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We study Spin(7)-manifolds with an effective multi-Hamiltonian action of a four-torus. On an open dense set, we

provide a Gibbons-Hawking type ansatz that describes such geometries in terms of a symmetric 4 × 4-matrix of

functions. This description leads to the first known Spin(7)-manifolds with a rank 4 symmetry group and full holonomy.

We also show that the multi-moment map exhibits the full orbit space topologically as a smooth four-manifold,

containing a trivalent graph in R4 as the image of the set of the special orbits.

1 Introduction

It was Berger [1] who first realised that the Lie group Spin(7) could potentially arise as the holonomy group

of a non-symmetric irreducible Riemannian manifold. A decade later, Bonan [2] showed that such manifolds

would necessarily be Ricci-flat and come with a parallel 4-form of a certain algebraic type. Subsequently

the understanding that parallelness amounts to closedness (cf. [8]) has been a powerful tool when looking

for examples. The first 8-manifolds with holonomy equal to Spin(7) were constructed in the late 1980s [3, 4] by

Bryant and Salamon; since then many examples have followed, including compact ones by Joyce [12, 13], and

most recently infinitely many complete examples by Foscolo [9]. In fact, a torsion-free Spin(7)-structure can be

obtained from any closed, spin manifold of dimension 7 [6, Corollary 1.9], but in general this will neither be

complete nor have full holonomy.
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Despite considerable advances in the field, it still remains a challenge to construct new complete examples

with holonomy equal to Spin(7). A natural way to approach this problem systematically is to consider

examples with a specific type of symmetry. Indeed, a key point in constructing the first examples was to apply

cohomogeneity one symmetry techniques, and in [15] the first author gave a description of Spin(7)-manifolds

with T 3-symmetry (these are characterised in terms of certain tri-symplectic 4-manifolds).

From a toric viewpoint, it is natural to consider Spin(7)-manifolds with a multi-Hamiltonian action of T 4,

this the critical rank making the dimensions of the leaf space M/T k and the target space of the multi-moment

map match. As we will see, this gives the type of behaviour we expect from toric Ricci-flat geometries (cf. [7, 17]).

We introduce the notion of a toric Spin(7)-manifold to be a (torsion-free) Spin(7)-manifold (M,Φ) that comes

with an effective multi-Hamiltonian action of a rank four torus. As we explain in §2, this implies that we have

a multi-moment map ν : M → R4 that exhibits an open dense subset M0 ⊂M as a principle T 4 bundle over

an open subset U ⊂ R4. On this regular part, we derive an analogue of the Gibbons-Hawking ansatz. What is

needed in this case is a smooth positive definite section V ∈ Γ(U , S2(R4)) satisfying a pair of PDEs. One of

these is a divergence-free condition and the other is a quasi-linear elliptic second order PDE. These equations

are natural when one considers differential operators that are invariant, up to scaling, under the GL(4,R) action

resulting from changing the basis of the Lie algebra t4 of the torus T 4.

In order to achieve a complete understanding of M , we address the behaviour near singular orbits in §4. It

turns out that the only special orbits are circles and two-tori. Describing the flat model associated with each

singular orbit enables us to show that the orbit space M/T 4 is homeomorphic to a smooth 4-manifold, with a

global local homeomorphism induced by the multi-moment map ν. It also follows that the image of the singular

orbits in M/T 4 consists of trivalent graphs in R4.

Whilst there are currently no known complete full holonomy Spin(7)-manifolds with a rank four symmetry

group, our approach produces the first known incomplete examples, see §5.

2 Multi-Hamiltonian Spin(7)-manifolds

Let M be a connected 8-manifold. A Spin(7)-structure on M is determined by a 4-form Φ that is pointwise

linearly equivalent to the form Φ0 = e0 ∧ ϕ0 + ∗ϕ0
ϕ0, where

ϕ0 = e123 − e1(e45 + e67)− e2(e46 + e75)− e3(e47 + e56);

E0, . . . , E7 is a basis of V ∼= R8, e0, . . . , e7 is its dual basis of V ∗, and e123 = e1 ∧ e2 ∧ e3, etc. Occasionally, we

shall refer to the basis E0, . . . , E7 (and its dual) as being adapted.

The GL(V )-stabiliser of Φ0 is the compact 21-dimensional Lie group Spin(7) ⊂ SO(V ). In fact, Φ0

uniquely determines both the inner product g0 =
∑7

j=0 e
2
j and the volume element vol0 = e01234567 (see [3, 14]).

Correspondingly, Φ determines a metric g and a volume form on M .
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Following standard terminology, we say that (M,Φ) is a Spin(7)-manifold if the Spin(7)-structure is torsion-

free, hence the (restricted) holonomy group Hol0(g) is contained in Spin(7) ⊂ SO(8). This implies g is Ricci-flat.

It is well-known [8] that being torsion-free, in this context, is equivalent to the condition that Φ is closed.

We are interested in Spin(7)-manifolds that come with an effective action of a four-torus T 4 on M that

preserves Φ, hence also the metric g. This furnishes a Lie algebra homomorphism

ξ : R4 ∼= t4 → X(M). (1)

In the following, vector fields in the image of ξ will be said to be generated by the T 4-action, and we shall

occasionally use ξp to denote the image of ξ at p ∈M , which is a subspace of TpM of dimension at most 4.

Definition 2.1 ([16, Def. 3.5]). Let N be a manifold equipped with a closed 4-form α, and G an Abelian Lie

group acting on N preserving α. A multi-moment map for this action is an invariant map ν : N → Λ3 g∗ such

that

d〈ν,W 〉 = ξ(W ) y α,

for all W ∈ Λ3 g; here ξ(W ) ∈ Γ(Λ3TM) is the unique multi-vector determined by W via ξ.

The T 4-action being multi-Hamiltonian for Φ implies that Φ|Λ4ξ ≡ 0 (cf. [17, Lemma 2.5]), thus Φ is zero

on the tangent spaces of each T 4-orbit. Let M0 be the open dense set of points where the action is free. For

p ∈M0, consider an orthonormal X0, X1, X2, X3 ∈ ξp with θ̂i, i = 0, 1, 2, 3 dual to X0, X1, X2, X3: θ̂i(Xj) = δij

and θ̂i(X) = 0 for X ∈ 〈X0, X1, X2, X3〉⊥. Next, let us denote by αi the 1-forms

αi = (−1)iXj ∧Xk ∧X` y Φ,

where (ijk`) = (0123) as cyclic permutations.

As Spin(7) acts transitively on the sphere S7, we may take X0 = E0 at p. Now ϕ = X0 y Φ is a G2-form,

isotropic for X1, X2, X3. Our analysis of G2-forms [17, §2.2] shows that we may take these Xi to be E5, E6, E7

and so we get:

Φ = θ̂0 ∧ ϕ+ ∗ϕϕ, (2)

where

ϕ = α123 + α1(α0θ̂1 − θ̂23) + α2(α0θ̂2 − θ̂31) + α3(α0θ̂3 − θ̂12),

∗ϕ = θ̂123α0 + α23(α0θ̂1 − θ̂23) + α31(α0θ̂2 − θ̂31) + α12(α0θ̂3 − θ̂12),

with the shorthand α123 = α1 ∧ α2 ∧ α3, and so forth.

Examining the possible isotropy groups, we have the following surprisingly clean result.
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Lemma 2.2. Suppose T 4 acts effectively on a manifold M with Spin(7)-structure Φ so that the orbits are

isotropic, Φ|Λ4ξp = 0. Then each isotropy group is connected and of dimension at most two; hence trivial, a

circle or T 2.

Proof . As Spin(7) has rank 3, an isotropy group for T k is of dimension at most 3. It follows that the T 4-orbits

are at least one-dimensional. In particular, there is always one isotropy invariant direction. Hence, the isotropy

group is a subgroup of G2. But G2 has rank 2, so the isotropy group is at most 2-dimensional. Now as in [17,

Lemma 2.6], the isotropy group is seen to be a maximal torus in SU(r), r = 1, 2, 3, so is connected and either

trivial, a circle or T 2, as asserted.

In particular, we have that M0 is the total space of a principal T 4-bundle.

3 Toric Spin(7)-manifolds: local characterisation

Following the discussion in §2, we introduce the following terminology:

Definition 3.1. A toric Spin(7)-manifold is a torsion-free Spin(7)-manifold (M,Φ) with an effective multi-

Hamiltonian action of T 4.

The main aim of this section is to derive a Gibbons-Hawking type ansatz [10, 11] for toric Spin(7)-manifolds:

we obtain a local form for a toric Spin(7)-structure on M0 and characterise the torsion-free condition in these

terms.

So assume (M,Φ) is a toric Spin(7)-manifold. Let U0, U1, U2, U3 be infinitesimal generators for the T 4-action;

these give a basis for ξp 6 TpM for each p ∈M0. Denote by θ = (θ0, θ1, θ2, θ3)t the dual basis of ξ∗p 6 T ∗pM :

θi(Uj) = δij and θ(X) = 0 for all X ⊥ U0, U1, U2, U3.

Let ν = (ν0, ν1, ν2, ν3)t be the associated multi-moment map; its components satisfy

dνi = (−1)iUj ∧ Uk ∧ U` y Φ = (−1)i(Uj × Uk × U`)[, whenever (ijk`) = (0123),

where the triple cross product A×B × C is defined by g(A×B × C,D) = Φ(A,B,C,D) for each A,B,C,D ∈

TpM . It follows that dν has full rank on M0 and induces a local diffeomorphism M0/T
4 → R4. We define a

4× 4-matrix B of inner products given by

Bij = g(Ui, Uj).

On M0 we set V = B−1 = det(B)−1 adj(B).

Using the above notation, we have the following local expression for the Spin(7)-structure:
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Proposition 3.2. On M0, the 4-form Φ is

Φ = det(V )S
ijk`

(−1)iθi ∧ dνjk` + S
ijk`

(−1)`θijk ∧ dν`

+ 1
2 det(V ) (dνt adj(V )θ)2.

The associated Spin(7)-metric is given by

g = 1
det(V )θ

t adj(V )θ + dνt adj(V )dν. (3)

Proof . We start by choosing an auxiliary symmetric matrix A > 0 such that A2 = B−1 = V which is possible

as B is positive definite. Then we set Xi =
∑3

j=0AijUj and observe that

g(Xi, Xj) = (ABA)ij = (A2B)ij = δij ,

showing that the quadruplet (X0, X1, X2, X3) is orthonormal. It follows that we can apply the formula (2) for

Φ. Explicitly,

Φ = θ̂0 ∧ α123 − θ̂1 ∧ α230 + θ̂2 ∧ α301 − θ̂3 ∧ α012

+ θ̂123 ∧ α0 − θ̂230 ∧ α1 + θ̂301 ∧ α2 − θ̂012 ∧ α3

− θ̂01 ∧ α01 − θ̂02 ∧ α02 − θ̂30 ∧ α30

− θ̂23 ∧ α23 − θ̂31 ∧ α31 − θ̂12 ∧ α12.

(4)

We make the identification R4 ∼= Λ3R4 via contraction with the standard volume form. Then by letting Λ3A

denote the induced action of A on Λ3R4, we get the identity

Λ3A = det(A)A−1.

As a result, we get

α = (Λ3A)dν and θ̂ = A−1θ = 1
det(A) (Λ3A)θ.

The asserted formula for Φ then follows as the first line of (4) equals det(V )Sijk`(−1)iθi ∧ dνjk`, the second

line reads Sijk`(−1)`θijk ∧ dν`, and the third and fourth lines may be expressed as 1
2 det(V ) (dνt adj(V )θ)2.
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Now the expression from the metric follows by direct computation:

g = θ̂tθ̂ + αtα = (A−1θ)tA−1θ + (Λ3Adν)tΛ3Adν

= θt
(

1
det(V ) adj(V )

)
θ + dνt adj(V )dν.

We remark that there is a natural action of GL(4,R), corresponding to changing basis of t4. This action

can be useful when looking for invariants, up to scaling, and may also be used to simplify arguments as it allows

us to assume that V is diagonal or the identity matrix at a given point, assuming only the R4 = T̃ 4 action is of

relevance.

3.1 The torsion-free condition

The Spin(7)-structure featuring in Proposition 3.2 is generally not torsion-free. To address this, we need to

compute dΦ, which involves determining the exterior derivative of θ. By our observations in §2, we may think

of θ as a connection 1-form and its exterior derivative

dθ = ω = (ω0, ω1, ω2, ω3)t

is therefore a curvature 2-form (and so represents an integral cohomology class). In terms of our parameterisation

for the base space, via the multi-moment map, we can express the curvature components of ω as

ωa =
∑

06i<j63

zija dνij .

We collect the curvature coefficients in four skew 4× 4 matrices Za = (zija ), a = 0, 1, 2, 3. Details of the following

calculations may by found in the Appendix.

Closedness of Φ implies that the curvature matrices Za are determined via V and dV . One gets 28 equations

for the 24 variables zija , the four extra equations reduce to

3∑
i=0

∂Vij
∂νi

= 0, j = 0, 1, 2, 3. (5)

We refer to this first order underdetermined elliptic PDE system as the “divergence-free” condition.

The explicit expressions for the curvature coefficients are

zija =

3∑
p=0

Vpk
∂Va`
∂νp

− Vp`
∂Vak
∂νp

(6)
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for k` = ∗ij, meaning that dνk ∧ dν` = ∗4dνi ∧ dνj , where ∗4 is with respect to a four-metric for which dνi are

orthonormal with volume form dν0123.

There are exactly 10 additional equations, arising from the condition dω = 0. Using (5), these equations

can be expressed in the form of a second order quasilinear elliptic PDE without zeroth order terms:

L(V ) +Q(dV ) = 0. (7)

In the above, the operator L is given by:

L =

3∑
i,j=0

Vij
∂2

∂νi∂νj
.

So L has the same principal symbol as the Laplacian for the metric dνtBdν, which is conformally the same as

the restriction of the Spin(7)-metric (3) to the horizontal space. The operator Q is the quadratic form in dV

that is given explicitly by

Q(dV )ij = −
3∑

a,b=0

∂Via
∂νb

∂Vjb
∂νa

.

To summarise, we see that the torsion-free condition determines the curvature matrices Z` together with four

first order equations and ten second order equations. Hence, we have the following way to locally characterise

toric Spin(7)-manifolds.

Theorem 3.3. Any toric Spin(7)-manifold can be expressed in the form of Proposition 3.2 on the open dense

subset of principal orbits for the T 4-action.

Conversely, suppose we are given a principal T 4-bundle over an open subset U ⊂ R4, parameterised by

ν = (ν0, ν1, ν2, ν3), together with V ∈ Γ(U , S2(R4)) that is positive definite at each point. Then the total space

comes equipped with a Spin(7)-structure of the form given in Proposition 3.2. This structure is torsion-free,

hence toric, if and only if the curvature matrices Z` are determined by V via (6), respectively, and V satisfies

the divergence-free condition (5) together with the quasilinear second order elliptic system (7).

To conclude this section, we remark that it is possible to integrate the divergence-free equations (5) to

obtain a potential. However, the correspondence is not elliptic.

Proposition 3.4. Assume that V ∈ Γ(U , S2(R4)) satisfies the divergence-free equations (5), with U ⊂ R4

simply connected. Then there exists a matrix function A ∈ Γ(U ,M6(R)) whose second derivatives determine

V . More precisely, let us index R6 = Λ2R4 by ij = i ∧ j, for i, j ∈ {0, 1, 2, 3}, and write ∗ij = k` as we did after

equation (6). Then there is an Aij,k` satisfying Aij,∗k` = Ak`,∗ij such that

Vab =

3∑
k,`=0

∂2Aak,∗b`
∂νk∂ν`

. (8)
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Proof . We begin by noting that the divergence-free equation can be written more concisely as

d ∗4(V dν) = 0,

where ν = (ν0, ν1, ν2, ν3)t and ∗4 is the flat Hodge star operator with respect to the ν-coordinates. As U is simply

connected, we deduce that ∗4V dν is exact, i.e.,

V dν = ∗4d(Wκ)

for some W ∈ Γ(U ,M4×6(R)) and κ = (dν01, dν02, . . . , dν23)t.

Now, using the symmetry of V , we find that W̃ ∈ Γ(U ,M6×4(R)) given by W̃pq,i = Wq,∗pi −Wp,∗qi satisfies:

d ∗4(W̃dν) = 0.

Note 2Wi,∗pq = W̃pq,i − W̃qi,p − W̃ip,q, so W̃ determines W uniquely. As before, the differential equation can be

integrated. Indeed, we can find a section A ∈ Γ(U ,M6(R)) such that W̃dν = ∗4d(Aκ).

In conclusion, V can be expressed in terms of the second derivatives of the entries of A, with the explicit

expressions given by (8).

3.2 Natural PDEs

We have already remarked that in our description of toric Spin(7)-manifolds there is an action of GL(4,R)

corresponding to a different choice of generators for t4 ∼= R4. As for toric G2-manifolds (cf. [17, §3.2]), this

action furnishes a way of approaching equation (7), by understanding how the operators L and Q transform

under GL(4,R).

It is useful use the identification GL(4,R) ∼= (R× × SL(4,R))/Z2, where Z2 is generated by −14, and

accordingly express irreducible representations as `kΓa,b,c, where Γa,b,c is an irreducible representation of

SL(4,R), and ` is the standard one-dimensional representation of R× → R \ {0}: t 7→ t. As an example, this

means that we have for p ∈M0 that ξp = `1Γ0,0,1.

Now let U = (R4)∗ = `−1Γ1,0,0, viewed as a representation of GL(4,R). Then V ∈ S2(U) = `−2Γ2,0,0. The

collection of first order partial derivatives V (1) = (Vij,k) = (∂Vij/∂νk) is then an element of S2(U)⊗ `−4U∗ =

`−5Γ2,0,0 ⊗ Γ0,0,1, since dν transforms as an element of Λ3U∗ = `3Γ1,0,0 = `4U . This tensor product decomposes

as

S2(U)⊗ `−4U∗ = `−5Γ1,0,0 ⊕ `−5Γ2,0,1,

with the projection to Γ1,0,0 being given by the contraction S2(Γ1,0,0)⊗ Γ0,0,1 → Γ1,0,0, and Γ2,0,1 denoting

the kernel of this map. The divergence-free equation (5) simply says that this contraction is zero, and so

V (1) ∈ `−5Γ2,0,1.
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The operator Q is a symmetric quadratic operator on V (1) with values in S2(U). Hence, we may think of

Q(dV ) as an element of the space `8S2(Γ2,0,1)∗ ⊗ S2(Γ1,0,0). This space contains exactly one submodule that is

trivial as an SL(4,R)-module, since S2(Γ1,0,0)∗ is a submodule of S2(Γ2,0,1)∗. Direct computations show that

Q(dV ) belongs to `8.

In a similar way, we can address the second order terms in (7). We have V (2) = (Vij,k`) ∈ R = (S2(U)⊗

S2(`−4U∗)) ∩ (`−8Γ2,0,1 ⊗ Γ0,0,1) = `−8Γ1,0,1 + `−8Γ2,0,2. Now, L(V ) is built from a product of V with V (2) and

takes values in S2(U). So L(V ) ∈ S2(U)∗ ⊗R∗ ⊗ S2(U). In this case, there are two submodules isomorphic to

`8, but only one that appears in L(V ), corresponding to the contractions

S2(U∗)⊗
(
S2(U∗)⊗ S2(`4U)

)
⊗ S2(U)→ `8.

Contracting in this way seems to be the more natural choice.

Summing up the above discussion, L and Q are preserved up to scale by the GL(4,R) change of basis, and

this specifies Q uniquely. This is completely analogous to what happens in the G2 setting (see [17, Prop. 3.7]).

Proposition 3.5. Under the action of GL(4,R), L(V ) and Q(dV ) transform as elements of `8. Moreover, up

to scaling, Q is the unique S2(U)-valued quadratic form in dV with this property.

4 Behaviour near singular orbits

We now want to address the singular behaviour of toric Spin(7)-manifolds. As non-trivial stabilisers, we have

tori of dimension 2 or 1.

For a two-dimensional stabiliser, the flat model is M = T 2 ×C3, with local coordinates (x, y) on T 2 = R2/Γ

for some lattice Γ, zj = xj + iyj on C3. Putting e0 = dx, and using the standard ϕ on S1 ×C3 as in [17], we

have

Φ = i
2dx ∧ dy ∧ (dz1 ∧ dz1 + dz2 ∧ dz2 + dz3 ∧ dz3)

+ dx ∧ Re(dz1 ∧ dz2 ∧ dz3)

− dy ∧ Im(dz1 ∧ dz2 ∧ dz3)− 1
8 (dz1 ∧ dz1 + dz2 ∧ dz2 + dz3 ∧ dz3)2

with Killing vector fields

U0 =
∂

∂x
, U1 =

∂

∂y
, U2 = 2 Re

(
i
(
z1

∂

∂z1
− z3

∂

∂z3

))
,

U3 = 2 Re
(
i
(
z2

∂

∂z2
− z3

∂

∂z3

))
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generating the T 4 action. The components of the corresponding multi-moment map are:

ν0 = Im(z1z2z3), ν1 = Re(z1z2z3),

ν2 = − 1
2 (|z2|2 − |z3|2), ν3 = 1

2 (|z1|2 − |z3|2).

For one-dimensional stabiliser the flat model is M = (T 3 ×R)×C2, with local coordinates x1, x2, x3, u for

T 3 ×R and (z, w) for C2,

Φ = dx1 ∧ dx2 ∧ dx3 ∧ du

+ (dx2 ∧ dx3 − dx1 ∧ du) ∧ i
2 (dz ∧ dz + dw ∧ dw)

− dx1 ∧ Re((dx2 − idx3) ∧ dz ∧ dw)

+ du ∧ Im((dx2 − idx3) ∧ dz ∧ dw)

+ 1
8 (dz ∧ dz + dw ∧ dw)2,

with vector fields

U0 =
∂

∂x1
, U1 =

∂

∂x2
, U2 =

∂

∂x3
,

U3 = −2 Re
(
i
(
z
∂

∂z
− w ∂

∂w

))
.

In this case, the multi-moment map ν = (ν0, ν1, ν2, ν3) has

ν0 = 1
2 (|z|2 − |w|2), ν1 = −Re(zw), ν2 = − Im(zw), ν3 = −u.

Now let us consider a general Spin(7)-manifold M with multi-Hamiltonian T 4-action. Suppose p ∈M is a

point with stabiliser T 2. As Spin(7) acts transitively on the space of two-dimensional subspaces in R8, we may

identify TpM with R2 ×C3 = T0(T 2 ×C3) in such a way that the Spin(7)-forms agree at this point.

The exponential map of M at p identifies a neighbourhood of 0 ∈ T0(T 2 ×C3) equivariantly with a

neighbourhood of p ∈M . We may then choose our identifications so that (U2)p = 0 = (U3)p, (∇U2)p =

diag(i, 0,−i) and (∇U3)p = diag(0, i,−i), both in su(3). Now note that spin(7) contains su(4), so we may

consider T0(T 2 ×C3) as C×C3 = C4. As spin(7) and su(4) are both of rank three, it follows that the diagonal

maximal torus t2 in su(3) ⊂ su(4) has as centraliser in spin(7) the diagonal maximal torus of su(4). For any U

generated by the T 4-action, we have (∇U)p is an element of spin(7) commuting with both (∇U2)p and (∇U3)p,

cf. [17, §4.2.1]. Thus there exist a, b ∈ R such that (∇(U + aU2 + bU3))p is proportional to diag(−3i, i, i, i) acting

on C4 = C×C3 = T0(T 2 ×C3). It follows that we can choose U0 and U1 so that at p they are orthonormal (but
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not necessarily integral), (∇U0)p = cdiag(−3i, i, i, i), c ∈ R, and (∇U1)p = 0. But we have

0 = [U0, U1]p = (∇U0
U1)p − (∇U1

U0)p = 0 + 3ciU1 = −3cU0,

which implies that c = 0. Hence, (∇U0)p = 0 too.

As in [17, §4.2.1–2] we may compute many covariant derivatives at p. In particular, the Killing condition

implies ∇2
A,BUi = −RUi,AB, so this vanishes if (Ui)p = 0. Furthermore, at such a zero ∇3

A,B,CUi = −R∇AUi,BC.

It follows that ∇mUj agrees with the flat model at p for

(m, j) ∈ ({0, 1} × {0, 1}) ∪ ({0, 1, 2} × {2, 3}),

and is zero for (m, j) ∈ ({1} × {0, 1}) ∪ ({0, 2} × {2, 3}). Thus ∇mνi, which is a sum of terms

Φ(∇m1Uj ,∇m2Uk,∇m3U`, · ) with m = 1 +m1 +m2 +m3, agrees with the flat model at p for

(m, i) ∈ ({0, 1, 2, 3, 4} × {0, 1}) ∪ ({0, 1, 2, 3} × {2, 3})

This exactly matches the degree of agreement we have in the G2-case, and we can apply the analysis of [17,

§4.4] (a controlled comparison with the flat model combined with a degree argument) to conclude that the

multi-moment map induces a local homeomorphism of the quotient.

Let us now turn to the case when p ∈M has a stabiliser of dimension one. Let U3 be a generator for

the stabiliser S1. Let U0, U1, U2 be any three vector fields generated by the T 4-action, with the property that

they are orthonormal at p. Then the triple-cross product (U0 × U1 × U2)p is an invariant unit vector in TpM

that is orthogonal to the orbit. As Spin(7) acts transitively on three-dimensional subspaces of R8 we may

identify TpM with (R3 ×R)×C2 = T0(T 3 ×R)×C2 in such a way that (∇U3)p acts as diag(i,−i) ∈ su(2) and

the Spin(7)-forms agree at p. We have dν3 = −(U0 × U1 × U2)[ is non-zero at p and so provides an invariant

transverse coordinate to a seven-dimensional level set through p. We have (dνi)p = 0, for i = 0, 1, 2, and ∇2νi is

determined at p by U0, U1, U2 and∇U3 via Φ, so these agree with the flat model at this point. This means that we

can once again apply the G2-analysis to conclude that the multi-moment maps provide a local homeomorphism

to R4 around p.

Summarising the discussion of this section, we have the following description of the orbit space of toric

Spin(7)-manifolds:

Theorem 4.1. Let (M,Φ) be a toric Spin(7)-manifold. Then M/T 4 is homeomorphic to a smooth four-manifold.

Moreover, the multi-moment map ν induces a local homeomorphism M/T 4 → R4.

We suspect that the image of the set of special orbits plays an important role, so it is worthwhile addressing

this topic more explicitly. First, if p ∈M is a point with stabiliser S1, then taking linear combinations of vector
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fields in the above analysis, potentially loosing orthogonality, allows so to find an integral basis U0, U1, U2, U3 of

t4 such that (U3)p = 0. Inspection shows that U3 is zero for all points of T 3 ×R in the flat model. Hence, the

ν1, ν2 and ν3 are constant on this set, and the image under ν of this family of singular orbits is a straight line

parameterised by ν3.

Next, let us consider the case when p has T 2 as its isotropy subgroup. Then the normal bundle of the

two-torus T 4p is C3, and there are three families of points with circle stabiliser, meeting at p. Again looking at

the associated flat model, we see that there is an integral basis U0, U1, U2, U3 of t4 that has (U2)p = 0 = (U3)p

at p and such that U2, U3 and −U2 − U3 generate the circle stabilisers of the three families. The images of these

families under ν have constant ν0 and ν1 coordinates, and give three half-lines meeting at ν(p) and lying in ν2,

ν3 or ν2 − ν3 constant.

Proposition 4.2. The image in M/T 4 of the union M \M0 of singular orbits consists locally of trivalent

graphs in R4 with edges that are straight lines of rational slope in the ν-coordinates, with primitive slope

vectors summing to zero at each vertex.

Proof . Fix a choice of integral basis for t4. Then any other integrable basis is obtained via the action of GL(4,Z)

and this group in turn acts on (ν0, . . . , ν3). In particular, local families of points with stabiliser S1 map ν to a

straight line that is the GL(4,Z)-image of a coordinate axis Re3, so has rational slope. At the image of points

with stabiliser T 2, three such lines meet and their primitive tangent vectors are the GL(4,Z)-image of e2, e3

and e2 − e3, so sum to zero.

5 Orthogonal Killing vectors

In contrast with the G2-case (see, for example, [17, §5.1.2]), there are no known examples of complete toric

Spin(7)-manifolds with full holonomy. On the other hand, one would expect that also in this setting, the analysis

of ‘diagonal’ solutions might lead to simple explicit metrics with full holonomy. In general, the metrics of full

holonomy arising from the considerations below are incomplete. However, our analysis is not exhaustive, so we

cannot rule out the existence of complete examples.

So let us assume Vij = 0 for all i 6= j, i.e., the generating vector fields for the torus action are orthogonal.

Writing Vi for Vii, the Spin(7)-metric now takes the form

g =

3∑
i=0

1

Vi

(
θ2
i + V0V1V2V3dν

2
i

)
.
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In this case, the curvature 2-forms associated with the T 4 fibration are given by:

ω0 = −V3
∂V0

∂ν3
dν12 + V2

∂V0

∂ν2
dν13 − V1

∂V0

∂ν1
dν23,

ω1 = V3
∂V1

∂ν3
dν02 − V2

∂V1

∂ν2
dν03 + V0

∂V1

∂ν0
dν23,

ω2 = −V3
∂V2

∂ν3
dν01 + V1

∂V2

∂ν1
dν03 − V0

∂V2

∂ν0
dν13,

ω3 = V2
∂V3

∂ν2
dν01 − V1

∂V3

∂ν1
dν02 + V0

∂V3

∂ν0
dν12.

The divergence-free condition tells us that ∂Vi/∂νi = 0, for i = 0, 1, 2, 3. Then the condition dω = 0 is given

by the equations
3∑
j=0

Vj
∂2Vi
∂ν2

j

= 0, i = 0, 1, 2, 3, (9)

together with

∂Vi

∂νj

∂Vj
∂νi

= 0, i, j ∈ {0, 1, 2, 3}, i 6= j. (10)

Proposition 5.1. After permuting indices, analytic solutions to equation (10) with ∂Vi/∂νi = 0 for all i, have

one of the following forms:

1. V0 = V0(ν1, ν2, ν3), V1 = V1(ν2, ν3), V2 = V2(ν3), V3 constant;

2. V0 = V0(ν1, ν2, ν3), V1 = V1(ν2), V2 = V2(ν3), V3 = V3(ν1);

3. V0 = V0(ν1, ν3), V1 = V1(ν2, ν3), V2 = V2(ν0, ν3), V3 constant;

4. V0 = V0(ν1, ν2), V1 = V1(ν2, ν3), V2 = V2(ν3), V3 = V3(ν0);

Proof . Define r = r(V0, . . . , V3) to be the largest number such that some Vi has r partial derivatives ∂Vi/∂νj

not identically zero.

If r = 3, then we reorder indices so that there is a on open dense set U on which (∂V0/∂νi)p 6= 0 for i = 1, 2, 3

and all p ∈ U . Equation (10) then gives ∂Vi/∂ν0 = 0 on U0 for i = 1, 2, 3. Thus V1 = V1(ν2, ν3), V2 = V2(ν1, ν3)

and V3(ν1, ν2). Let r′ = r(V1, V2, V3). If r′ = 2, then we rearrange to get (∂V1/∂νj)p 6= 0 for j = 2, 3, for all p

in a (smaller) open dense set. It follows that V2 = V2(ν3) and V3 = V3(ν2). But by (10), only one of these can

have a derivative that is not identically zero, so we have case 1. If r′ = 1, then we may assume V1 = V1(ν2) is

not constant zero. It follows that ∂V2/∂ν1 ≡ 0, so V2 = V2(ν3) and we get case 2.

If r = 2, then we may take V0 = V0(ν1, ν2), non-constant in each variable. This implies V1 = V1(ν2, ν3). If

V1 is non-constant in both variables, then V2 = V2(ν3) and V3 = V3(ν0, ν2). Now either V2 is constant, which

may be rearranged to case 3, or V3 = V3(ν0), which is case 4.
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For r = 1, we may assume V0 = V0(ν1). If this is non-constant, then we may take V1 = V1(ν2). When V1 is

non-constant, we then have V2 is V2(ν3) or V2(ν0). In the former case V3 = V3(ν0), a subcase of 2, or V3 = V3(ν1),

a subcase of 4. The latter case gives subcases of 2.

Solutions to the full Spin(7) equations with V3 constant are just Riemannian products of a circle with a

toric G2-manifold. Thus irreducible solutions have to fall under cases 2 or 4 above. A simple solution of the

form 4 is given by taking V0 = ν1, V1 = ν2, V2 = ν3, V3 = ν0, νi > 0 for all i. This gives the following metric for

which a curvature computation shows that its (restricted) holonomy is equal to Spin(7):

g =
1

ν1
θ2

0 +
1

ν2
θ2

1 +
1

ν3
θ2

2 +
1

ν0
θ2

3

+ ν2ν3ν0dν
2
0 + ν1ν3ν0dν

2
1 + ν1ν2ν0dν

2
2 + ν1ν2ν3dν

2
3 ,

where

dθ0 = −ν2dν23, dθ1 = ν3dν30, dθ2 = −ν0dν01, dθ3 = ν1dν12.

We claim that the above metric can not be made complete by adding singular orbits. One way to see this is

to use the criterion of [5, Lemma 1] which implies incompleteness of g provided we can find a finite length

curve that is not contained in any compact set. As the fibres are compact, it is sufficient to find such a curve

in the base space of our T 4-bundle. Now, consider the straight lines with ν1, ν2 and ν3 constant. Each such

curve is parameterised by ν0 ∈ R>0 and on [a, b] ⊂ R>0 has length a positive constant times b3/2 − a3/2, which

is finite as a→ 0. However, the metric B = V −1 on the torus orbits satisfies det(B) = 1/(ν0ν1ν2ν3)→∞ as

ν0 → 0, so the discussion in Section 4 shows that we are not approaching a singular orbit. Thus the metric is

incomplete, and this type of argument applies near any point of the boundary
∏3
i=0 νi = 0. On the other hand,

we have completeness in directions with one or more νi → +∞ and the other coordinates bounded away from

zero, since on the base the metric is bounded below by the flat metric
∑3

i=0 dν
2
i on (R)4

>0 which is complete in

these directions. The asymptotic behaviour can be read off from the metric expression above, with the number

of unbounded νi’s corresponding to the dimension of the subtorus that collapses.

Now let us turn to case 2. In general, if Vi is a function of a single variable, then equation (9) forces Vi

to be linear in that variable. Thus after an affine change of variables, for irreducible solutions in case 2, the

equations (9) become

ν2
∂2V0

∂ν2
1

+ ν3
∂2V0

∂ν2
2

+ ν1
∂2V0

∂ν2
3

= 0. (11)

A simple solution is then V0 = ν1ν2ν3 giving the metric

g =
1

ν1ν2ν3
θ2

0 +
1

ν2
θ2

1 +
1

ν3
θ2

2 +
1

ν1
θ2

3

+ ν1ν2ν3dν
2
0 + ν2

1ν2ν
2
3dν

2
1 + ν2

1ν
2
2ν3dν

2
2 + ν1ν

2
2ν

2
3dν

2
3 ,
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where

dθ0 = −ν2
1ν2dν12 − ν2

3ν1dν31 − ν2
2ν3dν23,

dθ1 = −ν3dν03, dθ2 = −ν1dν01, dθ3 = −ν2dν02

on νi > 0 for i = 1, 2, 3. Another solution is obtained by taking V0 = ν3
1ν3 + ν3

2ν1 − 2ν3
3ν2 on the non-empty

domain where V0 > 0 and νi > 0 for i = 1, 2, 3. Using similar ideas as in the previous example, one sees that this

metric is incomplete.

For case 4, we have

V1
∂2V0

∂ν2
1

+ ν3
∂2V0

∂ν2
2

= 0, ν3
∂2V1

∂ν2
2

+ ν0
∂2V1

∂ν2
3

= 0.

But this holds for an open set in all the variables. In the second equation, letting ν0 vary we see that

V1 = V1(ν2, ν3) must be linear in each variable, V1 = A+Bν2 + Cν3 +Dν2ν3. Considering the ν3-dependence,

the first equation decouples as

(A+Bν2)
∂2V0

∂ν2
1

= 0, (C +Dν2)
∂2V0

∂ν2
1

+
∂2V0

∂ν2
2

= 0. (12)

If A or B is non-zero, then V0 = V0(ν1, ν2) becomes linear in both variables; otherwise we have V1 = Cν3 +Dν2ν3

and V0 satisfies the last equation of (12).
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A Appendix: deriving the torsion-free equations

To derive equations (5), (6), and (7), we begin by rewriting Φ. Expanding adj(V ) in terms of entries of V , one

finds that

1
2 det(V ) (dνt adj(V )θ)2 = −

∑
i<j

∑
p<q

(Λ2V )∗ij,∗pqθij ∧ dνpq,
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where Λ2V is the matrix of the action of V on 2-forms. Using this in Φ, we compute

dΦ = d(det(V ))S
ijk`

(−1)iθi ∧ dνjk` +
∑
a,b

∑
p<q

(Λ2V )∗ab,∗pqθa ∧ ωb ∧ dνpq

+ S
ijk`

(−1)`(θjk ∧ ωi − θik ∧ ωj + θij ∧ ωk) ∧ dν`

−
∑
i<j

∑
p<q

θij ∧ d(Λ2V∗ij,∗pq) ∧ dνpq.

The second line is equal to −
∑

i<j θij(ωkdν` − ω`dνk), where k` = ∗ij. Equating coefficients of θij ∧ dν∗k in

dΦ = 0 gives 24 linear equations for the 24 coefficients zija of (ωa)3
a=0 that directly give zija , when a, i and j are

distinct, and the simple sums zaia + zaja , for i, j 6= a. Solving these, we find

zija = 1
2

(
div((Λ2V )k`,a · ) + div((Λ2V )ka,` · ) + div((Λ2V )a`,k · )

)
,

where k` = ∗ij, and div denotes divergence: div(W · ) =
∑3

k=0 ∂Wk/∂νk, etc. Substituting into the first line of

dΦ = 0 and extracting the coefficients of θi ∧ dν0123, we get a four-vector. Multiplying this by V gives the four

equations det(V ) div(Vi · ) = 0 and hence the divergence-free equation (5). The expression for zija now reduces

to (6).

We next turn to the curvature conditions dωa = 0. Using the expressions for the zija , we have

dωa =
∑
i<j

∑
q

∂zija
∂νq

dνqij

=
∑
i<j

∑
p,q

(
Vpk

∂2Va`
∂νp∂νq

− Vp`
∂2Vak
∂νp∂νq

+
∂Vpk
∂νq

∂Va`
∂νp

− ∂Vp`
∂νq

∂Vak
∂νp

)
dνqij , where k` = ∗ij,

= −
∑
b,p

∑
k 6=b

(
Vpk

∂2Vab
∂νp∂νk

− Vpb
∂2Vak
∂νp∂νk

+
∂Vpk
∂νk

∂Vab
∂νp

− ∂Vpb
∂νk

∂Vak
∂νp

)
dν∗b.

Inserting the terms k = b, so we sum freely over b, p, and k, does not change the value of this expression.

Then, using the divergence-free conditions, we get dωa = −
∑

b(L(V ) +Q(dV ))abdν∗b and hence the elliptic

equation (7).
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