
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

DEO: A Smart Dynamic Edge Offloading Scheme

using Processing Resources of Nearby Wireless

Devices to Form an Edge Computing Engine

Ihsan Alshahib Lami

Applied Computing

School of Computing

Buckingham, UK

ihsan.lami@buckingham.ac.uk

Ali Al-ameri

Applied Computing

School of Computing

Buckingham, UK

ali.al-ameri@buckingham.ac.uk

Abstract— Edge computing reduces connectivity costs and

network traffic congestion over cloud computing, by offering local

resources (processing and storage) at one hop closer to the end-

users. I.e. it reduces the Round-Trip Time (RTT) for offloading

part of the processing workload from end-nodes/devices to servers

at the edge. However, edge servers are normally pre-setup as part

of the overall computing resource infrastructure, which is tough

to predict for mobile/IoT deployments. This paper introduces a

smart Dynamic Edge Offloading scheme, (we named it DEO), that

forms the “edge computing resource” on-the-go, as needed from

nearby available devices in a cooperative sharing environment.

This is especially necessary for hosting mobile/IoT applications

traffic at crowded/urban situations, and, for example, when

executing a processing intensive Mobile Cloud Computing Service

(MCCS) on a Smartphone (SP). DEO implementation is achieved

by using a short-range wireless connectivity between available

cooperative end-devices, that will form the edge computing

resource. DEO includes an intelligent cloud-based engine, that will

facilitate the engagement of the edge network devices. For

example, if the end-device is a SP running an MCCS, DEO will

partition the processing of the MCCS into sub-tasks, that will be

run in parallel on the newly formed “edge resource network” of

other nearby devices. Our experiments prove that DEO reduces

the RTT and cost overhead by 62.8% and 75.5%, when compared

to offloading to a local edge server or a cloud-based server.

Keywords—mobile cloud computing services, edge computing,

offloading, parallel processing

I. INTRODUCTION

In 2017, 2 billion of SP users are using an estimation of 268
billion MCCS, which represents around 90% of the total mobile
traffic [1], the Global Mobile Data Traffic Forecast claimed that
there will be around 50 billion connected SPs by 2020 [2]. This
exponential growth in SP users has encourage MCCS
developers to introduce more processing intensive services. Our
proposed DEO experiments are based on SPs to demonstrate the
prove of concept of this scheme.

Edge computing solution did emerge to solve such issues by
shifting the MCCS computation workload from servers in the
cloud to servers near the edge. Thus, reducing both network

latency and connectivity costs. That is, a one hop
communication between the end-device and the server, to
achieve low RTT latency and much reduced internet traffic,
especially when adopted at various edge locations/clusters.
Having the edge computation infrastructure is of course ideal for
the ever-increasing deployment of IoT applications, (e.g.
Vehicle or animal tracking, drones-based monitoring, e-health
body sensor networks, smart video surveillance and smart
homes), that requires intensive computations and activity based
on machine/deep learning AI. Actually, recent studies did point
out that current edge computing deployments are continually
suffering from connectivity issues, due to over subscription to
the wireless air interface spectrum, and so expectations that 5G
network deployments from 2020 will elevate some of the issues
for a while [3]. This means that an on-the-go solution to form an
edge-resource when needed, is essential as well as having the
pre-planned infrastructure-based edge computing servers that
will always be exhausted. The main thinking behind the
proposed DEO is to have the capability of establishing a local
edge computing resource when and when needed, by forming a
local network (via Wi-Fi, and Bluetooth) between available
processing devices, (e.g. SPs, tablets, pc’s, and servers), in a
cooperative sharing environment. That is, DEO overcomes the
edge server availability/accessibility limitations, by a scheme
that forms an edge computing resource to execute processing
intensive MCCS on-the-go from cooperative nearby available
devices. DEO offloads the service sub-tasks from the
MCCS_host, (a SP running the MCCS), to a local network of
nearby devices, using low-cost peer2peer wireless connections
between them, so to achieve low RTT latency and minimize the
transmitted traffic.

Fig.1 shows DEO end2end scheme. It shows the
DEO_Controller, an intelligent engine hosted in the cloud to; (1)
recruit cooperative end-devices and authenticate their
availability when needed, (2) provide the MCCS_host with
decisions on the best scenario to partition and offload the sub-
task, so to achieve low execution time and reduce the battery
power consumption. As well as to reduce connectivity costs and
network traffic congestion.

Fig. 1. DEO scheme

Fig.1 also shows the newly formed edge computing resource
network (dotted circle in the diagram). When an MCCS_host
decides that the MCCS needs offloading, it will ask
DEO_Controller for decisions of the nearest available device,
(we named it Offloadee), based on the device having, at that
time; (1) the lowest load, (2) the highest processing resource
(CPU MIPS/Memory/etc), (3) a good battery capacity, and (4)
the best network connectivity to use. Then the MCCS_host will;
(a) generates VMs (bundle them as APKs and JAR files) of all
the partitioned sub-tasks, (b) establishes connectivity with all
available devices, as advised by the DEO_Controller, and (c)
offloads a portion of the VM’s to the Offloadees and retrieves
the results.

The novelty contributions of this paper are:

• A unique scheme that forms the edge computing
resource, on-the-go, from nearby devices and share the
execution of the MCCS in parallel among them via
short-range wireless connectivity.

• The offloading between the devices on the newly
formed edge network is done intelligently by an engine
based in the cloud (no impact on the MCCS_host
device). This engine recruits’ cooperative devices,
(paid back by similar cooperation when needs it), and
it monitors (processing capability, battery status, and
availability) and authenticates (access, session keys
and engagement status).

The rest of this paper includes section II that summarizes the
recent literature on edge computing solutions, while Section III
presents the development of DEO. Section IV presents the
experiments, results and analysis. Conclusions and future work
are presented in section V.

II. LITRATURE REVIEW OF EDGE COMPUTING SOLUTIONS

Review of solutions that perform offloading to a centralised
server in the cloud has been published in in our previous paper

[4]. This review focuses on solutions that perform offloading the
IoT/MCCS sub-tasks to pre-setup infrastructure of edge servers.
DEO proposed a scheme that forms an edge computing resource
to execute processing intensive MCCS on-the-go, from
cooperative nearby available devices using low cost peer2peer
connectivity. This is achieved by recruiting a group of available
processing resources/devices nearby, in a local network to form
a cooperative sharing environment using DEO_Controller
engine.

IoT deployments have increased the amount of data
generated to the cloud; the amount of data hosted in 2018 is
equal to the data gathered in all prior years [5]. This has
necessitated that data-handling tasks are shifted to the edge
nearer to the IoT sensors network. Running these services on
cloud servers can have a negative impact on the offloading
process, due to network cost and bandwidth traffic. Therefore,
an advantage of edge computing is to provide resources in a
close proximity, to end-devices so to reduce long RTT latency
and eliminate the network congestion. A solution that facilitates
offloading of intensive services from a SP to an edge computing
server has introduced a model that provides the use of virtual
resources in the edge servers [6]. It achieves this by shifting the
service execution from a single SP to the edge servers
automatically, by dividing a single task to 5 sub-tasks, using 0-
1 integer liner programming method. It marks the sub-tasks with
a value of (0,1), where “0” stands for sub-tasks to run locally on
the SP, such sub-tasks that access SP local features or input and
output sub-tasks, while “1” stands for sub-tasks to run on edge
server which has multiple virtual resources to handle the
execution of the sub-tasks. This then followed by a “decision
solver” engine to decide on which virtual resource to select for
the incoming 5 sub-tasks, based on the virtual resource “current
queue and completion time”. Experiments have affirmed that
performing the execution at the edge servers can reduce the
network cost and internet traffic. However, this model requires
pre-setup infrastructure-based edge servers, which is difficult to
predict for MCCS/IoT network type computation, and so we
believe a more dynamic model that forms the edge computing
resources on-the-go is needed.

With the deployment of 5G networks, the future networks
are expected to be intelligent systems that will have the power
to “self-learn”, “self-plan” and “self-predict” to make intelligent
decisions. Therefore, adaptation of intelligent AI/ML algorithms
are needed in such environments to perform intelligent
decisions. A solution that facilities the above issue has proposed
some ML techniques to deploy and implement to make dynamic
and intelligent decisions on-the-go, as well as to predict the
available nearby device when offloading [7]. A good example
of such techniques is Reinforcement Learning (RL), which
learns from its own experience, it is inspired by behavioural state
to make optimal decisions in a stochastic and complex
environment. It is normally formulated as a Markov Decision
Process (MDP), that provides a mathematical model to calculate
state, action and reward functions, as to make intelligent
decision making. This technique is deployed in [8] to leverages
offloading of intensive IoT applications sub-tasks to the edge
computing servers. It achieves this by proposing two
mechanisms to migrate and balance the load between servers.
(1) “Knowledge-passing mechanism” to exchange information

between servers, such as location, current time, data type and
where data is stored. (2) “Markov mechanism” to predict the
next server destination based on a historic algorithm, to calculate
the best server to select, based on server location, probability
factor, processing time, and server resources. We used MDP
model to estimate the cost overhead of DEO in terms of
processing time, battery power, latency, available bandwidth,
and efficiency. The cost function has the advantage of being
analytically well tractable since the expectation is additive over
time and/or when more devices are available to cooperate and
share their unused resources. DEO deploys DEO_Controller
engine that profile and partition the tasks to sub-tasks and
offload such sub-tasks to the corresponding end-devices. We
shall deploy RL in DEO engine using Markov state, action and
reward functions, to predict the next available nearby device to
use, and to make intelligent decisions of what and where to
offload, based on observing and learning from the experience of
running a certain MCCS, (e.g. here we used Face detection &
recognition).

Tracking humans or animals with drones in crowd sensing
scenarios like volcanos or disasters, are examples of nowadays
IoT applications. These applications require machine learning
and AI algorithms engines to analyse streams of audio, video
and image data coming from many sensors. Such intelligent
algorithms require a significant computational/processing
resources that are not typically available at the edge, but rather
available in large data centres in the cloud. An offloading
solution that balance the computational workload between the
available cloud and the edge resources has been proposed in [9].
It achieves this by shifting the training and testing phases of the
workload to the cloud. I.e. the end-device uploads data, which
are then labelled and tested by multiple ML algorithms, then,
based on the chosen decision, the model is retrieved, sterilized
and packed in a shared repository. Only the AI inference engine
is positioned at the edge as a micro service that can be accessed
through the shared repository. We believe that the concept of
letting the cloud be responsible of the overall decision making
in splitting the computation workload between the edge and the
cloud is commendable. We shall deploy a similar concept in
DEO, we used AWS services to perform the creation of the DB
and recognition using AWS rekognition service [10], only the
recognition results of the extracted faces are saved in a local DB
shared repository.

Different communication technologies may affect the
offloading process and can lead to different trade-off between
the computation and communication results. These
technologies, (such as Wi-Fi, 3G, BT, etc), have different
parameters in terms of bandwidth, latency and RTT. Hence, a
proper analysis of the above need to be considered, to select the
best communication type to optimize, when making the
offloading decisions. A solution that leverages offloading sub-
tasks to cloud/nearby servers has proposed an emulation testbed
to emulate the network conditions of existing communication
technologies, to find the effect of such technologies when
offloading [11]. It achieves this by manipulating 4
communication technologies, (namely BT, Wi-Fi direct, Wi-Fi
and 3G), that could be used to offload sub-tasks to cloud/nearby
servers, using a traffic shaper. The traffic shaper is used to
emulate network conditions by using Dummynet emulation tool

to add a certain level of RTT, packet loss and bandwidth to
reflect a real network condition. These technologies are
examined while pushing intensive sub-tasks through the
network between the MCCS_host and cloud/nearby servers. The
experiments show that the power consumption of
sending/receiving data claims that using BT can outperform Wi-
Fi and 3G by 25% and 44%. Also using Wi-Fi direct is a better
solution compared to Wi-Fi and 3G, albeit Wi-Fi is still
promising to use while offloading, if small RTT is introduced,
which means offloading to nearby server using Wi-Fi can have
better results than using Wi-Fi to offload to the cloud server.
Nevertheless, 3G is yet to be the ultimate technology to be used.
Being said that, to justify our implementation strategy and to
prove the results, this solution as well as our analysis conducted
in our previous paper [4], have affirmed us that a low-cost
efficient communication technology has to be used, while
offloading. DEO addresses this issue by deploying DEO_EDGE
to leverage a local low-cost peer2peer connectivity, using
(nearby API which combined BT and Wi-Fi p2p), resulting in a
low RTT latency and less network congestion as detailed in
section IV.

Offloading and sharing the end-user sensitive data to the
cloud or edge servers may cause privacy and security issues
resulting in malicious activities. A solution that proposes to
secure the data before offloading, has introduced a secure
computation offloading model based on a social trust factors to
select trustable offloadees [12]. It achieves this by: (1) “Social
trust inference engine” that infer social trust from social relation
between device A and B. I.e. device A initiate a minimum social
trust factor, then device B is selected only if it meets the social
trust factor. (2) “Nearby service broker” that uses task tracker to
authenticate the process and select the trustable offloadees. It is
consisting of 2 sub-models as follow: Community Trust
Extractor (CTE), to extract factors from social networks such as
social distance or number of common neighbours, and
Community Trust Inference (CTI), to infer the social trust
between 2 users in the social networks, such as Google and FB.
Similarly, the work in [13], listed some techniques that can be
implemented to secure data before sharing it with cloud/edge
servers. These are steganography, trusted computing techniques,
hardware-based secure execution and homomorphic encryption.
DEO does not claim to propose security solutions while
offloading, as being not the focus of this research. However,
DEO provides a secure implementation indirectly by
introducing the following: (1) a DEO_Controller engine that
monitors and approves the nearby end-devices for qualifying as
being secure and fit before offloading. (2) Partitions the tasks
and distributes the sub-tasks among a variety of nearby edge
devices, so the shared data cannot be retrieved or invoked as a
package, and so stealing the sub-task will not impact the overall
security of the offloading. (3) DEO uses AWS rekognition
service, which is a highly secure service that uses access and
secret keys to authenticate the nearby devices. (4) DEO uses
peer2peer API protocol [14] to communicate the nearby devices,
which is a secure middleware that provides fully encrypted P2P
data transfer between nearby edge devices.

III. DEO SCHEME

DEO implementation system consists of two distinct
engines, (namely: DEO_EDGE & DEO_Controller), which

interact together to perform efficient and intelligent offloading
decisions.

A. DEO_EDGE

This engine forms the edge computing resource that will
execute the MCCS and is led by the SP that is hosting the MCCS
(named MCCS_host here). Any participating device in helping
to run the sub-tasks is named the Offloadee. The main functions
of DEO_EDGE are: (1) the MCCS_host will generate VMs
(bundle them as APKs and JAR files) of all the partitioned sub-
tasks, based on the instructions provided by DEO_Controller in
the pre-processing stage. (2) The MCCS_host will establish
connectivity with all available Offloadees as advised by the
DEO_Controller engine. Note that the connectivity will be
wireless, (Wi-Fi, BT and p2p). (3) The MCCS_host will offload
the VM’s to the Offloadees and communicate the results from
this process appropriately, as well as the MCCS_host will also
be executing its own share of the sub-tasks as and when it is not
busy with the other sub-tasks. (4) When the MCCS execution is
completed, a summary record of this experience is feedback to
DEO_Controller engine, to train and update it for future
execution if needed by other MCCS_hosts. Each of these steps
are detailed as part of the experiments section in IV.C.

B. DEO_Controller

This engine is placed in the cloud, to: (1) identify and recruit
suitable end-devices that can be used when needed by
DEO_EDGE. This process is continuous, and we envisage that
such devices, as a principle, are SP’s that are willing to
contribute to help other SP’s when running demanding MCCS.
(2) Perform profiling and partitioning of the MCCS, if not
already done in a previous request, when requested by the
MCCS_host. (3) Provide a list of potential available SPs/devices
near the location of the MCCS_host together with their
capability, and advice the MCCS_host with the profiling and
partitioning process. Note that the choice of having the profiling
and partitioning tasks of the MCCS in the cloud was to save
battery power of the MCCS_host, and source knowledge of the
MCCS provided by the developer is more accessible in the
cloud. DEO_Controller engine has the power to “self-learn”,
“self-plan” and “self-predict” to make intelligent offloading
decisions. We used MDP model to estimate the cost overhead of
DEO in terms of processing time, battery power, latency,
available bandwidth, and efficiency. The cost function has the
advantage of being analytically well tractable since the
expectation is additive over time and/or when more devices are
available to cooperate and share their unused resources. We
shall deploy a simple KNN algorithm to find the nearest end-
device to select, and a Markov state, action and reward functions
to predict the next available nearby device to use that has the
lowest load and the highest resources, based on observing and
learning from the experience of running FDR. Being said that,
we investigated some of the intelligent AI/ML algorithms that
could be deployed and implemented in DEO_Controller. (1)
Reinforcement Learning (RL), it learns from its own experience,
it inspires by behavioural state to make optimal decisions in a
complex environment. It is normally formulated as an MDP, and
Genetic Algorithms (GA) to decide on what tasks to offload. (2)
Supervised/Unsupervised Learning (SL/UR), SL learns from
training input data set, such as Support Vector Machine (SVM),
and Support Vector Regression (SVR) algorithms. In particular

UL, learns from unlabelled data, it tries to find hidden attributes
and data structure to achieve prediction and intelligent decisions,
such as K-means. It clusters a group of edge servers as possible
offloading targets to help with the execution. (3) Deep Learning
(DL), it extracts features from massive data to predict and make
decisions automatically. These features are learned dynamically
from data without manual setup. DL can be deployed in the edge
servers in an offline manner to train and test the data, then it
provides inference platform to predict and make intelligent
decisions.

IV. EXPIERMENTS, RESULTS & ANALYSIS

The following experiment scenarios is used to prove that
DEO can provide an on-the-go (dynamic) edge resource from
available nearby devices, and will perform as good as, or better
than, a structured pre-setup edge computing server. The details
of the implementation of DEO_Controller engine will be
documented elsewhere as being not the focus of this paper.

A. MCCS Choice: Face Detection (FD) & Recognition (FDR)

FDR is chosen to demonstrate the computational complexity
and the benefits of offloading, (typically used by police or at an
airport mobile search activities). It involves a variety of complex
tasks including face detection, feature extraction (we named it
here FD) and recognition (we named it here FDR). We
developed FDR using Android studio platform and Dlib library,
which is an open source library for image detection and
recognition. It obtains a face bounding box using (x,y)
coordinators of the face in the image, and then it detects and
draws 68 (x,y) coordinators of the face, and finally, it extracts
the face features. Asysnc class is basically used to run the heavy
part of FDR algorithm on another thread, so no pressure on the
main thread that is also handling the Graphic user interface. We
used the mface.train function to train the algorithm to perform
FDR. Then we called the recognizeAsync function to execute
the algorithm. Full details about the specifications of the
scenarios and experimental devices are illustrated in section C.

As shown in Fig.2, the main GUI of FDR contains three
main buttons which are Offloader, Offloadee and server. The
Offloader, (which represents MCCS_host), button is to specify
whether to run the sub-tasks locally on MCCS_host or remotely
on Offloadees. It shows a drop-down list of Offloadees between
“(0-3)”, (we used up to 4 devices in this experiment, (note that
the maximum number of devices to be used is 7 because the BT
protocol only allows 7 actual devices to connect to one master
node [15])). The “(0)” means the sub-task runs locally on the
MCCS_host, while “(1-3)” specify the number of Offloadees.
The Offloadee button is to represent the participated Offloadees.

Fig. 2. Screenshots of running FDR

The server button is for running the sub-tasks remotely on
the server, (we used 2 servers in this experiment, the first one is
a cloud AWS EC2 server, and the second is a local edge WAMP
server), it requires a server IP address to start the connection. We
developed a simple algorithm to distribute the images among the
Offloadees and the servers. Firstly, we divide the number of
images (n) equally among the total devices. After that we find
the remaining number of images, if the remaining images are
equal to “0”, then the algorithm starts distributing the images. If
the remaining images are > “0” then we distribute the remaining
images one by one to the Offloadees. (For example, if the
number of connected devices = 4, number of images = 10, then
10/4, so initially each device gets 2 images, then for the
remaining 2 images, it assigns one by one to the devices, so
MCCS_host = 2, offloadee1 = 3, offloadee2 = 3, offloadee3 = 2
and so on). We used a third-party tool (AWS rekognition
service) that uses storage-based API operations to create the DB,
which is needed for the recognition sub-task. It gets the images
from FDR local repository root, then we call Detectface request,
callFaceDetails, and Detectfeatures functions to build a client-
side index.

B. Cost Model

DEO uses a simple cost estimator model based on MDP
model, to calculate the cost overhead of our solution [16]. The
cost function has the advantage of being analytically well
tractable, since the expectation is additive over time and/or when
more devices are available to cooperate and share their unused
resources. The aim of using MDP model is to normalize the cost
equation, and to combine the arbitrary of different unites and
scales. Let I denote a set of tasks = {i1,i2,….in}, let J denote a set
of devices = {j1,j2,……jm}. To define the cost function of task in
running on devices jm, we calculate the cost function as:

𝐶𝑜𝑠𝑡(𝐶) = ∑ (𝑃𝑖,𝑗 + 𝑇𝑖,𝑗 + 𝐿𝑖,𝑗 + 𝐷𝑗 + 𝐵𝑗 + 𝐸𝑗)
𝑖 𝜖 𝑖𝑛

𝑗 𝜖 𝑗𝑚
 (1)

Where, P(i,j) is the battery power cost of processing task i on
device j, T(i,j) is the time for processing task i on device j, L(i,j) is
the round trip time latency between 2 devices, D(j) is the
available data rate at device j, B(j) is the available bandwidth
available at device j, and E(j) is the efficiency of device j based
on the CPU load. Since we normalized the cost equation, the
units of response time, latency and power consumption will not
affect the trade-off. We define a random weight factor (W)
between {1,6}, that represents the probabilistic relative
significance of power consumption, latency, response time,
bandwidth, data rate and efficiency, and it is determined by:

 𝑊𝑃 =
𝑤𝑝

𝑤𝑝+𝑤𝑡+𝑤𝑙+𝑤𝑑+𝑤𝑏+𝑤𝑒
 (2)

Considering that P is the highest priority in our
implementation, followed closely by E and T respectively, they
are weighted as 6, 5.5 and 5 scores being near the top of the
scale. For D and B, they are regarded as middle priority due to
heavily dependent on the available nearby devices and the
available connectivity. So, the impact will not strongly influence
the P, E and T which are the main objectives for the offloading,
and both D and B score is 3. The remaining L scores 2
considering it is the least priority when compared with other
weightings. So, we calculate the cost function as:

= ∑ (𝑤𝑝 × 𝑃𝑖,𝑗 + 𝑤𝑡 × 𝑇𝑖,𝑗 + 𝑤𝑙 × 𝐿𝑖,𝑗 + 𝑤𝑑 × 𝐷𝑗 +
𝑖 𝜖 𝑖𝑛

𝑗 𝜖 𝑗𝑚

𝑤𝑏 × 𝐵𝑗 + 𝑤𝑒 × 𝐸𝑗) (3)

C. Expiermental Scenarios

In this section, the various scenarios for the experiments that
has been done to illustrate the overhead of forming the edge
resource are described. The aim of these scenarios is to examine
the benefit of DEO when offloading, in terms of computation
time, battery power consumption and wireless connectivity
costs, when FDR sub-tasks are executed by various devices
together with the MCCS_host. These scenarios are referred as
Edge Server Scenario (ESS), Edge Offloadees Scenario (EOS)
and Cloud Server Scenario (CSS) in this paper.

a) The MCCS_host Offloads FDR Sub-tasks to ESS: In

this scenario, we created a WAMPSERVER 3.1.0, which acts

as a local nearby edge server. Both MCCS-host and the server

are connected through an IP address. If the decision is to run

the sub-tasks on ESS, the decision engine triggers the

distribution algorithm to partition the images between the

MCCS_host and the server. The MCCS_host generates a

serializable interface and decides on the serialized sub-tasks

and the images to be offloaded. Then it invokes the remote

manager, to connect to the server using IP address and post API

and offload the images in parallel. The edge server waits and

listens to any incoming sub-tasks, it runs the requested sub-

tasks, records the time using timestamps, converts it to JSON

format, and sends the results back to the MCCS_host, as will be

stated later in section D.

b) The MCCS_host Offloads FDR Sub-tasks to EOS: In

this scenario, we performed offloading to cooperative nearby

edge-devices on-the-go. We used one MCCS_host and a

maximum number of 3 end-Offloadees, full specification of the

conducted devices used, are shown in Table I. All the devices

are connecting through nearby API which is a peer-to-peer

networking API that allows applications to connect, share, and

exchange data with each other in order to communicate over a

local area network. We used nearby connection type since it

offers unlimited payload to be shared, and it supports sensitive

data by encrypting the data for secure payload exchange. We

defined 5 classes to establish the communication between edge

Offloadees, these are Start Discovery (), Start Advertising (),

Endpoint Discovery Call back (), Request Connection (), and

Payload Call back (). When the device is registered itself as an

Offloadee, the MCCS_host starts accepting incoming

connections, (the number of incoming connections is equall to

the number of Offloadees).

TABLE I. EOS-EXPIERMENTAL SPEC FOR (MCCS_HOST & OFFLOADEES)

Devices used
Devices specification

CPU RAM OS Battery

Samsung Sm-T710 1.3 GHz 3 GB Android 7.0 4000 mAh

Lenovo TB-7304F 1.3 GHz 1 GB Android 7.0 3500 mAh

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh

When we select more than “0” in the drop-down list, the
MCCS_host starts advertising itself to accept incoming
connections from nearby Offloadees. The Offloadees then
discover the MCCS_host and send a request to connect. The
MCCS_host accepts the connection and adds the incoming
Offloadee to the connected devices list. Then the connection is
established, and devices are ready to exchange images between
them. We developed a simple algorithm to distribute the images
among Offloadees explained in section A. I.e. if we have 20
images to run, then each device executes 5 images in parallel
and performs the required sub-tasks for the images, then sends
the results back to the MCCS_host. The Offloadees wait and
listen for any incoming sub-tasks, when the devices receive the
images, they run the grayscale, face detection and feature
extraction sub-tasks, record the time using timestamps and send
the results back to the MCCS_host. A total of 100 images to
perform offloading between a variety of edge end-devices are
used. The images are set to have the same resolution (700X700),
and have a maximum size of 300 KB, and tests are repeated 5
times to examine stable and unstable network channels when
offloading. The results are calculated (an average of 5 runs) in
terms of computation time, battery power consumption,
communication saving, and offloading gain, as illustrated in
section D.

c) The MCCS_host Offloads FDR Sub-tasks to CSS: In

this scenario, we created a server in the cloud using Amazon

AWS services, namely t2.micro Amazon Linux 2 AMI EC2

server. We created the credentials (secret, access, and IAM

keys) to authenticate the server with FDR, so it connects and

pushes images to the cloud server. We used FileZilla and Putty

tools to install and migrate the necessary PHP files to the server.

We created an S3 bucket to save the offloaded images if needed

for future execution and/or to train DEO_Controller engine. If

the decision is to run the sub-tasks on the server, the

MCCS_host connects to the server and starts to offload the

images through an IP address and POST API. The server waits

and listens to any incoming sub-tasks, it runs the requested sub-

tasks when receives the images, records the time, converts it to

JSON format, and sends the results back to the MCCS_host, as

will be stated later in section D.

Fig. 3. Processing time of FD

Fig. 4. Processing time of FDR

D. Results & Discussion

This section presents all the results achieved from the
conducted various experiments, for the scenarios we designed to
illustrate the concept of DEO solution using MDP model.

Fig.3 shows the processing time of executing FD for ESS,
EOS and CSS we described in section 4.3. Offloading to ESS
and CSS has reduced the burden on the MCCS_host by 83.4%
due to their unlimited resource capability. Note that the results
are testimony that having an edge server is the correct decision,
since it will be less overhead when communication traffic is
taken into consideration. It also clear that offloading to a single
Offloadee is too costly with an increase of the task by 14.3% due
to the overhead not meeting the crossover point of being
advantageous. However, offloading to >1 Offloadee has
significantly improved the MCCS_host resource capability,
(21.3% & 40.2% for 2 & 3 Offloadees respectively).

Fig.4 shows the processing time when running FDR for ESS,
EOS and CSS. It shows an increase of the complexity of the FD,
by adding the recognition sub-task with the DB. This highlights
the importance of DEO, where the processing time became liner
for all ESS, EOS and CSS. This means that the overall cost of
DEO is much less than having the offloading done to the cloud,
without the network traffic caused by transporting the data to the
cloud.

Fig. 5. Battery power consumption of FDR

Fig. 6. RTT latency

For 20 images with 4 edge end-devices, we achieved 10.13%
in comparison to running the sub-tasks locally on the
MCCS_host, while 12.1% for the CSS scenario, which indicates
the DEO will outperform offloading to the cloud solution when
more intensive sub-tasks are executed on more participated edge
end-devices.

The battery power consumption measured when executing
FDR for ESS, EOS, and CSS are shown in Fig.5, it clearly shows
that same saving pattern is achieved with computation
complexity. The behavioural trend we observed is, when only 2
nearby Offloadees are executing the FDR, the battery power
consumption cost increased by 19.52%. However, when the
number of Offloadees increases in EOS, we record a power
saving of 28.8% for 4 Offloadees running FDR in parallel,
which is almost similar with ESS and CSS which record 31.8%
power saving.

Fig.6 shows the RTT latency when the MCCS_host
communicate with ESS, EOS and CSS, in comparison to the
standard latency of Amazon Web Service Server (AWS-S), (red
dot line in the Figure). EOS outperforms ESS and CSS, it
achieves a decrease of 62.83% resulting in less RTT latency.
However, both ESS and CSS achieved a latency reduction by up
to 32.75% compared to MDC offloading solution [17].

Fig. 7. Cost overhead

This proves the concept of using DEO to offload FDR sub-
tasks to edge server is a better solution than offloading to the
cloud, due to the fact that, it sends less data to the cloud which
reduces network cost and bandwidth traffic.

Fig.7 shows the cost overhead of DEO obtained from using
MDP model to estimate the cost function as detailed in section
B. It shows the cost overhead occurred from running FD & FDR
sub-tasks locally on the MCCS_host and by using DEO scheme.
At the starting point, when we have only one nearby Offloadee
helping with the execution of FD & FDR, the cost overhead
increases by 24.2% compared to the local execution. When the
number of Offloadees increases, (i.e. >1 Offloadee), we
observed that DEO outperform the local execution, and the
offloading gain raised up steadily by 75.5% compared to the
local execution. Also, when running more intensive sub-tasks,
using DEO to execute FDR records a better offloading gain than
running FD, which shows the advantages of DEO when more
intensive sub-tasks are running on more Offloadee devices,
(here 4 sub-tasks running on an MCCS_host and up to 3
Offloadees). This proves that forming an edge solution is the
ultimate solution to reduce the network cost and bandwidth
traffic.

V. CONCLUSION & FUTURE WORK

The impact of connectivity between our local edge resource
network and the cloud is significant and depends on the location
of the MCCS_host. For example, if the Cloud server is only
accessible by cellular link, then the overheads will be 10x more
than if a Wi-Fi link is available to connect to the server. DEO
eliminate the extra traffic occurred from pushing a tremendous
amount of data to the cloud/edge server. DEO cost overhead is
very small, it achieves up to 75.5% reduction when we execute
more sub-tasks on 4 edge devices, which justifies that forming a
low cost local peer2peer network of nearby available
nodes/devices, (even with small number of 4 devices), is
promising and can reduce the RTT latency resulting in less
network congestion. Our future study on this thread will focus
on the granularity and partition of the sub-tasks so to maximise
the benefit from the Offloadees without having to run their
battery to the ground or increasing the local connectivity traffic
with them. However, having only a single Offloadee to help with
the FDR is not an option.

ACKNOWLEDGMENT

Gratitude to the University of Basra, and MOHESR
(Ministry of Higher Education & Scientific Research) for
sponsoring this work.

REFERENCES

[1] Saha, Sajeeb and Habib, Md Ahsan and Razzaque, Md Abdur, “Compute
intensive code offloading in mobile device cloud,” Region 10 Conference
(TENCON), 2016 IEEE, 2016.

[2] Elmannai, Wafa, and Khaled Elleithy. "Sensor-based assistive devices for
visually-impaired people: current status, challenges, and future
directions." Sensors 17.3 (2017): 565.

[3] Song, Chuang, et al. "Hierarchical Edge Cloud-based Traffic Offloading
Enabling Low-Latency in 5G Optical and Radio Network." Asia
Communications and Photonics Conference. Optical Society of America,
2017.

[4] Ali Al-ameri and Ihsan Alshahib Lami, “SCCOF: Smart Cooperative
Computation Offloading Framework for Mobile Cloud Computing

Services,”, in the 8th Annual International Conference: Big Data, Cloud
and Security, 2017.

[5] Dwivedi, Akhilesh, et al. "Internet of Things'(IoT's) Impact on Decision
Oriented Applications of Big Data Sentiment Analysis." 2018 3rd
International Conference on Internet of Things: Smart Innovation and
Usages (IoT-SIU). IEEE, 2018.

[6] Wei, Xiaojuan and Wang, Shangguang and Zhou, Ao and Xu, Jinliang
and Su, Sen and Kumar, Sathish and Yang, Fangchun, “MVR: An
architecture for computation offloading in mobile edge computing,”, in
the IEEE International Conference on Edge Computing, 2017.

[7] Cao, Bin, et al. "Intelligent Offloading in Multi-Access Edge Computing:
A State-of-the-Art Review and Framework." IEEE Communications
Magazine 57.3 (2019): 56-62.

[8] Xiao, Kaile, et al. "A Heuristic Algorithm Based on Resource
Requirements Forecasting for Server Placement in Edge
Computing." 2018 IEEE/ACM Symposium on Edge Computing (SEC).
IEEE, 2018.

[9] Calo, Seraphin B., et al. "Edge computing architecture for applying AI to
IoT." 2017 IEEE International Conference on Big Data (Big Data). IEEE,
2017.

[10] “Amazon Rekognition: Developer Guide” [Online]. Available: http://
docs.aws.amazon.com/rekognition/latest/dg/rekognition. [Accessed
January 2019].

[11] Mtibaa, Abderrahmen, Khaled A. Harras, and Afnan Fahim. "Towards
computational offloading in mobile device clouds." 2013 IEEE 5th

international conference on cloud computing technology and science.
Vol. 1. IEEE, 2013.

[12] Su, Wei-Tsung, Chiang-Sheng Liang, and Cheng-Yi Dai. "Secure
computation offloading based on social trust in mobile networks." 2014
Sixth International Conference on Ubiquitous and Future Networks
(ICUFN). IEEE, 2014.

[13] Shibin, D., and G. Jaspher W. Kathrine. "A comprehensive overview on
secure offloading in mobile cloud computing." 2017 4th International
Conference on Electronics and Communication Systems (ICECS). IEEE,
2017.

[14] “Nearby Connections API” [Online]. Available:
https://developers.google.com/nearby /connections/android/exchange-
data. [Accessed July 2018].

[15] Sirivianos, Michael, et al. "Dandelion: Cooperative Content Distribution
with Robust Incentives." USENIX Annual Technical Conference. Vol. 7.
2007.

[16] Goudarzi, Shidrokh, et al. "A hybrid intelligent model for network
selection in the industrial Internet of Things." Applied Soft Computing 74
(2019): 529-546.

[17] A. Mtibaa, M. A. Snober, A. Carelli, R. Beraldi and H. Alnuweiri,
"Collaborative mobile-to-mobile computation offloading," in
Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), 2014 International Conference on, 2014.

https://developers.google.com/nearby

CloudSummit19 notification for paper 24

C

CloudSummit19 <cloudsummit19@easychair.org>

Reply all|
Mon 24/06, 05:23

ALI AL-AMERI

Dear Ali,

Congratulations! Your paper 24 titled DEO: A Smart Dynamic Edge Offloading Scheme using

Processing Resources of Nearby Wireless Devices to Form an Edge Computing Engine has

been accepted by IEEE Cloud Summit 2019.

Please note that you must present at the conference before your paper can be published on

the conference's proceedings with IEEE Xplore. If the decision for your paper is “accept with

revision”, you should be preparing the final camera-ready version based on reviews’

comments below.

The conference program/schedule will be available July 2019. Registration is scheduled to

open on June 24, 2019. Registration website: https://ieeecloudcomputing.regfox.com/ieee-

cloud-summit-2019

IEEE Cloud Summit 2019

https://www.ieeecloudsummit.org

SUBMISSION: 24

TITLE: DEO: A Smart Dynamic Edge Offloading Scheme using Processing Resources of

Nearby Wireless Devices to Form an Edge Computing Engine

https://ieeecloudcomputing.regfox.com/ieee-cloud-summit-2019
https://ieeecloudcomputing.regfox.com/ieee-cloud-summit-2019
https://www.ieeecloudsummit.org/

	Ihsan LamDEO
	Paper Acceptance letter

