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ABSTRACT 

Topological Data Analysis (TDA) is a new field of mathematics emerged rapidly 

since the first decade of the century from various works of algebraic topology and 

geometry. The goal of TDA and its main tool of persistent homology (PH) is to 

provide topological insight into complex and high dimensional datasets. We take this 

premise onboard to get more topological insight from digital image analysis and 

quantify tiny low-level distortion that are undetectable except possibly by highly 

trained persons. Such image distortion could be caused intentionally (e.g. by 

morphing and steganography) or naturally in abnormal human tissue/organ scan 

images as a result of onset of cancer or other diseases.    

The main objective of this thesis is to design new image analysis tools based on 

persistent homological invariants representing simplicial complexes on sets of pixel 

landmarks over a sequence of distance resolutions. We first start by proposing 

innovative automatic techniques to select image pixel landmarks to build a variety of 

simplicial topologies from a single image. Effectiveness of each image landmark 

selection demonstrated by testing on different image tampering problems such as 

morphed face detection, steganalysis and breast tumour detection. 

Vietoris-Rips simplicial complexes constructed based on the image landmarks at an 

increasing distance threshold and topological (homological) features computed at 

each threshold and summarized in a form known as persistent barcodes. We vectorise 

the space of persistent barcodes using a technique known as persistent binning where 

we demonstrated the strength of it for various image analysis purposes. Different 

machine learning approaches are adopted to develop automatic detection of tiny 

texture distortion in many image analysis applications. Homological invariants used 

in this thesis are the 0 and 1 dimensional Betti numbers. 

We developed an innovative approach to design persistent homology (PH) based 

algorithms for automatic detection of the above described types of image distortion. 

In particular, we developed the first PH-detector of morphing attacks on passport face 

biometric images. We shall demonstrate significant accuracy of 2 such morph 

detection algorithms with 4 types of automatically extracted image landmarks: Local 

Binary patterns (LBP), 8-neighbour super-pixels (8NSP), Radial-LBP (R-LBP) and 
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centre-symmetric LBP (CS-LBP). Using any of these techniques yields several 

persistent barcodes that summarise persistent topological features that help gaining 

insights into complex hidden structures not amenable by other image analysis 

methods.  

We shall also demonstrate significant success of a similarly developed PH-based 

universal steganalysis tool capable for the detection of secret messages hidden inside 

digital images. We also argue through a pilot study that building PH records from 

digital images can differentiate breast malignant tumours from benign tumours using 

digital mammographic images.   

The research presented in this thesis creates new opportunities to build real 

applications based on TDA and demonstrate many research challenges in a variety of 

image processing/analysis tasks.  For example, we describe a TDA-based exemplar 

image inpainting technique (TEBI), superior to existing exemplar algorithm, for the 

reconstruction of missing image regions. 
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Chapter 1  
Introduction 

  Nowadays in almost all areas of science, engineering and even social sciences we 

store and gather data from different types of activities at an ever-increasing rate. This 

is due to the availability of affordable high-performance powerful computing devices 

on one hand, and the emergence of new innovative computational paradigms of data 

analysis on the other hand. The generated data vary considerably in terms of 

complexity, volume, diversity and quality. In applications where one deals with data 

records of high-dimensional numerical type, non-numerical descriptive/ordinal type, 

or of mixed types, the challenge of visualizing/comprehending the collected data is 

far beyond human capabilities. Realistically, such applications are only susceptible to 

analysis by machine learning based software inspired and guided by rigours 

mathematical concepts and techniques. Moreover, recent BigData and computer 

vision applications provide ample evidences of the claim that “Data has shapes” and 

incentivise the use of known topological invariants of shapes for advanced 

approaches to data analysis [1].  Indeed, this has naturally energised research interest 

in using computational topology and its tools as means of understanding shapes of 

data leading to the emergence of the field of Topological Data Analysis (TDA).   In 

turn, the emergence of TDA over the last few years, generated new challenges in 

computational topology investigations of which could have significant implications 

on data analysis and beyond. This thesis aims to investigate and present a new 

strategy for the development of innovative TDA-based image analysis and forensic 

schemes. We are generally interested in detecting image distortions that could occur 

intentionally, maliciously or as a result of changes in the imaged objects such as 

disease-related changes to scanned human tissue/organs. Our main case study 

application will focus on malicious detection of morphing attacks on face images 

which is becoming a serious threat to biometric based identification.  Our strategy 

will be based on extracting simplicial complexes of image landmarks and computing 

the topological invariants of which are sensitive to tiny image distortions.    
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The first two sections of this introductory chapter are concerned with the problem 

statements of research conducted in this thesis.  We first describe the general area of 

data analysis and how the field of TDA emerged, before describing the problem of 

image tampering detection.  In the rest of the chapter, we present the main aim and 

objectives of the research project, describe main challenges and existing approaches, 

our strategy and contributions, and thesis organisation. 

1.1 Introduction to Data Analysis 

Data analysis is not a new field of research. Mathematics and scientific endeavours, 

throughout the human history, are based on collecting data and observations about 

events and objects, build concise models of the collected data, and invent increasingly 

more advanced algorithms to extract information and create knowledge. Indeed, 

mathematical modelling, statistical analysis and various other fields of mathematics 

were developed for the purposes of interpreting data, discovering patterns, and 

making predictions. Moreover, the more analysis capabilities were developed the 

more data analysis became tractable and this dynamical relationship remains a 

distinctive characteristic of human endeavours. Naturally, the advents of computer 

and communication technologies quickened the pace of progress and led to the 

emergence of more sophisticated applications as well as tougher challenges in data 

analysis. With this, methods of analysis became more complex and the need for 

automation resulted in the development of a variety of machine learning tools and 

models, the latest being Deep Learning schemes using various convolutional neural 

network (CNN) models.        

In general, data analysis applications involve a set of objects/events represented by 

data records and the challenge is to search for patterns of relationships between 

groups of the underlying objects/events. More and more, the data records are 

becoming more complex in terms of dimensionality, volume, and mix of types. For 

example, in the health service a patient record consists of a combinations of personal 

identifier data, x-ray and MRI images, history of illnesses, treatments, surgeries, etc.   

Analysis of such complex dataset is a serious challenge well beyond conventional 

statistical analysis and even more sophisticated tools. The emergence of a variety of 

deep learning architecture models and the rapid growth in their deployment may be 

seen as diminishing the need for more research in data analysis. However, such 

models work as black box, without interpreting its decisions, and have many 
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shortcomings in terms of overfitting and vulnerability to adversarial attacks [2]. 

Ironically, the only obvious explanation of their high performances, in image analysis 

applications, is attributed to the massive amounts of extracted features. Indeed, 

explaining deep learning decisions suffers from the effect of “curse of features” 

analogous to the challenge of curse of dimension that is apparent in image 

processing/analysis [3].        

Regardless of the data records complexity, in data analysis applications one needs 

some means of measuring similarity/distances between pairs of records in terms of 

which the analysis tasks are meant to discover hidden informative patterns of 

similarity/dissimilarity. Discovering hidden data patterns is akin to clustering the data 

in terms of the similarity information. Consequently, data analysis maybe 

characterised as cluster analysis tasks that can naturally benefit from network analysis 

problems where the records are associated with the nodes and arcs connecting two 

nodes are given weights of the similarity measure between the end nodes. 

Focusing on pairwise relations/similarities was one of the fundamental building 

blocks of mining bigdata that have been extensively investigated in the past [4]. In 

general, the larger the volume of the data records and/or the dimensionality of the 

numerical data records present major challenges in terms of efficiency of operations 

and sensitivity to noise besides difficulties in interpreting the results. Accordingly, 

ample research were, and are, conducted to reduce dimensionality of records with 

minimal loss of information and in creating visualisation tools to help humans to 

interpret/justify decisions. 

For image analysis applications, dealing with the volume and dimensionality 

challenges is a common source of investigations and dimension reduction is, to some 

extent, a dominant mitigating approach. Variants of the principle component analysis 

(PCA) and compressive sensing based random projections are only few examples of 

these approaches. But most have limitations and shortcomings [5][6]. However, over 

the years researchers investigating the analysis/classification of high dimensional data 

records, questioned the wisdom of modelling the records by a linear metric space 

(e.g. Euclidean) and considered the possibility that such data may reside on (or 

approximated by) a lower dimensional sub-manifold. Nonlinear dimension reduction 

techniques have been developed for the purpose of manifold learning/modelling of 
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high dimensional data including: Multi-dimensional Scaling (MDS), isometric 

mapping methods (ISOMAPS), Laplacian Eigenmaps and Spectral techniques. 

Unlike the linear dimension reduction schemes, most of these schemes ignore the 

internal structures of the data records, associated with coordinates/entries, of the 

actual records and generally work by finding a configuration of points in a low-

dimensional space whose distance matrix approximates that of the original data 

records. Point configurations in 2 or 3 dimensions are perfect for visualization of the 

clustering of the data records in terms of the intended analysis. However, it is not 

clear how can one discern characterizing information on the contents of the original 

records, in particular for images and high dimensional data records.   

Many applications greatly benefit from both approaches in terms of performance and 

efficiency, but two main shortcomings obstruct the chance of achieving reliable 

analysis. While linear dimension reduction helps mitigating the sever effects of curse 

of dimension, the projected image data remain of relatively large dimension, and the 

shape generated by the specific application samples continue to be treated as a linear 

metric space. On the other hand, manifold learning techniques incorporate nonlinear 

distance functions for curved shapes of the record samples, they do not seem to 

provide means of determining the characterising topological features of the learnt 

manifolds (i.e. the number of connected components, holes, tunnels, etc.).   

The manifold learning schemes, mentioned above, rely on the basic assumption that, 

in many data analysis applications, the data records are sampled from a low-

dimensional manifold shape embedded in a high-dimensional space. Indeed, there has 

been plenty of applications where data have been suspected to have some 

recognisable shapes. By the shape of data, we mean the 'global shape' of data which 

may supply useful information concerning the underlying phenomena which the data 

represents. Building and studying shape of data/objects is the core concern of the 

well-known branch of mathematics known as topology. The most image-relevant 

example of this, is the excellent mathematical demonstration that the space of 

normalised high-contrast 3x3 patches (i.e. 9-dimensional data records) of natural 

images are mappable onto the points of the 2-dimensional, Riemann surface of a 

Klein Bottle [7][8]. Interestingly, this was established without using linear/non-linear 

dimension reduction. Instead it exploited the fact that high contrast 3x3 image patches 

convey texture information. This result establishes the well understood Klein Bottle 
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manifold as the space of all positions of the 3x3 patches of natural images (i.e. its so-

called Phase space). It shows that image analysis could benefit greatly by focussing 

on local texture features as a source of discriminating different groups of images. In 

this respect, we recall that the concept of “feature” selection is a well-known and 

practiced in some data analysis applications, that involve large number of feature 

fields (i.e. coordinates not necessarily all real numbers), using some criteria that 

selects the coordinates that are most relevant to the intended analysis. It is worth 

noting that conventional linear dimension reduction, for image applications, is based 

on selecting features that are based on linear combinations of image pixels [6], but 

these features may depend on pixels spread out in the image that are useful in 

reducing redundancies rather than being associated with texture features essential for 

image analysis.  These results and considerations suggest that certain types of image 

analysis applications can greatly benefit from feature selection, by extracting certain 

texture-based features, and investigate the topological parameters of their spatial 

distributions. The approaches to image analysis adopted in this thesis are to some 

extent influenced by these hypotheses and uses algebraic topology tools to distinguish 

between the topological shapes of image landmarks determined by certain types of 

local image features extracted from the sought after different classes of images. The 

most prominent such tool is that of Persistent Homology (PH) that determines the 

pattern of changes to the characterising topological parameters of simplicial complex 

shapes, of the chosen landmarks, at a monotonically increasing finite sequences of 

distance/similarity thresholds. This topological approach benefits from the 

availability of rich research resources accumulated over several decades, while its 

suitability stems from the fact that the topology of simplicial complexes is invariant 

under small deformations, independent of landmark coordinate representation. The 

PH tool provides a compressed topological representation of data shapes which can 

be computed and analysed efficiently regardless of the complexity of the data records. 

The PH of a data shape can be visualised in terms of a set of barcodes (one for each 

topological invariant such as number of connected components, number of 

holes…etc.). 

1.2 The Focus of Image Tampering/Degradation Problem 

In general, image analysis is a set of computer vision methods aim to extract useful 

information from digital images, automatically or semi-automatically, that can be 
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used to distinguish different classes of images depending on the objective(s) of the 

specific application.   It provides a descriptive/numeric output to each input image, 

and it may be preceded by some image processing techniques for quality 

enhancement, denoising, restoration, and/or segmentation. A major type of image 

analysis applications is that of classification/identification, such as face biometrics, 

whereby task-related image features (mainly texture/structure related) are extracted 

and represented in a certain format (such as texture statistics and histograms) to be 

input into some classification tools.  The adopted classifier either determine the 

appropriate class to which the image belongs to and/or output a probability that this is 

true. Image classification algorithms work by the assumption that the input image has 

one or more features whose representations are shared by images belonging to a 

unique class. The determination of class discriminating features is done through a 

training process using sufficiently large dataset of image samples drawn meant to be a 

good representative of the relevant image population. The training process is either 

supervised (where the class of the training samples are known) or unsupervised where 

the features are meant to partitioned into distinguishable classes. In a supervised 

classification framework, an analyst specifies the class beforehand whereas in an 

unsupervised scenario the classes will be automatically specified through clustering-

like methods. In this thesis, we are mainly interested in investigating Topological 

image analysis for automatic binary image classification schemes, i.e. when the aim is 

to discriminate images into two classes of images. The areas of such applications 

include a variety of multi-media security and medical abnormality diagnostics of 

scanned body tissues/organs.  In such applications, the target image classes are 

expected to differ at the microscale of texture that are not visibly detectable, although 

in the medical field highly trained clinician may have own established quantitative 

and qualitative rules to predict an image class.  By no means, confining our 

investigations to the above-mentioned range of classification challenges is a 

limitation of the application of topological image analysis. We shall now describe 

briefly the motivation for our choice, by illustrating the growing range of computer 

vision applications that require the type of analysis covered by our specific scenario.    

The availability of a variety of sophisticated image processing tools made the task of 

image manipulation to be easy without leaving visual traces. Image tampering can 

include changes which are not malicious, i.e. the intention is not to change the overall 
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message the image conveys, and also changes where the sole purpose is to alter the 

truth in which the image represents. Adding/removing noise, blurring, changing 

lighting condition, inpainting, cropping, resizing are examples of image processing 

tasks that manipulate the image either maliciously or for beautification purposes. The 

ease with which digital images/videos are manipulated/faked together with the wide 

spread of internet and social media platforms, raises serious ethical issues not only 

about the integrity of digital images but have adverse implications in every aspects of 

local/global economic and political activities. Therefore, discriminating genuine 

digital images from manipulated ones is of a strong demand by media forensic 

community in one hand, and by the public to access the truth on the other hand.  

Several morph detection algorithms proposed and investigated in the last few years 

whereby the majority of them rely on statistical measurements of texture features and 

mainly build on the wealth knowledge in the field of media forensics. This thesis is 

motivated by rapid advances in the field of Topological Data Analysis. In particular, 

Persistent Homology (PH), the main tool in TDA, associated with automatically 

selected image landmarks used to design sophisticated morph detection algorithms. 

Another area that results in image manipulation is in steganography whereby secret 

messages are embedded in innocuous images without distorting the visual quality of 

the image.  Steganalysis, is the science of detecting hidden messages inside digital 

images. Regardless of the robustness of the secret embedding method, existing 

steganalysis tools expect that tiny local texture-information will be distorted one way 

or another. Hence, TDA is expected to provide effective tools for detection of hidden 

messages by analysing local tiny distortion/tampering.  

In biomedical image classification, the task of classifying scan images into different 

disease related categories is becoming an essential part of health care system that is 

well beyond the human expert resources of most national health services. For 

instance, detecting ovarian or breast cancer in an early stage through images to help 

speeding up the diagnostic process is of a great importance due to the high number of 

cases in UK and around the world. Growing evidence from systems biology research 

into cancer, demonstrate that cancer cells spread within a body tissue by changing 

cellular networks of the texture of cysts [9]. This is a strong indication to the viability 
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of using TDA to classify image scans of tissue tumor into benign and malignant 

cases. 

  In summary, we investigate the use of TDA for the detection of image tampering in 

general, and building TDA tools for automatic detection of malicious face image 

morphing attacks in particular. We shall also demonstrate applicability of the 

developed TDA image analysis schemes to detect a variety of image distortion 

including disease caused distortion of tissue/organ scan images as well as a 

Steganalysis tool to detect hidden secret transactions.      

1.3 Thesis Objectives 

  TDA witnessed considerable success in recent years by providing a new innovative 

paradigm to solve a variety of complex data analysis problems (e.g. [10],[11],[12]). 

However, there are a number of challenges in using the theory of TDA, the most 

obvious being the selection of an appropriate data model with topological 

characteristics that enables the construction of a simplicial complex filtration given a 

sample data records or their representation. This allows the computation of the PH of 

the data shape using persistent barcodes and/or persistent diagram. The appropriate 

choice should make the representation of the corresponding PH sensitive to the 

purpose of the data analysis. For image analysis, we remind the reader that in our 

approach the images themselves are not the node of the simplicial complexes (SC), 

but rather we build SCs from sets of specific texture features associated with image 

landmarks. On the other hand, from application point of view, many image tampering 

approaches tend to ignore the rich topological information one can extract to gain 

more insight about different tampering problems. With these limitations in mind, this 

thesis seeks to achieve the following objectives:  

• Developing automatic techniques to choose various image landmarks to 

facilitate the constructing of a filtration of their simplicial complexes.  

• Extracting topological parameters of the landmarks SC filtrations from 

persistent barcodes, that are sensitive to the image tampering act (i.e. highly 

discriminative of different image classes of interest). 

• Conducting extensive experimental investigation to illustrate the effectiveness 

of the proposed image landmarks and persistent barcode information 

extraction on large image datasets gathered from different domains.  
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• Developing innovative PH-based morph detection algorithms which relies on 

the discriminating power of the pattern of change in homological features 

extracted from filtered simplicial complexes build on image landmarks. 

Beside ‘digital’ images, we are investigating the print-scanned (P&S) images 

which are closer to real life scenarios.  

• Investigating the use of TDA scheme as an image quality assessment. 

Especially, to assess the presence of shadows and blurring as well as detecting 

image alteration as a result of applying different image inpainting algorithms. 

Also, improving current digital image inpainting techniques using ideas from 

TDA where we proposed a topological exemplar-based inpainting method that 

outperforms state-of-the-art exemplar-based inpainting approaches. 

• Proposing TDA-based steganalysis tool to detect ‘stego’ images where a 

secret message being hidden by different steganographic techniques.  

• Establishing the ‘Persistent classification’ approach for tampered digital 

images which is critical in realizing the effect of PH in image classification 

stage.  

To fulfill above objectives, we mainly investigate the use of different approaches of 

image landmark selection and benefit from the wealth topological information 

developed recently in the mathematical field of TDA.  

1.4 Thesis Contributions 

The research conducted in this thesis achieved a number of contributions which 

provide innovative way of designing image tampering detection algorithms that 

depend on TDA. It also provides new techniques where one can build topology from 

digital images from a variety of image analysis purposes. Hence, the research in this 

thesis claims the following major contributions:  

1. The first contribution of this thesis is proposing novel automatic image 

landmark selection procedures to build topology from digital images. 

Specifically, four techniques proposed in which they are based on uniform 

local binary patterns (ULBP), centre-symmetric LBP (CS-LBP), radial LBP 

(R-LBP) and 8-neighbor superpixels (8-NSP). The effectiveness of these 

techniques is investigated extensively on large image datasets and for 
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different image tampering detection purposes such as morphing detection, 

steganalysis and image quality assessment.  

2.  A novel feature extraction method introduced to summarize topological 

inference from the space of persistent barcodes, which we call Persistent 

Binning. Furthermore, we partition the space of persistent barcodes into 

𝑃< −equidistance partition and observe the number of 𝑑-dimensional 

homology groups at each 𝑖, where  𝑖 = 0,1,2, … ,100 and 𝑑 = {0,1}. We show 

that the topological features summarized in this manner , from persistent 

barcodes, are sensitive to different image tampering tasks.  

3. Novel PH-based morph detectors introduced to prevent morphing attacks on 

automatic border control (ABC) systems and support officers at border 

controls with an automatic morph detection algorithm. Extensive 

experimental investigations show that PH-based morph detectors provide a 

rich source of tamper-sensitive parameters that can be used for morphing 

detection.  

4.   Our investigation to detect morphed face images conducted on three 

datasets, two different digital datasets and one for P&S scenario. 

Classification results from the three datasets show high accuracy in detecting 

morphed faces in both digital and P&S scenario.  

5. We designed a novel PH-based steganalysis technique to detect stego images 

where information been hidden through different steganographic methods. 

This approach is the first step towards building a universal PH-based 

steganalysis tool.  

6. Another contribution of this thesis is in digital image inpainting field. Below 

we summarize the contributions accordingly: 

i.  The conducted research argues that TDA is the next tool need to be 

used for image quality assessment in which it showcases the change 

occur in the image via inpainting process.  

ii. We improved exemplar based inpainting (EBI) by quantifying 

textures surrounding the missing region using TDA scheme.  

7.  Persistent Classification introduced as a new approach for tampered image 

classification which can be used as stopping criteria of building filtered 

simplicial complexes in TDA scheme. Although the original idea of 

persistent barcode is to construct topology at different scales from 0 to ∞. But 
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in practice, beyond certain scales constructed/extracted topological features 

do not contribute much into classification procedure.  

 

1.5 Publications, Conference Talks and Awards 

During the life of this thesis, a number of publications, conference talks and 

posters being produced as well as some awards being received which we list them 

accordingly.  

1.5.1 Peer-Reviewed Publications  

1- Aras Asaad and Sabah Jassim (2019).” Persistent Homology Detector of Face 

Image Morphing on Electronic ID”, journal of IEEE Transactions on Pattern 

Analysis and Machine Intelligence. (Under Review)  

2- Sabah Jassim and Aras Asaad (2018). “Automatic Detection of Image 

Morphing by Topology-based Analysis” in 26th European Signal Processing 

Conference (EUSIPCO), doi: 10.23919/EUSIPCO.2018.8553317, IEEE, 

Rome, Italy.  

3- Rasber D. Rashid, Aras Asaad, and Sabah Jassim. (2018). “Topological data 

analysis as image steganalysis technique” in Proc. SPIE 10668, Mobile 

Multimedia/Image Processing, Security, and Applications 2018, 106680J; doi: 

10.1117/12.2309767; https://doi.org/10.1117/12.2309767, Florida, USA. 

4- Ahmed K. Al-Jaberi, Aras Asaad, Sabah A. Jassim, and Naseer Al-Jawad 

(2018) “Topological data analysis to improve exemplar-based inpainting” in 

Proc. SPIE 10668, Mobile Multimedia/Image Processing, Security, and 

Applications 2018, 1066805; doi: 10.1117/12.2309931; 

https://doi.org/10.1117/12.2309931, Florida, USA. 

5- Asaad A., Jassim S. (2017) “Topological Data Analysis for Image Tampering 

Detection”. In Digital Forensics and Watermarking. IWDW 2017. Lecture 

Notes in Computer Science, vol 10431. Springer, Cham, Magdeburg, 

Germany. https://doi.org/10.1007/978-3-319-64185-0_11 

6- Aras T. Asaad, Rasber Dh. Rashid, and Sabah A. Jassim (2017) “Topological 

image texture analysis for quality assessment” in Proc. SPIE 10221, Mobile 

Multimedia/Image Processing, Security, and Applications 2017, 102210I (10 
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May 2017); doi: 10.1117/12.2268471; https://doi.org/10.1117/12.2268471, 

California, USA. 

1.5.2 Conference Talks  

1- Presented (Topology for Image Quality Assessment) in Mobile 

Multimedia/Image Processing, Security, and Applications conference (SPIE 

Commercial + Scientific Sensing and Imaging), 2017, Anaheim, California, 

USA. 

2- Presented (Topological Data Analysis for Image Degradation Assessment) in 

EGL-2017 on 8-9th June, in University of Greenwich, London , UK.  

https://www.gre.ac.uk/ach/research/events/recent-events/eglmathsworkshop . 

3- Presented (TDA for Image Tampering Detection) in Digital Forensics and 

Watermarking. IWDW 2017,August 23-25th, in Magdeburg, Germany. 

 https://iwdw2017.cs.ovgu.de/cms/front_content.php . 

4- Presented two papers (paper No. 3 and 4 in previous section) in Mobile 

Multimedia/Image Processing, Security, and Applications conference (SPIE 

Commercial + Scientific Sensing and Imaging) , Orlando, Florida, USA. 

5- Presentation of (Breast cancer detection using Topological Analysis of digital 

Mammograms) in EGL 2018 Workshop on Optimisation, Applies and Numerical 

Mathematics, in University of Essex, UK, on 6th – 7th June 2018, 

https://www.essex.ac.uk/events/2018/06/06/egl-2018-workshop-on-

optimisation,-applied-and-numerical-mathematics. 

6- Presented (TDA-based Image Analysis) in London Mathematical Society (LMS) 

summer graduate student meeting in London, 29th June 2018, UK.  

https://www.lms.ac.uk/civicrm/event/info?reset=1&id=30 . 

7- Presented (Topology-based analysis for Image Tamper Detection and Related 

Applications) in Young researchers in Mathematics (YRM2018), 23rd July 2018, 

in Southampton University, UK. https://yrm2018.wordpress.com . 

8- Presentation of (Topology-based analysis for Image Tamper Detection and 

Related Applications) in Dragon Applied Topology, 11-14th September 2018, 

Swansea, Wales, UK. https://sites.google.com/view/dragon-applied-topology . 

9- Presented (Persistent Homology to Detect Fake Face Images) in London 

Mathematical Society (LMS) summer graduate student meeting in London, 28th 

June 2019, UK.  
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https://www.lms.ac.uk/civicrm/event/info?id=40&reset=1 
 

 

1.5.3 Awards 

• Best Paper Award in Digital Forensics and Watermarking. IWDW 

2017,August 23-25th, in Magdeburg, Germany for the paper “Topological 

Data Analysis for Image Tampering Detection”, and a prize by Springer 

international publishing for the same paper. 

• Best Presentation/work Award by London Mathematical Society for 

presentation (LMS) for the talk “Persistent Homology to Detect Fake 

Faces” in London Mathematical Society-Graduate Student Meeting, 

London, June 2019.  

 

1.6 Thesis Outline 

The rest of the thesis is organised as follows; Chapter 2 include a mathematical 

introduction into the concepts of Topological Data analysis used in the thesis. In 

Chapter 3, we introduce the building blocks of building topologies from digital 

images including image landmark selection methods. The first Homology-based 

algorithm to detect image tampering is introduced in chapter 4 whereby the type of 

tampering focused on is face image morphing. In Chapter 5, the homology-based 

morph detection algorithm in chapter 4 is improved together with extending the 

datasets and the image landmark selection methods. Beyond morphing, we present 3 

case studies to show the effectiveness of our approach of using topological data 

analysis to tampering detection in chapter 6. The thesis ends in chapter 7 by reporting 

the conclusion and further research direction.  

 



14 
 

Chapter 2  
Topological Data Analysis 

  Topological data analysis (TDA) is a new algorithmic paradigm in data analysis that 

evolved rapidly in recent years, but its theoretical and rigorous mathematical roots go 

back to the 17th century. TDA recently developed tools which have their roots in the 

field of Algebraic Topology when Homology theory was developed to exploit the 

computational simplicity provided by group theory and algebra for the computation 

of characterizing topological invariants of topological spaces in general and 

manifolds in particular.  The range of TDA applications in Science, Technology, 

Engineering and Medicine (STEM) is growing fast but not as much as its potentials 

can facilitate perhaps due to its perceived complexity. The main goal of this chapter is 

to describe the well-founded topological terminology and processes for the analysis 

of large and complex datasets of records in terms of meaningful interpretations of the 

shape of data. While we attempt to maintain, as much as possible, a rigorous 

mathematical description of the various concepts and processes we shall attempt to 

make the chapter accessible to non-mathematicians as well as those early career 

topologists.  

  We first start by an introduction to basic concepts in Topology of shapes (section 

2.1), to be followed by describing simplicial complexes modeling of topological 

manifolds (section 2.2) and the corresponding singular homology of the space. In 

section 2.3, we introduce the Vietoris-Rips simplicial complex and filtrations for the 

computation of the singular homology and the various algebraic topology invariants. 

The chapter ends by introducing the two main TDA tools which are Persistent 

Homology and Mapper Algorithm.   

2.1 Introduction 

  Topology is the field of mathematics that is concerned with the study of geometric 

properties of objects/spaces in terms of the closeness and connectivity properties of 

its elements that are unaffected by continuous deformations. The fundamental idea 
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behind using topology for data analysis is that one can extract patterns from complex 

and high dimensional datasets and then obtaining deep insight about them.  

  A topological space consists of a non-empty set 𝑋, and a set of subsets of 𝑋, called 

open sets, which includes the empty set as well as 𝑋 and is closed under sets union 

and finite sets intersection. Euclidean spaces are obvious examples of topological 

spaces with the open sets being the union of any number of open balls. Topological 

spaces are not limited to sets of numerical records, but the most interesting category 

of topological spaces, relevant to data analysis, is that of manifolds. An 𝑛-

dimensional manifold 𝑀 is a topological space for which every point 𝑝 ∈ 𝑀 belongs 

to an open set 𝑈O that is homoeomorphic to a unit open ball of the Euclidean space 

ℝQ, satisfying certain properties. Here, 𝑈O is a curved version of the unit ball in 

ℝQ	and the imposed set of properties facilitate easy generalisation of Euclidean 

geometry parameters on 𝑀.  These open sets form what is known as an atlas which 

together with the associated homeomorphisms act as coordinate charts to define the 

manifold by parametric equations. For more details on general topology and theory of 

manifolds the reader may consult a plethora of books and manuscripts (e.g.  see 

[13][14][15][16]). The rest of this brief introduction will focus on the process of 

modelling data shapes by topological manifolds.  

  Low-dimensional manifolds are extensively studied and widely used to model many 

geometric objects/shapes often embedded in higher dimensional Euclidean spaces. 

Straight lines, close curves, trees, and graphs of wave functions are examples of 1–

dimensional manifolds that are embedded in higher dimensional Euclidean/non-

Euclidean spaces. 

 

 

Figure 2-1: Surfaces of different manifolds. (Right)Sphere (Middle)Torus and (Left) Klein Bottle [17]. 
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  The surfaces of the Sphere, Torus, Klein bottle and most other Manifold models of 

intricate shapes can be constructed by a sequence of cutting, bending and gluing 

different subspaces of 𝑛-dimensional Euclidean space, where 𝑛 is the perceived 

dimension of the modelled object.  This process of forming manifolds by cutting, 

bending and gluing patches of subspaces of a Euclidean space ℝQ, results in a 

tessellation/tiling of the constructed topological manifold with the sets of patch edges 

and faces forming a partition of the manifold formed by the patches and their 

common borders [18].  

 

Figure 2-2: Two-dimensional manifold constructed using polygonal/triangular patches. 

  In the above examples, the 2-dimensional manifolds were constructed from using 

different patches of polygonal and triangular shapes.  In this respect, Penrose kites 

and darts have been used intensively for defining tessellations of curved surfaces 

[18]. This well-established mathematically proven approach of using simple 

polygonal shapes to construct solid models of low dimensional manifolds, together 

with the emergence of sophisticated computer graphic tools has provided excellent 

opportunities to efficiently generate intriguing manifolds, including the following 

visualisation of 10-dimensional universe [19]. 

 

Figure 2-3: Calabi-Yau manifold projected into 3D which represent a universe of 10 dimension [19]. 
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  More interestingly, this approach has been adopted to model many known shapes, 

not only for their mathematical values but to address many modern challenging 

STEM applications including the complex folded shape of the human brain cortical 

surface [20].  Typically, the cortex surface geometric model is constructed by gluing 

a set of curved triangles covering the entire surface with no overlapping excepts at the 

boundaries, i.e. the triangular edges and vertices. 

  Applying the individual actions of manifold construction process in a slightly 

different order may result in topologically different manifolds. For example, the 

construction of a torus and a Klein-Bottle from a flat rectangular sheet only differ in 

the way the opposite borders of the rectangle are glued together. 

 

 

Figure 2-4:Illustration of a flat torus and a flat Klein bottle. 

 

  In the case of modelling the brain cortex, see figure (2-5), researchers confronted 

with the possibility of getting different topologies during the process of building the 

manifold and asked whether two such constructions are equivalent. Interestingly, to 

make sure a constructed topology is not a defect, they considered the use of known 

algebraic topology invariants such as the Euler Characteristic of the constructed map 

[20].   
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Figure 2-5: Topologically folded surface of  brain and close-up tessellation of a small  selected region (white 

arrow)[20]. 

 

  What makes this approach to model the topology of shapes applicable to many 

applications is that the generated topological manifolds are known to be invariant 

under continuous deformation, its coordinate invariance, and provides compressed 

representation of the modelled shape [21]. Invariance under deformation means that 

the topological parameters of the modelled shapes do not change when squashing, 

stretching or deforming the shape geometrically without tearing/cutting, i.e. such 

operations generate homoeomorphic spaces. Figure (2-6)-left, illustrates different 

homoeomorphic versions of a circle.  The coordinate invariance of topology refers to 

the fact that topological properties of the modelled shapes remain unchanged by 

rotation, translation and/or scaling (see figure (2-6)-middle). Employing these actions 

facilitates the compressed representation property. Figure (2-6)-right, illustrate this 

property whereby a smooth circle is represented by a Hexagon.  

  Far from being a diversion from the main theme of this thesis, the above rather brief 

discussion of the approach adopted for constructing and visualising manifold 

modelling of solid shapes provides a well-known and understood approach on how to 

model topological shapes of data. Also, how to use the wealth of knowledge acquired 

from the last century in the field of Algebraic topology as a source of computationally 

efficient data analysis tools. 
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Figure 2-6: Topological properties of a circle. 

 

 However, we note that in the above examples one assumes a pretty good knowledge 

of expected topology. In the absence of advanced knowledge, a number of manifold 

learning algorithms have been developed over the years. Such algorithms often start 

by a data pre-processing step. One common pre-processing constructs a 

neighbourhood graph 𝔊T, for each 𝑡, that connects each data point 𝑝 to all data points 

within a radius of 𝑡.  Another, manifold learning pre-processing scheme, constructs a 

graph 𝒢" by connecting the 𝑘-nearest neighbours of each data point. Constructing 

these graphs, provide systematic approach to discover connectivity information and 

introducing Geodesic based metric space on the data shape. However, beyond 

connectivity these schemes do not reveal explicitly other topological properties of the 

learnt manifold. For that, one need to have reliable scheme of filling the regions 

bounding connected sets of edges with the interior of an appropriate polygonal 

shapes. A sensible filling scheme can be based on the assumption that the edges of 

any 𝑛-clique of the graphs are to be modelled as the bounding edges of a deformed n-

simplex (𝑛-dimensional triangle). This approach, adopted in this thesis, will model 

the shape of data records as a simplicial complex, and allows an efficient computation 

of the topological parameters of the data shape using known algebraic topology 

techniques. These concepts and procedures will be described and reviewed in the next 

three sections.  

Continuous Deformation Coordinate Invariance Compressed Representation
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  Selecting appropriate values for 𝑡 (or k) for the above manifold learning schemes is 

considered as a challenge, however this challenge can be turned into a source of a 

deeper analysis by considering persistence of the topological invariants over a 

sequence of 𝑡		values. This is the basis of the algebraic topology tool of Persistent 

Homology that will be employed in this thesis, and described in section 2.5. 

2.2 Simplicial Complexes 

  A simplicial complex (SC) is a topological space constructed from a set of different-

dimensional triangular subset of ℝQ, by gluing together some of them along boundary 

components (nodes, edges, and faces). In general, SC have been used as an effective 

and easy to build topological shapes and modelling datasets of points in any metric 

space. A finite combinatorial process developed by topologists to efficiently compute 

the topological parameters of, and/or to visualize, a given manifold using a sample of 

its points. Topological data analysis deploys this process to construct SC models of 

point cloud data ‘shapes’. SCs serve as a link between the continuous domain of 

topological spaces and the discrete space of data.  Next, we give the formal definition 

of simplicial complex, together with the notion of ‘simplex’ and ‘face’ which are 

necessary to define SC.  

Definition (simplicial Complex (SC)) [22]:  

Consider 𝑉 = {𝑣X, 𝑣Y, … , 𝑣Q} to be the set of vertices. A SC with a vertex set 𝑉 is a 

collection  𝕊 of subsets of 	𝑉 whereby the following two conditions satisfied:  

• The singleton {𝑣} ∈ 𝕊	, where 𝑣 ∈ 𝑉.  

• Let 𝜏 ∈ 𝕊 and 𝜎 ⊂ 𝜏, then 𝜎 ∈ 𝕊.  

  In words, 𝜏 is called a 𝑛-simplex which is basically the convex hull of (𝑛 + 1) 

affinely independent points and 𝜎 is called a face of the simplex 𝜏. Note that, this 

definition allows constructing simplexes from sets of not necessarily numerical data, 

  There is a binary relation between a simplex 𝜏 and its face 𝜎 which is known as pre-

order, written as 𝜎 ≼ 𝜏. We denote the set of  𝑑-dimensional simplices in 𝕊 as 𝕊`, for 

𝑑 ≥ 0. It is straightforward to see from the first condition of SC definition that the set 

of 	𝕊X correspond to the vertex set 𝑉 in a one-to-one manner. In other words, one can 

interpret the building blocks of a SC as follows: a 0-simplex is a vertex (or point), 1-
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simplex is a 1-dimensional edge (or line segment) between two vertices, 2-simplices 

are basically the ‘filled’ triangles formed by 1-simplices (edges) and a tetrahedron is a 

3-simplex formed by 4 filled triangles. We name the low-dimensional simplices by 

their names, but in general an  𝑛-simplex is a 𝑛-dimensional subspace in ℝQ. In figure 

(2-7) below, we illustrate graphically examples of simplices in different dimensions. 

 

Figure 2-7: Simplices of different dimensions. 

 

  Note that, the above definition allows constructing simplicial complexes from sets 

of not necessarily numerical data. The example, below,  illustrates the various 

concepts discussed above.  

Example 1: Consider the set of 0-dimensional simplices (i.e. vertex set) 𝑉 =

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} as depicted below. 

 

This SC is built iteratively dimension by dimension. The set of 0-dimensional 

simplices is:  

𝕊X = e{𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑒}f 

Or simply 

𝕊X = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}.	

𝕊Y = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑏, 𝑑𝑒, 𝑒𝑎},	is the set of 1-dimensional simplices. There is only 

one 2-dimensional simplex, namely the shaded triangle: 

	𝕊g = {𝑏𝑐𝑑}. 

0-simplex 1-simplex 2-simplex 3-simplex

a b

c

de
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  No higher dimensional simplex is included in this example. One can easily realize 

that, fixing 𝕊Y	immediately restricts which 2-dimensional simplex(s) can lie in 𝕊g. It 

is straightforward to see that 𝕊 consists of one connected component and has one 

enclosed hole.  

  Two simplicial complexes, constructed with the same number of nodes, are 

topologically equivalent if they have the same topological invariant parameters. In 

general, these topological parameters enumerate the number of connected 

component, the number of 1-dimensional holes, i.e. closed sequence of edges that do 

not bound a 2-dimensional subspace, and number of 2-dimensional void cavity, i.e. a 

space with empty interior but bounded and enclosed by a number of 2-dimensional 

faces, and so on. 

  In the previous section we mentioned that we can construct the topology of point 

cloud data shape at different thresholds	𝑡, by constructing the neighbourhood graph 

𝐺T and then for each 𝑛-clique we can add an 𝑛-dimensional simplex. This approach 

is the basis of the following Vietoris-Rips construction. The following illustrate the 

resulting SCs for the same relatively small set of cloud point for a pair of different 

thresholds. 

 

Figure 2-8: Different topologies constructed from the same point cloud set. 

 

  When two simplicial complexes are small, one can manually compute all the 

various topological parameters and not only check if they are topologically 

equivalent or not but also determine the pattern of changes in these values as 	𝑡 

increased. But how to compute the number of connected components and holes of 

Rips SC of a point cloud consisting of hundreds or thousands of nodes?  Manually, 

this task become daunting, so we need some smart tools. The smart machinery 

Point Cloud Simplicial complex 
constructed at !"

Simplicial complex 
constructed at !#
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needed for this purpose is none other than the long-established Algebraic topology 

tool of homology, to be explained in the next section. Next, we discuss the notion of 

homology and the necessary background to establish the computational tool used for 

determining the topological parameters of SCs. For more detailed mathematical 

introduction about simplicial complexes and homology theory, we encourage the 

interested reader to see [13], [14], [23][15]. 

2.3 Homology 

  Computing topological invariants of simplicial complexes is quite complex in 

topology. Homology is a major algebraic topology concept introduced by 

mathematicians to solve problems in topology by mapping them into problems in 

abelian groups which can be dealt with algebraically. Homology has evolved over 

decades as an algebraic tool for the classification of manifolds, that generalizes Euler 

characteristics invariant of polyhedrons and Riemann’s definition of what is known as 

the genus of closed connected Riemann surfaces.  It relies on the concept of 

homotopy that formulate the equivalence relation of continuous deformability of one 

submanifold to another of the same dimension. It has developed into an algebraic tool 

to classify/analyse manifolds in terms of the number of non-contractible (not 

continuously deformable to a single point) closed sub-manifolds.  It is formally 

defined as a functor from the category of topological spaces and continuous functions 

into the category of Abelian groups (more precisely category of sequences of Abelian 

groups or Modules) and homomorphisms.  

Definition: The homology functor 𝐻∗ defined on the category of topological space 

and continuous functions into the category of finite abelian groups, associates with 

every topological space 𝑋 and an integer 𝑘 ≥ 0, a finitely generated abelian group 

𝐻"	(𝑋). And for each continuous function 𝑓:	𝑋 → 𝑌 the functor associates a group 

homomorphism: 

                             𝐻"	(𝑓) ∶ 	𝐻"	(𝑋) → 𝐻"	(𝑌)                                    (1) 

satisfying some conditions on homomorphism composition including associative law, 

identity element and preserving the inverse. 

  The rank of 𝐻"	(𝑋) is an invariant of the topology of 𝑋, called the 𝑘-th Betti number 

of 𝑋. 



24 
 

  Approximating topological spaces by simplicial complexes provides efficient 

computation of their homologies, known as Singular Homology. Note that 

representing shapes using the more general concept of cell complexes provide the 

alternative but equivalent concept of cellular homology. However, in the rest of this 

chapter we confine our discussion on computing singular homology of shapes of 

point cloud sets modelled by a simplicial complex. We shall now describe the process 

of determining the Homology functor of point cloud simplicial complexes and the 

process of computing its Betti numbers. 

2.4 Simplicial Homology of a Point Cloud Simplicial Complex  

  Given a simplicial complex 𝕊, homology associates an algebraic object, denoted as 

𝐻"(𝕊), called homology groups where 𝑘 ≥ 0 is the dimension of the simplices in 𝕊. 

The rank of 𝐻"(𝕊) is called the 𝑘-th betti number of  𝕊. The 𝑘-simplices in 𝕊 are 

generating vector spaces over Boolean field ℤg called 𝑘-th chain complex, denoted as 

𝒞"(𝕊). Elements of 𝒞"(𝕊) are called 𝑘-chains (i.e. k-dimensional chain), which are 

linear combinations of 𝑘-simplices as follow: 

p𝑎<𝜎<

<qr

<qY

	 

where 𝑎 ∈ ℤg and 𝜎 is a simplex in 𝕊. The operator that maps each 𝑘- simplex into its 

bounding chain is known as boundary operator, denoted as 𝜕".  Consider a simplex 

𝜎 = [𝑣X, … , 𝑣"], then the boundary operator can be defined as follows: 

																											𝜕"(𝜎) =p(−1)<[𝑣u, 𝑣Y, … , 𝑣vw , … , 𝑣"]
<q"

<qX

																																																	(2) 

where the hat ′			w′ symbol over 𝑣< indicates that the vertex together with all sub-

simplices of 𝜎 that intersects at 𝑣< are removed. We are free to order vertices 

𝑣X, … , 𝑣" as we like, and upon reordering one may get a minus sign depending on 

whether or not the new ordering of a given simplex is an odd or even permutation of 

the old one. For each integer 𝑘 ≥ 0, the boundary operator defines a linear 

transformation  

𝜕":	𝒞"(𝕊) → 𝒞"yY	(𝕊) 
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which can be thought of as a matrix after ordering the simplices into a basis. 

Furthermore, one can establish the composition relation	𝜕" ∘ 𝜕"{Y = 0.	As a 

consequence, a sequence of homeomorphism of abelian groups (i.e. chain complex) 

will be obtained as follow 

…→	𝒞"{Y(𝕊)
|}~��⎯�𝒞"	(𝕊)

|}��𝒞"yY	(𝕊)
|}���⎯�…

			|�			�⎯�𝒞Y	(𝕊)
			|�			�⎯�𝒞X(𝕊)

			|�			�⎯� 0. 

Clearly, the image of 𝜕"{Y , written as 𝐼𝑚(𝜕"{Y), is a subspace of the kernel 𝜕" 

(ker	(𝜕")) and hence we define the 𝑘-th homology group of 𝕊 by the quotient vector 

space: 

																																					𝐻"(𝕊) = 		 ker(𝜕")	 		𝐼𝑚(𝜕"{Y)⁄ 																																																					(3) 

  Elements of ker(𝜕")  and 𝐼𝑚(𝜕"{Y)	are called cycles and boundaries, respectively 

[14]. In general, we are interested in computing the number of non-contractible cycles 

in different dimensions. Elements of 𝐻"(𝕊)	 are cosets of image of 𝜕"{Y, called 

homology classes. When two cycles are representing the same homology-class, they 

are said to be homologous. This means that their difference is a boundary of the same 

simplex. The dimension of 𝐻"(𝕊) is called the 𝑘T�-Betti number, denoted as 𝐵"(𝕊).   

Mathematically, it can be expressed as follow: 

𝐵"(𝕊) ∶= dim�𝐻"(𝕊)� = dim�𝐾𝑒𝑟(𝜕"{Y)�	 − dim�𝐼𝑚(𝜕"{Y)�	 

Elements of 𝐻"(𝕊)	,  called homology classes, are formed by the cosets of the normal 

subgroup 𝐼𝑚(𝜕"{Y) in the group ker(𝜕") . This means that two cycles (k-chains) are 

homologous (i.e. belong to the same homology-class) if their differences consist of k-

simplexes that bound (𝑘+1)-simplexes.  

Depending on 𝑘 , betti number are equivalent to the following:  

																			𝐵X(𝕊) = the number of connected components in 𝕊. 

																																			𝐵Y(𝕊) =the number of holes in 𝕊. 

𝐵g(𝕊) =the number of cavities in 𝕊. 

  Note that a hole is bounded by a cycle of more than 3 edges that contain no other 

vertex inside it, while a cavity is bounded by a polytope with more than 4 faces that 
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has an empty interior. In this thesis, we only use the  𝐵X(𝕊) and  𝐵Y(𝕊) because the 

data we investigate is 2-dimensional greyscale images. 

Example 2: Considering the simplicial complex in example 1, we give details on the 

terminologies and operations discussed in the previous section. In other words, we 

have the following sequence of subcomplexes after sorting their elements 

alphabetically: 

	𝕊X = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 	𝕊Y = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑏, 𝑑𝑒, 𝑒𝑎}, 		𝕊g = {𝑏𝑐𝑑}			𝑎𝑛𝑑 

𝕊 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑏, 𝑑𝑒, 𝑒𝑎, 𝑏𝑐𝑑}. 

  It is obvious to see that 	𝕊X, 	𝕊Y	𝑎𝑛𝑑	𝕊g are all subsets of 𝕊.  First, we show how the 

boundary operator works on simplices in different dimensions. For notation 

convention, we denote a vertex , such as{𝑎}, by [𝑎] and an edge {𝑎𝑏} = [𝑎𝑏] and a 

triangle {𝑎𝑏𝑐} = [𝑎𝑏𝑐]. The boundary of 0-simplex is zero as follow:  

𝜕X[𝑎] = 𝜕X[𝑏] = 𝜕X[𝑐] = 𝜕X[𝑑] = 𝜕X[𝑒] = 0. 

 The boundary of 1-simplex can be stated as 𝜕Y[𝑎𝑏] = 𝑏 − 𝑎, following the definition 

of boundary operator in equation (2). Similarly, the boundary of a 2-simplex is  

𝜕g[𝑏𝑐𝑑] = [𝑐𝑑] − [𝑏𝑑] + [𝑏𝑐]. 

Note that the negative sign before [𝑏𝑑] is indicating the rotation (direction) of the 

simplex. If one ignores the rotation, then we can express 𝜕g[𝑏𝑐𝑑] as follow 

𝜕g[𝑏𝑐𝑑] = [𝑐𝑑] − [𝑏𝑑] + [𝑏𝑐]. 

A 𝑘-chain is a linear combination of 𝑘-simplices. For instance, [𝑑𝑏] + [𝑐𝑑] is a 1-

chain which is a linear combination of two 1-simplices. A 𝑘-cycle is a 𝑘-chain that 

has a boundary of zero. Consider the following 1-chains from figure (2-9):  

(𝑖)	[𝑎𝑏] + [𝑏𝑐] + [𝑐𝑑] + [𝑑𝑏] 

(𝑖𝑖)	[𝑎𝑏] + [𝑏𝑑] + [𝑑𝑒] + [𝑒𝑎] 

Now we want to check which of the above 1-chains represent a 1-cycle? To do so, 

take the boundary operator, as follow:  

(𝑖)	𝜕([𝑎𝑏] + [𝑏𝑐] + [𝑐𝑑] + [𝑑𝑏]) = 𝜕([𝑎𝑏]) + 𝜕([𝑏𝑐]) + 𝜕([𝑐𝑑]) + 𝜕([𝑑𝑏])	 
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		= 𝑏 − 𝑎 + 𝑐 − 𝑏 + 𝑑 − 𝑐 + 𝑏 − 𝑑 

= −𝑎 + 𝑏 

≠ 0 

Hence, the 1-chain we considered is not representing a 1-cycle.  

(𝑖𝑖)		𝜕([𝑎𝑏] + [𝑏𝑑] + [𝑑𝑒] + [𝑒𝑎]) = 𝑏 − 𝑎 + 𝑑 − 𝑏 + 𝑒 − 𝑑 + 𝑎 − 𝑒 = 0 

Then the 1-chain in (ii) is representing a 1-cycle. Visually, the 1-chains in (i) and (ii) 

are depicted below. 

 

Figure 2-9: Pictorial representation of 1-chains. (Left) SC represent the 1-chain [ab]+[bd]+[de]+[ea] which 
is a 1-cycle whereas the (right) SC represent the 1-chain [ab]+[bc]+[cd]+[db] which is not representing a 1-

cycle (loop). 

 

When two cycles are homologous then they differ by a boundary. In other words, we 

want to avoid calculating the same cycle twice. For example, consider the following 

1-chains:  

𝜂Y = [𝑎𝑏] + [𝑏𝑑] + [𝑑𝑒] + [𝑒𝑎]	 

𝜂g = [𝑎𝑏] + [𝑏𝑐] + [𝑐𝑑] + [𝑑𝑒] + [𝑒𝑎]	 

To check whether 𝜂Y and 𝜂g are homologous? Take their difference: 

𝜂Y − 𝜂g = [𝑎𝑏] + [𝑏𝑑] + [𝑑𝑒] + [𝑒𝑎] − [𝑎𝑏] − [𝑏𝑐] − [𝑐𝑑] − [𝑑𝑒] − [𝑒𝑎]	 

= [𝑏𝑑] − [𝑏𝑐] − [𝑐𝑑] 

= [𝑐𝑑] − [𝑏𝑑] + [𝑏𝑐] 

= 𝜕g([𝑏𝑐𝑑]) 

Since their difference is a boundary, which is 𝜕g([𝑏𝑐𝑑]), then 𝜂Y and 𝜂g are 

homologous. In application, we only calculate distinct 𝑘-cycles. This calculation will 

a b

c

de

a b

c

de
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correspond to the number of connected component (i.e. 𝐵X(𝕊)) and the number of 

holes (i.e. 𝐵Y(𝕊)) respectively. First, 𝜕X(𝕊) is zero, and thus ker(𝜕X(𝕊))	is the whole 

0-chain which is  

Ker(𝜕X(𝕊)) = e{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}f. 

 

2.4.1 Smith Normal Forms to Compute Betti Numbers 
  Computing the Betti numbers of the previous, rather simple example of SC, 

illustrates the difficulty of manually determining the Betti numbers of a large point 

cloud simplicial complex. However, the work of Henry J. Smith in the mid 18th  

century, provides the simple matrix algebra based procedure to help solve this 

challenge efficiently, see [22].  In matrix algebra, the Smith normal form of any 

rectangular matrix 𝐴, with entries in a principle ideal domain (PID) such as the 

integers, is the diagonal matrix obtained from 𝐴 by a sequence of row and column 

operations by invertible matrices over the given PID. It is very useful when dealing 

with finitely generated abelian groups as is the case for our homology groups. In what 

follows, we are closely following the methodology described in  [22]–[25] to discuss 

the use of Smith form to calculate the betti numbers of a SC.  

Definition (Smith Normal Form (SNF))[26]: 

SNF of an 𝑚 × 𝑛 matrix ℳ is the product  𝑆𝑁𝐹(ℳ) = 𝑆	ℳ� 	𝑇	, where 𝑆	and 𝑇 are 

𝑚 ×𝑚 and 𝑛 × 𝑛 invertible matrices, respectively. ℳ�  is an 𝑚 × 𝑛 matrix which has 

the following form: 

ℳ� =

⎣
⎢
⎢
⎢
⎡
𝑙Y 0 0 0 		0
0 𝑙g 0 0 		0
⋮
0
0

⋮
0
0

⋱ 0 		0
0
0

𝑙r 0
0 		0⎦

⎥
⎥
⎥
⎤
 

such that each integer 𝑙< is divisible by its successor 𝑙<{Y. 

We shall now illustrate the process of using the Smith Normal form to compute the 

Betti numbers of point cloud SCs, using the example of the simplicial complex in 

example 1.  
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Since 𝜕Y(𝕊) is the map 𝜕Y:	𝒞Y	(𝕊) → 𝒞X(𝕊) and we can express 𝜕Y in the form of a 

matrix in the chosen basis vector in ℤ. Let 𝑏𝑐𝑑 denote the basis vector for the simplex 

{𝑏𝑐𝑑}. Similarly, use 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑏, 𝑑𝑒, 𝑒𝑎 to denote basis vectors that correspond to 

the 1-simplices and  𝑎, 𝑏, 𝑐, 𝑑, 𝑒		be the basis vectors for 0-simplicies. We then have 

the following matrices: 

𝜕g = 			

	 𝑏𝑐𝑑
𝑎𝑏
𝑏𝑐
𝑐𝑑
𝑏𝑑
𝑑𝑒
𝑒𝑎 ⎣

⎢
⎢
⎢
⎢
⎡
		0		
		1		
			1		
−1		
			0		
			0		⎦

⎥
⎥
⎥
⎥
⎤
 

𝜕Y =

	 𝑎𝑏 𝑏𝑐 𝑐𝑑 𝑑𝑏 𝑑𝑒 𝑒𝑎

		

𝑎
𝑏
𝑐
𝑑
𝑒 ⎣

⎢
⎢
⎢
⎡
		−1 		0 			0 			0 			0 			1
				1 −1 			0 			1 			0 			0
			0
			0
			0

			1
			0
			0

−1
			1
			0

			0
−1
			0

			0
−1
			1

			0
			0
−1⎦
⎥
⎥
⎥
⎤
 

Applying standard row and column operations, one can reduce above matrices to 

smith normal form (SNF), such that the diagonal entries are all either zero or one and 

the off-diagonal elements are all zero.  

Applying the above definition of SNF on 𝜕Y and 𝜕g , we obtain the following:  

𝑆𝑁𝐹(𝜕g) =

⎣
⎢
⎢
⎢
⎢
⎡
1
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎤

					𝑎𝑛𝑑					𝑆𝑁𝐹(𝜕Y) =

⎣
⎢
⎢
⎢
⎡
			1 		0 			0 			0 			0 			0
		0 			1 			0 			0 			0 			0
			0
			0
			0

			0
			0
			0

			1
			0
			0

			0
			1
			0

			0
		0
			0

			0
			0
			0⎦
⎥
⎥
⎥
⎤
 

Then once the SNF matrix computed, the Betti numbers can be calculated as 

follow[25]:  

																																												𝐵" = 𝜎" − 𝜆" − 𝜆"{Y																																																																	(4) 

where 𝜎" is the 𝑘-simplices, 𝜆" and 𝜆"{Y is the number of non-zero diagonal entries 

in SNF of 𝜕" and 𝜕"{Y, respectively.  

Hence, 𝐵X(𝕊) = 5 − 4 − 0 = 1 and 𝐵Y(𝕊) = 5 − 4 − 0 = 1 , which is the case for 

the simplicial complex in example 1. 
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Example 3: Consider the point cloud given in figure (2-10) below, which consist of 

10 points. 

 

Figure 2-10:A sample of points in Euclidean Space. 

Firstly, at 𝑡 = 0, the points are 0-simplices by themselves. Then 𝜕X = 𝜕Y = 0, since 

there is no edges and 𝐵X =No. of 0-simplices	=10. Increase the distance threshold 

and compute SNF for the boundary matrices of different dimensions.  

 

Figure 2-11: A sequence of Rips SCs build over an increasing sequence of distance thresholds. 
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For each of the (Rips) simplicial complexes constructed in figure (2-11),  

𝜕Y(𝕊TqY) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 			0
		1 			0
		0
		0
		0
		0
		0
		0
		0
		0

			0
			0
			0
			0
			0
			0
−1
			1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

				 and its corresponding 			𝑆𝑁𝐹(𝜕Y𝕊TqY) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
	1 			0
		0 			1
		0
		0
		0
		0
		0
		0
		0
		0

			0
			0
			0
			0
			0
			0
			0
			0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝜕Y(𝕊TqY.g¬) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 			0			
		1 			0			
		0
		0
		0
		0
		0
		0
		0
		0

			0			
			0			
			0
			0
			0
			0
−1
			1

			

			0 			0
	−1 			0
		1
		0
		0
		0
		0
		0
		0
		0

		−1
			0
			1
			0
			0
			0
			0
			0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	⇒ 			𝑆𝑁𝐹�𝜕Y(𝕊TqY.g¬)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
		1 			0			
		0 			1			
		0
		0
		0
		0
		0
		0
		0
		0

			0			
			0			
			0
			0
			0
			0
			0
			0

			

			0 			0
			0 			0
		1
		0
		0
		0
		0
		0
		0
		0

				0
			1
			0
			0
			0
			0
			0
			0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Similarly, the SNF at 𝑡 = 1.5, 𝑎𝑛𝑑	𝑡 = 1.75 are as follows:  

𝑆𝑁𝐹�𝜕Y(𝕊TqY.¬)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
		1 			0			
		0 			1			
		0
		0
		0
		0
		0
		0
		0
		0

			0			
			0			
			0
			0
			0
			0
			0
			0

			

			0 			0
			0 			0
		1
		0
		0
		0
		0
		0
		0
		0

				0
			1
			0
			0
			0
			0
			0
			0

		0 			0			
		0 			0			
		0
		0
		1
		0
		0
		0
		0
		0

			0			
			0			
			0
			1
			0
			0
			0
			0

			

			0 			0
			0 			0
		0
		0
		0
		0
		1
		0
		0
		0

				0
			0
			0
			0
			0
			1
			0
			0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑆𝑁𝐹�𝜕Y(𝕊TqY.¯¬)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
		1 			0			
		0 			1			
		0
		0
		0
		0
		0
		0
		0
		0

			0			
			0			
			0
			0
			0
			0
			0
			0

			

			0 			0
			0 			0
		1
		0
		0
		0
		0
		0
		0
		0

				0
			1
			0
			0
			0
			0
			0
			0

		0 			0			
		0 			0			
		0
		0
		1
		0
		0
		0
		0
		0

			0			
			0			
			0
			1
			0
			0
			0
			0

			

			0 			0
			0 			0
		0
		0
		0
		0
		1
		0
		0
		0

				0
			0
			0
			0
			0
			1
			0
			0

			0 			0
			0 			0
		0
		0
		0
		0
		0
		0
		0
		0

				0
			0
			0
			0
			0
			0
			0
			0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝑆𝑁𝐹�𝜕g(𝕊TqY.¯¬)� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
0
0
0
0
0
0
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The process is the same for the rest of SCs in figure (2-11). Following the formula in 

equation (4), one can calculate the Betti numbers as follow:  

(𝐵X)TqY = 𝜎X − 𝜆X − 𝜆Y = 10 − 0 − 2 = 8. 

(𝐵X)TqY.g¬ = 𝜎X − 𝜆X − 𝜆Y = 10 − 0 − 4 = 6. 

(𝐵X)TqY.¬ = 𝜎X − 𝜆X − 𝜆Y = 10 − 0 − 8 = 2. 

(𝐵X)TqY.¯¬ = 𝜎X − 𝜆X − 𝜆Y = 10 − 0 − 8 = 2. 

A 1-dimensional hole start building up at 𝑡 = 1.75, and using the formula in equation 

(4) we can calculate 1-dimensional betti numbers as follow:  

(𝐵Y)TqY.¯¬ = 𝜎Y − 𝜆Y − 𝜆g = 10 − 8 − 1 = 1. 

 

2.4.2 Persistent Homology and Filtration  
  Considering the original challenge of determining the shape of point cloud set, the 

so far described process of determining the topological parameters of a simplicial 

complex is applicable to the manifold learning of the dataset at each and every 

threshold 𝑡. By allowing  𝑡 to vary, over a period, we get a nested sequence of 

simplicial sub-complexes of the SC obtained with last threshold. This yields a time 

series, parameterized by 𝑡, of Betti numbers associated with the point cloud dataset 

over the chosen period. Topological data analysis is based on analysing these time 

series in terms of patterns of changes in the 𝑘-dimensional Betti numbers such as 

persistent patterns.  

  In TDA, Persistent Homology (PH) of a simplicial complex 𝕊 is formally defined in 

terms of a recursive filtration of 𝕊 by a nested sequence of sub-complexes. For 

efficient computation of PH for point clouds, we shall use an iterative method to 
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obtain a nested sequence of simplicial complexes of a point cloud within a chosen 

threshold range. The PH of a point cloud is the observed pattern of persistence of 

various Betti numbers computed over the life span of the investigated threshold 

range, called filtration procedure. A trace of the persistence of each generating 

element of 𝐻"	(𝕊T	) over a sequence of  𝑡 values can be represented by a half-open 

interval [𝑎, 𝑏), where 𝑎 represent its birth and 𝑏 its death.  

  Let 𝕊 be a finite (Rips) simplicial complex and 𝒮Y ⊂ 𝒮g ⊂ ⋯𝒮´ = 𝕊  be a sequence 

of nested sub-complexes of 𝕊. Then 𝕊 is called filtered simplicial complex together 

with such a sequence of sub-complexes. Figure (2-11) is an example of a filtered 

simplicial complex. Experimental data can take many forms such as digital image, 

text, voice signal, video and tables of categorical data. The data in this thesis is 

mainly 2-dimensional digital images in which we analyse for the purpose of tamper 

detection. More specifically, we extract a point cloud 𝑃 ∈ ℝg , a finite collection of 

image landmarks automatically extracted from images, using image texture 

descriptors discussed in next chapter. As a first step towards building filtered Rips 

complexes, compute the Euclidean distance between all pairs of 0-simplicies and then 

select an increasing sequence of Euclidean distance threshold and build the filtration. 

At each filtration step, we apply homology to the sub-complexes constructed, as 

follow:  

											𝐻"�𝕊T�� 	
	µ}
¶�→¶�			
�⎯⎯⎯⎯� 𝐻"�𝕊T��	

				µ}
¶�→¶·	

�⎯⎯⎯⎯⎯�…
				µ}

¶(¸��)→¶¸	
�⎯⎯⎯⎯⎯⎯⎯⎯�			𝐻"�𝕊T¸�																															(5) 

where 𝑡Y < 𝑡g < ⋯ < 𝑡Q, 𝑘 = {0,1}, 𝑓:𝐻"(𝕊T¸��	) → 𝐻"(𝕊T¸) is a linear  simplicial 

map of homology groups induced by an inclusion chain map 𝒞º(𝕊») → 𝒞º(𝕊»{Y), i.e. 

the chain map is induced by inclusion of simplices from each stage to the next. The 

structure in equation (5) is called a persistent module. If 𝑘 = 0, then we are 

computing the number of connected components at each filtration step whereas for 

𝑘 = 1, we are computing the number of 1-dimensional holes (i.e. loops). For 𝑘 = 2, 

computed homological parameter correspond to the number of cavities.  

Definition (Persistent Homology) [27]: 

Let 𝕊T� ⊂ 𝕊T� ⊂ ⋯ ⊂ 𝕊T¸ = 𝕊 be a filtered simplicial complex. The 𝑘-th persistent 

homology of 𝕊 is the pair  
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																																					¼{𝐻"(𝕊T)}Y½<½Q	, e𝑓<,¾fY½<½¾½Q¿																																																		(6) 

for 𝑖, 𝑗 ∈ {1,2, … , 𝑛} , 𝑖 ≤ 𝑗, the linear maps 𝑓<,¾: 𝐻"(𝕊TÂ) → 𝐻"(𝕊TÃ) are the maps 

induced by the inclusion maps  𝕊TÂ ↪ 𝕊TÃ . 

In other words, instead of computing the homology of a single sub-complex, 𝑘-th 

persistent homology of a filtered simplicial complex provides a more refined 

information about the intermediate homological information.  

  Persistent homology calculation is similar to homology calculation, representing the 

boundary operators by a matrix and then reducing it to SNF, except that the 

operations performed over polynomials in one variable with coefficients in ℝ. There 

are many efficient software developed for the purpose of persistent homology 

calculation such as Perseus [28], Ripser [29], JavaPlex [30], DIPHA[31] , 

DIONYSUS [32], GHUDI [33], J-Holes [34] and others. For a comprehensive review 

of PH software’s, interested reader is advised to see [27].  We opt to use Ripser 

(written in C++) as it is the best-performing library for the computation of PH of Rips 

complexes currently.  

  PH stores homological information about the underlying topological space in a form 

of half-open interval [𝑎, 𝑏), where 𝑎 represent the birth of a homology group 

generator and 𝑏 is the point where it vanishes. The collection of such intervals is 

called persistent barcodes. The important key observation about persistent barcodes 

is that they are stable under perturbations in the filtration [35]. In other words, assume 

two data points such as 𝐷 and 𝐷′, where 𝐷′ is a noisy version of 𝐷 obtained by 

perturbing each point in 𝐷 with some distance 𝜖 > 0. Then the bottleneck distance 

between 𝑘-dimensional persistent barcodes of 𝐷 and 𝐷′ is smaller than 𝜖 for every 𝑘. 

Mathematically, this can be formulated as follow. Let 𝑋 = 𝑃𝐵È, 𝑌 = 𝑃𝐵ÈÉ be the 

persistent barcodes of 𝐷 and 𝐷′ respectively and 	‖∙‖Ì is ∞-norm. Then the 

bottleneck distance between 𝑋 and 𝑌 is: 

																								𝑑Ì(𝑋, 𝑌) = inf
Ï:È→ÈÉ

	sup
Ó∈Ô

	‖𝑃𝐵È − 𝛾(𝑃𝐵ÈÉ)‖Ì 																																									(7)	 

such that 𝜂 ranging over all bijections. Then the stability theorem ,[35], states that 

when 𝑋 and 𝑌 perturbed with 𝜖, then 𝑑Ì(𝑋, 𝑌) ≤ 𝜖.  
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An equivalent representation of the PH is the so-called persistent diagram which 

depicts generator’s (birth, death) pairs as points in first quadrant of  ℝg above its 

diagonal.  We refer the reader to [27] [1], [36]–[38] for a detailed introduction to PH 

and efficient algorithms for its computation. In figure (2-12)-left, we show an 

example of persistent barcodes when 𝑘 = 0,1 for the simplicial complex given in 

example 3. Persistent diagrams see figure (2-12)-right, which provide similar 

information graphically except that a half open interval [𝑎, 𝑏) is represented by a 

point such as (𝑎, 𝑏) in ℝÖ g, where ℝÖ = ℝ ∪ {∞}. In other words, a persistent diagram 

is a graphical representation of persistent barcodes in a form of finite multiset of 

points in ℝÖ g which conveys exactly the same topological information except that x-

axis depicts the birth of a homology group and y-axis is where it vanishes (merges 

with other homology groups).  

 

 

Figure 2-12: Topological Persistent visualization. (Left) Persistent Barcode (Right) Persistent Diagram. 

 

  Topological features can be quantified by their persistence in the filtration process. 

Persistent barcodes clearly depict that some of the topological features, in all 

dimensions, ‘live’ longer than others in the constructed Rips complexes while others 

‘die’ quickly as one increases the distance threshold. In other words, long-lived bars 

directly related to large/dominant topological features in data whereas short-lived bars 

are sometimes neglected or regarded as noise. Hence, PH provides a novel approach 

of structure-related feature extraction and representation from data and found itself to 

be a suitable tool in many areas such as computational biology[39], quality 
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assessment of dimensionality reduction techniques [40], structure of sensor-network 

coverages [41], protein compressibility and binding [30,31], single-cell development 

[44], medical imaging [45], gait recognition [46]–[49], neuroscience [50]–[54] and 

many more. For a survey of recent applications of PH in various applications, we 

refer the interested reader to [27] , [54], [55]. 

  Extracting topological features from persistent barcodes can have many forms. The 

simplest is extracting statistical properties of bars such as sum, average, variance, 

short and long bars. In this vein, Khasawneh and Munch [57][58] used long-

persisting bars to investigate the stability of stochastic turning models. Giansiracusa 

et. al [59] used average, median and standard deviation of persistent barcodes as a 

feature for finger print classification. In [60], Can et al. used length (in dimension 

zero, one and two), average and onset value of bars for the purpose of protein 

classification by feeding these features into support vector machine (SVM) classifier. 

Sara Kalisnik in [61] proposed to coordinatize the space of persistent barcodes in 

terms of Tropical coordinates and showed that they are stable with respect to 

bottleneck distances. Recently, in February 2018, Zielinski et al [62] proposed a 

technique to discretize the space of persistent diagrams called persistent codebooks. 

The main idea behind persistent codebooks is to quantize the space of persistent 

diagrams using bag-of-features(words), vectors of locally aggregated descriptors 

(VLAD) and Fischer vectors (FV). In other words, they use k-means clustering to 

represent the space of persistent diagram as a fixed size vector which is suitable to 

machine learning, and they also show the stability of their approach with respect to 1-

Wasserstein distance.     

Albeit reported success in extracting the statistics from the persistent barcodes, 

previous approaches are only using partial information provided by persistent 

barcodes/diagrams. In chapter 4, we introduce a more systematic approach to 

discretize the space of persistent barcodes, called ‘persistence binning’ and show its 

effectiveness for various image tampering detection tasks.   

  Another direction of generating features from persistent barcodes is the idea of 

building persistent functions such as persistent landscapes [63], persistent images [64] 

and persistent paths and signatures [65]. Persistent landscape approach maps the 

persistent barcodes into Banach and Hilbert space whereby the mapping is stable and 



37 
 

invertible. Persistent images (surfaces), on the other hand, represent the persistent 

diagrams as integrable function 𝑓:ℝg → ℝ using a weighted sum of gaussian 

functions (i.e. probability density functions) centered at each point in persistent 

diagrams and hence obtaining a matrix/image through calculating the integral of each 

grid box. Finally, persistent paths and signatures, proposed by Chevyrev et al. in [65], 

is another approach  that works by first embedding the persistent barcode information 

into a persistent path using persistent landscapes, and then building a feature vector 

using tensor algebra. 

  Next, we briefly introduce the concept of Mapper Algorithm as it will be used to 

visualize and support our understanding of topological and geometrical features 

extracted from digital images. 

2.4.3 Mapper Tool  

  Visualizing shapes of high dimensional point clouds in informative formats, though 

useful, is almost impossible even with the use of advanced dimension reduction 

schemes. The TDA approach to deal with such point cloud datasets, as described in 

the previous sections using simplicial complex filtration and persistent homology 

tools, small distances (or high similarity weights) have more impact on the analysis of 

the data records. Consequently, a combination of clustering, appropriate filtering and 

existing visualization tools that model similarity levels such as the multi-dimensional 

scaling (MDS) can provide a useful tool. Mapper is one such tool developed by Singh 

et al. in [66].  

  Given a high dimensional point cloud 𝒳, Mapper constructs an approximate 

topological representation of 𝒳 through a simplicial complex and the output can be 

visualized in a 3D (or 2D) Euclidean space for further investigation and analysis. 

Roughly speaking, Mapper takes an input data and starts by first splitting it into many 

overlapping intervals (also called bins) using appropriate filters, also known as lenses, 

and then clustering the data within each interval. The result of each interval-based 

clustering will be represented by a set of node(s) and edges will be constructed when 

there is at least one intersection point/member between the nodes/clusters. 

Constructed simplicial complex conveys the main topological features of the data in 

the sense that mapper groups similar points into a cluster, then clusters are connected, 

and one obtains connected components, loops and flares. In what follows, we 
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describe Mapper steps more concretely where we follow closely Belchi  et al. in [67] 

to describe details of Mapper.  

 Consider a metric space (𝒳, 𝑑) where 𝒳 is the point cloud and 𝑑 is a metric on 𝒳. 

Let  

𝐶 = {𝐶<}<qYQ  

be a cover of 𝒳 such that  

𝒳 = 	U<qYQ (𝐶<). 

The set of 𝐶< are called bins and are obtained by (1) the following real-valued 

function  

𝑓:𝒳 → ℝ 

which is known as a lens or filter-function, (2) fixing overlapping intervals to cover 

𝑓(𝒳) such as 𝐼< and  

𝐶< ∶= 𝑓yY(𝐼<). 

In this thesis, we consider a discrete and finite sample such as 𝑋 drawn from 𝒳. 

Clustering each bin will result in obtaining  

𝐶< = 	𝑉Y< ∪ 	𝑉g< ∪ …∪ 	𝑉< 

 where 𝑉  is the number of vertices in each bin. The Mapper output is a simplicial 

complex in which 𝑛-simplex are represented by (𝑛 + 1)-tuple of clusters as follows: 

𝜎 = ¼	𝑉¾�	
<�, … , 𝑉¾¸~�		

<¸~�¿ 

with a nonempty intersection. Figure (2-13) depicts an example of Mapper algorithm 

applied to a point cloud.   

  It is worth noting that, there is no restriction on the type of clustering techniques one 

might choose, or the type of filter functions applied to obtain the compressed 

topological representation of the data by Mapper. Different filter functions and 

clustering techniques result in a different topological shape which allows the user to 
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analysis and explore the data from different perspectives [21]. Nonetheless, some 

filter functions and clustering techniques may not produce any interesting topological 

 

Figure 2-13: Illustration of Mapper Algorithm pipeline [67]. Mapper algorithm produces a simplicial complex 
(right) by clustering each interval of the data points (left) where it depicts a hole and two flares which is a 

simplified topological version of the data pints on the right. 

object such as a straight line. Therefore, one needs to experimentally figure out the 

topological shape of interest, through different filter functions and clustering 

techniques, in which it allows the identification of flares or clusters of interest. 

  Mapper has been applied successfully in many applications in a variety of 

disciplines such as breakthrough results in identifying a subgroup of breast cancer 

patients with a unique mutational profile and excellent survival [68]. Other medical 

application include; cancer analysis [69][70], asthma [71][72][73], spinal cord injury 

[74], genomics[39][75][76] and diabetes[77][78]. Other applications include: 

chemistry [79][80][81], agriculture [82] and many more [21] [83][84][11]. Finally, 

we direct the reader to [67] and [85] for detailed discussions about the instability of  

Mapper-type algorithms. There is a couple of publicly available software for mapper 

computation and a commercial one by Ayasdi, a company which is based on Mapper 

algorithm. Kepler Mapper and python mapper are publicly available software which 

enable users to implement Mapper on their data, both written in python language. In 

this thesis, we use Kepler-Mapper in scikit-tda using Jupyter notebook platform.  

  In summary, the mathematical framework necessary for building simplicial 

complexes and computing persistent homological invariants introduced, and it will be 

used in the rest of this thesis. Also, the concept of Mapper algorithm has been 

discussed which will be used in some of our analysis in the next chapters. Next 
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chapter will contain morphing problem statement and different types of face 

morphing creation. This is together with the motivation behind using TDA to design 

morph detection tools. In addition, the threats of face morphing into face biometrics 

and beyond will be illustrated in detail.   
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Chapter 3  

Topological Image Analysis 

  Over the last few years, since undertaking this research project, the use of TDA for 

image analysis and computer vision applications have grown steadily. Undoubtedly, 

this growth greatly benefitted from the emergence of computationally efficient tools 

for computing PH and Mapper. In each of the so far developed TDA schemes, the 

Persistent Homology of a specific application-relevant image feature parameter is 

selected and used to compute the topological signature. However, it is somewhat 

difficult to identify a clear strategy for selecting TDA-sensitive image features when 

considering a wider range of image analysis tasks without prior knowledge. This 

chapter is devoted to developing a strategy for automatic selection of image features 

whose spatial distribution is appropriate for designing topological signatures in a 

wide range of different applications. We present argument in support of 

complementing traditional image analysis with a special TDA strategy to construct 

topologies with a variety of image feature subsets and analyse their persistence 

parameters. We shall demonstrate the viability of this strategy in dealing with some 

easy to describe tasks.  

3.1 Introduction 

   Image/video processing/analysis applications and algorithms deal with a growing 

list of challenges in different areas of modern technology including Computer vision, 

pattern recognition, biometrics-based identifications, biomedical image 

classifications/diagnostics, etc. Regardless of the source/domain of the relevant image 

datasets, to be analysed, a digital image is a rectangular matrix whose entries are 

elements of 𝑍QÜ, where r is fixed to be 1 or 3 depending on the number of colour 

channels used and 𝑛 = 2" where k is the intensity resolution of the images. This 

description is often referred to as the image spatial domain but is also applicable to 

other image domains such as the frequency/transformed domains (obtained by 

discreate Fourier or wavelet transforms). The rest of the thesis is only concerned with 
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spatial domain images, but many results are susceptible to be generalised to other 

image domains.   

  Generally, the term image analysis aims to discover patterns/patches of intensity 

values (or parameters defined in terms of these values) that convey some 

meaning/information about image content useful for identifying visually 

distinguished objects or could be used to group images into separate classes. 

Discovering application-relevant patterns of pixels, referred to as image features, 

mostly involve extensive and advanced searching and mining techniques.   Over the 

years a variety of models for pattern discovery and classification have been developed 

in many different types of image-based applications. In most applications, patterns of 

interest relate to image patches where there are measurable variations in its pixel 

values, i.e. where some form of texture are detectable. Image regions that involve 

little or no pixel value variations indicate smoothness and absence of texture, but 

nevertheless such patterns could also provide information useful for discriminating 

different classes of images. Image segmentation is a common example of analysis 

tasks that aims to detect regions of interest (ROI) relevant to some applications and 

relies on detecting variation in the distribution of pixel values (singularly or within 

local neighbourhood) between inside and outside ROI. In many image analysis 

applications, image segmentation is used as a pre-processing task. Face recognition is 

another typical application that relies on analysing face digital images in search of 

patterns of features that discriminate face images of different persons. In digital 

forensics and multimedia security applications, tamper detection relies on extracting 

tiny changes to certain groups of image features that result in violating some known 

statistical properties of these features. Furthermore, texture-base image analysis is 

recognised as an essential tool in the fast-growing research area of using Artificial 

Intelligence in medical diagnoses of disease-related abnormalities in a variety of 

tissues/organs [9].         

  Regardless of the complexity/modality of the image datasets, analysis tasks rely on 

some means of measuring similarity/distances between pairs of extracted feature 

records that are meant to discover hidden informative patterns of 

similarity/dissimilarity. Focusing on pairwise relations/similarities was one of the 

fundamental building blocks of mining bigdata that have been extensively 

investigated in the past. Discovered image patterns/patches, are often aggregated into 
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feature records, to be subjected to some distance-based and/or statistical distribution-

based analysis. In the former case, extracted feature records in many applications are 

modelled as vectors in Euclidean spaces and linked discovery of hidden data patterns 

to clustering the data in terms of linear distance functions.  However, and as discussed 

in chapter 2, these linear models were found to have many shortcomings and 

Manifold learning algorithms where developed to have a more realistic understanding 

of shape of data. Indeed, one can observe that the emergence of TDA naturally 

complements  the objectives of  Manifold learning and clustering approaches to 

data/image analysis, by providing efficient algebraic topology tools not only to 

extract topological parameters of data shapes but to discover patterns in terms of 

persistence of these parameters at scales.  

  In traditional image analysis, no consideration is given to the spatial distributions of 

the discovered patterns/features within the individual images. The main incentive for 

this thesis is that in many applications the spatial distribution of relevant image 

patterns provide the main ingredients for adopting TDA.  At the outset of this 

research project, the use of TDA for image analysis applications were not clearly 

distinguished from analysis of other types of complex or high-dimensional data. 

Interestingly, the inspiring work of Mumford et al. [8]  and Carlson et al. [86], that 

established a mapping of the space of normalised high-contrast 3x3 patches of natural 

images onto a Klein-Bottle, treated these image patches as a large point cloud of 

individual data records in ℝÝ, collected from millions of natural images. There is no 

hint on how do such patches within single images spread/cluster within the Klein-

bottle, and hence it is not clear how this can be exploited for image analysis.  

  In general, the possibility of associating topologies (SC shapes) with different 

special subsets of image pixels/features and analysing/distinguishing images 

according to the topological invariants of these constructed shapes was overlooked. 

However, during the years of this research project, there has been a steady growth in 

the list of research publications that share our approach in investigating topologies 

with image features for distinguishing between different classes of images or for 

segmenting regions/objects of interest.  Here we shall review a sample of such 

publications. 

  Vitaliy Kurlin in [87] developed an algorithm to automatically segment a 2-

dimensional cloud of points into regions, that on the input of a dotted image, such as 
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an image with detected edge points constructs a hierarchy of segmentations into 

regions whose boundary contours with long enough life span (persistence) in a 

sequence of nested neighbourhoods of the input points.  

  Having noted that quantitative features obtained from chest CT scan of the lung (e.g. 

attenuation area, mean density, airway wall area percentage, etc.) do not sufficiently 

characterise Chronic Obstructive Pulmonary Disease (COPD).  Recently Belchi et al. 

[11], applied the technique of persistent homology on 3 carefully selected radiomic 

features that are not visible by the human eye.  These features are extracted from 

inspiratory CT scan reflecting the upwards complexity of the lung consisting of a 

measure of the upward stretch of branches, the visible length of the bronchial tree, 

and the number of bifurcations in the tree. They show that each of these features can 

stratify the inspiratory CT scans of the relatively small experimental cohort into 

groups in accordance to the guidelines of COPD.  

  Qaisera et al. [88], designed a persistent homology based automated tumour 

segmentation in H&E stained histology images. The algorithm work constructs PH 

profiles of exemplar patches, selected from a CNN training dataset, and uses a variant 

of k-NN classifier to complete the segmentation. In the adopted k-NN classifier the 

Euclidean distance metric is replaced with the symmetrised Kullback-Leibler 

Divergence measure. The PH profile of a patch models the connectivity between cell 

nuclei. Unlike the case for normal regions, nuclei in tumour areas are closer to each 

other and difficult to identify individually.   Peter Lawson et al. in [89] have recently 

presented similar work for using PH to evaluate the architectural features in prostate 

Cancer Histology images. 

  Giansiracusa et al. in [59] used PH for fingerprint classification. In their approach, 

they extracted many statistical features from persistent barcode spaces such as 

average, median and standard deviation of birth and death of bars, polynomial 

features and regression coefficients. They used fingerprint minutiae points and their 

orientation as input point cloud to build PH and they report 91% accuracy when 

tested their approach on NIST fingerprint dataset.   

  The approach to study topologies of image features or objects, has been recognised 

over the last few years and as a result many research initiatives have been launched as 

a result of active work within newly established TDA research networks. In particular 
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persistent homology provides a topological summary of the shape of the data (e.g., 

features such as holes) at multiple scales. A key success of persistent homology is the 

ability to provide robust results, even if the data are noisy.  

  The common approach of the previous sample of recent research publications is that 

the PH tools of TDA is applied to specific sets of image features that are identified 

according to existing knowledge of the application. This thesis follows the same 

approach but focus on defining a variety of automatically extractable feature sets 

usable for different applications even without prior knowledge of the images.    

  Furthermore, the research, in this thesis, was initiated to investigate the development 

of computational topology inspired algorithms to assess the quality of face images 

suitable for biometric authentication and detecting potential attacks on face 

biometrics.  The results of these initial investigations revealed great relevance to other 

image analysis applications. In the rest of this chapter, we present the results of the 

initial investigations that provide the proof of concept needed to further our research. 

3.1.1  Image Quality VS Spatial Distribution of Texture Features 

   The LBP is an image encoding scheme that re-encodes each pixel value in terms of 

its order relation to its neighbors. It was originally proposed by Ojala et al.,[90], to 

characterize texture in images specifically for face recognition. In general, each pixel 

in the input image will be relabeled by a decimal number that encapsulates the local 

texture information in its immediate neighborhood. The encoding, is meant to reflect 

the order relation between a pixel intensity value and those of its surrounding pixels 

starting from a certain position and in a clockwise direction, resulting in a circular 

binary string. There are many different LBP encoding schemes depending on the size 

of the neighborhood, but here we select the 8 immediate surrounding pixels so that 

each pixel value is encoded as an 8-bits byte.  

  The LBP encoding process start by subtracting center pixel from its 8-neighbor pixel 

surrounding it. Starting from top-left corner, each position will be assigned by 1 or 0 

depending on the subtraction result based on the following condition: 

																														𝐿𝐵𝑃(𝑥à, 𝑦à) = p𝑠(𝑖Q − 𝑖à)2Q																																															(1)
Qq¯

QqX
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Where n scans neighbors of the central pixel, ic and in are grayscale values of the 

central pixel and its surrounding pixels, and the function s(x) is defined as: 

                                     𝑠(𝑥) = 	 ã1		𝑖𝑓	𝑥 ≥ 0
0		𝑖𝑓	𝑥 < 0                                             (2)	

Each pixel in the resulting LBP image is encoded as a byte determined by the 8 s-bits 

in a counterclockwise order starting from the top-left corner.  

 
Figure 3-1:An example of LBP operator effect on images. 

  A uniform LBP (ULBP) is an LBP code that has 0 or 2 bitwise transitions between 0 

and 1. It has been shown that in face images ULBP codes constitute 90% of the LBP 

codes [91]. Applying above procedure on the block matrix will result in getting the 

binary string 11110000, see figure (3-2). 

 

Figure 3-2: Local Binary Pattern descriptor. 

  Apart from [00000000] and [11111111], there are 56 different ULBP codes forming 

7 groups identified by the number of it 1’s, and each group consists of 8 different 

rotated codes. Below is a diagram of all ULBP organised in groups that we call 

ULBP geometries. 

Original Images

LBP operator LBP operator

LBP images

74 123 45

9 32 34

15 30 21

1 1 1

0 1

0 0 0
orThreshold
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Figure 3-3:Geometric representation of ULBP codes. 

 

  Each of these groups is associated with a specific type of image texture. Different 

ULBP geometries correspond to different types of texture. Based on the analysis 

conducted by Ojala et al. [92], in natural images some of the ULBP geometries can be 

classified as follows: 𝐺X 𝐺Y 𝐺g  𝐺ä  𝐺å  𝐺¬  𝐺æ 𝐺¯  𝐺ç 

• 𝐺X  and 𝐺ç describe flat and spot regions. 

• 𝐺g  and 𝐺å describe edges in the images. 

• 𝐺ä  and 𝐺¬	 describe corners in the images. 

• 𝐺æ  represent line ends in natural images.  

  This classification is slightly different for face images and the ULBP groups in face 

image represent textures as follows:  

• 𝐺X  and 𝐺ç describe flat and spot regions, similar to natural images. 

• 𝐺¬	 correspond to edges in the face images. 
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• 𝐺Y  and 𝐺¯	represent End of lines in face images. 

• 𝐺g , 𝐺ä , 𝐺å and 𝐺æ	represent corners in face images. 

  We shall now determine the effect of various image degradation on the spatial 

distribution of some of the groups of uniform LBP points modelled by the Rips SCs 

at some distance threshold. Note that the elements of these groups are determined 

automatically.  

3.1.2   Image Quality: Effect on Topologies of ULBP groups 

  Digital images are subject to many distortions while processing, transmission, 

storing and compressing resulting in a variety of image quality degradation.  Digital 

image processing, in general, can change the appearance of images in a way that 

human visual system will judge the change either beneficial or injuriously. 

Widespread social media and photo sharing platforms, such as Facebook, Instagram, 

Snapchat, twitter and others, made it easy for users to apply beautification filters such 

as noise removal, skin smoothing, inserting objects and removal of unwanted object. 

Malicious image manipulations, on the other hand, can have many forms including 

copy-move and fake images/videos intended to conceal the true message the image 

conveys or to create false evidences. In the last scenarios, image inpainting 

algorithms (image enhancement) often are applied to hide the manipulation artefacts 

and maintain a visually acceptable quality of the resulting image. However, it is 

known that such procedures inevitably result in tiny and localised changes to the 

images in different places that can only be detected by sophisticated forensic-based 

techniques.  

  Furthermore, degradations may occur naturally as a result of biological and genetic 

changes such as cancerous cells that changes the texture of scanned tissues. 

Environmental factors such as radiation can also change the texture of scanned tissues 

in human body.  Therefore, image quality assessment plays an important role for a 

variety of computer vision applications including forensics and diagnostics. 

  In [93], we developed a TDA-based image quality assessment method for the 

evaluation of shadow and blurring effects on face images. We constructed Rips 

complexes from digital images based on certain image landmark pixels that convey 

textural information from images, namely subsets of ULBP codes.  We constructed 



49 
 

the corresponding Rips complexes over a range of distance thresholds, and at each 

threshold we computed the Betti numbers 𝐵X	𝑎𝑛𝑑	𝐵Y. We noted that these values are 

sensitive to image quality.  In particular, we demonstrated that the topology of the 

digital images will be changed as a result of image degradation, and hence topology 

can be used as a new sophisticated tool to quantify the quality of digital images. 

  In figure (3-4), we illustrate the effect of appearance of different level of shadow in 

face images on the constructed Rips complexes from the corresponding faces using 

R2-G7 of ULBP at a given threshold.  

 

Figure 3-4:Example of Rips complexes built based on 2nd  rotation of 𝑮𝟕 of ULBP from face images that have 
different shadowing effects. 

  The above figure clearly illustrates that when half of the face has shadow effect on 

it, the corresponding Rips complex clearly depicts that effect. For both landmarks, 

the Betti number 𝐵X is reduced noticeably because the pixels in that shadow region 

are much closer to each other than those in the non-shadow regions. This effect is 

more apparent when the shadow is on the entire face, the 𝐵X decreases drastically. 

  The appearance of shadow in images are not restricted to natural images. In 

ultrasound scan images of tumor tissue, shadowy regions indicate the presence of 

solid tissue/organs in the path of the emitted sound waves. Such features are 
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indicative of the medical abnormalities [9]. The following example illustrate the 

effect of such features on the topological parameters of a ULBP group 7. 

 

Figure 3-5: Effect of shadow in produced Rips complex of Ultrasound ovarian tumours. 

Image blurring can happen for a variety of reasons. For example, applying Gaussian 

filters to get rid of grainy effects of the presences of noise results in blurring the 

image. High ratio compression, capturing images at a distance, or out of focus 

recording. In satellite imagery, turbulence blurring is a common problem modelled by 

the following exponential formula [94]: 

𝐻(𝑢, 𝑣) = 𝑒y𝒦�ê�{ë��
ì íî  

where 𝒦 is a constant represent the blurring level and 𝑢, 𝑣 is the pixel indices.  

  In the following, we illustrate the effects of different type of blurring on the 

topological parameters of the Rips complexes associated with an example of ULBP 

group landmarks. Figure (3-6) illustrate the effect of blurring (turbulence blurring 

with blurring level of 0.01) on the simplicial complexes constructed using ULBP 

codes (Geometry 4, Rotation 1). The number of Landmarks of normal face is 1269 

whereas the blurred images have 2316 and 1883 landmarks for Turbulence-Blurring 

at 0.01 and 0.03 respectively. 

Benign Malignant

Rips SC for 2nd rotation of G7 of ULBP at ! = 20. Rips SC for 2nd rotation of G7 of ULBP at ! = 20.
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Figure 3-6:Effect of different types of blurring on Rips complexes and topological invariants. 

  Image noise is another feature of quality degradation that occur for a variety of 

reasons mostly related to the image recording devices. There are different types of 

image noise including Salt and Pepper, Gaussian and exponential types as well as 

non-periodic noise. In medical images a special type of noise, known as Speckle 

noise, to infect to a different level of ultrasound images have an impact on manual as 

well as automatic diagnostics. Each of these different types of noise require different 

de-noising algorithms (e.g. see [94]). Below, we illustrate the effects of different type 

of noise on the topological parameters of the Rips complexes associated with an 

example of ULBP group landmarks. 

Gaussian Blur, !"# = 2 Gaussian Blur, !"# = 3

Rips SC of 1st rotation, G4 ULBP at " = 10 Rips SC of 1st rotation, G4 ULBP at " = 10

Turbulence blurring (0.01) Turbulence blurring (0.03)Normal

Rips SC of 1st rotation, G4 ULBP at ! = 10 Rips SC of 1st rotation, G4 ULBP at ! = 10 Rips SC of 1st rotation, G4 ULBP at ! = 10
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Figure 3-7:Example of noise in medical images and the effect before and after noise removal on Rips complexes. 

 

 

Figure 3-8: Effect of Gaussian and Salt & Pepper noise on Rips complexes. 

Low level of speckle noise Low level of Speckle noise Removed

Rips SC of 1st rotation, G4 ULBP at ! = 10 Rips SC of 1st rotation, G4 ULBP at ! = 10

High level of speckle noise High level of speckle noise Removed

Rips SC of 1st rotation, G4 ULBP at ! = 10Rips SC of 1st rotation, G4 ULBP at ! = 10

Rips SC of 1st rotation, G4 ULBP at ! = 10 Rips SC of 1st rotation, G4 ULBP at ! = 10

Salt & Pepper, %&'()!* = 0.05 Gaussian noise, -&.' = 0, 0.1).'2& =0.01.Normal

Rips SC of 1st rotation, G4 ULBP at ! = 10
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  Previous figures demonstrate that Rips complexes constructed on images (face 

image or biomedical images) react differently on different types of noise. In the 

case of ultrasound ovarian images, whether it is high or low level of speckle noise, 

removing noise will result in increasing the number of topological invariants in both 

dimensions relative to the level of noise exist. Low level speckle noise removal 

increases topological invariants by a small fraction, for example the number of 1-

dimensional holes increased from 581 to 613 whereas in the case of high-level 

speckle noise removal, the computed number of 1-dimensional holes increased from 

904 to 1177. Adding Gaussian noise or Salt & pepper noise to face images reduces 

its topological parameters. Gaussian noise reduces the topological parameters 

drastically, for example the number of 1-dimensional loops reduces from over 280 

to below 20 loops, see figure (3-8)-right. In the same vein, Salt & pepper is also 

reducing face image topological parameters but not as drastic as gaussian, for 

example the number of 1-dimensional holes reduced from 285 to 217 loops only. 

The number of 0-dimensional holes, i.e. connected components, follow the same 

behaviour as 1-dimensional holes except in low-level ovarian ultrasound speckle 

noise removal. Ovarian ultrasound images’ connected components increased from 

4094 to 4970 after high-level speckle noise removal whereas low-level noise 

removal reduced connected components from 2176 to 2159. The number of 

topological parameters reported here is based on topological parameters calculated 

from the persistent barcodes constructed from the distance matrix among image 

pixel landmarks.  

  In summary, it can be seen that the natural pattern of topological parameter of 

images are distorted when we add noise to images. Interestingly, the change of 

topological parameters is not random, rather it follows a pattern which can be used 

to model different type of noise.  

 

3.2  Face Image Morphing 

  Having demonstrated the link between different forms of image quality degradation 

and TDA based topological parameters of Rips SC’s associated with certain ULBP 

landmarks, we shall now initiate our investigation into the use of TDA to deal with 

the recently emerging challenge of detecting malicious generation of fake images that 
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has serious security implications. In particular, we focus on the so-called face image 

morphing.  We shall first describe the morphing attack, highlighting some known 

techniques of creating morphed face images/photographs, and finally explaining the 

link to TDA use for the appropriate image analysis task of automatically 

distinguishing morphed and genuine face images. 

  In general, image morphing is the process of transforming one image into another 

through a seamless transition. Morphing requires a set of corresponding landmark 

points from the input images. The two input images are ‘source’ and ‘target’ images 

from which intermediate frames will be generated using blending procedure. Image 

blending is a linear combination of the source and target image pixel values using the 

following formula:  

𝐼ï(𝑖, 𝑗) = 𝛼 × 𝐼ñ(𝑖, 𝑗) + (1 − 𝛼) × 𝐼T(𝑖, 𝑗) 

where 𝐼ï is the blended image, 𝑖	𝑎𝑛𝑑	𝑗 are image pixel values, 𝐼ñ and 𝐼T are source 

and target images respectively and 𝛼 is the blending factor specified by user. 

Furthermore, the blending factor 𝛼 is the proportion of the pixel intensity values used 

from the source and target image in the resulting (morphed) pixel intensity value. It 

has been reported in [95]  that 𝛼 = 0.5 is producing a realistic morph and hence in 

that case blending process is similar to averaging pixel intensity values. To obtain 

visually faultless morphs, one needs to align the source and target images in advance 

such as eyes, nose, mouth and face contours, known as Facial landmarks (keypoints). 

Finally, warping functions will be applied which are triangles built from triplets of 

facial landmark points. There are several techniques of image warping reported in the 

literature [96], but the Delaunay triangulation yields convincing results [95]. The two 

sets of face Landmark pixels ( from both source and target images) represented as a 

topologically equivalent triangular meshes where folding and discontinuities are not 

allowed [97]. Using standard affine transform, each warped triangle is mapped to its 

triangle in the original image.   

  In general, one can warp images using ‘forward’ or ‘reverse’ mapping procedure. 

Forward mapping process maps a pixel in the source image to its corresponding 

location in the destination image whereas reverse mapping takes a pixel in the 

original images and searches for its colour in the destination image. Forward mapping 

results in producing unpainted pixels in the destination images whereas reverse 
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mapping guarantee that each pixel in the destination image obtained a value[95][97]. 

See figure (3-9) for a pictorial representation of morphing process pipeline. 

 

 

Figure 3-9:General pipeline of morph creation. 

 

  Next, we describe the three morphing techniques used for investigation in this thesis 

such that any morphing approach will fall under one the three techniques we will be 

discussing. Facial landmarks used are 97 points as follow: 68 landmark points 

selected using shape-predictor function from dlib (http://dlib.net/), 2 landmarks from 

pupil of the eyes and finally 7 landmark points on the forehead. Alpha blending factor 

is 0.5, which means both source and target images are contributing equally to produce 

morphs. Hence, the blending process becomes similar to averaging the pixel values. 

3.3 Techniques of Face Morphing 

The quality of the produced morphed facial images needs to satisfy two conditions; 

(i) morphed face images need to be visually faultless to layman eyes (i.e. no visible 

artefacts) and (ii) produced fake faces should be successfully verified against both 

source and target images by automatic face recognition systems. The three types of 

morphing techniques are complete, splicing and combine morph. Complete morph 

process starts by adding another 20 landmark points on the border of the two input 

images (i.e. source and target) then average of these landmarks used in Delaunay 

triangulation. Then the resulting triangles from both source and target images are 

warped into an average position before averaging the two warped images which in 

fact is the morphed image. This way resulting morphed facial images have mutual 

texture and geometry taken from both images. produced morph suffers from spurious 

Genuine Image 1

Genuine Image 2

Extract Facial 
Landmarks

Blending 
Geometries

Delaunay 
Triangulation Warping

Cross dissolve 

Morphed Face
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shadows and clear visual artefacts which is one of the disadvantages of complete 

morphing process. Splicing Morph process, on the other hand, proposed to overcome 

the issues occurred in complete morph technique. After extracting the 77 landmark 

points, a convex hull will be cut from both source and target images and average 

landmark-point coordinates used in Delaunay triangulation.  Triangles from both 

source and target images are then warped into an average position before taking the 

average of the two, frontal face, images. Produced (frontal) morphed face is then 

warped back to the face positions of both source and target images. As a result, this 

technique can be used to morph more than one face images. Shortcoming of splicing 

morph technique is that, the geometry of the produced morph is taken from one of the 

faces, either source or target face image. Therefore, splicing morphs are matching 

well with one of the input images, and matching with the second input image require 

similar geometry from both input face images. Finally, splicing morphs also 

producing minor ghosting artefacts due to inaccurate facial landmark point 

localizations[98]. Splicing and complete morph technique proposed by [95]. 

  Apart from the factors discussed above, other factors such as variation in skin color 

and face obstruction by hair are prohibiting morphs from appearing realistic. In the 

case of splicing morph, when source and target face images have different skin color, 

then produced morph does not look realistic. Combined morph technique proposed 

in [99] to overcome the limitations in the previous two techniques. Combined morph 

technique starts by first warping the images into an average position first, then cut the 

facial regions, blending and then stitching it back on the warped images. To obtain 

seamless transition between the frontal face region and the forehead region, Poisson 

image editing applied to this region and the rest of the image. Produced morph using 

combined technique has an average texture and geometry from both input images, has 

no major ghosting artefacts and skin colour has no influence. See  Figure 3-10 for an 

illustration of the three algorithms of morphing generation. The face images  used to 

create morphing are from Utrecht-face dataset [100], using complete, splicing and 

combined technique. Utrecht dataset is containing 75 genuine faces which we will use 

in our experiments in chapter 4 and chapter 5. From the 75 Utrecht genuine faces, 

1298 complete, 2612 splicing and 2650 combined morphed face images generated. 

Beside the ‘digital’ face images, we will also investigate the print-scanned face 

images, using a small dataset of face images provided by our collaborators at the uni- 
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Figure 3-10:Illustration of different types of morphing techniques. 

versity of Magdeburg, Germany. The dataset consists of 142 images, 71 genuine 

faces from Utrecht dataset and 71 morphed (splicing) faces. More specifically, the 

images scanned using CanoScan model 9000F MarkII by our collaborators from 

Advanced Multimedia and Security Lab (AMSL) at Otto-von-Guericke-University of 

Magdeburg, in Germany. Print-scanned (P&S) images were in different resolution 

ranging from 121x136 to 2017x2517, and hence we rescaled them into 220x270. All 

of the morph images in this thesis have been produced by AMSL at Otto-von-

Guericke-University of Magdeburg, in Germany. 

 

Figure 3-11: Illustration of Print-scanned process on the quality of face images. 

Genuine Faces Complete Morph Splicing Morph Combined Morph

Ghosting artefacts Transition between 
forehead and frontal 
face is noticeable . 

Digital face image 597x797 P&S with 200dpi 1149x1558 P&S with 200dpi.
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3.4 Threat of Morphing on Face Biometrics 

  Face biometrics is a natural tool for recognition and identification tasks such as in 

border controls, surveillance, law enforcement, eCommerce, eGovernment 

applications and user identification and verification in mobiles and tablets. Automatic 

recognition of persons’ face biometrics, with high accuracy in controlled 

environments, promoted face biometric to have a strong and eminent role in 

Automatic border controls (ABC) systems.  Among the reasons face biometric chosen 

for ABC systems is the fact that when face recognition systems alarming false 

negatives, border control officers can conduct a visual inspection [101]. This is one of 

the unique advantages of using face biometrics over other biometric forms such as 

fingerprint recognition and iris recognition. ABC systems incorporate electronic 

machine-readable travel documents (eMRTD) such as e-passport[102]. E-passports 

incorporate a face image (digital or print-scanned version) of the holder in order to be 

used by ABC systems together with a live digital face image as the only biometric 

reference for verification. Furthermore, face image is the primary identifier required 

by international civil aviation organization (ICAO) for eMRTDs.  Vulnerability of 

face recognition algorithms to different types of attacks in ABC systems gained more 

attention when ABC systems widely deployed in airports at beginning of this century. 

In general, there are two types of attacks on ABC systems; (i) presentation attack (or 

face spoofing) which is an attack on ABC system and (2) morphing attack, which is 

an attack on eMRTD biometric reference. Presentation attacks on ABC systems are 

normally targeting the camera devices deployed in ABC gates by presenting a face 

artefact. This attack requires access to (lost or stolen) passports (or IDs) so that the 

criminal prepares the face artefact(s) necessary to resemble the (innocent) face photo 

incorporated on the e-passport.  

  On the other hand, morphing is an attack on eMRTD to tamper the biometric 

information stored on e-passports. Morphing attack on eMRTD is simpler to conduct 

in comparison with an attack on ABC systems. Since most of the countries worldwide 

accept (printed) face images in passport issuing applications, this is an adequate 

opportunity for a criminal to submit a morphed (manipulated) face image and in 

return receive an authentic e-passport. An e-passport obtained this way will 

eventually contain all physical and electronic security features deployed by the 

passport issuance body but with a morphed image on it. As a consequence, the 
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morphed facial photo on produced e-passport constitute from facial features of 

multiple persons faces contributed to the morphed face. Hence, the passport can be 

used by multiple persons because recent researches demonstrated that this kind of e-

passports can bypass both face recognitions systems in ABC gates as well as border 

control officers [103]–[106]. 

  Although, manual examination of morphed images do not succeed in distinguishing 

fake (i.e. morphed) face images from genuine face images, in the following 

illustration we should see that TDA, in the form of topological parameters of Rips 

complexes of certain automatically (non-random) ULBP, seems to encapsulate 

evidences of foul play that could be developed into effective morphing detection tool.  

 

 

Figure 3-12:Rips complexes constructed from genuine and fake faces. 

 

  In summary, designing sophisticated forensic tools to combat morphing attacks on 

ABC systems and helping officers in border controls is an immediate need. Inspired, 

by the above observations, the next two chapters are aimed to reporting on the 

research conducted in this project to the design, development, and performance 

evaluation of our PH based face image morph detection tool. 

 

 

  

Source Image Combined Morph Complete Morph Splicing Morph
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Chapter 4  
Image Tamper Detection- A 

Homological Approach 

  Having introduced in chapter 2 the mathematical background for TDA, and its main 

tool of PH, for image analysis, chapter 3 focused on arguing for adopting a specific 

TDA approach to image analysis that exploit the spatial distribution of texture 

features within each image, and demonstrated that subsets of LBP texture features 

extracted from some images exhibit sensitivity to image quality and to face morphing 

attacks. In this chapter, we shall build on the observations made in chapter 3, to 

conduct pilot study with a sufficiently large mix of genuine and morphed face images 

in order to formulate a hypothesis about the separation of the distribution of their 

homology parameters at chosen thresholds.  This chapter is devoted to the 

development of a PH-based scheme suitable for detecting tiny invisible changes to 

face images as a result of morphing attack. The literature of other morph detection 

techniques proposed by other researchers, together with introducing the building 

blocks that eventually contribute to PH-based morph detectors. Vietoris-Rips (Rips) 

simplicial complex construction and a hypothesis to extract features from persistent 

barcodes discussed which we named persistent-binning. We illustrate the 

effectiveness of persistent-binning using different machine learning classifiers such as 

Bayesian and K-nearest neighbor (KNN). This first attempt in using homological 

approach to morph detection will be tested on a large number of face images together 

with a critical evaluation towards the end.  

4.1 PH approach to Face Morphing detection: Introduction. 

  In chapter 3, we described different professionally designed techniques to launch 

morphing attacks on face images, which seem to be a challenge to distinguish the 

genuine from morphed images by human or machine [107]. We also observed some 

interesting impact of various image quality degradations and morphing attacks on the 

spatial distribution of some primitive texture landmarks. We deduced that these 

observations, albeit with few examples, is worth investigating the consequent 
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topological structure of the spatial variation of these landmarks by conducting a wider 

extensive research into the use of TDA tool of PH for the detection of image 

tampering and focusing initially on face morphing attacks as a case study.   

  To design a PH-based face image morphing detector, we need to represent a face 

image by a point cloud set that is highly sensitive to morphing, and ideally such a set 

consists of automatically extractable landmarks of pixels in the image. Morphing is 

expected to distort some texture and/or structural primitives in the face image region. 

Locations of many image texture primitives provide a rich source of landmarks. 

Fiducial face image pixel positions around the eyes, nose, mouth and chins are useful 

landmarks, but their detection is inefficient. Hence, one should opt to automatically 

extractable texture-related landmarks. Variation in intensity within 3×3 image patches 

convey reliable information about the spatial domain image texture primitives and 

have been shown to have geometric structure [7]. It is natural to consider the central 

pixels of such patches as source of landmarks to be tested for their sensitivity to 

morphing. Our investigations conducted for this thesis assures us that this is indeed a 

very rich source of tamper-sensitive landmarks to extract topological template 

representation for various image analysis tasks far beyond distinguishing morphed 

face images from genuine ones. In fact, it is unrealistic to consider other than few 

such examples of landmark sets sufficient to support our thesis that image analysis 

benefits greatly from adopting TDA approaches. 

  In order to introduce and prove the concept of TDA-based approaches to tamper 

detection, we shall confine the discussions in this chapter on the sets of spatial 

domain landmarks of uniform Local Binary Patterns (ULBP), as discussed in chapter 

3 (section 3.2.1), that incentivised this research at the outset. As observed, groups of 

ULBPs have local geometric significance and their Rips-simplicial complexes are 

highly sensitive to face morphing attacks. The ULBPs consist of 7 groups of LBPs, 

called 𝐺ò-geometries for 𝜆 = 1,… ,7. Here, λ refers to the number of 1’s in its binary 

representation. Each 𝐺ò consists of 8 binary codes that can be obtained from each 

other by a circular rotation. The set of ULBP image pixel positions forms a very large 

source of image landmarks that are sensitive to pixel value changes. For efficiency 

purposes, we use each and every rotation in each 𝐺ò group as a separate landmark set 

and for the intended PH morph detector, we shall build in parallel a separate nested 
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simplicial complex for the eight rotations in 𝐺ò	and create one feature vector 

representing their PH parameters. 

In order to inform the objectives of this research, it would be beneficial to review 

existing work on morph attack detection next.  

4.2 Morph Detection – A review of Existing schemes 

  In 2014, Ferrera et al [103], highlighted the seriousness of morphing attacks on face 

images for biometric passports by stressing that neither human nor machine can 

effectively deal with the  challenge of distinguishing the genuine from morphed face 

images, and this was confirmed by many researchers since.  Many techniques 

proposed to detect morphed face images after Ferrera et al. in [103] first illustrated 

that morphed face images can bypass all integrity and authentication (optical and 

electronic) checks. Later, the failure of  automatic face recognition (AFR) systems as 

well as human ability to detect morphed faces have been confirmed in [105] and 

[107]. This alarming failure of AFR, motivated research into designing and testing 

morph detection/prevention schemes. However, recognising that any image 

tampering no matter how sophisticated results in some, perhaps tiny and invisible, 

changes manifested by quality degradation and texture distortion is an incentive for 

the development of forensic-type of approach to tamper detection. Over the last four 

years, triggered by the urgency of these attacks, many such schemes were proposed, 

and we shall now review few such examples.  

  Raghavendra et al. in [101] proposed a morph detector model based on micro-

texture variation using binarized statistical image features (BSIF). The dataset used 

was an in-house dataset not available publicly. A subset of the same dataset was used 

by Scherhag et al. [104] to check the performance of the same algorithm to detect 

print-scanned images.   

  Makrushin et al. in [95] proposed a forensic-based scheme to detect morphed faces 

that exploit knowledge of Benford features of quantized discrete cosine transform of 

JPEG compressed images. Benford’s law states that leading digits of naturally 

generated random data have a logarithmic distribution, and the authors demonstrate 

that digitally created morphs violate Benford’s law. Hildebrandt et al. in [108] 

investigated the influence of different image post-processing approaches (e.g. 
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additive noise, scaling and rotation) on the Makrushin et al’s morph detector using 

anti-forensic methods, such as StirTrace, and reported that StirTrace processing has a 

significant impact on morphing detection. In particular, they concluded that adding 

noise will result in morphed images to be classified as genuine ones. Tom Neubert in 

[109] presented a progressive image degradation effect, mainly JPEG compression, to 

discriminate legitimate face images from morphed ones, and concluded that JPEG 

compression strongly affects genuine images but not morphed images.  

  The Magdeburg research team extended the use of Benford’s Law and StirTrace to 

further boost the morph detection performance in [110],[99] and [111]. Kraetzer et al 

in [112] , observed that the blending step in the digital morphing processes, described 

in chapter 2, produces artefacts and reducing face details. This led to extracting 

various types of features from face images such as Scale-Invariant Feature Transform 

(SIFT), Speeded Up Robust Features (SURF), Features from Accelerated Segment 

Test (FAST), Oriented FAST and Rotated BRIEF (ORB), Adaptive and Generic 

Accelerated Segment Test (AGAST) using OpenCV library together with Canny and 

Sobel edge detectors to improve the accuracy of their morph detection accuracy tested  

on an in-house database.  

  Beside manipulating face details (textures), morphing process changes the entire 

image signal. Therefore, it is natural to consider analysing the changes in Photo 

Response Non-Uniformity (PRNU), which is a unique noise pattern originated from 

each single camera and it is distinct for each model. In [113], face images been 

divided into 4 blocks ( Cells) and PRNU extracted from each block. The authors 

illustrated that PRNU is robust against post-processing of morphed images such as 

scaling and image sharpening but fails in the case of histogram equalisation. In the 

same vein, Zhang et al in [114] proposed a morph detection technique based on 

extracting Sensor Pattern Noise (SPN) in Fourier spectrum from the entire image.  

  Different versions of Local Binary Patterns (LBP) used to design morph detection 

algorithms. Raghavendra et al [115] used LBP as a feature map to train Probabilistic 

Collaborative Representation classifier (PCRC) where they focused on the difference 

between face averaging and morphing in their evaluation. An in-house dataset of 

morphs from Generative Adversarial Networks (GANs) used to test the effect of LBP 

features for morph detection in [116]. The SVM classifier was trained on High-
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dimensional LBP [116] and high morph detection performance reported in [117]. On 

the other hand, an extensive investigation on score-level fusion of different types of 

features conducted in [118] by combining LBP, SIFT, BSIF, SURF, Histogram of 

Oriented Gradient (HOG) and OpenFace [113] deep features. The authors conclude 

that while computationally this approach is costly, fusing more than one feature 

extractor improves the morph detection performance.   

  Although standard passport images need to have minimum light reflections, 

especially specular reflections and hot spots, in [119] the authors proposed a 

morphing detection algorithm that depend on the inconsistency of light source 

reflection between morphed and genuine images. they conclude that, direction to light 

source based on the reflections in eye and nose regions from genuine images have a 

different pattern in comparison with morphed images.  

  The emergence of deep neural network learning approach to Artificial Intelligence 

over the last few years and the success achieved in some image analysis tasks seem to 

have triggered the developments of deep learning based morph detection schemes. 

The two deep Convolutional Neural Networks (DCNN), VGG19[120] and 

AlexNet[121],  have been deployed in a transfer-learning mode for the detection of 

both digital and Print-scanned morphing attacks in [122].  Another deep learning 

based morph detector was developed at the same time by Seibold et al [123], that 

added the GoogLeNet [124] architecture  to the VGG19 and AlexNet, as pre-trained 

and non-pre-trained models. To overcome the problem of overfitting, the DCNN 

architectures trained on images where specific regions such as eyes, mouth and nose 

are covered, as an attempt to prevent the networks focusing on specific regions on the 

face. In [125], two more architectures used for morphing detection, VGG-Face [125] 

and FaceNet[126], whereby the authors reported that extracting features for face 

recognition purposes can also be used , at the same time, for morphing detection in 

ABC systems. 

  Most existing morph detection algorithms assume no prior or additional information 

about face images available in ABC systems, and hence known as no-reference 

morph detection. In ABC scenarios, a live photo of passengers serves as an additional 

source of information which can be used to further assist morphing detection. 

Morphing techniques designed based on the availability of a live photo as well as the 
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face photo in ABC database are known as differential morphing attack (or image pair-

based morphing attack). 

  Despite the fact that existing morph detection algorithms can be adapted to 

differential morphing attack, many algorithms designed specifically for differential 

morphing attack scenario. In this vein,  Ferrara et al. in [97] proposed a de-morphing 

technique that require a trusted live photograph to be aligned with a suspected morph 

image. Next, apply the inverse of morphing operation, by subtracting the live image 

from the stored image retrieved from the database, then compare the obtained image 

with that of the trusted-genuine live image. The hypothesis is that, if two faces 

contributed to produce a morphed image, and one of the faces subtracted from the 

morphed image, then the second face remains. In [127], the authors confirmed that 

the performance of de-morphing process significantly drops in the presence of face 

pose variations leading to a large number of false morph alarms. Another method to 

detect differential morphs in ABC systems is based on facial landmark positions and 

angles [128]. This technique is based on extracting 68 landmark pixels’ position and 

angle from face images, yielding low performances (below 70% overall accuracy) 

making the proposed approach unsuitable for real-world applications.  

  While most of the above morph detectors depend heavily on image texture analysis 

and for the sake of improving detection accuracy they combine a variety of such 

features to detect the tiny changes in face images as a result of morphing process, 

none seem to pay any attention to the spatial distributions of the extracted features. 

The deep learning morph detectors goes to the extreme of extracting all sorts of 

features so much so that their decisions cannot be explained, i.e. it works as a black 

box.  

  In contrast, the main innovation of this thesis is that the spatial distribution of many 

single texture features provides the ingredients for TDA based effective morph and 

tamper detector schemes. The rest of this chapter is aimed at establishing the 

hypothesis using the groups of the ULBP described in last chapter. We shall also 

demonstrating the validity of this hypothesis throughout the following chapters with 

several other feature landmarks and beyond the morphing attacks.    
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4.3 Vietoris-Rips of Image Landmark Point Cloud 
We shall now briefly, describe the process of modelling the shape of landmark point 

clouds, extracted from a digital image. The intention is to use ULBP groups, but it is 

applicable to any other extracted landmarks. Given a set of grayscale landmark pixel 

candidates  

𝑃 = {𝑝Y(𝑥Y, 𝑦Y), 𝑝g(𝑥g, 𝑦g), … , 𝑝Q(𝑥Q, 𝑦Q)	}.	 

 First, calculate the Euclidean distances between all pairs of landmark pixels, and 

store in a non-decreasing order. There needs to be a distance threshold parameter 𝑡, to 

build Vietoris-Rips simplicial complexes (or Rips Complex for short). There exists 

more than one approach to selecting 𝑡, for instance one can determine the minimum 

and maximum distance between landmark pixel values {𝑇r<Q, 𝑇róÓ}. Then select 𝑘-

equidistance thresholds 𝑇 = {𝑡Y = 𝑇r<Q, 𝑡g, … , 𝑡" = 𝑇róÓ}. For simplicity and 

computational efficiency, we fix 𝑘 = 100 but 𝑘 can be changed to suit the range of 

distances. Next, construct a sequence of Rips complexes iteratively by joining 

landmark pixels in 𝑃 if the distance between them satisfy the relation  

𝑇<yY	 < 𝑡 ≤ 𝑇<					𝑓𝑜𝑟		𝑖 = {1,2,3, … , 𝑘}. 

At each 𝑡, calculate the number of 0-dimensioanl homology groups, i.e. 0-betti 

numbers are corresponding to the Rips complexes (𝐵X(𝑅𝑖𝑝𝑠TÂ). We stop the process 

when 𝐵X = 1, otherwise increment 𝑖 and repeat. The output of this process is the 

following sequence of  0-betti numbers (i.e. connected components): 

¼𝐵X�𝕊T��, 𝐵X�𝕊T��, 𝐵X�𝕊T��, … , 𝐵X�𝕊T}�¿ 

Here, 𝕊 is the Rips complex constructed at the terminating threshold 𝑡¾ where 

𝐵X ¼𝕊TÃ¿ = 1, when all nodes get connected first time. It is worth noting that, 

different landmark pixels may have different threshold interval partitioning procedure 

as well as different length of Rips complex sequence. In figure 4-1, we give an 

example of Rips complex construction from the process described above.  
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Figure 4-1:Rips complex construction procedure. We start by converting the Original Image (Top Left) into LBP 
domain (1st row, 2nd image).  

  From figure (4-1) different landmark pixel candidates from different groups of 

2ULBP can be depicted in a similar approach. Depicted graphs in figure (4-1) are 

landmarks based on 1st rotation of 2ULBP landmarks. Increase the distance threshold 

t monotonically and construct Rips complexes for each t, and compute 𝑩𝟎 and 𝑩𝟏 at 

each t. Proceeding in this manner, not only we extract persistent topological features, 

we also obtain information about spatial distribution of landmark pixels that will help 

in providing insight into many image analysis tasks.   

  Topological features extracted from face images in this manner can also be extracted 

from persistent barcodes by discretizing the space of persistent barcodes. For each 

landmark selection criteria, compute the Euclidean distance matrix between the pixel 

landmarks and then input this matrix into any TDA software (in this thesis we used 

Ripser [29]) to produce persistent barcodes of dimension zero and one. Next, at each 

vertical line 𝑡 = 0,1,2, … , 𝑛 compute the intersection points between the line 𝑡 and the 

bars at dimension zero and one. This way, a topological feature vector will be 

obtained which has dimension of 𝑛. The value of 𝑛 can be chosen according to the 

application domain and the type of landmarks one might select. We call this process 

persistent binning. Figure 4-2 depicts the process of discretizing the space of 

persistent barcodes described above.  

t=0 t=5

t=10t=15t=20t=25

t=30 t=35 t=40 t=45

LBP Rips
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Figure 4-2: Persistent Barcode generation from a point cloud and Persistent Binning procedure. (Top)  Persistent 
barcode constructed from a small set of point cloud [65]. (Bottom) Persistent binning in dimension zero and one 

  Throughout this thesis, persistent binning will be used to extract topological feature 

vectors from constructed persistent barcodes. This approach enables us to fuse 

topological features of different dimensions as well as fusing topological features 

extracted from different type of landmarks. There are many ways one can use the 

topological information obtained from persistent binning and different methods of 

landmark selection. First scenario: using the topological features at each binning 

step 𝑡<, and then fusing it with topological features of different groups of the same 

landmarks at the same 𝑡<. In this vein, if we consider the set 𝐺g-ULBP for selecting 

landmarks from images, it has 8 rotations and hence at each 𝑡<, we obtain an 8-

dimensional topological feature vector as follow:  

																						𝑓(÷gyøùúû)¶Â = �𝐵X(𝑅Y), 𝐵X(𝑅g), …	, 𝐵X(𝑅ç)�																																										(4.1) 
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																						𝑓(÷gyøùúû)¶Â = �𝐵Y(𝑅Y), 𝐵Y(𝑅g), …	, 𝐵Y(𝑅ç)�																																									(4.2)	 

where  𝐵X and 𝐵Y are betti numbers at dimension zero and one respectively, and 𝑅¾ is 

the rotation of 𝐺g-ULBP for 𝑗 = 1,2, … ,8.  

  The above equations can be used to train a Morphed-Vs-Genuine face images at 

each threshold separately. Although, it doesn’t facilitate the study of persistence of 

homological features (i.e. Persistent homology) over a range of threshold. Instead, it 

facilitates the study of persistence of classification accuracy. Second scenario: to 

investigate the PH over a range of distance thresholds we need to train the classifier 

on the concatenation of the homological features of all binning steps of 𝐺ò-ULBP into 

one feature vector as follow:  

							𝑓X(𝐺ò 	− 𝑈𝐿𝐵𝑃) = �𝐵X(𝑅Y)T�,…,T���, 𝐵X(𝑅g)T�,…,T���, …	, 𝐵X(𝑅ç)T�,…,T����									(4.3) 

							𝑓Y(𝐺ò − 𝑈𝐿𝐵𝑃) = �𝐵Y(𝑅Y)T�,…,T���, 𝐵Y(𝑅g)T�,…,T���, …	, 𝐵Y(𝑅ç)T�,…,T����										(4.4) 

At each distance threshold, the dimension of the topological feature vectors defined 

by equations (4.1) & (4.2) is 8, whereas the dimension of topological feature vectors 

of equation (4.3) and (4.4) is 801.  

  In this chapter, we focus and discuss the use of the first scenario, i.e. topological 

features of the form of equation (4.1) and (4.2). In chapter five and the rest of the 

thesis, we cover the discussion about topological features of the form of equation 

(4.3) and equation (4.4).  

  To investigate the suitability of topological features extracted from face images in 

this manner, we start by manually cropping the frontal face of images, selecting 

landmarks which are pixel values that corresponds to 𝐺g-ULBP and calculate the 

distance matrix between selected landmark-pixels and construct Rips complexes. An 

example of the resulting Rips complexes can be seen from figure (4-3). Next, we 

discuss the analysis of extracted connected components, which are topological 

invariants, for the purpose of morph detection.  
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Figure 4-3: Sensitivity of Topological features to detect morphing. The Rips complex constructed from G2-ULBP 
for source images and the morphed images (combined, complete and splicing) at t2. 

 

4.4 A Hypothesis for Homology-based Morph Detection 
  Ultimate face morphing detection algorithm would be based on a supervised 

machine learning approach which we train on topological invariants, at different 

dimensions and based from different landmark criteria, extracted from genuine and 

morphed images. It is worth to remember that for each input image, we have 8-

sequences of topological invariants each representing one of the rotations of 𝐺g-

ULBP. As a proof of concept, we start by analysing the number of 𝐵X at 𝑡g, i.e. 
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number of connected components at the second threshold, rather than looking at the 

entire sequence of Rips complexes. This will allow us to build a simple similarity 

function and a naive classifier for each of the 8 rotation and then use majority rule at 

the testing stage. The simple classifier is based on the distributions of the 𝐵X values 

for a training set of original and morphed images. We trained and tested performance 

of the classifier(s) using morphed images from the Utrecht face photo database [100]. 

The training was based on, 28 images (14 original and 14 morphed) for each 

morphing schemes, and calculated the averages and standard deviations of the 𝐵X 

values in each class for each of the 8 rotations of the uniform 2-ones LBP point set. In 

other words, the topological feature vector has the following form:  

𝑓(÷�yøùúû)¶� = �𝐵X(𝑅Y), 𝐵X(𝑅g), …	, 𝐵X(𝑅ç)�. 

The statistics obtained from the 28 images, described earlier, are summarized in table 

(4-1).  

 Original Splicing Morphed Combined Morph Complete Morph 
LBP Code Mean Std Mean Std Mean Std Mean Std 
00000011 16.23 14.19 60.13 13.33 66.83 5.91 31.58 8.94 
00000110 20.31 14.62 57.73 14.47 61.83 6.48 36.83 10.58 
00001100 21.92 16.63 64.27 13.07 68 4.67 38.75 8.87 
00011000 22.31 13.18 65.87 12.68 69 7.32 41.08 8.66 
00110000 24 15.80 60.4 10.50 69.58 4.50 37.92 11.60 
01100000 22.86 17.90 60.6 11.91 73.58 7.43 37.08 9.01 
11000000 18.66 13.97 61.8 10.77 64.42 6.84 35.58 5.93 
10000001 22.46 16.87 62.67 11.62 69.42 6.39 38.08 10 

Table 4-1: Topological (connected components) feature statistics of 28 images (14 original and 14 morphed) for 
G2-ULBP codes at 𝒕𝟐. Std refers to standard deviation. 

  Results summarized in table (4-1) show that across all rotations of 𝐺g-ULBP, the 

average number of 𝐵X values for the genuine images are well below those calculated 

for the morphed images. Taking into account the corresponding standard deviations, 

we see that the best separation gap is achieved by the combined morphing scheme 

followed by those achieved by the splicing morphing, and the complete morphing 

resulted in significantly lower gaps. The positions of the considered texture features 

of 𝐺g-ULBP pixels in human face images do not vary significantly, for a proof of 

concept it is reasonable to suppose that the 𝑓(÷�yøùúû)¶�  values have a gaussian 

distributed. Next chapter will include more sophisticated statistical measures and 

machine learning approaches together with a larger number of images to investigate 

the problem of morph detection. 
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  The above assumption, although not completely necessary, allows us to use known 

facts about gaussian distribution statistics to determine with good accuracy the 

probability that an input image belongs to either class (genuine or morphed). In fact, 

for each rotation to classify an input image we simply need to find the position of its 

𝐵X value in relation to the overlap regions between the two distributions as depicted 

in figure (4-4). In this vein, to classify a test image, all eight rotations of 𝐺g-ULBP 

will be used where we use a majority voting to make final decision about the class of 

the input image. If the result of rotation voting about the class of the image is draw of 

4, then it is an undecided case.   

  Above hypothesis tested on 338 images from Utrecht face database, 38 genuine face 

images, 100 splicing morph, 100 complete morph and 100 combined morphed 

images. Face morphed images in this thesis have been generated by AMSL group at 

Magdeburg university [95]. The features extracted from testing images followed the 

same process of that of training images. 

 

Figure 4-4: Gaussian Distribution of  B0 values of training face (genuine (Red) and morphed(Blue)) images at 8th 
rotation  of  𝑮𝟐-ULBP. 

 

  In other words, for each rotation of 𝐺g-ULBP, we calculate the number of 𝐵X at the 

second threshold. The results for the testing images were as follows:  
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• In the case of combined morphed approach, proposed scheme obtained 99% 

accuracy and the misclassified images were morphed images.  

• For splicing morphed images, we obtained 98% accuracy and the 

misclassified images were original images.  

• Finally, in the case of complete morphed approach, 60% accuracy achieved 

whereby most of the misclassified images were morphed images. The main 

reason behind this is the fact that complete morph faces are inheriting 

geometry from both source images and that seems to have an effect on the 

topological features used here for the classification. 

  As a first experiment towards building a sophisticated morph detection algorithm 

based on TDA, these testing results demonstrated the viability of using persistent 

homology approach to automatically detect morphing attacks.  

Next section will include the first attempt in using a machine learning classifier where 

the input is a topological feature vector which is in the form of equation (4.1) and 

(4.2).  

4.5 Classification of Morphed Face Images 

  In this section, we present the experimental results obtained using the K-nearest 

neighbour classifier [129], with k=1. The KNN is a non-parametric, instance based, 

simple yet robust supervised classifier that uses proximity to template feature vectors 

(our PH-based vectors) of class labelled set of training stage.  

4.5.1 Experimental Setup 

  The experiments, conducted in this section, use on a sufficiently large set of face 

genuine and morphed images selected from the Utrecht face database, using 75 

genuine non-smiling faces, we created 6560 morphed faces using the three morphing 

schemes discussed in chapter 3, known as Complete, Splicing and Combined 

Morphing. In particular, we generated and used 1298 complete, 2612 splicing and 

2650 combined morphed face images to test our proposed morph detection technique. 

Unlike section 4.2, instead of manually cropping out the frontal face region from the 

face images, we use dlib library version 19.2 (http://dlib.net/) to segment the frontal 

face regions. Similar to the Bayesian approach discussed in the previous section, this 

experiment is restricted to 𝐺g-ULBP codes only. The choice of subsequent thresholds 
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to construct Rips complexes can be determined by dividing the range of D-values, but 

we used a fixed resolution of thresholds (𝑡Y = 0, 𝑡g = 3, 𝑡ä = 5, 𝑡å = 7, 𝑡¬ = 10, 𝑡æ =

15). This choice is not completely random, we observed the change in the number of  

𝐵X (e.g. there is no big change in the number of 𝐵X from 𝑡 = 0 to 𝑡 = 1, 𝑡 = 3 to 𝑡 =

5 and so on), thus we opted to select this pattern of thresholds. Nonetheless, the 

choice of threshold selection is application dependent and can be tuned/selected 

accordingly.  Beyond certain thresholds, constructed Rips complex gets closer to 

become a complete graph which means the topological invariant like the one we use 

here become less discriminative to distinguish morphed face images from their 

genuine counter-parts.  

  The training/testing pipeline of our morph detection scheme is depicted in figure (4-

5). For evaluation, we use the four different classification protocols, below:  

• P1: Leave-one-out, where one image is used for testing the rest for training.  

• P2: 30% of the images used for training, and the rest of the 70% for testing. 

• P3: 50% of the images used for training and the rest of the 50% for testing.  

• P4: 70% of the images selected for training and other 30% for testing.  

  

 

Figure 4-5: Topological Morph detector pipeline. 
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To avoid biasness, each performance evaluation experiment is repeated 100 times by 

select random disjoint set of images for training and testing and calculating the 

average accuracy over the 100 experiments. 

4.5.2 Experimental Results 

  In this section we report the classification accuracy of experiments conducted for the 

purpose of morphed face detection, following the detailed setup in the previous 

section. Below in table (4-2), we summarize the average classification accuracy for 

each protocol and for each topological threshold. The table clearly demonstrates 

significant sensitivity of topological features, namely 𝐵X, to detect morphed face 

images created by the three morphing schemes discussed in chapter 3, section (3.4), 

over a range of thresholds. It is obvious from the table that the accuracy of the 

classification is independent of training protocols. The ratio of false negative rates, 

i.e. morphed faces misclassified as genuine images, is 0.25% across distance 

thresholds while false positive rates, i.e. genuine faces misclassified as morphed, are 

quite high (»17%). This could be partially due to the imbalanced training of the 

classifier which include a larger number of morphed faces than genuine face images.  

  We also conducted an experiment to test the performance of proposed technique to 

detect P&S morphed face images. The P&S test included 140 images, 70 genuine 

faces and 70 P&S splicing-morphed faces. The images scanned using CanoScan 

model 9000F MarkII by our collaborators from Advanced Multimedia and Security 

Lab (AMSL) at Otto-von-Guericke-University of Magdeburg, in Germany.  

 Topological Distance Thresholds 

Morphing 

Schemes 

Protocols 

t=0 

t=3 

t=5 

t=7 

t=10  

t=15 

Combine Morph 
P1 99 99 97 95 98 99 
P2 99 98 97 95 98 99 
P3 99 98 97 95 98 99 
P4 99 98 97 95 98 99 

Splicing Morph 
P1 97 97 96 100 94 97 
P2 99 97 96 99 94 97 
P3 97 97 96 99 94 97 
P4 97 97 96 99 94 97 

Complete Morph 
P1 96 96 95 95 92 93 
P2 96 96 95 94 92 93 
P3 96 96 95 94 92 93 
P4 96 96 95 94 92 93 

Table 4-2: KNN classification accuracy of PH-threshold based Morph Detection. 
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Images were in different resolution ranging from 121x136 to 2017x2517, and hence 

we rescaled them into 220x270 and then extracted 𝐺g-ULBP landmarks. The rest of 

the experiment followed the setup in section (4.5.1).    

 The results in table (4-2) might raise doubts about achieving such results for larger 

datasets or on a different dataset. We addressed both of these concerns by first 

extending our experiment in the next chapter to include another dataset. Secondly, to 

show that the results obtained here is not a case chance, we conducted a test on 

10,000 natural images from BOSSBase database 

(http://dde.binghamton.edu/download/) to test the sensitivity of ULBP landmarks to 

small changes as a result of tampering. For each image, we calculated the number of 

pixels that are different from its immediate surrounding pixels by a factor of ±1. This 

is done to estimate the chance of ULBP landmarks changing their structures into non-

ULBP landmarks. The result of the experiment revealed that, on average more than 

78% of the pixel values in those 10,000 natural images have a ±1 differences from 

their immediate neighbours and hence one expect that to obtain a reasonable number 

of changes to the number of ULBP landmarks as a result of tampering/morphing. 

 t=0 t=3 t=5 t=7 t=10 t=15 
P1 78.87 77.46 73.94 77.46 82.39 72.53 
P2 75.64 74.72 74.77 77.1 79.33 70.13 
P3 77.97 76.14 74.81 78.28 80.11 72.65 
P4 78.57 77 74.76 78.59 81.40 72.38 

Table 4-3: Classification accuracy of P&S morphed face detection 

  Results in table (4-3) indicate that the performance of the PH-based scheme with the 

P&S morph attack is well below that achieved with the digital morphing attacks. 

Nevertheless, it is still encouraging and sufficient to demonstrate the success of TDA 

approach to designing morph detection algorithms. In [122], the authors proposed a 

P&S morph detection technique based on two Deep-CNN architectures, AlexNet and 

VGG19,  where they concatenated the features from both architectures before 

classification stage and the best classification accuracy they obtained is 82.36% 

accuracy when they used HP scanner and 87% accuracy for RICOH scanner. At this 

stage a direct comparison with the approach proposed in [122] is not possible because 

they used different in-house databases. 
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The main differences between images obtained with P&S attack and those produced 

by the digital attacks is the significant variation in image resolution within the 

generated images, and when rescaling process is applied there would be some loss of 

information influencing the spatial distribution of the landmarks in the resulting 

images. A potential approach to improve these detection results could benefit from 

using fixed size images or applying some form of super-resolution algorithms instead 

of rescaling.  

 In summary, main advantages of the proposed approach are (1) no prior information 

about the image nor the morphing technique is needed, (2) the landmarks are 

automatically selected to build topology of face images and (3) the classification 

performance is almost topological-threshold independent, especially in the case of 

digital images. Perhaps the only drawback of the proposed morph detection technique 

is that one cannot rely/determine a unique threshold to obtain high classification 

accuracy for different morphing schemes or a threshold where we get high accuracy 

for digital and P&S images.  

 Having demonstrated the success of homology-based analysis of the spatial 

distribution of image texture landmarks for face morph attack detection, the rest of 

the thesis will be concerned with persistent homology approach over a range of 

distance thresholds. Next chapter will include an extension of the algorithm of this 

chapter by removing reliance on any specific threshold, i.e. the classification will not 

depend of the number of connected components (and 1-dimensioanl holes/loops) 

extracted at each distance threshold. Instead, topological features over a sequence of 

distance thresholds will be stored to feed into KNN and hence overcome the 

drawback of the proposed technique discussed in this chapter. 
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Chapter 5  
PH-Based Image Analysis for Face 

Morph Detection 

  In the last chapter, we established that the homology parameters of Rips SCs 

constructed for sets of image texture landmarks are effective in distinguishing 

morphed face images from genuine ones with considerably high accuracy at different 

distance thresholds. Instead of aiming to establish the best application-based 

threshold, the well-established TDA strategy of investigating the persistence of the 

homology parameters across increasing sequences of thresholds is most promising.   

Accordingly, this chapter is devoted to continuing the journey and develop a PH-

based image analysis technique, and demonstrate its success for face morph detection. 

In the next chapter we shall further demonstrate that this approach works well for 

many other types of image analysis tasks.  We shall also demonstrate, that the success 

of this approach is not confined to the LBP based landmarks but there are ample 

groups of automatically extractible image landmarks that could be used for PH-based 

image analysis   

5.1 PH of Image Texture Landmark Clouds 

  In chapter 4, the main ingredient of this scheme was introduced in (equations 4.3 

and 4.4). In order to make this chapter self-content, we shall briefly describe the 

construction of the application-dependent discriminating PH-based feature vectors 

that will be used to model the intended classification scheme. In what follows, we 

shall only consider grayscale automatically cropped frontal face images, where dlib 

library used and called from MATLAB. We assume that an application-dependent set 

𝑃 = {𝑝Y(𝑥Y, 𝑦Y), 𝑝g(𝑥g, 𝑦g), … , 𝑝Q(𝑥Q, 𝑦Q)},	of specific texture-based landmark pixels 

(to be referred to as a Landmark Cloud) are extracted automatically. This could be 

any of the Landmark Clouds introduced in the next section, including the various 

ULBP geometry groups. As explained earlier, the Rips complexes, associated with 𝑃, 

will be constructed by first computing the 𝑛𝑥𝑛 symmetric matrix	𝐷 = �𝑑<,¾�, of 
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pairwise distances between points in 𝑃.  Computing the ith-dimensional PH record of 

𝑃 Betti-numbers 𝐵< requires the selection an appropriate sequence of distance 

thresholds: 𝑇 = {𝑡X = 0, 𝑡Y, 𝑡g, … , 𝑡"}. In chapter 4, we subdivided the interval 

[𝑇r<Q, 𝑇róÓ] using equidistant thresholds to determine the Betti numbers at each 

threshold and classify accordingly. Recognising that computing PH record is based 

on a filtration of an “ultimate” simplicial complex of 𝑃 which may not be determined 

by 𝑇róÓ.  For example, in many cases the Rips complex may be fully connected well 

before reaching the 𝑇róÓ threshold.  Moreover, even if two image landmark clouds 

have the same, or nearly the same, cardinality, they may become fully connected at 

different thresholds or have different number of topological invariants at different 

constructed SCs based on the increased sequence of distance thresholds (e.g. 𝑡Y <

𝑡g < 𝑡ä < 𝑡å), this is illustrated by the following figure. 

 

Figure 5-1: Two cluster points (Red and Blue) with similar cardinality, but different in spatial distribution.  

 

These considerations imply that the appropriate threshold sequence selection yields a 

time-series representation of the PH record of different lengths whose entries are not 

necessarily measured at equidistance thresholds. Comparing such time series adds the 

complexity of the corresponding image analysis task. Using Dynamic Time Warping, 

in this case, become unavoidable necessity.  What complicates the situation further, is 

that threshold sequence selection depends on the dimension of the Betti numbers. 

Stopping at the threshold that results in one connected component does not means 

that the number of holes stops changing thereafter.  

t1 t2

t3t4
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For simplicity and computational efficiency, we fix 𝑘 = 100,  and select an 

increasing sequence of 100-equidistance thresholds 𝑇 = {𝑡Y, 𝑡g, … , 𝑡"}.  Iteratively, 

we construct a sequence {𝕊TÂ: 𝑖 = 1,2, … ,100} of Rips complexes by joining pairs of 

landmarks 	𝑝 and 𝑞 iff: 

𝑇<yY	 < 𝑑(𝑝, 𝑞) ≤ 𝑇<					𝑓𝑜𝑟		𝑖 = {2,3, … ,100}. 

This results in a filtration of the final simplicial complex 𝕊T��� with 𝕊T� = 𝑃.	Finally, 

compute the 0-Betti (and 1-Betti) numbers of the sequence  {𝕊TÂ: 𝑖 = 1,2, … ,100} of 

Rips complexes using the Smith normal form procedure described in chapter 2. The 

output of this process is the sequence of 0-betti numbers (i.e. connected components): 

																							¼𝐵X�𝕊T��, 𝐵X�𝕊T��, 𝐵X�𝕊T��, … , 𝐵X�𝕊T����¿																																																							(5.1) 

and the sequence of 1-Betti numbers (i.e. holes)  

																						¼𝐵Y�𝕊T��, 𝐵Y�𝕊T��, 𝐵Y�𝕊T·�, … , 𝐵Y�𝕊T����¿																																																									(5.2). 

These equations represent 100-dimensional PH feature vectors for a single landmark 

set, such as any one of the 8 single rotational subsets of a 𝐺ò-ULBP,  𝜆 = 1,2, … ,7. 

5.2 Landmark Selection Methods 

In the last two chapters, we investigated topological approaches to the detection of 

tinny and invisible image distortions caused by malicious face image morphing 

attacks by analysing the simplicial complexes of the shape formed by clouds of 

ULBP landmarks. However, one expects that face image morphing attacks distort a 

variety of other types of textural and/or structural primitives in the face image region. 

In this section, we introduce few other meaningful, and easy to extract automatically, 

landmarks of image texture primitives. In fact, this section illustrates that all types of 

images contain a rich source of landmarks whose spatial distribution can provide a 

meaningful topological representation of images. 

5.2.1  Local Binary Patterns - Revisited 

More than two decades ago, the LBP transform was used as a texture descriptor for 

images that can be used to distinguish images for classification application such as 

face recognition. It re-encodes an image by an 8-bit Byte whose bit cells are 
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determined by the order relationship between the pixel value and that of each of its 8-

neighbouring pixels starting from top left corner in a clockwise manner. The output 

can be displayed as a grayscale image called the LBP transformed image whose 

histogram have been used in many image analysis/classification applications. In 

figure (5-4), we illustrate a local binary pattern of an image, and 3 other approaches 

of landmark selection methods which will be discussed hereafter.  

Uniform LBP (ULBP) codes are LBP codes that have either 0 or 2 circular bitwise 

transition from 0 to 1. In [130], the authors shown that in face images 90% of LBP 

codes are uniform. This is a strong justification that we select subsets of ULBPs for 

our choice of TDA construction landmarks. In total, there are 58 ULBP codes two of 

which have 0 transition namely 00000000 and 11111111. The remaining 56 ULBPs 

have 2 transitions and we refer to this set as the 2ULBP. The 2ULBPs consist of 7 

groups of LBPs, called 𝐺ò-geometries for λ=1,…,7. Here, λ refers to the number of 

1’s in its binary representation. Each 𝐺ò consists of 8 LBP codes that can be obtained 

from each other by a circular rotation. The set of 2ULBP image pixel positions forms 

a very large source of image landmarks that are sensitive to pixel value changes. For 

efficiency purposes, we use each and every rotation in each 𝐺ò	group as a separate 

landmark set and for the intended PH morph detector, we shall build in parallel a 

separate nested simplicial complex for the eight rotations in 	𝐺ò	 and create one 

feature vector representing their PH parameters.  

Instead of designing a decision-based fusion of these 8-rotational detectors, our 

intended PH-based face morphing detector will be based on feature level fusion.  

Accordingly, we construct the simplicial complexes of 8 rotations of the 𝐺ò-ULBP 

cloud over a fixed 100 distance thresholds, and train the classifier on the 

concatenation of the homological features of all binning steps as the single feature 

vectors defined by the following 2 expressions:  

			𝑓X(𝐺ò 	− 𝑈𝐿𝐵𝑃) = �𝐵X(𝑅Y)T�,…,T���, 𝐵X(𝑅g)T�,…,T���, …	, 𝐵X(𝑅ç)T�,…,T����													(5.3) 

		𝑓Y(𝐺ò − 𝑈𝐿𝐵𝑃) = �𝐵Y(𝑅Y)T�,…,T���, 𝐵Y(𝑅g)T�,…,T���, …	, 𝐵Y(𝑅ç)T�,…,T����															(5.4) 

According to equations (5.3) and (5.4), the shapes of the different 8 rotational 

Landmarks in the 𝐺ò-ULBP are represented in the morph detector by 800-

dimensional PH feature vectors. 
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5.2.2 8-Neighbour Superpixels (8NSP) 

In the image analysis literature, a super-pixel in an image is a connected set of pixels 

that have the same grayscale intensity value [131], and are used for local image over-

segmentation and later used in object detection and image reconstruction [132]. We 

slightly modify this concept to introduce an alternative set of image pixel landmarks 

that disregards the order relationship between a pixel and its neighbouring pixels and 

instead focus on the relationship between the intensity values in the boundary pixels.  

The easiest relationship between the neighbouring pixel is that of “=”. When all these 

pixels have equal values, then the central pixel has an 8-neighbour super-pixel (8-

NSP). It is easy to see that the set of all 8-NSP pixels is a proper subset of the set of 

0-transition ULBPs. The 8-SNP pixels are LBP encoded to 00000000, if the central 

pixel value < that of the neighbours, else are LBP encoded to 11111111.  

One can split the set of 8-NSP pixels naturally into different sets of landmarks by 

subdividing either the range of their central pixel values, or the range of neighbouring 

values. However, we shall treat this set as a single landmark, and accordingly their 

PH feature vectors are of the forms defined by equation (5.1) and (5.2). 

5.2.3 Centre-Symmetric Local Binary Patterns (CS-LBP) 

A modified version of LBP operator is the centre-symmetric LBP (CS-LBP) proposed 

in [133] to capture regions of interest in digital images. Unlike LBP, neighbouring 

pixels are not compared with that of the central pixel, instead, we compare the 

neighbouring pixels in a centre-symmetric manner, as depicted in figure (5-3). In 

other words, in CS-LBP and for a 3-by-3 image patch, we compare the pixel in top-

left corner with bottom right, top-middle with bottom-middle, top-right with bottom-

left pixels and middle-right with middle-left. In LBP, one obtains 256 distinct binary 

patterns, 58 of which are uniform, whereas CS-LBP produces 16 unique binary 

patterns only which can be described through the following equation:  

	𝐶𝑆 − 𝐿𝐵𝑃(𝑥, 𝑦) = p 𝑠 ý𝑝< − 𝑝<{¼þg¿
ÿ 2<

¼þg¿yY

<qX

, 𝑠(𝑥) = !1									𝑖𝑓	𝑥 ≥ 0
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

										(5.5) 

where 𝑝< and 𝑝<{¼#�¿
 are pixel intensity values of center-symmetric pairs of pixels of 

𝑁 equally spaced pixels. The 16 distinct binary patterns of CS-LBP operator can be 

grouped according to the number of ones in their binary codes (similar to ULBP) and 
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the circular transitions between zeros and ones, as depicted in figure (5-2). Although, 

to the best of our knowledge, no explicit grouping introduced in the literature to 

identify uniform and non-uniform groups of CS-LBP codes. Hence, we follow the 

same procedure of original LBP to group uniform binary codes according to the 

transitions between zeros and ones in the binary codes. In other words, when there is 

either zero or two circular transitions between zeros and ones in the CS-LBP codes, 

we label this binary code as uniform, otherwise it is a non-uniform code. Therefore, 

we end up with 14 uniform CS-LBP codes, and only 2 non-uniform codes where we 

group the uniform codes into 3 groups (each with 4 rotations) 𝐺Y, 𝐺gand 𝐺ä such that 

1,2 and 3 refer the number of ones in the binary codes. Generated topological features 

from CS-LBP is concatenated similar to the approach introduced in equation (5.3) 

and (5.4), except that here we have 4 rotations instead of 8. In other words, the 

topological feature vectors in CS-LBP have the following form:  

												𝑓X(𝐺ò − 𝐶𝑆𝐿𝐵𝑃) = �𝐵X(𝑅Y)T�,…,T���, …	, 𝐵X(𝑅å)T�,…,T����																																			(5.6) 

														𝑓Y(𝐺ò − 𝐶𝑆𝐿𝐵𝑃) = �𝐵Y(𝑅Y)T�,…,T���, … , 𝐵Y(𝑅å)T�,…,T����																																						(5.7)			 

Where 𝑓X and 𝑓Y represent topological features in dimension zero and one, 

respectively. 𝐵X and 𝐵Y are betti numbers of dimension zero and one, respectively, 

which correspond to the number of connected components and loops, respectively. 

Finally, 𝑅< is rotations of binary codes of the same group where 𝑖 = 1,2,3,4. 

5.2.4 Radial Local Binary Patterns (R-LBP) 

We propose another extension to original LBP which we called radial LBP. Like LBP 

and CS-LBP, R-LBP starts by selecting 3x3 patches in an image and then comparing 

the central pixel to that of the 8-neighbouring pixels in a radial manner. Instead of 

256 distinct binary patterns, in R-LBP we obtain 16 unique binary patterns. The 

process starts by selecting 3x3 patches from the image of interest, and then 

comparing the central pixel with its 8 neighbours by the following equation: 

												𝑅 − 𝐿𝐵𝑃(𝑥, 𝑦) = p ý𝑠Y(𝑝< − 𝑝à) 	× 	𝑠g ý𝑝<{¼þg¿
− 𝑝àÿ	ÿ 2<

¼þg¿yY

<qX

																				(5.8) 



84 
 

 

Figure 5-2: Geometry of uniform CS-LBP & R-LBP codes arranged according to the number of 1's in their binary 
representation. 

where 𝑝à is the central pixel, 𝑝< is neighbouring pixel(s) and the function 𝑠´ is defined 

as follow: 

																								𝑠´(𝑥) = !1													𝑖𝑓	𝑥 ≥ 0
0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

			𝑓𝑜𝑟	𝑙 = 1,2																																																(5.9) 

Each pixel in the resulting R-LBP image is encoded as a byte determined by the 4 s-

bits in a counterclockwise order starting from the top-left corner. We group the binary 

codes of R-LBP according to the number of 1’s and 0’s in the binary representation 

and we focus on the groups where there is either 0 or 2 circular transitions, which we 

call uniform R-LBP. Topological feature generation using R-LBP follows the same 

approach as discussed in CS-LBP because in both of them we have the same number 

of binary codes and uniform/non-uniform codes, i.e. it has the same form as equation 

(5.6) and (5.7) for dimension zero and one of topological invariants. Note that, 
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computing this landmark is fast and automatic which makes it suitable to be 

considered for building topology of a digital image. Similar to other landmark 

selection techniques, R-LBP will be used to select image landmark pixels in order to 

construct Rips complexes and consequently computing persistent barcodes in 

different dimensions to design forensic tools for morphing/tampering detection 

purposes. The Figure below, illustrate, the way we can compute the decimal 

representation of the central pixel for LBP, CS-LBP and the R-LBP landmarks.  

 

Figure 5-3: LBP, CS-LBP and R-LBP landmark selection methods for 8-neighbouring pixel values. Pc 
is the central pixel and P0, 1,…,7 represent 8 neighboring pixels. 

 

Figure 5-4:Landmark Selection methods and their corresponding facial effect visualization. 
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5.3 Experimental Setup 

In order to evaluate the performance of the above PH-based morph detector, we 

extract the PH-feature vectors from the cropped face images in a set of sufficiently 

large balanced mix of genuine and morphed images and feed into an appropriate 

classifier, in a supervised mode. As in chapter 4, the evaluation is conducted 

separately for each of the 3 morphing algorithms, described in chapter 3, section 

3.4.1: Combined morph (CombineM), Complete morph (CompleteM) and Splicing 

morph (SplicingM). The various experiments test the performance of the PH-based 

morph detector on two large datasets of hundreds of genuine and thousands of 

morphed faces formed by the 3 morphing techniques, described in Chapter 3. We also 

conducted similar experiments with a dataset of Print and Scan (P&S) faces photos.  

5.3.1 Face Image Databases 

The First dataset is Utrecht DB that contain 75 genuine images whereby 2652 

CombineM, 1112 CompleteM and 1000 SplicingM faces created using pairs of the 

genuine images. Second dataset is the London DB [134] which contain 102 genuine 

(non-smiling) faces and 1500 CombineM, 1000 CompleteM and 1000 SplicingM 

morphed images created form pairs of genuine images.  

The P&S face image dataset, a dataset of 142 print-scanned (P&S) images used for 

testing the discriminating power of the proposed PH-based morph detector where 71 

face images are genuine and the other 71 were splicing morphed images printed and 

then scanned with CanoScan model 9000F MarkII. All face images are segmented, 

such that only the frontal face region used to extract the landmarks, using dlib library 

version 19.2 (http://dlib.net/). PH calculation conducted using Ripser software 

package, publicly available in (https://github.com/Ripser/ripser).  

In what follows: UcombineM, UcompleteM, and UsplicingM, refers to Utrecht 

combined, Utrecht complete, and Utrecht splicing morphed images, respectively. 

Similarly: LcombineM, LcompleteM, and LsplicingM refers to London combine, 

London complete, and London splicing morphed images, respectively.  

Finally, for each of the databases, we adopt the three different training-testing 

scenarios (DTS) (30%, 50% and 70%) of the images in the dataset will be used, 

separately, for training the NN classifier, and the remaining images in the database 
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are used for testing the performance of PH-detector for all landmarks. These 

experiments are repeated 100 times and average performance rates, computed 

according to next section criteria, will be reported. 

5.3.2 Performance Measurements 
The classification performance of the various schemes will be determined in terms of 

the false negative rate (FNR), false positive rate (FPR), and the accuracy (Acc) rate. 

Here, 'positive' refers to the morph class and 'negative' refers to genuine class, i.e. 

FNR represents the rate of morphed face images classified as genuine and FPR 

represent the rate of genuine face images classified as morphed. The Acc is the 

average of true positive rate (TPR) and true negative rate (TNR). The classification 

experiments are conducted in such a way that a balanced set of images from genuine 

and morphed images used for training and testing. Because the number of genuine 

images is much less than morphed ones, repeatedly different sets of images selected 

from morphed images to be evaluated with genuine ones and then calculate the 

average classification performance. 

5.4 Results and Evaluations for ULBP and 8NSP Landmarks. 
We start by reporting the performance of the number of connected components, i.e. 

BX, computed from Rips complexes of different landmarks. The first set of 

experiments was aimed to determine the performance of PH-based detector build on 

8-NSP landmark and 2ULBP. The results are shown in Table (5-1), Table (5-2), 

Table (5-3) and Table (5-4), respectively. The results in Table (5-1), show that the 8-

NSP based detector performs significantly high when tested on the Utrecht DB and 

the P&S image dataset, but not so well when tested on the London DB where at best, 

the accuracy of around 85% is achieved when 70% training/testing protocol is 

adopted.  Except for the London DB, there is little or no effect of changing the 

training protocols. For the London DB, notable increases in accuracy is achieved 

when the percentage of training increased for all the three morphing attacks. The FNR 

and FPR rates for LcombineM and LcompleteM are somewhat disappointing but are 

comparable. In Table (5-2), the performance of the proposed morph detector is 

summarized when a single group (with all its 8-rotations) of 2ULBP used as 

landmarks. Displayed results, correspond only to the best performing groups namely 

𝐺¬	, 𝐺¯ or 𝐺å. 
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Datasets DTS FNR FPR Acc 

LcombineM 
70% 4.6 22.9 86.2 
50% 6.6 33.9 79.8 
30% 8 49.6 71.2 

LcompleteM 
70% 7 20.5 86.2 
50% 7.5 32.4 80 
30% 9.3 48 71.4 

LsplicingM 
70% 6 16.4 84.2 
50% 6.4 17 79.4 
30% 6.6 18.2 71 

UcombineM 
70% 4.2 2.2 96.8 
50% 4.4 2.6 96.5 
30% 5.6 4.8 94.8 

UcompleteM 
70% 0.8 0.6 99.3 
50% 1.1 0.8 99 
30% 3.8 1.7 97 

UsplicingM 
70% 0 0 100 
50% 0 0 100 
30% 0 0 100 

P&S 
70% 2.3 0.1 98 
50% 1.7 0 99 
30% 2.3 0.1 98.8 

Table 5-1: Performance of 8NSP landmark of PH-based morph detector using 𝑩𝟎. 

Datasets DTS FNR FPR Acc 

LcombineM 
(𝐺¬) 

70% 12.9 20.9 83.1 
50% 13.5 21.3 82.6 
30% 14.8 23.2 81 

LcompleteM 
(𝐺¬) 

70% 16.5 26.4 78.5 
50% 17.9 27.3 77.4 
30% 19.1 30 75.5 

LsplicingM 
(𝐺å) 

70% 6 16.4 94 
50% 6.4 17 93.9 
30% 6.6 18.2 93.4 

UcombineM 
(𝐺¬) 

70% 0 0 100 
50% 0 0 100 
30% 0 0 100 

UcompleteM 
(𝐺¯) 

70% 0 1.3 99.3 
50% 0.1 1.2 99.2 
30% 0.1 1.4 99.1 

UsplicingM 
(𝐺å) 

70% 2.6 6.5 95.4 
50% 3.6 7.4 94.5 
30% 5.5 9.4 92.6 

PS (𝐺¬) 
70% 7.2 10.2 91.3 
50% 8.6 11.2 90.1 
30% 13.8 13.3 86.4 

Table 5-2: Performance of 2ULBP landmark of PH-based morph detector using 𝑩𝟎 



89 
 

 The 100% accuracy result for UsplicingM is due to the obvious artefacts one gets 

from the morph generation process and the fact that we have a small dataset of 

genuine images may also result in some overfitting and hence we obtain 100% in 

UcombineM, too. Furthermore, frontal faces in face images in Utrecht dataset have 

bigger area which is due to the fact that the camera used to take images are closer 

than that of London DB. Finally, it also indicates that combine and splicing morphing 

technique destroy the topological features constructed from these specific landmarks. 

However, the full results for all groups of landmarks show in most cases a relatively 

small reduction in accuracy. To some extent, the patterns of accuracy achieved by 

these 2ULBP landmark groups are similar to those achieved by the 8-NSP landmarks 

with two exceptions.  The accuracy of detection of LsplicingM morphing increased 

significantly to about 93.5%, for all protocols, in comparison to those achieved by the 

8-NSP landmark as shown in Table (5-1). This may be explained by the known 

weakness of the splice morphing which produces visible artefacts. The other 

exception is the notable decline in detecting PS attacks by about 9% indicating higher 

sensitivity of the 8-NSP landmarks to PS morphing. Moreover, the effect of selected 

training/testing (DTS) protocol is somewhat marginal when using the 2ULBP 

landmarks with all databases including the London DB. In 2ULBP, FNR and FPR are 

much higher than that of 8-NSP in UcompleteM, UsplicingM and P&S. Comparing 

the results in the two tables, reveal differences in the performance of both 2ULBP and 

8-NSP detectors over the different datasets. In particular, both types of landmark 

selection schemes perform better on Utrecht DB than on London DB. This could be 

attributed to a number of factors including the differences in the 2 DBs in terms of 

gender, ethnic and skin-color diversity of the participants as well as differences in 

face images resolution in the two databases.   

Unfortunately, it is difficult to conduct a full like-with-like comparisons of the 

performance of our PH-based detectors with the state of the art  morph detectors (e.g. 

[99],[95]). The authors in [99], proposed a generalized Benford’s Law based detector 

(referred to as simple) and a linear SVM based detector. Besides testing their 

algorithm with the Utrecht and London database, they train and test their performance 

on their own acquired large database, not available publicly, of images (3186 

Genuine and 8269 morphed images captured with a number of different quality 

cameras). There is no indication on the adopted training-testing protocols or how 



90 
 

many times the experiment is repeated. Notwithstanding these factors, their “simple” 

scheme performs better than our schemes for the London DB, whereas at least one of 

our schemes outperform their simple scheme on the Utrecht DB. Our schemes have 

much lower FPR than their Linear SVM scheme.   

The second set of experimental tests were designed to investigate the effect of cross 

datasets training and testing on the performance of various detectors. So, instead of 

training NN on Utrecht DB only and testing images from Utrecht DB, we trained the 

classifier on the union of the Utrecht DB and the London DB while testing with the 

remaining images in either Utrecht or London. The results are displayed in Table (5-

3) for the 8-NSP landmark and Table (5-4) for the 2ULBP landmarks. 

Evidently, for the performance of the 8-NSP tested detector, shown in Table (5-3), 

very little or no change in accuracy was achieved when training with the images 

selected from U+L DBs (see Table (5-1)). The cross-DB performance for the 2ULBP 

based morph detectors on both datasets are shown in Table (5-4). While cross-DB 

training experiments helped increase the performance of the 2-ULBP detector on the 

London DB by about 3% across the different training-testing protocols. No 

improvement was detected when testing with images in the Utrecht DB.   

Training Testing DTS FNR FPR Acc 

(U+L) combineM LcombineM 
70% 4.6 22.9 86.2 
50% 6.6 33.9 79.7 
30% 8 49.6 71.2 

(U+L) completeM LcompleteM 
70% 7 21.5 85.7 
50% 7.5 33.3 79.6 
30% 9.3 49 70.9 

(U+L) splicingM LsplicingM 
70% 6 16.4 84.2 
50% 6.4 17 79.4 
30% 6.6 18.2 71 

(U+L) combineM UcombineM 
70% 0 1.4 99.3 
50% 0.1 3.9 98 
30% 0.1 9.5 95.2 

(U+L) completeM UcompleteM 
70% 0.3 0.4 99.7 
50% 0.2 2.9 98.4 
30% 0.2 6.8 96.5 

(U+L) splicingM UsplicingM 
70% 0 0.3 99.8 
50% 0 0.8 99.6 
30% 0.03 1.4 99.3 

Table 5-3: Cross Database performance of 8NSP landmark PH-based morph detector using 𝑩𝟎. 
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Beside the differences mentioned earlier between the participants in the two 

databases, there are other factors that may explain the fluctuation of performance of 

the PH-based morph detector, shown in Tables (5-3) and (5-4), when testing images 

from Utrecht DB and from London DB been used respectively. First, the resolution of 

the two datasets used for testing are not consistent, Utrecht DB images have 

resolution of 900 by 1200 whereas London DB images are of 1350 by 1350. 

Secondly, the London DB is more diverse than Utrecht DB. More than 30% of 

images in London DB are (non-white) Asian and dark-skin participants whereas this 

ratio is below 10% in Utrecht DB. 

 

Training Testing DTS FNR FPR Acc 

(U+L) combineM LcombineM 
70% 0.5 21.3 89.1 
50% 1.1 32.8 83 
30% 17 48.5 74.9 

(U+L) completeM LcompleteM 
70% 1 21.1 88.9 
50% 1.5 32.9 82.8 
30% 2.3 49.1 74.3 

(U+L) splicingM LsplicingM 
70% 6 16.4 94 
50% 6.4 17 93.9 
30% 6.6 18.2 93.4 

(U+L) combineM UcombineM 
70% 0 0 100 
50% 0 0 100 
30% 0 0 100 

(U+L) completeM UcompleteM 
70% 0 1.3 99.3 
50% 0.1 1.2 99.2 
30% 0.1 1.4 99.1 

(U+L) splicingM UsplicingM 
70% 0.3 2.1 98.8 
50% 0.2 10.2 94.8 
30% 0.5 16.5 91.5 

Table 5-4: Cross Database performance of 2ULBP landmark of PH-based morph detector using 𝑩𝟎. 

 

So far, we illustrated the results of computed number of persistent BX from 

automatically extracted image landmarks. Next, we show the results of calculated 

number of persistent BY from using 2ULBP and 8NSP landmarks and the two 

databases mentioned earlier, i.e. Utrecht DB and London DB.  Table (5-5) shows that 

except for LcombineM, the number of 1-dimensional holes, i.e. 𝐵Y, is performing as 
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close as (sometime the same) the number of connected components calculated from 

Rips SC built on 2ULBP landmarks to distinguish morphed faces from genuine ones. 

Datasets DTS FNR FPR Acc 

LcombineM (𝐺¬) 
30%  19.6 25.2 77.5 
50% 19.5 25.3 77.6 
70% 18.4 26.1 77.7 

LcompleteM (𝐺¬) 
30%  23.3 31.7 74.7 
50% 20.6 31.4 75.6 
70% 19 31.4 76.3 

LsplicingM (𝐺å) 
30%  14.1 19 91.6 
50% 12.7 18.5 92.5 
70% 10.9 17.8 92.8 

UcombineM (𝐺¬) 
30%  0 0 100 
50% 0 0 100 
70% 0 0 100 

UcompleteM (𝐺¬) 
30%  0.2 10.2 94.8 
50% 0.02 6.8 96.6 
70% 0 4.7 97.6 

UsplicingM (𝐺¬) 
30%  5.2 7.1 93.8 
50% 4.8 6.8 94.2 
70% 4.7 6.9 94.6 

PS (𝐺ä) 
30%  9.12 7.74 90.9 
50% 5.6 6.6 93.3 
70% 5 13.6 94.1 

Table 5-5: Performance of the number of 1-dimensional homology features of 2ULBP landmarks. 

 

In general, similar to 𝐵X, computed number of 𝐵Y is performing better on Utrecht 

database than London DB due to the reasons we discussed earlier in this section. 

8NSP landmark selection method, on the other hand, performed poorly when the 

number of 𝐵Y  computed for the Rips SCs constructed by this landmark selection 

method. In Table (5-6), we summarize the results we obtained for calculating the 

number of 𝐵Y when 8NSP used as a landmark selection criterion. The only positive 

point about using 𝐵Y together with 8-NSP landmark selection method is that the 

number of FPR, i.e. number of genuine images classified as morphed image, is lower 

than that of 2ULBP method. Again, Utrecht database is slightly better than London 

DB when using 8-NSP and 𝐵Y, which confirms that our algorithms for landmark 

selection and PH feature generation works better on Utrecht DB than London DB. 
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Dataset DTS FNR FPR Acc 

LcombineM 
30% 53 17.7 49 
50% 53.8 16.2 48.5 
70% 53.7 15.2 48.6 

LcompleteM 
30% 66.2 15.8 38.1 
50% 67.4 13.9 37.1 
70% 67.4 12.8 37.4 

LsplicingM 
30% 68.07 16.4 36.7 
50% 69.5 14.9 35.5 
70% 69.7 14.1 35.4 

UcombineM 
30% 42.7 33.04 62.1 
50% 41.6 29.7 64.4 
70% 39.7 28.9 65.7 

UcompleteM 
30% 47.8 38.3 56.9 
50% 47.6 36.8 57.8 
70% 47.2 37.2 57.8 

UsplicingM 
30% 45.7 33.4 60.5 
50% 43.4 30.7 62.9 
70% 42.4 30.07 63.7 

PS 
30% 44.5 35.1 53.9 
50% 41.4 32.5 57.3 
70% 39.2 30.7 58.5 

Table 5-6: Performance of the number of 1-dimensional homology features of 8NSP landmarks. 

 

To further understand and analysis the features we extracted from the two databases, 

we use Mapper algorithm, explained in section (5-6), as an attempt to get more 

insight into the nature of the homological features we used to discriminate genuine 

faces from their morphed counterparts. 

5.5 Classification Performance of R-LBP and CS-LBP 
 In this section we illustrate the performance of two more image landmark selection 

criteria which we discussed in section (5.1.3) and section (5.1.4), namely R-LBP and 

CS-LBP.  Radial Local Binary Patterns (R-LBP) is a novel approach we proposed for 

the purpose of landmark selection in this thesis, together with the rest of the 3 

landmark selection methods to construct Rips complexes on digital images for the 

purpose of image tampering detection. The experiments conducted on using one 

morph creation method and the two datasets of Utrecht and London, i.e. LcombineM 

and UcombineM. There are two reasons behind this, first is if our algorithm can 
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detect morphs created using Combined approach, then most certainly it will detect 

splicing and complete morph face images. Because in practice, morphs created by 

splicing and complete methods will have visible artifacts and is easier to detect than 

combined morph. The advantages of combined morph as well as the limitation of 

splicing and complete morph have been discussed in detail in chapter 3, section 

(2.3.1). Secondly, to save computational time because the PH calculation takes longer 

in R-LBP and CS-LBP in comparison with 2ULBP and 8NSP landmark methods. 

This is mainly because the number of selected pixel landmarks is increasing when we 

use 16 bins to group images of size 413x531 instead of 256 bins which was the case 

in 2ULBP. Typically for 2ULBP and 8NSP landmark selection criteria, PH 

calculation for an image in London DB takes (1-15) seconds to finish for each 

rotation whereas in Utrecht DB it takes between (1-40) seconds to finish depending 

on the structure of the face and consequently the number of points feed into Ripser 

software for calculation. These numbers are increased to (1-120) seconds for London 

DB and 1-200 seconds for Utrecht DB when R-LBP used as a landmark selection 

criterion. In the same vein, images in London DB took 10-300 seconds to compute 

their PH features for one rotation whereas face images in Utrecht DB takes about 

500-1000 seconds to calculate their PH features in both dimensions when we use CS-

LBP as landmark selection approach. The experiments were conducted using a 

macOS laptop with 2.7 GHz Intel Core i5 and 8GB of RAM. Parallel computing is 

one of the solutions which can be used to tackle the issue of computational time, but 

we leave this issue as a future work as it is not the main focus of this thesis.  

We use KNN (with k=1) classifier to measure the performance of the R-LBP and we 

selected 70% of the images for training purposes and the rest for testing. Each 

experiment repeated 100 times and we report the average accuracy together with false 

positive rate and false negative rates. We remind the reader that false positive rate is 

the percentage of genuine face images misclassified as morphed faces while false 

negative rate is the percentage/rate of morphed face images incorrectly classified as 

genuine faces. Unlike the case of 2ULBP codes, here we only have 3 uniform R-LBP 

groups which have binary patterns with more than one rotation, see figure (5-1) in 

section (5.1.3). Also, instead of having 8-rotationsas which was the case with 2ULBP 

codes, here we only have 4-rotations. Therefore, we opt to use different approaches to 
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concatenate the topological features of different groups of R-LBP to boost the morph 

detection performance which can be seen in the tables below.  

  

Dataset R-LBP geometry FNR FPR Acc 

LcombineM 

GY 26.4 38.6 67.9 
Gg 16.4 18.4 82.7 
Gä 30.8 30.9 69.1 

GY & Gg 23.2 27.1 75 
GY & Gä 23.8 29.8 73.4 
Gg & Gä 17.2 17.1 82.8 

GY & Gg & Gä 16.9 14.83 84 

UcombineM 

GY 7.2 7.3 92.8 
Gg 4.4 4.5 95.5 
Gä 9.4 19.6 86.7 

GY & Gg 3.6 6.8 95.2 
GY & Gä 5.8 9.1 92.9 
Gg & Gä 2.5 5.5 96.4 

GY & Gg & Gä 3.1 5.5 96 
Table 5-7: Performance of R-LBP using B0 as topological feature to detect morphs 

Result in Table (5-7) indicates that the best performance one can obtain for 

LcombineM is 82% with 𝐺g when only one geometry of R-LBP used to construct 

Rips SC and then calculated number of persistent 𝐵X used as a feature vector. The 

overall accuracy of morph detection improved together with FPR and FNR when we 

concatenate topological features extracted from 𝐺Y, 𝐺g and 𝐺ä. On the other hand, 

consistent with the result of other landmarks and different topological features, the 

performance of morph detection in Utrecht DB is better than London DB in general. 

Single geometries of R-LBP codes are performing almost as good as concatenating 

all of the geometries together. For example, 𝐺g of R-LBP is achieving accuracy of 

95.5% with 𝐹𝑁𝑅 = 4.4 and 𝐹𝑃𝑅 = 4.5, whereas combining 𝐺Y + 𝐺ä or 𝐺Y + 𝐺g +

𝐺äimproves the overall accuracy by only 0.5% but higher FPR. Lastly, comparing the 

results of 2ULBP and R-LBP for London DB, 2ULBP’s performance is better in 

overall accuracy and FNR while R-LBP’s FPR is better by 8%. 
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Dataset R-LBP geometry FNR FPR Acc 

LcombineM 

GY 24.9 32.7 71.5 
Gg 17.2 16.8 82.9 
Gä 30.9 34.2 67.5 

GY & Gg 14.4 14.2 85.8 
GY & Gä 24.3 32 72 
Gg & Gä 12.8 12.2 87.4 

GY & Gg & Gä 14.1 11.9 86.8 

UcombineM 

GY 5.5 6.4 94.1 
Gg 9.7 6.8 91.4 
Gä 7.2 8.2 92.4 

GY & Gg 4.7 7.7 94.1 
GY & Gä 5.5 7.3 93.8 
Gg & Gä 3.3 10.5 93.96 

GY & Gg & Gä 3.1 5.9 95.9 
Table 5-8: Performance of R-LBP using B1 as topological feature to detect morphs. 

Using the persistent 𝐵Y computed on the R-LBP landmarks, the overall performance 

of London DB improved in terms of FNR, FPR and accuracy. Comparing this result 

of London DB with the results obtained when 2ULBP method used as a landmark 

selection, R-LBP is better in terms of overall accuracy by 9% while FNR and FPR 

improved by 4% and 10% respectively. When it comes to Utrecht DB, 2ULBP 

performed perfectly using persistent 𝐵Y whereas the best performance we obtained 

using R-LBP is when we concatenated 𝐵Y features calculated from all geometries of 

R-LBP. The next question arising from this analysis is that: Does the concatenation of 

𝐵X and 𝐵Y help to improve the performance of morph detection? in a single geometry 

of R-LBP or more. The results in the next table, Table (5-9), answers the question 

raised earlier. It can be seen from Table (5-9), that concatenating persistent 

topological features of 𝐵Y and 𝐵X is not improving the morph detection performance 

significantly in either of the datasets nor in any specific geometry (or a fusion of 

geometries) of R-LBP.  

Next, we demonstrate the results obtained from CS-LBP landmark selection method 

for the purpose of morph detection on both Utrecht and London databases. We follow 

the same experimental setting we setup for R-LBP in terms of morph creating method 

selection, classifier and feature concatenation.  
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Dataset R-LBP geometry FNR FPR Acc 

LcombineM 

𝐺Y 24.4 36.9 69.9 
𝐺g 16.7 16.5 83.4 
𝐺ä 29 33.7 68.8 

𝐺Y & 𝐺g 16.9 17.4 82.8 
𝐺Y & 𝐺ä 24.4 29.8 73.1 
𝐺g & 𝐺ä 16.9 17 82.9 

𝐺Y & 𝐺g & 𝐺ä 16.7 15.5 83.9 

UcombineM 

𝐺Y 7.5 7.7 92.4 
𝐺g 7.2 10.5 91.5 
𝐺ä 6.9 10.9 91.6 

𝐺Y & 𝐺g 3.6 7.3 95 
𝐺Y & 𝐺ä 2.5 8.2 95.3 
𝐺g & 𝐺ä 2.8 6.8 95.7 

𝐺Y & 𝐺g & 𝐺ä 2.5 6.4 96 
Table 5-9: Performance of R-LBP concatenating B0 and B1 of topological feature to detect morphs. 

We show the results we obtained for CS-LBP through tables (5-10) -(5-12). We took 

similar approach as R-LBP to analyse the performance of CS-LBP landmark selection 

criterion which is based on topological features in different dimensions.  

Dataset CS-LBP codes FNR FPR Acc 

LcombineM 

𝐺Y 24.6 32.5 71.4 
𝐺g 21.4 30.0 74.3 
𝐺ä 22.69 32.7 72.3 

𝐺Y & 𝐺g 18.3 30.6 75.6 
𝐺Y & 𝐺ä 17.4 30.3 76.2 
𝐺g & 𝐺ä 16.7 30.4 76.5 

𝐺Y & 𝐺g & 𝐺ä 13.8 30.0 78.1 

UcombineM 

𝐺Y 6.8 11.6 91.2 
𝐺g 5.6 10 92.7 
𝐺ä 7.3 13.2 89.8 

𝐺Y & 𝐺g 5.1 9.5 92.7 
𝐺Y & 𝐺ä 7.7 10.5 90.1 
𝐺g & 𝐺ä 3.2 11.8 92.5 

𝐺Y & 𝐺g & 𝐺ä 6.4 10.9 91.4 
Table 5-10: Performance of CS-LBP using B0 as a topological feature to detect morphs. 

As it was the case with previous landmark selection criteria, CS-LBP performs better 

on Utrecht DB in comparison with London DB. The overall conclusion one can make 

for both topological features, i.e. 𝐵X and 𝐵Y, extracted based on CS-LBP is that it is 

not performing as good as R-LBP, 2ULBP and 8NSP landmark selection methods to 
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Dataset CS-LBP geometries FNR FPR Acc 

LcombineM 

𝐺Y 20.8 30.3 74.5 
𝐺g 23.4 28.6 73.9 
𝐺ä 23.4 27.0 74.8 

𝐺Y & 𝐺g 17.7 24.2 79.1 
𝐺Y & 𝐺ä 19.8 32.0 74.1 
𝐺g & 𝐺ä 19.9 25.1 77.5 

𝐺Y & 𝐺g & 𝐺ä 16.7 26.9 78.2 

UcombineM 

𝐺Y 6.2 15.4 89.9 
𝐺g 7.6 12.4 90.4 
𝐺ä 9.5 14.1 88.2 

𝐺Y & 𝐺g 4.9 11.9 91.6 
𝐺Y & 𝐺ä 6.8 11.4 90.9 
𝐺g & 𝐺ä 8.2 15.9 87.9 

𝐺Y & 𝐺g & 𝐺ä 2.7 11.8 92.7 
Table 5-11: Performance of CS-LBP using B1 as a topological feature to detect morphs. 

 

Dataset CS-LBP geometry FNR FPR Acc 

LcombineM 

𝐺Y 21.9 30.3 73.8 
𝐺g 18.4 25.1 78.2 
𝐺ä 19.4 28.5 76.0 

𝐺Y & 𝐺g 14.4 27.1 79.3 
𝐺Y & 𝐺ä 15.8 27.6 78.3 
𝐺g & 𝐺ä 16.5 27.2 78.2 

𝐺Y & 𝐺g & 𝐺ä 12.9 27.5 79.8 

UcombineM 

𝐺Y 5.9 8.8 92.6 
𝐺g 4.9 7.5 93.8 
𝐺ä 5.9 10.5 91.8 

𝐺Y & 𝐺g 4.2 9.2 93.3 
𝐺Y & 𝐺ä 6.8 9.1 92.0 
𝐺g & 𝐺ä 3.182 9.5 93.6 

𝐺Y & 𝐺g & 𝐺ä 4.091 10.9 92.5 
Table 5-12: Performance of CS-LBP using B0 and B1 as a topological feature to detect morphs. 

differentiate morphed faces from genuine ones. This conclusion is true for different 

approaches of topological feature concatenations as well as feature concatenation 

between different groups of CS-LBP.  

Beside the poor performance of CS-LBP in differentiating morphed faces from 

genuine face images, the computational time needs to extract topological features for 
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one rotation (any geometry) can go to beyond 1000 seconds which makes this 

approach impractical in real life.  

5.6 Insight into Morphing Problem  
 The clear variations in the performance of the above PH-based morph detectors when 

tested with the two main datasets, may not be fully explained by the variations 

between the participant groups. In order to have a better insight into this problem, we 

conducted two basic comparative studies of the genuine and morphed images in the 

two databases: a statistical analysis of the landmarks and a Mapper-based clustering.  

5.6.1 Landmark Statistics 
Ahonen et al. in [130], reported that around 90% of face image pixel values have one 

of the ULBP codes and Ojala et al. [92] noticed that just under 90% of texture images 

pixel values are of type uniform LBP codes. We conducted some statistical analysis 

of the distribution of image pixel codes within each of the landmark sets (ULBP, R-

LBP, CS-LBP) that have been used in the various experiments conducted in this 

chapter. In the table below, we only present the outcome for the ULBP, because no 

prior information is available in the literature on the distributions of the R-LBP or the 

CS-LBP for large datasets of face images. Our current analysis was carried out on 

samples of genuine and morphed images from the two databases separately.   

 

London DB Morphed Genuine Utrecht DB Morphed Genuine 

GY 0.339682 0.415242 GY 1.309142 0.815923 

Gg 1.345604 1.311656 Gg 3.194411 3.19743 

Gä 1.522883 1.424035 Gä 2.795207 2.885472 

Gå 1.266359 1.244549 Gå 3.524773 3.390719 

G¬ 1.732496 1.634599 G¬ 3.510042 3.826637 

Gæ 2.146982 1.999673 Gæ 4.07204 4.38027 

𝐺¯ 1.158143 1.14897 G¯ 2.925474 2.930188 

𝐺X 87.8033 87.6744 𝐺X 69.35 72.96 

𝐺ç 1.284549 1.546877 𝐺ç 4.31891 1.613361 

Table 5-13: Face image pixel distribution ratio according to ULBP groups of Utrecht and London DB. 

These statistics demonstrates a clear variation in the percentages of the various 

groups of the ULBP landmarks within each of the two databases.  This seems to 
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provide some partial explanations as to why the various PH-detectors performance for 

the London database is different than that of utrecht dataset. This can be seen by 

noting that (1) for each landmark the gap between their % in the genuine and 

morphed images in the London database are much smaller than the corresponding 

gaps in the Utrecht database.  On the other hand, when the classifier is trained and 

tested cross-databases we expect that the average % gaps between genuine and 

morphed images are reduced when compared to the corresponding gaps for the 

Utrecht database but slightly larger than those for the London database. This may 

provide some explanations as to why combining images from two databases do not 

lead to better performance. These are only partial explanations because similar 

numbers of landmarks do not necessarily yield topologically similar shapes and 

homology invariants at distance thresholds. Therefore, in the next section we should 

use mapper as a clustering analysis to complement the statistical analysis conducted 

in this section 

5.6.2 Mapper-Based clustering 

Mapper is another TDA tool, beside Persistent Homology, that can be used to get 

more (topological/homological) insight into high dimensional datasets. We 

introduced the basics of mapper algorithm in chapter two, and here we discuss its use 

settings for our objective of understanding the differences in the clustering of the PH-

feature vectors for morphed as well genuine face images selected randomly from the 

two databases we used for the purpose of morph detection as well as the power of the 

topological features used to design PH-based morph detection tool. We used Keppler 

mapper in Jupyter notebook (ipython version 7.6.1 using anaconda3) with two lenses 

and k-means as our clustering step with 𝑘 = 2. The two lenses used are Isolation 

Forest and 𝑙g-norm, and the binning overlap of two consecutive bins is 0.5.   

Isolation Forest is an efficient popular algorithm proposed for the purpose of anomaly 

detection. It is easy to extend for parallel computing and it has been proved to 

perform very well in anomaly detection in comparison with other anomaly detection 

algorithms. The hypothesis under which isolation forest works is that ‘few and 

different’ data are suspected to be anomalies, whereas other anomaly detection 

techniques rely on a constructed profile for the input data and samples that do not 

conform to this profile will be treated as anomalies. Furthermore, isolation forest 

approach sub-samples and processes input data in a tree structure manner and 
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randomly prunes values of the selected features of the input data. Samples that travel 

deep through the tree branches are treated as normal samples whereas samples with 

short aggregated lengths to the tree branch are treated as anomalies. In other words, 

each sample is attached an anomaly score reflecting the aggregated length of the 

sample along the constructed binary trees. We direct interested reader to see 

[135][136] for details on how isolation forest works and further technicalities.  

Isolation forest is used here as one of the lenses to highlight special homological 

features that contribute to morph detection and the 𝑙g-norm quantify the data spread 

to gain more local information. These two lenses combined and used as a 2-

dimensional lens. The output from mapper algorithm is a simplicial complex where 

each node represents a cluster of images with similar feature characteristics. The 

bigger the size of the node in the mapper output, the bigger the number of images it 

represents. 

 

Figure 5-5: Mapper Algorithm output of 𝑮𝟒-ULBP landmark of (left)Genuine faces of Utrecht and London DB 
and (b) genuine &morphed faces of Utrecht DB and London DB. 

It can be seen from figure (5-5) that the two datasets, Utrecht DB and London DB, 

are clustered quite apart and hence different in terms of the topological features 

computed from them. To some extent, this diagram together with the above statistical 

analysis justifies the results obtained from Table (5-3) and Table (5-4). In fact, we 

can see that combining the two datasets at training phase is highly unlikely to 

improve the performance of morphing detection. It is worth to mention that the 

position of the nodes in figure (5-5) is not important, it is the neighborhood 

connectivity of the nodes that is important, i.e. proximity of the neighboring clusters.  

The class label of images that fall within a cluster node is dependent of the class of 

Utrecht Genuine Faces

Utrecht Genuine & morphed Faces

London Genuine  Faces
London Genuine & morphed Faces
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the images in the cluster as well as that of images in neighboring clusters.  Note that 

in the left of figure (5-5) the genuine images in the two databases are clustered in 

different regions, and when we added the morphed images together with genuine face 

images, clusters of the images from the two databases remained far away from each 

other. This explain that the differences in gender ratio, ethnicity, resolution and color 

that the two datasets have are reflected in the mapper results. This confirms that one 

needs different datasets, maybe many different datasets, to build strong morph 

detection tools which are not biased towards a particular ethnicity or skin-color. We 

also anticipate the need or fusing more landmark-based schemes and/or other types of 

landmarks. 

We complemented this experiment by using the same approach to get more insights 

within each individual dataset with respect to topological features of 0 and 

1dimension for some geometries of 2ULBP landmark. The input to mapper is PH 

features extracted from 2ULBP landmark which are 𝐵X and 𝐵Y, i.e. the number of 

connected components and 1-dimensional holes/loops. The dimension of the feature 

vectors is 800, as we have 8 rotations in each 𝐺ò of 2ULBP and using persistent 

binning, we bin each constructed persistent barcode 100 times. This approach is 

different from the usual approach of using the raw data as an input of mapper 

algorithm and opens the door to use mapper as a tool to measure the quality of 

extracted features. 

 

Figure 5-6: Mapper projection/output of PH features extracted from Genuine and combined morph faces of 
Utrecht DB for G1-to-G3 of 2ULBP landmark of B0 and B1. 

G1-2ULBP-!" G2-2ULBP-!" G3-2ULBP-!"

G1-2ULBP-!# G2-2ULBP-!# G3-2ULBP-!#
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Figures (5-6)-to-(5-8), illustrate that topological features of both dimensions 

successfully distinguish genuine face images from (combined) morphed face images. 

The red nodes represent genuine face images and the blue-colored nodes are morphed 

images. Each node contains a label (or labels) of the images we insert to mapper such 

that labels from 1-75 are for genuine faces and 76-150 is for morphed faces. The 

color-bar on the left of each graph depicts this information. A bold red node(s)/region 

indicates that labels clustered by these nodes are strongly indicating to be genuine 

faces and vice versa for the blue/morphed faces. 

 

Figure 5-7: Mapper output of PH features extracted from Genuine and combined morph faces of Utrecht DB for 
𝑮𝟒-to-𝑮𝟔 of 2ULBP landmark of B0 and B1. 

 

Figure 5-8: Mapper projection of PH features extracted from Genuine and combined morph faces of Utrecht DB 
for G7 of 2ULBP landmark for B0 and B1. 

We follow the same approach to analyse London DB where we used 102 genuine 

faces together with 102 combined morphed face images. Figures (5-9)-to-(5-11), 

shows the mapper algorithm output when we input the PH features extracted from 

genuine and morphed faces based on 2ULBP landmarks. Again, red nodes represent 

G4-2ULBP-!" G5-2ULBP-!" G6-2ULBP-!"

G4-2ULBP-!# G5-2ULBP-!# G6-2ULBP-!#

G7-2ULBP-!" G7-2ULBP-!"
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genuine faces and blue nodes/regions represent morphed faces. It is somehow 

straightforward to see that the distribution of the nodes according to the two colors 

(red and blue) is not similar as that of the Utrecht DB, and hence the classification 

performance is not as good as the Utrecht DB, see Table (5-2) and Table (5-5). 

Nonetheless, there are still some separations but the orange nodes/region in the 

mapper output of London DB is higher than that of Utrecht DB which means more 

uncertainty. For example, in the mapper output SC in Figure (5-8) we can see many 

red/orange nodes which represent genuine face images being clustered very close 

to/with the blue nodes region which contain morphed face images.   

 

Figure 5-9: Mapper output of PH features extracted from Genuine and combined morph faces of London DB for 
G1-to-G3 of 2ULBP landmark of B0 and B1. 

 

Figure 5-10: Mapper output of PH features extracted from Genuine and combined morph faces of London DB for 
G4-to-G6 of 2ULBP landmark of B0 and B1. 

G1-2ULBP-!" G2-2ULBP-!" G3-2ULBP-!"

G1-2ULBP-!# G2-2ULBP-!# G3-2ULBP-!#

G4-2ULBP-!" G5-2ULBP-!" G6-2ULBP-!"

G4-2ULBP-!# G5-2ULBP-!# G6-2ULBP-!#
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Figure 5-11: Mapper projection of PH features extracted from Genuine and combined morph faces of London DB 
for G7 of 2ULBP landmark for B0 and B1. 

 

5.7 Chapter Summary 

In this chapter, we described the design of our proposed PH-based face morph attack 

detector using not only the ULBP landmarks but for several newly introduced types 

of image texture landmarks. We also presented a detailed analysis of the performance 

of the PH-based morph detectors using these various landmark selection methods. 

Two different databases of face images, together with a dataset of P&S images, were 

used to test the performance of PH-based morph detection approaches as well as 

different training and testing schemes. In addition the issues raised in chapter 4 have 

been addressed whereby the morph detection algorithm proposed in this chapter is 

topological construction threshold independent, exploiting Persistent Homology. 

Unlike chapter 4, topological feature extracted from persistent barcodes are all 

concatenated in one feature vector and feed into KNN classifier. The fact that out PH-

based morph detection algorithms can detect morphed faces in different datasets, 

albeit inconsistent performance, is a sign of strength of the topological features for 

morph detection problem. We also illustrated the use of the mapper clustering tool 

and statistical analysis of the presence of the various studied landmarks to 

understand/justify the discrepancies in performance of PH-based detector for different 

databases of images. 

 

 

G7-2ULBP-!" G7-2ULBP-!"
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Chapter 6  
Further PH-based Image Distortion 

Detectors  

In previous chapters, PH-based methods were developed and used to detect fake face 

images, constructed through morphing attacks, that blends together certain texture 

features from different face images for malicious purposes. The different level of 

success achieved by a variety of PH-based detectors rely on the level of changes to 

the spatial distributions of certain texture landmarks in a manner often undetectable 

by average human observer. Morphing is only one example of image analysis 

applications that cause such type of texture distortions, and these distortions could be 

due to a variety of not necessarily malicious acts. Such applications are expected to 

benefit from our PH-based approach to design detectors. Moreover, measurable 

distortion in the spatial distribution of certain primitive texture landmarks can be used 

as a measure of image quality, so any image reconstruction can benefit from TDA 

consideration. In this chapter, we investigate the viability of using TDA-based 

approach in other than the malicious morphing attacks. We only present 3 case 

studies of image processing/analysis applications and demonstrate strong viability for 

effective use of TDA approach, namely (1) steganalysis for discovery of hidden 

secrets in digital images, (2) digital image inpainting, and (3) medical image analysis 

for diagnosing breast tumours. 

6.1 PH-based Approach to Digital Steganalysis  

In the digital world, online transmission is the main method to exchange sensitive and 

private information in sectors like mobile banking/commerce, sensitive cloud 

transactions, and crime/terrorism fighting and many more. The important question 

arises when it comes to using a carrier (e.g. a digital image) to send some 

sensitive/secret information how one can be certain about authenticity and 

confidentiality of the secret? One of the mechanisms designed and developed in the 

last two to three decades to protect sensitive data from an unauthorized person or 
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misuse of the private data is known as Steganography. Roughly speaking, 

steganography is the science of hiding information (e.g. biometric data) into host 

innocuous image (cover-object, or carrier) in such a way that no suspicion could be 

raised by onlookers. Steganography can also be seen as a technique to protect 

sensitive biometric data (e.g. fingerprint, iris, face, voice, …etc.) while transmitting 

over open network channels. Here, the focus is on the steganography techniques 

where the carrier is a digital image. Main challenges in digital steganography are (i) 

capacity, i.e. the amount of sensitive information that could be hidden inside the 

carrier, (ii) invisibility of the secret, and (iii) robustness against attacks that aim to 

change or render the secret unreadable by the legitimate recipient. In digital 

steganography, the secrets are assumed to have the form of a binary string the 

individual bits of which are used to change the carrier pixel values, in very tiny way 

so that only the legitimate recipient can read. Here, we only consider grayscale image 

and all hiding procedures are implemented in the spatial domain. 

Steganalysis, is the art of detecting carriers (images) that contain sensitive 

information by unauthorized persons. The main goal of steganalysis is to demonstrate 

enough evidence whether an image does (or does not) contain any hidden data. There 

are different approaches of analysing suspect digital images but mostly based on 

extensive statistical analysis, with different aims including mere identifying an image 

as a carrier or not, extracting hidden secret messages and destroying the secret data 

[137]. We aim to design a PH-based carrier detection without extracting the 

embedded secret. Our approach is based on the accepted wisdom that any attempt to 

hide a secret inside an image results in changes to texture, no matter how tiny.  

To start investigating and exploiting the use of TDA as a steganalysis tool, we choose 

100% payload capacity with 3 different commonly used steganography schemes to 

hide the secret inside a digital image. Here, 100% capacity means that all pixel values 

of the carriers are used to hide information.  

This case study, was conducted in collaboration with the then fellow Buckingham 

PhD student Dr Rasber Rashid (currently at Koya University-Iraqi Kurdistan) whose 

research was focused on secretly embedding biometric data, converted into binary 

string as a mean of protecting their security when transmitted by law enforcing 

agencies over open channels. Three steganographic techniques were investigated in 



108 
 

that work, namely the Traditional Least Significant Bit (TLSB), the LSB-Witness 

[137] and the content-based Spatial Universal Wavelet Relative Distortion (S-

UNIWARD) [138]. For this section to be self-content, we shall briefly describe these 

schemes.   

6.1.1 Least Significant Bit (LSB) Steganography 

There are many LSB based steganography schemes but all read the cover image 

pixels as an 8-bit binary strings. The LSB simply refers to the right-most bit value in 

the pixel binary sequence. For example, in the following binary bit strings 11001000 

and 10110001, LSB is 0 and 1 consequently. LSB based secret hiding process the 

secret bits one by one the LSB of a single pixel in the cover image is replaced (or 

XORed) with current secret bit.  To prevent detection of the secret, it is necessary not 

to embed the secret bits sequentially. In this case, one can give the secret bit string a 

random shuffle, agreed in advance with the recipient.   The popularity of LSB-based 

secret hiding is that cover pixel values are either changed by 1 or remain unchanged, 

resulting in small invisible changes to pixel values and no artefacts could be detected 

by human eye, see below figure. Here we consider the following two such schemes 

for detection by a PH-based tool. 

TLSB: traditional-LSB is simply replacing the LSB in cover image with that of the 

secret message bit by bit. 

LSB-Witness [137]: In this technique, the 2nd LSB will act as a witness for 1st LSB 

in the cover image. Roughly speaking, the steganographer will change the 2nd LSB 

plane to 1 when the secret message bit is not equal to the 1st LSB bit of the cover 

image, otherwise change the 2nd LSB to 0. 

 

Figure 6-1: Original Cover image and the stego-image using TLSB, LSB-witness and S-UNIWARD 
steganography. Note that there are no visible artefacts that can be seen by layman eyes. 

 

TR_LSB LSB-Witness S-UNIWARDOriginal
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6.1.2 Content-Based Steganography  

Content-based steganographic scheme refers to schemes for which the embedding 

benefits from the knowledge of the specific structure/nature of the content to be 

embedded. One of such schemes is known as the S-UNIWARD, proposed by V. 

Sedighi et al [138], that efficiently embed secrets into images that share similar 

characteristics with the secret sequence in order to minimize the necessary changes in 

the cover image and maintain high quality and robustness. S-UNIWARD works to 

minimize the overall distortion of the cover image especially for those areas of the 

cover image rich with textures. It is a spatial domain hiding scheme which utilizes the 

amount of distortion present between both original cover image and that of the secret 

message (stego image).The scheme utilises the distortion function in order to find the 

best locations for embedding and it is perceived to be robust against existing 

steganalysis tools. 

The main question is how one can tell whether there is a secret message in the input 

digital image or not, in the absence of prior information about the input digital image. 

Most of the steganalysis techniques depend on a statistical approach to 

detect/measure the probability of an image being embedded with some sort of data or 

not. Just as in the case of face image morphing, hiding a message in a digital image 

results in tiny invisible distortion in the cover image. Hence, the above question is 

expected to benefit from applying similar topological approach to our approach to 

prevent morphing attacks.  

In general, there are two categories of steganalysis techniques known as specific and 

universal steganalysis techniques. Specific steganalysis techniques are designed to 

target specific steganography methods to evaluate the robustness of these specific 

embedding techniques. These specific steganalysis methods may not detect stego-

images produced by other steganographic methods [139]. For example, if a 

steganalysis technique developed to detect only TLSB technique, it may not detect 

non-LSB methods. Universal steganalysis methods, on the other hand, are general 

methods designed to detect stego-images without depending on any specific 

steganographic methods. Our method is labeled under a universal approach as it can 

detect LSB-based methods (e.g. TLSB and LSB-Witness) as well as content-based 

methods (e.g. S-UNIWARD). Next, we discuss the experimental results of using our 

PH-based tool for the detection of stego images. 
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6.1.3 PH-based Steganalysis – Experiments and Results 

The various methods of hiding a secret binary string in a digital image, described 

above, results in relatively small changes to pixel values. Therefore, one expects 

some changes in the membership of the various groups of LBP landmarks, whereby 

some elements of a ULBP sets change to become a member of a different ULBP 

group or become non-uniform and vice versa [140].  This means that even if the 

number of landmarks in a group does not change significantly, their spatial 

distribution might change.  Therefore, we proposed to design a PH steganalysis tool 

in the same was as discussed in the last two chapters and test the performance of this 

approach by evaluating changes in the persistent homology features (e.g. persistent 

Betti number 𝐵X) as a result of secret hiding.  

First step in designing our topological steganalysis is taking mod-16 for the input 

image. This is to decrease the range of the pixel values from 0 to 255 into 0 to 15. 

The reason behind this pre-processing step is due to the fact that the three techniques 

of steganography we investigated change the first two LSB values and thus we only 

need to focus on the first 4 bits. Second step is choosing the ULBP encoded pixels as 

our landmark selection criteria, and more importantly selecting the right group(s) for 

stego image detection. We build Rips complexes as mentioned in chapter 4, section 

4.3. 

 

Figure 6-2:Demonstration of homological features constructed from an original image and a stego image. 

Original Image

Stego Image

Persistent !"

Persistent !"

Rips SC for G6-R1 of ULBP

Rips SC for G6-R1 of ULBP
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Our experimental dataset consists of 1000 natural images (size 512-by-512 pixels) 

randomly selected from the BOSSbase database, version 1.01, which consist of 

10,000 natural images [141]. Secret face biometric data are embedded inside these 

images to produce 1000 stego-images using the three techniques mentioned earlier 

which are TLSB, LSB-Witness and S-UNIWARD. The process of hiding the 

biometric data was done by our collaborator Dr. Rasber Rashid, at Koya University, 

as an expert in Biometric steganography and proposer of LSB-Witness scheme.  

The classification method, adopted here, is the linear support vector machines (SVM) 

which works by finding optimal hyper-planes separating the input training dataset 

according to their classes. Approximating the optimal (if exists) separating hyper-

plane is ideally the one that has a maximum distance to the nearest data samples, 

known as support vectors, in the training set. The goal of such optimisation method is 

to maximise the distance margin between the support vectors and the hyper-plane to 

obtain better classification accuracy.  

For evaluation, we used the four different classification schemes discussed in chapter 

4, i.e. Leave-one-out, 30% Training, 50% training and 70% training. In what follows, 

we present the classification results with these evaluation schemes.  

We tested all the performance of each of the ULBP group landmark, in the same way 

as in chapter 4, but instead of using 100 thresholds we opted for the 5 specific 

thresholds	𝑡 = 4,5,7,10,15.	These were choose experimentally as the 5 best 

performing thresholds here. Unlike the case of morphing, here the best performing 

ULBP geometry is 𝐺æ and 𝐺ä, where we demonstrate the performance of the 

proposed PH-based steganalysis approach for each of these ULBP geometries.  

These experiments were conducted at the early stage of our research, and accordingly 

we are testing the performance at each single threshold rather than the full PH-based 

scheme. Therefore, the topological features feed into SVM is of dimension 8 each 

corresponds to one of the 8 rotations of 𝐺ä or 𝐺æ ULBP image landmarks.  

Table (6-1) clearly shows that our approach is effective to detect stego-images when 

LSB methods, TLSB or LSB-Witness, used to hide information inside a digital 

image. The different training schemes increased the overall detection accuracy by 
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6%. For S-UNIWARD, the best detection accuracy obtained is 82% showing some 

robustness of this technique against our method.   

Stego-image detection performance accuracy displayed in table (6-1) clearly 

demonstrate that, in LSB-based steganography methods, increasing the percentage of 

training data contributes to increased detection while this effect is less observable for 

the more robust hiding technique of S-UNIWARD approach. On the other hand, no 

one topological construction threshold is performing good across the 3 steganography 

techniques, see the shaded cells in table (6-1).  

 

 DTS T=4 T=5 T=7 T=10 T=15 

TLSB 

(𝐺æ-ULBP) 

30% Training 86.7 84.8 78.3 74.1 67.1 

50% Training 90 87 78.7 75.1 68 

70% Training 91 87.8 78.7 75.7 68.4 

Leave-one-out 92.7 88 79.1 75.8 68.1 

LSB-Witness 

(𝐺ä-ULBP) 

30% Training 91 86.3 90.6 84.2 90.2 

50% Training 91.8 86.8 91.1 85.7 90.5 

70% Training 92.3 87.4 91.2 86.3 90.33 

Leave-one-out 93.1 87.7 91.9 86.8 90.6 

S-UNIWARD 

(𝐺æ-ULBP) 

30% Training 71.6 65.9 80.4 67.7 72.5 

50% Training 74 69.2 81.2 70.2 74 

70% Training 75.2 72.3 81.6 70.9 75 

Leave-one-out 76.6 73.8 82 70.8 75.5 

Table 6-1: Classification Performance of PH-based steganalysis to detect stego images using G6-ULBP 
landmarks. 

Despite the rather small number of the images used for this pilot-like investigation, 

the results are encouraging and provides good evidence that topological data analysis 

is a promising tool to be more investigated and used as a steganalysis method in the 

future. There are many ways one can extend the approach discussed here such as 

using the number of persistent 1-dimensional holes (i.e. 𝐵Y), concatenation of 

persistent features extracted from the space of persistent barcodes and extracting 

other topological/network parameters. Also, comparing our method with other 

specific and universal steganalysis methods as well as testing it on other 
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steganographic methods too.  Furthermore, the full persistent homology approach is 

expected to provide more insight into topological steganalysis, and perhaps expand 

the list of landmarks.  

6.2 TDA-Guided Image Inpainting Algorithms 

Image inpainting is the process of restoring missing image data in region(s) of an 

image to preserve continuity of its overall content and semantic, but it is also used to 

remove unwanted image objects. It has also been used to change image contents for 

many purposes including malicious ones. This section is devoted to describing the use 

of topological methods to improve existing digital inpainting algorithms. Although 

some initial investigations we carried out that TDA-approach using PH-tools can be 

useful in detecting malicious inpainting, we shall not discuss this issue here. The 

work reported in this section, was conducted in collaboration with then fellow 

Buckingham PhD student Dr Ahmed Al-Jaberi (currently at Basrah University, Iraq) 

whose research was focused on designing Partial Differential Equations for Digital 

image inpainting.  

There are many ways one can classify the wealth of inpainting methods proposed in 

the literature in terms of (1) the mathematical and statistical algorithms, (2) the size of 

the missing regions (large missing-region inpainting algorithms verses small missing-

region inpainting methods), (3) texture quantity outside missing-region, (4) domain 

specific inpainting algorithms (spatial verses frequency domain) and finally (4) 

exemplar-based inpainting (EBI) algorithms verses non-exemplar based inpainting 

algorithms. For detailed discussion and algorithms proposed regarding each 

inpainting classification scheme, we direct interested reader to see [142], chapter 2.  

Here, the focus is on EBI algorithms and the use of persistent homology to improve 

some limitations of EBI algorithms.  

In general, the main difference between EBI and non-EBI algorithms is in the 

adopted method of information propagation into the mission region. Non-EBI 

algorithms propagate information pixel-by-pixel from the missing region 

neighbourhoods using partial differential equations (PDE). EBI approaches, on the 

other hand, recover the missing region by propagating textural/structural information 

patch (block) by patch from outside the missing region into the missing region. EBI 

schemes exploit the commonly accepted assumption that throughout different image 
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regions many patches contain similar textures/structures. The main challenge is the 

choice of a realistic patch similarity measure. Existing EBI algorithm rely on 

selecting small patches to start the process of information propagation into the 

missing region which can only model simple structure and texture similarities. Here, 

we use PH to model the topological shape of the patches surrounding the missing 

region by constructing Rips SC of ULBP landmarks at different distance thresholds 

and calculating the number of 𝐵X at each threshold. This topological data is input to 

machine learning classifiers (here SVM) to classify the patches according to high-

textured (HT) patches and low-textured (LT) patches. Next, we describe the existing 

EBI technique and the limitations therein before proceeding to describe our 

topological approach to modify EBI and consequently improve the inpainted image 

when applying EBI. 

6.2.1 Exemplar-Based Inpainting Method (EBI) 

In 2004, Criminisi et al. proposed the first exemplar-based image inpainting 

algorithm to reconstruct image missing patches’ texture and structure [143], 

simultaneously. The algorithm in [143] depends on the missing region reconstruction 

order of the patches, defined by a priority function, that maintain the continuity and 

connectivity of object boundaries by propagating linear structures into the missing 

region before more complex texture is propagated.  Unlike non-EBI techniques, 

Criminisi et al’s algorithm proposed to recover missing region on a block-by-block 

approach, where they fix a block size of be 9-by-9 pixels to recover the missing 

region for any input image. We first need to introduce some notations. An input 

image 𝐼 is assumed to consist of two disjoint regions; the source region 𝜙 

representing the known areas and the target region Ω is the missing part of the image. 

The boundary pixel set of Ω	 is denoted by 𝛿Ω. Figure (6-3), illustrate the process of 

EBI algorithm to recover a missing region of an image. 

 

Figure 6-3: EBI process and notation [143]. Given the patch 𝝍𝒑 , 𝝏Ω  is the boundary of the target region Ω and 
𝑡ℎ𝑒 entire image is denoted with 𝑰. 

I
Whole 
image

I
Whole 
image
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The priority function is a product of terms 

																																																𝑃(𝑝) = 𝐶(𝑝)	𝐷(𝑝)																																																									(6.1) 

where 𝐶(𝑝)  is the confidence term and 𝐷(𝑝)  is the data term, and they are defined 
as:  

																																											𝐶(𝑝) =
∑ +(,)-∈./∩(1�Ω)

23/2
																																																								(6.2)     

                       																		𝐷(𝑝) = 245/6.		Q/2
7

																																																																			(6.3) 

Here 2𝜓O2 is the area of 𝜓O, ∇𝐼 is a gradient of the image I, 𝛼 is a normalization factor 

(e.g. α = 255 for a typical grey-level image), 𝛻𝐼O= is the isophote (direction and 

intensity) at point 𝑝, 𝑛O is a unit vector orthogonal to 𝜕Ω in the point 𝑝 and ⊥ denotes 

the orthogonal operator. Note that:  

• The Data term is a function defining the structural information for 

reconstructin linear structures using isophotes (flows), and hence is 

responsible for propagating structural information first. 

• The Confidence term defines the reliability of information surrounding the 

pixels to reconstruct textural information.  

Next step is to apply a matching function (e.g. Sum of Squared Distance)  to find a 

target block that has similar structure and texture to replace the template block in the 

mission region. This process is repeated until the entire missing region is recovered, 

see figure (6-3).  

The main drawback of EBI algorithm is that artifacts appear in the reconstructed 

image due to the incorrect selection of some blocks by the priority function resulting 

in initial incorrect completions and spiralling errors. This seems to be caused or 

exaceperated by the use of fixed 9x9 block size sespecially when the mission regions 

is surreounded by rich texture and structure [143]. Originally, Criminisi et al’s 

algorithm was meant to replacing unwanted objects from images with background-

like patches in a visually acceptable manner, but it doesn’t work well, when removing 

a large object that is surrounded by rich texture [142]. Thus, EBI works well  in  

removing small scraches from a photograph or even a large object surrounded by 

simple texture and structure.  
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There are many algorithms proposed to overcome the drawbacks of Criminisi et al’s 

algorithm and improve the algorithm. These can be divided into two groups; the first 

group focused on proposing techniques to improve texture reconstruction such as 

[144][145][146][147][148]. The second group of work proposed to improve the 

reconstructed structure in mission region usning EBI , for instance 

[149][150][151][152][153]. For a detailed review, interested reader are referred to 

chapter 5, section 5.3 in [142]. Nonetheless, most of these improved methods use the 

same block size of 9-by-9, and to the best of our knowledge, no approach has yet 

addressed the block size selection in Criminisi et al’s algorithm. The next section will 

include a topological approach to select the size of the patch propagation adaptively 

based on the topological quantification to measure the amount of texture and structure 

surrounding the missing region in a digital image.  

6.2.2 Topological Exemplar based Inpainting (TEBI) Algorithm   

To overcome the drawback of Criminisi et al’s EBI algorithm in terms of the size of 

patch propagation, we use the TDA main tool of PH to reduce the amount of artifacts 

produced when recovering a missing region. We argue that our approach overcomes 

the issue of producing visible artifacts when using EBI to reconstruct a missing 

region whereby its surrounding area has a rich texture and structure.  

Similar to the approach introduced in chapter 4, section 4.3, we build Rips SCs based 

on ULBP landmarks at different distance resolutions and calculate the number of 

conncted components (𝐵X) at each distance threshold for each of the ULBP 

geometries, and the eight rotations at each ULBP geometry. For each distance 

threshold, we have an 8-dimensional topological feature vector to be used for texture 

quantification at each distance thresholds. The rest of the following subsection is 

devoted to use these topological quantification to determine the appropriate patch size 

to propagate the information into the missing region. 

6.2.2.1 TEBI	Experimental	Setup	and	Results	
To evaluate the performance of the TEBI inpainting scheme, two datasets were 

constructed with a number of training-testing protocols. First, a dataset of 240 images 

were used to train linear SVM classifier on low-texture images and high-texture 

images. This set consisted of 120 images randomly selected from the google images 

known to be of low-texture (LT) type, and 120 images randomly selected from [154]  
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which are known to be of high-textural (HT) images. In figure (6-4), we show an 

example of low and high texture images used in our experiments.  

In general, texture is not uniformly distributed in images, and our selected 

experimental images  have different intensity of texture but the label of high/low of 

texture is given to an image based on the majority of image sub-regions texture. To 

classify texture type of an input image, five non-overlapping blocks selected 

randomly from each image. The size of the blocks are 25-by-25 pixels, and hence for 

our experiments we end up with 1200 sub-images where 600 of them are of HT type 

and the rest of the 600 sub-images are LT type. Four different training-testing 

schemes are used in our evaluation, as follows:  

• 40 images (20 HT, 20 LT) for training and the rest of the 200 images for 

testing.  

• 120 images (60 HT, 60 LT) for training and the rest of the 120 images for 

testing.  

• 160 images (80 HT, 80 LT) for training and the rest of the 80 images for 

testing.  

• 200 images (100 HT, 100 LT) for training and the rest of the 40 images for 

testing.  

To determine a practical way of using TEBI, a number of parameters need to be 

chosen to classify image texture. The choices are: selecting the right ULBP geometry, 

best distance threshold to model texture and the appropriate linking of extracted 

topological invariant to the type of texture of the input image.  

 

Figure 6-4: Example of High and low textural images used to test the performance of TEBI algorithm. 

High-Texture images 

Low-Texture images 
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SVM classification results for the 𝐵X-based PH scheme are presented in figure (6-5), 

for all the geometries of ULBP landmarks at 6 different experimentally-determined 

distance thresholds (T=0,3,5,7,13), and the 4 earlier defined evaluation protocols. 

Clearly, topological features calculated at T=10 performs better in differentiating HT 

regions from their LT counterparts when compared with other thresholds. Among the 

7 ULBP geometries, G1, G2 and G5 are performing better in discriminating HT 

image regions from LT ones. Therefore, we use these geometries as candidates to 

quantify texture in missing regions surrounding areas and consequently select suitable 

patch sizes to propagate information (textural and structural) into missing region. 

 

Figure 6-5: Topological-based Texture classification performance for different training-testing protocols. 

The above charts also reveal that, different training-testing protocols do not have a 

big effect on the classification results, and this shows the effectiveness of the 

topological features on one hand and the irrelevance of training a large number of 

images for training.  

Accordingly, an input image block/patch needs to bypass 3 checks to be classified as 

HT or LT image block. First, for each ULBP geometry, at least 5 out of the 8 

rotations must vote in favour of LT so that an image subset labelled to be LT. Second, 

out of the 5 image subsets, at least 3 must vote in favour of LT for the image to be 

classified as LT. We follow the same procedure to classify HT image subsets. Finally, 

out of the 3 best performing ULBP geometries, at least 2 of them need to vote in 

favour of HT/LT, then the image subset will finally be treated as a HT or LT. Hence, 

a missing region’s neighbourhood will be casted as a low or rich in texture. Following 
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the rules introduced here, the size of the patch propagation determined adaptively 

according to the following heuristic rules:  

• A patch size of 3-by-3 will be selected if 3 image subsets voted in favour of 

HT.  

• A patch size of 5-by-5 will be selected if 4 or 5 image subsets voted in favour 

of HT. 

• For LT image subsets, select a patch size of 11-by-11 or 13-by-13 or 15-by-15 

when 3 image subsets classified as LT. Otherwise, use a patch size of 21-by-21.  

 

Figure 6-6: Results of TEBI algorithm applied to an image and compared the result with original EBI. 

As it can be seen from the above figure, our proposed topological-EBI algorithm 

outperforms the original EBI algorithm, known as Criminisi et al’s algorithm. The 

reconstructed image using original EBI suffers from uncorrelated and visually 

unacceptable texture and structure, see 1st column of the 2nd row in figure (6-6). This 

problem resolved by a large degree using TEBI in a visually acceptable manner, see 

2nd column of 2nd row in figure (6-6). Furthermore, beside the original EBI, we 

compared our proposed TEBI approach with the algorithms proposed in [147][152] to 

Original Image Missing/Occluded Region 

Reconstructed using Original EBI algorithm. Reconstructed using Topological-EBI
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reconstruct missing region in images that vary in terms of texture and structure, see 

figure (6-7). More examples of applying our proposed TEBI method can be seen in 

[142], especially in chapter 5, section (5.5). The results demonstrated in figure (6-7) 

shows that our method outperforms state-of-the-art (Excluding CNN-based methods) 

EBI methods when the missing region is relatively large, and to reconstruct the 

missing region, one needs to extend the edges into the missing region. Beside 

modifying EBI, we also used persistent homology as an image quality assessment or 

assess the quality of the inpainted image. 

 

Figure 6-7: Examples of applying TEBI algorithm, and its comparison with other algorithms. 

 

Anupam el al., “Fast and Enhanced Algorithm 
for EBI’’

Abdollahifard el al., “Gradient-Based Search 
Space Reduction for Fast EBI’’

Topological EBI
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Topological EBIAbdollahifard el al., “Gradient-Based Search 
Space Reduction for Fast EBI’’

Anupam el al., “Fast and Enhanced Algorithm 
for EBI’’

Input image Image with missing region

Original EBI

Topological EBIAbdollahifard el al., “Gradient-Based Search 
Space Reduction for Fast EBI’’

Anupam el al., “Fast and Enhanced Algorithm 
for EBI’’

Input image Image with missing region
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To assess the quality of inpainted images, in addition to visual inspection, in [142] ( 

section 5..6.1) Al-Jaberi conducted a number of experiments evaluating the quality of 

inpainted images comparing our proposed TEBI with 3 more EBI algorithms using a 

number of statistical quality measurements and 5 different scenarios of missing 

regions. Al-Jaberi concluded that TEBI outperforms the other methods but slower 

than the other 3 methods to reconstruct the missing region due to the amount of 

computation entailed in the patch size selection and matching criteria. He also 

concluded that, when the surround area of the missing region has LT, then all of the 4 

methods mentioned earlier are recovering the missing region successfully with very 

little difference in quality.  Furthermore, in [142] PH has been used as  a quality 

measurement tool to assess the topological quality of inpainted images, and 

concluded that TEBI outperforms the other 3 methods used in the evaluations 

protocols.  

Finally, it is worth to mention that one of the weakness points about TEBI algorithm 

is that it still struggles to fully recover missing regions when there is a curved or 

cross-shaped structure. But the visual quality of inpainted images using TEBI 

outperforms Criminisi et al [143], Deng et al [153] and Anupam et al’s algorithm 

[147]. All of the EBI methods struggle to recover missing region when there is no 

similarity between the structure and texture of the missing region with other regions 

in the rest of the image. 

6.3 PH approach for Tumour Diagnoses of Medical Image Scans 

Finally, in this section, we discuss the use of PH for medical image analysis. In 

particular, we use the same approach adopted in the case of morph detection to build 

PH feature vectors from images using automatic landmark selection methods and then 

build persistent barcodes to analyse breast cancer mammographic images. For the 

sake of self-containment, a brief general introduction on cancer will be given, 

followed by breast cancer factors and the mammography datasets we used in our 

experiments. Finally, experimental results of using PH to identify abnormal breast 

tumours from their normal counterparts demonstrated. Most of the information about 

the background of cancer and the breast cancer , in the next subsections, is heavily 

depend on the brilliant work of  Taban Majeed’s PhD thesis [155], especially chapter 

2 and the main website of Department of Health and Human resources of USA 



122 
 

government in [156]. Readers familiar with general background of cancer, breast 

cancer and mammographic medical imaging can skip sections 6.3.1 and 6.3.2. 

6.3.1 What is Cancer?  

Naturally, human body cells divide and grow in a controlled way that monitored by 

different mechanisms in our body. The rate of cell division and growth is different 

from infants and adults. Normally, cells divide faster in childhood to allow the growth 

whereas in adults cells divide to replace lost cells as a result of injury or to replace 

dead cells. The process of cell division and growth which is out of control is called 

cancer [155][156]. The main difference between cancerous cells and normal cells is 

that cancer cells continue to divide without stopping while normal cells mature into 

unique cells with specific functionalities and stop from the division and growth. To 

remove unneeded cells from the body, signals will be sent to cells to stop dividing 

and start the apoptosis process, also known as programmed cell death. Unlike normal 

cells, cancer cells ignore these signals from the body and continue to divide. Cancer 

cells are forming solid tumours in many cases which are malignant and can spread 

into nearby tissues. Benign tumours, on the other hand, do not spread into 

neighbouring tissues, although sometimes they can be quite large in size. Cancer cells 

can spread to other parts of human body through lymphatic or vascular systems, 

known as metastatic cancer, which is the main cause of death among cancer patients. 

Below, we give an example of how normal cells look like versus cancer cells. 

 

 

Figure 6-8: An example of Normal cells versus Cancer cells [156]. 
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6.3.2 Breast Cancer  

 One of the main causes of death by cancer in UK and around the world is breast 

cancer. In UK alone, between 2015-2017, 11399 people died because of breast cancer 

[157]. This figure increases to 9.6 million deaths Worldwide in 2018. The Female 

breast anatomy illustrated in figure (6-9). 

 

Figure 6-9: Anatomy of part of female breast [155]. 

As it can be seen from the above figure, female breast constituted of lobules (milk 

producing glands), ducts (carriers of milk from lobules to nipple) and stroma (the 

tissue surrounding the lobules and ducts). Cancers caused by lining the duct cells are 

called ductal cancer while lobular cancers are affecting the lobules cells. In general, 

breast tumours can be classified into 3 main groups; benign, in situ and invasive 

tumours. Benign tumours are abnormal cells but unable to spread to surrounding 

tissues and can be left untouched if they are not creating any complications. Majority 

of breast tumours detected by mammography are of benign type. In situ tumours are 

the early stage of invasive cancer and has the potential to become invasive. In this 

type, the cancer cells are still in the duct or lobule and not spread to the basal 

membrane. For early detection of in situ tumours, American Cancer society 

recommends clinical examination between the age of 20 to 39, every 3 years. After 

the age of 40, it recommends conducting annual mammography screening to prevent 

invasive tumours. Finally, invasive cancer is the final stage where the cancer cells 

broken the basal membrane.  
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There are many factors causing invasive cancer such as family history, genetic issues, 

race, obesity, geographical location, exposure to radiation and others. In all cases, the 

success of cancer treatment depends heavily on the stage/time the cancer identified.  

There are many imaging techniques developed over the years for the purpose of 

cancer detection in general, and breast cancer in particular. For example, 

mammography, X-ray, ultrasound and Magnetic Resonance Imaging.  Mammography 

is one of the imaging techniques widely deployed for the early detection of breast 

cancer. Digital mammography is a special type of X-ray that have many advantages 

over tradition mammography filming and in comparison, with other digital 

techniques. Breast screening using digital mammography (1) takes less examination 

time, (2) low cost (compared to MRI), (3) easy storage and (4) can be transmitted to 

other health professionals easily. We direct the interested reader to [155], chapter 2, 

section (2.2) to section (2.2.4) for a detailed discussion about mammograph image 

acquisition, object identification using mammographs and  mammogram projections. 

An example of breast images acquired by mammograms is shown in figure (6-10). 

Reading and analysing mammograms is not an easy task for radiologists. Among the 

difficulties face radiologists are low resolution of breast cancer mammograms, 

location and size of the lesion within the breast cancer tissue. Age of the patient is 

another factor which makes breast cancer detection to be a difficult task for 

radiologists due to the dense breast tissues in young patients.  According to statistics 

30% of breast cancers are undetected [158], and hence in many cases at least two 

radiologist read the same mammogram to reduce rate of undetected cases. Major 

drawback of double-reading is the cost and workload on radiologists and sometime 

two different radiologists assess the same breast cancer mammogram differently 

especially when the size of the region of interest (ROI) (i.e. lesion) is small [158]. 

Instead of using a radiologist as a second reader and assessor, computer aided 

detection (CAD) systems are used as a second reader but the final decision on the 

case will be made by the radiologist.  Image processing procedures will be used by 

CAD systems to analysis breast cancer mammograms to help early detection of breast 

cancer and consequently increase survival rate among breast cancer patients. In 

general, image processing procedure for medical image analysis include, but not 

limited to, noise removal, segmentation, object and abnormality detection, feature 

extraction and classification. 
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6.3.3 TDA based Mammogram Image Analysis 

In this section, we use TDA to differentiate benign breast tumours from malignant 

breast tumours using breast mammogram scan images by constructing Rips 

complexes for mammograms pixel landmarks at different distance thresholds, i.e. 𝑡 =

1,2, … ,100. The image landmarks method used here are again chosen from the ULBP 

geometries, and persistent homology features associated with these landmarks are 

extracted before feeding into KNN classifier. The hypothesis behind treating cancer 

as a form of tamper detection is that one expects that cancer cells tamper with and 

distort the naturally occurring texture and structure of human body cells. The images 

we use are pre-processed images that contain the ROI only and the images (from both 

datasets, which will be discussed in the section) are provided by Dr. Taban Majeed 

(Lecturer at Salahaddin University, Kurdistan Region, Iraq) who was also a fellow 

DPhil student of Buckingham, School of Computing. We show an example of 

constructed Rips complex for a benign and malignant tumour in figure (6-10) and 

figure (6-11).  

In what follows, we introduce the two databases use in our evaluation of the use of 

TDA/PH for the detection of abnormality in breast mammograms as well as the 

evaluation measurements. In short, we use the same approach used to detect 

morphing in chapter 5. 

 

6.3.4 Evaluation Measurements and Database Description  

In this section we evaluate the performance of our proposed PH-based approach, by 

following the traditional practice of clinicians who use the statistical measures of 

sensitivity, specificity and accuracy defined as follows:  

Sensitivity: is the rate/proportion of breast cancer patients (having malignant 

tumours) truly classified as patients of having breast cancer, and is determined as 

follows:  
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Figure 6-10: Rips complex constructed using 𝑮𝟓-R1 of ULBP for benign and malignant case of Mini-MIAS 
dataset. 

 

 

Figure 6-11: Rips complex constructed using 𝑮𝟓-R1 of ULBP for benign and malignant case of DDSM dataset. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

where True Positive (TP) refers to cancer patients truly identified as patients having 

breast cancer positively, False Negative (FN) is the breast cancer patients 

misclassified as negative of having breast cancers.   
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Specificity: is the rate of correctly classifying patients negative of breast cancer, and 

is determined as follows:  

 	

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

where true negative (TN) refers to number of truly classified women clear of the 

breast cancer and false positive (FP) means the number of cases wrongly classified as 

breast cancer positive which in face are clear of having cancer.  

Accuracy: is the overall true performance rate of the CAD system on predicting the 

cases presented to it, and is determined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	. 

The above evaluation measurements have been computed on images from two 

different mammogram datasets which are widely used and publicly available. The 

first one is called Mini-MIAS dataset [159], which refers to Mini Mammographic 

Image Analysis Society. The second dataset is known as DDSM [160], where DDSM 

stands for Digital Database for Screening Mammography. A number of 

benchmarking mammographic datasets are available for experimental purpose in 

which they vary according to certain pre-defined criteria like type and structure of the 

digital mammogram, dense, fatty or glandular tissues, noise level in the images and 

the number of benign and malignant cases in these datasets. We opt to use Mini-

MIAS and DDSM due to the fact that images in both datasets captured in 

uncontrolled conditions, images contain sufficient noise and low-resolution images. 

Mini-MIAS contain 322 digital mammographic images (113 Abnormal, 209 Normal) 

of breast that contain fatty , dense and granular cases [159]. In addition, Mini-MIAS 

contain different types of abnormalities such as calcification, ill-defined masses, 

architectural symmetry and distortion. In figure (6-10), examples of mammogram 

images in Mini-MIAS dataset illustrated. DDSM dataset, on the other hand, contains 

2620 mammogram images where 512 images selected randomly in our experiments, 

302 normal cases and 257 abnormal cases. All of the images are cropped ROI of size 

128-by-128 in both datasets. Further details about these datasets can be found in 

chapter 2 of Taban Majeed’s doctoral thesis in [155], publicly available at 
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(http://bear.buckingham.ac.uk/162/1/Majeed_2016_Segmentation.pdf). Finally, to 

evaluate our PH-based method to differentiate benign tumours from malignant 

tumours, we used the same classification schemes used in previous chapters, i.e. 

30%,50% and 70% of the data used for training KNN classifier respectively and the 

rest of the images used for testing. 

 

Figure 6-12: Examples of ROI for Normal and Abnormal cases from Mini-MIAS dataset. 

 

 

Figure 6-13: Examples of ROI for Normal and Abnormal cases from DDSM dataset. 

 

6.3.5 PH-based Breast Cancer Detection – Experimental Results 

For each image in Mini-MIAS and DDSM dataset, we construct Rips complexes 

based on ULBP landmark selection at an increasing distance threshold starting from 

𝑡 = 1 to 𝑡 = 100, this process repeated for each ULBP rotation and for each ULBP 

geometry. At each threshold 𝑡, we calculate the number of connected components and 

1-dimensional holes (i.e. 𝐵X and 𝐵Y respectively) where this information is later 

stored in a form of persistent barcode. Next, the space of persistent barcodes 

vectorised using the persistent binning yielding a topological feature vector which has 

dimension 100 for a single rotation of any ULBP geometry. We then concatenate the 

Abnormal

Normal

Abnormal

Normal
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topological feature vectors of the 8 rotations of each one of the 7 geometries of 

ULBP, and hence ending up with a topological feature vector of dimension 800 

which will be feed into KNN classifier.  

The results obtained using KNN (k=1) with the topological features extracted from 

mammogram images are reported in table 2 and table 3. In particular, the results 

obtain using persistent 𝐵X for both Mini-MIAS and DDSM datasets can be seen in 

table 2, whereas table 3 is showcasing the results obtained using persistent 𝐵Y.  

Dataset DTS Sensitivity Specificity Acc 

Mini-MIAS 
(𝐺¬) 

30%training  84.076 97.568 92.831 
50%training  85.661 98.038 93.706 
70%training 86.5 98.095 94.031 

DDSM (𝐺¬) 
30%training  62.378 65.346 63.98 
50%training  64.609 68.437 66.681 
70%training 66.416 71.011 68.905 

Table 6-2: Classification Results of Persistent 𝐁𝟎 to differentiate Benign tumours from malignant tumours. 

 

Dataset DTS Sensitivity Specificity Acc 

Mini-MIAS 
(𝐺ä) 

30%training  82.051 97.185 91.871 
50%training  84.268 97.596 92.931 
70%training 85.824 97.857 93.639 

DDSM (𝐺¯) 
30%training  62.289 71.404 67.222 
50%training  61.688 73.846 68.274 
70%training 82.727 75.007 78.548 

Table 6-3: Classification Results of persistent 𝐁𝟏 to differentiate benign tumours from malignant tumours. 

Table (6-2) clearly shows that the number of persistent 𝐵X performs well for the 

Mini-MIAS dataset in differentiating benign cases from malignant ones. We note that 

the sensitivity rate is lower than specificity, meaning that the number of detected 

malignant cases is lower than the number of benign cases. However, increased 

training images results in increased detection rate of malignancy by about 3%. 

Unfortunately, table (6-2) also shows that the PH-based approach in detecting 

malignant tumours in DDSM dataset is not as good as in the Mini-MIAS dataset. 

Increasing the number of images in training to 70% still not boosted the overall 

classification accuracy to above 70%. But similar to Mini-MIAS, the sensitivity rate 

is lower than specificity.  
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Table (6-3), on the other hand, shows the classification performance of KNN using 

persistent 𝐵Y as the input feature. Again, the persistence of 𝐵Y topological features 

performs better on Mini-MIAS dataset than DDSM dataset. The performance of 

persistent 𝐵Y is very close to the results obtained using persistent 𝐵X, and hence 

shows the strength of the number of 1-dimensional holes to detect malignant tumours. 

The only difference is that it is not the same geometry of ULBP that performs good, 

whereby in the case of using persistent 𝐵Y, it is the 𝐺ä of ULBP that performs best 

among the 7 geometries of ULBP landmarks of Mini-MIAS dataset. In DDSM 

dataset, the best performing geometry is 𝐺¯ when persistent 𝐵Y is used as the input 

topological feature to KNN. But interestingly, the overall classification accuracy 

increased by 11% when the image percentage used in the training increased from 

30% to 70%. Furthermore, the sensitivity rate is 82% when 70% of the data is used to 

train KNN classifier, and this indicate the discriminative power of persistent  𝐵Y to be 

consider among different datasets. Note that we are only reporting the results of best 

performing geometry among the 7 ULBP geometries for both 𝐵X and 𝐵Y persistent 

features as well as the both datasets used in our experiments. In this vein, for Mini-

MIAS dataset the second and third best performing ULBP geometries are 𝐺ä	and 𝐺å 

when 𝐵X is used as the topological features and 𝐺å and 𝐺æ in DDSM dataset. In the 

case of using persistent 𝐵Y, second and third best performing geometries are 𝐺å and 

𝐺æ in Mini-MIAS dataset and 𝐺ä and 𝐺¬ in DDSM dataset.  

Finally, the analysis presented in this section demonstrated the usefulness of using 

our approach of PH-based classification to differentiate malignant breast tumours 

from benign breast tumours. The performance is not consistent across the two 

datasets used in our experiments and hence needs further improvements. However, 

the inconsistent performance can be investigated by using the Mapper in the same 

way we discussed in chapter 5. Moreover, the high performance with one of the 

databases is an incentive to mitigate the inconsistency by conducting more 

investigation with other types of landmarks, combining the two Betti numbers 𝐵X and 

𝐵Y, and deploying other local topological information such as local persistent 

homology and degree distributions, for improved and consistent classification 

techniques in future.  
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6.4 Summary  

In this chapter, we tried to investigate the viability of extending the use of TDA in 

other image analysis applications or to help with improving certain image 

processing/enhancement tasks.   The results of 3 case studies were presented on the 

potentials of using TDA and its PH tools in diverse areas of image applications. 

Although, these cases differ fundamentally in their practical use including multi-

media security, image reconstruction with its variety of applications, and biomedical 

image diagnostics.  What is common in these applications is the nature of image 

distortions being difficult to visualise change to the spatial distribution of certain 

localised textural primitives. These 3 diverse cases have therefore the viability of 

topological data analysis approaches to these and potentially many more image 

processing/analysis applications whereby the spatial distribution of groups of textural 

primitives become sensitive to minute changes. In all cases, we noted great potentials 

for using the full benefits of PH-based tools, but due to time constraints we defer such 

a research work on other applications and deeper analysis for future consideration.
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Chapter 7  
Conclusion and Future Directions 

7.1 Conclusions 

Digital image analysis is one the most active fields of research nowadays due to many 

factors including the rapid increase in the availability of cheap and powerful devices 

to produce images like mobile phones, the popularity of social media platforms for 

real time share media objects, and the emergence of advanced machine learning and 

Artificial intelligence tools. At the core, image analysis algorithms attempt to develop 

application-dependent quantitative measures that can be used to distinguish between 

images in terms of content, class labels, appearance of anomalous events/objects. 

Machine learning algorithms for image analysis, often work by learning a model to 

represent the distinct groups of images for a sufficiently large sample, and decisions 

are made about new images in terms of the differences between the quantitative 

measure of the input image and those of the members of the different labelled groups 

in the learnt model. For simplicity, these differences in the quantitative measures are 

referred to as distortion, even when the input image is not obtained from an existing 

sample by image distortion.  There are many reasons behind the appearance of digital 

image distortion, (1) harmless (e.g. beautification filters) or malicious (e.g. morphing) 

(2) natural (e.g. body cell texture distortion) or artificial (e.g. steganography and 

morphing). Designing tools to effectively analyse the quantified distortion data for 

the above, or other, image analysis applications is very challenging.  

The research work in this thesis was devoted to investigate the effectiveness of the 

newly developed tool of persistent homology (PH), which is mainly depend on 

algebraic topology, to analysis different type of digital image tampering. Existing, 

and most commonly used, topology-independent machine learning algorithms for 

image analysis learn quantitative models of one or more image texture and do not pay 

attention to the spatial distribution of the significant texture. Emerging TDA-based 

image processing/analysis algorithms, on the other hand, aim to build sequences of 

topological (Simplicial or cell complex) representation at different level of levels and 



133 
 

analyse the persistence nature of certain homological invariants (e.g. Betti numbers). 

Most existing PH-based image analysis schemes are constructed through intensity-

based filtration with no specific attention to texture features. The initial observations 

that the spatial image texture primitives are often sensitive to malicious tampering or 

naturally occurring changes, incentivise our work to develop a new image analysis 

strategy that fuses the TDA approach with the conventional texture analysis 

approach.   The distinctiveness of our new approach is that it constructs sequences of 

simplicial complex representation of images in terms of automatically computable 

texture-based landmarks, and the corresponding PH features are extracted using 

distance-based filtrations. This approach allows the development of a large number of 

TDA-based image analysis schemes.     

The stated aim and objectives of this thesis was to (1) use PH to design new and 

effective image tampering detection tools to address the malicious problems occur as 

a result of tampering such as morphing detection, steganalysis, cancer detection and 

low-level image texture quantification. (2) Develop a simple, yet effective approach 

to vectorise the space of persistent barcodes to develop PH-based tamper detection 

tools. (3) Design novel image landmark selection methods that are both effective and 

automatic and (4) finally test the performance of PH-based image distortion analysis 

tools on a large image database that downloaded from different sources.  

The achievements of our work can be summarized as follows:  

1- We proposed 4 techniques to select texture image landmarks to construct Rips 

complexes and compute the persistent homology feature representation of 

digital images. The 4 landmark selection methods are: Local Binary Patterns 

(LBP), 8-neighbour superpixel (8NSP), Radial local binary patterns (R-LBP) 

and center-symmetric LBP (CS-LBP). Experimental investigations revealed 

that using LBP and constructing the 𝐵X (i.e. the number of persistent 

connected components) barcodes, can detect up to 99% of morphed images in 

the Utrecht DB, up to 86% in London DB and 98% of Print-scanned morphed 

images. The performance of 𝐵X	 schemes for the 8-NSP, R-LBP and CS-LBP 

landmarks for morph detection in the Utrecht DB achieved 99%, 96% and 

92% overall accuracy, respectively. For the London DB, the performance is 

lower than that of Utrecht DB whereby the overall accuracy of morph 

detection performance is 86%, 84% and 78% for 8-NSP, R-LBP and CS-LBP, 

respectively. The inconsistency of accuracy of morph detection between the 
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two datasets were shown to be due to significant differences in the way these 

databases were built.  Apart from 8-NSP, building Rips complexes and 

computing persistent 𝐵Y based on the other 3 landmarks have been shown to 

yield similar morph detection rates to using 𝐵X. To some extent this shows the 

strength and robustness of our approach (using either 𝐵X or 𝐵Y).   

2- We proposed to vectorise the space of persistent barcodes using an approach 

known as persistent binning (PB), in two forms: (1) at each PB-value, 

concatenate the homological invariants computed over different subsets (i.e. 

rotations) of landmarks (chapter 4); and (2) fuse the entire PB-values of the 

persistent barcodes of all rotations of the selected landmark technique 

(Chapter 5). Advantages and disadvantages of both approaches discussed in 

detail in Chapter 4 and Chapter 5 respectively by testing on a large set of face 

images to design effective morph detection tools.  

3- Beside persistent homological invariants in dimension zero (𝐵X), we also used 

persistent homological invariants in dimension one (𝐵Y) to analysis different 

image tampering problems such as morphing and breast cancer detection. As 

before, in many cases the performance of 𝐵Y is similar to that of 𝐵X.  

4- Our PH-based morph detectors are shown to be very effective to differentiate 

fake faces from their genuine counterparts across different datasets. Beside 

overall accuracy of PH-based morph detection tools, the rate of false positives 

(genuine faces misclassified as morphs) and false negatives (morphed faces 

misclassified as genuine) are acceptable or comparable to other face morph 

detection techniques which are not based on PH.  

5- Earlier results on morphing detection motivated us to go further in our 

investigation beyond morphing to investigate the PH-based approach on other 

types of image processing/analysis applications. We proposed topological 

methods to detect stego-images, improve exemplar-based inpainting 

technique, breast tumour classification using mammograms and finally used 

as a general image quality assessment tool. In steganalysis, homological 

invariants showed to be effective to detect stego-images without prior 

knowledge of the steganographic methods used to hide the secret message. 

Incorporating PH into exemplar-based inpainting algorithm improved it to 

become state-of-the-art and outperform all other exemplar-based inpainting 

approaches. Results are not consistent when we used PH to differentiate 
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benign breast tumours from malignant breast tumours on two different 

mammogram datasets. Using Mini-MIAS dataset, PH invariant at dimension 

zero and one achieved up to 94% accuracy while on DDSM dataset the 

highest achieved accuracy is 78% which is obtained using homological 

invariant at dimension one. As for the quality assessment, PH proved to be 

very effective to quantify the quality of face images under different 

illumination conditions such as shadow and blurring.  

Success in conducting the research investigations of the kinds reported in this thesis, 

requires the availability of efficient easy to use software to compute the various 

topological parameters and display the outcome in a manner to facilitate developing 

hypotheses as well as demonstrating the conclusions that the researcher promote. 

Although, various elements of the necessary TDA computations are available but no 

integrated software is publicly available. Throughout the period of my program of 

study, I initiated such a task in collaboration with ex-colleague (Dashti Ahmed Ali, a 

professional software developer in Ontario-Canada) from Koya University, Iraqi-

Kurdistan. The software is entitled “DAAR Topology” and the current version is a 

stand-alone application that works on Mac, Windows, and Linux operating systems. 

The software has an interface, which provide the user with a number of facilities in 

relation to TDA – based computations on image analysis. In Figure 7-1, we show few 

screenshots of the software interface as examples of the work-in-progress.  

The interface enables the user to select a passport-like face image, and then using the 

dlib library we automatically extract and crop out the frontal face. Then the user has 

the choice of selecting landmark methods, and their corresponding geometries and 

rotations. Next, the user has 5 options of visualization which are: Barcodes in 

dimension 0,1 and 2 as well as the Rips complexes. Also, there is an option to 

visualise Persistent diagrams in dimension 0 and 1 on the same plot.  

In future, we want to expand this to include Medical image analysis, Steganalysis and 

general image texture analysis. Furthermore, we aim to include the prediction section 

whereby based on the face images we have, we train KNN classifier to be ready and 

predict the label of the input face to be genuine or fake, but first we need to gather a 

larger number of genuine face datasets which are more diverse and only then this 

section will be activated.  
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Finally, we also plan to include a section in the software that enables the user to input 

a folder of face images and the software extract topological invariants, of the selected 

landmarks, of all the images in that folder and output a matrix of topological features 

ready for further analysis. This step is important to researcher whom want to do 

experiments on a large number of face/medical images. More work needs to be done 

in the future before releasing the software. 

 

 

Figure 7-1:Snapshots of DAAR topology software. 

Software: DAAR Topology

DAshti ARas

First word we 
( Dashti and I)
both learnt at 
school ! 
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7.2  Future Challenges and Related Work-in-Progress 

The research work reported in this thesis demonstrated the applicability of persistent 

homology for different image tampering detection problems such as morphed face 

detection, steganalysis, medical image analysis and image quality assessment. 

However, this work has proved to be an open-ended project to develop a new 

innovative TDA-based strategy for image analysis in a diverse range of applications. 

It is unrealistic for a PhD project to complete a substantial amount of research tasks. 

The significant successes achieved in the limited set of applications, revealed the 

potential for many more contributions to deal with a variety of challenges. In the 

closing part of this chapter and thesis we shall highlight below a list of few potential 

research directions that need to be explored in future: 

1- During the writing up stage of this thesis, DeepFake video and image 

generation have emerged as a serious threat which cannot be ignored 

especially when the quality of produced fake videos are becoming 

convincingly better. Image/video tampering is becoming an easy task due to 

openly available models of Convolutional autoencoders and generative 

adversarial networks (GAN)s. The smartphone application FaceApp produces 

visually seamless and realistic face image manipulation [161] allowing change 

of hair style, age, pose, gender and other attributes. DeepFaceLab [162], is 

another freely available desktop application whereby users can create 

DeepFake videos using sufficient image frames of both original and target 

individuals. Since DeepFake videos are so realistic (if trained well), they can 

be used for the purpose of revenge-porn, fake news, creating fake celebrity 

pornographic videos, fake surveillance videos, misleading court when 

videos/image are used as the only evidence.  We refer the reader to [163][164] 

for detailed explanation of how DeepFake works.  These tools and algorithms 

have not been intended for these purposes, but to deal with some useful 

applications. While technology cannot be de-invented, we need to develop 

strategy to limit their misuse, and here we report on a pilot study we recently 

conducted to show that TDA-approach with its PH tools can make a useful 

contribution.  

As with the case of morphing attacks, one expects that DeepFake procedures 

have the effect of distorting some texture features in the original face region in 
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some if not all video frames. In order to determine whether our PH morph 

detection schemes are capable of detecting DeepFake videos, our small pilot 

study is based on 20 videos (10 deepfake videos and their corresponding 

genuine sources downloaded from the internet). From each video, we selected 

a frame where the face is in a neutral (or near-neutral) state and cropped out 

the frontal face region and changed into grayscale. We investigated the ability 

of a small set of 2ULBP landmark to generate PH feature vectors that can 

easily distinguish between DeepFake and genuine videos. The outcome 

confirmed the viability of using the PH tool to detect Deepfake videos. For 

example, we found that the number of 𝐵X computed from first, fifth and sixth 

rotation of 𝐺g of 2ULBP landmarks clearly detected deepfake videos from 

their genuine counterpart. Here, the feature vector consists of 3 number as 

follow: 

𝑓 = �𝐵X	(𝑅Y	), 𝐵X	(𝑅¬	), 𝐵X	(𝑅æ	)� 

where 𝑅Y,𝑅¬,𝑅æ are 1st, 5th and 6th rotations of 𝐺g of 2ULBP. This can be 

easily seen by depicting this feature vector in 3D at an increasing sequence of 

thresholds, see Figure 7-2 and Figure 7-3.   

 

 

Figure 7-2: 3D plot of  𝑩𝟎 features for 1st , 5th and 6th  rotation of G2 of 2ULBP where each is representing  
coordinate. It can be seen that there is a clear discrimination between deepfake produced faces and genuine faces. 

 

DeepFake

Genuine
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Figure 7-3: 3D plot of  𝑩𝟎 features for 1st , 2nd and 3rd rotation of 𝑮𝟐 of 2ULBP where each is representing 
coordinate. It can be seen that there is a clear discrimination between deepfake produced faces and genuine faces 
across different thresholds of building Rips complexes. 

Next step in this direction, is to try to show credible evidences on the validity of the 

concluding hypothesis from this small pilot by expanding the PH-based deepfake 

detector, presented here, and test performance on a significantly larger dataset of 

deepfake videos. Furthermore, we should extend this work and vectorise the space of 

persistent barcodes, beside our developed concept of persistent binning to investigate 

the use of other approaches proposed in literature such as persistent images [64], 

persistent landscapes[63], persistent paths and signatures [63] and extracting statistics 

such as average of birth of bars, average of death of bars etc. In our future work, we 

shall compare the classification performance of our binning approach with the 

persistent barcode vectorisation approaches mentioned earlier, and the possibility of 

concatenating homological features of two or more methods together to analyse 

different image tampering problems. 

2- The topological analysis in this thesis contained the number of connected 

components and the number of 1-dimensional holes (loops) which are 

calculated using different image landmarks. The input is a 2D grayscale image 

whereby the natural approach is to consider computing zero- and one-

dimensional homological invariants. In our future work, we shall model the 

2D grayscale image to be considered for the computation of 2-dimensional 

homology invariant known as the number of cavities (or voids). To achieve 

t=2 t=3 t=4 t=5

t=6 t=7 t=8 t=9
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this, we treat pixels 2D positions (indices) as 𝑥𝑦-coordinates and the pixel 

value intensities as the 𝑧-coordinates. Below we illustrate an example of the 

new face model where we plan to include in our future investigation to 

compute homological features in dimension 0,1 and 2.  

 

Figure 7-4:New face model to construct topology from face images and compute cavities for both genuine 
and morphed faces. 

3- Accuracy Trend (Persistent Classification): another in progress investigation 

is to examine the effect of increasing the dimension of topological features 

feed into KNN classifier. In other words, at 𝑡 = 1 we compute homological 

invariants of constructed Rips complex for the 8-rotations of 2ULBP codes 

which result in 8-dimensional feature vector. Adding to it topological features 

computed as 𝑡 = 2, we obtain a 16-dimensional topological feature vector, 

and record the classification performance for each t. The reason behind this 

process is to see whether adding more topological features boost the 

classification performance or not? At this point, we want to remind the reader 

that in Chapter 5, we concatenated all of the computed topological features 

from 𝑡 = 1 to 𝑡 = 100, resulting in an 800-dimensioanl features vector. The 

reason we decided to stop at 𝑡 = 100 is to make sure that all of the images 

reaches 1 connected component.  But in practise, this might not be necessary 

and beyond some threshold, the classification performance will not increase if 

not decrease. In what follows, we shall present some limited amount of work 

in this direction, but a much more intensive study would be very useful. 

Genuine Morph
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Using ULBP as our landmark to start with and the two face image datasets of 

Utrecht and London DB and their corresponding generated morphed faces 

using splicing, complete and combine approach. We concluded that beyond 

𝑡 = 30, we are not going to gain any classification gain. 

 

Figure 7-5: Accuracy Trend of splicing-Utrecht DB  that shows the effect of increasing topological features at 
dimension zero. 

 

Figure 7-6: Accuracy Trend of splicing-Utrecht DB  that shows the effect of increasing topological features at 
dimension one. 

In figure (7-5) and figure (7-6), MDR and GDR refers to the morph detection 

rate and genuine detection rate, respectively. The higher the MDR and GDR 

are, the higher the overall accuracy. MDR and GDR are calculated similar to 

sensitivity and specificity, defined in Chapter 6 (section 6.3.3), where positive 

refers to an image being morphed, and negative is genuine. Figures (7-5) and 

(7-6) clearly shows that beyond 𝑡 = 30, no classification boost gained by 

adding topological features in either dimensions when testing Utrecht DB and 
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splicing technique. In fact, in figure (7-5) well before 𝑡 = 30 the classification 

accuracy stabilises and become consistent.   

 

 

Figure 7-7: Accuracy Trend of combined-Utrecht DB  that shows the effect of increasing topological features at 
dimension zero and one. 

 

 

Figure 7-8: Accuracy Trend of complete-Utrecht DB  that shows the effect of increasing topological features at 
dimension zero.
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Figure 7-9: Accuracy Trend of complete-Utrecht DB  that shows the effect of increasing topological 
features at dimension one. 

Figures (7-7) to (7-9) shows the classification trend of Utrecht DB, using 

2ULBP landmark, and the best geometries for each morphing technique 

detection. The reason behind inconsistent scales of y-axis in the figures is only 

to zoom-in the effect of adding more features to the classification 

performance. It is consistent that in Utrecht DB, morphed face detection 

performance is not increasing after 𝑡 = 30 which means that instead of using 

topological features of 800-dimension, using only 240-dimensional 

topological feature vector is enough in practise. Next, we demonstrate the 

London DB accuracy trend, through figures (7-10) to (7-15).  

 

Figure 7-10: Accuracy Trend of splicing-London DB  that shows the effect of increasing topological 
features at dimension zero. The landmark used is 2ULBP and the geometry is 𝑮𝟒. 
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Figure 7-11: Accuracy Trend of splicing-London DB  that shows the effect of increasing topological 
features at dimension one. The landmark used is 2ULBP and the geometry is 𝑮𝟒. 

 

Figure 7-12: Accuracy Trend of combine-London DB  that shows the effect of increasing topological 
features at dimension zero. The landmark used is 2ULBP and the geometry is 𝑮𝟓. 

 

 

Figure 7-13: Accuracy Trend of combine-London DB  that shows the effect of increasing topological 
features at dimension one. The landmark used is 2ULBP and the geometry is 𝑮𝟓. 
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 Figure 7-14: Accuracy Trend of complete-London DB  that shows the effect of increasing topological 
features at dimension zero. The landmark used is 2ULBP and the geometry is 𝑮𝟓. 

 

 

Figure 7-15: Accuracy Trend of complete-London DB  that shows the effect of increasing topological 
features at dimension one. The landmark used is 2ULBP and the geometry is 𝑮𝟓. 
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persistent classification performance. Of course, this claim needs to be 

validated in future by testing a larger number of face images to determine a 

universal stopping criterion/threshold to construct persistent barcodes.  

4- Persistent Vertex Degree (Local homology): Throughout our study, we 

focused on global homology features of the constructed simplicial complexes 

and ignored parameters like distribution of vertex degree within the connected 

components.  However, we noted these distributions are somewhat sensitive 

to image tampering and may provide effective forensic tools. In fact two Rips 

complexes with the same number of connected components or number of 

holes/loops, may have locally different distributions of vertex degree (for 

example see figure (6-2), figure (6-10) and figure (6-11) in Chapter 6). 

Accordingly, computing the persistent (vertex) degree at each vertex (i.e. 

landmark pixel) is another future work to extend our current investigation into 

such local homology parameters.    

5- Extending the set of Landmarks to construct other topological structures: 

Another obvious future direction to the work presented in this thesis is the 

extension of the set of landmarks used to build topologies from images. In our 

analysis, we have used LBP(8,1) where 8 refers to the eight neighbouring pixels 

and 2 refers to the radius of the selected circle selected. One can repeat the 

same analysis using other types of LBP such as LBP(8,2) , LBP(16,2) , LBP(4,1)  

and others. Further, we can also use what is known as threshold-based LBP, 

whereby instead of ≥ 0 condition in LBP, we impose an extra condition by 

changing the threshold from zero to a chosen threshold by the user.  Local 

derivative patterns [165], entropy of image pixels or image patches and 

selecting image pixel landmarks according to patch intensity statistics 

distribution …etc.  

6- One of the challenges in developing robust morph detection algorithms in 

passport scenarios is the lack of publicly available datasets that could help 

mitigating the problem of overfitting as we discussed in chapter 5. In an 

attempt to do so, our collaborators in Germany made morphed faces from both 

Utrecht and London DB that is publicly available in (https://omen.cs.uni-

magdeburg.de/disclaimer/index.php). One need to re-evaluate the 

performance of our PH-base schemes in such cases and perhaps contribute to 

the effort of producing larger datasets by gathering a larger dataset of diverse 
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passport images and generate corresponding morphs. One other related issue 

is that in passport scenarios, the quality of produced morphed face images are 

expected to be more convincing and visually faultless, if it were to avoid 

detection by border control officers. In this respect, we note that passport 

images are meant to be taken in a controlled illumination environment and in 

border checking it may be difficult to produce perfect illumination conditions. 

This may result in high and undesirable false rejections. This is a strong 

motivation to investigate the effect of varying illumination on PH-based 

morph detection.   

7- Testing our PH-based steganalysis approach on more steganographic methods 

is another future work as well as comparing our topology steganalysis with 

other steganalysis techniques which are mostly statistical based. Furthermore, 

in this thesis, we considered 100% payload of the secret message whereby we 

use the entire carrier image pixels to embed, we plan to extend this to lower 

rate of payloads such as 90%, 80%, 70%, …, 10% payload. This means, 

instead of using/changing all of cover images’ pixel values, we only change 

say 10% of the pixel values which makes the task of stego detection harder.   

8- Using our approach of building more than one topology from a single medical 

image demonstrated a viable potential for more analysis in future, especially 

improving the results obtained from DDSM dataset. In our analysis, LBP has 

been selected as the landmark selection, we shall investigate the use of R-

LBP, CS-LBP and concatenation of different landmarks and geometries of the 

same landmark to improve the breast tumour classification. Furthermore, we 

also plan to extend the work on other types of medical images, other than 

mammograms, such as Ultrasound images as well as other types of cancer.     
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