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Illumination and Expression Invariant Face Recognition: Toward
Sample Quality-based Adaptive Fusion

Harin Sellahewa and Sabah A. Jassim

Abstract— The performance of face recognition schemes is
adversely affected as a result of significant to moderate varia-
tion in illumination, pose, and facial expressions. Most existing
approaches to face recognition tend to deal with one of these
problems by controlling the other conditions. Beside strong
efficiency requirements, face recognition systems on constrained
mobile devices and PDA’s are expected to be robust against
all variations in recording conditions that arise naturally as
a result of the way such devices are used. Wavelet-based face
recognition schemes have been shown to meet well the efficiency
requirements. Wavelet transforms decompose face images into
different frequency subbands at different scales, each giving rise
to different representation of the face, and thereby providing
the ingredients for a multi-stream approach to face recognition
which stand a real chance of achieving acceptable level of
robustness. This paper is concerned with the best fusion strategy
for a multi-stream face recognition scheme. By investigating
the robustness of different wavelet subbands against variation
in lighting conditions and expressions, we shall demonstrate
the shortcomings of current non-adaptive fusion strategies and
argue for the need to develop an image quality based, intelligent,
dynamic fusion strategy.

I. INTRODUCTION

Over the past two decades, scientific researchers and
commercial developers have made significant progress in
developing robust algorithms and technology to transfer
biometrics from theory to successful, large-scale automated
identity verification systems. Human face is a natural choice
in automated identification due to its unobtrusive nature.
However, within-class variations due to occlusion, changes
in illumination, pose, facial expressions and sensor quality
make accurate automatic face recognition a challenging
task [1]. This paper is primarily concerned with wavelet-
based face recognition under varying illumination conditions
and facial expressions.

Typical methods developed to address the challenges of
face recognition under varying illumination conditions could
be categorised as: feature-based methods, holistic methods
and generative methods. In feature-based approaches, faces
are represented by illumination invariant features. Typically
these are geometrical measurements and relationships be-
tween local facial features such as the eyes, mouth, nose
and chin [2]. Feature-based methods are known to be robust
against varying illumination conditions, however, they rely
on accurate face and facial feature detection.
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In holistic methods, the entire face image (image pixel
values) is considered for face representation without taking
into account any specific geometrical features. A face image
could be thought of as a point in a high dimensional image
space. To avoid computational complexities and to reduce
redundant data, face images are first linearly transformed into
a low dimensional subspace before extracting a feature vec-
tor. The most commonly used dimension reduction technique
is the Principal Component Analysis (PCA), also known
as Karhunen-Love transform (KLT) [3]. PCA is known to
retain within-class variations due to illumination and pose.
However, it has been demonstrated that leaving out the first
3 eigenfaces (that corresponds to the 3 largest eigenvalues)
could reduce the effect of variations in illumination [4].
However this may also lead to the loss of information that is
useful for accurate identification. An alternative approach to
PCA based linear projection is Fisher’s Linear Discriminant
(FLD), or the Linear Discriminant Analysis (LDA) which is
used to maximize the ratio of the determinant of the between-
class scatter to that of within-class scatter [4], [5]. The
downside of these approaches is that a number of training
samples from different conditions are required in order to
identify faces in uncontrolled environments.

Generative methods [6], [7], [8], [9] have been utilised
to address the problem of varying illumination conditions in
face recognition based on the assumption of the Lambertian
model. Previous work has demonstrated that the variability
of images under a fixed pose, consisting of only diffuse
reflection components and varying illumination conditions
can be represented by a linear combination of three basis
images [10], [11]. Belhumeur and Kriegman [12] demon-
strated that a set of images of an object under fixed posed,
consisting of diffuse reflection components and shadows
under arbitrary lighting conditions forms a convex cone,
termed the illumination cone, in the image space and that this
illumination cone can be approximated by a low-dimensional
subspace. These generative methods have shown to perform
well under varying illumination conditions. However, they
require a number of training samples which represent ex-
treme illumination conditions. It may be possible to acquire
a number of training images for certain applications such as
ID cards and drivers license, but not so for surveillance and
counter terrorism related applications.

In recent years, wavelet transforms (WT) have been suc-
cessfully used in a variety of face recognition schemes [13],
[14], [15], [16], [17]. However, in most cases, only the
approximation components at different scales of the WT are
used to represent face images as these give the best overall



recognition accuracy. The detail components (i.e. horizontal,
vertical and diagonal features) of the WT face images are
generally ignored. Our contribution in this paper is twofold.
We first investigate the effect of variations in illumination
and facial expressions on wavelet-based face recognition in
order to identify which frequency components of the wavelet
decomposed face image are robust against such varying
conditions. Based on a number of experimental results, we
argue for an image quality-based, adaptive fusion approach
to wavelet-based multi-stream face recognition.

The rest of this paper is organised as follows: In section II,
we give a brief introduction to wavelet transforms and review
existing work on wavelet-based face recognition. Section III
and Section IV analyse the effects of varying illumination
conditions and facial expressions on different wavelet sub-
bands. In section V, we present an existing wavelet-based
multi-stream approach to face recognition [18] and argue that
the fusion of different wavelet subbands should be performed
adaptively, based on the quality of the live sample image.
Finally, the conclusions and our future direction of work are
discussed in section VI.

II. WAVELET TRANSFORMS

A WT is a multiresolution signal analysis tool which
allows one to view a signal’s regular patterns as well as
its anomalies by hierarchically decomposing the signal into
low- and high-frequency components. Similar to the Fourier
analysis representing a signal in terms of sine waves of
different frequencies, a WT represents a signal by a lin-
ear combination of wavelets. This set of wavelets are the
dilated and translated versions of a mother wavelet [19],
[20]. The mathematical properties of the discrete wavelet
transform (DWT) is equivalent to filtering the input signal
with a bank of band-pass filters whose impulse responses are
approximated by different scales of the same mother wavelet.

There are a number of different ways of applying a
2D-wavelet transform. The most commonly used wavelet
decomposition is the pyramid (the non-standard) scheme,
which we have adopted here. At a resolution depth of k,
the pyramid scheme decomposes an image I into 3k + 1
subbands, (LLk, HLk, LHk, HHk, . . . , HL1, LH1, HH1),
with the lowest-pass subband LLk representing the k− level
approximation of the image I. The subbands LH1, HH1
and HL1 contain finest scale (highest frequencies) wavelet
coefficients, and the coefficients get coarser as k increases,
LLk being the coarsest.

A. Wavelet Transforms in Face Recognition

The use of wavelet transforms in face recognition tasks
has been studied on previous occasions. Etemad and Chel-
lappa suggested to estimate the discriminant powers of each
subband of a wavelet transformed image for their proposed
LDA method [5]. They found that the LL components are
the most informative and indicated that the LDA scheme
can be applied on wavelet-based multiscale representation
of face images. Lai et al. [13] proposed spectroface, a
face representation scheme based on wavelet and Fourier

transforms (FT). In order to attenuate the effect of facial
expressions, the authors used the LL subbands of WT face
images rather than the original image to derive FT-based
facial features. In [14], [15], the LL subband coefficients
were used as the facial feature representation on its own
(wavelet-only) or as a dimensionality reduced space for
further statistical analysis using PCA or LDA. Sellahewa
and Jassim [21] also demonstrated that the wavelet-only
scheme using LL for face representation is robust against
varying facial expressions. Since we are investigating the
recognition accuracy of different wavelet subbands under
varying illumination and facial expressions, we based our
study on the wavelet-only face feature representation.

Consider the training set Γ = {Ti,1,Ti,2,Ti,3, . . . ,Ti,m} of
N×N face images of n subjects with m images per subject.
Applying a WT on each of the training images results in
a set Wk(Γ) of multi-resolution decomposed images. Let
LLk(Γ) be the set of all k-level LL subbands obtained from
the elements in the set Wk(Γ). The new set of features
for the given training set Γ on this occasion is the set
LLk(Γ). Hence, the image j of subject i in the training set is
represented by its feature vectors LLk,i, j. Similar to the facial
feature representation by LLk, we can also construct 3 more
independent representations at the same decomposition level
k: HLk(Γ), LHk(Γ) and HHk(Γ) based on the kth-level HL-,
LH- and HH-subbands respectively.

When a new face image T is presented for identification,
a WT is applied on T and the appropriate frequency channel
(e.g LLk) is selected as the feature vector. We now calculate
a match score Si, j between the test feature vector and each
of the feature vectors j of subject i in the enrolled feature
set LLk(Γ) using a nearest-neighbour (NN) classifier (e.g.
Euclidean or CityBlock distance). The score associated with
the test image and the enrolled identity i is

Si = min(Si, j) (for j = 1, . . ., m)

The identity associated with the test image is the identity of
subject i where min(Si). Subbands of two different wavelet
filters, Haar and Daubechie-2 were tested in our experiments.
All the results presented in this paper are based on the
Daubechie-2 filter and the NN classifier is the CityBlock
distance.

III. EFFECTS OF VARYING ILLUMINATION ON
WAVELET-BASED FACE REPRESENTATIONS

We studied how the changes in illumination between the
enrolled and test face images affect the recognition accuracy
of different wavelet-based face representations through a
number of identification experiments. The effects of two
commonly used illumination normalisation methods: (1) his-
togram equalisation (HE) and (2) z-score normalisation (ZN)
were also compared. HE was applied on the spatial domain
while ZN was performed on the selected wavelet subband.

A. Experimental Data

We used the 168×192 cropped face images [9] from the
Yale Face Database B and the Extended Yale Face Database



B for our experiments. The Yale Face Database B consists
of 5850 images of 10 subjects. Each subject was imaged
under 576 viewing conditions (9 poses × 64 illumination
conditions). In addition to these images, an image was
captured under ambient illumination for each of the poses.
The Extended Yale Face Database B consists images of an
additional 28 subjects to those subjects that are already in
the Yale Face Database B, but only for frontal pose. Since
we are concerned with varying illumination conditions, we
only used the 64 images (i.e. excluding the image in ambient
light) of each subject in frontal pose (i.e. images with pose
P00). These images were divided into 5 subsets according
to the angle θ of the light-source with respect to the optical
axis of the camera. The subsets are: subset 1 – θ<12◦ (70
images), subset 2 – 20◦ < θ < 25◦ (120 images), subset 3
– 35◦ < θ < 50◦ (120 images), subset 4 – 60◦ < θ < 77◦

(140 images) and subset 5 – 85◦ < θ < 128◦ (190 images).
All our experiments were conducted on resampled images of
size 80×96. Fig. 1 shows an example image of each one of
the 5 subsets in Yale Face Database B.

B. Experiments: Yale Face Database B

We used only one training image per subject (i.e. the image
that was captured with a light-source on the optical axis
of the camera in subset 1) and the remaining 630 images
of the 10 subjects were used for testing. Table I shows
identification error rate for each illumination subset as well as
the total error rate for different face feature representations at
different scales. It is evident that the feature representation
based on the approximation subband (i.e. LL) is the most
affected by the changes in illumination while the LH subband
is the least affected representation. However, LL features
under small variations in lighting conditions (e.g. subset 1)
performs as well as the non-LL features. Table II shows the
effects of applying HE and/or ZN as a pre-processing step to
normalise variations in illumination. The normalisation step
significantly reduced the identification error, especially of the
LH2 feature representation, which achieved a total accuracy
rate of 96%. Consindering the use of only a single training
image, the identification error of the wavelet-based approach
using the LH subband is significantly lower than the error
rates of most existing methods as reported in [7], [8], [9].

Above observations are further confirmed by the results
shown in Table III: identification errors rates of the Extended
Yale Face Database B which consists a total of 38 subjects.
Interestingly, LL-subband acheived the lowest identification
error for test images in subset 1 which suggests that under
controlled lighting conditions, the LL-subband is the suitable

(a) Subset 1 (b) Subset 2 (c) Subset 3 (d) Subset 4 (e) Subset 5

Fig. 1: Example images of Yale Face Database B

feature representation. We also noted that the normalisation
by ZN method alone led to a significant reduction in identi-
fication error for subsets 1, 2, 3 and 4 while HE being the
better choice for subset 5. Applying HE and ZN resulted in
the lowest identification for subsets 4 and 5. This indicates
that the choice of the illumination normalisation method
should be adaptive, based on the illumination quality of
the sample image. However, in existing approaches to face
recognition, the illumination normalisation step is performed
at all times, irrespective of the lighting conditions.

IV. EFFECTS OF VARYING FACIAL EXPRESSIONS ON
WAVELET-BASED FACE REPRESENTATIONS

In section III we investigated the effects of varying il-
lumination on different frequency components of the WT
face images when used as face feature represenation for
person recognition and found that the LH subband is the
most suitable representation under varying illumination while
the LL subband representation is significantly affected by
extreme changes in illumination. Here we analyse the effects
of varying facial expressions on different wavelet feature
representations using the Yale Face Database.

A. Experimental Data and Results

The Yale Face database [4] consists of 15 subjects and
there are 11 different 320× 243 grey scale images per
subject. These images include:
• expressions - normal, happy, sad, sleepy, surprised and

wink,
• face details - with glasses and without glasses.
• illuminations - center-light, left-light and right-light,

The 11 different images of a subject in the Yale Face
Database are shown in Fig. 2. All original images of the
Yale Face database were manually cropped around the face
and resized to 80×96 pixels for our experiments.

TABLE I: Effects of varying illumination on wavelet-based
face recognition using different wavelet subbands. Only one
image per person from Subset 1 (i.e. frontal pose, frontal
light source) was used for enrolment.

Yale Database B: Identification Error Rates
Wavelet Error Rate (%) vs. Illumination Subset
Subband Set 1 Set 2 Set 3 Set 4 Set 5 Total

LL1 1.67 7.50 55.83 81.43 87.89 56.83
LL2 1.67 10.83 57.50 82.14 87.89 57.94
LL3 6.67 16.67 67.50 82.86 88.95 61.90
LL4 8.33 30.83 75.00 82.14 86.84 65.40
HL1 13.33 15.83 47.50 80.00 91.58 58.73
HL2 5.00 9.17 26.67 85.00 93.68 54.44
HL3 1.67 10.00 40.00 86.43 91.58 56.51
HL4 3.33 32.50 70.00 87.86 91.05 66.83
LH1 8.33 0.00 24.17 58.57 85.26 44.13
LH2 0.00 0.00 7.50 48.57 81.05 36.67
LH3 0.00 0.00 14.17 46.43 77.37 36.35
LH4 1.67 17.50 50.00 65.00 87.89 53.97
HH1 25.00 21.67 60.83 77.14 88.42 61.90
HH2 13.33 7.50 36.67 68.57 88.42 51.59
HH3 0.00 0.00 24.17 72.86 92.11 48.57
HH4 0.00 0.00 45.00 85.71 93.16 55.71



TABLE II: Effects of illumination normalisation on wavelet-
based face recognition using different wavelet subbands.
Only one image per person from Subset 1 (frontal pose,
frontal light source) was used for enrolment.

Yale Database B: Identification Error Rates
(including pre-processing to normalise illumination)

Wavelet subband Error Rate (%) vs. Illumination Subset
/Illumin. Norm Set 1 Set 2 Set 3 Set 4 Set 5 Total

LL1

None 1.67 7.50 55.83 81.43 87.89 56.83
HE 0.00 5.83 30.83 61.43 56.32 37.62
ZN 0.00 4.17 30.83 69.29 82.63 46.98
HE, ZN 0.00 5.83 31.67 60.71 56.32 37.62

LL2

None 1.67 10.83 57.50 82.14 87.89 57.94
HE 0.00 8.33 35.83 61.43 60.53 40.32
ZN 0.00 5.00 35.00 70.71 85.26 49.05
HE, ZN 0.00 8.33 37.50 61.43 63.16 41.43

HL2

None 5.00 9.17 26.67 85.00 93.68 54.44
HE 0.00 8.33 30.00 73.57 70.00 44.76
ZN 5.00 6.67 21.67 67.14 88.42 47.46
HE, ZN 3.33 7.50 26.67 65.00 68.95 42.06

LH2

None 0.00 0.00 7.50 48.57 81.05 36.67
HE 0.00 0.00 10.83 40.71 18.42 16.67
ZN 0.00 0.00 2.50 22.14 36.32 16.35
HE, ZN 0.00 0.00 3.33 12.14 2.63 4.13

HH2

None 13.33 7.50 36.67 68.57 88.42 51.59
HE 1.67 3.33 15.83 32.86 34.74 21.59
ZN 10.00 3.33 16.67 34.29 65.26 32.06
HE, ZN 1.67 3.33 16.67 28.57 29.47 19.21

We used the no-glasses image of each subject for the
enrolment and the remaining 10 images for testing. The iden-
tification error rates (%) of each category as well as the total
error rates for different feature representations are shown in
Table IV. The results show that the approximation subband
is robust against the presence of facial expressions as well as
eye glasses because anomalies due to facial expressions or
eyeglasses in the face image are attenuated in the approx-
imation band. However, the LH subband, which captures
high-frequency horizontal features of the face, performed
poorly under varying facial expressions. This indicates that
the choice of the feature representation should be adaptive
by taking into account the facial expression captured in the
live face image sample. In [22], Martinez used the optical
flow concept between the enrolled and the test images, to
assign weights to the image areas in a manner which is
inversely proportional to the amount of change (due to facial
expressions) in that area. However, this may also affect
facial features important for accurate person identification.
Also, variations in facial expressions is only one obstacle to
accurate face recognition.

Previous work [17], [18] has shown that the fusion of
match scores resulting from diffrent wavelet-based feature
representations (e.g. LL-score and LH-score) could increase
the recognition accuracy under varying conditions.

V. TOWARD SAMPLE QUALITY-BASED, ADAPTIVE
FUSION

A. Multi-stream Face Recognition

Recognition systems that are based on multiple biometric
traits (e.g. fusion of handgeometry and face or voice and

TABLE III: Extended Yale Face Database B: Effects of
illumination normalisation on wavelet-based face recognition
using different wavelet subbands. Only one image per person
from Subset 1 (frontal pose, frontal light source) was used
for enrolment. The remaining 2376 images were used to test
the identification accuracy.

Extended Yale Database B: Identification Error Rates
(including pre-processing to normalise illumination)

Wavelet subband Error Rate (%) vs. Illumination Subset
/Illumin. Norm Set 1 Set 2 Set 3 Set 4 Set 5 Total

LL2

None 8.44 14.25 80.66 95.63 97.20 69.36
HE 1.33 20.39 67.91 90.30 86.27 62.96
ZN 0.89 17.32 65.27 93.92 96.22 65.61
HE, ZN 1.78 20.83 67.47 90.30 85.71 62.84

HL2

None 17.33 5.70 54.29 94.11 98.32 63.51
HE 17.33 3.51 59.34 91.06 86.27 59.76
ZN 16.00 5.26 61.32 93.54 95.66 63.72
HE, ZN 15.56 5.26 64.18 93.54 88.66 62.12

LH2

None 14.67 0.00 35.60 66.35 89.64 49.83
HE 16.00 0.00 34.29 60.27 42.02 34.05
ZN 13.33 0.00 22.64 36.12 69.75 34.55
HE, ZN 13.33 0.00 24.84 28.33 18.35 17.80

HH2

None 34.22 8.11 58.24 80.61 96.22 62.71
HE 28.44 3.73 55.60 82.13 76.75 55.30
ZN 28.44 2.41 37.14 48.48 85.01 46.55
He, ZN 23.56 2.85 36.26 45.44 51.26 35.19

face modalities) are known to be more robust than systems
that use a signal biometric trait [23], [24] in verifying or
identifying an individual. Information from multiple biomet-
ric sources/traits can be fused at different stages/levels of the
recognition process:

1) Feature level fusion: Extracted features of each bio-
metric modality is combined into one feature set to
represent the individual.

2) Score level fusion: Match scores obtained from
each biometric system for the same verifica-
tion/identification attempt is combined into a single
fused score and the claimed identity is accepted if this
fused score falls within a predefined decision threshold.

3) Decision level fusion: Final decision (i.e. accept/reject
or the class label) of each biometric recognition system
is combined to a single decision (e.g by majority
voting).

The wavelet-based mutli-stream face recognition ap-
proach [18], [17] is describe below.

Each class Ti in the identity database contains multiple
feature representations at a given scale k (i.e. LLk,i, j, HLk,i, j
and LHk,i, j features) of a number of images, Ti, j (where j =
1,. . . , m). For a given unkown test image, the identification
system calculates scores SLL

i, j , SHL
i, j and SLH

k,i, j using a NN
classifier. The fused score Si, j for the enrolled image j of
identity i is;

Si, j =
(
SLL

i, j ×wLL)
+

(
SHL

i, j ×wHL)
+

(
SLH

i, j ×wLH)
where wLL, wHL, wLH are the weights given to respective
subband. The fused score Si for the identity i is:

Si = min(Si, j, j = 1, . . . ,m)



(a) Normal (b) Happy (c) Sad (d) Sleepy (e) Surprised (f) Wink

(g) No glasses (h) Glasses (i) Center-light (j) Left-light (k) Right-light

Fig. 2: Example images of Yale Face Database [4].

TABLE IV: Yale Face Database: Identification error rates (%) for different facial expressions and lighting conditions. Only
the noglasses image of each subject was used for enrolment.

Yale Database: Identification Error Rates (%)
Wavelet subband Facial Expression Illumination Direction Total/Illumin. Norm Normal Happy Sad Sleepy Surprised Wink Glasses Center Left Right

LL3

None 0.00 6.67 13.33 0.00 26.67 0.00 0.00 53.33 60.00 86.67 24.67
HE 0.00 6.67 6.67 0.00 40.00 0.00 0.00 6.67 60.00 66.67 18.67
ZN 0.00 6.67 6.67 0.00 40.00 0.00 0.00 13.33 40.00 73.33 18.00
HE, ZN 0.00 6.67 13.33 0.00 40.00 0.00 0.00 6.67 60.00 66.67 19.33

HL3

None 6.67 6.67 6.67 0.00 46.67 26.67 6.67 46.67 60.00 80.00 28.67
HE 0.00 6.67 6.67 0.00 33.33 26.67 6.67 26.67 60.00 46.67 21.33
ZN 6.67 6.67 13.33 0.00 40.00 26.67 6.67 33.33 66.67 60.00 26.00
HE, ZN 6.67 6.67 13.33 0.00 33.33 13.33 6.67 40.00 66.67 53.33 24.00

LH3

None 6.67 20.00 20.00 13.33 73.33 26.67 6.67 40.00 60.00 66.67 33.33
HE 6.67 26.67 20.00 0.00 66.67 20.00 6.67 46.67 60.00 46.67 30.00
ZN 6.67 13.33 20.00 6.67 80.00 20.00 6.67 26.67 53.33 40.00 27.33
HE, ZN 6.67 13.33 20.00 6.67 80.00 13.33 6.67 26.67 46.67 20.00 24.00

HH3

None 20.00 33.33 40.00 13.33 80.00 26.67 26.67 60.00 60.00 73.33 43.33
HE 6.67 33.33 26.67 20.00 80.00 26.67 26.67 53.33 60.00 60.00 39.33
ZN 13.33 26.67 26.67 13.33 80.00 20.00 20.00 60.00 60.00 53.33 37.33
HE, ZN 6.67 26.67 26.67 0.00 80.00 20.00 20.00 46.67 53.33 40.00 32.00

We applied the multi-stream approach to the identifica-
tion experiment on the Extended Yale Face Database B
in section III-B using LL2 and LH2 scores and compared
the identification performance for each of the illumination
subset. Two illumination normalisation methods, ZN as well
as HE followed by ZN was compared as shown in Fig. 3.
The results reiterates that the LL subband is suitable for
face recognition under control illumination while the LH
subband is robust against significant changes in illumination.
However, the fusion of the multiple feature representations
could improve the accuracy by using appropriate weighting
for the approximation and detail features. Based on these
results, we argue for the need to have an adaptive fusion
strategy, based on the face image sample quality instead of
a using fixed weighting strategy.

VI. CONCLUSIONS AND FUTURE WORK

We have investigated the robustness of face recognition
schemes that are based on different wavelet subbands against
variations in lighting and variation in expression, with the
aim of identifying the best fusion parameters for a multi-
stream scheme. While the low frequency LL subband is a
good feature representation under controlled lighting, the
high frequency LH subband is robust against varying illu-
mination conditions.

We have also conducted a limited number of experiments
on simple fusion of multi-subbands which revealed that
in some cases, fixed fusion parameters does not help in
improving robustness in a consistent manner. These results
motivate further investigation that should aim at developing
an intelligent multi-stream face recognition scheme that is
aware of the changes in illumination and would dynamically
adapt the fusion parameters. Our future work will involve
the investigation of face image sample quality measures that
could be used for an adaptive fusion strategy.
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