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Abstract—In this paper, we present our work towards scene
understanding based on modeling the scene prior to under-
standing its content. We describe the environment representation
model used, the Stixel World, and its benefits for compact scene
representation. We show our preliminary results of its application
in a diverse environment and the limitations reached in our ex-
periments using imaging systems. We argue that this method has
been developed in an ideal scenario and does not generalise well
to uncommon changes in the environment. We also found that this
method is sensitive to the quality of the stereo rectification and the
calibration of the optics, among other parameters, which makes it
time-consuming and delicate to prepare in real-time applications.
We think that pixel-wise semantic segmentation techniques can
address some of the shortcomings of the concept presented in a
theoretical discussion.

Index Terms—Stixel, stereo, calibration, scene understanding,
semantic segmentation.

I. INTRODUCTION

Autonomous driving, for any type of vehicle, is a well
established notion and has guided research objectives in the
past decade. Combined with progress in the supporting tech-
nologies, it led to a rapid expansion in the development of
self-driving cars and driving assistance systems, especially in
the last couple of years. Manufacturers have announced their
releases for the next decade.

To improve the autonomy of cars, we aim to provide them
with a good level of intelligence in terms of analysing and
understanding their surroundings. This intelligence mainly
involves the capacity of automatic and autonomous inter-
pretation of scenes, both geometric and semantic, including
both static and dynamic objects. Multiple sensors of different
modalities, such as cameras, radars and inertial navigation
systems can be used. Exploiting these exteroceptive and pro-
prioceptive sensors in analysing the scene and internal vehicle
data to improve vehicle situation awareness and decision-
making in all conditions is crucial.

In our research we focus on the information we can retrieve
from a pair of RGB cameras. In visual scene analysis, rough
scene segmentation is usually done by first dividing the image

into sub-regions then defining appropriate features for the
desired classes of objects. This implies that the objects are
detected before the feature extraction is performed to classify
them. It implicitly means that semantic understanding is based
on geometric understanding. Earlier, these two interpretations
were separate and successive problems. For example, a well
used method for object representation is the Stixel World
[1], principally chosen for its robustness, compactness and
precision in depicting the content it detected in stereo-images.
After the return of deep learning in 2012, semantic information
was consecutively added to the geometric model [2] [3]. In
the last few years, many object detection approaches were
developed combining the object recognition aspect with the
sub-regions definition, and the convolutional neural network
features extractor; for instance the R-CNN [4] to its recent
evolution, the Mask R-CNN [5]. With deconvolutional neural
networks [6], pixel-wise semantic segmentation [7] can be
used for object recognition, without needing a classic object
detector. Nowadays, it is common to encounter the fusion of
both detection and segmentation problems [8] [9], including
using the Stixel World approach. However, its usage seems to
reduce to the advantage of deep learning techniques.

Following this trend, our research objective is to combine
detection and recognition to provide scene understanding for
self-driving cars. In order to do so, we implement, on a car, a
recent version of the Stixel approach - the work of Wieszok
et al. [10]. We present our work to adapt it and the issues
we encountered. We discuss reorienting our research towards
pixel-wise semantic segmentation using deep learning instead
of the Stixel World, despite evident and appropriate qualities
for environment representation in autonomous vehicles appli-
cations.

The rest of the paper is divided as follows: we present our
implementation’s choices, our experiment and the algorithm
used in section II. We then show our preliminary results and
discuss the techniques used in section III, to conclude in
section IV.



II. CASE STUDY

The work of Wieszok et al. [10], an extension to the
original work of Benenson et al. [11], used rectified pairs
of images from the KITTI dataset [12] along with the cor-
responding calibration parameters. To adapt it to real-time
image acquisition, we made equipment choices and merged
the existent method with the image acquisition and stereo-
images rectification steps.

A. The Stixel World - algorithm

The Stixel World, originally presented by Badino et al. [1],
aims to represent the free-space ahead of the vehicle in the
form of sticks. The assumption is made that each obstacle
can be approximated by vertical surfaces above the ground.
Each stick, with its height and its distance from the ego-
vehicle, is called a “stixel” (Fig.1). This method [1] computes
stixels from processing the dense disparity map obtained from
Semi-Global Matching [13]. As depth maps computation was
time and resource consuming, it was replaced by Benenson
et al. [11] by a matching cost volume (MCV) computation
coupled with processing of the V-disparity image, introduced
by Labayrade [14]. This results in very similar performances
and a faster response time.

We apply a recent adaptation by Wieszok et al. [10] in our
work, as depicted in Fig. 1. The algorithm computes the MCV
as the absolute differences over the colour channels between
the left and right rectified images, for every pixel and for every
disparity value possible. Therefore, a low cost region should
be observed at the correct disparity.

The first step retrieves the horizon line and estimates the
ground plane by projecting MCV to the V-disparity image.
The probability of the pixel belonging to the road and an
Online Learned Colour Model (OLCM) [15] increases the
contribution of the road in the V-disparity computation, and
Iteratively Reweighted Least Square (IRLS) is used for the
line estimation [10].

The second step estimates the base of the stixels, i.e. the
distance to the nearest obstacle and the limit of the free-space
on the ground plane previously computed. It projects MCV to
the U-disparity domain and finds the low values in the stixel
cost (Fig. 1d). The latter also uses the road probability and
the OLCM.

The third and final step is the stixels’ height estimation,
based on the likelihood that each pixel above the ground
belongs to the same estimated stixel’s disparity. This step
includes a colour membership function [10].

B. Set-Up, Implementation and Experiment

For these tests, we chose the equipment for a stereo-vision
system allowing us to focus on the distance range of interest:
from 2 to 50 m ahead. The specifications are:

• RGB cameras: CMOS sensor, 2448 x 2048 resolution, 38
FPS, 3.45 µm x 3.45 µm, global shutter, external trigger
available, C/CS-mount compatibility, 2/3-in format.

• Lenses: focal length 8 mm, F 2.4-16, locked focus, 2/3-in
format, C-mount.

The stereo set-up was decided considering the overlap
required for the algorithm used and the advice from Gallup
et al. [16]; we experimented with baselines from 40 cm to 55
cm. We use a software trigger for the image acquisition and
perform the calibration using the AMCC toolbox provided by
Michael Warren [17]. We implement the stereo-rectification
from OpenCV [18], due to its capability of providing real-
time performance, which is necessary for the application.

Equipped with the imaging system depicted above, we
drove over a couple of miles taking a set of 271 stereo
images. A calibration of the equipment was performed for
each experiment. The environment is a set of flat parking lots
and slightly sloped roads. The objects contained in the images
are common for a driving scene: pedestrians, vehicles, poles,
road signs, buildings, and speed breakers.

III. RESULTS AND DISCUSSION

A. Analysis of the Stixel approach

The Stixel World was primarily chosen for its superiority
in some aspects required for autonomous vehicle navigation
[1]. The necessary obstacles’ information - distance, location
and height - is completely retained in a compact format. The
obstacles are also detected and estimated precisely within the
first 10 m of distance, between 0.5 and 1 m of error [10] [19].

However, error tends to increase beyond 20 m. Moreover,
the concept comes with two shortcomings. The first is that the
detected obstacles are only the first ones surrounding the ego-
vehicle, as the primary objective of the original method is to
delimit the free-space. Therefore, as accurate as the detection
can get, it is not exhaustive. The second is that the stixels’
width is predefined to an arbitrary value, usually 5 pixels for
a trade-off between precision and computation time. It means
that the stixels do not adapt to the boundary of the objects on
the horizontal axis. While efforts have been made to address
the former [20], to our knowledge none has been made to
address the latter.

Another strong characteristic of the original Stixel World is
its robustness as their method was shown as “quite parameter-
insensitive” [20]. Yet, our results using the modified method
[10] show that the addition of the numerous parameters
brought instability. The performance of each step is dependent
on the previous one (Fig. 1), which is not desirable as it
increases the probability of failure. We also show that it cannot
be applied in every scenario due to the conditions it requires
as discussed below.

The surrounding environment is assumed to be planar as
the horizon line is projected on a single line of the original
image. As shown in Fig. 2c, it leads to incorrect estimation:
on the left side of the image, the horizon was estimated under
the base of the vehicles, and was estimated over the horizon
on the right side. In Fig. 2d, the road is sloping downwards,
the obstacles are estimated higher than they actually are as
the algorithm searches the base of the obstacles on a planar
ground plane.

The stereo-vision system has to be parallel to the horizon.
Any speed breaker creates a disruption in the obstacles’



Fig. 1. Pipeline of the used method in this paper. What we modified from [10] is in dashed boxes, and what we have kept is within continuous lines. IL and
IR are respectively the intensity in left and right images, u a given column, v a given row and d a given disparity. The image a) is the left image with the
estimated horizon line, in red, and ground plane, in yellow; b) is the corresponding V-disparity and line estimation, c) is the estimated stixels’ bases; d) the
corresponding stixel cost and e) is the stixels’ height estimation. Yellow are close obstacles, red are far. The red arrows represent performance’s influences.

estimation. In Fig. 2e, the effects are shown while going up.
The sensitivity to the calibration was already mentioned in
the evaluation of the stixels made by Pfeiffer et al. [19] that
showed “issues concerning our calibration and stereo processes
that deserve dedicated consideration”. Further investigation
would also be required to study the impact of the use of the
software trigger. Nonetheless, with the MCV being computed
line by line, even an error of two lines in the rectification,
which is usually acceptable, adds imprecision and leads to
incorrect ground plane estimation and by proxy, to a wrong
stixels estimation.

In an ideal scenario, like in the KITTI dataset and in Fig.
2a and b, all these conditions are met. However, errors leading
to missed obstacles can still occur (Fig. 1e) when the lowest
value picked in the stixel cost (Fig. 1d) is incorrect. This is due
to the smoothness term parameter, which prevents incoherent
jumps in depth.

Excluding the above mentioned environmental requirements
and cameras’ calibration, the list of parameters include: the
parameters of the IRLS approximation technique for the line
estimation in step 1; the road probability mask and the OLCM;
the smoothness terms in steps 2 and 3 to balance the object
and ground cost, and the membership function respectively;
the scale factor; the colour membership function; the default
height estimation; etc.

In addition, the computation time was 25 Hz in the work
of Benenson et al. [11] against 15 Hz for the original method
[1]. The method used here reduces the algorithm’s speed. For
example, the line estimation in the V-disparity went from 5.9
ms to 17.6 ms in one case. Due to the height of the images, the
height estimation alone took 37.8 seconds on average, which
is not appropriate for real-time applications. The reason why
this method did not use a disparity map was for the purpose
of speed. This is now nullified and the results do not justify
its usage.

Indeed, in the majority of our images, the stixels estimation
led to missed obstacles. Considering the conditions to the
stixels computation and all the parameters, we believe this
version of the Stixel World lacks stability and robustness

and that the algorithm should generalise to more environment
types. A self-driving car application requires higher detection
rate and a more flexible approach.

B. Using Semantic Segmentation

The main objective of this research was to have an aware-
ness of the surroundings using stixels, which included a ge-
ometrical and semantic understanding of the scene. However,
with recent deep learning techniques, it is not necessary to
have a geometric model of the objects to understand and
recognise it, sequentially. Subsequently, we tested the semantic
segmentation network called SegNet [7] on our dataset. Due to
computation restrictions, we trained the network on a binary
classification task - a vehicle detector - rather than on the
original 11 classes. We trained the network on the KITTI
dataset [12], the CamVid dataset [21] and the Cityscapes
dataset [22].

Although it required training, inference with SegNet is faster
than the stixels computation time. Our preliminary results are
shown in the bottom row of Fig. 2. All the vehicles are
detected, which was not the case with the Stixel approach.
The detection is more exhaustive and the partially occluded
objects are detected, not only the nearest ones. The network
offers more flexibility: changes in the scene content have less
impact on the results, making it more stable and robust in more
diverse and uncommon driving scenarios. However, pixel-wise
semantic segmentation does not compress the information like
in the Stixel approach.

With SegNet, thanks to a pixel-wise segmentation, the
objects are separated at the pixel level semantically and is
object specific. That is not possible with the stixels as their
width is fixed and retrieving boundaries would require post-
processing. Although, whether Stixel World or SegNet is used,
post-processing is necessary to retrieve instance information.
Obviously, the two techniques are made for different purposes.
So distance information is included in the Stixel approach but
not with SegNet. Inversely, the object classification is covered
with SegNet but not with the stixels computation on its own.



Fig. 2. Examples in applying the Stixel World (top row) and a comparison with semantic Segmentation - SegNet (bottom row). Cases of success of the Stixel
approach are a) and b) while c), d) and e) are cases of failure. All the images come from the same experiment, with the same parameter settings. Error on
the left of the images comes from the computation of the MCV, which creates a high cost zone in the Stixel Cost (Fig. 1d) on the left.

IV. CONCLUSION AND FUTURE WORK

We presented an implementation of the Stixel World as
a first step towards scene understanding. Its implementation
comes with many parameters to consider, despite the appro-
priate theoretical environment representation aspects. In future
work, using pixel-wise semantic segmentation, the objects
could be semantically identified before using a grouping
technique to detect and localise each instance.
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[8] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous
Detection and Segmentation,” in Computer Vision - ECCV 2014. ECCV
2014. Lecture Notes in Computer Science, vol 8695. Springer, Cham,
2014, pp. 297–312.

[9] L. Chen, Z. Yang, J. Ma, and Z. Luo, “Driving Scene Perception
Network: Real-time Joint Detection, Depth Estimation and Semantic
Segmentation,” 2018.

[10] Z. Wieszok, N. Aouf, O. Kechagias-Stamatis, and L. Chermak, “Stixel
Based Scene Understanding for Autonomous Vehicles,” in 2017 IEEE
14th International Conference on Networking, Sensing and Control
(ICNSC). IEEE, 2017, pp. 43–48.

[11] R. Benenson, R. Timofte, and L. Van Gool, “Stixels estimation without
depth map computation,” in 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops). IEEE, 2011, pp. 2010–
2017.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[13] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-
Global Matching and Mutual Information,” in 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 2. IEEE, 2005, pp. 807–814.

[14] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection
in stereovision on non flat road geometry through ”v-disparity” repre-
sentation,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE,
2002, pp. 646–651.

[15] W. P. Sanberg, G. Dubbelman, and P. H. N. De With, “Extending the
Stixel World with online self-supervised color modeling for road-versus-
obstacle segmentation,” in 2014 17th IEEE International Conference on
Intelligent Transportation Systems, ITSC 2014, 2014, pp. 1400–1407.

[16] D. Gallup, J.-M. Frahm, P. Mordohai, and M. Pollefeys, “Variable
baseline/resolution stereo,” in 2008 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[17] M. Warren, D. McKinnon, and B. Upcroft, “Online calibration of stereo
rigs for long-term autonomy,” in 2013 IEEE International Conference
on Robotics and Automation. IEEE, may 2013, pp. 3692–3698.

[18] A. Kaehler and G. Bradski, Learning OpenCV 3, Computer Vision in
C++ with the OpenCV Library. O’Reilly Media, 2016.

[19] D. Pfeiffer, S. Morales, A. Barth, and U. Franke, “Ground truth
evaluation of the Stixel representation using laser scanners,” in 13th
International IEEE Conference on Intelligent Transportation Systems.
IEEE, 2010, pp. 1091–1097.

[20] D. Pfeiffer and U. Franke, “Towards a Global Optimal Multi-Layer
Stixel Representation of Dense 3D Data,” in Proceedings of the British
Machine Vision Conference 2011. British Machine Vision Association,
2011, pp. 51.1–51.12.

[21] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognition
Letters, vol. 30, no. 2, pp. 88–97, 2009.

[22] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for
Semantic Urban Scene Understanding,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp.
3213–3223.



This is the author accepted manuscript published by IEEE with Creative Commons Attribution Non 

Commercial Licence.  The final published version is available online at DOI: 

10.1109/BICOP.2018.8658269. 


	Towards Scene Understanding Implementing the Stixel World
	IEEE

