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Abstract— Edge computing reduces connectivity costs and 

network traffic congestion over cloud computing, by offering local 

resources (processing and storage) at one hop closer to the end-

users. I.e. it reduces the Round-Trip Time (RTT) for offloading 

part of the processing workload from end-nodes/devices to servers 

at the edge. However, edge servers are normally pre-setup as part 

of the overall computing resource infrastructure, which is tough 

to predict for mobile/IoT deployments. This paper introduces a 

smart Dynamic Edge Offloading scheme, (we named it DEO), that 

forms the “edge computing resource” on-the-go, as needed from 

nearby available devices in a cooperative sharing environment. 

This is especially necessary for hosting mobile/IoT applications 

traffic at crowded/urban situations, and, for example, when 

executing a processing intensive Mobile Cloud Computing Service 

(MCCS) on a Smartphone (SP). DEO implementation is achieved 

by using a short-range wireless connectivity between available 

cooperative end-devices, that will form the edge computing 

resource. DEO includes an intelligent cloud-based engine, that will 

facilitate the engagement of the edge network devices. For 

example, if the end-device is a SP running an MCCS, DEO will 

partition the processing of the MCCS into sub-tasks, that will be 

run in parallel on the newly formed “edge resource network” of 

other nearby devices. Our experiments prove that DEO reduces 

the RTT and cost overhead by 62.8% and 75.5%, when compared 

to offloading to a local edge server or a cloud-based server. 

Keywords—mobile cloud computing services, edge computing, 

offloading, parallel processing 

I. INTRODUCTION 

In 2017, 2 billion of SP users are using an estimation of 268 
billion MCCS, which represents around 90% of the total mobile 
traffic [1], the Global Mobile Data Traffic Forecast claimed that 
there will be around 50 billion connected SPs by 2020 [2]. This 
exponential growth in SP users has encourage MCCS 
developers to introduce more processing intensive services. Our 
proposed DEO experiments are based on SPs to demonstrate the 
prove of concept of this scheme. 

Edge computing solution did emerge to solve such issues by 
shifting the MCCS computation workload from servers in the 
cloud to servers near the edge. Thus, reducing both network 

latency and connectivity costs. That is, a one hop 
communication between the end-device and the server, to 
achieve low RTT latency and much reduced internet traffic, 
especially when adopted at various edge locations/clusters. 
Having the edge computation infrastructure is of course ideal for 
the ever-increasing deployment of IoT applications, (e.g. 
Vehicle or animal tracking, drones-based monitoring, e-health 
body sensor networks, smart video surveillance and smart 
homes), that requires intensive computations and activity based 
on machine/deep learning AI. Actually, recent studies did point 
out that current edge computing deployments are continually 
suffering from connectivity issues, due to over subscription to 
the wireless air interface spectrum, and so expectations that 5G 
network deployments from 2020 will elevate some of the issues 
for a while [3]. This means that an on-the-go solution to form an 
edge-resource when needed, is essential as well as having the 
pre-planned infrastructure-based edge computing servers that 
will always be exhausted. The main thinking behind the 
proposed DEO is to have the capability of establishing a local 
edge computing resource when and when needed, by forming a 
local network (via Wi-Fi, and Bluetooth) between available 
processing devices, (e.g. SPs, tablets, pc’s, and servers), in a 
cooperative sharing environment. That is, DEO overcomes the 
edge server availability/accessibility limitations, by a scheme 
that forms an edge computing resource to execute processing 
intensive MCCS on-the-go from cooperative nearby available 
devices.  DEO offloads the service sub-tasks from the 
MCCS_host, (a SP running the MCCS), to a local network of 
nearby devices, using low-cost peer2peer wireless connections 
between them, so to achieve low RTT latency and minimize the 
transmitted traffic. 

Fig.1 shows DEO end2end scheme. It shows the 
DEO_Controller, an intelligent engine hosted in the cloud to; (1) 
recruit cooperative end-devices and authenticate their 
availability when needed, (2) provide the MCCS_host with 
decisions on the best scenario to partition and offload the sub-
task, so to achieve low execution time and reduce the battery 
power consumption. As well as to reduce connectivity costs and 
network traffic congestion. 



 

Fig. 1. DEO scheme 

Fig.1 also shows the newly formed edge computing resource 
network (dotted circle in the diagram). When an MCCS_host 
decides that the MCCS needs offloading, it will ask 
DEO_Controller for decisions of the nearest available device, 
(we named it Offloadee), based on the device having, at that 
time; (1) the lowest load, (2) the highest processing resource 
(CPU MIPS/Memory/etc), (3) a good battery capacity, and (4) 
the best network connectivity to use. Then the MCCS_host will; 
(a) generates VMs (bundle them as APKs and JAR files) of all 
the partitioned sub-tasks, (b) establishes connectivity with all 
available devices, as advised by the DEO_Controller, and (c) 
offloads a portion of the VM’s to the Offloadees and retrieves 
the results. 

The novelty contributions of this paper are: 

• A unique scheme that forms the edge computing 
resource, on-the-go, from nearby devices and share the 
execution of the MCCS in parallel among them via 
short-range wireless connectivity. 

• The offloading between the devices on the newly 
formed edge network is done intelligently by an engine 
based in the cloud (no impact on the MCCS_host 
device). This engine recruits’ cooperative devices, 
(paid back by similar cooperation when needs it), and 
it monitors (processing capability, battery status, and 
availability) and authenticates (access, session keys 
and engagement status). 

The rest of this paper includes section II that summarizes the 
recent literature on edge computing solutions, while Section III 
presents the development of DEO. Section IV presents the 
experiments, results and analysis. Conclusions and future work 
are presented in section V. 

II. LITRATURE REVIEW OF EDGE COMPUTING SOLUTIONS 

Review of solutions that perform offloading to a centralised 
server in the cloud has been published in in our previous paper 

[4]. This review focuses on solutions that perform offloading the 
IoT/MCCS sub-tasks to pre-setup infrastructure of edge servers. 
DEO proposed a scheme that forms an edge computing resource 
to execute processing intensive MCCS on-the-go, from 
cooperative nearby available devices using low cost peer2peer 
connectivity. This is achieved by recruiting a group of available 
processing resources/devices nearby, in a local network to form 
a cooperative sharing environment using DEO_Controller 
engine. 

IoT deployments have increased the amount of data 
generated to the cloud; the amount of data hosted in 2018 is 
equal to the data gathered in all prior years [5]. This has 
necessitated that data-handling tasks are shifted to the edge 
nearer to the IoT sensors network. Running these services on 
cloud servers can have a negative impact on the offloading 
process, due to network cost and bandwidth traffic. Therefore, 
an advantage of edge computing is to provide resources in a 
close proximity, to end-devices so to reduce long RTT latency 
and eliminate the network congestion. A solution that facilitates 
offloading of intensive services from a SP to an edge computing 
server has introduced a model that provides the use of virtual 
resources in the edge servers [6]. It achieves this by shifting the 
service execution from a single SP to the edge servers 
automatically, by dividing a single task to 5 sub-tasks, using 0-
1 integer liner programming method. It marks the sub-tasks with 
a value of (0,1), where “0” stands for sub-tasks to run locally on 
the SP, such sub-tasks that access SP local features or input and 
output sub-tasks, while “1” stands for sub-tasks to run on edge 
server which has multiple virtual resources to handle the 
execution of the sub-tasks. This then followed by a “decision 
solver” engine to decide on which virtual resource to select for 
the incoming 5 sub-tasks, based on the virtual resource “current 
queue and completion time”. Experiments have affirmed that 
performing the execution at the edge servers can reduce the 
network cost and internet traffic. However, this model requires 
pre-setup infrastructure-based edge servers, which is difficult to 
predict for MCCS/IoT network type computation, and so we 
believe a more dynamic model that forms the edge computing 
resources on-the-go is needed. 

With the deployment of 5G networks, the future networks 
are expected to be intelligent systems that will have the power 
to “self-learn”, “self-plan” and “self-predict” to make intelligent 
decisions. Therefore, adaptation of intelligent AI/ML algorithms 
are needed in such environments to perform intelligent 
decisions. A solution that facilities the above issue has proposed 
some ML techniques to deploy and implement to make dynamic 
and intelligent decisions on-the-go, as well as to predict the 
available nearby device when offloading [7]. A good example 
of such techniques is Reinforcement Learning (RL), which 
learns from its own experience, it is inspired by behavioural state 
to make optimal decisions in a stochastic and complex 
environment. It is normally formulated as a Markov Decision 
Process (MDP), that provides a mathematical model to calculate 
state, action and reward functions, as to make intelligent 
decision making.  This technique is deployed in [8] to leverages 
offloading of intensive IoT applications sub-tasks to the edge 
computing servers. It achieves this by proposing two 
mechanisms to migrate and balance the load between servers. 
(1) “Knowledge-passing mechanism” to exchange information 



between servers, such as location, current time, data type and 
where data is stored. (2) “Markov mechanism” to predict the 
next server destination based on a historic algorithm, to calculate 
the best server to select, based on server location, probability 
factor, processing time, and server resources. We used MDP 
model to estimate the cost overhead of DEO in terms of 
processing time, battery power, latency, available bandwidth, 
and efficiency. The cost function has the advantage of being 
analytically well tractable since the expectation is additive over 
time and/or when more devices are available to cooperate and 
share their unused resources. DEO deploys DEO_Controller 
engine that profile and partition the tasks to sub-tasks and 
offload such sub-tasks to the corresponding end-devices. We 
shall deploy RL in DEO engine using Markov state, action and 
reward functions, to predict the next available nearby device to 
use, and to make intelligent decisions of what and where to 
offload, based on observing and learning from the experience of 
running a certain MCCS, (e.g. here we used Face detection & 
recognition). 

Tracking humans or animals with drones in crowd sensing 
scenarios like volcanos or disasters, are examples of nowadays 
IoT applications. These applications require machine learning 
and AI algorithms engines to analyse streams of audio, video 
and image data coming from many sensors. Such intelligent 
algorithms require a significant computational/processing 
resources that are not typically available at the edge, but rather 
available in large data centres in the cloud. An offloading 
solution that balance the computational workload between the 
available cloud and the edge resources has been proposed in [9]. 
It achieves this by shifting the training and testing phases of the 
workload to the cloud. I.e. the end-device uploads data, which 
are then labelled and tested by multiple ML algorithms, then, 
based on the chosen decision, the model is retrieved, sterilized 
and packed in a shared repository. Only the AI inference engine 
is positioned at the edge as a micro service that can be accessed 
through the shared repository. We believe that the concept of 
letting the cloud be responsible of the overall decision making 
in splitting the computation workload between the edge and the 
cloud is commendable. We shall deploy a similar concept in 
DEO, we used AWS services to perform the creation of the DB 
and recognition using AWS rekognition service [10], only the 
recognition results of the extracted faces are saved in a local DB 
shared repository. 

Different communication technologies may affect the 
offloading process and can lead to different trade-off between 
the computation and communication results. These 
technologies, (such as Wi-Fi, 3G, BT, etc), have different 
parameters in terms of bandwidth, latency and RTT. Hence, a 
proper analysis of the above need to be considered, to select the 
best communication type to optimize, when making the 
offloading decisions. A solution that leverages offloading sub-
tasks to cloud/nearby servers has proposed an emulation testbed 
to emulate the network conditions of existing communication 
technologies, to find the effect of such technologies when 
offloading [11]. It achieves this by manipulating 4 
communication technologies, (namely BT, Wi-Fi direct, Wi-Fi 
and 3G), that could be used to offload sub-tasks to cloud/nearby 
servers, using a traffic shaper. The traffic shaper is used to 
emulate network conditions by using Dummynet emulation tool 

to add a certain level of RTT, packet loss and bandwidth to 
reflect a real network condition. These technologies are 
examined while pushing intensive sub-tasks through the 
network between the MCCS_host and cloud/nearby servers. The 
experiments show that the power consumption of 
sending/receiving data claims that using BT can outperform Wi-
Fi and 3G by 25% and 44%. Also using Wi-Fi direct is a better 
solution compared to Wi-Fi and 3G, albeit Wi-Fi is still 
promising to use while offloading, if small RTT is introduced, 
which means offloading to nearby server using Wi-Fi can have 
better results than using Wi-Fi to offload to the cloud server. 
Nevertheless, 3G is yet to be the ultimate technology to be used. 
Being said that, to justify our implementation strategy and to 
prove the results, this solution as well as our analysis conducted 
in our previous paper [4], have affirmed us that a low-cost 
efficient communication technology has to be used, while 
offloading. DEO addresses this issue by deploying DEO_EDGE 
to leverage a local low-cost peer2peer connectivity, using 
(nearby API which combined BT and Wi-Fi p2p), resulting in a 
low RTT latency and less network congestion as detailed in 
section IV. 

Offloading and sharing the end-user sensitive data to the 
cloud or edge servers may cause privacy and security issues 
resulting in malicious activities. A solution that proposes to 
secure the data before offloading, has introduced a secure 
computation offloading model based on a social trust factors to 
select trustable offloadees [12]. It achieves this by: (1) “Social 
trust inference engine” that infer social trust from social relation 
between device A and B. I.e. device A initiate a minimum social 
trust factor, then device B is selected only if it meets the social 
trust factor. (2) “Nearby service broker” that uses task tracker to 
authenticate the process and select the trustable offloadees. It is 
consisting of 2 sub-models as follow: Community Trust 
Extractor (CTE), to extract factors from social networks such as 
social distance or number of common neighbours, and 
Community Trust Inference (CTI), to infer the social trust 
between 2 users in the social networks, such as Google and FB. 
Similarly, the work in [13], listed some techniques that can be 
implemented to secure data before sharing it with cloud/edge 
servers. These are steganography, trusted computing techniques, 
hardware-based secure execution and homomorphic encryption. 
DEO does not claim to propose security solutions while 
offloading, as being not the focus of this research. However, 
DEO provides a secure implementation indirectly by 
introducing the following: (1) a DEO_Controller engine that 
monitors and approves the nearby end-devices for qualifying as 
being secure and fit before offloading. (2) Partitions the tasks 
and distributes the sub-tasks among a variety of nearby edge 
devices, so the shared data cannot be retrieved or invoked as a 
package, and so stealing the sub-task will not impact the overall 
security of the offloading. (3) DEO uses AWS rekognition 
service, which is a highly secure service that uses access and 
secret keys to authenticate the nearby devices. (4) DEO uses 
peer2peer API protocol [14] to communicate the nearby devices, 
which is a secure middleware that provides fully encrypted P2P 
data transfer between nearby edge devices. 

III. DEO SCHEME 

DEO implementation system consists of two distinct 
engines, (namely: DEO_EDGE & DEO_Controller), which 



interact together to perform efficient and intelligent offloading 
decisions. 

A. DEO_EDGE 

This engine forms the edge computing resource that will 
execute the MCCS and is led by the SP that is hosting the MCCS 
(named MCCS_host here). Any participating device in helping 
to run the sub-tasks is named the Offloadee. The main functions 
of DEO_EDGE are: (1) the MCCS_host will generate VMs 
(bundle them as APKs and JAR files) of all the partitioned sub-
tasks, based on the instructions provided by DEO_Controller in 
the pre-processing stage. (2) The MCCS_host will establish 
connectivity with all available Offloadees as advised by the 
DEO_Controller engine. Note that the connectivity will be 
wireless, (Wi-Fi, BT and p2p). (3) The MCCS_host will offload 
the VM’s to the Offloadees and communicate the results from 
this process appropriately, as well as the MCCS_host will also 
be executing its own share of the sub-tasks as and when it is not 
busy with the other sub-tasks. (4) When the MCCS execution is 
completed, a summary record of this experience is feedback to 
DEO_Controller engine, to train and update it for future 
execution if needed by other MCCS_hosts. Each of these steps 
are detailed as part of the experiments section in IV.C. 

B. DEO_Controller 

This engine is placed in the cloud, to: (1) identify and recruit 
suitable end-devices that can be used when needed by 
DEO_EDGE. This process is continuous, and we envisage that 
such devices, as a principle, are SP’s that are willing to 
contribute to help other SP’s when running demanding MCCS. 
(2) Perform profiling and partitioning of the MCCS, if not 
already done in a previous request, when requested by the 
MCCS_host. (3) Provide a list of potential available SPs/devices 
near the location of the MCCS_host together with their 
capability, and advice the MCCS_host with the profiling and 
partitioning process. Note that the choice of having the profiling 
and partitioning tasks of the MCCS in the cloud was to save 
battery power of the MCCS_host, and source knowledge of the 
MCCS provided by the developer is more accessible in the 
cloud. DEO_Controller engine has the power to “self-learn”, 
“self-plan” and “self-predict” to make intelligent offloading 
decisions. We used MDP model to estimate the cost overhead of 
DEO in terms of processing time, battery power, latency, 
available bandwidth, and efficiency. The cost function has the 
advantage of being analytically well tractable since the 
expectation is additive over time and/or when more devices are 
available to cooperate and share their unused resources. We 
shall deploy a simple KNN algorithm to find the nearest end-
device to select, and a Markov state, action and reward functions 
to predict the next available nearby device to use that has the 
lowest load and the highest resources, based on observing and 
learning from the experience of running FDR. Being said that, 
we investigated some of the intelligent AI/ML algorithms that 
could be deployed and implemented in DEO_Controller. (1) 
Reinforcement Learning (RL), it learns from its own experience, 
it inspires by behavioural state to make optimal decisions in a 
complex environment. It is normally formulated as an MDP, and 
Genetic Algorithms (GA) to decide on what tasks to offload. (2) 
Supervised/Unsupervised Learning (SL/UR), SL learns from 
training input data set, such as Support Vector Machine (SVM), 
and Support Vector Regression (SVR) algorithms. In particular 

UL, learns from unlabelled data, it tries to find hidden attributes 
and data structure to achieve prediction and intelligent decisions, 
such as K-means. It clusters a group of edge servers as possible 
offloading targets to help with the execution. (3) Deep Learning 
(DL), it extracts features from massive data to predict and make 
decisions automatically. These features are learned dynamically 
from data without manual setup. DL can be deployed in the edge 
servers in an offline manner to train and test the data, then it 
provides inference platform to predict and make intelligent 
decisions. 

IV. EXPIERMENTS, RESULTS & ANALYSIS 

The following experiment scenarios is used to prove that 
DEO can provide an on-the-go (dynamic) edge resource from 
available nearby devices, and will perform as good as, or better 
than, a structured pre-setup edge computing server. The details 
of the implementation of DEO_Controller engine will be 
documented elsewhere as being not the focus of this paper. 

A. MCCS Choice: Face Detection (FD) & Recognition (FDR) 

FDR is chosen to demonstrate the computational complexity 
and the benefits of offloading, (typically used by police or at an 
airport mobile search activities). It involves a variety of complex 
tasks including face detection, feature extraction (we named it 
here FD) and recognition (we named it here FDR). We 
developed FDR using Android studio platform and Dlib library, 
which is an open source library for image detection and 
recognition. It obtains a face bounding box using (x,y) 
coordinators of the face in the image, and then it detects and 
draws 68 (x,y) coordinators of the face, and finally, it extracts 
the face features. Asysnc class is basically used to run the heavy 
part of FDR algorithm on another thread, so no pressure on the 
main thread that is also handling the Graphic user interface. We 
used the mface.train function to train the algorithm to perform 
FDR. Then we called the recognizeAsync function to execute 
the algorithm. Full details about the specifications of the 
scenarios and experimental devices are illustrated in section C. 

As shown in Fig.2, the main GUI of FDR contains three 
main buttons which are Offloader, Offloadee and server. The 
Offloader, (which represents MCCS_host), button is to specify 
whether to run the sub-tasks locally on MCCS_host or remotely 
on Offloadees. It shows a drop-down list of Offloadees between 
“(0-3)”, (we used up to 4 devices in this experiment, (note that 
the maximum number of devices to be used is 7 because the BT 
protocol only allows 7 actual devices to connect to one master 
node [15])). The “(0)” means the sub-task runs locally on the 
MCCS_host, while “(1-3)” specify the number of Offloadees. 
The Offloadee button is to represent the participated Offloadees. 

 

Fig. 2. Screenshots of running FDR 



The server button is for running the sub-tasks remotely on 
the server, (we used 2 servers in this experiment, the first one is 
a cloud AWS EC2 server, and the second is a local edge WAMP 
server), it requires a server IP address to start the connection. We 
developed a simple algorithm to distribute the images among the 
Offloadees and the servers. Firstly, we divide the number of 
images (n) equally among the total devices. After that we find 
the remaining number of images, if the remaining images are 
equal to “0”, then the algorithm starts distributing the images. If 
the remaining images are > “0” then we distribute the remaining 
images one by one to the Offloadees. (For example, if the 
number of connected devices = 4, number of images = 10, then 
10/4, so initially each device gets 2 images, then for the 
remaining 2 images, it assigns one by one to the devices, so 
MCCS_host = 2, offloadee1 = 3, offloadee2 = 3, offloadee3 = 2 
and so on). We used a third-party tool (AWS rekognition 
service) that uses storage-based API operations to create the DB, 
which is needed for the recognition sub-task. It gets the images 
from FDR local repository root, then we call Detectface request, 
callFaceDetails, and Detectfeatures functions to build a client-
side index. 

B. Cost Model 

DEO uses a simple cost estimator model based on MDP 
model, to calculate the cost overhead of our solution [16]. The 
cost function has the advantage of being analytically well 
tractable, since the expectation is additive over time and/or when 
more devices are available to cooperate and share their unused 
resources. The aim of using MDP model is to normalize the cost 
equation, and to combine the arbitrary of different unites and 
scales. Let I denote a set of tasks = {i1,i2,….in}, let J denote a set 
of devices = {j1,j2,……jm}. To define the cost function of task in 
running on devices jm, we calculate the cost function as: 

𝐶𝑜𝑠𝑡(𝐶) = ∑ (𝑃𝑖,𝑗 + 𝑇𝑖,𝑗 + 𝐿𝑖,𝑗 + 𝐷𝑗 + 𝐵𝑗 + 𝐸𝑗)
𝑖 𝜖 𝑖𝑛

𝑗 𝜖 𝑗𝑚
    (1) 

Where, P(i,j) is the battery power cost of processing task i on 
device j, T(i,j) is the time for processing task i on device j, L(i,j) is 
the round trip time latency between 2 devices, D(j) is the 
available data rate at device j, B(j) is the available bandwidth 
available at device j, and E(j) is the efficiency of device j based 
on the CPU load. Since we normalized the cost equation, the 
units of response time, latency and power consumption will not 
affect the trade-off. We define a random weight factor (W) 
between {1,6}, that represents the probabilistic relative 
significance of power consumption, latency, response time, 
bandwidth, data rate and efficiency, and it is determined by: 

                 𝑊𝑃 =
𝑤𝑝

𝑤𝑝+𝑤𝑡+𝑤𝑙+𝑤𝑑+𝑤𝑏+𝑤𝑒
                              (2) 

Considering that P is the highest priority in our 
implementation, followed closely by E and T respectively, they 
are weighted as 6, 5.5 and 5 scores being near the top of the 
scale. For D and B, they are regarded as middle priority due to 
heavily dependent on the available nearby devices and the 
available connectivity. So, the impact will not strongly influence 
the P, E and T which are the main objectives for the offloading, 
and both D and B score is 3. The remaining L scores 2 
considering it is the least priority when compared with other 
weightings. So, we calculate the cost function as: 

= ∑ (𝑤𝑝 × 𝑃𝑖,𝑗 + 𝑤𝑡 × 𝑇𝑖,𝑗 + 𝑤𝑙 × 𝐿𝑖,𝑗 + 𝑤𝑑 × 𝐷𝑗 +
𝑖 𝜖 𝑖𝑛

𝑗 𝜖 𝑗𝑚

𝑤𝑏 × 𝐵𝑗 + 𝑤𝑒 × 𝐸𝑗)                                                                (3) 

C. Expiermental Scenarios 

In this section, the various scenarios for the experiments that 
has been done to illustrate the overhead of forming the edge 
resource are described. The aim of these scenarios is to examine 
the benefit of DEO when offloading, in terms of computation 
time, battery power consumption and wireless connectivity 
costs, when FDR sub-tasks are executed by various devices 
together with the MCCS_host. These scenarios are referred as 
Edge Server Scenario (ESS), Edge Offloadees Scenario (EOS) 
and Cloud Server Scenario (CSS) in this paper. 

a)  The MCCS_host Offloads FDR Sub-tasks to ESS: In 

this scenario, we created a WAMPSERVER 3.1.0, which acts 

as a local nearby edge server. Both MCCS-host and the server 

are connected through an IP address. If the decision is to run 

the sub-tasks on ESS, the decision engine triggers the 

distribution algorithm to partition the images between the 

MCCS_host and the server. The MCCS_host generates a 

serializable interface and decides on the serialized sub-tasks 

and the images to be offloaded. Then it invokes the remote 

manager, to connect to the server using IP address and post API 

and offload the images in parallel. The edge server waits and 

listens to any incoming sub-tasks, it runs the requested sub-

tasks, records the time using timestamps, converts it to JSON 

format, and sends the results back to the MCCS_host, as will be 

stated later in section D. 

b) The MCCS_host Offloads FDR Sub-tasks to EOS: In 

this scenario, we performed offloading to cooperative nearby 

edge-devices on-the-go. We used one MCCS_host and a 

maximum number of 3 end-Offloadees, full specification of the 

conducted devices used, are shown in Table I. All the devices 

are connecting through nearby API which is a peer-to-peer 

networking API that allows applications to connect, share, and 

exchange data with each other in order to communicate over a 

local area network. We used nearby connection type since it 

offers unlimited payload to be shared, and it supports sensitive 

data by encrypting the data for secure payload exchange. We 

defined 5 classes to establish the communication between edge 

Offloadees, these are Start Discovery (), Start Advertising (), 

Endpoint Discovery Call back (), Request Connection (), and 

Payload Call back (). When the device is registered itself as an 

Offloadee, the MCCS_host starts accepting incoming 

connections, (the number of incoming connections is equall to 

the number of Offloadees). 

TABLE I.  EOS-EXPIERMENTAL SPEC FOR (MCCS_HOST & OFFLOADEES) 

Devices used 
Devices specification 

CPU RAM OS Battery 

Samsung Sm-T710 1.3 GHz 3 GB Android 7.0 4000 mAh 

Lenovo TB-7304F 1.3 GHz 1 GB Android 7.0 3500 mAh 

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh 

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh 



When we select more than “0” in the drop-down list, the 
MCCS_host starts advertising itself to accept incoming 
connections from nearby Offloadees. The Offloadees then 
discover the MCCS_host and send a request to connect. The 
MCCS_host accepts the connection and adds the incoming 
Offloadee to the connected devices list. Then the connection is 
established, and devices are ready to exchange images between 
them. We developed a simple algorithm to distribute the images 
among Offloadees explained in section A. I.e. if we have 20 
images to run, then each device executes 5 images in parallel 
and performs the required sub-tasks for the images, then sends 
the results back to the MCCS_host. The Offloadees wait and 
listen for any incoming sub-tasks, when the devices receive the 
images, they run the grayscale, face detection and feature 
extraction sub-tasks, record the time using timestamps and send 
the results back to the MCCS_host. A total of 100 images to 
perform offloading between a variety of edge end-devices are 
used. The images are set to have the same resolution (700X700), 
and have a maximum size of 300 KB, and tests are repeated 5 
times to examine stable and unstable network channels when 
offloading. The results are calculated (an average of 5 runs) in 
terms of computation time, battery power consumption, 
communication saving, and offloading gain, as illustrated in 
section D. 

c) The MCCS_host Offloads FDR Sub-tasks to CSS: In 

this scenario, we created a server in the cloud using Amazon 

AWS services, namely t2.micro Amazon Linux 2 AMI EC2 

server. We created the credentials (secret, access, and IAM 

keys) to authenticate the server with FDR, so it connects and 

pushes images to the cloud server. We used FileZilla and Putty 

tools to install and migrate the necessary PHP files to the server. 

We created an S3 bucket to save the offloaded images if needed 

for future execution and/or to train DEO_Controller engine. If 

the decision is to run the sub-tasks on the server, the 

MCCS_host connects to the server and starts to offload the 

images through an IP address and POST API. The server waits 

and listens to any incoming sub-tasks, it runs the requested sub-

tasks when receives the images, records the time, converts it to 

JSON format, and sends the results back to the MCCS_host, as 

will be stated later in section D. 

 

 

Fig. 3. Processing time of FD 

 

Fig. 4. Processing time of FDR 

D. Results & Discussion 

This section presents all the results achieved from the 
conducted various experiments, for the scenarios we designed to 
illustrate the concept of DEO solution using MDP model.  

Fig.3 shows the processing time of executing FD for ESS, 
EOS and CSS we described in section 4.3. Offloading to ESS 
and CSS has reduced the burden on the MCCS_host by 83.4% 
due to their unlimited resource capability. Note that the results 
are testimony that having an edge server is the correct decision, 
since it will be less overhead when communication traffic is 
taken into consideration. It also clear that offloading to a single 
Offloadee is too costly with an increase of the task by 14.3% due 
to the overhead not meeting the crossover point of being 
advantageous. However, offloading to >1 Offloadee has 
significantly improved the MCCS_host resource capability, 
(21.3% & 40.2% for 2 & 3 Offloadees respectively). 

Fig.4 shows the processing time when running FDR for ESS, 
EOS and CSS. It shows an increase of the complexity of the FD, 
by adding the recognition sub-task with the DB. This highlights 
the importance of DEO, where the processing time became liner 
for all ESS, EOS and CSS. This means that the overall cost of 
DEO is much less than having the offloading done to the cloud, 
without the network traffic caused by transporting the data to the 
cloud. 

 

Fig. 5. Battery power consumption of FDR 



 

Fig. 6. RTT latency 

For 20 images with 4 edge end-devices, we achieved 10.13% 
in comparison to running the sub-tasks locally on the 
MCCS_host, while 12.1% for the CSS scenario, which indicates 
the DEO will outperform offloading to the cloud solution when 
more intensive sub-tasks are executed on more participated edge 
end-devices. 

The battery power consumption measured when executing 
FDR for ESS, EOS, and CSS are shown in Fig.5, it clearly shows 
that same saving pattern is achieved with computation 
complexity. The behavioural trend we observed is, when only 2 
nearby Offloadees are executing the FDR, the battery power 
consumption cost increased by 19.52%. However, when the 
number of Offloadees increases in EOS, we record a power 
saving of 28.8% for 4 Offloadees running FDR in parallel, 
which is almost similar with ESS and CSS which record 31.8% 
power saving. 

Fig.6 shows the RTT latency when the MCCS_host 
communicate with ESS, EOS and CSS, in comparison to the 
standard latency of Amazon Web Service Server (AWS-S), (red 
dot line in the Figure). EOS outperforms ESS and CSS, it 
achieves a decrease of 62.83% resulting in less RTT latency. 
However, both ESS and CSS achieved a latency reduction by up 
to 32.75% compared to MDC offloading solution [17]. 

 

Fig. 7. Cost overhead 

This proves the concept of using DEO to offload FDR sub-
tasks to edge server is a better solution than offloading to the 
cloud, due to the fact that, it sends less data to the cloud which 
reduces network cost and bandwidth traffic. 

Fig.7 shows the cost overhead of DEO obtained from using 
MDP model to estimate the cost function as detailed in section 
B. It shows the cost overhead occurred from running FD & FDR 
sub-tasks locally on the MCCS_host and by using DEO scheme. 
At the starting point, when we have only one nearby Offloadee 
helping with the execution of FD & FDR, the cost overhead 
increases by 24.2% compared to the local execution. When the 
number of Offloadees increases, (i.e. >1 Offloadee), we 
observed that DEO outperform the local execution, and the 
offloading gain raised up steadily by 75.5% compared to the 
local execution. Also, when running more intensive sub-tasks, 
using DEO to execute FDR records a better offloading gain than 
running FD, which shows the advantages of DEO when more 
intensive sub-tasks are running on more Offloadee devices, 
(here 4 sub-tasks running on an MCCS_host and up to 3 
Offloadees). This proves that forming an edge solution is the 
ultimate solution to reduce the network cost and bandwidth 
traffic. 

V. CONCLUSION & FUTURE WORK 

The impact of connectivity between our local edge resource 
network and the cloud is significant and depends on the location 
of the MCCS_host. For example, if the Cloud server is only 
accessible by cellular link, then the overheads will be 10x more 
than if a Wi-Fi link is available to connect to the server. DEO 
eliminate the extra traffic occurred from pushing a tremendous 
amount of data to the cloud/edge server. DEO cost overhead is 
very small, it achieves up to 75.5% reduction when we execute 
more sub-tasks on 4 edge devices, which justifies that forming a 
low cost local peer2peer network of nearby available 
nodes/devices, (even with small number of 4 devices), is 
promising and can reduce the RTT latency resulting in less 
network congestion. Our future study on this thread will focus 
on the granularity and partition of the sub-tasks so to maximise 
the benefit from the Offloadees without having to run their 
battery to the ground or increasing the local connectivity traffic 
with them. However, having only a single Offloadee to help with 
the FDR is not an option.  
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