thyroid model in learning the common features and its performance of 33 

classifying both breast and thyroid lesions are investigated. A retrospective dataset of 34 

719 thyroid and 672 breast images captured from US machines of different makes 35 

between October 2016 and December 2018 is used in this study. Test results show that 36 

both TNet and BNet built on the same DCNN architecture have achieved good 37 

classification results (86.5% average accuracy for TNet and 89% for BNet). 38 

Furthermore, we used TNet to classify breast lesions and the model achieves sensitivity 39 

of 86.6% and specificity of 87.1%, indicating its capability in learning features 40 

commonly shared by thyroid and breast lesions. We further tested the diagnostic 41 

performance of the TNet model against that of three radiologists. The area under curve 42 

(AUC) for thyroid nodule classification is 0.861 (95% CI: 0.792-0.929) for the TNet 43 

model and 0.757-0.854 (95% CI: 0.658-0.934) for the three radiologists. The AUC for 44 

breast cancer classification is 0.875 (95% CI: 0.804-0.947) for the TNet model and 45 

0.698-0.777 (95% CI: 0.593-0.872) for the radiologists, indicating the model’s potential 46 

in classifying both breast and thyroid cancers with a higher level of accuracy than that 47 

of radiologists.  48 
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1. Introduction 63 

Breast cancer is the most commonly diagnosed cancer in women, and thyroid cancer is 64 

among the top five most common cancers in women globally [1]. Magnetic resonance 65 

imaging (MRI), computerized tomography (CT), and ultrasonography (US) have 66 

become indispensable imaging modalities that are widely used to screen and aid the 67 

diagnosis of breast lesions and thyroid lesions nowadays. Compared with MRI and CT, 68 

US is a universally used imaging modality that is non-invasive, non-radiative, and of 69 

lower cost. The accuracy of US-based diagnoses of thyroid or breast cancers, however, 70 

largely depends on the experience and cognitive capabilities of individual radiologists 71 

[2]. Due to such challenges, many studies have reported the usefulness of computer-aid 72 

diagnosis (CAD) systems [3]. Exploiting machine learning and computer vision 73 

techniques, a CAD system attempts to extract morphological and texture features from 74 

ultrasound images and train effective models based on the extracted features to classify 75 

the status of malignancy for the thyroid and breast lesions. However, conventional 76 

machine learning algorithms designed specifically for extracting morphological 77 

features (such as regularity and uniformity of lesion boundaries [4]) or texture features 78 

(such as local binary patterns (LBP) [5], grey level co-occurrence matrices (GLCM) 79 

[6]) often require “hand-crafted” optimal combinations and complex processes of 80 

image pre-processing, feature extraction and classification. The overall performance of 81 

such a system is heavily influenced by factors such as image modalities, image qualities, 82 

similarity in morphology of lesions, type of cancers, etc., and their capability of 83 

discriminating benign and malignant lesions is often limited [7]. 84 

Recently, convolutional neural networks have shown their outstanding capabilities in 85 

object recognition especially for the largescale visual recognition tasks, their strengths 86 

in feature learning (such as color, textures and shape), and their ability to capture 87 

discriminative and robust information from images by applying convolution operations 88 

with suitable filters over a sequence of convolutional layers [8]. Deep learning has also 89 

been introduced into CAD systems to classify US images [9-11] or microscopic images 90 

[12] of various types of tumours including thyroid and breast lesions. Existing research 91 



mainly focuses on customizing and modifying known CNN architectures specifically 92 

chosen for a certain type of cancer. However, none of the published studies of lesion 93 

classification have worked on a generic deep learning architecture for building models 94 

to classify both thyroid and breast lesions in ultrasound images. Such a generic 95 

approach of deep learning solutions simplifies the process of constructing classification 96 

models for multiple types of cancer and can be desirable in clinical practice. Previous 97 

evidences suggest that the chance of having breast and thyroid cancers in the same 98 

female patients is greater than that of the general population [13,14]. A possible 99 

association between breast and thyroid cancer has also been demonstrated, including 100 

shared hormonal risk factors and genetic susceptibility [15]. Furthermore, thyroid and 101 

breast cancers do share common image characteristics under high frequency ultrasound 102 

scans such as malignant lesions with a taller-than-wide shape ratio, hypo-echogenicity, 103 

and ill-defined margins [16,17]. This observation provides a strong motivation for 104 

developing a generic convolutional neural network (CNN) model that can be used to 105 

classify breast and thyroid cancers. 106 

The key contributions of this paper include: (1) a generic CNN-based modelling 107 

framework suited for both thyroid and breast lesion classification based on a modified 108 

version of an known architecture [18], (2) a novel singular value decomposition (SVD) 109 

technique for data augmentation to enlarge the training set and generalize the trained 110 

models, (3) trained CNN models on thyroid or breast images captured from US 111 

machines of different makes that can learn common features of both types of lesions, 112 

and (4) an evaluation showing that the trained TNet and BNet perform well and that the 113 

TNet model either matches or even outperforms experienced radiologists in classifying 114 

both breast and thyroid lesions. 115 

 116 

2. Materials and Methods 117 

This section presents the main aspects of the proposed method including data 118 

acquisition and annotation, data augmentation and generic CNN modelling.  119 

2.1 Patients and Lesions 120 



This retrospective study was approved by the Ethics Committee of Shanghai Pudong 121 

People’s Hospital China (referred to as “the Hospital”), who waived the requirement 122 

for informed consent, and by the Research and Ethics Committees of University of 123 

Buckingham UK. The study consisted of a cohort of 1,611 female patients (66.36±124 

8.67 years of age, range between 43 and 95 years old) from the Hospital between 125 

October 2016 and December 2018. After excluding 14 patients because of missing data, 126 

821 patients with thyroid lesions and 776 patients with breast lesions were included 127 

(Figure 1). A total of 719 thyroid lesions (298 malignant and 421 benign) and a total of 128 

672 breast lesions (299 malignant and 373 benign) were used to build and validate the 129 

classification models (Figure 1). All lesions were confirmed by histopathological 130 

assessment of tissue samples obtained via biopsy or surgery.  131 

2.2 US Image Acquisition 132 

All thyroid and breast gray-scale US examinations were performed in the Hospital 133 

using US machines of five different makes and models including Siemens Oxana 2, 134 

Siemens S3000, Toshiba Apolio 500, GE Logic E9, and Philips Epic 7 with a high-135 

frequency linear probe (5-12 MHz for both thyroid and breast imaging). These 136 

machines are most commonly used to capture US images in real clinical practice, and 137 

we wanted to ensure that the trained CNN models would be robust. Both longitudinal 138 

and transverse planes of the thyroid lesions and breast lesions were obtained. For 139 

instance, among the lesions for developing the DCNN models (see Section 3.1), 525 140 

(73.0%) and 248 (36.9%) longitudinal planes of the thyroid lesions and breast lesions 141 

were respectively obtained. Lesions with the largest diameter in US were selected for 142 

patients with more than one lesion. All images were acquired and stored in RGB format.  143 

The TI-RADS [19] and BI-RADS [20] were referred to evaluate the malignancy risk of 144 

each lesion stratified by its US patterns composed of the integrated solidity, 145 

echogenicity, and suspicious US features of each lesion. 146 

2.3 CNN based Cancer Recognition 147 

2.3.1 US Image Pre-processing  148 



Since the adopted network architecture [18] was pre-trained on images with a single 149 

object occupying the entire scene, to satisfy the training requirements, the acquired US 150 

images were subjected to preprocessing. The region of interest (RoI), i.e. the lesion area 151 

of the image, was cropped from the whole ultrasound image for accurate recognition. 152 

A free-hand cropping software tool was developed using MATLAB. The tool enables 153 

radiologists to identify pixel points marking the border of a lesion, and the tool collects 154 

the coordinates of the points. Using the software tool, all RoIs were first cropped 155 

manually by a radiologist with at least 5 years of experience in both thyroid and breast 156 

US (Figure 2) and then checked by a senior radiologist with >15 years of experience in 157 

thyroid and breast imaging. A rectangular bounding box was generated for each lesion 158 

by fitting the border points into minimum-area-rectangle. The image within the 159 

bounding box is known as an RoI image herein. RoI images of lesions were then used 160 

as input images for CNN model training and testing. 161 

2.3.2 Data Augmentation 162 

Training and tuning an architecturally complex DCNN of a large size, such as VGGNet 163 

[18], requires a large number of training images. Large datasets comprising thousands 164 

of ultrasound images annotated with accurate class labels (i.e. the ground-truth) are 165 

always challenging and difficult to obtain and thus are in short supply. One possible 166 

way to overcome this issue and reduce potential model overfitting is to artificially 167 

enlarge the training set available using label-preserving transformations, known as data 168 

augmentation [21]. In this study, we proposed two types of techniques to augment the 169 

cropped US RoI images: Geometric methods and Singular Value Decomposition 170 

method.  171 

2.3.2.1 Geometric Methods 172 

Rotation and mirroring alter image geometry of the image by mapping the individual 173 

pixel values to new destinations. Here, both methods change the original RoI image to 174 

a new position and orientation while preserving the shape of the class representation 175 

within the image. For rotation, each RoI image was rotated counterclockwise around 176 

the center of the RoI with degrees of 90, 180, and 270. For mirroring, a reflected 177 



duplication of an RoI image was generated by flipping the image across its vertical axis. 178 

These geometric methods generated four artificial images from each RoI image. Image 179 

features such as textures, echogenicity, margin characteristics are not affected by the 180 

operations. Both methods were considered to be computationally efficient as they were 181 

applied directly on the image matrix. 182 

2.3.2.2 Singular Value Decomposition (SVD) 183 

An image compression-related SVD-based scheme was used to generate approximate 184 

images with different degrees of compressed contents while preserving the geometric 185 

features of the original RoI image. The images were obtained by ranking the 186 

information content according to the levels of its importance in the original image data. 187 

In other words, we use SVD method to disclose the structure of the image matrix to 188 

obtain the further compression of the original RoI images. The working principle of the 189 

method is explained as follows. 190 

A cropped RoI image of 𝑟  rows and 𝑐  columns of pixels in the RGB color space 191 

forms three 𝑟 𝑐  matrices 𝑀{𝑅, 𝐺, 𝐵} respectively  representing the RGB channels. 192 

The singular value decomposition for each of the three matrices is a factorization of the 193 

form: 194 

𝑀{𝑅,𝐺,𝐵} = 𝑈Σ𝑉𝑇 195 

where 𝑈 is of size 𝑟   𝑟, Σ is of size 𝑟  𝑐, and 𝑉𝑇 is of size 𝑐  𝑐. 𝑈 and 𝑉 are 196 

orthogonal matrices, and Σ is a diagonal matrix whose entries arranged in descending 197 

order along the main diagonal. The matrix Σ represents the singular values of M and 198 

determines the rank of the original matrix.  199 

The three RGB channels were processed individually and then later stacked back on 200 

top of each other to create a new RGB image. For each RoI image, three images were 201 

generated with 45%, 35% and 25% ratios of the selected top singular values.  202 

2.3.3 Building CNN Models 203 

The parameters of the CNN model VGG-19 [18] were pre-trained on the ImageNet 204 

dataset [8] for the task of object recognition from the images. The network has 47 layers, 205 



comprising 16 convolutional and 3 fully connected learnable weight layers. Each 206 

convolution layer consists of filter size 3x3 and different number of kernels. The model 207 

contains approximately 144 million weight parameters, and the convolutional layers 208 

extracts local features such as lines, shapes, edges, and textures that could be transferred 209 

for similar visual recognition tasks, such as cancer recognition in ultrasound images.    210 

The layers trained using the CNN [18] and the ImageNet dataset [8] were adapted for 211 

cancer recognition. The architecture of the CNN model [18] was adapted by replacing 212 

and fine-tuning the last fully connected layer (fc8), the softmax (prob) layer and the 213 

output layer (output). Since the images of each cancer type (thyroid and breast) is 214 

labelled by either of two classes, a new fully connected layer (fc8’) was added for the 215 

two classes (indicating benign and malignant). A softmax layer (prob’) and a 216 

classification output layer (output’), where the output of the last fully-connected layer 217 

was fed to a 2-way softmax layer (or normalized exponential function), produce a 218 

distribution over the two class labels. In addition, we set the last ‘Dropout’ layer to 25%. 219 

The adaptions result in a generic DCNN architecture which was then used to build the 220 

TNet and BNet models for the thyroid and breast cancers respectively. Figure 3 221 

illustrates the modified CNN architecture. The TNet model was trained on thyroid RoI 222 

images and the BNet model was trained on breast RoI images.  223 

Training and testing procedures were developed based on the ultrasound RoI images. 224 

As an additional preprocessing step, each RoI image was rescaled to 224 x 224 x 3 by 225 

using the bicubic interpolation method, augmented using the SVD and the geometric 226 

methods, and then fed as inputs to the data layer (data) of the network. The rescaling of 227 

RoI images to the target size is to meet the data layer requirement of the adapted CNN 228 

architecture [18]. The network hyperparameters were set as follows: iteration number 229 

= 9080, initial learn rate = 0.0001, and mini batch size = 8. These configurations were 230 

finalized empirically to ensure that the parameters were finetuned for the cancer 231 

recognition task. We observed that the model stopped learning after 20 epochs which 232 

represents ~9080 iterations. Several different learning rates (0.01, 0.001, and 0.0001) 233 

were attempted, and 0.0001gives the best loss without sacrificing speed of training. The 234 



other network parameters were set to their default values [18]. Data augmentation, 25% 235 

drop out of the last ‘Dropout’ layer and imbalanced data methods were techniques used 236 

to reduce the effect of model overfitting. We found experimentally that using relatively 237 

more images of benign cases in the training set reduces the model sensitivity and helps 238 

reducing the model overfitting overall.  239 

All experiments were run on an Intel Core i7 desktop, two GPU GeForce RTX™ 2080, 240 

CPU@2.30GHz (two processors) with 64.0 GB RAM. 241 

2.4 Observer Study by Radiologists 242 

The test ultrasound images were presented on a standard reporting workstation in 243 

random order to three radiologists with 3 to 15 years of experience in both thyroid and 244 

breast imaging between them. These radiologists classified each lesion as being either 245 

malignant or benign. The clinical information of each patient was withheld from the 246 

invited radiologists.  247 

 248 

2.5 Statistical analysis 249 

Receiver operating characteristics (ROC) curves were used to demonstrate and compare 250 

the diagnostic performance of our deep learning models with that of the experienced 251 

radiologists in classifying benign and malignant cases in thyroid cancer and breast 252 

cancer. The individual and average sensitivity, specificity and accuracy rate of the three 253 

radiologists was used when comparing diagnostic performance. The SPSS (version 254 

25.0, SPSS Inc., Chicago, IL, USA) software was utilized for data analysis. P values 255 

<0.05 were considered as statistically significant. 256 

 257 

3. Results 258 

3.1 Study population 259 

A total of 672 patients (58.4 ± 16.3 years old) with 672 breast ultrasound images 260 

(benign: 373, malignant: 299) (Table 1) and 719 patients (55.3 ± 12.6 years old) with 261 

719 thyroid ultrasound images (benign: 421, malignant: 298) (Table 2) were used in 262 

developing (i.e. training and testing) the TNet and BNet models. Two additional sets 263 



(102 thyroid lesions and 104 breast lesions) were set aside for comparing the models 264 

against radiologists, where 45 out of 102 thyroid nodules (Table 2) were malignant and 265 

52 out of 104 breast nodules were malignant (Table 1). 266 

 267 

3.2 Evaluation of the CNN models 268 

We first performed comparative experiments in order to evaluate the effectiveness of 269 

our method, using two different US image datasets (breast and thyroid datasets). First, 270 

we used 719 US thyroid images (298 malignant and 421 benign) to evaluate the 271 

performance of the TNet model. To determine the classification accuracy, we used 10-272 

fold stratified cross validation. On each iteration, we split the US images into training 273 

and testing sets at ratio of 90% to 10% for each class. Among the training examples for 274 

each fold, 10% of them were used as validation examples. The TNet model achieved 275 

an average accuracy of 86.5% (std = 2.8%), an average true positive rate (TPR) of 83.9% 276 

(std = 3.9%) and an average true negative rate (TNR) of 88.6% (std = 4.6%) in 277 

classifying thyroid lesions (Table 3). To evaluate the performance of our generic CNN 278 

models (TNet), we also used the TNet to classify all breast cases (672 images). The 279 

TNet model achieved an average accuracy of 86.6% on classifying breast malignant 280 

cases (sensitivity) and 87.1% on classifying breast benign cases (specificity). 281 

We conducted similar classification experiments using the breast US image dataset. 282 

This comprised 373 benign images and 299 malignant images. We also used 10-fold 283 

cross validation to evaluate the classification accuracy. On each iteration, we split the 284 

US images into training and testing sets at ratio of 90% to 10% for each class. The same 285 

arrangement for the validation examples as for the TNet was also applied. The BNet 286 

model achieved an average accuracy of 89% (std = 4.2%), an average TPR of 88.2% 287 

(std = 4.2%) and an average TNR of 89.6% (std = 4.9%) in distinguishing malignant 288 

and benign breast lesions (Table 3).  289 

We further evaluated TNet and BNet models on an external data set of 102 unseen 290 

thyroid cases (57 benign and 45 malignant), and TNet model achieved an accuracy of 291 

86.3%, with 84.4% and 87.7% for TPR and TNR respectively. Using the same set of 292 



thyroid US images, the BNet achieved a lower level of accuracy of 77.5% with 67.6% 293 

and 86% for TPR and TNR respectively. A BNet model trained on 321 benign images 294 

and 247 malignant images was tested on the external 104 breast cases (52 benign and 295 

52 malignant), and the model achieved an accuracy of 87.5%, with 88.5% and 86.5% 296 

for TPR and TNR respectively. 297 

Regarding the diagnostic performance, the TNet model achieved an AUC of 0.861 (95% 298 

CI: 0.792-0.929) in classifying malignant thyroid lesions which was comparable to that 299 

of the average performance of the three expert radiologists (0.810, 95%CI: 0.720-0.900) 300 

(Figure 4). The lowest AUC of the radiologists was 0.757 (95% CI:0.658-0.855), and 301 

the highest AUC was 0.854 (95% CI:0.775-0.934) (Table 4). The performance of three 302 

individual radiologists, however, was lower than that of the deep learning model in 303 

classifying thyroid cancer (radiologist 1 vs. TNet: p=0.0004; radiologist 2 vs. TNet: 304 

p=0.1536; radiologist 3 vs. TNet: p=0.0424). The results of each radiologist are 305 

provided in Table 5. Similar results were achieved in classifying malignant breast 306 

lesions in terms of sensitivity and accuracy rate. The TNet achieved higher sensitivity 307 

(88.5%) and accuracy rate (86.5%) than that of the three radiologists (sensitivity: 50.0% 308 

- 65.4%; accuracy: 71.2% - 78.8%) (Table 5). However, all of three radiologists had 309 

higher specificity (86.5% - 98.1%) than that of the TNet (84.6%). The results shown 310 

the effectiveness of our generic CNN model (TNet) to differentiate between malignant 311 

and benign breast lesions and thyroid lesions (Figure 5) compared with that of the 312 

radiologists. 313 

 314 

4. Discussions 315 

Our work provides additional support to the conclusions of previous studies that 316 

demonstrated deep learning algorithm performance comparable to radiologists or even 317 

better. For example, Han et al. developed a GoogLeNet-based model to distinguish 318 

between malignant and benign breast lesions with a large sample of 4254 benign lesions 319 

and 3,154 malignant lesions. The model achieved high sensitivity (86%), specificity 320 

(93%), and accuracy (91%) [22]. Guan et al. tested the ability of an inception-v3-based 321 

model to classify 1,275 papillary thyroid carcinomas and 1,162 benign lesions [23]. 322 



The model achieved sensitivity (93.3%), specificity (87.4%), and accuracy (90.5%). 323 

Ma et al. developed a pre-trained CNN model to predict of thyroid malignancy using 324 

15,000 US images [24]. This model achieved a similar diagnostic performance as ours, 325 

with the sensitivity, specificity, and accuracy of their model as follows: 82.41% ± 326 

1.35%, 84.96% ± 1.85%, and 83.02% ± 0.72%, respectively. Buda et al. produced a 327 

deep learning algorithm for thyroid cancer recognition based on 1,377 images that had 328 

a diagnostic performance similar to that of nine radiologists [9]. Specifically, their 329 

model achieved an AUC (0.87; 95% CI:0.76-0.95) that was comparable to that of nine 330 

skilled radiologists (0.82; 95% CI: 0.73-0.90) (p=0.38).  331 

In a brief report on a separate study by Park et al. [11] with a large dataset, performances 332 

of two types of CAD systems (one using deep learning and the other support vector 333 

machine) were compared with those from experienced and inexperienced radiologists. 334 

The study found that the CAD systems had comparable performances to the radiologists. 335 

However, it was not clear from the report regarding which deep learning architecture 336 

was used or utilized, nor the selection of the radiologists taken part in the study. Wang 337 

et al. also conducted a large-scale study on multiple thyroid nodule classification [12]. 338 

Both Inception-ResNet-v2 and VGG-19 (chosen by this study) architectures were 339 

investigated. However, the image modality of the investigation was microscopic 340 

histological images rather than US images. Li et al. established a Faster R-CNN based 341 

method for distinguishing thyroid papillary carcinoma [25]. Their results demonstrated 342 

that the model improved the cancer classification over the manual methods but using a 343 

rather small dataset of 300 US images. In particular, the type of thyroid cancer was 344 

limited to thyroid papillary carcinoma in the study of Guan et al. and Li et al., even 345 

though it is the most common primary thyroid cancer [25, 26]. The researchers, 346 

however, only designed one model for classifying either breast cancer or thyroid cancer. 347 

Liu et al proposed a multi-scale nodule detection scheme and a clinical-knowledge-348 

guided CNN-based method to classify thyroid cancers [27]. By introducing clinical 349 

prior knowledge, such as margin, shape, aspect ratio, composition, and calcification, 350 

their results showed an impressive sensitivity of 98.2%, specificity of 95.1%, and 351 



accuracy rate of 97.1%. The method involves using three separate CNNs to extract 352 

features within the nodule boundary, around margin areas and between nodule and 353 

surrounding tissues. As a result, the architecture of the network is complex with a higher 354 

risk of model overfitting. Besides, all images were collected from US machines of a 355 

single make. None of the published work developed a consolidated algorithm to classify 356 

both breast and thyroid cancer.  357 

In this paper, we developed a generic deep learning algorithm to classify thyroid and 358 

breast cancers with the following reasons. First, both cancers share common genetic 359 

features and are influenced by similar families of hormones [28,29]. For example, one 360 

study demonstrated the high frequency of thyroid stimulating hormone receptors in 361 

breast tissue [29]. Estrogen (which is highly expressed in breast tissue) might also 362 

contribute to thyroid gland development and pathology [30]. Furthermore, a common 363 

molecular mechanism may contribute to the concurrent thyroid cancer and breast 364 

cancers [31]. An et al. identified an increased risk of second primary carcinoma of the 365 

thyroid or breast in 6,833 patients with prior breast cancer or 4,243 patients with prior 366 

thyroid cancer [31]. Other factors such as increased thyroid peroxidase levels may also 367 

correlate with improved outcomes in patients with breast cancer [29]. In clinical 368 

practice, there was an elevated risk of developing a second primary cancer during the 369 

first year following the diagnosis of breast cancer [32]. These findings suggest that 370 

medical surveillance of breast cancer/thyroid cancer patients on the second primary 371 

cancer development is required. 372 

To the best of our acknowledge, the work reported in this paper is the first to propose a 373 

generic CNN model (TNet) that showed a promising diagnostic performance in 374 

classifying both thyroid cancer and breast cancer. In the external test dataset, the TNet 375 

model distinguished benign and malignant breast lesions with a significantly higher 376 

sensitivity (88.5%) and accuracy rate (84.6%) without sacrificing too much on 377 

specificity (86.5%) than the radiologists (sensitivity: 50.0% - 65.4%; accuracy: 71.1% 378 

- 78.8%; and specificity: 86.5% - 98.0%). We used a higher percentage of malignant 379 

training data (44.5%) than the actual incidence rate (0.29%) [33], which might have 380 



rendered the algorithm more sensitive to malignant lesions, and therefore enabled a 381 

higher sensitivity than specificity. On the other hand, BNet showed a promising 382 

diagnostic performance in classifying thyroid cancer as well. It achieved a higher 383 

sensitivity (67.6%) and accuracy rate (77.5%) compared with that of the average 384 

performance of three radiologists (sensitivity: 57.7%, and accuracy: 75.0%), but a 385 

lower specificity (86%, the average performance of three radiologists: 92.3%). The 386 

BNet model also achieved comparable, and even marginally higher performances to the 387 

TNet on classifying the external breast cases. The results accord with previous studies, 388 

which showed that the application of machine learning in breast ultrasound achieved 389 

high level of differentiation between benign and malignant breast lesions, with an 390 

accuracy comparable to radiologists [34, 35]. 391 

Our work is primarily motivated by the interest in developing a generic CNN model 392 

suited for both thyroid and breast lesions given the similarity in the features of both 393 

types of lesions. Such approach could be useful when the data and annotation of one 394 

cancer type are not readily available. In order to explore the potentials of the generic 395 

approach for cancer diagnosis, we made a step further in building a CNN-based model 396 

on the same underlying DCNN architecture using combined cases of thyroid and breast 397 

lesions. We used 542 benign and 532 malignant RoI images of both types of lesions, 398 

and trained a new model TBNet with these images. We then tested the TBNet model 399 

on 204 cases (102 thyroid and 102 breast lesions). The overall accuracy was 82.3% 400 

with 74.4% sensitivity and 88.6% specificity. Again, the overall accuracy and 401 

sensitivity of TBNet seemed higher than those by the radiologists, and the specificity 402 

matched that by the radiologists. This initial trial test also shows the potentials of the 403 

generic approach for lesion classification. 404 

A deep learning method to classify malignancy could contribute to clinical practice in 405 

different ways. First, multiple studies have confirmed that patients with previous breast 406 

or thyroid cancer have a significant increased overall risk of developing a secondary 407 

thyroid or breast cancer [36,37]. The TNet model could assist radiologists to screen 408 

both the thyroid gland and mammary gland of the same patient at the same time. 409 



Consequently, the TNet model could improve the early detection rate. Second, deep 410 

learning methods produce consistent predictions for one given US image while 411 

predictions made by radiologists can vary depending on the individual level of 412 

experience and understanding. Finally, automated deep learning solutions can 413 

significantly reduce the image interpretation time in clinics. The readout time for the 414 

TNet model was around 1.15 seconds per image. By contrast, the radiologists took 415 

approximately 30-40 seconds to classify one thyroid/breast US image. For the external 416 

test dataset, three radiologists were asked to review images under time constraints in a 417 

real-life setting. The labor-intensive US image interpretation might well be one of the 418 

main reasons why the radiologists misclassified the malignant thyroid and breast 419 

lesions in the aforementioned results.  420 

Some limitations of our study should also be noted. As a pilot study, our investigation 421 

confers the expected limitations of a retrospective and single center study with a limited 422 

number of samples. The proposed augmentation methods had to be used to enlarge the 423 

data sample sufficiently to train the CNN models. Furthermore, most patients involved 424 

in the study are southern Han Chinese. Nevertheless, the test results on the TNet model 425 

so far suggest that the model has the potential to perform better than skilled radiologists. 426 

We did ensure, however, that the US images included in the present study were obtained 427 

from different US machine makes. This helped ensuring data diversity for training more 428 

robust models. 429 

 430 

5. Conclusion 431 

In conclusion, the CNN-based models (TNet, BNet and even TBNet) have shown good 432 

performance in classifying both thyroid and breast cancers. The proposed generic deep 433 

learning framework can offer a promising diagnostic performance at classifying cancers 434 

of different types. For patients who are with thyroid or breast cancer history, such a 435 

consolidated model can lead to a more rapid intervention with the most appropriate 436 

treatment.  437 

Encouraged by the results, we plan to expand the current research in several ways. 438 

Firstly, we will continue the ongoing investigation into the combined model TBNet by 439 



analyzing larger datasets collected from different centers involving diverse patient 440 

populations. Furthermore, a more systematic comparison between the models and 441 

radiologists of a wider range of experiences from several centers should be conducted 442 

under different control settings. We will also further analyze the relationship between 443 

a correct classification outcome made by the models and regions of input RoI images 444 

to identify the specific common features that the models have captured. Intrigued by 445 

the comparable performance of TNet and BNet on classifying breast lesions, we wish 446 

to investigate further the known ultrasound characteristics (e.g. shape ratio, hypo-447 

echogenicity, and ill-defined margins) shared by thyroid and breast lesions. In addition, 448 

we will further investigate any new image textures learned by both models to identify 449 

potentially new common US characteristics useful for the diagnosis of thyroid and 450 

breast cancers. 451 
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Tables 560 

Table 1: Study population with breast lesions and baseline characteristics 561 

 Training  Testing  

Malignant Benign Malignant Benign 

Patients (years old)* 60.3 ± 11.7 55.3 ± 12.6 65.7 ± 15.1 59.3 ± 10.8 

Number of lesions 299 373 52 52 

Planes of US images   

Longitudinal 176 251 27 28 

Transverse 123 122 25 24 

US machine types   

Philips 138 206 19 32 

GE 76 83 10 8 

Toshiba 43 50 5 6 

Siemens 42 34 18 6 

BI-RADS   

2 0 149 0 27 

3 4 125 0 8 

4a 127 75 30 11 

4b 65 23 5 6 

4c 42 1 7 0 

5 61 0 10 0 

 562 

  563 



Table 2 Study population with thyroid lesions and baseline characteristics 564 

 Training Test 

Malignant Benign Malignant Benign 

Patients (years old)* 58.5 ± 10.4 54.2 ± 8.1 55.8 ± 10.9 53.9 ± 7.3 

Number of lesions 298 421 45 57 

Location     

Right 150 198 29 27 

Left 138 196 8 18 

Isthmus 10 27 8 12 

Planes of US images   

Longitudinal 211 314 31 40 

Transverse 87 107 14 17 

US machine types   

Philips 155 198 23 27 

GE 58 107 8 11 

Toshiba 37 55 9 5 

Siemens 48 61 5 14 

TI-RADS   

2 0 187 0 32 

3 11 136 0 11 

4a 126 68 31 9 

4b 89 30 6 4 

4c 35 0 3 1 

5 37 0 5 0 

*The data represent the means ± standard deviation. 565 

  566 



Table 3 Average TPR, TNR, accuracy and AUC for 10 folds for both TNet and BNet 567 

Models 
Evaluation Measurements 

TPR (std) TNR (std) Accuracy (std) Mean AUC 

TNet 83.9% (3.9%) 88.6% (4.6%) 86.5% (2.8%) 0.863 

BNet 88.2% (4.2%) 89.6% (4.9%) 89% (4.2%) 0.888 

 568 

 569 

Table 4: Diagnostic performance of the TNet model and radiologists 570 

Thyroid AUC  95% CI Breast AUC  95% CI 

TNet 0.861 0.792-0.929 TNet 0.875 0.804-0.947 

AvgR 0.810 0.720-0.900 AvgR 0.750 0.653-0.847 

R1 0.757 0.658-0.855 R1 0.756 0.660-0.853 

R2 0.854 0.775-0.934 R2 0.698 0.593-0.802 

R3 0.830 0.744-0.916 R3 0.777 0.682-0.872 

R1-R3 indicates radiologists 1 to 3. AvgR indicates the average performance of the 571 

three radiologists. 572 

 573 

 574 

Table 5 TPR, TNR, and accuracy of TNet and the three radiologists 575 

 TNet Radiologist 1 Radiologist 2 Radiologist 3 

 TPR TNR ACC TPR TNR ACC TPR TNR ACC TPR TNR ACC 

Thyroid 84.4% 87.7% 86.3% 68.9% 82.5% 76.5% 86.7% 84.2% 85.3% 80.0% 86.0% 83.3% 

Breast 88.5% 84.6% 86.5% 65.4% 86.5% 76.0% 50.0% 92.3% 71.2% 59.6% 98.1% 78.8% 

TPR indicates true positive rate. TNR indicates true negative rate. ACC indicates 576 

accuracy rate. 577 

 578 
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 580 

Figure 1: Flowchart of the study population in the training and testing sets. 581 

 582 

 583 

Figure 2: Representative US images showing malignant thyroid lesions. 584 

(a) A malignant wider-than-tall, solid lesion with punctate echogenic foci. All 585 

radiologists and the TNet model correctly classified the lesion. 586 

(b) A malignant wider-than-tall, hypoechoic solid lesion with an ill-defined margin. All 587 

radiologists misclassified the lesion as benign due to the small size of the lesion (0.8cm) 588 

and no punctate echogenic foci while the TNet model correctly classified the lesion as 589 

malignant. 590 

 591 

 592 



 593 

Figure 3: CNN architecture consists of 16 convolutional (Conv) layers with 3x3 594 

kernels with depths 64, 128, 256, 512 for Conv1, Conv2, Conv3, Conv4 and Conv5, 595 

respectively; max pooling layers (MP) and 3 fully connected (fc) layers fc6, fc7 and 596 

fc8 with sizes 4096, 4096 and 2, respectively. 597 

 598 

 599 

Figure 4: ROC curves for binary classification revealing diagnostic performances of 600 

TNet, 10-fold cross validation TNet, and three radiologists. 601 

 602 



 603 

Figure 5: Representative US images showing malignant breast lesions. 604 

(a) A malignant lesion with irregular shape, calcification, and not circumscribed margin. 605 

All radiologists and the TNet model correctly classified the lesion. 606 

(b) A malignant lesion with an oval shape, circumscribed margins, and enhancement 607 

posterior features. All radiologists and the TNet model misclassified the lesion as 608 

benign due to the enhancement posterior features that result in a soft tissue. 609 

(c) A hypoechoic malignant lesion. All radiologists correctly classified the lesion as 610 

malignant, while the TNet model misclassified the lesion as benign. 611 

(d) A heterogeneous, hypoechoic lesion with an oval shape and parallel orientation 612 

characteristic of malignant lesions. All radiologists misclassified the lesion as benign 613 

due to the small size of the lesion (1.4cm) and parallel orientation, while the TNet model 614 

correctly classified the lesion as malignant. 615 


