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1 Abstract
2 The present paper is based on the lecture that I gave on receiving the Nutrition Society’s 

3 inaugural Gowland Hopkins Award for contributions to Cellular and Molecular Nutrition. It 

4 reviews studies on the adipose tissues – brown and white – conducted by the groups that I have 

5 led since entering nutrition research in 1975. The initial focus was on exploring metabolic factors 

6 that underpin the development of obesity using animal models. This resulted in an interest in 

7 non-shivering thermogenesis with brown adipose tissue being identified as the key effector of 

8 facultative heat production. Brown fat is less thermogenically active in various obese rodents, 

9 and major changes in activity are exhibited in physiological conditions such as lactation and 

10 fasting consistent with a general role for the tissue in nutritional energetics. My interests moved 

11 to white adipose tissue following the cloning of the Ob gene. Our initial contributions in this area 

12 included demonstrating nutritional regulation of Ob gene expression and circulating leptin levels, 

13 as well as a regulatory role for the sympathetic nervous system operating through β3-

14 adrenoceptors. My interests subsequently evolved to a wider concern with the 

15 endocrine/signalling role of adipose tissue. Inflammation is a characteristic of white fat in 

16 obesity with the release of inflammation-related adipokines, and we proposed that hypoxia 

17 underlies this inflammatory state. O2-deprivation was shown to have substantial effects on gene 

18 expression and cellular function in white adipocytes. The hypoxia studies led to the proposition 

19 that O2 should be considered as a critical – essential - macronutrient.      
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20 Background
21 I am greatly honoured to receive the Gowland Hopkins Award from the Nutrition Society, and 

22 indeed to be the first recipient. I never met Sir Frederick Gowland Hopkins OM PRS, who 

23 received the Nobel Prize for Physiology or Medicine in 1929 for the discovery of vitamins, being 

24 born a year after he died. There is, however, a tangential link in that my entry into nutrition from 

25 a basic science background in physiology and biochemistry came through joining the MRC Dunn 

26 Nutritional Laboratory in Cambridge in 1975. The Dunn had been founded in 1927 when 

27 Gowland Hopkins was Dunn Professor of Biochemistry in the University, and the original intent 

28 was that he should be directly involved in the research. In practise, because of extensive other 

29 commitments, including as President of the Royal Society, his primary role with respect to the 

30 Dunn was as an advisor and member of the Management Committee. Gowland Hopkins has, of 

31 course, a close association with the Nutrition Society as one of the principal figures behind its 

32 foundation. 

33 My research over the past 40+ years since entering nutrition has centred on the adipose 

34 tissues – first brown and then white. This began following my initial studies at the Dunn where I 

35 had been recruited by Philip James as a member of the then newly formed Energy Group (Fig. 

36 1). The group had been established in recognition of obesity beginning to emerge as a public 

37 health problem. At the time, the incidence of obesity was considerably less than now - in 1980, 

38 for example, 6% of adult males and 8% of adult females in the UK were classified as obese(1) on 

39 the basis of a body mass index >30, while by 2017 the figure was approximately 30% of all adults 

40 (https://www.worldobesitydata.org/country-profiles/). Obesity is, of course, important 

41 primarily because of the increased risk of several associated diseases, particularly type 2 diabetes, 

42 hypertension, coronary heart disease and certain cancers(2,3).

43 The ethos prevailing when we began in the mid-1970’s was that obesity is the product of 

44 ‘gluttony and sloth’, but our focus was on exploring whether there are important metabolic 

45 factors which underpin the development of the disorder. My remit was to investigate the 

46 fundamentals of the regulation of energy balance using animal models. The animal of choice was 

47 the genetically obese ob/ob (Lepob/Lepob) mouse, and a colony of the Aston strain of these 

48 mutants was set-up. The attraction of ob/ob mice, which at the time were the most widely used 

49 animal model in obesity research, was that not only is the obese state extreme with body weight 

50 being up to three times that of lean siblings but that it is reducible to a mutation in a single 

51 recessively inherited gene(4). The link to a mutant gene meant that the obesity of ob/ob mice 

52 results from a change in just one protein - and that protein must play a critical role in the 

53 regulation of energy balance.
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54 The ob/ob mouse is not, of course, the only rodent in which obesity is the result of a single 

55 gene mutation, and we subsequently established colonies of the other major obese mutants - the 

56 Zucker fa/fa (Leprfa/Leprfa) rat and the diabetic-obese db/db (Leprdb/Leprdb) mouse(4). We were 

57 later able to house colonies of the Adipose mouse (Ad), golden hamsters (Mesocricetus auratus) and 

58 Djungarian hamsters (Phodopus sungorus), each as a specific model within our energy regulation 

59 studies. This was based on the August Krogh Principle that “for a large number of problems 

60 there will be some animal of choice or a few such animals on which it can be most conveniently 

61 studied”(5). As I have noted previously, the ability to maintain multiple colonies of experimental 

62 animals at the Dunn without direct cost to the investigator was remarkable(6).

63

64 Energy balance and thermogenesis
65 Hyperphagia is part of the basis for the obesity of the ob/ob mouse, and indeed that of the other 

66 obese mutants, food intake being greater than in lean siblings(4). However, studies where young 

67 ob/ob mice were either directly pair-fed to the ad libitum intake of their lean siblings, or otherwise 

68 given restricted amounts of food, indicated that obesity still develops without hyperphagia(7,8). 

69 Our own work, in which full energy balance studies were performed, clearly illustrates the point; 

70 young ob/ob mice pair-fed to the ad libitum intake of lean siblings at room temperature (23oC) 

71 exhibited a rate of energy deposition 2.3 times that of the lean(7). The study was conducted at 

72 four different environmental temperatures – 33o (thermoneutral for the mouse), 28o, 23o and 

73 17oC. At each temperature, the energy gain of the obese animals was greater than the lean, but 

74 the lower the temperature the higher the excess gain(7).

75 The capacity for excess energy deposition in the absence of hyperphagia indicated that one 

76 or more components of energy expenditure is reduced in the ob/ob mutants. Of the main 

77 components of expenditure, facultative (or adaptive) non-shivering thermogenesis (NST) was 

78 particularly attractive as the key element. Not only is thermoregulatory thermogenesis a major 

79 part of total expenditure in small mammals in order to maintain body temperature, but reduced 

80 expenditure on thermogenesis was being advocated by Miller and Stock as a causal factor in the 

81 development of obesity(9,10). Furthermore, some 25 years earlier impaired homeothermy had 

82 been noted in ob/ob mice(11). This appeared counter-intuitive given the improved insulation 

83 provided by the additional body fat of the obese animals, and was suggestive of a reduced 

84 capacity to generate heat. In our own studies, core temperature fell rapidly - to as low as 15oC - 

85 just 3 h after exposure of ob/ob mice to 4oC, whereas lean siblings maintained their temperature 

86 above 35oC(12).
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87 Direct measurements of NST from the peak increase in resting metabolic rate at 

88 thermoneutrality following the administration of noradrenaline indicated that the capacity for 

89 this form of heat production was 2-fold lower in ob/ob mice than lean siblings(12). Furthermore, 

90 resting metabolic rate – expressed ‘per animal’, as should be done in energetic studies – was 

91 reduced in the obese mice relative to the lean at every temperature examined below 

92 thermoneutrality, indicating a lower expenditure on NST(12).

93  

94 Brown adipose tissue
95 An immediate question raised by these physiological studies was the nature of the molecular and 

96 cellular mechanisms of NST. Several possibilities were under consideration at the time, including 

97 protein turnover, the α-glycerophosphate shuttle, Na+ transport across the plasma membrane 

98 mediated by Na+-K+ATPase, and futile/substrate cycles such as that between fructose-6-

99 phosphate and fructose-1,6-bisphosphate(13-19); in practise, most are in effect a form of energy-

100 consuming substrate cycle. There were, however, substantial reservations with each of these 

101 mechanisms(20) in that it seemed unlikely that they had the potential to generate sufficient 

102 quantities of heat and to do so acutely without disrupting normal metabolic control. In addition, 

103 there was a central issue of tissue localisation - several of the mechanisms, particularly protein 

104 turnover and Na+ transport, being essentially universal rather than restricted to a specific tissue 

105 site.

106 The question of the tissue basis for NST subsequently centred on brown adipose tissue 

107 (BAT, or brown fat), which had first been described by Conrad Gessner in 1551. Although 

108 different roles had been proposed for this tissue, including as an endocrine organ, the principal 

109 function was resolved in the early 1960s - as a thermogenic organ with heat as the primary 

110 product(21). The tissue is prominent in hibernating species, in the newborn of many mammals 

111 (including humans) and in rodents acclimated to the cold(22,23). The quantitative importance of 

112 BAT in adaptive NST in rodents was demonstrated in influential studies by Foster and 

113 Frydman(24-26). These authors mapped regional blood flow to different tissues using radioactively-

114 labelled microspheres in rats in which NST was maximally stimulated following either cold-

115 acclimation or the administration of noradrenaline. From the measurements of regional blood 

116 flow, together with the cardiac output and the oxygen extraction across the interscapular depot, 

117 BAT was estimated to account for 60% of NST in cold-acclimated rats(25). Our own studies on 

118 mice using the same approach suggested a broadly similar figure(7).

119 In parallel with the identification of BAT as the principal locus for NST, the unique 

120 bioenergetic properties of the tissue’s mitochondria were being elucidated. Heat was shown by 

Page 5 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

5

121 Nicholls to be generated by a regulated uncoupling of oxidative phosphorylation, the energy 

122 inherent in the proton gradient across the inner mitochondrial membrane being dissipated as 

123 heat rather than coupled to ATP synthesis(22). This process is controlled by the 32,000 Mr 

124 mitochondrial uncoupling protein-1 (UCP1) discovered by Ricquier(22,27). Acute stimulation of 

125 BAT thermogenesis leads to an activation of UCP1, while chronic stimulation results in an 

126 increase in the amount of the protein – through a combination of a higher concentration in the 

127 mitochondria and through mitochondriogenesis(23). These changes, both acute and chronic, are 

128 primarily driven by the release of noradrenaline from the extensive sympathetic innervation of 

129 BAT, acting mainly via β3-adrenoceptors(28,29).

130 My group at the Dunn, in parallel with several other groups, began to explore the potential 

131 role of BAT in energy balance and the development of obesity. Two seminal observations were 

132 pivotal; in the first, Himms-Hagen and Desaultels in Ottawa demonstrated reduced GDP 

133 binding to BAT mitochondria in ob/ob mice relative to lean siblings, this reflecting a reduction in 

134 the thermogenic proton conductance pathway of the tissue(30). Our own blood flow studies 

135 indicated that the reduced NST and consequent lower energy expenditure of the obese mutant is 

136 entirely due to decreased metabolic activity in BAT(31). In the second key study, Rothwell and 

137 Stock in London proposed that BAT is the locus of the diet-induced thermogenesis that they 

138 were observing in rats overfed through the provision of a cafeteria diet(32). In follow-up studies 

139 with our group, key molecular indices of BAT thermogenic activity were demonstrated in the 

140 cafeteria-fed animals – increased mitochondrial mass and GDP binding, as well as GDP-

141 sensitive respiration(33).

142 These initial reports were followed by a series of studies in which the thermogenic activity 

143 of BAT was shown to be reduced in a variety of obese rodents. They included other single gene 

144 mutants – fa/fa rat and db/db mouse – and rodents with experimentally-induced obesity such as 

145 that following lesioning of the ventromedial hypothalamus, the administration of gold 

146 thioglucose, and treatment with corticosteroids(20,34,35). Along with the studies on obese animals, 

147 the role of BAT in nutritional energetics was further explored in a range of physiological and 

148 pathophysiological situations in which body fat and energy flux change (Fig. 2). These included 

149 the reproductive cycle – pregnancy and lactation – hibernation, photoperiod, cancer cachexia and 

150 nutritional manipulations such as fasting/refeeding and the provision of a low protein diet(34,35).

151 Lactation was a physiological stress of particular interest to us at the Dunn. The energy 

152 cost of lactation is high in small mammals, and energy intake is increased by approximately 3-

153 fold in lactating rats, for example, compared to virgin animals(36,37). Our studies in mice showed 

154 that BAT thermogenesis is suppressed in lactation, the suppression being maximal in late 
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155 lactation when milk production peaks(38-40). Mitochondrial mass and GDP binding are both 

156 markedly reduced in BAT of lactating mice, the latter to the same level as virgin animals at 

157 thermoneutrality(38,39). The concentration of UCP1 in the mitochondria is also reduced relative to 

158 that of virgin mice, with the total UCP1 content of the interscapular pad at late lactation being 

159 <10% of the virgin animals (Fig. 3)(39). These changes in BAT activity effectively lead to a 

160 substantial energy saving, helping to meet the high energy cost of milk production. However, this 

161 adaptation essentially reflects the limited scope for heat dissipation in the face of the high 

162 metabolic heat generation associated with milk synthesis rather than a specific energy saving 

163 mechanism as such, as convincingly argued in a recent review on BAT in lactation(40). 

164 Perhaps the strongest illustration of the link between energy expenditure and BAT 

165 thermogenesis comes from the changes in the tissue that occur when small rodents are 

166 acclimated to the cold. In mice, energy expenditure and food intake are increased 3-fold between 

167 thermoneutrality and 4oC, reflecting the energy cost of generating heat for homeothermy(12,41). In 

168 rats acclimated at 4oC, the mitochondrial content, mitochondrial GDP binding and UCP1 

169 concentration were each substantially higher than in rats acclimated to thermoneutrality (29oC), 

170 while the total UCP1 content of the interscapular BAT depot was increased by >100-fold(42). 

171

172 Brown adipose tissue in humans
173 By the beginning of the 1990s, the importance of BAT in nutritional energetics had been firmly 

174 established across a range of obesity models and in other conditions in experimental animals in 

175 which energy flux is altered. In the case of humans, interest in the tissue had been driven to a 

176 considerable extent by the concept that reduced thermogenesis is a key factor in the 

177 development of obesity in humans and that BAT is a potential therapeutic target for the 

178 treatment of the disorder. 

179 Although brown fat was widely recognised to be an important locus of heat production in 

180 the human neonate, the tissue appeared – on the basis of histological appearance – to be absent 

181 after the first few years of life. The presence of BAT in adult humans was confirmed, however, 

182 by immunological studies identifying UCP1 in fat depots, including in some elderly subjects(43-45). 

183 In addition, expression of the UCP1 gene was evident through detection of the encoded 

184 mRNA(46). Activation of the tissue in patients with phaeochromocytoma was also 

185 demonstrated(47,48).

186 Despite the clear evidence for the presence of BAT in adults, with the capacity for 

187 adaptive changes, the prevailing view was that the tissue was of little, or no, significance in 

188 human energetics other than in neonates and during the first years of life. Interest in BAT then 
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189 declined markedly, with the notable exception of those groups (particularly that of Cannon and 

190 Nedergaard in Stockholm(23)) whose principal focus was on understanding the fundamental 

191 biology of the tissue. Since 2009 there has, however, been renewed interest on BAT in humans 

192 following the application of fluorodeoxyglucose positron emission tomography(49-51). This has 

193 firmly demonstrated active BAT in adults, activity being reduced in obesity and with ageing, for 

194 example, while being stimulated on cold exposure and by the administration of a selective β3-

195 adrenoceptor agonist(49-55).

196

197 White adipose tissue – the discovery of leptin
198 As interest in BAT declined, my own research focus changed and abruptly so following the 

199 cloning of the Ob (Lepob) gene and the identification of the encoded protein(56) Within days of the 

200 report in Nature on 1 December 1994, my group at the Rowett in Aberdeen (where I had 

201 relocated in 1988) had designed and validated oligonucleotide probes to examine Ob gene 

202 expression. This move reflected the fact that some two years earlier a consortium of us in the 

203 UK, which included Michael Stock and John Stirling, had sought funding to identify the 

204 defective genes in the obese mouse mutants. We were, however, unsuccessful since it was argued 

205 (correctly) that at least one group in the United States was well-advanced in the goal and that it 

206 was unlikely that we could be competitive. My response was that once the Ob gene had been 

207 identified, our strategy would be to explore the physiology of the protein product. 

208 The Ob gene was reported to be expressed in white adipose tissue (WAT) and the protein 

209 – initially termed ‘OB’, and then leptin – to act as a lipostatic signal(56-58). Subsequently, the 

210 hormone was found to be produced by several tissues, including BAT(59) and the placenta(60), 

211 although WAT is the major source. Similarly, the functions attributed to leptin quickly expanded 

212 and it became regarded as a pleiotropic factor(61). The early studies of my group at the Rowett 

213 demonstrated that expression of the Ob gene is nutritionally regulated, the mRNA level in WAT 

214 of lean rodents rapidly decreasing on fasting with a restoration on refeeding(62). The circulating 

215 levels of the hormone change in parallel with the alterations in gene expression(63).

216 We then showed that acute exposure of mice to cold led to a strong inhibition of Ob 

217 expression, and a fall in circulating leptin level, both of which are rapidly reversed on return to a 

218 warm environment(64,65). The cold-induced reduction in Ob mRNA level was mimicked by the 

219 administration of noradrenaline and by the β-adrenoceptor agonist isoprenaline. From these 

220 observations we proposed that the sympathetic system plays a key role in the regulation Ob gene 

221 expression(64). Subsequent observations indicated that this operates primarily through β3-

222 adrenoceptors(65,66). Further studies on leptin at the Rowett included the demonstration by in situ 
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223 hybridisation that the receptor, and particularly the long form responsible for signalling, is 

224 strongly expressed in regions of the hypothalamus, consistent with being an adipocyte-derived 

225 signal for appetite(67). 

226

227 Adipokines and the secretory function of white adipocytes
228 Leptin quickly became a major area in research on obesity and its associated disorders. One of 

229 the key outcomes of the discovery of the hormone was a radical change in perspective on the 

230 functions of white adipocytes and therefore of WAT itself. Adipocytes were recognised as 

231 endocrine cells with WAT as a major signalling organ(68-71). Although secreted protein factors 

232 had been identified previously, this had not led to the conceptualisation of white adipocytes as 

233 endocrine and signalling cells. The secreted proteins known prior to leptin were adipsin 

234 (complement factor D)(72), which is a serine protease, the cytokine TNFα(73), and lipoprotein 

235 lipase. Lipoprotein lipase is, of course, released from adipocytes to catalyse the breakdown of 

236 circulating triacylglycerols to enable the uptake of fatty acids into adipocytes; it was not, however, 

237 regarded as a fat cell secretory protein as such.

238 The ‘secretome’ of adipocytes, and of WAT as a whole, is extensive (Fig. 4). Quantitatively, 

239 fatty acids are the largest secretory product, but there are several other lipid groups released from 

240 the cells. Some, such as specific prostaglandins and the endocannabinoid anadamide, are 

241 synthesised de novo within adipocytes, while others, including cholesterol and vitamin A, are taken 

242 up, stored, and subsequently released(61). A question raised by the discovery of leptin was 

243 whether there are a range of protein hormones and signals synthesised and secreted by fat cells. 

244 The answer is very much in the affirmative and one of the earliest of these adipokines, as they 

245 are termed, identified was another major adipocyte hormone, adiponectin, whose functions 

246 encompass insulin sensitising, angiogenic and anti-inflammatory actions (Fig. 3)(74-78). 

247 The search for novel adipokines became a core focus of my group, both at the Rowett and 

248 later at the University of Liverpool to where I moved in 2002. Among the several adipokines that 

249 we discovered were: the neurotrophic signal nerve growth factor(79); specific metallothioneins(80), 

250 these having metal binding actions; and the lipolytic/cachetic factor zinc-α2-glycoprotein(81,82). 

251 Nerve growth factor was found to be linked to the inflammatory response in WAT, secretion of 

252 the protein being strongly stimulated by TNFα(79). As in mice, zinc-α2-glycoprotein expression 

253 increased substantially in WAT of patients with cachexia associated with gastrointestinal 

254 cancer(83).

255 An extensive range of individual adipokines has now been identified, and proteomic 

256 studies and in silico analysis suggest that there are several hundred in total(84-86). The wide-ranging 
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257 secretory function of white adipocytes established over the past two decades has in part served 

258 as a model for other cell types which were not previously regarded as having a significant 

259 endocrine or signalling function. Myocytes, for example, are now known to release a range of 

260 proteins signals - myokines(87,88) - while another example is hepatocytes which secrete multiple 

261 hepatokines(89).  

262 The identification of a multiplicity of protein signals and factors from adipocytes indicated 

263 that WAT is involved in a range of physiological and regulatory processes(61,70,90-92). While some 

264 adipokines are endocrine in function, signalling to tissues and organs distant to the adipose 

265 depots, others have local paracrine and/or autocrine actions. The processes in which various 

266 adipokines play a role include appetite and energy balance, lipid metabolism, vascular 

267 haemostasis, blood pressure, angiogenesis and insulin sensitivity (see(61,91)). A number of 

268 adipokines are linked to immunity and inflammation, these including classical cytokines and 

269 chemokines such as IL-1β, IL-6, IL-10, and MCP-1; they also include inflammation-related 

270 factors, examples being VEGF, serum amyloid A and adiponectin (see(61,70,91). 

271 In obesity, WAT exhibits chronic mild inflammation with increased production and release 

272 of inflammatory adipokines. There is a notable exception to this in that the synthesis and release 

273 of adiponectin, with its anti-inflammatory action, falls(93,94). Inflammation in expanded WAT is 

274 augmented by the infiltration and activation of macrophages in particular, but also of other 

275 immune cells(92,95-97). 

276

277 Hypoxia and the metabolic response to oxygen deprivation in adipocytes
278 Inflammation in WAT has been considered a key factor in the development of the major 

279 obesity-associated disorders, particularly insulin resistance and the other components of the 

280 metabolic syndrome(3,70,98,99). The question that intrigued me in the early 2000s was why does 

281 inflammation develop as adipose tissue mass expands? A ‘News’ article in Science on how cells 

282 endure low oxygen(100) encouraged me to consider the possibility that hypoxia might be a key. 

283 This was presented as a hypothesis in a ‘Horizons’ article in the British Journal of Nutrition in 

284 2004(90). I am particularly proud of this paper: not only does it describe the hypoxia hypothesis, 

285 but it is my most highly cited publication (>1,400 citations in the Web of Science; >2,450 

286 citations in Google Scholar) as well as being the fourth most highly cited article in the Nutrition 

287 Society’s flagship journal (or indeed in all of its journals).

288 The hypothesis proposed that as adipose tissue mass expands with the development of 

289 obesity, areas within the tissue become relatively hypoxic as the enlarging adipocytes become 

290 more distant from the vasculature, this leading to major adaptive changes involving the hypoxia-
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291 inducible transcription factor HIF-1. The recruitment of HIF-1 was hypothesised to lead to 

292 increased expression of a series of hypoxia-sensitive genes linked to inflammation and the 

293 inflammatory response in WAT. The proposition was based on the following: (i) hypoxia occurs 

294 in situations such as ischaemic injury, wound healing and solid tumours leading to extensive 

295 metabolic changes(90), (ii) blood flow to WAT is not increased in obese subjects, despite the 

296 higher mass of the tissue(101-104), (iii) in contrast to lean subjects, blood flow to WAT does not 

297 increase post-prandially in the obese(104-106), (iv) large adipocytes (which may be up to 200 μm 

298 diameter(107)) are further from the vasculature than the normal diffusion distance for O2 (100 

299 μm)(108). These observations refer to local hypoxia, but the provision of O2 on a whole-body 

300 level is reduced in specific environmental and pathological situations, such as high altitude, deep 

301 sea dives, lung diseases and obstructive sleep apnoea(61,108). 

302 In 2007, studies using two separate techniques reported that WAT depots in different 

303 types of obese mouse are hypoxic, with the O2 tension being 2- to 3-fold lower than in lean 

304 mice(109,110). Subsequent studies on mice were consistent with these observations(111). In contrast, 

305 although some human studies have indicated that WAT depots are relatively hypoxic(103,112) 

306 others have reported either the same or an increase in pO2 (partial pressure of oxygen)(106,113). 

307 The issue remains unresolved, but there is evidence that differences in the way in which O2 is 

308 delivered in terms of vascularisation and utilisation may occur(106,113,114).

309 From 2004 the focus of my group in Liverpool was on examining the direct effects of 

310 hypoxia on gene expression and cellular function in adipocytes. Almost all of our studies were 

311 conducted on human adipocytes, differentiated in culture from fibroblastic preadipocytes. The 

312 initial priority was to examine whether incubation under a low O2 tension leads to increased 

313 expression and release of inflammation-related adipokines consistent with our initial hypothesis. 

314 A candidate gene approach was employed and increased production of several adipokines was 

315 observed, including IL-6, VEGF and leptin(115). Raised production of VEG and leptin, as well as 

316 of specific matrix metalloproteinases, had been reported earlier in 3T3-F442A adipocytes (a 

317 mouse cell line), reflecting a pro-angiogenic response to hypoxia(116).

318 The key cellular adaptation to O2 deficiency is a switch from aerobic to anaerobic 

319 metabolism. Mitochondrial oxidative phosphorylation cannot, of course, continue when O2 is 

320 severely limited, and there is instead increased anaerobic glycolysis. As expected, adipocytes 

321 exhibit greater glucose uptake under hypoxic conditions, as demonstrated by 2-deoxy-D-glucose 

322 uptake studies(117) and by measurement of glucose in the culture medium(116). This is mediated 

323 through increased synthesis of the GLUT1 facilitative glucose transporter, driven by a marked 

324 stimulation of GLUT1 gene expression(117). The expression of several genes encoding glycolytic 
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325 enzymes is also raised, glucose-6-phosphate isomerase and phosphofructokinase for example(118, 

326 119). Lactate release is augmented in hypoxic adipocytes(116,120), reflecting the increased glucose 

327 utilisation and glycolytic flux, this being mediated by increases in the synthesis of the 

328 monocarboxylate transporter, MCT1(120).   

329 While our initial exploration of the effects of hypoxia on gene expression in human 

330 adipocytes probed selective candidate genes, in subsequent studies more comprehensive 

331 approaches were taken. In the first of these, PCR arrays for 84 genes linked to the hypoxia-

332 signalling pathway were employed. The expression of a number of the genes changed, with one 

333 particular gene exhibiting dramatically increased expression(121). The gene in question was MT3, 

334 which encodes a member of the metallothionein family, metallothionein-3 (also known as 

335 growth inhibitory factor). This protein binds zinc and copper, and linked to its marked induction 

336 by O2-deprivation has been implicated as an angiogenic factor and to protect against hypoxic 

337 damage(122,123).

338 PCR arrays are themselves limited in terms of the number of genes whose expression can 

339 be screened and a specific pathway or metabolic system needs to be selected. DNA microarrays 

340 offer an unbiased approach in which all, or almost all, the genes expressed in a tissue or cell can 

341 be probed simultaneously. Our microarray studies at Liverpool, in collaboration with colleagues 

342 at Unilever, indicated that the expression of >1,300 genes was altered in human adipocytes 

343 cultured under hypoxic conditions, stringent criteria being used to evaluate changes(119). Of these 

344 genes, the expression of approximately half were up-regulated and half down-regulated under 

345 low pO2. Bioinformatic analysis showed that a number of metabolic pathways and functions are 

346 altered in human adipocytes by hypoxia, these including lipolysis, lipid oxidation, glucose 

347 utilisation, cell to cell signalling and cell death(119). 

348 It is evident from these and other studies that hypoxia results in extensive changes in gene 

349 expression in adipocytes. Several important functional changes have been described, in addition 

350 to increased anaerobic glycolysis (Fig. 5). These include the rapid induction of insulin resistance 

351 through the direct inhibition of insulin signalling(124,125), and the disruption of the extracellular 

352 matrix within WAT that characterises fibrosis(126,127). With respect to fibrosis, hypoxia leads to 

353 changes in the expression of collagens released as components of the extracellular matrix, as well 

354 as matrix metalloproteinases(116,126) involved in tissue remodelling. The overall cellular response 

355 to low O2 is regulated by a series of hypoxia-responsive transcription factors of which hypoxia-

356 inducible factor-1 (HIF-1), consisting of two subunits (HIF-1α and HIF-1β), is the best 

357 characterised(108,128,129). 
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358 Our studies, like most that examine the response of cells to hypoxia, were undertaken by 

359 comparing 1% to 20% O2 (95% air/5% CO2 – ‘normoxia’). However, this is an extreme, 

360 effectively representing a comparison between ambient air (higher than arterial pO2) and marked 

361 hypoxia. A questions that interested me was whether there is a critical point at which adaptation 

362 to reduced O2 is initiated in adipocytes, or if there is a gradual response to falling O2 tension. 

363 Experiments in which human adipocytes were incubated with a range of O2 levels between 20% 

364 and 1% clearly demonstrated a ‘dose-dependent’ response to lowering O2 tension with 

365 differences being observed between 21% and 15% and between 15% and 10% O2
(130). This was 

366 true for the expression and secretion of several adipokines, including leptin and VEGF, as well 

367 2-deoxy-D-glucose uptake and GLUT1 gene expression. Nevertheless, changes tended to be 

368 more marked between 10% and 5% O2. Since the pO2 in WAT of lean mice is equivalent to 

369 ~7% O2 while in obese mice it is ~2%, it is evident that there are responses to O2-deprivation 

370 over physiologically relevant differences in tissue oxygenation between the phenotypes(91).

371 These experiments on the effects of a range of O2 levels demonstrate that while the 

372 customarily employed protocols in hypoxia studies offer ‘proof of principle’, they lead to an 

373 exaggerated view of the scale of the cellular response to relative O2 lack under normal 

374 physiological conditions. This raises a question of the extent to which our understanding of 

375 cellular processes has been conditioned, or even distorted, by the routine use of 20% O2 as the 

376 gas phase in cell culture and other in vitro experiments. It is intriguing that careful attention is 

377 paid to the pH (7.4), temperature (37oC) and the concentration of glucose and other nutrients in 

378 cell culture to ensure ‘physiological’ conditions (except when they are the parameter under 

379 investigation), but the O2 tension employed is quite unphysiological and indeed reflects overt 

380 hyperoxia.

381

382 Oxygen – an overlooked macronutrient
383 A corollary of our studies on hypoxia is that they underscore that O2 is a key nutrient at the 

384 cellular level. Indeed, investigation of hypoxia is in effect exploration of the molecular and 

385 metabolic consequences of the deficiency of a nutrient. However, O2 is not considered as a 

386 nutrient as such in the context of nutritional science. Textbooks of nutrition do not contain 

387 sections on O2, and reference to it is generally restricted to discussion of metabolic rate and 

388 respiratory quotient. I have argued recently that O2 should be included alongside the other 

389 elements/molecules/macromolecules that are defined as nutrients(131,132). 

390 O2 undoubtedly meets dictionary definitions of a nutrient; for example “as a substance that 

391 provides nourishment for the maintenance of life and for growth” (Oxford English Dictionary). The 
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392 central reason why O2 is not considered as part of nutritional science is because of the route of 

393 entry – the nose/lungs in higher terrestrial animals, rather than the mouth/gastrointestinal tract. 

394 However, I argue that the route of entry should not be the critical determinant of whether O2 is, 

395 or is not, considered a nutrient, but rather its function and essentiality(132). O2 is, of course, 

396 critical to all aerobic species without which mitochondrial oxidative phosphorylation cannot take 

397 place.

398 Early organisms developed under anoxic conditions, the level of O2 in the atmosphere 

399 being just 1 part in a million soon after the Earth was formed some 4.54 billion years ago(133,134). 

400 It was only after the initiation of the ‘Great Oxidation Event’ some 2.45 billion years ago that 

401 considerable amounts of O2 began to appear in the atmosphere(134-136), the present level of 21% 

402 being essentially stable over the past 600 million years(134). The availability of O2 in abundance in 

403 the atmosphere was critical to the evolution of life as we know it.    

404
405 Concluding perspectives
406 An odyssey with the adipose tissues that began for me over 40 years ago has provided much by 

407 way of riches and changed perspectives. The unique bioenergetic properties of BAT 

408 mitochondria, through the presence of the cell-specific UCP1, was initially thought to generate 

409 heat only in relation to temperature regulation. Subsequently, the link to energy balance was 

410 established and the tissue has provided a theoretical target for the treatment of obesity. BAT is 

411 also implicated in metabolic regulation more broadly than was originally envisaged, through roles 

412 in glucose homeostasis and triglyceride clearance(55,137-140). Whether it is a realistic target for the 

413 treatment of obesity and the metabolic syndrome, as many propose(55,137-140), remains a matter of 

414 continuing debate - my own view, as noted recently, is that there are formidable barriers to this 

415 concept(141).

416 Perspectives on the physiological role of WAT have changed radically since the discovery 

417 of leptin. An organ that appeared confined to fuel storage - a view reinforced by the histological 

418 structure with a single lipid droplet taking up most of the volume of mature white adipocytes - 

419 has emerged as having major endocrine and signalling functions. For specific adipose tissue 

420 depots there is good evidence of local impact in relation to the organs and tissues with which 

421 they abut(142); examples are the epicardial fat, postulated to play a role in cardiovascular 

422 disease(143,144), and dermal adipose tissue which is implicated in hair cycling and wound 

423 healing(145,146). A specific role in relation to cancer and tumour microenvironment is also evident 

424 for some depots(147,148). 

425 My research has centred throughout on what are traditionally considered to be BAT and 

426 WAT, both of which are defined by their respective signature cells. However, a third type of 

Page 14 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

14

427 adipocyte is now recognised, namely the beige or brite cell(149,150). Beige adipocytes have some, 

428 though not all, the characteristics of brown fat cells, and in particular are thermogenic through 

429 the presence of UCP1. Beige adipocytes are found predominantly within what are regarded as 

430 WAT depots and a number of factors lead to their recruitment, particularly cold exposure and β-

431 adrenergic stimulation(151,152). The complexity and diversity of fat cells may be even greater with a 

432 recent study reporting four distinct human adipocyte subtypes(153).

433 Although work on hypoxia has focused on WAT, with substantial changes in gene 

434 expression and function being demonstrated in white adipocytes, a deficiency in O2 availability 

435 can also occur with BAT. BAT has an exceptionally high O2 demand in order to fuel 

436 thermogenesis and hypoxia has been noted in the tissue of normal mice exposed to cold(154). 

437 Hypoxia is not evident, however, in mice acclimated to a warm environment (30oC), and studies 

438 on Ucp1 knockout animals indicate that it occurs only with thermogenesis(154). Obese mice 

439 exhibit vascular rarefaction and a substantial reduction in pO2 in BAT compared with lean mice, 

440 leading to a ‘whitening’ of the tissue together with mitochondrial dysfunction and loss(155). 

441 From the effects on hypoxia on white adipocytes, it was stressed above that as cells are 

442 customarily incubated under hyperoxic conditions (20% O2) we may have obtained a somewhat 

443 distorted view of cellular processes. This may be true for many types of cell, including brown 

444 adipocytes. Finally, one of the implications with the response of white adipocytes to graded 

445 levels of O2 is that cells carefully titrate small changes in the concentration of this critical nutrient 

446 and this results, as with other nutrients, in the continuous modulation of cellular function. 

Page 15 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

15

447 Acknowledgements
448 I am most grateful for the contributions of the many people with whom I have worked whilst 

449 based in Oxford, Strasbourg, Cambridge, Edmonton, Aberdeen, Oslo, Liverpool and 

450 Buckingham; regretfully, they are too many to be listed individually. I would, however, 

451 particularly like to acknowledge three scientists who in their different ways were pivotal in my 

452 early scientific development: Dr Ruth van Heyningen, my DPhil supervisor at Oxford (who died 

453 recently, just before her 102nd birthday) who inculcated high standards and gave me considerable 

454 scientific freedom; Professor Philip James who appointed me to the nascent Energy Group at 

455 the Dunn, despite my lack of training in nutrition, and who encouraged a sense that everything is 

456 possible; and Professor David Fraser, whose scholarly commitment and integrity remain a 

457 beacon. Finally, I wish to acknowledge the unfailing support of my wife of 50 years, Deborah, to 

458 whom I simply say ‘thank you for everything’.

459

460 Financial Support
461 Funding of my studies over the past 45 years has come from a number of sources. I wish to 

462 highlight the following: the Medical Research Council, the Alberta Heritage Foundation for 

463 Medical Research, the Scottish Office, the Biotechnology and Biological Sciences Research 

464 Council, the European Union, the Throne Holst Foundation, King Saud University.

465

466 Conflict of Interest
467 The author has no conflicts of interest.

468

469 Authorship
470 The author has sole responsibility for all aspects of the preparation of this article.

471

472

Page 16 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

16

473 References
474 1. Prentice AM & Jebb SA (1995) Obesity in Britain: gluttony or sloth? Br Med J 311, 437-439.

475 2. Kopelman PG (2000) Obesity as a medical problem. Nature 404, 635-643.

476 3. Blüher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117, 

477 241-250.

478 4. Trayhurn P (1984) The development of obesity in animals: the role of genetic 

479 susceptibility. Clinics Endocrinol Metab 13, 451-474.

480 5. Krogh A (1929) The progress of physiology. Science 70, 200-204.

481 6. Trayhurn P (2018) A basic scientist’s odyssey in nutrition. Eur J Clin Nutr 72, 923-928.

482 7. Thurlby PL & Trayhurn P (1979) The role of thermoregulatory thermogenesis in the 

483 development of obesity in genetically obese (ob/ob) mice pair-fed with lean siblings. Br J 

484 Nutr 42, 377-385.

485 8. Romsos DR (1981) Efficiency of energy retention in genetically obese animals and in 

486 dietary-induced thermogenesis. Fed Proc 40, 2524-2529.

487 9. Miller DS & Mumford P (1967) Gluttony (1): An experimental study of overeating low- or 

488 high-potein diets. Am J Clin Nutr 20, 1212-1222.

489 10. Miller DS, Mumford P Stock MJ (1967) Gluttony. 2. Thermogenesis in overeating man. 

490 Am J Clin Nutr 20, 1223-1229.

491 11. Davis T & Mayer J (1954) Imperfect homeothermia in the hereditary obese-hyperglycemic 

492 syndrome of Mice. Harvard School Publ Health 177, 222-226.

493 12. Trayhurn P & James WP (1978) Thermoregulation and non-shivering thermogenesis in the 

494 genetically obese (ob/ob) mouse. Pflügers Arch Eur J Physiol 373, 189-193.

495 13. Stirling JL & Stock MJ (1968) Metabolic origins of thermogenesis induced by diet. Nature 

496 220, 801-802.

497 14. Newsholme EA & Crabtree B (1976) Substrate cycles in metabolic regulation and in heat 

498 generation. Biochem Soc Symp 41, 61-109.

499 15. Miller BG, Grimble RF Taylor TG (1977) Liver protein metabolism response to cold in 

500 genetically obese (ob/ob) mice. Nature 266, 184-186.

501 16. Newsholme EA (1978) Substrate cycles: their metabolic, energetic and thermic 

502 consequences in man. Biochem Soc Symp 43, 183-205.

503 17. York DA, Bray GA Yukimura Y (1978) An enzymatic defect in the obese (ob/ob) mouse; 

504 loss of thyroid-induced sodium - and potassium-dependent adenosinetriphosphatase. Proc 

505 Natl Acad Sci USA 75, 477-481.

Page 17 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

17

506 18. Lin MH, Romsos DR, Akera T et al. (1978) Na+, K+-ATPase enzyme units in skeletal 

507 muscle from lean and obese mice. Biochem Biophys Res Comm 80, 398-404.

508 19. Trayhurn P, Goodbody AE James WPT (1982) A role for brown adipose tissue in the 

509 genesis of obesity? Studies on experimental animals. Proc Nutr Soc 41, 127-131.

510 20. Trayhurn P (2017) Origins and early development of the concept that brown adipose 

511 tissue thermogenesis is linked to energy balance and obesity. Biochimie 134, 62-70.

512 21. Smith RE & Horwitz BA (1969) Brown Fat and Thermogenesis. Physiol Rev 49, 330-425.

513 22. Nicholls DG & Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64, 
514 1-64.

515 23. Cannon B & Nedergaard J (2004) Brown adipose tissue: function and physiological 

516 significance. Physiol Rev 84, 277-359.

517 24. Foster DO & Frydman ML (1977) Comparison of microspheres and 86RB+ as tracers of 

518 the distribution of cardiac output in rats indicates invalidity of 86Rb+-based measurements. 

519 Can J Physiol Pharmacol 56, 97-109.

520 25. Foster DO & Frydman ML (1978) Nonshivering thermogenesis in the rat. II. 

521 Measurements of blood flow with microspheres point to brown adipose tissue as the 

522 dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol 56, 

523 110-122.

524 26. Foster DO & Frydman ML (1979) Tissue distribution of cold-induced thermogenesis in 

525 conscious warm- or cold-acclimated rats re-evaluated from changes in tissue blood flow: 

526 the dominant role of brown adipose tissue in the replacement of shivering by non-

527 shivering thermogenesis. Can J Physiol Pharmacol 57 257-270.

528 27. Ricquier D (1989) Molecular biology of brown adipose tissue. Proc Nutr Soc 48, 183-187.

529 28. Himms-Hagen J (1991) Neural control of brown adipose tissue thermogenesis, 

530 hypertrophy, and atrophy. Front Neuroendocrinol 12, 38-93.

531 29. Arch JR (2002) β3-adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 

532 440, 99-107.

533 30. Himms-Hagen J & Desautels M (1978) A mitochondrial defect in brown adipose tissue of 

534 the obese (ob/ob) mouse: reduced binding of purine nucleotides and a failure to respond to 

535 cold by an increase in binding. Biochem Biophys Res Commun 83, 628-634.

536 31. Thurlby PL & Trayhurn P (1980) Regional blood flow in genetically obese (ob/ob) mice: 

537 the importance of brown adipose tissue to the reduced energy expenditure on non-

538 shivering thermogenesis. Pflügers Archiv Eur J Physiol 385, 193-201.

Page 18 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

18

539 32. Rothwell NJ & Stock MJ (1979) A role for brown adipose tissue in diet-induced 

540 thermogenesis. Nature 281, 31-35.

541 33. Brooks SL, Rothwell NJ, Stock MJ et al. (1980) Increased proton conductance pathway in 

542 brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature 

543 286, 274-276.

544 34. Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 28, 

545 67-115.

546 35. Trayhurn P (1986) Brown adipose tissue and energy balance. In Brown Adipose Tissue, pp. 

547 299-338. (P Trayhurn and DG Nicholls, editors). London: Edward Arnold. 

548 36. Fell BF, Smith KA Campbell RM (1963) Hypertrophic and hyperplastic changes in the 

549 alimentary canal of the lactating rat. J Pathol Bacteriol 85, 179-188.

550 37. Williamson DH (1980) Integration of metabolism in tissues of the lactating rat. FEBS Lett 

551 117, K93-K104.

552 38. Trayhurn P, Douglas JB McGuckin MM (1982) Brown adipose tissue thermogenesis is 

553 'suppressed' during lactation in mice. Nature 298, 59-60.

554 39. Trayhurn P & Jennings G (1987) Functional atrophy of brown adipose tissue in mice: 

555 Effects of lactation and weaning on mitochondrial GDP binding and uncoupling protein. 

556 Biochem J 248, 273-276.

557 40. Krol E & Speakman JR (2019) Switching off the furnace: brown adipose tissue and 

558 lactation. Mol Aspects Med 68, 18-41.

559 41. Trayhurn P (1981) Fatty acid synthesis in mouse brown adipose tissue: the influence of 

560 environmental temperature on the proportion of whole-body synthesis in brown adipose 

561 tissue and the liver. Biochim Biophys Acta 664, 549-560.

562 42. Trayhurn P, Ashwell M, Jennings G et al. (1987) Effect of warm or cold exposure on GDP 

563 binding and uncoupling protein in rat brown fat. Am J Physiol Endocrinol Metab 252, E237-

564 E243.

565 43. Bouillaud F, Combes GM Ricquier D (1983) Mitochondria of adult human brown adipose 

566 tissue contain a 32,000-Mr uncoupling protein. Biosci Rep 3, 775-780.

567 44. Lean MEJ, James WPT, Jennings G et al. (1986) Brown adipose tissue uncoupling protein 

568 content in human infants, children and adults. Clin Sci 7l, 29l-297.

569 45. Lean MEJ (1989) Brown adipose tissue in humans. Proc Nutr Soc 48, 243-256.

570 46. Bouillaud F, Villarroya F, Hentz E et al. (1988) Detection of brown adipose tissue 

571 uncoupling protein mRNA in adult humans by a genomic probe. Clin Sci 75, 21-27.

Page 19 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

19

572 47. Ricquier D, Néchad M Mory G (1982) Ultrastructural and biochemical characterization of 

573 human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 54, 803-807.

574 48. Lean MEJ, James WPT, Jennings G et al. (1986) Brown adipose tissue in patients with 

575 phaeochromocytoma. Int J Obesity l0, 2l9-227.

576 49. Cypess AM, Lehman S, Williams G et al. (2009) Identification and importance of brown 

577 adipose tissue in adult humans. New Engl J Med 360, 1509-1517.

578 50. Virtanen KA, Lidell ME, Orava J et al. (2009) Functional brown adipose tissue in healthy 

579 adults. New Engl J Med 360, 1518-1525.

580 51. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al. (2009) Cold-activated 

581 brown adipose tissue in healthy men. New Engl J Med 360, 1500-1508.

582 52. Orava J, Nuutila P, Lidell Martin E et al. (2011) Different metabolic responses of human 

583 brown adipose tissue to activation by cold and insulin. Cell Metab 14, 272-279.

584 53. Ouellet V, Labbe SM, Blondin DP et al. (2012) Brown adipose tissue oxidative metabolism 

585 contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122, 

586 545-552.

587 54. Cypess Aaron M, Weiner Lauren S, Roberts-Toler C et al. (2015) Activation of human 

588 brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21, 33-38.

589 55. Moonen MPB, Nascimento EBM van Marken Lichtenbelt WD (2019) Human brown 

590 adipose tissue: Underestimated target in metabolic disease? Biochim Biophys Acta - Mol Cell 

591 Biol Lipids 1864, 104-112.

592 56. Zhang Y, Proenca R, Maffei M et al. (1994) Positional cloning of the mouse obese gene 

593 and its human homologue. Nature 372, 425-432.

594 57. Friedman JM & Halaas JL (1998) Leptin and the regulation of body weight in mammals. 

595 Nature 395, 763-770.

596 58. Friedman JM (1998) Leptin, leptin receptors, and the control of body weight. Nutr Rev 56, 

597 S38-S46.

598 59. Dessolin S, Schalling M, Champigny O et al. (1997) Leptin gene is expressed in rat brown 

599 adipose tissue at birth. FASEB J 11, 382-387.

600 60. Hoggard N, Hunter L, Duncan JS et al. (1997) Leptin and leptin receptor mRNA and 

601 protein expression in the murine fetus and placenta. Proc Natl Acad Sci USA 94, 11073-

602 11078.

603 61. Trayhurn P (2014) Hypoxia and adipocyte physiology: implications for adipose tissue 

604 dysfunction in obesity. Ann Rev Nutr 34, 207-236.

Page 20 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

20

605 62. Trayhurn P, Thomas ME, Duncan JS et al. (1995) Effects of fasting and refeeding on ob 

606 gene expression in white adipose tissue of lean and obese (ob/ob) mice. FEBS Lett 368, 

607 488-490.

608 63. Hardie LJ, Rayner DV, Holmes S et al. (1996) Circulating leptin levels are modulated by 

609 fasting, cold exposure and insulin administration in lean but not Zucker (fa/fa) rats as 

610 measured by ELISA. Biochem Biophys Res Commun 223, 660-665.

611 64. Trayhurn P, Duncan JS Rayner DV (1995) Acute cold-induced suppression of ob (obese) 

612 gene-expression in white adipose-tissue of mice - mediation by the sympathetic system. 

613 Biochem J 311, 729-733.

614 65. Trayhurn P, Duncan JS, Rayner DV et al. (1996) Rapid inhibition of ob gene expression 

615 and circulating leptin levels in lean mice by the β3-adrenoceptor agonists BRL 35135A and 

616 ZD2079. Biochem Biophys Res Commun 228, 605-610.

617 66. Mantzoros CS, Qu DQ, Frederich RC et al. (1996) Activation of ß3 adrenergic receptors 

618 suppresses leptin expression and mediates a leptin-independent inhibition of food intake in 

619 mice. Diabetes 45, 909-914.

620 67. Mercer JG, Hoggard N, Williams LM et al. (1996) Localization of leptin receptor mRNA 

621 and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain 

622 regions by in situ hybridization. FEBS Lett 387, 113-116.

623 68. Frühbeck G, Gómez-Ambrosi J, Muruzabal FJ et al. (2001) The adipocyte: a model for 

624 integration of endocrine and metabolic signaling in energy metabolism regulation. Am J 

625 Physiol Endocrinol Metab 280, E827-E847.

626 69. Trayhurn P & Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue 

627 as an endocrine and secretory organ. Proc Nutr Soc 60, 329-339.

628 70. Rajala MW & Scherer PE (2003) The adipocyte - at the crossroads of energy homeostasis, 

629 inflammation, and atherosclerosis. Endocrinol 144, 3765-3773.

630 71. Trayhurn P (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. 

631 Acta Physiol Scand 184, 285-293.

632 72. Cook KS, Min HY, Johnson D et al. (1987) Adipsin: a circulating serine protease homolog 

633 secreted by adipose tissue and sciatic nerve. Science 237, 402-405.

634 73. Hotamisligil GS, Shargill NS Spiegelman BM (1993) Adipose expression of tumor necrosis 

635 factor-α - direct role in obesity-linked insulin resistance. Science 259, 87-91.

636 74. Ouchi N, Kihara S, Arita Y et al. (1999) Novel modulator for endothelial adhesion 

637 molecules - adipocyte-derived plasma protein adiponectin. Circulation 100, 2473-2476.

Page 21 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

21

638 75. Yokota T, Oritani K, Takahashi I et al. (2000) Adiponectin, a new member of the family of 

639 soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors 

640 and the functions of macrophages. Blood 96, 1723-1732.

641 76. Berg AH, Combs TP, Du X et al. (2001) The adipocyte-secreted protein Acrp30 enhances 

642 hepatic insulin action. Nat Med 7, 947-953.

643 77. Yamauchi T, Kamon J, Waki H et al. (2001) The fat-derived hormone adiponectin reverses 

644 insulin resistance associated with both lipoatrophy and obesity. Nat Med 7, 941-946.

645 78. Brakenhielm E, Veitonmaki N, Cao R et al. (2004) Adiponectin-induced antiangiogenesis 

646 and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad 

647 Sci USA 101, 2476-2481.

648 79. Peeraully MR, Jenkins JR Trayhurn P (2004) NGF gene expression and secretion in white 

649 adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. 

650 Am J Physiol Endocrinol Metab 287, E331-E339.

651 80. Trayhurn P, Duncan JS, Wood AM et al. (2000) Metallothionein gene expression and 

652 secretion by white adipose tissue. Am J of Physiol Reg Integr Comp Physiol 279, R2329-R2335.

653 81. Bing C, Bao Y, Jenkins J et al. (2004) Zinc-α2-glycoprotein, a lipid mobilising factor, is 

654 expressed in adipocytes and upregulated in mice with cancer cachexia. Proc Natl Acad Sci 

655 USA 101, 2500-2505.

656 82. Bao Y, Bing C, Hunter L et al. (2005) Zinc-α2-glycoprotein, a lipid mobilizing factor, is 

657 expressed and secreted by human (SGBS) adipocytes. FEBS Lett 579, 41-47.

658 83. Mracek T, Stephens NA, Gao D et al. (2011) Enhanced ZAG production by subcutaneous 

659 adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br J Cancer 104, 

660 441-447.

661 84. Lehr S, Hartwig S, Lamers D et al. (2012) Identification and validation of novel adipokines 

662 released from primary human adipocytes. Mol Cell Proteomics 11, M111 010504.

663 85. Dahlman I, Elsen M, Tennagels N et al. (2012) Functional annotation of the human fat cell 

664 secretome. Arch Physiol Biochem 118, 84-91.

665 86. Deshmukh AS, Peijs L, Beaudry JL et al. (2019) Proteomics-based comparative mapping of 

666 the secretomes of human brown and white adipocytes reveals EPDR1 as a novel batokine. 

667 Cell Metab 30, 963-975. e967.

668 87. Pedersen B & Febbraio M (2008) Muscle as an endocrine organ: focus on muscle-derived 

669 interleukin-6. Physiol Rev 88, 1379-1406.

670 88. Lee JH & Jun H-S (2019) Role of myokines in regulating skeletal muscle mass and 

671 function. Front Physiol 10, 42. doi: 10.3389/fphys.2019.00042

Page 22 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

22

672 89. Stefan N & Haring HU (2013) The role of hepatokines in metabolism. Nat Rev Endocrinol 

673 9, 144-152.

674 90. Trayhurn P & Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white 

675 adipose tissue. Br J Nutr 92, 347-355.

676 91. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol 

677 Rev 93, 1-21.

678 92. Scherer PE (2016) The multifaceted roles of adipose tissue—therapeutic targets for 

679 diabetes and beyond: the 2015 Banting Lecture. Diabetes 65, 1452-1461.

680 93. Arita Y, Kihara S, Ouchi N et al. (1999) Paradoxical decrease of an adipose-specific 

681 protein, adiponectin, in obesity. Biochem Biophys Res Commun 257, 79-83.

682 94. Hotta K, Funahashi T, Arita Y et al. (2000) Plasma concentrations of a novel, adipose-

683 specific protein, adiponectin, in type 2 diabetic patients. Arterioscl Thromb Vasc Biol 20, 

684 1595-1599.

685 95. Weisberg SP, McCann D, Desai M et al. (2003) Obesity is associated with macrophage 

686 accumulation in adipose tissue. J Clin Invest 112, 1796-1808.

687 96. Xu H, Barnes GT, Yang Q et al. (2003) Chronic inflammation in fat plays a crucial role in 

688 the development of obesity-related insulin resistance. J Clin Invest 112, 1821-1830.

689 97. Mraz M & Haluzik M (2014) The role of adipose tissue immune cells in obesity and low-

690 grade inflammation. J Endocrinol 222, R113-R127.

691 98. Yudkin JS (2003) Adipose tissue, insulin action and vascular disease: inflammatory signals. 

692 Int JObesity 27 Suppl 3, S25-28.

693 99. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444, 860-867.

694 100. Marx J (2004) How cells endure low oxygen. Science 303, 1454-1456.

695 101. Blaak EE, van Baak MA, Kemerink GJ et al. (1995) β-adrenergic stimulation and 

696 abdominal subcutaneous fat blood flow in lean, obese, and reduced-obese subjects. 

697 Metabolism 44, 183-187.

698 102. Virtanen KA, Lonnroth P, Parkkola R et al. (2002) Glucose uptake and perfusion in 

699 subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese 

700 humans. J Clin Endocrinol Metab 87, 3902-3910.

701 103. Kabon B, Nagele A, Reddy D et al. (2004) Obesity decreases perioperative tissue 

702 oxygenation. Anesthesiology 100, 274-280.

703 104. Frayn KN & Karpe F (2014) Regulation of human subcutaneous adipose tissue blood 

704 flow. Int J Obesity 38, 1019-1026.

Page 23 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

23

705 105. Karpe F, Fielding BA, Ilic V et al. (2002) Impaired postprandial adipose tissue blood flow 

706 response is related to aspects of insulin sensitivity. Diabetes 51, 2467-2473.

707 106. Goossens GH, Bizzarri A, Venteclef N et al. (2011) Increased adipose tissue oxygen 

708 tension in obese compared with lean men is accompanied by insulin resistance, impaired 

709 adipose tissue capillarization, and inflammation. Circulation 124, 67-76.

710 107. Skurk T, Alberti-Huber C, Herder C et al. (2007) Relationship between adipocyte size and 

711 adipokine expression and secretion. J Clin Endocrinol Metab 92, 1023-1033.

712 108. Brahimi-Horn MC & Pouysségur J (2007) Oxygen, a source of life and stress. FEBS Lett 

713 581, 3582-3591.

714 109. Hosogai N, Fukuhara A, Oshima K et al. (2007) Adipose tissue hypoxia in obesity and its 

715 impact on adipocytokine dysregulation. Diabetes 56, 901-911.

716 110. Ye J, Gao Z, Yin J et al. (2007) Hypoxia is a potential risk factor for chronic inflammation 

717 and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol 

718 Endocrinol Metab 293, E1118-1128.

719 111. Rausch ME, Weisberg SP, Vardhana P et al. (2008) Obesity in C57BL/6J mice is 

720 characterised by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obesity 32, 

721 451–463.

722 112. Pasarica M, Sereda OR, Redman LM et al. (2009) Reduced adipose tissue oxygenation in 

723 human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation 

724 without an angiogenic response. Diabetes 58, 718-725.

725 113. Hodson L, Humphreys SM, Karpe F et al. (2013) Metabolic signatures of human adipose 

726 tissue hypoxia in obesity. Diabetes 62, 1417-1425.

727 114. Lempesis IG, van Meijel RLJ, Manolopoulos KN et al. (2020) Oxygenation of adipose 

728 tissue: A human perspective. Acta Physiolog 228, e13298.

729 115. Wang B, Wood IS Trayhurn P (2007) Dysregulation of the expression and secretion of 

730 inflammation-related adipokines by hypoxia in human adipocytes. Pflügers Archiv Eur J 

731 Physiol 455, 479-492.

732 116. Lolmède K, Durand de Saint Front V, Galitzky J et al. (2003) Effects of hypoxia on the 

733 expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obesity 

734 27, 1187-1195.

735 117. Wood IS, Wang B, Lorente-Cebrián S et al. (2007) Hypoxia increases expression of 

736 selective facilitative glucose transporters (GLUT) and 2-deoxy-D-glucose uptake in human 

737 adipocytes. Biochem Biophys Res Commun 361, 468-473.

Page 24 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

24

738 118. Geiger G, Leiherer A, Muendlein A et al. (2011) Identification of hypoxia-induced genes in 

739 human SGBS adipocytes by microarray analysis. PLoS One 6, e26465.

740 119. Mazzatti D, Lim F-L, O'Hara A et al. (2012) A microarray analysis of the hypoxia-induced 

741 modulation of gene expression in human adipocytes. Arch Physiol Biochem 118, 112-120.

742 120. Pérez de Heredia F, Wood IS Trayhurn P (2010) Hypoxia stimulates lactate release and 

743 modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human 

744 adipocytes. Pflügers Arch Eur J Physiol 459, 509-518.

745 121. Wang B, Wood IS Trayhurn P (2008) PCR arrays identify metallothionein-3 as a highly 

746 hypoxia-inducible gene in human adipocytes. Biochem Biophys Res Commun 368, 88-93.

747 122. Penkowa M, Carrasco J, Giralt M et al. (2000) Altered central nervous system cytokine-

748 growth factor expression profiles and angiogenesis in metallothionein-I+II deficient mice. 

749 J Cereb Blood Flow Metab 20, 1174-1189.

750 123. Zbinden S, Wang J, Adenika R et al. (2010) Metallothionein enhances angiogenesis and 

751 arteriogenesis by modulating smooth muscle cell and macrophage function. Arterioscler 

752 Thromb Vasc Biol 30, 477-482.

753 124. Regazzetti C, Peraldi P, Gremeaux T et al. (2009) Hypoxia decreases insulin signaling 

754 pathways in adipocytes. Diabetes 58, 95-103.

755 125. Yin J, Gao Z, He Q et al. (2009) Role of hypoxia in obesity-induced disorders of glucose 

756 and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab 296, E333-E342.

757 126. Halberg N, Khan T, Trujillo ME et al. (2009) Hypoxia-inducible factor 1α induces fibrosis 

758 and insulin resistance in white adipose tissue. Mol Cell Biol 29, 4467-4483.

759 127. Sun K, Tordjman J, Clément K et al. (2013) Fibrosis and adipose tissue dysfunction. Cell 

760 Metab 18, 470-477.

761 128. Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13, 167-

762 171.

763 129. Coleman ML & Ratcliffe PJ (2007) Oxygen sensing and hypoxia-induced responses. Essays 

764 Biochem 43, 1-15.

765 130. Wood I, Stezhka T Trayhurn P (2011) Modulation of adipokine production, glucose 

766 uptake and lactate release in human adipocytes by small changes in oxygen tension. Pflügers 

767 Archiv Eur J Physiol 462, 469-477.

768 131. Trayhurn P (2017) Oxygen – the forgotten nutrient. J Nutr Sci 6, 1-4 e47.

769 132. Trayhurn P (2019) Oxygen — a critical, but overlooked, nutrient. Front Nutr 6, article 10 1-

770 9.

771 133. Kerr RA (2005) The story of O2. Science 308, 1730-1732.

Page 25 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

25

772 134. Lyons TW, Reinhard CT Planavsky NJ (2014) The rise of oxygen in Earth's early ocean 

773 and atmosphere. Nature 506, 307-315.

774 135. Blaustein R (2016) The Great Oxidation Event. Evolving understandings of how oxygenic 

775 life on Earth began. Bioscience 66, 189-195.

776 136. Gumsley AP, Chamberlain KR, Bleeker W et al. (2017) Timing and tempo of the Great 

777 Oxidation Event. Proc Natl Acad Sci USA 114, 1811-1816.

778 137. Nedergaard J & Cannon B (2010) The Changed metabolic world with human brown 

779 adipose tissue: therapeutic visions. Cell Metab 11, 268-272.

780 138. Bartelt A, Bruns OT, Reimer R et al. (2011) Brown adipose tissue activity controls 

781 triglyceride clearance. Nat Med 17, 200-205.

782 139. Bartelt A & Heeren J (2012) The holy grail of metabolic disease: brown adipose tissue. 

783 Curr Opin Lipidol 23, 190-195.

784 140. Stanford KI, Middelbeek RJW, Townsend KL et al. (2013) Brown adipose tissue regulates 

785 glucose homeostasis and insulin sensitivity. J Clin Invest 123, 215-223.

786 141. Trayhurn P (2018) Brown adipose tissue—a therapeutic target in obesity? Front Physiol 9, 

787 article 1672, 1-5.

788 142. Zwick RK, Guerrero-Juarez CF, Horsley V et al. (2018) Anatomical, physiological, and 

789 functional diversity of adipose tissue. Cell Metab 27, 68-83.

790 143. Ouwens DM, Sell H, Greulich S et al. (2010) The role of epicardial and perivascular 

791 adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med 14, 2223-

792 2234.

793 144. Cherian S, Lopaschuk GD Carvalho E (2012) Cellular cross-talk between epicardial 

794 adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. 

795 Am J Physiol Endocrinol Metab 303, E937-E949.

796 145. Kruglikov IL, Zhang Z Scherer PE (2019) The role of immature and mature adipocytes in 

797 hair cycling. Trends Endocrinol Metab 30, 93-105.

798 146. Zhang Z, Shao M, Hepler C et al. (2019) Dermal adipose tissue has high plasticity and 

799 undergoes reversible dedifferentiation in mice. J Clin Invest 129, 5327-5342.

800 147. Catalán V, Gómez-Ambrosi J, Rodríguez A et al. (2013) Adipose tissue immunity and 

801 cancer. Front Physiol 4, Article 275, 1-13.

802 148. Chkourko Gusky H, Diedrich J, MacDougald OA et al. (2016) Omentum and bone 

803 marrow: how adipocyte-rich organs create tumour microenvironments conducive for 

804 metastatic progression. Obesity Rev 17, 1015-1029.

Page 26 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

26

805 149. Petrovic N, Walden TB, Shabalina IG et al. (2010) Chronic peroxisome proliferator-

806 activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures 

807 reveals a population of thermogenically competent, UCP1-containing adipocytes 

808 molecularly distinct from classic brown adipocytes. J Biol Chem 285, 7153-7164.

809 150. Wu J, Boström P, Sparks Lauren M et al. (2012) Beige adipocytes are a distinct type of 

810 thermogenic fat cell in mouse and human. Cell 150, 366-376.

811 151. Nedergaard J & Cannon B (2014) The browning of white adipose tissue: some burning 

812 issues. Cell Metab 20, 396-407.

813 152. Carobbio S, Guénantin A-C, Samuelson I et al. (2019) Brown and beige fat: From 

814 molecules to physiology and pathophysiology. Biochim Biophys Acta - Mol Cell Biol Lipids 

815 1864, 37-50..

816 153. Min SY, Desai A, Yang Z et al. (2019) Diverse repertoire of human adipocyte subtypes 

817 develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci 

818 USA 116, 17970-17979.

819 154. Xue Y, Petrovic N, Cao R et al. (2009) Hypoxia-independent angiogenesis in adipose 

820 tissues during cold acclimation. Cell Metab 9, 99-109.

821 155. Shimizu I, Aprahamian T, Kikuchi R et al. (2014) Vascular rarefaction mediates whitening 

822 of brown fat in obesity. J Clin Invest 124, 2099-2112.

823

824

825

Page 27 of 34

Cambridge University Press

Proceedings of the Nutrition Society



For Peer Review

27

826 Legends to Figures
827

828 Fig 1. ‘Engaging’ with nutrition at the Dunn – Friday morning group ‘coffee and cake’. Eating 

829 and drinking in the laboratory is, of course, prohibited now, but was normal in my early years as 

830 a scientist.

831

832 Fig. 2. Schematic of different physiological and pathological conditions in experimental animals 

833 in which energy flux and/or balance are altered where increases, or decreases, in brown adipose 

834 tissue thermogenesis have been demonstrated. Examples of key situations in which brown fat 

835 thermogenesis changes are shown. DIT, diet-induced thermogenesis; PUFA, polyunsaturated 

836 fatty acids; VMH, ventromedial hypothalamus.

837

838 Fig. 3.  The thermogenic activity and capacity of BAT is decreased in lactation. The changes in 

839 mitochondrial GDP binding, the mitochondrial concentration of UCP1 (UCP1 conc) and the 

840 total UCP1 content of the interscapular BAT depot are shown for mice at late lactation (when 

841 milk production is close to maximal) relative to virgin mice (virgin = 1)(39).

842

843 Fig. 4. The secretome of white adipocytes. Fatty acids and other lipids are secreted, together 

844 with a multiplicity of adipokines (proteins); examples of some of the lipids and key adipokines 

845 are shown. The major adipocyte hormones, leptin and adiponectin, are highlighted. angptl4, 

846 angiopoietin-like protein-4; CETP, cholesteryl ester transfer protein; DPP4, dipeptidyl peptidase-

847 4;  IGF, insulin-like growth factor-1;  IL, interleukin; LPL, lipoprotein lipase; MCP-1, monocyte 

848 chemoattractant protein-1; MIC-1, macrophage inhibitory cytokine-1; MIF, macrophage 

849 migration inhibitory factor; MMP, matrix metalloproteinase; NGF, nerve growth factor; PAI-1, 

850 plasminogen activator inhibitor-1; RBP4, retinol binding protein-4; TGFβ, transforming growth 

851 factor-β; TNFα, tumour necrosis factor-α; VEGF, vascular endothelial growth factor; ZAG, 

852 zinc-α2-glycoprotein. 

853

854 Fig. 5. Schematic representation of the central cellular responses to hypoxia in white adipocytes. 

855 The effect of low pO2 on gene expression, glucose uptake and utilisation, and the production of 

856 selected key adipokines is shown. angptl4, angiopoietin-like protein-4; FA, fatty acid; GLUT1, 

857 facilitative glucose transporter 1; HIF-1, hypoxia-inducible factor-1; IL-6, interleukin-6; MCT1, 

858 monocarboxylate transporter-1; MIF, macrophage migration inhibitory factor; MMP, matrix 

859 metalloproteinase; MT-3, metallothionein-3; PAI-1, plasminogen activator inhibitor-1; TF, 
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860 transcription factors (other than HIF-1); VEGF, vascular endothelial growth factor. Modified 

861 from(131).

862

863
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