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Abstract. This paper presents a novel Deep Convolutional Neural Net-
work (DCNN) method for vehicle activity classification. We extend our
previous approach to be able to classify a larger number of vehicle trajec-
tories in a single network. We also highlight the flexibility of our approach
in integrating further scenarios to our classifier. Firstly, a spatiotempo-
ral calculus method is used to encode the relative movement between
vehicles as a trajectory of QTC states. We then map the encoded tra-
jectory to a 2D matrix using the one-hot vector mapping, this preserves
the important positional data and order for each QTC state. To do this
we associate the QTC sequences with pixels to form a 2D image tex-
ture. Afterwards, we adapted trained CNN architecture into our vehicles
activity recognition task. Two separate types of driving data sets are
used to evaluate our method. We demonstrate that the proposed method
out-performs existing techniques. Along with the proposed approach we
created a new dataset of vehicles interactions. Although the focus of this
paper is on the automated analysis of vehicle interactions, the proposed
technique is general and can be applied for pairwise analysis for moving
objects.

Keywords: Vehicle Activity Classification · Spatiotemporal Calculus
· Trajectory Texture · Transfer Learning · Deep Convolutional Neural
Networks.

1 Introduction

Vehicular collisions are typically the result of a deficient situational understand-
ing of the surrounding scene, and therefore being unable to identify and act upon
dangerous situations, before there are consequences. Being able to understand
the relative interaction between a vehicle and its surroundings is imperative in
defining the situation a vehicle is in, or about to enter, and hence to plan ac-
cordingly and do appropriate decision making [16]. The objective of vehicle
activity recognition is to classify a set of actions (from one of more vehicles) for
a sequence of observations. During dynamic traffic scenarios complex interac-
tions can occur, either between vehicles themselves, or even a possible broken
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Fig. 1. Overview of presented approach. Representation of trajectories using QTC
(left). Customised CNN for activity classification (right) [4].

or stalled vehicles; in this situation we refer to the stationary vehicle as an ob-
stacle. Larger group interactions can then be constructed from the pair-wise
interactions —vehicle-vehicle or vehicle-obstacle.

There are two main approaches for trajectory analysis, quantitative and qual-
itative approaches. Traditionally there has been significant research within the
quantitative approach; which uses sequences of real-valued features (trajecto-
ries) [25, 10, 12, 13, 15, 27], however, recent interest has grown around qualitative
approaches. Qualitative methods use a symbolic representation of scenarios of
moving objects, and have shown superior performance for vehicle activity anal-
ysis when compared with quantitative methods [2]. It has found applications
in vehicle interaction and human behavior analysis [2], and human-robot in-
teraction [9]. Along with improved performance there are also other benefits
for a qualitative approach, such as having a more compact representation (and
therefore is more computationally efficient). Qualitative representations are also
a more natural way of describing interactions [7]; where it is more flexible to
variations in trajectories, but still captures the overall behaviour.

Within the context of activity recognition having a compact and informative
representation for encoding trajectories, of moving objects, can be beneficial. [12]
encodes trajectories within a two dimensional matrix, while [20] encodes them
in a trajectory texture image. Both approaches were shown to be successful in
different application domains, human activity recognition [20, 19] and pair-wise
vehicles activity recognition [12]. Based on this the 2D representations are then
used to train a classifier to perform the activity recognition task. Also, with
the recent success of deep learning methods for image classification, represent-
ing trajectories within a 2D image enable the capabilities of previously built
and trained networks. In particular neural networks are well suited for learning
features based on the shape and texture of an object.

In this series, we present our novel approach for vehicle pair-activity recogni-
tion and classification, based on QTC and DCNN. Our method consists of two
stages, firstly we employ QTC as a means to, compactly, represent the relative
motion between pairs of objects (vehicle-vehicle or vehicle-obstacle). We then
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encode their interactions as a trajectory of QTC states. To convert this repre-
sentation as a 2D image we use one-hot vectors to convert QTC sequences to a
two dimensional matrix (or image texture). The second stage of our approach
is activity classification, using the more encoded trajectory texture image. To
do this we adapt, an already trained, DCNN (trained on the ImageNet dataset
for image classification). The motivation for this was to use the already trained
layers as a starting point to transfer knowledge to the vehicle pair-activity recog-
nition task. A unique image signature (or texture) is produced for each activity.
We evaluate our method using a dataset of vehicle-obstacle interactions, which
we have captured ourselves. We also present a detailed comparison against state-
of-the-art quantitative and qualitative methods, using different datasets (includ-
ing our own). Moreover, results demonstrate that our proposed approach gives
higher performance when compared with current methods for pair-wise vehicles
trajectory classification. An overview of the method and main contributions of
our work is shown in Figure 1 .

This article is an extension to our work previously presented [4]. We have
evaluated our approach on a new dataset which combines vehicles activity tra-
jectories from different data sources. We have extended the categories of our
activity classifier, while still achieving high performance. Further detailed evalu-
ations on this dataset are given in Section 4.4; where our approach is now able to
accurately distinguish between eight different pairwise activities, without com-
promising on accuracy. This allows for a more general method, which can be
used for applications with a wide range of scenarios. To highlight the main con-
tributions made within this paper, we demonstrate, for the first time, a novel
approach for classifying pair-wise vehicle activities using QTC with DCNNs.

Our work is primarily motivated by our interest in the automated recognition
vehicle’s scenario or activity, however, being able to predict a vehicle’s future tra-
jectory can help in avoiding any potential collisions. To be able to gain traction
and boost usability as a main-stream analysis method, we present a novel driver
model for predicting a vehicle’s future trajectory, from its partially observed
prior trajectory. Main novel aspects of this work are as follows: proposing a new
CNN tuned for pair-wise vehicle activity recognition, (using a modified version
of AlexNet [11]). The second contribution is a novel method for vehicle activity
classification, based on a vehicle’s potential future scenario; to achieve this we
utilise a driver model to produce likely trajectories. Lastly, through experimen-
tation we demonstrate that our proposed CNN out-performs current approaches
(which includes [2, 12, 13, 15, 27]). Additionally, we include a new, open-source,
dataset of pairwise vehicle-obstacle interactions, (with associated ground-truth).
It consists of 554 vehicle scenarios (complete and incomplete scenarios) for three
different types of interactions.

2 BACKGROUND

In this section we give a brief overview of the state-of-the-art in trajectory anal-
ysis, qualitative trajectory calculus, and deep learning.
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2.1 Trajectory Analysis Techniques

In order to do trajectory analysis a spatial-temporal representation of motion
information has to be defined. Currently there are numerous techniques for tra-
jectory representation; in order to encode a sequence of continuous states in an
efficient and fast way. A long-term motion descriptor given the name, sequen-
tial deep trajectory descriptor (sDTD), was presented in [19]. Their technique
initially determines the simplified dense trajectories of a single object and then
converts these trajectories into 2D images. Chavoshi et al. [5] presented a visu-
alization technique, sequence signature (SESI), to convert a basic variation of
QTC (QTCB) movement patterns of moving point objects into a 2D indexed
rasterized matrix. The approach in [12] represents trajectories of pair-vehicles
as a series of heat sources, where a thermal diffusion process creates an activ-
ity map as a 2D matrix. The above techniques either encode trajectories of a
single object, or utilise traditional similarity methods (e.g. Euclidean distance)
which unable to cope with varying lengths trajectories and compound behav-
iors. The vehicle activity analysis tackled in this paper requires a more general
technique, invariant to trajectory length and compound behaviors. It has been
demonstrated that quantitative [12] and qualitative [2] methods are the most
efficient for encoding vehicle pair-wise activity. We thus utilise both as the stan-
dard against which we evaluate our own work.

Approaches for trajectory analysis are grouped into three categories: single-
role activities [26], pair-wise-activities [2], and group-activities [12]. Typically
these techniques were focused on specific types of behaviours: human behav-
ior recognition [2, 12, 27], human-robot interaction [9], animal behavior cluster-
ing [2], or vehicles interaction recognition [2, 25, 10, 12]. Quantitative features
were mainly used in [12] for modelling traffic behaviours, and the same was done
for autonomous driving applications in [24]. [12] proposed an algorithm for ve-
hicle pair activity recognition using a heat map. There vehicle trajectories were
represented as an activity map and then a Surface-Fitting method was used to
group the resulting vehicle activities.

An approach using qualitative features for traffic activity recognition was
proposed in [2]. There a Normalized Weighted Sequence Alignment technique
was introduced, to calculate the similarity between QTC sequences. They eval-
uated their approach using three different datasets: human generated trajec-
tories, trajectories from animals, and trajectories from vehicle interactions. It
was demonstrated that their techniques provided improved performance over
other state-of-the-art quantitative methods [12, 13, 15, 27]. The latter are more
closely associated with the work proposed in this paper. Hence, we use these
approaches to compare our method. We also do a full comparison using the
vehicle-interaction dataset [12], provided with ground truth, to give a complete
evaluation of our recognition and classification approach (Section 4.1). Within
this work we will focus on pair-wise vehicle-to-vehicle and vehicle-to-obstacle in-
teractions. For a deeper understanding of trajectory analysis we refer to reader
to [1]; where further review is provided.
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2.2 Trajectory Representation

We have now established that for robust and efficient trajectory analysis being
able to represent trajectories, in a compact and meaningful way, is essential.
Qualitative spatial-temporal reasoning is a class of techniques which processes
trajectory information in a similar manner to the human perception system,
in terms of relative interactions. It does so by using symbolic representations,
of specific classes of interactions, rather than numeric measurements [23]. For
activity analysis, approaches using QTC representations have demonstrated a
higher level of robustness and performance, when contrasted against quantitative
methods; in different application areas, including: human activity analysis and
recognition of vehicle interaction [2].

Four features are used as a base unit for describing more complex pair-wise
trajectory information. Given the coordinates of two objects, k and l, their in-
teractions can be described using QTC as follows:

1. Distance Features
– S1: distance of k with respect to l: “-” indicates decrease, “+” indicates

increase, “0” indicates no change.
– S2: distance of l with respect to k.

2. Speed Features
– S3: Relative speed of k with respect to l at time t (which dually repre-

sents the relative speed of l with respect to k).

3. Side Features
– S4: Displacement of k with respect to the reference line L connecting the

objects: “-” if it moves to the left, “+” if it moves to the right, “0” if it
moves along L or not moving at all.

– S5: Displacement of l with respect to L.

4. Angular Features
– S6: The respective angles between the velocity vectors of the objects and

vector L: “-” if θ1 < θ2, “+” if θ1 > θ2 and “0” if θ1 = θ2

here Si represents the qualitative relations in QTC. Figure 2 demonstrates the
concept of qualitative relations within QTC for two disjoint objects, (k and l).
Three main calculi were defined [23]: QTCB , QTCC and QTCFull. Where QTCC

(S1, S2, S4 and S5) and the combination of the four codes results in 34 = 81
different states.

2.3 Deep Neural Networks

The increasing popularity of convolutional neural networks have demonstrated
their applicability for object recognition; in particular when it comes to very
large-scale visual recognition probelms [18]. Much of its success is attributed to
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Fig. 2. Diagrammatic representation showing QTC relations between two moving ve-
hicles: QTCC = (−,+, 0,+) [4].

the ability for CNNs to learn base image features and then combine them to form,
discriminative and robust, object features (such as shapes and textures) [17].
Some successful CNNs for image classification are presented in AlexNet [11] and
GoogLeNet [22], which were both designed within the context of the “Large Scale
Visual Recognition Challenge” (ILSVRC) [18] for the ImageNet dataset [6]. For
a further in-depth analysis we refer the reader to [14], which provides a review of
deep neural network architectures and their applications for object recognition.

Within our proposed approach for activity recognition we uslise AlexNet [11].
This model provided a good foundation for activity recognition, as it was trained
on approximately 1.2 million labeled images, consisting of 1,000 different cat-
egories from the ILSVRC dataset [18]; as a point to note, each image in this
dataset has one centrally located object, which occupies a significant portion
of the image and there is also limited background clutter. This has allowed the
network to learn a wide a robust set of base features. AlextNet uses the en-
tirety of the image as an input and produces probabilities for each class. In
terms of the network structure there are 650,000 neurons and 60 million param-
eters in AlexNet. Its architecture is made up of two normalisation layers, three
fully-connected layers, three max-pooling layers, five convolutional layers, and a
linear layer with softmax activation, to produce the probabilistic classification
outputs. Dropout regularization [21] is employed as a means to reduce overfitting
in the fully connected layers. Rectified Linear Units (ReLU) are also used as the
activation of the layers, and to provide non-linearity to the system.

A novel aspect of this work involved customizing AlexNet for the activity
recognition task, and evaluating the performance of our improved DCNN archi-
tecture on multiple datasets.

3 THEORETICAL FORMULATION

In Figure 1 we overview the key steps and contributions for our vehicle activity
recognition method; where the right side demonstrated our novelty in our deep
learning framework. Within our first step QTC trajectories are computed from
consecutive observations and then projected onto 2D matrices, (here observations
consist of the ‘x’ and ‘y’ coordinates). At this point the resulting 2D matrices (or
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trajectory texture images) now encode the relative motions’ of pairs of vehicles
at consecutive time frames, [t1, tN ].

One of the main novelties arising from this work is given in TrajNet ; a new
deep learning network, which uses transfer learning, using trajectory texture
images, to effectively learn the features presented in varying vehicle activities.
Additionally, we demonstrate the use of a Neural Network (NN) model for pre-
dicting a vehicle’s future trajectory, for our set of scenarios, from an incomplete
one. In our experimental section we demonstrate that our method is generaliz-
able across multiple scenarios and data types, is compatible with complete and
predicted trajectories. Moreover, we also demonstrate that the proposed method,
consistently, out-performs other state-of-the-art approaches.

We summarize the key novel contributions of this work as follows: Repre-
senting specific scenarios using sequences of QTC states, for a pair of vehicles’
relative movements. We introduce a technique to represent QTC sequences as
an image texture, based on the one-hot vector encoding. A novel CNN model is
proposed for vehicle activity recognition; it utilizes AlexNet and the ImageNet
dataset, but improves upon the base network, for vehicles pair-activity recogni-
tion task. This results in our new network TrajNet. For predicting a complete
trajectory from a partially observed one, a NN based human driver model is
presented.

3.1 Encoding Pair-wise Vehicle Interactions

Representing Vehicle Behaviour with QTC Given x, y, in the top-down
coordinate space, as the two-dimensional position of the centroid of a vehicle, we
employ QTC for representing the behaviour of a pair of interacting vehicles. Here
we consider interacting vehicles to be in close enough proximity that its presence
could potentially influence the actions and decision making of the other vehicle.
Changes in their relative positions, (hence their interactions) are expressed as
a sequence of QTC states. We use the common QTC variant (QTCC) within
our approach. The common QTC variant is represents the vehicle pair’s relative
two-dimensional movement qualitatively.

Definition: Given two interacting vehicles, or vehicle/obstacle pair, inter-
acting —in this case the presence of an obstacle in the path of a vehicle will
cause an action, likely to avoid it, to be taken —with one another and their
centroid x, y coordinates, we define:

V 1i = {(x1, y1), ..., (xt, yt), ..., (xN , yN )}, (1)

V 2i = {(x′1, y′1), ..., (x′t, y
′
t), ..., (x

′
N , y

′
N )}, (2)

here (xt, yt) and (x′t, y
′
t) are the centroids of the first interacting vehicle and

second centroids of the interacting vehicles, at time t, respectively. The pair-
wise trajectory is therefore represented as a sequence of ordered QTCC states:
Tvi = {S1, ..., St, ..., SN}, where St is the QTCC state representation of the



8 A. AlZoubi, D. Nam

relative movement of the two vehicles (xt, yt) and (x′t, y
′
t) at time t in trajectory

Tvi. N is the number of observations in Tvi.

Transforming Sequential QTC States to a 2D Image Texture The time
varying sequence of QTCC states, described in Section 3.1, is a one-dimensional
succession of QTCC states. It can be seen as analogous to both vehicles trajec-
tories. When drawing a comparison with text information, there are limitations;
such as where are no spaces between QTCC states and there are no concepts
of words. In order to be able to decode a higher level of information from these
succession of states, we translate QTCC trajectories into sequences of charac-
ters; with the aim of applying the same representation technique for text data
without losing location information of each QTCC state in the sequence. We
then represent this sequence numerically, so that it is able to be used as an in-
put for our CNN. Further discussion on our contribution to this is covered in
Section 3.2.
To be able to achieve this we first represent the QTCC states using the a

Algorithm 1 Image representation of QTC trajectory.

1: Input: set of trajectories ζ = {Tv1, ..., T vi, ...T vn} where n is the number of tra-
jectories in ζ

2: Input: QTCC states Cr: cr1(− − − −), ..., cr81(+ + + +)
3: Output: n 2D matrices (images I) of movement pattern
4: Extract: sequences of characters ζC = {Cv1, ..., Cvi, ...Cvn} from QTCC trajecto-

ries ζ
5: Define: a 2D matrix (Ii) with size (N × 81) for each sequence in ζC , where 81 is

the number of characters in Cr and N is the length of Cvi
6: Initialise: set all the elements of Ii into zero
7: Update: each matrix in I:
8: for i = 1 to n do
9: for j = 1 to N do

10: Ii(j, Cvi(j)) = 1
11: end for
12: end for
13: return I

symbolic representation Cr: cr1, cr2, ..., cr81. We then map our representation,
the one-dimensional sequence of characters (or QTCC trajectory), onto a two-
dimensional matrix (image texture). This is done using one-hot-vector represen-
tation, to efficiently evaluate the similarity of relative movement. This results in
images texture which we use as an input to train our network (TrajNet), with
the goal of being able to distinguish between different vehicle behaviours.

Definition: Given a set of trajectories ζ = {Tv1, ..., T vi, ...T vn} where n is
the total number of trajectories in ζ, we convert each QTC trajectory; calculated
from ζ, to form a sequences of characters ζC = {Cv1, ..., Cvi, ...Cvn}. Following
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this, we represent each sequence Cvi in ζC as an image texture Ii using one-
hot vector representation. Here the columns represent Cr (or QTCC states)
and the rows indicate the presence of a unique character (or QTCC state) at
a specific time-stamp. Algorithm 1 describes mapping QTCC trajectories into
image texture. For example, the relative motion between two vehicles, as seen in
figure 7(a), one vehicle is passing by the other vehicle (or obstacle) towards the
left during the time interval t1 to te. This interaction is described using QTCC :
(0 − 0 0, 0 − 0 0, ..., 0 − 0 −, 0 − 0 −, ...)t1−te or (cr32 cr32 ... cr31 cr31 ...)t1−te .
This trajectory can be represented as an image texture Ii using our Algorithm 1.

3.2 CNN based Activity Classification

Upon creating our two-dimensional image representation of QTC sequences, from
the pair-wise vehicle trajectories, we are able to train our proposed CNN, using
these images as inputs. Classification of the generated image textures is still a
challenging task; hence our motivation for transfer learning. Given a scenario
between two vehicles, despite the overall activity between two vehicles being
the same, there can be countless variations in the trajectories and the resulting
activity image. These variations can be due to multiple factors: variations in
environmental conditions, influences from other actors, and the different driving
styles of people. Considering all these factors, the types of variations are not
tractable, and to be able to efficiently model this we adopted a CNN based
approach for our activity recognition algorithm.

We decided to use AlexNet; as it is a proven and well established classification
network. Its structure is utilised, which has shown to be able to classify many
images with complex structures and features, as a base layer for our approach.
Transfer learning is done on this network, as completely learning the parameters
of this network from start would be unrealistic, do to the relatively small images
texture of QTC trajectories available in our dataset (where AlexNet was trained
on the order of a million images). As a result of AlexNet being trained on such a
large number of images for a general classification task, the earlier layers are well
tuned for extracting a wide array of basic features (edges, lines, etc.). We take
advantage of this by only replacing and fine-tuning the final convolutional layer
(CL5), the last three fully connected layers (FL6, FL7 and FL8), softmax (SL)
and the output layer (OL), this results in our new network TrajNet (Figure 1).

For the final convolutional layer we uses a smaller layer CLn, which consists
of 81 convolutional kernels. This was preceded by ReLU and max pooling layers
(using the same parameters as in [11]). We then incorporated one fully connected
FCn1, with 81 nodes. This is used in place of the the last two fully connected
layers (FL6 and FL7), of 4096 nodes each. The number of nodes used in the final
layers is correlated with the reduction in higher level features in our trajectory
texture images (as opposed to [6]). This gives more tightly coupled responses.
After our new FCn1 we include a ReLU and dropout layer (50%). Based on the
number of vehicle activities (a) defined in the dataset, we add a final new fully
connected layer (FCn2) to match the a classes. A softmax layer (SLn), and a
classification output layer (OLn) were also added to reflect the number of classes.
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The output of the final fully-connected layer is passed to an a-way softmax
(or normalized exponential function) which produces a probability distribution
over the a class labels. The following are training and testing procedures using
our image texture I. Each image texture (Ii) is used as input for the data
layer data for the network. The network parameters were initialised as follows:
iteration number = 104, initial learn rate = 10−4 and mini batch size = 4. These
parameters were chosen empirically and were based on fine tuning the later
layers for the activity recognition task. The other network parameters were set
according to [11].

3.3 Extending Vehicle Activity Classification with Predictive
Trajectory Modelling

In this section we introduce a novel approach to predicting a vehicle’s future
trajectory, given its and its pair’s states. Ideally, the earlier we are able to identify
which scenario a vehicle is in the more time there is to take appropriate action.
This step would act as a prerequisite for pair-wise vehicle activity classification,
in order to better identify scenario sooner.

To be able to predict the future pathway a vehicle may take, within the con-
text of a specific scenario, we propose a Feed Forward Neural Network (FFNN).
Details of our driver model, to predict full vehicle trajectories using partially ob-
served (or incomplete trajectories), are shown in Figure 3. The proposed model
architecture is made up of 9 hidden layers; where each hidden layer has z, such
that {z ∈ Z : Z = [10, 10, 20, 20, 50, 20, 20, 20, 15]}. Given a hidden layer Hi with
z nodes, that layer is defined such that z=̂ith element in Z. This configuration
was determined empirically, and was well suited to model the complex and in-
tricate decisions a human driver a human can make. Our trajectory prediction
model is unidirectional, where inputs are fed sequentially first through the input
layer, then processed in hidden layers and finally passed to the output layers.
Each layer is made up of nodes, where these nodes have weights and biases as-
sociated with each input to the node. To determine the output for a given node
the sum of the weighted inputs, along with addition of the bias value, are calcu-
lated and then passed through an activation function; here we use a hyperbolic
tangent function. The FFNN can be conceptualised as a way to approximate a
function, where the values of each node’s weight and bias are learned through
training. For training data we use prior (incomplete) trajectories with their cor-
rect or desired output trajectory. Training is done through Levenberg-Marquardt
backpropagation with a mean squared normalized error loss function.

Definition: Given x, y and x′, y′ as centroid positions of the ego-vehicle
and obstacle, respectively, we calculate the relative changes in the ego-vehicle’s
heading angle and translation of the ego-vehicle between times (t − 1) and t
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Fig. 3. Network architecture for trajectory prediction model. Layers with their asso-
ciated nodes are shown. The inputs, outputs and hidden states, are labelled P,O and
H, respectively. Note that we use 9 hidden layers, each with z hidden states [4].

follows:

θ(t) = tan−1(
(yt − yt−1)

(xt − xt−1)
, (3)

∇(t) =
√

(xt − xt−1)2 + (yt − yt−1)2, (4)

Here θ(t) is the ego-vehicle heading angle and ∇(t) is the magnitude of the
change in the ego-vehicle’s motion. Both features (θ(t) and ∇(t)) were used
as prior information in the training of our FFNN. To account for the effects
of noise, ( mainly associated with tiny fluctuations in the ego-vehicle’s heading
angles, caused by the driver), we calculate a moving average of the heading angle
and translation over the previous 0.5s. With this prior information we can define
the inputs to our FFNN as:

Θ(t) = 1/5

t∑
i=(t−5)

θ(i), (5)

R(t) = 1/5

t∑
i=(t−5)

∇(i), (6)

β(t) =

t∑
j=1

(
∇(j) sin

( j∑
i=1

θ(i)
))
, (7)

λ(t) =
√

(xt − x′t)2 + (yt − y′t)2. (8)
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Where λ(t) is the distance between the ego-vehicle and the object. To help
bound the driver model from going off the road when avoiding the obstacle we
introduced β(t), which is the lateral shift from the centre of the road. Θ and R
are directly related the ego-vehicle movement, β relates the vehicle location to
the road, and λ corresponds to the vehicle and obstacle interaction. The inputs
are further visualised in figure 3, where [P1, P2, P3, P4] ≡ [Θ(t),R(t), β(t), λ(t)]
and outputs are [O1, O2] ≡ [θ(t+1),∇(t+1)]. To determine the future trajectory
the algorithm in run iteratively, producing a future motion at each time-step.
This is described in Algorithm 2.

Fig. 4. Example pair-wise manoeuvres for traffic dataset used in [4], based on work
presented in [12].

Algorithm 2 Vehicle trajectory prediction.

. A distance of ε meters between the vehicle and the obstacle was chosen to start
prediction.

1: if (λ(t) < ε) then
2: while ((xt < x′t) ∧ (yt < y′t)) do
3: Inputs: [Θ(t),R(t), β(t), λ(t)], using (5)-(8), respectively;
4: Outputs: [θ(t+ 1),∇(t+ 1)];
5: {

xt+1 = ∇(t+ 1) cos(
∑t+1

i=1 θ(i)) + xt,

yt+1 = ∇(t+ 1) sin(
∑t+1

i=1 θ(i)) + yt.

6: Increment time-step: t = t+ 1;
7: end while
8: end if

4 EVALUATION

Within our experimental section we explore the performance of our vehicle ac-
tivity recognition approach by doing multiple comparisons, on different datasets
and against other methods. We contrast the performance of our classification
approach (Section 3.2) with state-of-the-art quantitative and qualitative ap-
proaches to activity classification [2, 12, 13, 15, 27]. We also evaluate our driver
model by comparing with our manually obtained ground truth. We demonstrate
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Table 1. Definitions of vehicle manoeuvres as described in [4].

Activity Definition

Turn One vehicle moves straight and another vehicle in another lane turns
right.

Follow One vehicle followed by another vehicle on the same lane.

Pass One vehicle passes the crossroad and another vehicle in the other di-
rection waits for green light.

Bothturn Two vehicles move in opposite directions and turn right at same time.

Overtake A vehicle is overtaken by another vehicle.

the generality of our approach and explain how to can be applied to other sce-
narios. We also show that gives the best performance, compared with the other
approaches; making it a suitable choice for time and safety critical applications.

4.1 Datasets and Experimental Set-up

In this section we explain our evaluation methodology, firstly we present our ex-
perimental approach and data used, after which we present a detailed evaluation
of our approaches. We performed our tests on two publicly available datasets.
The two different datasets represent different application domains, motion and
interaction from vehicle traffic (obtained from surveillance cameras [12]) and
vehicle-obstacle interactions, for modelling more scarce scenario of a potential
collision [3]. Two state-of-the-art pair-wise activity recognition approaches [2,
12] have been demonstrated to give superior performance (on the [12] dataset)
when compared with a number of other methods [27, 15, 13]. For consistency this
has motivated up to compare our approach using these algorithms, the traffic
dataset, and ground truth, as a base for evaluating our own activity classifica-
tion technique. [12] is also, to best of our knowledge, the only pair-wise traffic
surveillance dataset publicly available. All experiments were conducted on an
Intel Core i7 desktop, CPU@3.40GHz with 16.0GB RAM.

Traffic Motion Dataset The traffic dataset was obtained by extracting trajec-
tories from 20 surveillance videos; see [12] for more details. Five unique vehicle
activities, Turn, Follow, Pass, BothTurn, and Overtake, are defined and their
corresponding annotations are provided. 175 clips are presented in total, each
activity having 35 clips. Here clips are composed of segments with 20 frames
each The dataset provides x, y coordinates associated with the centroid of each
vehicle, for each frame and time-stamp t. Figure 4 gives representative frames
from the dataset. Table 1 details the definitions of each activity in the dataset.

Vehicle Obstacle Dataset For our second dataset [3] we focused on close
proximity manoeuvring for vehicle/obstacle interactions. These types of scenar-
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Fig. 5. Our image texture representation of QTC encode trajectories [4]. Scenarios
from traffic dataset [12].

Table 2. Description of pair-wise vehicle activities in vehicle/obstacle dataset [3].

Scenario Description

Left-Pass The ego-vehicle successfully passes the object one the left.

Right-Pass The ego-vehicle successfully passes the object one the right.

Crash The ego-vehicle and the obstacle collide.

ios can be potentially very dangerous for the vehicles involved, hence, they hap-
pen rarely and there is not much available data —real testing would also not
be a viable option for our crash scenario. To address this we developed our own
data through a simulation environment, developed using Virtual Battlespace 3
(VBS3), with the Logitech G29 Driving Force Racing Wheel and pedals. For
realism, our simulated tests were carried out on a realistic model of a Dubai
highway. A six lane highway was used, with the obstacle placed in the center
lane. A total of 40 participants were used in our trials, all of varying ages, genders
and driving experiences. Participants were encouraged to drive naturally and to
use their driving experience to avoid the obstacle. Within the simulation environ-
ment a Škoda Octavia was used, and a maximum speed of 50km/h was adhered
to. We label the manoeuvres manually into three groups: pass left, pass right,
and crash. The Cartesian centroid positions for the obstacle and ego-vehicle’s
was recorded, along with their velocity, yaw angle, and Euclidean distance from
each other. Data was recorded at 10Hz. This data was used for pair-wise vehicle-
obstacle activity classification but also for our trajectory prediction model.

Within our simulation trails, drivers completed a full manoeuvre, until they
had passed the obstacle. However, we part of the motivation of this work, our ap-
proach is focused around recognising events early within the manoeuvre. Hence,
our new dataset for vehicle-obstacle interaction recognition task [3], was be par-
titioned into three subsets, to demonstrate different aspects of our method.

– Our first subset (SS1) consists of 122 vehicle-obstacle trajectories of about
600 meters each (43,660 samples). We used this group to train our driver
trajectory prediction model.

– Our second group (SS2) contains complete trajectories. The activity break-
down within this group is as follows: 67 crash, 106 left-pass, and 104 right-
pass trajectories. We consider this group to be our ground truth, and used
it to evaluate the accuracy of our recognition method and our trajectory
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prediction model. The initial distance between the driven vehicle and the
obstacle (i.e. the total distance travelled in each trial) was 50 meters. Here
two experts labelled each trial as one of the three activities. We summarise
the definitions of each scenario in Table 2. Examples of each scenario are
shown in Figure 7; where the three scenarios are given from left to right,
Left-Pass, Right-Pass and Crash, respectively.

– The third subset (SS3) consisted of 277 incomplete trajectories. This group
is taken as partial trajectories from this trajectories derived in SS2. We use
these partially observed trajectories to evaluate our recognition method, for
predicting the events in advance; with the use of our trajectory prediction
model. This subset is composed of: 67 crash, 106 left-pass, and 104 right-pass
incomplete trajectories, of 25 meters in length each.

When using SS3 we selected an observed distance of ε = 25 meters between the
ego-vehicle and the obstacle. This distance represented 50% of the full distance
of the manoeuvre. Figure 7 (d) gives an example of an incomplete trajectory for
Right-Pass scenario. Here the solid red line is the ground truth trajectory (taken
by the human participant, and is a distance of 25 meters) and the dashed line
is the predicted trajectory.

4.2 Validation of Driver Model

To be able to classify a scenario earlier within the manoeuvre, and with a higher
degree of accuracy, we utilised our driver model to complete the remainder of a
manoeuvre. It is therefore imperative to demonstrate the accuracy of the driver
model. Firstly, we trained our driver model (Section 3.3) using the SS1 dataset,
(which consisted of 43,660 data points). We separated SS1 into training, valida-
tion and test sets, in a 70%, 15% and 15% split, respectively. The training subset
is used by our FFNN to learn the network parameters (weights and biases), the
purpose of the validation subset was to obtain, unbiased, network parameters for
the training process. Lastly the test subset was used to evaluate the network per-
formance, to ensure correct functioning. Figure 8 demonstrates that our network
parameters were learned correctly.

We used SS3, to perform a more in-depth analysis of our driver model. This
dataset was also not seen during network training. It consisted of 277 incom-
plete trajectories, where SS2 (the completed version) is considered as the ground
truth. SS3 consists of 67 crash, 106 left-pass, and 104 right-pass scenarios. Fig-
ure 9 shows samples of the input trajectory, predicted trajectory using our ap-
proach, and the ground truth trajectory, for our three scenarios. Our trajectories
are positioned so that they begin closer to the origin and move from left to right,
with increasing ‘x’ and ‘y’ values. The trajectories, created by the trail partici-
pants, are in green and red (where the red section is the ground truth), and the
trajectories from our driver model are in blue. We measure the error from our
FFNN based driver model using the Modified Hausdorff Distance (MHD) [8].
The selection of our error metric MHD, was motivated by its property of in-
creasing monotonically as the amount of difference between the two sets of edge
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points increases. It is robust to outlier points. Given the driver model generated
trajectory as Tv and the ground-truth trajectory as Tv

gt, we determine our
error measure as follows:

MHD = min(d(Tv,Tv
gt), d(Tv

gt,Tv)). (9)

Here d(∗) is the average minimum Euclidean distances between points of pre-
dicted and ground-truth trajectories. The error across SS3 is shown in figure 6.
Here the red line shows the average error and the bottom and top edges of the
box give the 25th and 75th percentiles, respectively. The whiskers of each box
extend to cover 99.3% of the data. Red pluses represent outliers. Across all three
manoeuvres a mean error of 0.4m was seen, this amount of error is negligible
for activity recognition, because the overall characteristic of the trajectory is
still captured. Moreover, a standard highway lane can be over 3m, therefore
variations will still be within lane.

Table 3. Comparison of proposed approach with state-of-the-art algorithms on the
traffic dataset [12] .

Type TrajNet NWSA [2] Heat-Map
[12]

WF-SVM
[27]

LC-SVM
[15]

GRAD [13]

Turn 2.9% 2.9% 2.9% 2.0% 16.9% 10.7%

Follow 0.0% 5.7% 11.4 % 22.9% 38.1% 15.4%

Pass 0.0% 0.0% 0.0% 11.7% 17.6% 15.5%

Bothturn 0.0% 2.9% 2.9% 1.2% 2.9% 4.2%

Overtake 2.9% 5.7% 5.7% 47.1% 61.7% 36.6%

Average
Error

1.16% 3.44% 4.58% 16.98% 27.24% 16.48

4.3 Results on Vehicle Activity Recognition

The main objective of this work is to be able to perform supervised classification
of pair-wise vehicle activity, between the ego-vehicle and its surroundings. Having
prior information about the type of event a vehicle is in, or about to enter, can
have benefits for path planning and decision making. As part of this work we
have collected and labelled a comprehensive dataset of high speed vehicle object
interactions, in simulation. With this new dataset of complex scenarios unique
classification problems arise. Here we will examine the performance and accuracy
of our algorithm and provide insight into its results.

Results on Traffic Mostion Dataset: We first evaluate the performance of
our algorithm on the traffic dataset [12]. We utilised the Cartesian coordinate
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Fig. 6. Errors (MHD) from scenarios, across SS3 [4].

pairs, given for each vehicle, as inputs to our algorithm. For each clip the coordi-
nates were then processed into their corresponding QTCC trajectories. The final
pre-processing stage involved constructing our image texture (Ii) for correspond-
ing QTCC trajectories (done with Algorithm 1). Figure 5 gives example images
texture for five different interactions along with the samples in figure 4. In order
thoroughly evaluate our approach we perform 5-fold cross validation. For each
fold we separate the images texture (I) into training and testing sets, with a
80% to 20% split for each class, respectively. The training sets were used to de-
termine the weights of our network (TrajNet). The unseen test images texture
were then classified by our trained TrajNet. Results of this are shown in Ta-
ble 3. We also incorporate comparative results obtained from [2], [12], and three
other approaches [27, 15, 13]. The average error (AVG Error) is calculated as the
ratio between the total number of incorrect classifications (compared with the
ground truth labels) and the total number of activity sequences within the test
set. We show that our approach gives better performance when compared with
the five state-of-the-art approaches (Table 3). It is able to classify the dataset
with errors rate 1.16% and with a standard deviation 0.015.

Results on Vehicle Obstacle Dataset: Our second set of experiments for
activity recognition algorithm was done on our simulation based dataset [3].
We test our classification approach using SS2 for complete trajectories and SS3

for partial trajectories. The pair-wise centroid positions of each vehicle x, y in
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(a) Left-Pass (b) Right-Pass

(c) Crash (d) Driver Model

Fig. 7. Representation of manoeuvres (shown through VBS3) displayed in red (a-c).
Here the green car represents an ego-vehicle and the white car a possible obstacle.
Results of applying our driver model are shown in (d), where the solid red line is the
previously driven path and the dashed line is the predicted trajectory [4].
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Fig. 8. Results of training for FFNN based driver model. Note that the error rates for
the training and testing set are similar [4].

SS2 were given as inputs. This was preprocessed and encoded to their QTCC

trajectory representation for each scenario. The next step in preprocessing was
to transform the trajectory representations to image texture (Ii). One image
was created for each QTCC trajectory, based on Algorithm 1. To evaluate our
classification approach we used 5-fold cross validation on the SS2 dataset. For
each fold we separated the images texture, generated from SS2, into two sets,
representing 80% to 20% of the dataset, for training and testing respectively.
The network weights were trained using the training subset TrajNet, and then
tested on the test subset. This approach showed the robustness of our technique,
and helps to reduce any bias the network may have received from a training set.
Results of the complete manoeuvre classification are given in Table 4. The net-
work trained on full trajectory manoeuvres is represented as “Complete Traj”.
Here the error ratio (AVG Error) is defined as the total number of false classifica-
tions, as obtained from the ground truth labelling, divided by the total number
of sequences in the test subset.

While we have demonstrated the efficacy of our classification method on full
manoeuvres, we will now evaluate results on partial trajectories; in order to make
pre-emptive decisions. The first step for evaluating the incomplete trajectories
was to train our FFNN based driver prediction model(figure 3), using SS1. Using
our fully trained driver model, we now perform a prediction step (on the SS3

dataset) to generate future trajectories and a complete manoeuvre. We refer to
this augmented dataset as SS4.
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(a) Left-Pass–0.20m
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(b) Right-Pass–0.18m
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(c) Crash–0.02m
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(d) Left-Pass–0.69m
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(e) Right-Pass–0.14m
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(f) Crash–0.29m

Fig. 9. Example trajectories for simulation dataset [3]. Error rates are based on,MHD.
Two examples from each scenario are given (top and bottom rows), covering all three
scenarios. (a)-(c) and (d)-(f) represent left-pass, right-pass, and, crash scenarios, re-
spectively [4].

Table 4. Classification error for full and partially observed trajectories, SS2 and SS3,
respectively [4].

Type Complete Traj (SS2) Predicted Traj (SS4)

Crash 0.0% 0.0%

Left-Pass 0.0% 0.0%

Right-Pass 0.0% 1.0%

AVG Error 0.0% 0.3%

Similarly to evaluating the full trajectories, we utilise the x, y centroid pairs
in the Cartesian space, for both the vehicle and the obstacle from SS4, as inputs
to our classifier. We then generate QTCC trajectories and associated images tex-
ture (I) for all runs. A sample trajectory is shown in Figure 7 (d). We calculated
the classification accuracy of our algorithm on SS4, using a 5-fold cross valida-
tion. For each fold, the images texture in SS4 were separated into training and
testing subsets, 80% to 20% respectively. The network weights were optimised
for TrajNet using the training subset and test subset was classified by the op-
timised network TrajNet. Results of our testing on incomplete trajectories are
presented in Table 4. We differentiate classifications from our network trained
on incomplete trajectories by labelling it “Predicted Traj”. It can be seen that
our approach still delivers a high level of performance, despite not being given
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the complete trajectory. This can be seen a strong motivator for coupling this
approach with potential decision making and path planning algorithms.

4.4 Results on Datasets From Different Sources

To demonstrate the robustness and generality of our method, we conducted
similar classification experiment using a challenging dataset which combines the
two datasets ([3] and [12]). This results in a new dataset which contains 452
scenarios for eight different activities, Turn, Follow, Pass, BothTurn, Overtake,
Crash, Left-Pass and Right-Pass. This is to show that our single network is
able to accurately distinguish between an even larger number of driving tasks.
Again, we calculated the classification accuracy of our algorithm using a 5-fold
cross validation with training and testing subsets, 80% to 20% respectively. The
network weights were optimised for TrajNet using the training subset and test
subset was classified by our generic TrajNet.

Table 5. Five-fold cross validation results on datasets with eight different activities
from different sources.

Fold Classified Correct Error Rate Train Time

Fold 1 90 89 0.01 9 min 50 sec

Fold 2 90 89 0.01 9 min 58 sec

Fold 3 90 90 0.0 10 min 13 sec

Fold 4 91 90 0.01 9 min 36 sec

Fold 5 91 89 0.02 9 min 23 sec

The results on this dataset show that our method is able to classify the data
coming from different sources with average errors rate 0.01. Table 5 shows five-
fold cross-validation results for the classification challenge training data of com-
bined datasets with the training time of each fold. The computational efficiency
of the algorithm, which includes trajectory predication and activity classification
for one scenario was on the order of 28 milliseconds.

5 CONCLUSION

A new approach based on a deep neural networks for vehicles activity recog-
nition was presented. We have built upon our pervious approach by extending
the number of trajectories classes our network is able to classify. This further
demonstrates the capabilities of our approach to interpret multiple types of vehi-
cle interactions.We utilise a QTC representation to capture invariant interaction
features. We then detailed steps on constructing a corresponding image tex-
tures, for a more interpretable representation of the QTC trajectories; based on
a one-hot vector encoding. Our technique is able to efficiently capture multiple
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scenarios of vehicles interactions. We describe the reasoning behind our archi-
tecture and how we efficiently used a limited amount of data to train TrajNet,
while not compromising on a high level of classification accuracy.

The method has been tested on two different challenging datasets: traf-
fic motion and vehicles interaction datasets. The experimental results showed
that the method is robust and performs better than existing methods with
1.16% error rate, as opposed to 3.44%, 4.58%, 16.98%, 27.24%, and 16.48%
of [2], [12], [27], [15] and [13], respectively.

A separate contribution is our vehicle-obstacle interaction dataset (VOIDataset),
which includes complete and incomplete trajectories. VOIDataset is publicly
available for download. Our method obtained high accuracy with error rates
0.0% and 0.3%, for complete and incomplete scenarios in VOIDataset, respec-
tively. Through combining the two datasets we showed the robustness of our
activity classification method.

To be able to pre-empt a future scenario from a partial observed example we
introduced a FFNN method for trajectory predication. The trajectory prediction
model was also evaluated on VOIDataset and the average error was 0.4m.

This approach can have potential impacts in future driving technologies,
whether in safety related applications or improving path planning. As a step
towards future work we would aim to tackle more complex manoeuvres, involving
multiple vehicles and infrastructure.
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