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ABSTRACT 

Partial Differential equations (PDEs) have been used to model various phenomena/tasks 

in different scientific and engineering endeavours. This thesis is devoted to modelling 

image inpainting by numerical implementations of certain PDEs. The main objectives 

of image inpainting include reconstructing damaged parts and filling-in regions in 

which data/colour information are missing. Different automatic and semi-automatic 

approaches to image inpainting have been developed including PDE-based, texture 

synthesis-based, exemplar-based, and hybrid approaches. Various challenges remain 

unresolved in reconstructing large size missing regions and/or missing areas with highly 

textured surroundings. Our main aim is to address such challenges by developing new 

advanced schemes with particular focus on using PDEs of different orders to preserve 

continuity of textural and geometric information in the surrounding of missing regions. 

We first investigated the problem of partial colour restoration in an image region whose    

greyscale channel is intact. A PDE-based solution is known that is modelled as 

minimising total variation of gradients in the different colour channels. We extend the 

applicability of this model to partial inpainting in other 3-channels colour spaces (such 

as RGB where information is missing in any of the two colours), simply by exploiting 

the known linear/affine relationships between different colouring models in the 

derivation of a modified PDE solution obtained by using the Euler-Lagrange 

minimisation of the corresponding gradient Total Variation (TV). We also developed 

two TV models on the relations between greyscale and colour channels using the 

Laplacian operator and the directional derivatives of gradients. The corresponding 

Euler-Lagrange minimisation yields two new PDEs of different orders for partial 

colourisation. We implemented these solutions in both spatial and frequency domains. 

We measure the success of these models by evaluating known image quality measures 

in inpainted regions for sufficiently large datasets and scenarios. The results reveal that 

our schemes compare well with existing algorithms, but inpainting large regions 

remains a challenge.  

Secondly, we investigate the Total Inpainting (TI) problem where all colour channels 

are missing in an image region. Reviewing and implementing existing PDE-based total 

inpainting methods reveal that high order PDEs, applied to each colour channel 
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separately, perform well but are influenced by the size of the region and the quantity of 

texture surrounding it. Here we developed a TI scheme that benefits from our partial 

inpainting approach and apply two PDE methods to recover the missing regions in the 

image. First, we extract the (Y, Cb, Cr) of the image outside the missing region, apply 

the above PDE methods for reconstructing the missing regions in the luminance channel 

(Y), and then use the colourisation method to recover the missing (Cb, Cr) colours in 

the region. We shall demonstrate that compared to existing TI algorithms, our proposed 

method (using 2 PDE methods) performs well when tested on large datasets of natural 

and face images. Furthermore, this helps understanding of the impact of the texture in 

the surrounding areas on inpainting and opens new research directions. 

Thirdly, we investigate existing Exemplar-Based Inpainting (EBI) methods that do not 

use PDEs but simultaneously propagate the texture and structure into the missing region 

by finding similar patches within the rest of image and copying them into the boundary 

of the missing region. The order of patch propagation is determined by a priority 

function, and the similarity is determined by matching criteria. We shall exploit recently 

emerging Topological Data Analysis (TDA) tools to create innovative EBI schemes, 

referred to as TEBI. TDA studies shapes of data/objects to quantify image texture in 

terms of connectivity and closeness properties of certain data landmarks. Such 

quantifications help determine the appropriate size of patch propagation and will be 

used to modify the patch propagation priority function using the geometrical properties 

of curvature of isophotes, and to improve the matching criteria of patches by calculating 

the correlation coefficients from the spatial, gradient and Laplacian domains. The 

performance of this TEBI method will be tested by applying it to natural dataset images, 

resulting in improved inpainting when compared with other EBI methods.  

Fourthly, the recent hybrid-based inpainting techniques are reviewed and a number of 

highly performing innovative hybrid techniques that combine the use of high order PDE 

methods with the TEBI method for the simultaneous rebuilding of the missing texture 

and structure regions in an image are proposed. Such a hybrid scheme first decomposes 

the image into texture and structure components, and then the missing regions in these 

components are recovered by TEBI and PDE based methods respectively. The 

performance of our hybrid schemes will be compared with two existing hybrid 

algorithms. 

Fifthly, we turn our attention to inpainting large missing regions, and develop an 

innovative inpainting scheme that uses the concept of seam carving to reduce this 



Abstract                                                

  iii  
 

problem to that of inpainting a smaller size missing region that can be dealt with 

efficiently using the inpainting schemes developed above. Seam carving resizes images 

based on content-awareness of the image for both reduction and expansion without 

affecting those image regions that have rich information. The missing region of the 

seam-carved version will be recovered by the TEBI method, original image size is 

restored by adding the removed seams and the missing parts of the added seams are then 

repaired using a high order PDE inpainting scheme. The benefits of this approach in 

dealing with large missing regions are demonstrated. 

The extensive performance testing of the developed inpainting methods shows that 

these methods significantly outperform existing inpainting methods for such a 

challenging task. However, the performance is still not acceptable in recovering large 

missing regions in high texture and structure images, and hence we shall identify 

remaining challenges to be investigated in the future. We shall also extend our work by 

investigating recently developed deep learning based image/video colourisation, with 

the aim of overcoming its limitations and shortcoming. Finally, we should also describe 

our on-going research into using TDA to detect recently growing serious “malicious” 

use of inpainting to create Fake images/videos.    

 

 



 

 

 

 

 

 

  

 

 

 

 

 

Dedicated to 

My father's soul and my family 



 

 

ACKNOWLEDGEMENTS 

 
ALLAH THE MOST GRACIOUS AND MERCIFUL: Who gave me this 

opportunity for doing research at this level. In addition, there are many people that I 

have to thank because, without them, I would not be the PhD student that I am today. 

 

My family: My heartiest and warm thanks go to my family, for their support, patience 

and understanding throughout the duration of my PhD time. I begin with my Mother 

who has not stopped praying for this work to be completed and I would like to dedicate 

this work and all my success to my Father, who passed away before I start this work. 

My wife who has been there for me every step of the way. I end with my sisters, who 

have been my continuous source of hope and determination to continue, despite the 

difficult times I have encountered. 

 

My supervisors: I would like to express my sincerest gratitude towards my 

Supervisor Professor Sabah Jassim for his support, patience, valuable advice, 

suggestions, convincing arguments, and more during the life of this thesis; I wish him 

all the best for the future. I would also like to thank my Supervisor Dr. Nasser AL-

Jawad for his valuable comments, useful discussions, and encouragement from the 

beginning until the end. 

 

Staff and Colleague: I am highly indebted and thoroughly grateful to staff at 

Applied Computing Department and my colleagues. Special thanks go to Aras Asaad, 

PhD student in the School for his discussion and collaboration to propose and work 

together, I wish all the best for him in the future. In addition, I would also like to thank 

my personal tutor (Mr. Hongbo Du) for being a very good listener and for his 

continuous support and encouragement. 

 

My Sponsor: I would like to express my sincere appreciation and gratitude to the 

Ministry of Higher Education and Scientific Research in Iraq, to my University in Basra 

and to the Iraqi Culture Attaché in London for sponsoring my PhD program of study. 



 

  v  
 

ABBREVIATIONS 

Anupam Modified EBI method that introduced in (Anupam et al. 2010). 
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Chapter 1 INTRODUCTION 

Image inpainting is a process that has been investigated for a long time as the concept of 

reconstructing old photos that have degraded over time or modifying a photo to remove 

unwanted objects/persons from it. However, a variety of malicious as well as genuine 

use of image inpainting started to grow fast as a result of the recent rapid advances in 

technology that have led to exponential growth of deployment of cheaply available 

computing devices (mobiles) of high computational power endowed with free software 

that enable fast transmission of high-resolution digital images/videos. Indeed, the 

concept of inpainting has expanded in many directions that go well beyond repairing 

images. As an instant of missing data, interpolation has long been recognised as the 

underlying tool of inpainting. Consequently, calculus of variation and numerical 

solutions of partial differential equations have been the natural source of solutions for 

the filling missing data version of image inpainting. The main aim of this thesis is to 

investigate the use of Partial Differential Equation (PDE) for dealing with the emergent 

aspects and application of inpainting with focus on developing innovative efficient 

inpainting tools, testing the performance of these tools in terms of various image quality 

measures as well as detection of malicious image modifications by inpainting. 

The aim of this introductory chapter is to describe the general idea of image inpainting 

and its challenges in image inpainting. First there is an overview of emerging inpainting 

research challenges, briefly highlighting related approaches and directions of research, 

if any, that have been adopted in the literature and the bases of our innovation to 

improve and complement these efforts. Then the main modern applications that form 

our motivations for doing this research are described, and the overall objectives of the 

research reported in this thesis are stated. This will be followed by brief descriptions of 

the main contributions of this thesis including the list of publications produced so far, 

and of the thesis organisational structure.   

1.1 Overview of the Research 

In image processing and analysis, the success of most applications depends on the 

quality of the image signal. The quality of digital images is a variety of 
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actions/decisions that occur during recording, digitisation, compression, and in transit 

over channels that are subject to signal interference. At each of these stages, factors 

influencing the image quality include camera properties, lighting and environmental 

conditions, compression rates and communication channel capacity and their effects are 

manifested by the appearance of different types of noise and artefacts as well as blurring 

and other type's degradations. In contrast, printed photographs, portraits, and pre-digital 

age recorded films may over time degrade, fade and suffer from loss of image data in 

irregular strokes-like regions and torn material as a result of storage/display related 

conditions or sabotage. The most common feature in these cases, is the presence of 

regions with missing/incomplete image data/information. Repairing such 

images/photos/paintings and restoring missing data/ information to its “original state” is 

referred to as image inpainting.  

A well-established example of inpainting application is the regular restoration of old 

paintings kept in museums carried out by skilled artists. Since the early days of the 

discovery of photography, inpainting has been used, albeit sparingly, to remove 

undesired objects/persons or superposing photos of unrelated objects/persons onto an 

existing photo. The advent of digital imaging created not only new applications in a 

variety of human activities but the digitisation process and other basic image processing 

tasks such as compression result in a variety of image degradations that need to be dealt 

with to ensure adequate image quality. To some extent, most image degradations result 

in spurious local features not blending well with their surroundings, and inpainting-

related procedures may be useful for quality enhancements.  

There are different types of missing image information such as missing colour, and 

missing regions caused by, e.g. noise, blur, degradation, etc. In the digital world, image 

inpainting (also known as interpolation image/video) refers to the application of 

advanced algorithms to supersede lost or damaged data from an image portion. The aim 

of inpainting is to blend the modification within the undegraded surrounding and 

success is measured by how difficult the repair can be detected visibly or by image 

analysis.  

In recent years, the above two main approaches have been modified and improved in 

various directions, and in general image inpainting approaches are classified into several 

categories (Vadhel & Limbasiya 2016), (Nileshbhai Patel 2016), and (Suthar et al. 

2014): 
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1. PDE based Inpainting. 

2. Texture Synthesis based Inpainting. 

3. Exemplar-based Inpainting (EBI). 

4. Semi-automatic and Fast Inpainting. 

5. Hybrid Inpainting. 

Each of these approaches recovers the damaged regions in accordance to certain 

requirements of expectation of the repaired image content, and hence have own 

limitations and shortcomings. Next, the main ideas in these approaches are briefly 

explained. There are different inpainting techniques, the most prominent inpainting 

techniques are variational/PDE-based inpainting and exemplar-based inpainting 

techniques. The variational/PDE based approaches justified by the expectation that 

image information flow along image features are interrupted through the missing region 

and accordingly have been used to restore relatively small missing image regions, (Sc et 

al. 2011). In this case, the small missing region is reconstructed pixel by pixel based on 

propagating the information from the immediate boundary pixels of the missing area. 

The larger the missing region is, the less likely image features flow 

continuously/smoothly along their paths for long spatial periods. Moreover, image 

features may not flow in the same directions of the way numerical solutions of PDE 

propagate information. The exemplar-based inpainting approach, complements the idea 

of using flow of information along image features with the idea that in most images 

there are a lot of similarities between image blocks, and reconstruct the missing regions 

block by block using block similarities in the surrounding regions (Criminisi et al. 

2004). The exemplar-based techniques have been used for reconstructing relatively 

large missing regions, and it fill-in the missing region with information in such a way 

that isophote lines arriving at the regions’ boundaries are completed inside the region. 

This technique does not require to specify where the new information comes from the 

borders, but its success relies on compatibility of information between the missing 

region and its surrounding regions in terms of simple textures and structures. 

The texture synthesis approach recovers the missing texture region in the image by 

searching for similar missing pixels neighbour around the missing region and copy its 

pixel value to the missing pixel. This algorithm performs reasonably well, but it is very 

slow due to the extensive searching (Efros & Leung 1999). 
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Whereas, hybrid inpainting is combined of two inpainting methods which are texture-

based synthesis and PDE-based inpainting methods for filling the missing regions. The 

first step of this approach is to divide the image into texture and structure regions. Then 

these regions are reconstructed with corresponding methods which they need a 

relatively long time (Rane et al. 2003).  

The semi-automatic inpainting approach is a two-stage process. In the first stage, the 

user provides essential missing information manually by sketching object boundaries 

from the surrounding areas to the missing area. The patch-based texture synthesis 

method is utilised to produce the texture (Telea 2018) in the second stage. This 

approach takes a long time in proportion to the inpainting region size. 

The challenges of applying these inpainting approaches to recover the missing regions 

are the large size of the missing regions and the complexity of texture and structure in 

the surrounding of the missing regions. The main premise of our optimism comes from 

the fact that images convey significant amount of information that can be modelled in 

much more sophisticated and well-understood ways than that exploited by the current 

models of texture similarity and distribution as well as variational relation between 

different channels of image colour spaces. Moreover, the wealth of innovative 

techniques developed over the years in the field of image processing and image analysis 

provide a rich source of mathematically based procedures that one can exploit in dealing 

with these challenges. For example, the properties of variation in image information, 

across different colour channels, captured by gradient, Laplacian and other 

transformations can be used to propose new methods for adding colour to grayscale 

images. The use of different order PDE-based inpainting techniques is an obvious 

candidate approach for investigating inpainting missing regions of larger size than that 

dealt with in the literature. Compression, or related, techniques provide another source 

of methods to deal with the challenge of missing region size. For example, the concept 

of seam carving that results in compressing/resizing images horizontally and/or 

vertically with minimal loss of important image information is a natural approach to 

improve the performance of existing inpainting schemes, such as the EBI, for 

recovering large missing regions. Together, these various ideas will be investigated and 

used to introduce more ways of building hybrid inpainting techniques.  

In order to measure the success of any inpainting solutions, it is natural to simulate loss 

of various types of image on publicly available image dataset and compare the quality 
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of the inpainted images with those of the original images. Unfortunately, commonly 

used image quality measures, such as MSE, PSNR, NCD, SSIM, MSSIM, CSQM and 

Entropy are not adequately capable of assessing the success of various image inpainting 

techniques. The recent work, conducted at Buckingham, on the extension/realisation of 

the emerging new Topological Data Analysis (TDA) approach to image analysis seem 

to provide an innovative image quality assessment tool. Indeed, the fact that the TDA 

approach model image texture at different filtration/proximity thresholds is an obvious 

mathematically rich candidate for incorporation into our assessment test of the success 

of inpainting techniques. In particular, the performance of innovative techniques of 

image inpainting is developed and tested to overcome their limitations and to 

reconstruct the large missing regions in natural and face images that lead to 

improvements in the accuracy. In addition, the topological data analysis approach could 

help to refine block similarity concept used in the EBI-based inpainting technique, to 

allow recovering large missing regions with complex texture and structure around them.  

1.2 The Problem of Image Inpainting 

This section is devoted to the mathematical definition of the problem under 

investigation (image inpainting) and we shall highlight the need for this research by 

giving an overview of the various modern applications that have expanded over the last 

few years beyond the obvious image restoration. In order to describe the concept of 

image inpainting, we shall first describe basic mathematics of digital images. This is 

done for the benefit of readers who have little or no background in Image processing 

and can be skipped by others. 

1.2.1 Digital Image 

A digital image is obtained from an analogue image (representing the photograph of a 

scene, object or phenomena in the continuous world) by sampling and quantization. 

Basically, this means that the digital camera superimposes a regular grid on an analogue 

image and assigns a value to each grid element e.g. the mean brightness in this area 

element. cf. (Aubert & Kornprobst 2006). Mathematically, a digital image 𝑓  is a 

rectangular array/matrix structure where each element at position (𝑖, 𝑗) of the structure 

function pixel is assigned an intensity values 𝑓(𝑖, 𝑗).In grayscale images, the value 𝑓𝑖,𝑗 is 

a single number, a scalar value normally ranging between 0 (black) and 255 (white). For 

colour images each 𝑓𝑖,𝑗is a vector of three colour values,  e.g., (r, g, b), where each 
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channel r, g and b represents the red, green, and blue component of the colour and 

ranges, each 𝑓𝑖,𝑗 is a vector of three values, 

𝑓𝑖,𝑗 = (𝑟𝑖,𝑗, 𝑔𝑖,𝑗, 𝑏𝑖,𝑗), 

that denotes the intensity of red, green, and blue channels at the point(𝑖, 𝑗). As in the 

case of greyscale images, the values in these channels are also integers in the range from 

0 to 255. A digital image can also be defined mathematically as a two-dimensional 

image function defined on a flat rectangle called the image domain. This function is 

single-valued in case of the grayscale image while it is 3-dimensional vector-valued in 

the case of a colour image. The pixel value 𝑓(𝑥, 𝑦) denotes the gray value, i.e., colour 

value, of the image at the pixel position (𝑥, 𝑦)  of the image domain. Figure 1-1 

describes the digital image and its image function (a matrix) for the case of a grey value 

image. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: The digital grayscale image with a small red square in (a), a red region to the data 

matrix in (b).  

Now, an image function (a matrix) is known as a mathematical object on which a 

variety of mathematical operations can act. These mathematical operations are often 

used analyse or extract different types of information for image processing purposes, 

including statistical methods, morphological operations, and other filtering.  We are 

especially concerned with operations that use PDE and variational methods image 

inpainting and filling missing regions. 

1.2.2 Image Inpainting 

This section is devoted to the mathematical definition of the problem under 

investigation (image inpainting) and we shall highlight the need for this research by 

giving an overview of the various modern applications that have expanded over the last 

few years beyond the obvious image restoration. Inpainting is the process of 
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reconstructing the missing regions of the damaged images based on information which 

that obtained from the surrounding regions, this process is called image inpainting, and 

it considers an important task in image processing.  

Let 𝑓 represents a given image which that defined on an image domain 𝛺. Generally 

speaking, the task is to reconstruct the missing region of damaged image 𝑢  in the 

damaged domain 𝐷 ⊂  𝛺, called inpainting domain (or a gap/hole), see Figure 1-2. 

 

 

 

 

 

 

 

Figure 1-2: The inpainting task. It is taken from (Sc et al. 2011). 

The task of reconstructing the missing region of the damaged image has been called 

term inpainting by the art restoration workers, see in (Ekeland & Temam 1976). The 

framework of digital restoration has introduced for the first time by Bertalmio et al. in 

(Bertalmio et al. 2000). Therein the authors in (Bertalmio et al. 2000) introduced a new 

PDE which intends to mimic the restoration work of museum artists. This equation will 

be discussed in more detail in section 4.3.2. The next section gives some applications 

for image inpainting. 

1.2.3 Applications of Inpainting 

There are several applications which use the concept of inpainting in image processing 

for a variety of reasons. One important application of digital inpainting is automatic text 

removal and object removal in images and films for special effects; different 

mathematical models have been used to remove the objects and to recover the missing 

regions based on the PDE methods described by (Bertalmio et al. 2000), (Chan & Shen 

2002), and (Cocquerez et al. 2003). These PDE methods have been proposed based on 

total variation, isophote, curvature driven diffusion and so on, and these methods 

propagated the information in the missing regions based on the information in the 

surrounding areas. Furthermore, these PDE methods can also be used to remove the 

dates, texts, subtitles, or publicity from an image (Bertalmio et al. 2000), (Chan & Shen 

2002), (Ballester et al. 2001), and (T. Chan and J.Shen 2001), by propagating  
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information from the surrounding areas into the missing regions.  In addition, old or 

damaged images and films can be restored by detecting missing regions and 

reconstructing the information without causing distortion to those areas of the frames 

(images) that are not affected. Different statistical detector models have been used and 

then the detected missing regions have been reconstructed (Kokaram et al. 1995a) and 

(Kokaram et al. 1995b). In lossy perceptual image coding and compression based on the 

edge information, where the edge has played a crucial role in vision and image analysis, 

in image coding, the performance of a scheme is very much determined by its reaction 

to edges. The inpainting based PDE approach has been used for (lossy) image coding 

and compression based on the edge information (Chan & Shen 2002) and(Saha & 

Vemuri 2000). Moreover, PDE-based inpainting methods have been used for adding 

colour to grayscale images; these methods have been proposed based on the geometric 

relations between the channels in the colour space (Sapiro 2005). Furthermore, 

disocclusion is required (using the variational model to reconstruct the missing region 

based on the geometry of objects in the image), the numerical solutions of PDE methods 

recovers the missing regions. (Nitzberg et al. 1993), and (Masnou & Morel 1998). In the 

context of  error control and concealment of it in video communication, where the 

inpainting methods attempt to recover the lost information by estimation and 

interpolation without depending on additional information from the encoder, these 

inpainting methods are called interactive error concealment methods (interpolation and 

statistical methods) (Yao Wang & Qin-Fan Zhu 1998). For image super-resolution, the 

inpainting based PDE method have been used to reconstruct high-resolution images. 

This method for super-resolution is based on a total variation prior and variational 

distribution approximations (Babacan et al. 2008). For image zooming (Chan & Shen 

2002), and (Malgouyres & Guichard 2001), digital zoom-in has wide applications in 

digital image processing, image super-resolution, data compression, etc. Zoom- out is a 

process entailing loss of detail, including in the framework of wavelets and multi-

resolution analysis. The inpainting method has been used to zoom-in which is the 

inverse of zoom-out and thus belongs to the general category of image restoration 

problems. A digital zoom-in model almost identical to the continuous TV inpainting 

model is constructed based on the self-contained digitised PDE method developed by 

authors in (Chan & Shen 2002). On the other hand, the inpainting methods can be used 

for malicious purposes such as fake news and images. The development of the software 

for use in phones and computers in recent years has facilitated dealing with digital 
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images. This software is available to anyone who can use it. As a result the world has 

become susceptible to fake news and so it is increasingly important for researchers to 

acquire understanding of how these inpainting methods are working so that they can try 

to reverse the inpainting process to detect the forged images, this field of work is now 

called image forgery detection for object removal by image inpainting methods 

(Muhammad et al. 2012), (Liang et al. 2015) and (Yang et al. 2017). These algorithms 

have been used to detect forged images and identify the manipulated regions in them. 

1.3 Research Questions 

The main focus of this work is investigating the numerical solutions of certain PDEs 

that have applications in image processing such as image inpainting. The questions 

arising from this are:  

1.      Can high order PDE methods do better than second order PDE methods for 

recovering missing region?  

The high order PDE methods essentially expected to recover missing regions of 

images better than second order PDE methods because they use relatively more 

information from the borders during the recovery process. Therefore, it’s interesting 

to know what the effect of the high order of PDE methods. 

2.      Can high order PDE methods be used to recover small missing regions with 

complex texture in the surrounding areas?  

PDE methods generally recover non-textured missing regions in an image, so the 

effects of PDE order in recovering small missing regions with high texture in the 

surrounding areas need to be investigated in terms of the connection of edges over 

large distances (i.e. Connectivity Principle).  

3.      Can high order PDE methods be used to recover large missing regions with 

simple texture and structure in the surrounding areas?  

PDE methods usually recover small missing regions in an image, so the effects of 

PDE order in recovering large missing regions in terms of the smooth propagation 

of level lines into the damaged domain (i.e. Curvature Preservation) need to be 

investigated and studied.  
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4.      Are the statistical measurements good for image quality measurement? If not, 

are there other measurements which can be used to check the qualities of inpainted 

images?  

Some of these statistical measurements (MSE and PSNR) have limitations revealed 

by their failures to gives results which correspond to visual quality assessments.  An 

application that test the change in the image structure needs to be investigated and 

compared with the traditional image quality assessments methods.  

5.      Does the size of patch propagation in the EBI method affect the results?  

The EBI method is propagated the information in the missing region with a typical 

fixed size of patch propagation 9 × 9. Investigating the effects of changing the size 

of patch propagation in the missing regions is needed to be tested.  

1.4 Aims and Objectives of this Research project 

This thesis primarily aims to investigate and develop mathematically inspired and 

justified techniques that improve the treatment of the different missing regions in a 

variety of images. In summary, the main objectives are:  

 In partial missing regions, studying the geometric relations between the channels 

in the colour spaces such as RGB, and seven other spaces and exploiting these 

relations to propose a colourisation formula for adding colour to greyscale 

images in both spatial and frequency domains. 

 In total missing regions, analyses and evaluations the performances of 

inpainting-based PDE methods of various orders in recovering the missing 

regions in the image. This will help to choose the best PDE method that will be 

used with other inpainting techniques to recover texture and structure in images 

in both spatial and frequency domains.  

 Carrying out theoretical and empirical analyses of current inpainting methods 

(i.e. PDE methods), which aim to evaluate their performance in reconstructing 

the contents of missing regions of various sizes and with various quantities of 

texture and structure in the surrounding areas.   

 Developing an innovative hybrid technique that uses high order-PDE and 

Topological EBI methods to recover small missing regions with high texture and 

structure in the surrounding areas. 
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 Developing a novel technique to recover large missing regions with high texture 

and structure in the surrounding areas using a seam-carving approach. 

 Rigorous evaluation of the quality of image inpainting obtained using different 

inpainting methods based on the proposed TDA approach that is used to check 

the performances of these inpainting algorithms. 

 Investigation of the performances of EBI method with different-size patch 

propagations in recovering missing regions of different sizes. The TDA 

approach is used to improve the EBI method, and is applied to adaptively 

determine the patch size based on the quantity of texture in the surrounding 

areas. 

Our approaches to meet these objectives rely in many ways on the wealth of 

mathematical techniques and concepts developed over the last few decades in the field 

of image processing and analysis.  

1.5 Thesis Main Contributions 

Our extensive investigations and experimental work have led to a number of advances 

in meeting the main objectives and modifying existing inpainting schemes with 

improved capability in restoring missing image regions in different scenarios. Our 

review of the different existing inpainting schemes revealed that their deployment under 

different circumstances in various applications continues to entail many challenges. 

Many studies have been conducted to handle textured large missing regions in natural 

images of high quality. Three main shortcoming issues are identified that face these 

algorithms, which arise when the missing region is large, when there is a high quantity 

of texture around the missing region and when the surrounding areas of the missing 

regions contain geometrically complex features. New algorithms are developed to 

remedy the above shortcomings. The implementations of these new algorithms 

reconstruct the textured large missing regions in natural images, based on the contents 

of the areas surrounding missing regions. Therefore, this thesis claims the following 

major contributions: 

1. In (Sapiro 2005), G. Sapiro proposed a PDE-based colourisation technique that 

deals with the loss of 2 specific colour channels in a region where the 3 channel is 

available. The author has shown that the (scalar) luminance channel faithfully 

represents the geometry of the whole (directional) colour image. The performance 
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of this technique was good in adding colour to the greyscale image. However, it has 

a problem at edges where the colours overlap with each other.  

 To overcome this problem, new colourisation formulas are deduced to reduce 

the effect of the colour overlapping at object edges, which are tested on non-

segmented images and pre-segmented images.  

 These formulas are implemented on 8 different colour spaces, both in the spatial 

and frequency image domains.  

The performance of this technique was tested on 80 publicly available natural images, 

and compared with those of three existing algorithms introduced in (Sapiro 2005), 

(Levin et al. 2004), and (Popowicz & Smolka 2014). The evaluation was based on 

statistical measurements such as MSE, PSNR, NCD, and SSIM. The results 

confirmed that our technique successfully propagates the missing colours into the 

greyscale regions of the images.  

2. Our next contribution focused on the more general colourisation problem to the case 

of missing all colour in a region, i.e. colour information is only available outside and 

on the border of the region. Existing PDE-based inpainting algorithms can be divided 

into two groups: inpainting algorithms based on energy function, and inpainting 

algorithms based on PDEs directly. Inpainting-based PDE algorithms have first been 

developed, in this thesis, for the reconstructions of small missing regions without 

texture.  Our contributions, in this respect, relate the overcoming these limitations 

and can be summarised as follows:   

 Several PDE algorithms of 2nd and higher orders have been studied to 

reconstruct the small missing regions. 

 We propose to use PDE algorithms to recover missing regions in Y channel, 

then PDE-based colourisation methods have been applied to reconstruct the 

missing regions in Cb and Cr channels.  

 The performance of inpainting-based PDE algorithms is evaluated by statistical 

measurements and topological data analysis-based quality measure.  

 The performance of 2nd and higher order PDE methods have been tested on the 

connection of edges over large distances (i.e. Connectivity Principle) and the 

smooth propagation of level lines into the damaged domain (i.e. Curvature 

Preservation). 
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 The performance of these algorithms has been assessed by studying their 

iterations and their convergence properties. 

 Also, these PDE algorithms have been applied to natural and face images 

datasets in the frequency domain, and their results are compared with the results 

of the spatial domain. MSE, PSNR E, MSSIM and CSQM are used to evaluate 

these techniques in both the spatial and frequency domains. TDA scheme is used 

to check the quality of image inpainting and to check the efficacy of the PDE 

algorithms. 

 The PDE algorithms have tested on the natural images in both the spatial and 

frequency domains. The results of these algorithms in the spatial domain have 

compared the results of them in the frequency domain.  

To sum up, these PDE algorithms have been applied to several natural images and 

shown to successfully reconstruct small non-textured missing regions with edges 

and corners, but there is still challenging existing with textured missing regions. 

Therefore, we attempted to handle this challenge as our next contribution. 

3. As mentioned before, inpainting-based PDE algorithms cannot reconstruct textured 

missing regions. Our review of existing schemes to deal with this issue revealed two 

interesting schemes: an EBI method (Jassim et al. 2018) and high order PDE 

algorithm (Esedoglu & Shen 2002). A novel hybrid inpainting technique is 

developed which is inspired by (Bertalmio et al. 2000). The basic idea is to divide the 

image into texture and structure components. The missing regions of these 

components are restored separately by EBI and PDE-based methods respectively.  

The specific contributions of this work can be summarised as follows:  

 Three types of decomposing methods have been tested to divide the image into 

texture and structure components (Rudin et al. 1992). 

 Different order PDE-based algorithms such as Mumford-Shah (Esedoglu & 

Shen 2002), and Cahn-Hilliard (A. L. Bertozzi et al. 2007), have been used to 

reconstruct missing regions in the structure component.  

 An EBI method has been applied to reconstruct the missing regions in the 

texture image component; the use of different block sizes, based on the 

quantities of the texture in the surrounding of the missing regions is proposed.  
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 The hybrid technique has been applied to natural dataset images in both the 

spatial and frequency domains, its results in the spatial domain has compared 

with its results in the frequency domain. 

To conclude, the proposed technique has been applied to a sufficiently large dataset 

of natural images, and their performances have been compared with those resulting 

from the use of the algorithm in (Bertalmio et al. 2000). Statistical measurements 

and TDA approach are used to evaluate the results of the mentioned techniques. 

This technique successfully reconstructed the small textured missing regions with 

edges and corners, but it still has the challenge to recover the large missing regions 

with high structure and texture. Therefore, the next step will deal with this issue by 

applying the EBI algorithm. 

4. An EBI technique was proposed in (Criminisi et al. 2004) for reconstructing large 

missing regions with simple textures and structures. It is somewhat limited to 

recovering missing regions with rich textures and structures. To overcome this 

drawback, an innovative topological exemplar-based inpainting (TEBI) technique is 

developed whereby the assessment of the similarity of patches includes the 

application of topological parameters gained by topological data analysis scheme 

(Jassim et al. 2018). Furthermore, the ideas in (Anupam et al. 2010), (Hesabi & 

Mahdavi-Amiri 2012), (Deng et al. 2015), and (Asaad & Jassim 2017) are 

improved by using geometrical structure features of the images. Below are the main 

achievements in this part:  

 The size of the patch (a window to be searched for its match in the whole image) 

is determined based on the quantity of the texture in the surrounding of the 

missing region via Topological Data Analysis (TDA) scheme.  

 The filling priority of the patch is determined by the geometrical properties of 

curvature of isophotes.  

 Introducing new patch-matching scheme, which can be divided into two stages;  

1- Calculating the sum -of -squared distance (SSD) for Laplacian, gradient and 

spatial domains of the image and selecting the nearest 30 patches.  

2- Measuring the normalised cross-correlation coefficient of the 30 patches 

defined in stage one to select the nearest patch. 
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The proposed approach is implemented on 200 natural images that contain missing 

regions of different sizes and random locations in the same images. The results have 

been compared with the results of algorithms introduced in (Criminisi et al. 2004), 

(Anupam et al. 2010), and (Abdollahifard & Kalantari 2016), and evaluated based on 

statistical measurements such as MSE, PSNR and SSIM. Also, this proposed 

approach has been applied to natural images in the frequency domain, and its result is 

compared with the results of the spatial domain. MSE, PSNR E, MSSIM and CSQM 

are used to evaluate these techniques in both the spatial and frequency domains. This 

proposed approach successfully reconstructed the large missing regions with rich 

texture and structure however it still has a shortcoming with the largest missing 

regions which is solved in the next step. 

5. All inpainting algorithms, including the above ones, have limitations with large 

missing regions. A novel technique for reconstructing large missing regions in 

images has been developed consisting of EBI and PDEs algorithms successively with 

the seam carving approach (Avidan & Shamir 2007), as explained below:  

 The seam carving approach helped to shrink the missing region in the image. 

 A TEBI algorithm has been applied for reconstructing shrunken missing regions. 

 The carved seams carving has been reinstated to restore the original missing 

region size in the image. 

 Three different high-order PDE algorithms have then been used for restoring 

image information along the seams within the missing regions in the image. 

Lastly, the performance of the proposed technique has been tested on different 

natural images. The results have been compared with the results of the algorithm in 

(Criminisi et al. 2004) by using statistical measurements and TDA approach. The 

proposed technique achieved reconstructing the largest texture and structure missing 

regions.  

1.6 Publications and Presentations 

1.6.1 Publications 

1. A. Al-Jabari, S. Jassim, and N. Al-Jawad. ‘’ Colourising monochrome images’’. 

SPIE Commercial + Scientific Sensing and Imaging, 2018, Orlando, Florida, 

United States. Proceedings Volume 10668, Mobile Multimedia/Image 
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2. A. Al-Jaberi, A. Asaad, S. Jassim, and N. Al-Jawad. ‘’ Topological data 

analysis to improve exemplar-based inpainting’’. SPIE Commercial + Scientific 

Sensing and Imaging, 2018, Orlando, Florida, United States. Proceedings 

Volume 10668, Mobile Multimedia/Image Processing, Security, and 

Applications 2018; 1066805 (2018). https://doi.org/10.1117/12.2309931. 

3. A. Al-Jabari, S. A. Jassim, and N. Al-Jawad. ‘’Inpainting Large Missing 

Region-Based on Seam Carving Approach’’, Intelligent Systems with 

Computer Vision and Data Analytics, EAI, ID 2280, November (2018). 

http://dx.doi.org/10.4108/eai.29-11-2018.156000. 

4. A. Asaad, A. Al-Jabari, N. Al-Jawad, S. A. Jassim. ‘’Topological Data Analysis 
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5. A. Al-Jaberi, A. Asaad, S. Jassim, and N. Al-Jawad. ‘’Topological data analysis 

for forgery detection of image inpainting’’ (will be submitted) 

1.6.2 Presentations 

1. Presentation of (Colourising greyscale images based on PDE methods) in EGL 

2017 Workshop on Applied and Numerical Mathematics, in University of 

Greenwich, London, on 8th – 9th June 2017,    

 https://www.gre.ac.uk/ach/services/events/EGLmathsworkshop. 

2. Presentation of (Inpainting monochrome images) in SPIE Commercial + 

Scientific Sensing and Imaging Conference, Orlando, Florida, United States, on 

15th – 19th April 2018,  

https://www.spiedigitallibrary.org/conference-proceedings-of-

spie/10668/1066806/Colourising-monochrome-images/10.1117/12.2309938. 

3. Presentation of (Inpainting Large Missing Region-Based on Seam Carving 
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https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10668/1066806/Colourising-monochrome-images/10.1117/12.2309938
https://www.essex.ac.uk/events/2018/06/06/egl-2018-workshop-on-optimisation,-applied-and-numerical-mathematics
https://www.essex.ac.uk/events/2018/06/06/egl-2018-workshop-on-optimisation,-applied-and-numerical-mathematics
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1.7 Thesis Outline 

The contents of this report are organised as follows: 

 Chapter 2 presents the mathematical preliminaries of inpainting algorithms 

such as some definitions and theories which that consider important for the 

understanding these algorithms. 

 Chapter 3 presents the process of converting grayscale images to a colour 

image, the process of adding colour to the grayscale images, is called 

colourisation term. There are several colourisation techniques, these 

techniques divided into two groups. Also, this chapter reviews recently 

devised colourisation techniques and then clarifies the differences between 

them. Colourisation-based PDE algorithm is described, and an improvement 

of this algorithm is introduced. The efficiency of this algorithm is checked 

by comparing it with the other three colourisation algorithms. This 

comparison is done by using statistical measurements. Conclusion and the 

future work is introduced. 

 Chapter 4 provides a detailed review of existing PDEs algorithms in 

inpainting and discusses relevant work on inpainting missing regions and 

handling the edges and corners in missing regions in both the spatial and 

frequency domains and evaluating the perceptual quality of these image 

inpainting algorithms. The efficiency of high-order PDEs algorithms is 

investigated in handling edges and corners in small missing regions. 

 Chapter 5 introduces a novel EBI algorithm for restoring textured missing 

regions in the image. This algorithm removes an unwanted object and 

recovers missing regions in the old images as well. It includes a new 

mechanism to identify the size of a patch based on a quantity of texture in 

missing regions, the filling priority definition based on the geometrical 

properties of curvature of isophotes. Furthermore, the patch-matching 

scheme uses two stages of selecting the nearest patch. Lastly the usefulness 

of different missing regions EBI in structure and texture finish stage of 

nature image inpainting algorithm with practical examples are demonstrated. 

 Chapter 6 presents previous studies on hybrid inpainting techniques and 

describes the image decomposition into a texture and structure components 

which that inpainting by EBI and PDEs algorithms respectively. Three kinds 
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of PDEs algorithms are used for the inpainting of structure components. 

Hybrid technique deals with textured missing regions, the results of this 

technique have compared with each other. These techniques have been 

applied on natural dataset images in both the spatial and frequency domains.  

 Chapter 7 introduces a novel technique to handling for large missing 

regions into images which that use EBI and PDEs algorithms successively. 

Also, this technique has applied to images after reshaping large missing 

region, where they use seam carving to reshape missing regions. 

 

 Chapter 8 provides a general discussion of our contributions of this research 

to summarize the conclusions, followed by a list of open directions for future 

research issues. 

 

The Appendices include some experimental results of each inpainting algorithm that 

used in this thesis. 
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Chapter 2 MATHEMATICAL 

BACKGROUNDS 

The field of image inpainting has evolved and expanded rapidly in the last two decades, 

and it has become useful in different image processing and computer vision applications. 

This chapter outlines mathematical definitions and theorems underpinning the current 

dominantly PDE-based inpainting techniques (i.e. variational models of image 

inpainting).  The importance in image enhancements and restoration of missing 

information is stressed, and the domains of inpainting are illustrated. Image quality 

measures are introduced in assessing the success and limitations of such schemes. 

The chapter is divided into seven main sections. Section 2.1 provides a brief overview 

of inpainting methods and describes the various ways of classification of these methods. 

Section 2.2 illustrates the domains used in this thesis. Section 2.3 describes the space of 

functions of bounded variation which are commonly used in image analysis, 

highlighting types of functions relevant to our research project. Section 2.4 presents the 

minimisation formulas that model many problems in computer vision. We also outline 

the process of solving these minimisation problems especially for restoring the 

information in missing regions. In section 2.5, an overview of numerical methods is 

provided for solving PDEs in order to restore missing information in images. Section 

2.6 reviews the commonly used statistical-based image quality measures and introduces 

the TDA approach for assessing the performances of inpainting schemes. Section 2.7 

gives a brief summary of this chapter. 

2.1 Classification of Inpainting Methods 

Inpainting techniques can be categorised in many ways, for example, as mathematical 

and statistical techniques in terms of their corresponding theoretical models, 

mathematical inpainting methods used PDEs and variational methods for recovering 

missing information in image regions (Chan & Shen 2005), (Rudin et al. 1992). 

Statistical techniques are used in the context of image interpolation (Kokaram et al. 

1995b), image replacement (Igehy & Pereira 1997), error concealment (Jung et al. 

1994), and image coding(Le Floch & Labit 1996). More precisely, in statistical class, 

the methods assume that the image consists of mainly homogeneous regions, separated 
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by discontinuities, i.e., edges. Inpainting methods for (lossy) image coding and 

compression based on the edge information (the geometric structure of the 

discontinuities and the amplitudes at the edges) are introduced. 

Inpainting techniques can also be classified in terms of the size of missing regions, the 

EBI and hybrid methods (Jiying Wu & Qiuqi Ruan 2008), (Bertalmio et al. 2003), (Kim 

& Cai 2015), (Criminisi et al. 2004), (Cheng et al. 2005) are used to recover large 

missing regions in the images, while the PDE inpainting methods (Recktenwald 2011), 

(Wei Guo & Li-Hong Qiao 2007), (Shen & Chan 2002) are used to propagate 

information into small missing regions (i.e. scribbles, texts and dates).  

Another important base for classifying inpainting schemes is in terms of texture 

quantity in the surrounding areas of missing region. Such schemes can be divided into 

texture synthesis-based and PDE-based inpainting methods. The texture synthesis based 

methods of (Efros & Leung 1999), (Wei & Levoy 2000) are used to recover  highly-

textured missing regions, while PDE methods (Chan & Shen 2001), (Shen & Chan 

2002), (Burger et al. 2009) are used to recover non-textured missing regions in the 

image.  

Guided by the stated aims of this research which is focused on mathematically-inspired 

approaches, in this thesis, the classification of inpainting methods as being non-

Exemplar Based Inpainting (nEBI) and EBI based on information propagation process 

is adopted. The first type, nEBI methods uses Partial Differential Equations (PDEs) to 

propagate the information pixel by pixel from the surrounding (or neighbouring areas of 

the missing region) to the missing region, (e.g. see  (Burger et al. 2009), (Esedoglu & 

Shen 2002), (Schönlieb et al. 2010)). While the EBI methods have been proposed to 

recover the large missing regions based on propagating the information block by block 

from the rest of the image to the missing region (e.g. see  (Criminisi et al. 2004), (Cheng 

et al. 2005), (Jassim et al. 2018), (Sangeeth et al. 2011)).  

The above terms of classifications are based on the underpinning theories, the actual 

method of image propagation, the models of missing colour/texture information, and 

the size of the missing regions. Since digital images can be represented in different 

domains that can be derived from their intensity matrix by different discrete 

mathematical transformation. Accordingly, one may classify inpainting methods in 

terms of domain of operation. For some transforms, one may be able to implement 

some or all the above-mentioned inpainting schemes in the corresponding domain. It is 
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worth noting, that recently inpainting techniques have been proposed to deal with 

situations where there are missing intensity data and/or missing transformed data, (see 

e.g. (Chan et al. 2006) and (Tavakoli et al. 2018)). In this thesis, we only consider the 

case where the only missing data are intensity in some regions but interested in using 

properties of some transforms to deal with challenges like missing data in large 

regions. 

2.2 Inpainting Domains 

The intensity matrix representation of a digital image is referred to as its spatial 

domain, where each entry represents digitisation of the reflected light at the 

corresponding position in the photographed space/scene, (see section 1.2.1).  Discrete 

Fourier transforms, and other wave-forms transforms provide other digital image 

domains, referred to as frequency domains because these transforms analyse the 

images into different frequency ranges.  

Inpainting in the spatial domain, simply fills a missing region with intensity values 

obtained from any of the schemes mentioned above. Whereas in the frequency domain, 

inpainting requires the use of a discrete invertible frequency transform, as well as an 

inpainting scheme in the frequency domain Figure 2-1, which is a block diagram 

illustration of the way such schemes work. 

 

Figure 2-1: Inpainting processing in the frequency domain. 

2.2.1 Frequency Domain 

The two most commonly used frequency transforms are the Fourier Transform (FT) 

and the Wavelet Transform (WT).  For digital images, their discrete versions DFT and 

DWT are used to analyse any digital signal/image into different frequency ranges. In 

both cases, transformed coefficients in the high-frequency range correspond to edges 

and other image discontinuities in an image, while coefficients in low-frequency range 
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are associated with smooth regions. Our interest in implementing inpainting schemes 

in the frequency domain for the restoration of missing intensity data stems from the 

importance of knowledge texture for inpainting. In this thesis, we shall confine our 

work to prove this principle for the wavelet domain. 

The DFT decomposes an image/signal by projecting it onto sine and cosine waveforms 

of different frequencies over the entire image. At any frequency, the output Fourier 

coefficient is a complex number whose value depends on every pixel in the image. In 

contrast, Wavelet transform decomposes images/signals using other waveform functions 

that have similar properties to circular functions, but whose energy is centrally 

concentrated in a relatively small interval but decays away from it. Both DFT and DWT 

are used in a wide range of applications, such as image analysis, image filtering, image 

reconstruction and image compression. The finiteness of wavelet support implies that, 

unlike the DFT, the DWT is capable of discovering localised features at various scales, 

and its multi-resolution way of analysing images/signals is a very important 

characteristic. This significantly benefits inpainting by providing an obvious way of 

dealing with the challenge of restructuring large missing regions. It also helps to 

provide a better global structure estimation of a damaged region in addition to its better 

shape- and texture-preserving properties. The multi-resolution property is a 

consequence of the fact that appropriately chosen wavelet functions, referred to as 

mother wavelets, can be used to construct a nested sequence of subspaces of the Banach 

space of all continuous bounded real-valued functions where the subspaces are 

generated simply by scaling and shifting the mother wavelet function. This sequence 

together with their dual subspaces facilitates the exact reconstruction of the original 

images/signals.  

The DWT of a 1D-signal is computed by convolution with the generated bases of the 

nested sequence and their dual, and the output coefficients represent the projection of 

the signal onto the chosen bases (i.e. the mother wavelets, its successive scaled and 

shifted versions plus their corresponding dual vectors). This implies that the DWT acts 

as a filtering procedure using a wavelet filter bank. Many filter banks have been 

developed and used over the last few decades. The DWT is usually applied first on the 

rows of an image and then on the resulting columns in accordance with a number of 

decomposition schemes, the most common of which is the pyramid scheme. In the rest 

of this section, this process is described by an example.         
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A DWT decomposes a signal into low and high-frequency sub-bands, each of which can 

be transformed repeatedly, providing multiple-resolution representations of the signal at 

different spatial scales and different ranges of frequencies. The DWT of any signal is a 

representation of the signal in terms of a family of orthonormal wavelet bases obtained 

from a single wavelet function, called a mother wavelet, through repeated translation. 

There are different wavelet transform filters that have been designed and used for 

various signal- and image-processing applications. The famed wavelet filter is 

Daubechies (db) (Daubechies 1990) and its family of filters including db2, db4, db6, 

and db8 of length 2, 4, 6 and 8 respectively. The Daubechies 1 (db1) filter, which is 

simply the original Haar filter, is a piecewise constant function and can be defined as:  

                                       ℎ(𝑡) = {
1             0 ≤ 𝑡 < 0.5
−1          0.5 ≤ 𝑡 < 1
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                     (2.1) 

The separable property of the DWT makes the implementation of the 2-dimensional 

wavelet transform (DWT) of images equivalent to a successful implementation of the 1-

dimensional DWT in two orthogonal directions. It is usual to apply the DWT firstly in 

the horizontal direction across the rows of the input image into low and high-frequency 

sub-bands. The low-frequency sub-band is commonly referred to as the approximation 

sub-band which represents low-frequencies, while the high sub-band, called the details-

sub-band represents the high frequencies in the horizontal direction. Lastly, each one of 

these sub-bands has been vertically decomposed into two low and high sub-bands. 

Therefore, the image is decomposed into 4-subbands: low-frequency sub-band (LL) and 

high-frequency sub-bands (LH, HL, and HH). The LL sub-band represents the low-

frequencies in both horizontal and vertical directions; LH, HL, and HH sub-bands 

represent the high frequencies (indicating significant features such as edges) in the 

vertical direction, in the horizontal direction and in the diagonal direction, respectively. 

Figure 2-2 clarifies the analysis of the image by using the Haar wavelet transform. 
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Figure 2-2: Process of the Haar wavelet transform for the 1st level. 

In Figure 2-2, the Haar wavelet function decomposed the signal into an approximation 

sub-band containing the low-frequencies by averaging the coefficient and a detail sub-

band containing the high frequencies by differencing the coefficients. As mentioned 

above, when the DWT is applied on an image, it produces 4 sub-images with half the 

resolution of the original image. The first output of the dwt2 transform is the 

approximation coefficients where each output pixel is an average of a 2 × 2 window. 

The other outputs (2nd, 3rd and 4th) are detail windows that take two pixels within the 

window and subtract their sum from that of two other pixels in the window. 

The recursive decomposition is performed only on the approximation coefficients, and 

Figure 2-3 is an example of level three of the pyramid decomposition scheme. 

Numerous wavelet filter banks can implement in a variety of decomposition schemes. 

The Haar wavelet filter has been selected for use throughout this thesis due to its 

simplicity.  
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Figure 2-3: Pyramid of wavelet transform for 1st, 2nd and 3rdlevels. 

2.3 Functions of Bounded Variation (BV) 

In most computer vision problems, the ability to model discontinuous image features is 

significant importance and this particularly relevant to inpainting. Image inpainting is 

fundamentally an ill-posed optimised interpolation problem, and missing data regions 

can be predicted by modelling discontinuities in terms of some bounded 

functions 𝑢(𝑥, 𝑦). The space 𝐵𝑉 of functions of bounded variation endowed with the so-

called total variation norm is well adapted for this purpose. This norm is used to control 

the regularisation term during the iterative solution of optimisation tasks.  For the sake 

of self-containment and clarity, the basic definitions in dealing with these issues are 

given.   
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2.3.1 Special Differential Operators 

In this work, the following definitions and theorems are needed for functions of two 

variables. Generalisations to functions of more variables are straightforward and can be 

found in (W. Rudin 1976).  

 

Definition 1 (Differentiable): A function 𝑓(𝑥, 𝑦), is differentiable at the point (𝑥0, 𝑦0) if  

                          lim
(ℎ,𝑘)→(0,0)

𝑓(𝑥0+ℎ,   𝑦0+𝑘)−𝑓(𝑥0,𝑦0)−ℎ
𝜕𝑓

𝜕𝑥
(𝑥0,𝑦0)−𝑘

𝜕𝑓

𝜕𝑦
(𝑥0,𝑦0)

√ℎ2+𝑘2
= 0.                   (2.2)           

 

This implies that the first partial derivatives of 𝑓 exist and that 𝑓 is continuous at (𝑥0, 𝑦0
).  

Definition 2: The special differential operators for the function 𝑓(𝑥, 𝑦) are defined as 

follows: 

 The gradient vector of 𝑓(𝑥, 𝑦) is defined as 𝛻𝑓(𝑥, 𝑦) = (
𝜕𝑓

𝜕𝑥
,
𝑑𝑓

𝑑𝑦
). 

 The Laplacian of 𝑓(𝑥, 𝑦) is defined as ∆𝑓(𝑥, 𝑦) =
𝜕2𝑓

𝜕𝑥2 +
𝑑2𝑓

𝑑𝑦2. 

 The divergence of 𝑓(𝑥, 𝑦) is defined as ∇ ∙ 𝑓(𝑥, 𝑦) =
𝜕𝑓

𝜕𝑥
𝑖 +

𝑑𝑓

𝑑𝑦
𝑗. 

and the perpendicular gradient vector 𝛻⊥𝑓 by 

𝛻⊥𝑓(𝑥, 𝑦) = (−
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑥
)   

The relationship between the level curves of 𝑓 and the gradient vector 𝛻𝑓 is stated in the 

theorem 3. 

2.3.2 Spaces of functions with Bounded Total Variation 

Let Ω ⊆ 𝑅𝑛 be a bounded open set, 𝑢: Ω → 𝑅𝑛 (an image representation), is a function of 

bounded variation in 𝐿1(Ω) if the distributional derivative of 𝑢  is representable by a 

finite measure in Ω, that is, if. 

                           ∫ 𝑢 
𝜕𝜙

𝜕𝑥𝑖
𝑑𝑥

 

Ω

= ∫  𝜙𝑑𝐷𝑖𝑢
 

Ω

   ∀𝜙 ∈ 𝐶𝑐
∞(Ω),    i = 1,2,                             (2.3) 

in 𝑅2, 𝐷𝑢 = (𝐷1𝑢, 𝐷2𝑢) in Ω.  The vector space of all functions of bounded variation in Ω 

is denoted by BV(Ω) . Further, the space BV(Ω)  can be characterised by the total 

variation of 𝐷𝑢 . For this, the so-called variation 𝑉(𝑢, 𝛺)  of a function 𝑢 ∈ 𝐿1(𝛺)  Is 

firstly defined. 

Definition 4 (Variation): Let 𝑢 ∈ 𝐿1(𝛺), the variation 𝑉(𝑢, 𝛺) of 𝑢 in 𝛺 is defined by  

      𝑉(𝑢, 𝛺) = 𝑠𝑢𝑝 {∫𝑢 𝑑𝑖𝑣𝜙 𝑑𝑥
 

Ω

:            𝜙 ∈ 𝐶𝑐
1(Ω), |𝜙|𝐿1(𝛺) ≤ 1 ∀𝑥 ∈ Ω} .           (2.4) 

A simple integration by parts proves that total variation defined on the 𝐿1-norm of the 

gradient in Ω 
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                              ‖𝑢‖𝑇𝑉(𝛺) = 𝑉(𝑢, 𝛺) =  ∫ |𝛻𝑢|𝑑𝑥,
 

𝛺

      ∀ 𝑢 ∈ 𝐶1(𝛺)                           (2.5)  

if  𝑢 ∈ 𝐶0
1(Ω). In (2.3) represents the bounded space defined on the space of functions 

with bounded total variation 𝐵𝑉(Ω). The definition of this space is 

                                              𝐵𝑉(Ω) = {𝑢 ∈ 𝐿1(Ω): ‖𝑢‖𝑇𝑉 < ∞}.                                      (2.6)    

𝐵𝑉(Ω) is a Banach space endowed with the norm 

                                              ‖𝑢‖𝐵𝑉(Ω) = ‖𝑢‖𝐿1(Ω) + ‖𝑢‖𝑇𝑉(Ω).                                         (2.7) 

Thus 𝐵𝑉 -functions are the 𝐿1  functions with bounded 𝑇𝑉 -norm, and discontinuous 

functions are included in this space. The advantage of the 𝑇𝑉-norm is that it allows for 

discontinuities, while avoiding irregular oscillations, such as noise. Nevertheless, it is 

used to remove the noise in an image whilst preserving important details such as edges 

(Rudin et al. 1992). 

In contrast, the 𝐿2  norm of the bounded variation, the regularisation term of the 

magnitude of the image gradient is used in the 𝐿2  norm (i.e. the Tikhonov (TK) 

regularisation method (Tikhonov 2014) which is defined on the 𝐿2 norm). The norm of 

𝐵𝑉(Ω) is given as follows: 

                                  ‖𝑢‖2
𝐵𝑉(Ω) = ‖𝑢‖2

𝐿2(Ω) + ‖𝑢‖2

𝑇𝐾(Ω)
                          (2.8) 

The TK regularisation technique successfully removes image noise but results in 

blurring important image features/structures like edges and jumps in the denoised image 

(Liu et al. 2014). 

2.3.3 Calculus of Variations – A brief introduction 

In this section, the mathematical background that leads to the variational-based 

inpainting method is briefly reviewed. Calculus of variation is concerned with 

functionals (i.e. functions whose codomains are functions). 

A functional on a real vector space 𝑉, 𝐹 is a mapping on 𝑉 onto the set of real-valued 

functions defined on 𝑉. The functional derivative is the derivative of a functional with 

respect to a function and is a generalisation of the function derivative. It tells us how the 

functional changes when the function changes by a small amount. In this work, the 

space 𝑉 can be restricted to be a Banach space. A functional on a Banach space is a 

scalar-valued mapping which is continuous, but not necessarily linear. 

Let 𝑉  be a Banach space and let 𝐹 ∶  𝑉 →  𝑅  be a functional. The definition of the 

functional derivative at 𝑥 in the direction of 𝑦 is then 

                                                𝐹′(𝑥)𝑦 =  lim
𝜖→0

𝐹 (𝑥 + 𝜖𝑦) −  𝐹(𝑥)

𝜖
                                           (2.9) 

𝐹 is (Fréchet) differentiable at 𝑥 if 
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                     𝐹(𝑥 +  𝑦) =  𝐹(𝑥) + 𝐹′(𝑥)𝑦 +  𝑂(‖𝑦‖𝑉 )      𝑎𝑠 ‖𝑦‖𝑉 → 0                        (2.10) 

𝐹′(𝑥) is a bounded linear functional. Analogous to the ordinary calculus. 𝑥 is a critical 

point of 𝐹 if 𝐹′(𝑥) = 0, i.e.  

                                                          𝐹′(𝑥)𝑦 =  0,           ∀ 𝑦 ∈  𝑋                                             (2.11) 

where 𝑋 ⊂ 𝑅𝑛  is a nonempty set subset of the vector space 𝑅𝑛 . This critical point 

condition is called the Euler-Lagrange equation for the functional 𝐹. 

Calculus of variations is essentially a generalisation of ordinary calculus, (Hadamard 

2003),  It seeks to find the path, curve, surface, etc. of a functional that has a stationary 

value. Therefore, calculus of variations is a field which deals with finding extrema’s (i.e. 

usually in physical problems, a minimum or maximum). Mathematically, this involves 

finding stationary values of an energy functional form: 

                                                𝐼 = ∫ 𝐹(𝑡, 𝑦(𝑡), 𝑦′(𝑡))𝑑𝑥
b

a

,                                                        (2.12) 

𝐼 has an extremum only if the Euler-Lagrange differential equation is satisfied. 

2.4 Minimisation Problems 

Before going deeper into the minimisation problems, a few more definitions are needed. 

Definition 4 (Hadamard 2003): Let 𝑋 and 𝑌 be a normed space, 𝑇: 𝑋 → 𝑌 a (linear or 

nonlinear) mapping. The equation  

                                                        𝑇𝑢 = 𝑓                                                                          (2.13) 

is called well-posed if the following three conditions hold: 

1. Existence: For every 𝑓 ∈ 𝑌 there is (at least one) 𝑢 ∈ 𝑋 such that 𝑇𝑢 = 𝑓. 

2. Uniqueness: For every 𝑓 ∈ 𝑌 there is at most one 𝑢 ∈ 𝑋with 𝑇𝑢 = 𝑓. 

3. Stability: The solution 𝑢 depends continuously on 𝑓; that is, for every sequence 

(𝑢𝑛) → 𝑋 with 𝑇𝑢𝑛 → 𝑇𝑢(𝑛 → ∞), it follows that 𝑢𝑛 → 𝑢(𝑛 → ∞). 

If (at least) one of the previous conditions fails, that the problem (2.13) is called ill-

posed in the sense of Hadamard. 

In image processing problems, ill-posedness leads to instability issues. The right-hand 

side 𝑓 to 𝑌 is never known exactly, but only up to an error &> 0, which is responsible 

for instability, and the problem (2.13) is transformed to a perturbed one as follows: 

                                                         𝑓 =  𝑇𝑢 +  𝛿                                                               (2.14) 

Various digital processes can be applied to the digitised image 𝑓 to generate a new 

digital image 𝑢. The Euler-Lagrange differential equation has been applied to solve the 

problem of finding the minimum or maximum values of the energy functional. 

Theorem 1: Each problem in the calculus of variations can be stated in three equivalent 

forms, which are 

http://mathworld.wolfram.com/StationaryValue.html
http://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html
http://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html
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Variational form:  

Minimise𝐸(𝑢) = ∬𝐹(𝑢)𝑑Ω

 

Ω

 

Weak form:  

𝜕𝐸

𝜕𝑢
= ∬(∑

𝜕𝐹

𝜕𝐷𝑖𝑢
)

 

Ω

(𝐷𝑖𝑣)𝑑Ω = 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 

Euler equation:  

∑𝐷𝑖
𝑇 (

𝜕𝐹

𝜕𝐷𝑖𝑢
) = 0. 

When 𝐹 is a quadratic function of 𝑢 and its derivatives, the expressions 𝜕𝐹/𝜕𝐷𝑖𝑢 are 

linear and so is the Euler equation. 

2.4.1 Euler-Lagrange Equation 

The Euler-Lagrange differential equation is the essential equation of the calculus of 

variations. It stipulates that if 𝐼 is defined by an integral of the form (2.14), where�́� =
𝜕𝑦

𝜕𝑡
, 

then I has a stationary value if the Euler-Lagrange differential equation 

                                                 
𝜕𝐹

𝜕𝑥
−

𝜕

𝜕𝑥
(
𝜕𝐹

𝜕�́�
) = 0                                                                   (2.15) 

is satisfied. 

For two independent variables, formula (2.16) shows the double integral to be 

minimised over a fixed domain 𝐷 of the plane, with respect to functions 𝑦 =  𝑦(𝑡, ℎ). 

                                             𝐼 = ∫∫𝐹(𝑡, ℎ, 𝑦, 𝑦′𝑡 , 𝑦′ℎ)𝑑𝑥
 

𝐷

,                                                    (2.16) 

The Euler Lagrange equation for the minimisation of (2.16) the equation is 

                                       
𝜕𝐹

𝜕𝑦
−

𝜕

𝜕𝑡
(

𝜕𝐹

𝜕𝑦′
𝑡

) −
𝜕

𝜕ℎ
(

𝜕𝐹

𝜕𝑦′
ℎ

) = 0                                                (2.17) 

Definition 5 (Local minimum values): A function 𝑓 has a local minimum value 𝑓(𝑥1) 

at the point 𝑥1 in its domain provided there exists a number ℎ >  0 such that 𝑓(𝑥) ≥

𝑓(𝑥1) whenever 𝑥 is in the domain of 𝑓and |𝑥 − 𝑥1| < ℎ. A function 𝑓 can have many 

local minima.  

Definition 6 (Absolute minimum values): A function 𝑓  has an absolute minimum 

value 𝑓(𝑥1)  at the point 𝑥1  in its domain, if 𝑓(𝑥)  ≥ 𝑓(𝑥1)  holds for every 𝑥  in the 

domain .  This means that a function can have at most one absolute maximum or 

minimum value, though this value can be assumed at many points. When the global 

minimum of a function 𝑓(𝑥) is to be found, we need to find 𝑥 such that 𝑓(𝑥) has the 

smallest possible value. The unconstrained minimisation problem is formulated as 

                                                             min
𝑥

𝑓(𝑥),                                                          (2.18) 
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where  𝑥 ∈ 𝑅 𝑛 is a real vector with 𝑛 ≥ 1  components and 𝑓 ∶  𝑅 𝑛 →  𝑅  is a smooth 

function. Sometimes a constraint must be fulfilled at the minimum. We can for example 

look for the minimum only at points where another function 𝑔(𝑥)  =  0. The constrained 

minimisation problem is formulated as 

                                             min
𝑥

𝑓(𝑥) subject to 𝑔(𝑥) =  0,                                            (2.19) 

where 𝑥 and 𝑓 are defined as above and 𝑔 ∶  𝑅𝑛 →  𝑅 is a smooth function. To find local 

extrema values of the function 𝑓, the Lagrange multipliers method can be used. 

2.4.1.1 Lagrange Multipliers (Bertsekas 2014) 

The method of Lagrange multipliers is a strategy for finding local extrema of 

minimisation function 𝑓(𝑥1, … , 𝑥𝑛) subject to a constraint 𝑔(𝑥1, … , 𝑥𝑛) = 0, where 𝑓 and 

𝑔 must be functions with continuous first partial derivatives in the open set containing 

𝑔(𝑥1, … , 𝑥𝑛) = 0 and 𝛻𝑔 ≠  0 at any point in the open set.  

A new variable (λ) called a Lagrange multiplier is introduced, and study the Lagrange 

function that defined by 

                          𝐿(𝑥1, … , 𝑥𝑛, 𝜆) =  𝑓(𝑥1, … , 𝑥𝑛) + 𝜆 𝑔(𝑥1, … , 𝑥𝑛),                             (2.20) 

Where the Lagrange multiplier 𝜆 is a constant coefficient (i.e. 𝜆  is the change in the 

optimal value of the objective function 𝑓(𝑥1, … , 𝑥𝑛) due to the relaxation of a given 

constraint 𝑔(𝑥1, … , 𝑥𝑛). 

If 𝑓(𝑥1)  is a maximum of 𝑓(𝑥1)  for the original constrained problem, then there 

exists λ0such that (𝑥1, 𝜆1) is a stationary point for the Lagrange function (stationary 

points are those points where the first partial derivatives of 𝐿 = 0). However, not all 

stationary points yield a solution of the original problem, as the method of Lagrange 

multipliers yields only a necessary condition for optimality in constrained problems. 

This method of Lagrange multipliers is used to solve  𝛻𝐿(𝑥1,… , 𝑥𝑛, 𝜆) =  0 . Note 

that 𝛻𝜆𝐿(𝑥1, … , 𝑥𝑛, 𝜆) = 0  implies 𝑔(𝑥1, … , 𝑥𝑛) = 0. To summarise 

                          𝛻𝐿(𝑥1, … , 𝑥𝑛, 𝜆) = {
𝛻𝑓(𝑥1, … , 𝑥𝑛) = −𝜆 𝛻𝑔(𝑥1, … , 𝑥𝑛)

𝑔(𝑥1, … , 𝑥𝑛) = 0                            
                        (2.21) 

This 𝛻𝑓 = −𝜆 𝛻𝑔 implies that the extrema 𝛻𝑓 and 𝛻𝑔 are parallel.  

                                                      𝛻𝑓 = 𝜆1𝛻𝑔1 + ⋯+ 𝜆𝑛𝛻𝑔𝑛                                                (2.22)           

is required at the extrema. To solve equation (2.21), which amounts to solving  𝑛 

equations in  𝑛 unknowns.  

To sum up, Lagrange multipliers method is just a strategy that finds the local maxima 

and minima of the gradient of function points in the same direction as the gradients of 

https://en.wikipedia.org/wiki/Stationary_point
https://en.wikipedia.org/wiki/Necessary_condition
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its constraints, while also satisfying those constraints. The method of Lagrange 

multipliers is used to solve the constraint optimisation problems   

Similarly, if 𝐹(𝑢) ∶  𝑉 → 𝑅 and 𝐺(𝑢) ∶  𝑉 → 𝑅 are 𝐶1-functionals on a Banach space, we 

can minimise 𝐹(𝑢)  on the constrained set 𝐶 =  {𝑢 ∈  𝑉 ∶  𝐺(𝑢)  =  0} . The Lagrange 

functional is defined by 

                                                     𝐿(𝑢, 𝜆) =  𝐹(𝑢) + ∫𝜆𝐺(𝑢)
 

Ω

 𝑑𝑥,                                         (2.23) 

where 𝑢: Ω → 𝑅 and 𝜆: Ω → 𝑅 are functions, then the solution of a minimisation problem 

(2.23) is found by iterative algorithms. 

2.4.2 The Method of Steepest Descent (Gradient Descent) (Kelley 1999) 

The steepest descent method is an optimisation method for finding the local maximum 

or minimum of the function 𝑓(𝑥). The method of steepest descent is also called the 

gradient descent method, this method starts at 𝑥0 and, as many times as needed, moves 

from 𝑥n to 𝑥n+1 by minimising along the line extending from 𝑥n in the direction 

of  −𝛻𝑓(𝑥𝑛), the local downhill gradient. Formally, this can be done several times by 

the algorithm  

                                                       𝑥𝑛+1  =  𝑥𝑛  + ∆𝑡𝛻𝑓(𝑥𝑛);  𝑛 =  0;  1;  2,                       (2.24),     

where ∆𝑡 is small enough, 𝑥𝑛 gets closer to the minimum as 𝑛 increases. At a minimum 

𝑥∗ the gradient 𝛻𝑓(𝑥∗)  equals zero and the iterative algorithm has converged. A 

drawback of the method is that many iterations may be needed before convergence. In 

general, the convergence rate is only linear. The convergence can be improved by 

calculating the optimal ∆𝑡  in each step, as see in Figure 2-4. This will take more 

computational time and the conjugate gradients method is often a better alternative. 

 

Figure 2-4: The level curves of a poorly scaled problem. The vector points in the steepest 

descent direction. 

The steepest descent method is expressed via the diffusion equation. Numerical 

methods can be used to solve the equation (2.23). The gradient descent is simply an 

itertive method for finding the minimum of a function in an iterative way. 

http://mathworld.wolfram.com/Gradient.html
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2.4.2.1 Unique Solution (W. Rudin 1976) 

A minimisation problem can have several local minima. The aim is in finding the global 

minima which represents the best of all such local minima. Sometimes, the problem is 

that even if the iterations have converged (i.e. each iteration represents the solution of 

the problem), a global minimum solution is difficult to determine, so we will visually 

determine it on the image. 

Theorem 2: Any local minimiser 𝑥∗is a global minimiser of differentiable 𝑓 if function 

𝑓 is convex. Then any stationary point 𝑥∗is a global minimum. Therefore, the concept of 

convex needs to be defined (W. Rudin 1976). 

Definition 7 (Convex set) (W. Rudin 1976): A set 𝑆 in a vector space over 𝑅𝑛 is called 

a convex set if the line segment connecting any pair of points of 𝑆 lies entirely 

in 𝑆. Formally, for any two points 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, we have. 

                                                  𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆,          ∀𝛼 ∈ [0, 1]                               (2.25)  

This definition is illustrated in Figure 2-5. 

 
Figure 2-5: A straight line segment connecting two points in a set. The left is a convex set. The 

right is a non-convex set. 

Definition 8 (Convex function) (W. Rudin 1976): A function 𝑓:𝑀 → 𝑅 defined on a 

nonempty subset 𝑀 of  𝑅𝑛 and taking real values is called convex, if  

• the domain 𝑀 of the function 𝑓 is convex set;  

•  for any 𝑥, 𝑦 ∈  𝑀 and every 𝛼 ∈ [0, 1] one has 

                                  𝑓(𝛼 𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦),                                   (2.26)    

Then the graph of 𝑓 lies below the straight line connecting (𝑥, 𝑓(𝑥)) to (𝑦, 𝑓(𝑦)) in the 

space 𝑅𝑛. Figure 2-6 is clarified the definition of convex function.                

 
Figure 2-6: A straight line segment connecting two points at a function. The left is a convex 

function. The right is a non-convex function. 

http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/LineSegment.html
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The main point necessary to the proof of well-posedness, the convexity of the 

regularisation functional, will also be necessary to establish the well-posedness of 

different types of regularisation operators (Oman 1995). 

The solution of the Euler-Lagrange equation which follows from the minimisation 

problem leads to the PDE. Therefore, the numerical method has been applied to solve 

the PDE. The next section shows the numerical methods which have been used to apply 

the PDE-based inpainting models. 

2.5 Numerical Methods of PDE-based Inpainting Models 

Fast numerical methods for PDE-inpainting models continue to be an active research 

area.  Researchers from different fields have been bringing many fresh ideas to the 

problem, which has led to many exciting results. Carola in (Schonlieb 2015) has studied 

the numerical solution of PDE-based inpainting models and also discussed the 

numerical solutions of high order PDE models.  Some categories to be  particularly 

mentioned are the finite difference (Smith 1985), finite element (Schönlieb 2009), and 

dual/primal-dual (Chambolle & Pock 2010) methods. Many of these methods have a 

long history with a great deal of general theories developed. But when it comes to their 

application to the PDE-based inpainting models, many further properties and specialised 

refinements can be exploited to obtain even faster methods. The finite-Difference 

Method (FDM) is one of the numerous numerical methods that used to solve linear and 

nonlinear PDEs (Smith 1985). The FDM was published as early as 1910 by L. F. 

Richardson. FDM is the dominant approach that is used to find the numerical solutions 

of partial differential equations which that describe different problems because it is easy 

to implement, and its solutions are easily verified as well. More recently, numerical 

solutions to the heat equation have been proposed in  (Recktenwald 2011) based on 

using finite difference techniques which applied the explicit, and Crank-Nicolson 

implicit methods to find the approximate solution. The solution entails a series of steps. 

Firstly, the PDE is converted into a discrete difference equation by finite difference 

derived from a Taylor series expansion. Secondly, the discrete mesh of the difference 

equation is constructed using initial and boundary conditions. Finally, the discrete 

difference equation is solved.  

In this thesis, the finite difference method has been applied to implement the PDE-based 

inpainting models. Therefore, the next section introduces the finite difference methods 

with all details and with some examples. 
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2.5.1 Finite Difference 

 (Smith 1985):  

Let 𝑈(𝑥) represent a function of one variable that, unless otherwise stated, will always 

be assumed to be smooth, meaning that we can differentiate the function several times 

and each derivative is a well-defined bounded function over an interval containing a 

particular point of interest �̅�. Three forms are commonly considered, which are forward, 

backward, and central differences. Then by Taylor’s theorem, 

                  𝑈(𝑥 + ℎ) =  𝑈(𝑥) + ℎ𝑈′(𝑥) +
1 

2
ℎ2𝑈′′(𝑥) + 

1

6
ℎ3 𝑈′′′(𝑥) + . . .                   (2.28) 

and 

               𝑈(𝑥 − ℎ)  =  𝑈(𝑥) − ℎ𝑈′(𝑥)  +
1 

2
ℎ2 𝑈′′(𝑥) − 

1

6
ℎ3 𝑈′′′(𝑥) + . . .                   (2.29) 

Collecting equations (2.28) and (2.29) will give  

                𝑈(𝑥 +  ℎ)  +  𝑈(𝑥 − ℎ)  =  2𝑈(𝑥)  + ℎ2 𝑈′′(𝑥)  +  𝑂(ℎ4),                              (2.30)  

where 𝑂(ℎ4) denotes terms containing 4th and higher powers of ℎ. We are supposing 

these terms 𝑂(ℎ4) are trivial in comparison with lower powers of ℎ; it follows that,  

            𝑈′′(𝑥)  =  (
𝜕2𝑈

𝜕𝑥2)
𝑥=𝑥

≈
1

ℎ2
 {𝑈(𝑥 +  ℎ) − 2𝑈(𝑥)  +  𝑈(𝑥 − ℎ)},                        (2.31)  

with a leading error on the right-hand side of order ℎ2. Figure 2-7 clarifies the following 

formulas; the forward-difference formula clearly approximates the slope of the tangent 

at 𝑃 by the slope of the chord 𝑃𝐵,  

                                               𝑈′(𝑥) ≈ 
1

ℎ
{𝑈(𝑥 +  ℎ) − 𝑈(𝑥)},                                         (2.32)  

or the slope of the chord 𝐴𝑃 represents the backward-difference formula 

                                                 𝑈′(𝑥) ≈
1

ℎ
{𝑈(𝑥) − 𝑈(𝑥 − ℎ)},                                         (2.33)  

whilst the slope of the chord 𝐴𝐵 denotes the centred-difference formula 

                                              𝑈′(𝑥) ≈
1

ℎ
{𝑈(𝑥 +  ℎ) − 𝑈(𝑥 − ℎ)},                               (2.34) 

 

Figure 2-7: Finite difference of 𝑈(𝑥). 
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The formulas (2.32) and (2.33) can be written instantly from equations (2.28) and (2.29) 

respectively and assuming 2nd and higher powers of h are trivial. Whereas, the formula 

(2.34) can be obtained by subtracting equation (2.28) from equation (2.29) and ignoring 

terms of order ℎ3. This shows that 𝑂(ℎ) denotes the error for forward and backward-

difference formulas, while the 𝑂(ℎ2) indicates the error for a centred-difference formula. 

The finite difference of a function of more than one variable is illustrated in the 

following definition. 

Definition 8 (Smith 1985): Let 𝑈 be a function of the independent variables 𝑥 and 𝑡. 

Partition the 𝑥 − 𝑡 plane into sets of equal rectangles of sides ∆ 𝑥, ∆𝑡, by equally spaced 

grid lines parallel to 𝑂𝑦, defined by 𝑥𝑖 =  𝑖ℎ, 𝑖 =  0, ±1, ±2, . . . ,, and equally spaced 

grid lines parallel to 𝑂𝑥, defined by 𝑡𝑗 =  𝑗𝑘, 𝑗 =  0, ±1,±2, . . .,as clarified in the 

Figure 2-8. Denote the value of 𝑈 at the representative mesh point 𝑃(𝑖ℎ, 𝑗𝑘) by 

𝑈𝑃  =  𝑈(𝑖ℎ, 𝑗𝑘)  =  𝑈𝑖,𝑗. 

Then by equation (2.31), 

(
𝜕2𝑈

𝜕𝑥2)
𝑃

= (
𝜕2𝑈

𝜕𝑥2)
𝑖,𝑗

≈
𝑈{(𝑖 +  1)ℎ, 𝑗𝑘} − 2𝑈{𝑖∆𝑥, 𝑗∆𝑡} +  𝑈{(𝑖 − 1)ℎ, 𝑗∆𝑡} 

(ℎ)2
 

i.e. 

                                             
𝜕2𝑈

𝜕𝑥2
≈  

𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗  +  𝑈𝑖−1,𝑗

(ℎ)2
,                                                 (2.35) 

with an error of order (∆𝑥)2. The forward-difference approximation for 
𝜕𝑈

𝜕𝑡
 at 𝑃 is 

                                                   
𝜕𝑈

𝜕𝑡
≈

𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

𝑘
 ,                                                                (2.36) 

with an error of order 𝑂(∆𝑡). Therefore, the backward-difference approximation for 
𝜕𝑈

𝜕𝑥
 

at 𝑃 is 

                                                    
𝜕𝑈

𝜕𝑥
≈

𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗

ℎ
 ,                                                              (2.37)  

with an error of order 𝑂(ℎ). 

 

Figure 2-8: The representative mesh point 𝑃(𝑖ℎ, 𝑗𝑘). 
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2.5.2 Explicit Finite Difference Method 

It is a numerical method for solving differential equations by approximating them with 

difference equations, in which finite differences approximate the derivatives. FDM is 

thus a discrete method. The first step is to replace each partial derivative by a finite 

difference, leading to a differences formula. The second step will be to construct the 

grid (i.e. discrete space (image)) of spatial and time variables of this equation. Note that, 

the initial condition of this problem represents the initial state of the missing region in 

the image (always zero), and the boundary conditions represent the values at the 

boundary of the missing region. So, every value of the second row is determined from 

the values in the first row by using the finite difference equation, and so on for the other 

rows. Derivatives are replaced with difference formulas which only contain the discrete 

values located on the grid. A general idea of this method is illustrated in Figure 2-9. 

 

Figure 2-9: General idea of the finite-difference method 

In the next examples, the explicit finite-difference method is used to find the solution of 

2-D heat equation. 

Example.1: Solve the 𝑈𝑡 = 𝑈𝑥𝑥 + 𝑈𝑦𝑦 on the 2-D domain case (black missing region), 

the size of this missing region is 60 × 80. 

                                                          𝑢𝑡 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦                                                                   (2.38)  

The numerical solution of equation (2.38) with Neumann boundary condition 

reconstructs the missing region based on the information obtainable from the 

surrounding region. The explicit finite difference method has been used to find the 

numerical solution. The partial derivative in the equation (2.38) converts to a finite 

difference formula: 

             
𝑢𝑖,𝑗

𝑛+1 − 𝑢𝑖,𝑗
𝑛

𝑘
=

𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛

ℎ2
+

𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛

ℎ2
                            (2.39) 

The solutions of the heat equation are obtained via a stably-conditioned explicit finite 

difference equation. To build the mesh, we need to determine the sizes of the spatial 

grid and time steps. The spatial grid in an image is represented based on its height and 
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width (𝑀,𝑁), and the spatial stepping size is 1, which represents the distance between 

the any pixcl and its neighbours, which is ℎ = 1.The time stepping size is chosen to 

achieve the stability requirement of the finite difference solutions, which may be 

expressed as 
𝑘

ℎ2 ≤  0.5. The time stepping size is determined as 𝑘 = 0.1. 

 

Equation (2.39) can be rewritten as follows: 

                𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 +
𝑘

ℎ2
((𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 − 4𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗+1
𝑛 + 𝑢𝑖,𝑗−1

𝑛 ))                          (2.40) 

where 2 ≤ 𝑖 ≤ 𝑀 − 1 and  2 ≤ 𝑗 ≤ 𝑁 − 1. The Neumann boundary condition can be 

written as follows:  

𝑢𝑥(𝑥, 1, 𝑡) = 𝑢2,𝑥
 − 𝑢1,𝑥

 , 𝑢𝑥(𝑥, 𝑁, 𝑡) = 𝑢𝑁−1,𝑥
 − 𝑢𝑁,𝑥

 , 𝑢𝑥(1, 𝑦, 𝑡) = 𝑢𝑦,2
 − 𝑢𝑦,1

 , 𝑢𝑥(𝑀, 𝑦, 𝑡)

= 𝑢𝑦,𝑀−1
 − 𝑢𝑦,𝑀

  

and the initial condition is 𝑢(𝑥, 𝑦, 0) = 0. The finite difference method can be used to 

rewrite these boundary conditions, as follows 

𝑢𝑥(𝑗, 1, 𝑡) =
𝑢2,𝑗

𝑛 −𝑢1,𝑗
𝑛

ℎ
, 𝑢𝑥(𝑗, 𝑁, 𝑡) =

𝑢𝑁−1,𝑗
𝑛 −𝑢𝑁,𝑗

𝑛

ℎ
 , 𝑢𝑦(1, 𝑖, 𝑡) =

𝑢𝑖,2
𝑛 −𝑢𝑖,1

𝑛

ℎ
, 𝑢𝑦(𝑀, 𝑖, 𝑡) =

𝑢𝑖,𝑀−1
𝑛 −𝑢𝑖,𝑀

𝑛

ℎ
, 

The numerical solution of equation (2.38) with the Neumann boundary conditions 

recovers the missing region in the image. Neumann boundary conditions give the 

normal derivatives on a surface, 𝜕𝑢/𝜕𝑛, is prescribed on the boundary. Which means 

govern information flux from a surface (i.e. through the edges of a surface). Neumann 

boundary conditions are applied on all the boundaries in image inpainting problem 

which encourage to recover the edges in the missing regions. After determining the 

values of all pixels in the whole direction of the border, the equation (2.40) is used to 

calculate the pixels' values and starts from the pixel in position (i=2, j=2) based on the 

information on the border (i.e. row 1 and n and column 1 and m) for the whole image. 

In the next stage, this process is repeated based on the border information and the 

information from the first stage, until the last value of the time t=1000. The equation 

(2.40) with Neumann boundary conditions are applied to each pixel in each (R, G, B) 

channel of the image; in the end, it recovers the missing regions in the image. Figure 

2-10 clarifies the filling in of a missing region based on the boundaries (Neumann).  
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Figure 2-10: The finite-difference grid of heat equation. 

Figure 2-10 is shown the procedures of using the finite-difference method to solve heat 

equation. In Figure 2-10b, calculating the values of the border of missing region based 

on the boundary condition and applying finite difference formula on the first pixels, and 

solving finite difference formula on the first pixels and applying finite difference 

formula on the second pixels in Figure 2-10c, then  solving the finite difference formula 

until last pixel in the first row in Figure 2-10d.  Applying the same process for the other 

rows from the missing region in Figure 2-10e. Finally, repeating the same process for 

10000 times (i.e. until get to the convergenced solutions), as seen in Figure 2-10f. 

Figure 2-11 clarifies how to the black missing region in the grayscale image by using 

heat inpainting model. For more information about the heat model can be found in 

Chapter 4. 

(b) (c)(a)  

Figure 2-11: Heat inpainting process: (a) original image, (b) masked image, (c) inpainted 

image. 

The next section shows the existing statistical quality measurements and explains all 

their drawbacks. Therefore, to overcome the drawbacks of these statistical 

measurements, a TDA approach is proposed to evaluate the quality of image inpainting. 
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2.6 Image Inpainting Quality Assessments 

The results of the proposed inpainting methods should be assessed in terms of the 

performance and the quality. Therefore, different quality image measurements proposed 

in the literature are studied. The most common methods are the statistical measurements 

which are used to evaluate the results.  

In this thesis, image inpainting methods are assessed both with and without use of 

reference images. There are several studies in the literature on the quality of image 

inpainting without using reference images; however, these studies are still a 

complicated task. The next subsection presents the statistical quality measurements of 

image inpainting. 

2.6.1 Statistical Quality Measurements 

Statistical quality measurements are computed directly from resulting images. 

According to the availability of the original image the measurements can be classified 

as Full Reference (FR), No Reference (NR) and Reduced Reference (RR) (Wang & 

Bovik 2006). In this thesis, the quality assessment of image inpainting in case of FR and 

NR is studied by using different statistical measurements. In the next section the well-

known methods of FR, and NR are explained. 

 Full-Reference Image Quality Assessment 

Full-reference (FR) measurements (see Figure 2-12) perform a direct comparison 

between the image under test and a reference or ”original” image in a properly defined 

image space.  

 

Figure 2-12: Image quality assessment approaches: Full Reference. 

To check the quality of an inpainted image when a reference image exists, the 

inpainting algorithms are applied on datasets of natural images, thereby adding different 

missing regions (i.e. scratches, text, and object). The quality of the results and the 

efficiency of these algorithms is checked by applying statistical measurements on the 

inpainted image and original images.  
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The MSE, PSNR, and SSIM measures are used to evaluate the image inpainting 

qualities when a full set of reference images is available. 

2.6.1.1 MSE and PSNR 

The Mean Squared Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are widely 

used, as they are easy to implement and thus convenient to use for optimisation 

purposes (Pedersen & Marius 2012). The MSE computes the cumulative squared error 

between two images: one reference (i.e. original) image and a modified version of it. 

The MSE (Popowicz & Smolka 2015) is calculated between colour original 𝑂  and  

inpainted images 𝐼 as follows: 

                         MSE =
1

(NMQ)
∑ ∑ ∑[Oq(n,m) − Iq(n,m)]

2
M

m=1

N

n=1

Q

q=1

                                    (2.41) 

Where Q=3, the number of channels in a colour image, and N and M represent the size 

of the image (i.e. the number of rows and columns in the channel image). A lower value 

for the MSE indicates a lower error, and thus better quality of the inpainted image. The 

PSNR computes the peak signal to noise ratio between two images and gives a value in 

decibels (db) as a result. The first step in computing the PSNR is to obtain the MSE 

value for the two images. Then, the PSNR is defined as: 

                                                        PSNR = 10log10 (
2552

MSE
)                                               (2.42) 

The higher the value obtained for PSNR, the better the quality of the inpainted image. 

The relationship between PSNR and MSE is an inverse correlation.  

2.6.1.2 Structural Similarity Index (SSIM) 

The colour version of the Structural Similarity Index (SSIM) was proposed by Wang et 

al. in (Wang et al. 2004). SSIM considers quality degradations in the images as 

perceived changes in the variation of structural information between the original and 

inpainted images. The idea behind this measurement is to perform separate comparisons 

of the luminance (l), contrast (c) and structure (s) information between local windows in 

the original and inpainted images and then combine the results of these comparisons to 

obtain the value for the SSIM. The SSIM is a weighted combination of three 

comparative measurements between the original and inpainted images: 

                                    SSIM(O, I) = [𝑙(O, I)𝛼 ∙  𝑐(O, I)𝛽 ∙ 𝑠(O, I)𝛾]                                         (2.43)  

Where 𝑙, 𝑐  and 𝑠  represents the luminance, contrast and structure comparison 

measurements respectively. Where 
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𝑙(𝑂, 𝐼) =
2𝜇𝑂 𝜇𝐼 +𝑐1

𝜇𝑂 
2 +𝜇𝐼 

2+𝑐1
, 𝑐(𝑂, 𝐼) =

2𝜎𝑂 𝜎𝐼 +𝑐2

𝜎𝑂 
2 +𝜎𝐼 

2+𝑐2
, and 𝑠(𝑂, 𝐼) =

2𝜎𝑂 𝐼 +𝑐3

𝜎𝑂 𝜎𝐼 +𝑐3
 

where c3 = c2/2, and  𝛼 = 𝛽 = 𝛾 = 1, then the formula of SSIM (2.43) is simplified as 

follows: 

                                        SSIM(O, I) =
(2μO 

μI + c1)(2σO  I + c2)

(μO 

2 + μI 
2 + c1)(σO 

2 + σI 
2 + c2)

                         (2.44) 

where (μO 
, σO 

)  and (μI , σI )  denote the mean and standard deviation of patches  

in the images O and I , respectively; σO I : the covariance of O and I; c1 = (k1h)2, c2 =

(k2h)2such that h = 2bits per pixel − 1, k1 = 0.01 and k2 = 0.03.  

In our work, SSIM is calculated on a window size of 8 × 8, and then the results from the 

R, G, and B channels are averaged. The resultant of SSIM index is a decimal value 

between -1 and 1. The value 1 is only reachable in the case of original and inpainted 

identical images. 

 No Reference Image Quality Assessment 

No-reference (NR) measurements (see Figure 2-13) are also called blind measurements 

and assume that IQ can be determined without a direct comparison between the original 

and the inpainted images.  

 

Figure 2-13: Image quality assessment approaches: No-Reference. 

Theoretically, it is possible to measure the quality of any visual contents. In practice, 

some information about the application domain, requirements and users’ preferences are 

required to contextualise the quality measurements. NR measurements are designed to 

identify and quantify the presence of specific processing distortions that may exist in the 

evaluated image. To estimate the presence of a defect or artefact produced by some 

imaging processing on the image, we need to characterise the properties of the artefact 

as well as the effects that it produces on the low-level components of the image (edges, 

homogeneous areas, etc.). In the case not existing reference image, Entropy, MSSIM 

and CSQM are used to check the quality of the inpainted image. 

https://en.wikipedia.org/wiki/Covariance
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2.6.1.3 Entropy 

Entropy is defined as the quantitative measurements of disorder or randomness in the 

image, the entropy of an inpainted image is defined as: 

                                                                      𝐸 = −∑∑𝑃𝐼𝑖,𝑗 log2 𝑃𝐼𝑖,𝑗

𝑚

𝑗=1

                                        (2.45)

𝑛

𝑖=1

 

Where 𝑃𝐼𝑖,𝑗
 is the probability of pixel intensities (i.e. the distribution of element values), 

and log2  is the base 2 logarithm. In other words, high entropy refers to less information 

about uncertainty in the image and in contrast low entropy means there is more 

information about uncertainty in the image. This measurement is applied on the 

inpainted regions that are obtained using different inpainting methods.  

2.6.1.4 Mean of Structural Similarity (MSSIM) 

The mean of structural similarity (MSSIM) is a function to measure an appropriateness 

degree between the inpainted region 𝛺 and the rest of image 𝛷 = 𝐼 −  𝛺, the size of 

inpainted region 𝛺 is 𝑛 × 𝑚. The MSSIM is defined as follows: 

                                         𝑀𝑆𝑆𝐼𝑀 =
1

𝑚𝑛
∑∑max {𝑆𝐼𝑀(𝛹𝑝,𝛹𝑞)}

𝑚

𝑗=1

                                      (2.46)

𝑛

𝑖=1

 

Where 𝑝 ∈ 𝛺 and ∀ 𝛹𝑞 ∈ Φ. The idea of similarity measurement combining structure 

and colour information (Shi et al. 2009) is used in this thesis. The similarity function is 

then defined as follows: 

                            𝑆𝐼𝑀(𝛹𝑝,𝛹𝑞) = (1 − ℎ) 𝑆𝑆(𝛹𝑝,𝛹𝑞) + ℎ 𝐻𝑆(𝛹𝑝,𝛹𝑞)                            (2.47) 

where, ℎ is a positive constant within the range [0, 1] defining the relative importance 

between structure similarity (𝑆𝑆)and hue similarity (𝐻𝑆), corresponding to the colour 

information. The structure and hue similarity indexes are defined by equations (2.48) 

and (2.49), respectively: 

                                                   𝑆𝑆(𝛹𝑝,𝛹𝑞) =
2σpq 

+ d1

σp 
+ σ𝑞 

+ d1
                                                    (2.48) 

                                                𝐻𝑆(𝛹𝑝,𝛹𝑞) =
2μpμq 

+ d2

μp 
2 + μq 

2 + d2

                                                     (2.49) 

where (μp 
, σp 

) and (μq 
, σq 

) denote the mean and standard deviation set of patches  

𝛹𝑝 and 𝛹𝑞, respectively; σ𝑝𝑞denotes the cross correlation between 𝛹𝑝 and 𝛹𝑞. Where 

d1 and d2 are small positive constant. In our experiments, constants are set as in (Shi et 

al. 2009), i.e. ℎ = 0.1667; 𝑑1 = 𝑑2 = 6.5025.  MSSIM is applied on the inpainted 

regions in the image and identifying the coherence extent of the inpainted regions with 

the rest of the image. 
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2.6.1.5 Coherence and Structure Quality Measurement (CSQM) 

The last image quality measurement has used to evaluate the image inpainting is 

coherence and structure quality measurement (CSQM). The idea of CSQM introduced 

in (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013) is exploited based on the 

coherence of inpainted regions with the rest of image, and the salient features (i.e. 

structures or contours) should be more associated to the rest of image. The inpainted 

image quality index CSQM is defined as expressed as follows: 

                                       𝐶𝑆𝑄𝑀 =
∑ ∑ 𝐶(𝑝)𝛼𝑆(𝑝)𝛽𝑚

𝑗=1
𝑛
𝑖=1

‖𝛺‖
                                                       (2.50) 

where 𝐶(𝑝) and 𝑆(𝑝) are respectively the coherence and structure terms defined below. 

Two positive parameters 𝛼 and 𝛽 are associated with the aforementioned terms in order 

to be able to adjust their influence on the quality index (in our implementation, are 

set as in (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013), 𝛼 = 𝛽 = 1). The 

coherence term is an objective function to evaluate the similarity between two patches 

that measurements an appropriateness degree between the inpainted patch and the rest 

of image. Coherence term is a mean of structural similarity that introduced before,  

                                                𝐶(𝑝) = 𝑚𝑎𝑥 {𝑆𝐼𝑀(𝛹𝑝,𝛹𝑞)}                                                (2.51) 

While the structure term which interested with the contours and other relevant structures 

in the inpainted regions attract more human gaze than the other components. For that 

reason, the structure term that using the information provided by a saliency map 

identified as follows: 

                                                        𝑆(𝑝) =
𝑆𝑀(𝑝)

𝑚𝑎𝑥𝐼{𝑆𝑀}
                                                        (2.52) 

For all  𝑝 ∈ 𝛷 , where 𝑆𝑀  is the saliency map of inpainted image. There several 

models have been proposed to find the saliency of image. A simple formulation of the 

aforementioned saliency map SM, can be expressed as follows: 

                                                              𝑆𝑀 = ‖𝐼𝜇 − 𝐼𝐺‖                                                      (2.53) 

where 𝐼𝜇 and 𝐼𝐺  are the arithmetic mean pixel value and the Gaussian blurred version of 

the inpainted image, respectively.  

The high values of MSSIM and CSQM represents a better result. The comparison of the 

results is applied by using Entropy, MSSIM and CSQM to evaluate the performance of 

inpainting methods and assess their image quality results. These measurements are used 

to study the quality of inpainted regions when the objects are removed from these 

images and then recovered (cf. Chapter 7).   
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In the next subsection, the Topological Data Analysis (TDA) approach is introduced 

and proposed   as a method for the evaluation of the image inpainting. 

2.6.2 Topological Data Analysis for Image Quality Assessments 

Machine learning and data analysis tasks such as classification and recognition require 

distinct patterns/features that need to be extracted from the object of interest in any 

domain. Traditional data analysis techniques rely on extracting features from data points 

(objects) of interest then computing pairwise symmetries between them. Recent 

challenges in Big Data applications revealed that nowadays data is more complex and 

noisier than the past and classical approaches fail to extract understandable insights 

from them. But more interestingly last decade has seen many attempts to show that data 

has a shape (Carlsson 2009), (Lum et al. 2013) and (Edelsbrunner 2012). The branch of 

mathematics studies shapes of data (objects) is known as topology. Once the shape of 

the data (e.g. Images or data records) constructed, then topology has rich tools to study 

the connectivity and closeness properties of that shape/object, using a finite 

combinatorial process known as Simplicial Complex (SC). Roughly speaking simplicial 

complexes are made up of zero-dimensional simplices (i.e. vertices), then building one-

dimensional simplices (i.e. edges between the vertices) from them, then 2nd dimensional 

simplices (i.e. triangles) from zero and one-dimensional simplices and then higher 

dimensional simplices are constructed similarly. Finally, one gets a SC by gluing these 

simplices ‘nicely’ together along their edges and faces. There are many types of SCs, 

but here we are using what is known Vietoris-Rips (Rips) SCs as it is easy to construct 

and compute in comparison with other types of SCs. Traditional construction of Rips 

SCs are based on selecting a single distance threshold and calculating corresponding 

topological invariants such as betti numbers ( 𝛽𝑛 for 𝑛 = 0,1,2), Euler characteristics, 

cliques and other topological invariants. Instead of a single threshold, recent paradigm 

that relies on capturing the persistency of topological invariants across an increasing 

sequence of distance thresholds is known as topological data analysis (TDA).  

The popular mathematical theory used to characterise topological features is known as 

homology theory. More precisely, the rank of the 𝑛-th homology group equals to what 

is known as betti numbers  𝛽𝑛 , where 𝛽0 is equal to the number of connected 

components (CCs), 𝛽1 is the number of holes and 𝛽2 is the number of cavities in the 

constructed Rips SC. Instead of computing aforementioned topological invariants at a 

single distance threshold, TDA depends on calculating the persistency of these 

invariants across an increasing series of distance thresholds using what is known as 
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persistent homology (Edelsbrunner 2012) and (Ghrist 2008). TDA applications in 

growing fast and beyond the scope of this thesis to discuss it, but recent applications 

include image tampering detection (Asaad & Jassim 2017), fingerprint classification 

(Giansiracusa et al. 2017), steganalysis (Ahonen et al. 2006), brain artery (Bendich et al. 

2016), classification of hepatic lesions(Adcock et al. 2014), gait recognition(Lamar-

León et al. 2012), and many more.  

The first step in building a SC is to consider landmark points (i.e. zero-dimensional 

simplices) in order to be able to build on them higher dimensional simplices such us 

edges, triangles and tetrahedrons. For this task, the approach suggested by A. Asaad and 

S. Jassim in (Asaad et al. 2017) is followed which is the use of  uniform Local Binary 

Patterns as a tool to systematically choose landmark points from images of interest to 

build topological objects. The next section is dedicated to briefly describe local binary 

patterns LBP as a landmark selection procedure in our SC construction. 

2.6.2.1 Local Binary Patterns (LBP) 

Ojala et al. in (Ojala et al. 1996) first introduced LBP as an image texture descriptor. 

After that many versions of LBP have been proposed by other researchers for different 

pattern recognition tasks. In this thesis, the original idea proposed by Ojala et al. in 

(Ojala et al. 1996) is followed. Given any image, LBP replaces each pixel of the image 

with an 8-bit binary code, which encapsulates texture and local structure, determined by 

its 8 neighbouring pixels in a 3 × 3  window surrounding it in clockwise order, see 

Figure 2-14. The process works as follow: starting from the top-left corner of the 

window; subtract central pixel from its 8 neighbouring pixels, assign 0 if the result is 

negative, and 1 otherwise. Mathematically this process can be written as follow: 

                                                   𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑𝛼(𝑃𝑖 − 𝑃𝑐)2
𝑖

7

𝑖=1

                                                   (2.54) 

Where 𝑃𝑖  is the neighboring grey value pixels, 𝑃𝑐 is the center grey value pixel, and the 

function 𝛼(𝑥)is as follow: 

                                                                 𝛼(𝑥) =  {
1  𝑖𝑓 𝑥 ≥ 0
0  𝑖𝑓 𝑥 < 0

                                                     (2.55) 
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Figure 2-14: Local binary operator. Left matrix is a block of size 3 × 3 taken from an image. 

The second matrix is the corresponding binary code. 
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Uniform LBP (ULBP) refers to 8-bit circular bytes that have no more than 2 circular 

transitions. For the sake of clarity, examples of ULBPs are 11110000 (2 transitions), 

11111111 (0-transitions) and examples of non-uniform LBP are 10101010 (8-

transitions), 110011110 (4 transitions). This means that ULBP of any monochrome 

image consists of 58 unique uniform geometries, see Figure 2-15. It has been shown 

that ULBP codes constitute 90% of LBP codes in natural images (Ahonen et al. 2006). 

From Figure 2-15, it is easy to see that there seven groups (of 8 binary codes) of ULBP 

according to the number of 0’s and 1’s in their binary codes, excluding the cases 

00000000 and 11111111. Each of these groups is related to certain types of image 

textures. We shall refer to ULBP codes that have 𝑡 consecutive 1’s as geometry-t. Our 

experimental investigation contains the set of pixels in all geometries as potential 

landmark candidates to build SC.  

 

Figure 2-15: The 58 different uniform patterns in (8, 1) 

Regarding uniform LBP patterns classifications based on the number of ones included 

in the pattern in the natural images database which described in (Ojala et al. 2002); 

these geometries may be characterised as follows: 

1- The patterns in G0 describe the flat area in the image. 

2- The patterns in G8 shows the spot area in the image. 

3- The patterns in G2 and G4 represent the edges in the image. 

4- The patterns in G3 and G5 describe the corners in the image. 

5- The patterns in G6 describe the line ends in the image. 

While the uniform LBP patterns classifications based on the number of ones included in 

the pattern in the face images database which described in(Chan 2007); these 

geometries are described as:  
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1- Flat area: When there is G0 (i.e. no ones) in the pattern. 

2- Spot area: When G8 (i.e. 8 ones) is available. 

3- Edges: When G5 (i.e. 5 ones) is available. 

4- End Lines: When G1 or G7 (i.e. 1 or 7 ones) is or are available. 

5- Corners: When G2, G3, G4, and G6 (i.e. 2, 3, 4 and 6 ones) are available. 

After selecting the landmark points, a sequence of distance thresholds and a constructed 

inclusion series of SCs are selected. These geometries are studied on the inpainted 

images in the later chapters. Thus the next section is dedicated to explaining the process 

of this construction.  

2.6.2.2 Simplicial Complex Construction 

For each class of geometry-t in ULBP, its corresponding positions are extracted in the 

inpainted region of the given image. As a result, we end up with a set of image pixel 

positions of the 8 sets of 𝑡-ones ULBP codes. First, the known Euclidean distance is 

calculated between all pairs of points in the set, and then an increasing 8 sequence of 𝑇-

dependent Rips complexes is constructed, one for each rotation of the geometry-t codes. 

For  𝑇 = 0 , only 0-dimensional simplices are obtained, i.e. the points. Then 𝑇  is 

gradually increased and computed 𝛽0 at each 𝑇.  

Robert Ghrist in (Ghrist 2008) illustrated that there is no optimal method to select the 

best threshold that best captures the topology of data sets. A fixed number of distance 

thresholds are used, as follows:  

𝑇1 = 0, 𝑇2 = 5, 𝑇3 = 10, 𝑇4 = 15, 𝑇5 = 20, 𝑇6 = 25. 

The reason behind using a fixed number of distance thresholds is that beyond certain 

distance thresholds, the computed number of CC will lose its power to discriminate 

inpainted regions with non-inpainted ones or even different types of images inpainted 

through PDE-based inpainting algorithms (see Chapter 4). The diagram Figure 2-16 

below summarises the process of selecting Landmarks from images of interest and 

consequently building SCs.  
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Figure 2-16: Simplicial complex construction for the quality of image inpainting. 

Aforementioned procedure of building topological shapes from images are used in the 

rest of the thesis as an image quality assessment tool. This approach is motivated by the 

work of A. Asaad and S. Jassim in (Asaad et al. 2017), as they used the TDA approach 

to assess the quality of degraded images. In particular, they focused on discriminating 

face images degraded by shadows and blurring. The topological invariant which is used 

across this thesis is the zero homology groups, which correspond to the number of CC 

this is due to its ease of computation. More specifically, the number of CC is calculated 

for both the inpainted and original regions. The closer the number of CC of the 

inpainted region to the number of CC of original region, the better is the quality of the 

inpainted region, and consequently the better inpainting algorithm. The TDA is used to 

evaluate the image inpainting quality in the case full reference is available. 

2.7 Summary and Conclusion 

The task of inpainting can be described as a minimisation problem; the total variation 

has been used in the minimisation problem. A PDE method is produced by solving the 

minimisation problem via the Euler-Lagrange equation. The numerical solutions of 

PDEs are used to reconstruct the missing regions in images. In this chapter, 

mathematical definitions and theories are introduced for variational formulas used for 

adding colour to grayscale images and recovering missing regions in colour images. The 

numerical method which has been used to solve these PDE-based inpainting methods in 

both spatial and frequency domains is also introduced. The statistical and topological 

measurements for image quality assessments and for checking the performance of 

inpainting methods are also introduced. 
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Chapter 3 PDE BASED PARTIAL 

INPAINTING METHODS (COLOURISATION) 

Colourisation, in general, is a process to convert grayscale images/videos to colour 

images/videos. The missing colour information may be restricted to a region of the 

image. There are many research fields in which colourisation algorithms are employed, 

such as biology, astronomy, medicine, and other disciplines. Several colourisation 

techniques have been developed in recent years that are either automatic or semi-

automatic. Here, we first review recently devised colourisation techniques and 

highlighted their advantages and disadvantages. We shall then consider PDE-based 

semi-automatic colourisation techniques, designed to restore colour to a region over 

which greyscale information is known, and then extends its applicability to the case 

when one colour channel is known for any colour space including RGB. Statistical-

based image quality measures are used to evaluate the quality of coloured images, as an 

indicator of the performances of PDE techniques. We shall demonstrate experimentally 

that the PDE algorithms compare well with other algorithms in terms of these 

measurements.  

3.1 General Colourisation Concepts 

A colour image consists of three-dimensional information about the colours in the 

image, usually expressed by three colour channels (e.g. Red, Green and Blue channels). 

A grayscale image consists of one channel (i.e. luminance or intensity) which means it 

is one-dimensional information. A colour image contains more useful information than 

a grayscale image; it is lively and visually appealing to viewers. Colourisation is the 

process of adding missing colours to grayscale images by a computer algorithm. Its 

applications range from old black and white images and movies to scientific 

illustrations (Levin et al. 2004), (Popowicz & Smolka 2014), (Yatziv & Sapiro 2006), 

and (Zhang et al. 2009). Additionally, colourisation has been shown to be useful in 

image compression (Takamichi Miyata et al. 2009), (Sukho Lee et al. 2013) and 

medical images such as MRI, X-ray and CT images, where the indications of some 

crucial regions within medical images may be of special interest to physicians (Shah et 

al. 2013), (Popowicz & Smolka 2017).  
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The 3-dimensional image colour space can be represented by many other 3 channels and 

the most common ones that can be obtained from RGB by affine/linear transformation.  

Converting a colour image to grey entails a reduction of information and is quite easy, 

but the reverse process is not. This is because there can be numerous colours which lead 

to one grey level, meaning that RGB-based colours are underdetermined by greyscale 

values (Sapiro 2005).  

The colourisation problem lies in the restoration of the missing colour information in 

image regions or in the colouration of an entire grayscale image. The first case can be 

divided into 2 categories: (1) The colourisation region problem where the missing 

region has texture (i.e. grayscale) information or (2) the total inpainting problem when 

no information is known in the missing region. Note that, G. Sapiro, (Sapiro 2005), 

refers to the first category as inpainting the colours, and it is, therefore, reasonable to 

consider the first category as partial inpainting which will be the focus of this chapter. 

The other cases, including the colouring of entire grayscale images which is the extreme 

case of colourisation category when the missing region is the entire image, is discussed 

in the rest of this thesis.  

The colourisation problem, as well as the total inpainting problem, has no exact 

solutions because there is no deterministic relation between the luminance of a 

greyscale image and exact colours at the image pixels. The solution of this problem 

aims to restore RGB colours or equivalently restoring any other 3-colour channels. 

Hence, it can be considered as an optimisation (or approximation) problem in terms of 

some subjective/automatic quality measures. Existing colourisation techniques are 

generally divided into semi-automatic and automatic techniques. In the case of semi-

automatic techniques, a user should insert colour scribbles within the missing grayscale 

region. These scribbles enable the algorithms deciding which colours have to be used 

for in corresponding parts of the image. This procedure may be visualised as mimicking 

artist painters through colour spilling over the missing areas starting from the inserted 

scribbles (Levin et al. 2004), (Popowicz & Smolka 2014), (Yatziv & Sapiro 2006), and 

(Lagodzinski & Smolka 2014).  

Automatic colourisation techniques, use a source image to produce the colours and 

works by transferring colour from a colour image to a target greyscale image, (Xiang et 

al. 2009). These automatic techniques do not require the user to select and apply 

individual colours to the target image. Several automatic techniques for adding colours 

to the greyscale image have been developed, and the Welsh et al., (Zhang et al. 2009), 
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that use statistical properties is a typical example. In some applications, designing 

automatic techniques is challenging because of the need for a source image(s) close 

enough in content to the target image to provide the subset sample patches.   

It is difficult to objectively evaluate the definitive colourisation results. The evaluations 

and comparisons of the colourisation algorithms are done by using standard quality 

measures only if the colour version of the image (i.e. original image) is available. Some 

quality measures are used to evaluate the colourisation algorithms such as Peak Signal-

to-Noise Ratio (PSNR),  Structural Similarity (SSIM),  and Normalised Colour 

Difference(NCD).   

In this chapter, we are interested in semi-automatic colourisation techniques and aim to 

develop an extension to the PDE algorithm developed by Sapiro in (Sapiro 2005) to a 

range of colour channels. The rest of the chapter is organised as follows: Section 3.2 

reviews the literature on both semi-automatic and automatic algorithms. While section 

3.3 shows the basics of semi-automatic grayscale image colourisation. Our proposed 

algorithms are illustrated in detail in section 3.4. The results and evaluations of existing 

colourisation methods in comparison to our proposed algorithm are presented in 

sections 3.5 and 3.6. Finally, section 3.7 summarises the work done and identify the 

next set of challenges. 

3.2 Literature Overview 

The literature provides many semi-automatic colourisation approaches, and this area has 

continued to be active in recent years. In 1970, Wilson Markle introduced the term of 

colourisation to describe adding colour to black and white movies assisted by computer 

processing (Levin et al. 2004). A well-known commercial semi-automatic software 

package is given in(Neuraltek 2004), for image colourisation. The main drawback of 

this work is that it requires a manual segmentation of the image, but automatic 

segmentation is more desirable, and we shall adopt in this thesis.  

Our review revealed two main approaches to adding colour either transferring colour 

from another similar image or using colour information from other parts of the image 

itself. Reinhard et al., in (Reinhard et al. 2001), described a theoretically sound 

approach for the colour manipulation, whereby the target image may take on another 

image’s look and meaning, and for this purpose, it used statistical concepts that describe 

correlations that may exist between different colour channels. This pioneering work 

argues that a colour space basis vectors with de-correlated axes is ideal for manipulating 
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colour images. Noting that RGB images can be transferred by an affine transformation 

to ℓαβ which is an orthogonal colour space, (i.e. de-correlated axes), the authors of 

(Reinhard et al. 2001) and (Ruderman et al. 1998) then introduced an automatic 

colourisation scheme that is based on the idea of colour manipulation only in the 

chrominance channel, without changing the luminance level. Such a method uses the 

similarities between a reference colour image and a grayscale one. They then applied 

simple statistical transformations in each separate, de-correlated colour channel of the 

target image so that the source and the target have a similar look. This algorithm has 

succeeded in transferring colour from one image to another image. The concept of using 

de-correlated colour channels has been used in other algorithms such as in automatic 

image colourisation algorithm.  

Zhao et al., in (Zhao et al. 2007) introduce a similar automatic approach, to the above 

approach, for colouring biomedical images. The authors converted the RGB into de-

correlated ℓαβ space for both the reference and the target images (i.e. grayscale image). 

Then they calculated the mean and standard deviation of the luminance channel in a 

moving square 7×7 window. Finally, by comparing these two statistical features in each 

window, the colours are transferred from parts of the reference image into the 

corresponding parts of the grayscale image. 

Another automatic colourisation method is presented in (Zhen et al. 2012) which uses 

pattern continuity and spatial consistency in a grayscale image, instead of considering 

the luminance properties. First, the reference image is converted to YUV colour space 

and segment it. The Gabor wavelet filter used to extract a 10-dimensional texture 

feature vectors from each 7× 7 block in the Y channel from the reference image and use 

them as the training set. Finally, the K nearest-neighbour method is used for classifying 

pixels based on closest training examples in the feature space. This method is used for 

colouring cartoon images and videos.  

The above approaches to automatic colourisation work well for images containing 

distinguishable features, like in the biomedical image, (see section Error! Reference 

ource not found., below). The drawback is that it is difficult to find matching reference 

colour images. Therefore the applications of such algorithms are usually limited. The 

alternative is provided by semi-automatic algorithms. These algorithms are very popular 

for adding colour to grayscale images or movies. Instead of searching for matching the 

reference image, the user is asked to add colour scribbles into the colour missing image 

regions. 
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Popowicz and Smolka in (Popowicz & Smolka 2014) have introduced a semi-automatic 

colourisation algorithm using distance maps for each scribble indicated by a user. The 

distance map function has utilised the concept of isolines (also referred to as contour 

lines), as in geographical maps, consisting pixels of the same intensity level, or other 

property visualised on the maps. Isolines are imaginary lines representing elevation on a 

map by connecting points of equal elevation, to provide a good visual representation of 

the terrain. An isoline is determined in terms of the grayscale intensity difference 

between the pixels and the nearest seed pixel (the one within a scribble). For each pixel, 

the computed difference represents the maximum intensity deviation encountered on its 

shortest path to the seed pixel and ending in a current point. Finally, the colour of a 

pixel is set to the weighted average of each colour is calculated from the seeds.  

Levin et al., in (Levin et al. 2004) proposed a semi-automatic approach for adding 

colours to the grayscale image by defining a quadratic optimisation formula based on 

the assumption that the neighbouring pixels in space-time with similar intensities should 

have similar colours. When the distance between pixels of similar intensities are 

modelled by a Gaussian weighting function, a quadratic cost function is obtained, and 

the optimisation problem can be solved efficiently by standard techniques. This has 

been used in a segmentation procedure in (Arbeláez et al. 2011). This algorithm has 

given a high-quality colourisation but it is time-consuming, and more importantly, it is 

sensitive to changes in that it requires the colourisation to be re-computed from scratch 

after the slightest change to the initially marked pixels. Such an algorithm was also 

applied in biomedical imaging (Shah et al. 2013), and also for video colourisation 

(Veeravasarapu & Sivaswamy 2012). The drawbacks of this algorithm are that it is time 

consuming and uses a large number of colour scribble pixels because it applies 

weighted pixel distances. To avoid these limitations, a similar but modified optimisation 

formula with gradient geometry of channel colours is used, but without using the 

weighted pixel distances. 

On the other hand, Ding and Deng in (Ding et al. 2012) use automatic scribble 

generation. The authors propose the selection of proper colours for automatic insertion 

by reduced operator interaction only. Their algorithm starts by segmenting the image 

through graph-based image segmentation (Felzenszwalb & Huttenlocher 2004).  Next, 

an automatic scribble generation algorithm has been proposed based on spatial 

distribution entropy, placing scribbles within the regions of high information density. 

Finally, colour is added to the scribbles by computing quaternion wavelet phases to 
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conduct colourisation along equal-phase lines. They reconstruct colour image patches as 

vector elements using polar representations in quaternion algebra, by which the 

interrelationships between colour channels are well preserved.  

Konushin and Vezhnevets in (Konushin & Vezhnevets 2006) focus on treating the 

computational burden in semi-automatic colourisation, as these methods are time-

consuming. The authors use the idea of coupled map lattices, the evolutionary nature of 

which allows for fast re-colourisation.  This method can be applied for the changing of 

colours in some regions within colour images. 

Sapiro and Yatziv in (Yatziv & Sapiro 2006) propose an algorithm which uses the 

Dijkstra algorithm (Dijkstra 1959) to find the cost of the shortest path between two 

image pixels by integrating the squared difference of intensities between pixels on the 

path. Colour is added to the grayscale image by calculating a weighted average of 

scribbled colours, where the shortest path analysis provides the weights. Therefore, the 

authors suggested reducing the number of colours during the final blending. Hence their 

algorithm does not entail a high computational burden. 

Yingge Qu et al., in (Qu et al. 2006) adopted a similar manga colourisation which is 

based on pattern continuity. In manga drawing, they use hatching and screening 

techniques to show different effects like structures, shading or reflectance. Then the 

required regions of the same textures should also have similar colours. The Gabor 

wavelet transform is utilised to obtain the structure features. This method is mainly 

limited to a very specific application. 

The above algorithms add colour either using reference similar images or propagating 

colour by inserting colour scribbles, and little consideration is giving to the available 

information in the actual image and in particular, the areas surrounding the missing 

region (s). The alternative approaches are based on the natural expectation that image 

information flow along image features only to be interrupted in the missing region. 

These are categorised as the variational/PDE based approaches (Chan et al. 2006). 

Tony et al., in (Chan et al. 2006) describe the relevance of total variation to 

colourisation and derive a its numerical solutions, proposed two models of the total 

variation in wavelet-based inpainting, to deal with challenges which include that the 

resulting inpainting regions in the pixel domain are usually not geometrically well 

defined, as well as that degradation is often spatially inhomogeneous and creates 
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problems with sharp edges. This work and we have used it to build a scheme that 

minimises the directional derivative of the gradient in the coloured channels. 

A similar approach was followed by Jacobson et al., in (Jacobson & Sorkine-Hornung 

2012) but uses a minimised Dirichlet energy over an image surface where it becomes a 

(discrete energy) minimisation problem and produces a 2nd-order PDE with a discrete 

Laplacian operator. Again, in our work, we benefited by following the same steps to 

obtain the minimisation problem that been used in (Jacobson & Sorkine-Hornung 2012) 

and to solve the resulting nonlinear 2nd-order PDE.  

Sapiro in (Sapiro 2005) inspired by (Levin et al. 2004) proposed the use of the 

optimisation formula which leads to pragmatic colourisation results. The general idea of 

adding colours to the greyscale image based on the solution of PDE, which is derived 

from the assumption, that the difference between the gradient of luminance and 

chrominance should be minimal. As the PDE is of Poisson type and can be solved by 

any Poisson solver. The advantages of the algorithm are its simplicity and efficiency. 

The core idea is thinking of colourisation as an inpainting problem (Sapiro 2005). 

Chung and Sapiro (Do Hyun Chung & Sapiro 2000) have shown that the (scalar) 

luminance channel faithfully represents the geometry of the whole (vectorial) colour 

image (Edges). 

The Laplacian operator has also been used in different colourisation methods. The 

weighted p-Laplacian operator has been introduced for image colourisation in (Lezoray 

et al. 2008) which relies on graph regularisation; we have used the minimised Laplacian 

operator of the coloured channels, the nonlinear 4th order PDE, achieved by applying the 

Euler-Lagrange equation with Fréchet derivative to Laplacian minimisation (Peiying 

Chen & Yuandi Wang 2008). To define colour constraints, Sapiro used Cb and Cr 

components in YCbCr colour space. However, the main problem is that Sapiro’s 

method produces significant colour bleeding near the strong edges which are visually 

disturbing, so applying this algorithm was suggested in the wavelet domain for handling 

this shortcoming with sharp edges, but the result was not satisfactory. Where this work 

with all details is introduced in section 3.4.2. 

The authors in (Lagodzinski & Smolka 2014) introduce the morphological distance 

transformation as a possible way to obtain the distance between seed and any other 

image pixel. They use the double-scan algorithm, which can cover all the pixels paths 

and obtains a very good estimation of the Euclidean distance between the image points. 

The distance is modified by making it as the combination of intensity differences and 
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topographic distance. Finally, the authors calculated the colour as a weighted average of 

all scribbled colours. 

Jacob and Gupta in (Jacob & Gupta 2009) propose a different design based on the 

image segmentation and clustering the parts of the image into regions that have the 

same colours. This segmentation method is called the rainwater simulation, then adding 

colour scribbles to each segment. Finally, all the pixels in the segment are colourised 

based on the value of indicated colour scribbles. 

Luan et al., in (Luan et al. 2007) enable the incorporation of two similarity measures 

based on the intensity continuity and the texture features. Instead of using scribbles, the 

user is required to indicate exemplary regions together with their appropriate colour. 

This works well with complex natural images where both, smooth regions and 

complicated, textured regions, are present. 

Recently developed colourisation schemes follow the current evolving trend of using 

Machine Learning for image analysis. These algorithms need an initial learning stage 

that utilises an auxiliary dataset (also called dictionary) of exemplary colour source 

images to train a classifier, such as support vector machine (SVM), to discriminate 

between grayscale patches in terms of some texture feature vectors. Such schemes 

predict the missing colour from the trained model and the known colour channel in the 

image. A number of these algorithms are discussed in (Charpiat et al. 2010). 

Deep learning techniques have also been used to predict the colour (e.g. see (Zhang et al. 

2016), (Cheng et al. 2015) and (Varga & Szirányi 2017)). These algorithms avoid 

adding scribbles or using colour from reference images and output a high-quality fully-

automatic colourisation method using a perfect patch matching technique. These 

algorithms use an extremely large reference database (that contains sufficient colour 

images), and colours are added (to the Cb and Cr channels) by a patch matching process 

that uses similarity between the weights in the greyscale inpainted image and the Y 

channel of the database colour. However, the performance of these techniques is not 

always acceptable, as it may add one colour to two regions because the different colour 

regions have the same weights. Also, these techniques consume a long time to complete 

the colourisation process. Finally, the authors are trying to make these algorithms 

available for all applications based on using a large number of different images in the 

training database. 
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To know these algorithms, in the next section, the basics of the automatic colourisation 

algorithm are introduced with examples. 

3.3 Basics of Semi-Automatic Greyscale Image Colourisation 

Most semi-automatic image colourisation algorithms employ similar steps, as seen in 

Figure 3-1 which describes a general schema of these algorithms. Several actions in this 

schema are conducted by a user and a computer system. In the first step, a user selects 

colour scribbles suitable for the inside of different image objects, where paint, see the 

screenshot of a colourisation software in Figure 3-2. Note that the palettes of standard 

colours are not enough to produce natural variation in colour intensity such as the case 

with the colour of human skin. For this, it will be sensible to use colour blocks from 

other images.  

There are two scenarios for using segmentation algorithms. In the first scenario, 

grayscale images are manually segmented by using colour scribbles to determine the 

borders of the objects in the image. In the second scenario, automatic segmentation 

algorithms are used when dealing with the same kinds of images. This step handles the 

shortcomings in border definitions, but it is time-consuming. Although the next step of 

the colourisation differs from method to method, the general idea remains the same. The 

idea is to propagate colour based on the colour scribbles by calculating distances 

between the neighbourhood pixels of colour scribbles in the luminance channel. 

The selection of the colour for a given pixel is performed using different approaches. In 

one of them, the weighted average of all indicated colours is calculated, where the 

distances are used as weights; otherwise, the numerical solution of PDE or optimisation 

formulas is used to propagate the colour. The final step entails avoiding the leakage of 

colours from distant scribbles by modifying the weights, so that the smallest distances 

are promoted, or by modifying the colour scribbles. 

 

Figure 3-1: Schema of semiautomatic colourisation steps. 

Monochrome/ 
grayscale image 

reading

User’s actions Scribbles 
modification if 

required

Colour calculation 
(based on kind of 

method)

Image 
segmentation 
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automatic)

Final result saving
Combining the color 
channels and check 

the result

Inserting color 
scribbles

Automatic actions
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Figure 3-2: Example of a colourisation software layout. Grayscale image with indicated colour 

scribbles. 

3.3.1 Image Colour Models 

The literature review reveals that most existing automatic colouring schemes apply 

inpainting schemes in de-correlated colour channels (e.g. see (Reinhard et al. 2001), 

(Ruderman et al. 1998), (Zhao et al. 2007), and (Zhen et al. 2012)), and an interesting 

question arises as to whether these schemes can or cannot be extended to other non-de-

correlated colour such as RGB schemes. The structures of image colour space is first 

briefly reviewed with a focus on the choice of meaningful 3-dimensional colour vectors 

that generate the entire colour space. It is well known that 3 colours are sufficient to 

generate all shades of visible colour, and due to the structure of human vision, RGB 

(Red, Green, and Blue) is the most natural colour model for displaying colour images 

on electronic devices. In terms of digital image processing, the RGB model is 

commonly used for colour monitors and a broad class of colour video cameras. The 

additive nature of the RGB colour image representation means that the obvious 

correlation exists between the values in the 3 channels. There are several other 3-

dimensional additive colour models that use other primary colours can be obtained from 

the RGB model by linear/affine transformations. This implies that the different channels 

of such colour models are again correlated.  

Besides RGB, colour models in use today are oriented either toward hardware (such as 

for colour monitors and printers) or toward applications where colour manipulation is a 

goal (such as in the creation of colour graphics for animation); the additive 3 primary 

colour CMY (Cyan, Magenta, and Yellow) and CMYK (Cyan, Magenta, Yellow, and 

Black) models have been used for colour printing; while the HIS (Hue, Intensity, and 

Saturation) and HSV (Hue, Saturation, and Value) models, which corresponds closely 

with the way humans describe and interpret colours, so artists prefer to use these colour 

models.  
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The colour spaces YCbCr, YUV, NTSC, and YIQ are represented as (luminance, 

chrominance, and chrominance) channels, which are called De-correlated colour spaces 

(i.e. seperate chrominance from luminance in these spaces). The Y channel represent the 

grayscale version of the image. The YCbCr model is used widely in digital 

video and image compression schemes. The YUV model was formerly used in 

(Australia, Europe, except France) television broadcasts. While, the YIQ model was 

formerly used in (North America, Japan and elsewhere) television broadcasts. The XYZ 

(chrominance, luminance, and chrominance) model, which is widely used in scientific 

work, and colour descriptions in other colour spaces are often related to their 

representation in this space.  

For image inpainting investigation one needs to consider these different colour models 

in terms of their properties as two categories. In the first category, each colour channel 

represents all image information (i.e. texture and structure in image beside colour). For 

example, in RGB, R represents all information and red colour, and the same thing with 

G and B channels which represent all information for green and blue colours 

respectively. So, the most common colour spaces in the first group are RGB, CMY and 

CMYK. While, in the second group of colour spaces, colour information is represented 

in two channels (i.e. chrominance) and another channel (i.e. luminance) has all texture 

and structure information, as seen in the colour spaces YCbCr, YUV, NTSC, HSV, HIS, 

and XYZ. The work in (Sapiro 2005), applied its algorithm on YCbCr colour space, 

where the idea of this paper built on when having all information in luminance (i.e. Y 

channel) and they adding colour scribbles to this channel image then trying to propagate 

this colour in chrominance (i.e. Cb and Cr) channels. In this work, we consider 8 

different colour spaces illustrated in Figure 3-3. 
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Figure 3-3: Illustration of colour spaces. 

The next section describes the PDE based colourising algorithm. There follows 

applying it in the eight-colour space in both spatial and frequency domains. 

3.4 Geometric Consideration of the Colourisation Problem 

Understanding the propagation of colour along geometric shapes in images is of great 

benefit to colourisation. Inspired by work in (Levin et al. 2004), Sapiro in (Sapiro 2005) 

developed a  semi-automatic colourisation technique for YCbCr coloured images based 

on the fact that the appropriate colour information optimally minimises the total 

variation between the gradient of the Y channel and the gradient of each of the Cb and 

Cr channels. Sapiro, used the Euler-Langrage process to derive a linear 2nd order PDE 

(Poisson equation), the numerical solutions of which was shown to succeed in adding 

colour to greyscale images/movies.    

Here, we shall first prove that Sapiro’s scheme is extendible to other 3-dimensional 

colour channels, as a result of a modified version of the Poisson PDE. Furthermore, 
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inspired by the  PDE inpainting algorithms proposed in  (Bertalmio et al. 2000) and 

(Peiying Chen & Yuandi Wang 2008) that smoothly propagate information from the 

surrounding areas in the isophotes direction, two functional formulas are investigated, 

other than the gradient functional, defined in terms of the directional derivative of (1) 

the gradient and (2) the Laplacian of two colour channels. The Euler-Langrage process 

applied to these two functional produces nonlinear 2nd order as well as a nonlinear 4th 

order PDE’s that can be solved numerically to restore colours in a missing region of 

interest. The effectiveness of the corresponding image inpainting schemes are 

established, in both the spatial and wavelet domains for 8 different colour spaces. The 

successes of both schemes for a large number of natural images is demonstrated, 

showing that they outperform the Poisson formula. 

3.4.1 The Mathematics of Sapiro's Colourisation Scheme 

For the sake of self-contentment, the mathematical concepts are first described that 

underpin the colourisation scheme Sapiro, in (Sapiro 2005), in the non-correlated YCbCr 

image colour space. Let Y(x, y): Ω → ℛ+, Cb(x, y): Ω → ℛ+ 
, and Cr(x, y): Ω → ℛ+ be 

the functions defining the image Ω in the YCbCr colour space. Assume that Cb and Cr, 

but not Y, values are missing in a region Ωc, which is s proper subset of Ω. 

The following minimisation in the region problem has been introduced for the 

reconstructions of the Cb  (and Cr ) missing colours in Ωc , from the available Y 

luminance image channel.      

                                                    min
Cb

∫  σ|𝛻Y − 𝛻Cb| dΩ,

 

Ω

                                                            (3.1) 

Where𝛻:= (
𝜕

𝜕x
,

𝜕

𝜕y
)is the gradient operator, and σ(∙):ℛ → ℛ, this function works to 

determine the type of space that used for the proposed formula, for example, L1 norm or 

L2 norm space. 

The basic idea is to force the directional gradient (and therefore the geometry) of Cb to 

be as the geometry of the given greyscale image Y while preserving the given values of 

Cb at Ωc. Note here that though, these given values are considered as hard constraints. 

This can be particularly useful for editing applications where the user only provides 

colour hints instead of colour constraints. For ease of the presentation, we continue with 

the assumption of hard constraints. In (Black et al. 1998), a number of robust selections 

for σ were discussed  for image de-noising, while (Ballester et al. 2001) set σ as the L1 



Chapter 3: Colourising Greyscale Images Based on PDE Algorithms   
 

  62  
 

norm, i.e.  𝜎(∙) = |∙|. These choices are based on the work done on total variation in 

(Rudin et al. 1992), and (Jiying Wu & Qiuqi Ruan 2008). Naturally, the most common, 

though not strong, chosen is the 𝐿2 norm,  σ(∙) =∙ which leads via simple calculus of 

variation (Euler-Lagrange equation) to the following Proposition on the necessary 

condition to minimise (3.1): 

Proposition 3.1: Given a YCbCr colour image 𝑓, then in any sub-image of 𝑓: 

                                                      ∆Y = ∆Cb = ∆Cr                                                                     (3.2) 

where ∆  is defined as the Laplacian operator given by ∆:= (
𝜕2

𝜕x2 +
𝜕2

𝜕y2).  

Proof (Sapiro 2005): To prove this, one can rewrite equation (3.1) as follow: 

𝐼(𝑊) = 𝑚𝑖𝑛
                      𝐶𝑏

∫ ∫‖𝛻𝑊‖2 𝑑Ω,

 

Ω

 

 

 where 𝑊 = 𝑌 − 𝐶𝑏           

Since 

‖𝛻𝑊‖2 = 𝛻𝑊.𝛻𝑊 = (
𝜕𝑊

𝜕𝑥
,
𝜕𝑊

𝜕𝑦
) ∙ (

𝜕𝑊

𝜕𝑥
,
𝜕𝑊

𝜕𝑦
) = (

𝜕𝑊

𝜕𝑥
)
2

+ (
𝜕𝑊

𝜕𝑦
)
2

, 

then one we need to find the Euler- Lagrange equation for the following functional 

I(W) = min
                      Cb

∫ ∫ [(
𝜕𝑊

𝜕𝑥
)
2

+ (
𝜕𝑊

𝜕𝑦
)
2

]  dxdy,

𝑦2

𝑦1

𝑥2

𝑥1

 

For simplicity, write the Integrand quantity as 𝐺 = 𝑊𝑥
2 + 𝑊𝑦

2. Thus, 

𝜕𝐺

𝜕𝑊
= 0,

𝜕𝐺

𝜕𝑊𝑥
= 2𝑊𝑥 = 2

𝜕𝑊

𝜕𝑥
,

𝜕

𝜕𝑥
(

𝜕𝐺

𝜕𝑊𝑥
) = 2

𝜕2𝑊

𝜕𝑥2
, 

𝜕𝐺

𝜕𝑊𝑦
= 2𝑊𝑦 = 2

𝜕𝑊

𝜕𝑦
,

𝜕

𝜕𝑦
(

𝜕𝐺

𝜕𝑊𝑦
) = 2

𝜕2𝑊

𝜕𝑦2
. 

Therefore, the Euler-Lagrange equation for this functional is (Tang 2007), 

𝜕𝐺

𝜕𝑊
−

𝜕

𝜕𝑥
(

𝜕𝐺

𝜕𝑊𝑥
) −

𝜕

𝜕𝑦
(

𝜕𝐺

𝜕𝑊𝑦
) = 0. 

which yields the Laplace equation is 

𝜕2𝑊

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
= 0. 

The proof of the Proposition is complete by the fact that: 

∆𝑊 = 0,⇒  ∆(𝑌 − 𝐶𝑏) = 0 ⇒ ∆𝑌 = ∆𝐶𝑏. 
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Similarly, one can prove that   ∆𝑌 = ∆𝐶𝑟.  

Numerical Solution of Equation (3.2).  

Equation (3.2) is a linear elliptic equation which known as Poisson’s equation. The 

boundary conditions will be on Ωc, and the equation (3.2) is written as follows:  

                                                                    𝛻2Cb = ℱ                                                                        (3.3) 

Where ℱ = ∆Y, is the Laplacian of the Y channel data (i.e. luminance, and this data is 

known).  In Cartesian space, equation (3.3) can be written as: 

                                                     (
𝜕2

𝜕x2 +
𝜕2

𝜕y2) 𝐶𝑏(𝑥, 𝑦) =  ℱ(x, y)                                         (3.4)  

To discretise equation (3.4), the five-point finite difference method is used, as follows:  

1. Rewrites (3.4) in discrete space by a finite difference as follows: 

                     𝛻2u =
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑥2
+ 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

∆𝑦2
= 𝑔𝑖,𝑗                 (3.5) 

Where 2 ≤ 𝑖 ≤ 𝑚 − 1 and 2 ≤ 𝑗 ≤ 𝑛 − 1, ∆𝑥2 = ∆𝑦2 = 1 and 𝛻2u = 𝛻2Cb , 𝑔𝑖,𝑗 = ℱ(x, y). 

2. Now, the matrix representation of Poisson’s equation is [A][U] = [b],  

where [𝑈] = [𝑢11, 𝑢21, , … , 𝑢𝑚1, 𝑢12, 𝑢22, … , 𝑢𝑚2, … , 𝑢𝑚𝑛]
𝑇, 

𝐴 =

[
 
 
 
 
 
 
D −I 0 0
−I D −I 0
0
⋮

−𝐼
⋱

𝐷
⋱

−𝐼
⋱

0 ⋯ 0
0 ⋯ 0
0
⋱

⋯
⋱

0
⋮

0 ⋯ 0 −I
0 ⋯ ⋯ 0
0 ⋯ ⋯ ⋯

D −I 0
−I D −I
0 −I D ]

 
 
 
 
 
 

𝑚𝑛×𝑚𝑛

, 𝐷 =

[
 
 
 
 
 
 
4 −1 0 0

−1 4 −1 0
0
⋮

−1
⋱

4
⋱

−1
⋱

0 ⋯ 0
0 ⋯ 0
0
⋱

⋯
⋱

0
⋮

0 ⋯ 0 −1
0 ⋯ ⋯ 0
0 ⋯ ⋯ ⋯

4 −1 0
−1 4 −1
0 −1 4 ]

 
 
 
 
 
 

𝑚×𝑚

 

                                                        𝐔 = 𝐀−1𝐛                                                   (3.6) 

The scribbles are outside of missing colour regions. The Gaussian elimination method 

can be used to solve the system (3.6) with Dirichlet boundary conditions. Also, there is  

a vast field of available literature on numerical implementations of these equations 

leading to accurately efficient solutions (Recktenwald 2011), (Markle, Wilson 1988) 

and (Arbeláez et al. 2011).  

Generalising Sapiro colourisation Algorithm  

Proposition 3.1 is extended to cover different colour spaces as one of our initial 

objectives. This should help apply the Sapiro-like algorithm on any colour space and 

determine the colour space more effective for adding colour. In particular, Sapiro’s 
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algorithm, (Sapiro 2005) on RGB, CMY, and CMYK and as we mentioned before all 

these colour spaces have been derived from RGB colour space.  

The RGB components can be obtained according to equation (3.2): 

                            [
𝑅
𝐺
𝐵
]=[

1.164 0.000 1.596
1.164 0.392 −0.813
1.164 2.017 0.000

] ∙ [
𝑌
𝐶𝑏
𝐶𝑟

] − [
16
128
128

]                                 (3.7) 

Differentiation of this formula yields the following relation on the Laplacian   

                                 [
∆𝑅
∆𝐺
∆𝐵

]=[
1.164 0.000 1.596
1.164 0.392 −0.813
1.164 2.017 0.000

] ∙ [
∆𝑌
∆𝐶𝑏
∆𝐶𝑟

]                                (3.8)a 

Since, ∆Cb = ∆Y and ∆Cr = ∆Y, then we get the following generalised proposition:  

Proposition 3.2: Given a RGB colour image f, then in any sub-image of f: 

                                            ∆R = K1∆G and ∆R = K2∆B,                                           (3.8)b 

where K1 and K2 are constant values obtained from the columns of (3.8), i.e.  

K1 = 0.175  and K2 = 1.1525 

The numerical method used to solve Equation (3.2) can be followed exactly to solve 

Equation (3.8)b for colourisation in the RGB model. The same steps have been followed 

to apply the algorithm in (Sapiro 2005) on CMY colour space. Also, this algorithm has 

applied to eight colour spaces (RGB, CMY, YCbCr, YUV, NTSC, XYZ, HIS, HSV) in 

both spatial and frequency domains. Table 3-1 shows the values of conversion 

parameters (i.e. K1and K2) from different colour spaces to RGB space, when using G as 

the channel that has the most the texture information in the image. 

Colour space YCbCr YUV NTSC XYZ HSV HIS CMY 

𝐊𝟏 value 1.27402 1.57569 1.34973 1.06514 1.54346 1.57621 0.98643 

𝐊𝟐 value 1.77342 1.23276 0.83926 1.30553 1.65432 1.63345 0.75564 

Table 3-1: Values of conversion parameters from different colour spaces to RGB space. 

Figure 3-4 shows the result of applying Sapiro algorithm at RGB colour space, and 

comparison its performance with the YCbCr Sapiro algorithm.  
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Figure 3-4: Sapiro colourisation algorithm. Row (1) Sapiro colourisation process in the YCbCr 

colour space, Row (2) Sapiro colourisation process in the RGB colour space. 

The colourised image obtained using the Sapiro algorithm in RGB has good assessed 

quality (i.e. it is visually acceptable), and its result corresponds to the result of the same 

algorithm in YCbCr, but the quality measurement values of these images are different. 

The Sapiro algorithm has successfully added colour to the missing colour regions. 

However, this algorithm has limitations with the high texture regions, and the edges that 

have different colours in the large missing colour region. Figure 3-5, reveals the 

shortcomings of both algorithms when dealing with the reasonably large missing area or 

when there are many textures in the missing area. 

 

Figure 3-5: Sapiro colourisation algorithm. (a) Original image, (b) masked colour image, (c) 

coloured image. 

The coloured image in the first row shows the bad effect of adding colour to the missing 

colour region that has high texture, especially in the edges, while the coloured image in 

the second row shows the effect of adding colour to the regions that have edges with 

different colours between them. This triggers our next investigations into other 

geometric-based minimisation problems that may result in improved colourisation. 
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3.4.2 Further Variation -based Formulation of Image Colourisation                                                                                                                                                         

This section aims to consider the potential improvement of the previous two 

colourisation algorithms using 2 other geometric-based functional minimisations and 

their Euler-Lagrange solutions. Here, assume that the user adds colour scribbles to the 

missing region by any image editing applications, and these greyscale images with 

colour scribbles are converted to YCbCr colour space. The choice of working in the 

YCbCr colour model is meant to simplify the discussion. The image segmentation 

algorithm (Arbeláez et al. 2011) allows the addition of different colours for different 

objects in the image at the same time.  

3.4.2.1 Minimisation of Directional Derivative of Gradient in Colour Channels 

We first investigate the minimisation of the direction derivatives of gradients in YCbCr 

coloured channels, i.e.  

                                              min
Cb

∫  σ[(
𝛻Y

‖𝛻Y‖
−

𝛻Cb

‖𝛻Cb‖
) ∙ 𝛻Cb] dΩ,

 

Ω

                                        (3.9) 

From calculus of variations, the corresponding Euler-Lagrange equation is (for 𝐿2 norm) 

is used below to prove the following new colourisation algorithm: 

Proposition 3.3: Given a YCbCr colour image 𝑓, then in any sub-image of 𝑓: 

                                                 𝛻 ∙ (
𝛻Cb

‖𝛻Cb‖
) = 𝛻 ∙ (

𝛻Y

‖𝛻Y‖
),                                              (3.10) 

Where 𝛻 ⋅ is the divergence operator given by 𝛻 ∙:= (
𝜕

𝜕x
+

𝜕

𝜕y
), and 𝛻 ∙ (

𝛻Y

‖𝛻Y‖
) is called 

the curvature operator defined on the luminance channel Y.  

Proof: We shall deduce equation (3.10) from equation (3.9) using the Euler-Lagrange 

equation. Firstly, equation (3.9) can be rewritten as follows: 

                               I(W) = min
                      Cb

∫∫((
𝛻Y

‖𝛻Y‖
−

𝛻Cb

‖𝛻Cb‖
) ∙ 𝛻Cb)

2

 dΩ,

 

Ω

 

 

                      (3.11) 

where I(W) = I(Y, Cb). Since   
𝜕I

𝜕𝑊
=

𝜕W

𝜕𝑌
+

𝜕W

𝜕𝐶𝑏
, then  

0 =
𝜕I

𝜕𝑊
∙ 𝑣 = lim

ℎ→0

𝐼(𝑌 + ℎ𝑣) − 𝐼(𝑌)

ℎ
+ lim

ℎ→0

𝐼(𝐶𝑏 + ℎ𝑣) − 𝐼(𝐶𝑏)

ℎ
. 

By setting 𝑁 =
𝛻𝑌

‖𝛻𝑌‖
, 𝑀 =

𝛻𝐶𝑏

‖𝛻𝐶𝑏‖
, 𝑎𝑛𝑑 𝑚1 = 𝛻𝐶𝑏, equation (3.11) becomes: 

𝐼(𝑊) = 𝑚𝑖𝑛
                      𝐶𝑏

∫∫((𝑁 −  𝑀) ∙ 𝑚1)
2
 𝑑Ω,

 

Ω

 

 

      (3.12) 
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𝜕𝑊

𝜕𝑊
= 𝑙𝑖𝑚

ℎ→0

1

ℎ
∫ ∫ (((𝑁 + ℎ𝑣) − 𝑀) ∙ 𝑚1)

2
− ((𝑁 − 𝑀) ∙ 𝑚1)

2
𝑑𝑥𝑑𝑦                       (3.13) 

𝑦2

𝑦1

𝑥2

𝑥1

 

= lim
ℎ→0

1

ℎ
∫ ∫ ((𝑁 − ℎ𝑣) ∙ 𝑚1)

2
− 2(𝑁 − ℎ𝑣)𝑀𝑚1 + (𝑀 ∙ 𝑚1)

2 − ((𝑁 − 𝑀) ∙ 𝑚1)
2
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

𝑥2

𝑥1

 

= lim
ℎ→0

1

ℎ
∫ ∫ (𝑁2 − 2𝑁ℎ𝑣 − ℎ2𝑣2) ∙ 𝑚1

2 − 2𝑁𝑀𝑚1 − 2ℎ𝑣𝑀𝑚1 + 𝑀2 ∙ 𝑚1
2

𝑦2

𝑦1

𝑥2

𝑥1

− (𝑁2 ∙ 𝑚1
2 − 2𝑁𝑀 + 𝑀2 ∙ 𝑚1

2) 𝑑𝑥𝑑𝑦 

= lim
ℎ→0

1

ℎ
∫ ∫ ℎ(−2𝑁𝑣 − ℎ𝑣2) ∙ 𝑚1

2 − 2𝑣𝑀𝑚1  𝑑𝑥𝑑𝑦
𝑦2

𝑦1

𝑥2

𝑥1

 

Using the Dominated Convergence theorem, it is possible to move the limit inside the 

integral.  

𝜕W

𝜕𝑌
= ∫ ∫ lim

ℎ→0
((−2

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
− ℎ (

𝛻v

‖𝛻v‖
)
2

) ∙ 𝛻Cb2 − 2
𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb )𝑑𝑥𝑑𝑦

𝑦2

𝑦1

𝑥2

𝑥1

 

Where ℎ → 0 in the limitation, then 

               
𝜕W

𝜕𝑌
= ∫ ∫ −2

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
∙ 𝛻Cb2 − 2

𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb 𝑑𝑥𝑑𝑦                    (3.13𝑎)

𝑦2

𝑦1

𝑥2

𝑥1

 

The same steps are followed to the derivative for Cb: 

𝜕W

𝜕𝐶𝑏
= ∫ ∫ 2

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
∙ 𝛻Cb2 − 2𝛻Y ∙

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
+ 4

𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb 𝑑𝑥𝑑𝑦       (3.13𝑏)

𝑦2

𝑦1

𝑥2

𝑥1

 

Where 
𝜕I

𝜕𝑊
=

𝜕W

𝜕𝑌
+

𝜕W

𝜕𝐶𝑏
, equations (3.13a) and (3.13b) are substituted in equation (3.13): 

𝜕I

𝜕𝑊
= ∫ ∫ −2

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
∙ 𝛻Cb2 − 2

𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb 𝑑𝑥𝑑𝑦

𝑦2

𝑦1

𝑥2

𝑥1

+ ∫ ∫ 2
𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
∙ 𝛻Cb2 − 2𝛻Y ∙

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
+ 4

𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb 𝑑𝑥𝑑𝑦 

𝑦2

𝑦1

𝑥2

𝑥1

 

This long expression can be simplified as follows: 

                       
𝜕I

𝜕𝑊
= ∫ ∫ 2

𝛻v

‖𝛻v‖

𝛻Cb

‖𝛻Cb‖
∙ 𝛻Cb − 2𝛻Y ∙

𝛻Y

‖𝛻Y‖

𝛻v

‖𝛻v‖
𝑑𝑥𝑑𝑦

𝑦2

𝑦1

𝑥2

𝑥1

                        (3.14) 

Applying integration by parts twice to equation (3.14) leads to the partial differential 

equation, 

𝛻 ∙ (
𝛻Cb

‖𝛻Cb‖
) = 𝛻 ∙ (

𝛻Y

‖𝛻Y‖
). 

i.e.  equation (3.10), and the proof is complete. 

Numerical Solution of Equation (3.10). Equation (3.10) is a nonlinear elliptic equation 

with Dirichlet boundary conditions. Therefore, equations (3.9) and (3.10) can be solved 

very efficiently by a number of well-developed curvature formula solvers (Osher & 

Sethian 1988), (Lai et al. 2009) and (Ibraheem et al. 2012). In Cartesian space, equation 

(3.10) can be written as 
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                                                                   𝛻 ∙ (
𝛻Cb

‖𝛻Cb‖
) = ℱ                                                   (3.15) 

Where,  

ℱ(x, y) = 𝛻 ∙ (
𝛻Y

‖𝛻Y‖
) =

𝑌𝑥𝑥𝑌𝑦
2 − 2𝑌𝑥𝑌𝑦𝑌𝑥𝑦 + 𝑌𝑦𝑦𝑌𝑥

2

(𝑌𝑥
2 + 𝑌𝑦

2)
3
2

 

A fixed point finite differences scheme has been used to solve equation (3.15). A 

discrete form of equation (3.15) is:  

1

ℎ
∆−

𝑥

[
 
 
 
 
 

1

√𝜖2 + (
∆+

𝑥𝐶𝑏𝑖,𝑗

ℎ
)2 + (

∆0
𝑦
𝐶𝑏𝑖,𝑗

ℎ
)2

∆+
𝑥𝐶𝑏𝑖,𝑗

ℎ

]
 
 
 
 
 

+
1

ℎ
∆−

𝑦

[
 
 
 
 
 

1

√𝜖2 + (
∆0

𝑥𝐶𝑏𝑖,𝑗

ℎ
)2 + (

∆+
𝑦
𝐶𝑏𝑖,𝑗

ℎ
)2

∆+
𝑥𝐶𝑏𝑖,𝑗

ℎ

]
 
 
 
 
 

= 𝑔𝑖,𝑗 

⇒
1

ℎ2

𝐶𝑏𝑖+1,𝑗−𝐶𝑏𝑖,𝑗

√𝜖2+(
𝐶𝑏𝑖+1,𝑗−𝐶𝑏𝑖,𝑗

ℎ
)2+(

𝐶𝑏𝑖,𝑗+1−𝐶𝑏𝑖,𝑗−1

2ℎ
)2

−
1

ℎ2

𝐶𝑏𝑖,𝑗−𝐶𝑏𝑖−1,𝑗

√𝜖2+(
𝐶𝑏𝑖,𝑗−𝐶𝑏𝑖−1,𝑗

ℎ
)
2

+(
𝐶𝑏𝑖−1,𝑗+1−𝐶𝑏𝑖−1,𝑗−1

2ℎ
)
2
+

1

ℎ2

𝐶𝑏𝑖,𝑗+1−𝐶𝑏𝑖,𝑗

√𝜖2+(
𝐶𝑏𝑖+1,𝑗−𝐶𝑏𝑖−1,𝑗

2ℎ
)
2

+(
𝐶𝑏𝑖,𝑗+1−𝐶𝑏𝑖,𝑗

ℎ
)
2
−

1

ℎ2

𝐶𝑏𝑖,𝑗−𝐶𝑏𝑖,𝑗−1

√𝜖2+(
𝐶𝑏𝑖+1,𝑗−1−𝐶𝑏𝑖−1,𝑗−1

2ℎ
)
2

+(
𝐶𝑏𝑖,𝑗−𝐶𝑏𝑖,𝑗−1

ℎ
)
2
= 𝑔𝑖,𝑗   (3.16)               

Where the above notations are: 

𝐶𝑏𝑖,𝑗 = 𝐶𝑏(𝑥𝑖, 𝑦𝑗),𝑔𝑖,𝑗 = 𝑔(𝑥𝑖, 𝑦𝑗),   ∆±
𝑥𝐶𝑏𝑖,𝑗 = ±(𝐶𝑏𝑖+1,𝑗 − 𝐶𝑏𝑖,𝑗),∆±

𝑦
𝐶𝑏𝑖,𝑗

= ±(𝐶𝑏𝑖,𝑗+1 − 𝐶𝑏𝑖,𝑗)  

A fixed-point Gauss-Seidel iterative method for the equation (3.16), and so the 

following linearized equation is introduced: 

1

ℎ2

𝐶𝑏𝑖+1,𝑗
𝑛

 
− 𝐶𝑏𝑖,𝑗

𝑛+1

 

√𝜖2 + (
𝐶𝑏𝑖+1,𝑗

𝑛 − 𝐶𝑏𝑖,𝑗
𝑛

ℎ
)2 + (

𝐶𝑏𝑖,𝑗+1
𝑛 − 𝐶𝑏𝑖,𝑗−1

𝑛

2ℎ
)2

−
1

ℎ2

𝐶𝑏𝑖,𝑗
𝑛+1

 
− 𝐶𝑏𝑖−1,𝑗

𝑛

√𝜖2 + (
𝐶𝑏𝑖,𝑗

𝑛 − 𝐶𝑏𝑖−1,𝑗
𝑛

ℎ )

2

+ (
𝐶𝑏𝑖−1,𝑗+1

𝑛 − 𝐶𝑏𝑖−1,𝑗−1
𝑛

2ℎ )

2

+
1

ℎ2

𝐶𝑏𝑖,𝑗+1
𝑛 − 𝐶𝑏𝑖,𝑗

𝑛+1

 

√𝜖2 + (
𝐶𝑏𝑖+1,𝑗

𝑛 − 𝐶𝑏𝑖−1,𝑗
𝑛

2ℎ
)2 + (

𝐶𝑏𝑖,𝑗+1
𝑛 − 𝐶𝑏𝑖,𝑗

𝑛

ℎ
)2

−
1

ℎ2

𝐶𝑏𝑖,𝑗
𝑛+1

 
− 𝐶𝑏𝑖,𝑗−1

𝑛

√𝜖2 + (
𝐶𝑏𝑖+1,𝑗−1

𝑛 − 𝐶𝑏𝑖−1,𝑗−1
𝑛

2ℎ
)2 + (

𝐶𝑏𝑖,𝑗
𝑛 − 𝐶𝑏𝑖,𝑗−1

𝑛

ℎ
)2

= 𝑔𝑖,𝑗 

And solving for 𝐶𝑏𝑖,𝑗
𝑛+1, we obtain: 

𝐶𝑏𝑖,𝑗
𝑛+1 = (

1

1
ℎ2 (𝑐1 + 𝑐2 + 𝑐3 + 𝑐4)

) . [𝑔𝑖,𝑗 +
1

ℎ2
(𝑐1𝐶𝑏𝑖+1,𝑗

𝑛 + 𝑐2𝐶𝑏𝑖−1,𝑗
𝑛 + 𝑐3𝐶𝑏𝑖,𝑗+1

𝑛

+ 𝑐4𝐶𝑏𝑖,𝑗−1
𝑛 )]                                                                                             (3.17) 

Where the introduced notations are:  

𝑐1 =
1

√𝜖2+(
𝐶𝑏𝑖+1,𝑗

𝑛 −𝐶𝑏𝑖,𝑗
𝑛

ℎ
)2+(

𝐶𝑏𝑖,𝑗+1
𝑛 −𝐶𝑏𝑖,𝑗−1

𝑛

2ℎ
)2

,𝑐2 =
1

√𝜖2+(
𝐶𝑏𝑖,𝑗

𝑛 −𝐶𝑏𝑖−1,𝑗
𝑛

ℎ
)

2

+(
𝐶𝑏𝑖−1,𝑗+1

𝑛 −𝐶𝑏𝑖−1,𝑗−1
𝑛

2ℎ
)

2
, 



Chapter 3: Colourising Greyscale Images Based on PDE Algorithms   
 

  69  
 

𝑐3 =
1

√𝜖2 + (
𝐶𝑏𝑖+1,𝑗

𝑛 − 𝐶𝑏𝑖−1,𝑗
𝑛

2ℎ
)

2

+ (
𝐶𝑏𝑖,𝑗+1

𝑛 − 𝐶𝑏𝑖,𝑗
𝑛

ℎ
)

2
, 𝑐4

=
𝐶𝑏𝑖,𝑗

𝑛+1

 
− 𝐶𝑏𝑖,𝑗−1

𝑛

√𝜖2 + (
𝐶𝑏𝑖+1,𝑗−1

𝑛 − 𝐶𝑏𝑖−1,𝑗−1
𝑛

2ℎ
)2 + (

𝐶𝑏𝑖,𝑗
𝑛 − 𝐶𝑏𝑖,𝑗−1

𝑛

ℎ
)2

, 

The boundary condition can be implemented in the following way:  

𝐶𝑏0,𝑗
𝑛 = 𝐶𝑏1,𝑗

𝑛 , 𝐶𝑏𝑀,𝑗
𝑛 = 𝐶𝑏𝑀−1,𝑗

𝑛 , 𝐶𝑏𝑖,0
𝑛 = 𝐶𝑏𝑖,1

𝑛 , 𝐶𝑏𝑖,𝑁
𝑛 = 𝐶𝑏𝑖,𝑁−1

𝑛 and  𝐶𝑏0,0
𝑛 = 𝐶𝑏1,1

𝑛 , 𝐶𝑏0,𝑁
𝑛 =

𝐶𝑏1,𝑁−1
𝑛 , 𝐶𝑏𝑀,0

𝑛 = 𝐶𝑏𝑀−1,1
𝑛 , 𝐶𝑏𝑀,𝑁

𝑛 = 𝐶𝑏𝑀−1,𝑁−1
𝑛 .  

Where, 1 ≤ 𝑖 ≤ 𝑀 − 1,1 ≤ 𝑗 ≤ 𝑁 − 1, and (𝑀,𝑁) is the size of the image. 

The numerical solution of equation (3.17) with Dirichlet boundary conditions can be 

used to add colour to the missing-colour region in an image. 

Equation (3.10) is once again solved using standard efficient numerical implementations 

(Peiying Chen & Yuandi Wang 2008), and (Lai et al. 2009). The numerical solution of 

equation (3.10) that we have found represents the colour of the region of the interest in 

the Cb channel. The same procedure is followed to find the numerical solution of the Cr 

channel. 

3.4.2.2 Minimisation of the Laplacian in Colour Channels 

The second formula proposed is based on the Laplacian operator in coloured channels. 

In this case, the variational formula becomes    

                                                  min
Cb

∫  ρ(||∆Y − ∆Cb ||)dΩ,

 

Ω

                                            (3.18) 

The nonlinear 4th order PDE achieved by applying Euler-Lagrange equation with a 

Fréchet derivative of Laplacian minimisation formula (Peiying Chen & Yuandi Wang 

2008) is (for an 𝐿2 norm): 

Proposition 3.4: Given a YCbCr colour image 𝑓, then in any sub-image of 𝑓: 

𝜕4𝐶𝑏

𝜕𝑥4
+ (

𝜕2𝐶𝑏

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝐶𝑏

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+
𝜕4𝐶𝑏

𝜕𝑦4
=

𝜕4𝑌

𝜕𝑥4
+ (

𝜕2𝑌

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝑌

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+
𝜕4𝑌

𝜕𝑦4
             (3.19) 

Proof: 

Equation (3.19) is a nonlinear 4th order PDE; this equation can write as follows:  

                                      
𝜕4𝐶𝑏

𝜕𝑥4
+ (

𝜕2𝐶𝑏

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝐶𝑏

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+
𝜕4𝐶𝑏

𝜕𝑦4
=  ℱ                                  (3.20) 
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Now, we will explain how we obtained equation (3.20) from equation (3.18) by using 

the Euler-Lagrange equation. Firstly, equation (3.18) can be rewritten as follows: 

I(W) = min
                      Cb

∫∫‖∆W‖2 dΩ,

 

Ω

 

 

 where W = Y − Cb           

Now, this notation is used 

‖∆W‖2 = ∆W.∆W = (
𝜕2𝑊

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
) ∙ (

𝜕2𝑊

𝜕𝑥2
+

𝜕2𝑊

𝜕𝑦2
)

= (
𝜕2𝑊

𝜕𝑥2
)

2

+ (
𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑊

𝜕𝑦𝜕𝑥
)

2

+ (
𝜕2𝑊

𝜕𝑦2
)

2

, 

So that, to find the corresponding Euler- Lagrange equation for the following functional 

I(W) = min
                      Cb

∫ ∫ [|
𝜕2𝑊

𝜕𝑥2
|

2

+ |
𝜕2𝑊

𝜕𝑥𝜕𝑦
|

2

+ |
𝜕2𝑊

𝜕𝑦𝜕𝑥
|

2

+ |
𝜕2𝑊

𝜕𝑦2
|

2

]  dxdy,

𝑦2

𝑦1

𝑥2

𝑥1

                           (3.21) 

then the derivative 
𝜕I

𝜕𝑊
 of the equation (3.21) are calculated and then set equal to zero. 

By using the definition of the derivative: 

0 =
𝜕I

𝜕𝑊
∙ 𝑣 = lim

ℎ→0

𝐼(𝑊 + ℎ𝑣) − 𝐼(𝑊)

ℎ
 

𝜕I

𝜕𝑊
∙ 𝑣 = lim

ℎ→0

1

ℎ
∫ ∫ ((|

𝜕2𝑊

𝜕𝑥2
+ ℎ

𝜕2𝑣

𝜕𝑥2
|

2

+ |
𝜕2𝑊

𝜕𝑥𝜕𝑦
+ ℎ

𝜕2𝑣

𝜕𝑥𝜕𝑦
|

2

+ |
𝜕2𝑊

𝜕𝑦𝜕𝑥
+ ℎ

𝜕2𝑣

𝜕𝑦𝜕𝑥
|

2𝑦2

𝑦1

𝑥2

𝑥1

+ |
𝜕2𝑊

𝜕𝑦2
+ ℎ

𝜕2𝑣

𝜕𝑦2
|

2

) − |
𝜕2𝑊

𝜕𝑥2
|

2

+ |
𝜕2𝑊

𝜕𝑥𝜕𝑦
|

2

+ |
𝜕2𝑊

𝜕𝑦𝜕𝑥
|

2

+ |
𝜕2𝑊

𝜕𝑦2
|

2

)𝑑𝑥𝑑𝑦    (3.22) 

The difference between the two terms will simplify to: 

((|
𝜕2𝑊

𝜕𝑥2
+ ℎ

𝜕2𝑣

𝜕𝑥2
|

2

+ |
𝜕2𝑊

𝜕𝑥𝜕𝑦
+ ℎ

𝜕2𝑣

𝜕𝑥𝜕𝑦
|

2

+ |
𝜕2𝑊

𝜕𝑦𝜕𝑥
+ ℎ

𝜕2𝑣

𝜕𝑦𝜕𝑥
|

2

+ |
𝜕2𝑊

𝜕𝑦2
+ ℎ

𝜕2𝑣

𝜕𝑦2
|

2

)

− (|
𝜕2𝑊

𝜕𝑥2
|

2

+ |
𝜕2𝑊

𝜕𝑥𝜕𝑦
|

2

+ |
𝜕2𝑊

𝜕𝑦𝜕𝑥
|

2

+ |
𝜕2𝑊

𝜕𝑦2
|

2

))

= ℎ (2
𝜕2𝑊

𝜕𝑥2

𝜕2𝑣

𝜕𝑥2
+ ℎ(

𝜕2𝑣

𝜕𝑥2
)

2

+ 2
𝜕2𝑊

𝜕𝑥𝜕𝑦

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ ℎ (

𝜕2𝑣

𝜕𝑥𝜕𝑦
)

2

+ 2
𝜕2𝑊

𝜕𝑦𝜕𝑥

𝜕2𝑣

𝜕𝑦𝜕𝑥
+ ℎ (

𝜕2𝑣

𝜕𝑦𝜕𝑥
)

2

+ 2
𝜕2𝑊

𝜕𝑦2

𝜕2𝑣

𝜕𝑦2
+ ℎ(

𝜕2𝑣

𝜕𝑦2
)

2

)                                                                                                                       (3.23) 

Using the Dominated Convergence theorem, it is possible to move the limit inside the 

integral.  

𝜕I

𝜕𝑊
∙ 𝑣 = ∫ ∫ lim

ℎ→0
(2

𝜕2𝑊

𝜕𝑥2

𝜕2𝑣

𝜕𝑥2
+ ℎ(

𝜕2𝑣

𝜕𝑥2
)

2

+ 2
𝜕2𝑊

𝜕𝑥𝜕𝑦

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ ℎ (

𝜕2𝑣

𝜕𝑥𝜕𝑦
)

2𝑦2

𝑦1

𝑥2

𝑥1

+ 2
𝜕2𝑊

𝜕𝑦𝜕𝑥

𝜕2𝑣

𝜕𝑦𝜕𝑥
+ ℎ (

𝜕2𝑣

𝜕𝑦𝜕𝑥
)

2

+ 2
𝜕2𝑊

𝜕𝑦2

𝜕2𝑣

𝜕𝑦2
+ ℎ (

𝜕2𝑣

𝜕𝑦2
)

2

)𝑑𝑥𝑑𝑦         (3.24) 

Where ℎ → 0 in the limitation, then 
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𝜕I

𝜕𝑊
∙ 𝑣 = ∫ ∫ (2

𝜕2𝑊

𝜕𝑥2

𝜕2𝑣

𝜕𝑥2

 𝑦2

𝑦1

𝑥2

𝑥1

+ 2
𝜕2𝑊

𝜕𝑥𝜕𝑦

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2

𝜕2𝑊

𝜕𝑦𝜕𝑥

𝜕2𝑣

𝜕𝑦𝜕𝑥
+ 2

𝜕2𝑊

𝜕𝑦2

𝜕2𝑣

𝜕𝑦2
)𝑑𝑥𝑑𝑦                          (3.25) 

By using integration by parts twice for the equation (3.25), the following partial 

differential equation is produced: 

2(
𝜕2𝑊

𝜕𝑥2 )
𝑥𝑥

+ 2(
𝜕2𝑊

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ 2(
𝜕2𝑊

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+ 2(
𝜕2𝑊

𝜕𝑦2 )
𝑦𝑦

= 0                              (3.26) 

where W = Y − Cb, then   

(
𝜕2𝐶𝑏

𝜕𝑥2
)

𝑥𝑥

+ (
𝜕2𝐶𝑏

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝐶𝑏

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+ (
𝜕2𝐶𝑏

𝜕𝑦2
)

𝑦𝑦

= (
𝜕2𝑌

𝜕𝑥2)
𝑥𝑥

+ (
𝜕2𝑌

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝑌

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+ (
𝜕2𝑌

𝜕𝑦2)
𝑦𝑦

       (3.27) 

Similarly, one can prove that 

(
𝜕2𝐶𝑟

𝜕𝑥2 )
𝑥𝑥

+ (
𝜕2𝐶𝑟

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝐶𝑟

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+ (
𝜕2𝐶𝑟

𝜕𝑦2 )
𝑦𝑦

 

= (
𝜕2𝑌

𝜕𝑥2)
𝑥𝑥

+ (
𝜕2𝑌

𝜕𝑥𝜕𝑦
)

𝑦𝑥

+ (
𝜕2𝑌

𝜕𝑦𝜕𝑥
)

𝑥𝑦

+ (
𝜕2𝑌

𝜕𝑦2)
𝑦𝑦

                                                   (3.28) 

While in an 𝐿1  norm, the Euler Lagrange equation of (3.18) by followed the same 

previous steps which that used to find the Euler Lagrange equation in an 𝐿2 norm.  

(
𝐶𝑏𝑥𝑥

√|∆𝐶𝑏|2
)

𝑥𝑥

+ (
𝐶𝑏𝑦𝑥

√|∆𝐶𝑏|2
)

𝑥𝑦

+ (
𝐶𝑏𝑥𝑦

√|∆𝐶𝑏|2
)

𝑦𝑥

+ (
𝐶𝑏𝑦𝑦

√|∆𝐶𝑏|2
)

𝑦𝑦

= (
𝑌𝑥𝑥

√|∆𝑌|2
)

𝑥𝑥

+ (
𝑌𝑦𝑥

√|∆𝑌|2
)

𝑥𝑦

+ (
𝑌𝑥𝑦

√|∆𝑌|2
)

𝑦𝑥

+ (
𝑌𝑦𝑦

√|∆𝑌|2
)

𝑦𝑦

 

Numerical Solution of Equation (3.19).  

The same procedure as described in the Poisson formula is followed. The explicit time 

marching scheme has been used to solve equation (3.27). We now detail the spatial 

discretisation, 

[𝐶𝑏𝑥𝑥(𝐶𝑏𝑥𝑥(𝑢𝑖,𝑗)) + 𝐶𝑏𝑥𝑦(𝐶𝑏𝑦𝑥(𝑢𝑖,𝑗)) + 𝐶𝑏𝑦𝑥(𝐶𝑏𝑥𝑦(𝑢𝑖,𝑗)) + 𝐶𝑏𝑦𝑦(𝐶𝑏𝑦𝑦(𝑢𝑖,𝑗))]

= 𝑔(𝑖, 𝑗)    (3.29) 

Where 𝐶𝑏𝑥𝑥(𝑢𝑖,𝑗) = 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗, 𝐶𝑏𝑦𝑦(𝑢𝑖,𝑗) = 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 2𝑢𝑖,𝑗 

𝐶𝑏𝑥𝑦(𝑢𝑖,𝑗) = 𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗 − 𝑢𝑖+1,𝑗−1 + 𝑢𝑖,𝑗−1 , and 𝐶𝑏𝑦𝑥(𝑢𝑖,𝑗) = 𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗 +

𝑢𝑖−1,𝑗−1, 

and the upwind finite difference scheme of Osher and Sethian (Osher & Sethian 1988), 

with Neumann boundary conditions is used. For more details about the numerical 

solution of the equation of (3.29) with boundary condition (3.18), see (Peiying Chen & 

Yuandi Wang 2008) and (Osher & Sethian 1988). The numerical solution of equations 
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(3.19) that adds information to the region of the interest in the Cb channel. The same 

procedure is followed to find the numerical solution for the Cr channel. The below 

Figure 3-6 shows the performance of both proposed methods when dealing with 

different quantity textures in the missing area.  

 

Figure 3-6: PDE colourisation algorithms. Column (a) masked colour image, column (b) and (c) 

colourised images using curvature and 4th order PDE methods, respectively. 

3.4.2.3 Summary of the above colourisation algorithms 

After the numerical solutions for Cb and Cr channels have been found, they are merged 

with channel Y,  and leads to a YCbCr image. The conversion of YCbCr to RGB 

displays the colours that added to the region of interest. Also, these proposed formulas 

are applied on eight colours spaces which are YCbCr, YUV, NTSC, HIS, HSV, CMY, 

RGB, and XYZ in both spatial and frequency domains. The above algorithm is shown 

simplified in Figure 3-7. 

 

Figure 3-7: Flowchart of an algorithm for inpainting the colours 

In the following section, the standard quality measures are introduced to check the 

quality of colourisation results, and this allows for comparison between the results of 

our algorithms with different existing colourisation methods.            

3.5 Experimental Results 

In this section, the results of the proposed algorithm are presented and compared with 

the results obtained from (Sapiro 2005). As mentioned in section 3.4.2, the aim was to 
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introduce two methods for adding colours into the greyscale images. The proposed 

approach has implemented on two domains, spatial domain and Frequency domain 

tested on 8 colour spaces.  The colours are added to the images in two cases, the first 

case where the colour is partially missing from the certain region where the other 

regions of the image are already coloured. The second case the image is in greyscale 

and we try to add the colours to the different objects of the image. 

In the first case, the proposed algorithms are applied to add colouration based on the 

colour information on the border of the un-coloured region. Figure 3-8 illustrates adding 

the colour to the un-coloured region which contains information about structure and 

texture, the numerical solution of equations 3.5, 3.17, and 3.28 above with boundary 

condition managed to add the colour, the results were visually acceptable, and still there 

is problem with edges of missing colour region. However, there is the un-noticeable 

difference on the edges of the recovered area, based on the PDE order (the higher, the 

better) as shown in Figure 3-8d (indicated by the arrows). 

 

Figure 3-8: Colourising missing colour regions. (a) Original image with missing colour region, 

(b), (c), and (d) colourised image by Poisson, curvature, and 4th order PDE methods, 

respectively. 

In the second case, the curvature approach is used for adding the colour to the whole 

grayscale image, but this needs to add colour hints to the image as scrabbles, but this 

approach produces edge issue where the colours pass over the edges of a certain object 

and mix with the neighbouring objects in the image, see the third image in Figure 3-9. 

 

 

 

 

 

Figure 3-9: Colourising whole grayscale image. (a) Grayscale image, (b) grayscale image with 

added scrabbles, (c) colourised image using curvature model. 

To solve this problem, the borders of objects within the image are determined by 

highlighting manually or using an automated object segmentation method (not 
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discussed in this chapter) and then adding colour scribbles (indicated by the arrows in 

the third image of Figure 3-9) to the image’s objects to assess the colourisation 

algorithm. Our approach has been tested on two groups of images by using a large 

number of natural images. The first group of the images has not been segmented, and 

the second group is containing images which are already pre-segmented, where these 

images are obtained from the Berkeley database(Pablo Arbelaez 2007). In the next two 

sub-sections, the pros and cons of applying the proposed algorithm to non-segmented 

images and pre-segmented images respectively are discussed. 

3.5.1 Using Non-Segmented Images 

If the image is not segmented before colorisation, and we try to make the colouring 

more precise compared with to the added colour hints in Figure 3-9 above, more colour 

hints around the important objects are added that need to have more colour prissiness, 

see Figure 3-10, and if the algorithm is applied in the same way, as seen in Figure 3-9, 

the colours are distributed in a better way. However, this way of adding the colour hints 

is very time consuming and not recommended for mass image colouring. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Adding colour to non-segmented images. (a) Grayscale image, (b) segmented 

image by colour scribbles, (c) colourised images using curvature model. 

3.5.2 Using Pre-Segmented Images 

To apply the image segmentation, many algorithms can be used to segment the image as 

seen in (Markle, Wilson 1988), and (Arbeláez et al. 2011), but this work uses pre-

segmented images in(Deng Cai, Xiaofei He, Yuxiao Hu 2005). In this case, we need to 

label the segmented objects then apply our colourisation algorithm on each labelled 

object separately after adding the colour scribbles to these labelled objects, as it is 

shown in Figure 3-11.  
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Figure 3-11: An image has segmented. (a) Grayscale image, (b) segmented image with colour 

scribbles, (c) colourised image using curvature method. 

Therefore, Figure 3-11 is representing the result of our algorithm when applied on the 

segmented image; we found the result more controlling the propagation of the colours 

inside the border of image objects (see the difference between Figure 3-10 and 3-9). 

Figure 3-12 and 3-13 shows the results of our algorithm when it is applied to the same 

image on spatial and frequency domain (wavelet) respectively.  

 

Figure 3-12: Colourising segmented image in the spatial domain. (a) Original colour image, (b) 

grayscale image, (c) segmented grayscale image with colour scribbles, (d) colourised image 

using 4th order PDE method. 

Furthermore, the  proposed algorithms were  applied to the image which has used in 

Figure 3-12 on the frequency domain where the wavelet Haar filter (Chan et al. 2006) 

has been used to convert every channel in the greyscale image with colour scribbles 

added to 4 sub-bands image in the frequency domain. The proposed algorithm must run 

eight times for each image sub-band in the frequency domain. We noted that the 

colourised images in Figure 3-12 and 3-13 are visually almost identical to the original 

image. Also, this point is discussed in the next section. So, Figure 3-13 shows the use of 

the proposed algorithm in the frequency domain. 

Figure 3-13: Colourising segmented image in frequency domain. (a) Grayscale image, (b) 

segmented grayscale image with colour scribbles, (c) greyscale image with colour scribbles to 

the frequency domain, (d) colourised image using 4th order PDE method. 
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Finally, for the sake of clarity, the proposed algorithm has been applied to several pre-

segmented images to check its effectiveness.  

Figure 3-14 presents some additional examples of greyscale images.  The first column 

represents the input greyscale images and the second column shows the input images 

with the colour strokes that want to spread on them. The result of our algorithm is 

provided in the third column. Note that as in image inpainting, the original image is not 

available, and therefore every “reasonable” and the visually pleasant result should be 

considered acceptable.  

 

 

 

 

 

 

 

 

 

Figure 3-14: Examples of colourising grayscale images. (a) Greyscale images, (b) scribbled 

grayscale images, (c) colourised images by 4th order PDE method. 

The next section presents the quality assessment of coloured images by using traditional 

statistical measurements.  

3.6 Image Quality Assessments 

This section describes the effectiveness of the proposed algorithms for adding colour to 

the greyscale image. The algorithms have been introduced in previous sections, and 

their results illustrated by visual examples. The quality evaluation of colourised image 

is carried out using standard quality measures as explained in section 2.6.1; these 

standard quality measures are used to check the quality our proposed algorithm and 

compare it with the algorithm in (Sapiro 2005). An accurate evaluation method which 

simultaneously assesses inpainted image qualitatively and quantitatively is not an easy 

task. Therefore, we depended on visual analysis to assess the qualitative tests. However, 

for quantitative evaluation, Peak Signal-to-Noise Ratio (PSNR), and Structural 

Similarity (SSIM) are computed, for more information about these measurements, (cf. 

Section 2.6.1). Also, there is another way to compare the colour images which is 
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Normalised Colour Distance (NCD). This measurement is focused on the distances 

between the colours in a given colour space (Russo 2014): 

NCD =
∑ ∑ √∑ [Oq(m, n) − I(m, n)]

2Q
q=1

N
n=1

M
m=1

∑ ∑ √∑ [Oq(m, n)]
2Q

q=1
N
n=1

M
m=1

            (2.30) 

The lower NCD, is the better the image quality. The NCD measurement is applied on the 

colourised images to evaluate the performance of colourisation methods and assess their 

colourised image quality results. The next subsection shows the natural images database.  

3.6.1 Database Description 

This subsection gives a brief description of a publicly available database; a natural 

image database that is used in our experiments to evaluate the suitability of the different 

PDE-based colourisation algorithms. Statistical measurement methods have been used 

to evaluate the efficacy of these PDE algorithms. The Berkeley segmentation dataset 

and Benchmark database in(Pablo Arbelaez 2007)which consists of 300 natural images 

of size 321×481, 25 for each of 12 individuals, this database is used for segmentation 

application in both grayscale and colour images. Figure3-15 illustrates examples of 

natural images from the Berkeley segmentation and Benchmark database. 

 

Figure3-15: Example of eight out of 300 training natural images. 

The purpose of using the Berkeley natural images database is that these images have 

different quantity of texture and structure in the image; and also, there are précised pre-

segmented objects in the grayscale images of the database which helped to speed up 

applying PDE based colourisation methods on natural images with a reasonable 

accuracy. The original images of the Berkeley database were used as the reference by 

which to measure the quality of colourised images. The aim of these experiments is to 

study the effect of these methods on adding the colour to the simple structure missing 

colour regions in the natural images.  
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3.6.2 Experiment 1: Results of Berkeley Segmentation Database 

We conducted experiments to measure and compare image quality in the colourised 

images concerning the original images in the spatial and frequency domain, using PSNR, 

SSIM and NCD quality measures. The test images were colourised using Poisson, 

curvature and 4th order PDE algorithms. The original images of the Berkeley database 

were used as the reference by which to measure the quality of colourised images. In this 

section, 80 different natural images are selected from this database which have different 

content images; the experiments have been applied on these images. The aim of these 

experiments is to study the effect of these algorithms on the colourisation of missing 

colour region in the natural images. In general, the missing colour region (damaged 

colour region) have been created in the images by removing the colour information in 

two channels and meanwhile left the other information (i.e. whole structure and texture) 

in the main channel. The next equation represents how we remove only the colours from 

the regions in the original images, 

{

𝑓𝐷𝑎𝑚𝑎𝑔𝑒𝑑(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2), 1) = 𝑓1(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2))

𝑓𝐷𝑎𝑚𝑎𝑔𝑒𝑑(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2), 2) = 𝑓1(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2))

𝑓𝐷𝑎𝑚𝑎𝑔𝑒𝑑(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2), 3) = 𝑓1(𝑖𝑛𝑑𝑥(𝐾1), 𝑖𝑛𝑑𝑦(𝐾2))

                   (3.31) 

Where 𝑓  is the original image, 𝑓𝐷𝑎𝑚𝑎𝑔𝑒𝑑 is the original image with missing colour 

region 𝑓1  is the channel one from the original image, and 𝐾1  and 𝐾2  represents the 

height and width of the missing colour region. Figure 3-16 represents a masked colour 

image in RGB space, the size of this miss colour region is 100×100, then this mask has 

been applied to the database images to study the effect of colour propagation on 

different types of texture in the missing regions and to study the efficiency of these PDE 

methods. The PDE methods are applied on the masked green channel and masked blue 

channel separately based on the information in Red channel.  

To apply this mask on other colour spaces, the original image convert to other colour 

spaces and then will apply the mask of missing colour region (i.e. formula 3-31), after 

that the PDE methods are used to recover the colour in this space then will back convert 

to RGB space to show the results, as see below in Figure 3-17. The PDE methods are 

applied on masked Cb channel and masked Cr channel separately based on the 

information in Y channel. 
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Figure 3-16: Masked colour natural image in the RGB colour space. 

 

Figure 3-17: Masked colour natural image in the YCbCr colour space. 

The Poisson, curvature, and 4th-order PDE algorithms have applied on 80 natural 

images to recover the missing colour block in eight colour spaces in both spatial and 

frequency domains. In these sets of experiments, the Haar wavelet transform is used to 

convert the image from spatial to the frequency domain (Chan et al. 2006).  

Figure 3-18 shows examples of five out of 80 colourisation results of block missing 

colour in the natural images, where these examples selected from different colour 

spaces. 

 

 

 

 

 

 

 

 

 

 

Figure 3-18:  Examples of five out of 80 colourisation results of block missing colour in the 

natural images. (a) Original images, (b) masked colour images, (c), (d), and (e) colourised 

images using Poisson, curvature and 4th-order PDE colourisation algorithms, respectively. 



Chapter 3: Colourising Greyscale Images Based on PDE Algorithms   
 

  80  
 

As mentioned before, in Figure 3-18 these colourisation algorithms have been 

successfully recovered the colour in the block missing colour with smooth areas 

surrounding it, as seen in the first and second rows. However, these algorithms have 

been faced difficulties to recover block with high texture areas surrounding it (i.e. a lot 

of edges and corners with different colours), as seen in the 3rd, 4th and 5th rows. The 

results of these algorithms are as follows: the results of using 4th-order PDE algorithm 

are better than the results of the other two algorithms which show the effect of the order 

clearly. It follows by curvature and Poisson, respectively.   

Now a comparison of the curvature and 4th-order PDE methods with Poisson method 

(Sapiro 2005) is presented. The difference in the results occurred while dealing with 

numerical methods. Therefore we will always end up with some errors due to truncation 

error and rounding off error of the mathematical model. PSNR, SSIM, and NCD have 

been calculated between the original image and the inpainted images in 8 different 

colour spaces in both Spatial and Frequency domains by Poisson, Curvature and 4th-

order PDE methods. These methods applied to 80 natural images, the results are 

summarised below in Table 3-2 and 3-3. 

Errors Spatial Domain 

Space 

Name 

Poisson method Curvature method 4th-order PDE method 

PSNR SSIM NCD PSNR SSIM NCD PSNR SSIM NCD 

RGB 20.13 0.891 0.395 26.21 0.928 0.293 29.76 0.936 0.291 

CMY 17.54 0.814 0.375 19.54 0.874 0.372 30.99 0.914 0.296 

YCbCr 24.82 0.906 0.299 24.91 0.813 0.395 39.88 0.964 0.128 

YUV 29.5 0.93 0.20 41.7 0.96 0.12 42.5 0.97 0.11 

HSI 26.21 0.929 0.245 28.37 0.939 0.242 31.85 0.938 0.255 

HSV 26.88 0.927 0.248 29.39 0.939 0.248 29.96 0.931 0.257 

NTSC 30.6 0.93 0.20 42.8 0.97 0.11 47.5 0.97 0.11 

XYZ 27.82 0.928 0.248 30.58 0.939 0.263 30.99 0.92 0.279 

Table 3-2: The average of PSNR, SSIM and NCD values from original and inpainted images in 

the spatial domain for 8 different colour spaces. Poisson, Curvature and 4th-order methods have 

been used to obtain these error values. 
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Errors Frequency Domain 

Space 

Name 

Poisson method Curvature method 4th-order PDE method 

PSNR SSIM NCD PSNR SSIM NCD PSNR SSIM NCD 

RGB 18.65 0.816 0.986 23.76 0.845 0.765 26.54 0.875 0.594 

CMY 16.77 0.764 0.785 18.97 0.806 0.596 27.67 0.897 0.436 

YCbCr 20.18 0.916 0.634 21.34 0.921 0.457 36.21 0.933 0.405 

YUV 33.3 0.93 0.78 39.5 0.94 0.59 41.6 0.95 0.32 

HSI 23.95 0.902 0.987 26.82 0.913 0.767 29.54 0.922 0.565 

HSV 24.57 0.904 0.845 25.39 0.910 0.643 27.87 0.924 0.336 

NTSC 29.8 0.94 0.57 40.6 0.94 0.35 44.7 0.95 0.23 

XYZ 24.96 0.905 0.876 27.65 0.914 0.63 28.54 0.919 0.372 

Table 3-3: The average of PSNR, SSIM and NCD values from original and inpainted images, in 

the frequency domain for 8 different colour spaces. Poisson, Curvature and 4th-order PDE 

methods have used to obtain these values. 

3.6.3 Results Analysis 

Table 3-2 and 3-3 illustrate the average values of PSNR, SSIM and NCD obtained from 

original and inpainted images, in both the spatial and frequency domains for 8 different 

colour spaces; these results have been obtained by Poisson, curvature, and 4th-order 

PDE methods. The values of PSNR, SSIM and NCD in spatial domain better than in the 

frequency domain for all colour spaces. YUV and NTSC are better than other colour 

spaces based on the values of PSNR, SSIM, and NCD. The components of the NTSC 

colour space are YIQ, ‘Y’ (the luminance component), ‘𝐼’ (the cyan-orange component), 

and ‘𝑄’  (the green-purple component), where I and Q represent a chrominance 

component in the image. NTSC has a property of complete separation between the 

luminance and the chrominance information  (Ibraheem et al. 2012) and (Yao_Wang, 

Jôrn. Ostermann 2001). This separation explains the good performance for NTSC space 

in the colouring inpainting.  

While in YUV colour space, YUV encoding used in some digital video based on MPEG 

compression. Where, the YUV model defines a colour space in terms of one luminance 

(Y) and two chrominance (UV) components. The luminance (Y) and two chrominance 

(UV) was semi-separated because the colour information (U and V) are added 

separately via a sub-carrier so that a black-and-white receiver would still be able to 

receive and display a colour picture transmission in the receiver's native black-and-

white format (Ibraheem et al. 2012) and(Yao_Wang, Jôrn. Ostermann 2001). NTSC and 

YUV better than other colour space in the colourisation process because the luminance 

and chrominance information are not well separated in other colour spaces. 
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Also, the proposed algorithm is faster when it is applied on the non-segmented image, 

whereas for pre-segmented image consumes relatively long time because the algorithm 

has to run for each object (i.e. segment) of the image. The results of a spatial domain are 

better than the results in Frequency domain for all PDE methods because it is clear that, 

these methods are worked eight times in each image which accumulates more numerical 

computation errors, thus will produce more error and consuming time in the Frequency 

domain. Therefore, the 4th-order PDE method is better than of other methods for all 

colour space in spatial and frequency domain based on the values of PSNR, SSIM, and 

NCD. “PDE property”. Finally, the results used in (Sapiro 2005) were not that 

promising whereas our technique achieved better results. 

In the following sections, the results of our proposed algorithm with three colourisation 

methods by using the standard quality measures are compared for a number of examples.  

Subsequently, examples of important applications of semi-automatic colourisation are 

also illustrated.  

3.6.4 Experiment 2: Examples of Semi-Automatic Image Colourisation 

Algorithms 

Semi-automatic colourisation has several important applications such as old black and 

white photographic images, biomedical imaging, night vision colourisation, and 

astronomical image colourisation. Here, Figure 3-19 presents some sample results that 

obtained with the four aforementioned algorithms: isoline-based image colourisation 

(Popowicz & Smolka 2014), colourisation using optimisation (Levin et al. 2004), 

colourisation-based PDE (Sapiro 2005), and the proposed colourisation method. 

Although the methods differ from each other, we have to note that all the algorithms 

provide very realistic and high-quality colour images. 
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Figure 3-19: A comparison of colourisation quality achieved by different methods. Row (a) 

Original images, row (b) Scribbled grayscale images, rows (c) (d), (e), and (f) colourised images 

by Isoline algorithm (Popowicz & Smolka 2014), optimisation (Levin et al. 2004), PDE (Sapiro 

2005), and the proposed colourisation methods. 

In Figure 3-19, the colourised images are examined by using each quality measure 

which was introduced in section 2.6.1. A comparison of PDE colourisation technique 

with three techniques which introduced in (Levin et al. 2004), (Popowicz & Smolka 

2014) and (Sapiro 2005) is presented. PSNR, SSIM, and NCD have been calculated 

between the original image and the inpainted images in RGB colour space in the spatial 

domain. These techniques applied to 40 natural images, the results are summarised 

below in Table 3-4. 

Methods 
Images in column 1  Images in column 2 Images in column 3 Images in column 4 
PSNR SSIM NCD PSNR SSIM NCD PSNR SSIM NCD PSNR SSIM NCD 

Method 

in 

(Popowicz 

& Smolka 

2014) 

23.77 0.886 0.146 26.06 0.922 0.119 32.14 0.946 0.372 27.96 0.898 0.135 

Method 

in (Levin 

et al. 

2004) 

19.32  0.817  0.188 24.97  0.948  0.194  28.70  0.810 0.791  24.65  0.787 0.198  

Method 

in (Sapiro 

2005) 
21.91 0.831 0.169 25.75  0.939  0.146  28.93 0.878 0.735  25.89 0.802 0.194  

Our 

method 23.34 0.885 0.149 26.85 0.928 0.109 30.87 0.909 0.592 27.04 0.818 0.176 

Table 3-4: Results of colourisation quality for all three algorithms, PSNR, SSIM, and NCD. 

Moreover, Table 3-4 summarises the corresponding results of each quality measure for 

the results which are some of them presented in Figure 3-19; all four methods are 

assessed quantitatively. The results of the improved PDE technique is  close enough to 

(b)

(c)

(d)

(a)

(f)

(e)
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the results obtained with the technique in (Popowicz & Smolka 2014), while,  they are 

better than the results obtained by other methods (Levin et al. 2004) and (Sapiro 2005). 

The errors of the technique occur owing to numerical conditioning issues. Therefore we 

will always end up with some errors due to truncation error and rounding off errors in 

the implementation of the mathematical model.  

3.7 Summary and Conclusion 

In this chapter, a survey of grayscale image colourisation algorithms is introduced. 

Colourisation algorithms are divided into two groups, which are automatic and semi-

automatic. The literature on these two colourisation groups' algorithms is reviewed. 

However, we are mainly interested in semi-automatic algorithms, as they seem to be 

more applicable. A PDE-based colourisation algorithm is presented, then an improved 

algorithm is proposed, in the outcomes of which the luminance channel represents the 

geometry of the whole (directional) colour image more faithfully than in the images 

obtained from the algorithm in (Sapiro 2005). Our colourisation algorithm has been 

compared with three semiautomatic colourisation algorithms which are given in (Levin 

et al. 2004), (Popowicz & Smolka 2014), and (Sapiro 2005). The algorithms referred to 

in this chapter differ, and they have one aim which is adding colour to grayscale image; 

however, all of them are able to provide high-quality outcomes. Finally, a methodology 

is provided for the assessment of colourisation results, based on several well-known 

statistical quality measures. The results of the improved colourisation-based PDE 

technique turn out to be better than those obtained using the techniques in (Levin et al. 

2004), and (Sapiro 2005), while being close to those obtained using the technique in 

(Popowicz & Smolka 2014). The ideal colourisation results are also presented;  they 

effectively and efficiently to meet most of the user’s requirements in adding colour to 

the grayscale images in different applications such as biology, astronomy, medicine, 

and old images.   

As mentioned before, a missing colour region is defined in RGB colour space, for two 

different cases. When the missing region has information in it, such as a “missing 

colour region” problem it is called colourisation problem, but when the missing region 

doesn't has information in it, it is an “inpainting” problem.  Hence, there are several 

image inpainting algorithms that can be used to reconstruct missing regions, such as 

PDE based inpainting, exemplar-based inpainting, hybrid algorithms, and so on. The 

PDE inpainting algorithms are discussed in the next chapter. 
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Chapter 4 PDE BASED FULL 

INPAINTING METHODS 

In Chapter 3, our investigations focused on restoring missing colour in an image region 

where texture information is available via one colour channel. The use of total variation 

minimisation has been shown to lead to different order Partial Differential Equation 

(PDE) models of colour restoration in those regions that are based on the numerical 

solutions of these PDEs. The aim of the investigation in this chapter is the restoration of 

information in a missing region where all channel information is missing.  

Unsurprisingly, research over the years has shown that this full image inpainting 

problem can equally be solved by PDEs of different orders. Indeed, PDEs have 

repeatedly been shown to provide the natural model of diffusion, and the transport 

method was first used to describe and model the corresponding process. We shall refer 

to all of these methods as PDE-based Image Inpainting (PDE-BI) methods. These 

methods are implemented separately in all colour channels. In this chapter, the 

approaches taken in the last chapter are used to provide alternative efficient 

implementations of PDE-BI methods. The extensive comparison of the performances of 

higher and 2nd-order PDE-based inpainting methods is studied in terms of the qualities 

of inpainted images. The evaluation will not be confined to traditional statistical image 

quality measures but will also apply a recently developed image quality measure based 

on topological data analysis (TDA) scheme. Also, the efficacy of these PDE methods is 

checked based on the TDA scheme. The 2nd- and high-order PDE methods have been 

applied to reconstruct deliberately removed colour information from randomly chosen 

regions (to be counted as missing regions) in a large dataset of the face and natural 

images, in both spatial and frequency domains.  

This chapter consists of seven sections, the first 4 of which give an overview of existing 

PDE-BI schemes with experimental work to test their performances. The proposed 

modification is described in the spatial domain (section 4.5) and in the frequency 

domain (section 4.6). The qualities of inpainted images assessed by statistical measures 

and the TDA approach s are presented in section 4.7. Lastly, section 4.8 presents a 

summary of the chapter with a list of challenges to be considered further. 
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4.1 General Concepts and Mathematics of PDE-BI Methods 

 Let 𝛺 ⊂ ℝ2denotes the entire image domain 𝑓. The basic idea then is to propagate 

information from the border of the missing region into it, in such a way that the border 

of the missing region is no longer visible to the human eye. The border of missing-

region is 𝜕𝐷; Figure4-1 illustrates the inpainting based PDE steps. 

 

Figure4-1: Steps of inpainting based PDE method. 

The missing areas represent sets of pixels, often referred to as holes, scratches, and 

opening objects or simply as the unknown areas. All inpainting methods, use 

information in the rest of the image to fill in the gaps. Mathematically, these methods 

have been classified as variational (Energy) methods and direct non-variation based 

PDE-BI methods. Variational methods compute the inpainted image as a minimiser of 

an objective functional. The Euler-Lagrange equation of minimisation of an objective 

functional produces a PDE, as described in the previous chapter. On the other hand, 

PDE-BI methods applied directly on images can be obtained from the use of rich and 

well-established mathematical approximation theory in bounded functions of 2-

variables.  All these methods, termed as PDE-BI methods, use diffusion to reconstruct 

missing regions and benefit from geometric characteristics of textured and smooth 

image areas.  

4.1.1 Variational Methods 

The variational methods can be best explained from the point of view of inverse 

problems. The goal is to restore/recover an original image 𝑢 from the degraded image𝑓. 

Inpainting-based variational methods can also be formulated within this framework. 

More precisely, let Ω ⊂ ℝ2 be an open and bounded domain, the given image 𝑓is defined 

over Ω, and the missing domain 𝐷 ⊂ Ω. In mathematical terms, this means to solve an 

inverse problem 𝑇𝑢 = 𝑓, where 𝑇 models the process through which the image 𝑢 went 

before observation. For the sake of clarity, the well-known method of solving this 

problem and recovering digital image 𝑢 is described. A general variational approach in 

f is given

D

Ω\D

∂D
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image inpainting is formulated as a minimisation problem defined by formula 4.1, 

below: 

                                                         𝑚𝑖𝑛
𝑢∈Ω

‖𝑇𝑢 − 𝑓‖Ω
2                                                            (4.1) 

It is almost impossible to avoid the ill-posedness of the solutions of (4.1); especially 

when the operator 𝑇 has an unbounded inverse. To overcome this issue, it is customary 

to use a regularisation approach that simply adds terms to represent smoothness-related 

properties such as total variation, (Mumford 1994). Such modifications (4.1) change the 

behaviour of the model to that of a regularised and well-posed model, as described here: 

                              𝐸(𝑢) = 𝑚𝑖𝑛
𝑢∈Ω

{𝛼ℛ(𝑥, 𝑢, 𝐷𝑢,… , 𝐷𝑘𝑢) + 𝜆0‖𝑇𝑢 − 𝑓‖Ω
2},                             (4.2) 

𝜆(𝑥) = {
𝜆0            𝑖𝑓  𝑥 ∈  Ω\𝐷

      0            𝑖𝑓    𝑥 ∈ 𝐷,        
 

where 𝛼 > 0 and 𝜆0 are two regularisation/tuning parameters. The image of prior data 

term ℛ(u)is known as a regularising term whereas ‖𝑇𝑢 − 𝑓‖Ω
2 may be referred to as the 

fidelity term. The concept of the regularising term has been proposed in (Mumford 

1994), and formula (4.2) plays the main role of filling the missing image domain 𝐷, e.g., 

by diffusion and/or transport. 

Under certain regularity assumptions on a minimiser 𝑢 of the functional operator 𝐸, the 

minimiser fulfils a so-called optimality condition on (4.2), i.e., the corresponding Euler-

Lagrange equation. In other words, for a minimiser 𝑢 the first variation, i.e., the Fréchet 

derivative of 𝐸, has to be zero. In mathematical terms, this reads 

                          −𝛻ℛ(𝑥, 𝑢, 𝐷𝑢,… , 𝐷𝑘𝑢) + 𝜆0(𝑇𝑢 − 𝑓) = 0,   𝑖𝑛 𝛺                            (4.3) 

This is a partial differential equation with certain boundary conditions on 𝜕Ω. Here 𝛻ℛ 

denotes the Fréchet derivative of  ℛ . The dynamic version of (4.3) is the so-called 

steepest descent or gradient flow approach. More precisely, a minimiser 𝑢 of (4.2) is 

embedded in an evolution process, denoted by 𝑢(·, 𝑡). At time 𝑡 =  0, 𝑢(·, 𝑡 =  0)  =  𝑓 

is the original image. It is then transformed through an iterative process characterised by 

𝜕𝑡𝑢 = −∇ℛ(𝑥, 𝑢, 𝐷𝑢,… , 𝐷𝑘𝑢) + 𝜆0(𝑇𝑢 − 𝑓),   𝑖𝑛 𝛺, and      𝜕𝑛𝑢 = 0    𝑜𝑛 𝜕𝛺,        (4.4) 

Given a variational formulation (4.2), the steepest-descent approach is used to 

numerically compute a minimiser of 𝐸, whereby (4.4) is iteratively solved until one is 

close enough to a minimiser of 𝐸. The model (4.4) is defined as a numerical solution of 

a PDE over the space of functions of bounded variation BV (Ω) which includes digital 

images. A numerical solution of (4.4) for noise removal or missing- region 

reconstruction, (see (Aubert & Kornprobst 2006)).  
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4.1.2 Non-Variational Methods 

Alternative non-variational approaches for developing a class of PDE-BI models. 

Inpainting approaches in this class, are directly defined by PDE of the form: 

𝜕𝑡𝑢 = 𝐹(𝑥, 𝑢, 𝐷𝑢,… , 𝐷𝑘𝑢), 

where 𝐹: 𝛺 × ℝ × ℝ2 × ℝ3 ×. . . ℝ𝑘 → ℝ is a kth-order differential operator, and 𝛺 is an 

image domain. The underpinning mathematics of these approaches are based the fact 

that inpainting is a problem of interpolation of functions of 2 variables, defined on the 

domain of the input image, which can be approximated by 𝐹 using Taylor polynomials 

of any order. In this case, the added term is an estimate of the error term of 

approximation. 

Examples of such inpainting schemes that have been proposed in the literature include: 

the CDD inpainting (T. Chan and J.Shen 2001), Bertalmio (Bertalmio et al. 2000), 

modified Cahn-Hilliard (A. L. Bertozzi et al. 2007), and TV − H−1 (Burger et al. 2009). 

These inpainting schemes are described briefly in section 4.3. 

4.1.3 Literature Overview 

PDE-BI methods are well covered in the literature. The term inpainting was invented by 

art restoration workers, (Emile-Mâle 1976) and (Walden 1985), and first appeared in the 

framework of digital restoration in the work of Bertalmio et al. (Bertalmio et al. 2000), 

therein they designed a discrete 3rd-order nonlinear PDE intended to imitate the 

restoration work of museum artists, (see section 4.3.2). Filling-in of the missing region 

Ω is done automatically based on the information surrounding Ω via consideration of 

isophote lines connected to the boundaries of Ω (see Figure4-1).  

The pioneering works of (Bertalmio et al. 2000), (Chan & Shen 2002), (Caselles et al. 

1999), (D. Mumford 1993) and (Masnou & Morel 1998) in image restoration using 

PDEs and variational methods, in the last two decades, are reviewed, in order to define a 

starting position. Total Variation (TV) and Curvature Driven Diffusion (CDD) models 

have been introduced by Chan and Shen (Chan & Shen 2002), (T. Chan and J.Shen 

2001) respectively. The inpainting results using the TV model generate 2nd-order 

nonlinear PDE which works by anisotropic diffusion inside the inpainting domain (i.e. 

preserving edges and diffusing homogeneous regions and small oscillations like noise). 

While the CDD model improves on the TV model by enabling the recovery of large 

areas and connecting the lines/features across large distances. The improvement is 
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possibly due to the use of 3rd-order nonlinear PDE at the expense of inefficiency while 

TV methods that use 2nd-order (linear and non-linear) PDEs can only reconstruct small 

regions, and struggle with edges and corners, (Schönlieb 2009). The authors in (Xu et al. 

2008), proposed Quick Curvature-Driven Diffusions (QCDD) to for improved 

efficiency. 

A variational technique for image segmentation has been proposed in (D. Mumford 

1993), by removing occlusions of objects by connecting T-junctions at the occluding 

boundaries of objects with Euler elastic minimising curves. The minimisation of a 

discrete version of a constrained Euler elastic energy for all level lines was used to 

extend the idea of length and curvature minimisation from edges to all the level lines of 

the image function (Mumford 1994).  This approach is contrasted invariant. The Euler 

elastic energy was used for inpainting later by Mumford in (Esedoglu & Shen 2002) and 

by Chan et al. in (T.F. Chan, S.H. Kang 2002). The model proposed in (Esedoglu & 

Shen 2002) is a 4th-order PDE, called the Mumford-Shah-Euler model (MESm), 

succeeded in recovering edges and corners and overcome the limitations intrinsic to 2nd-

order PDEs. Also, 4th-order of total variation flow was suggested in (Burger et al. 2009), 

to remedy the shortcoming of TV inpainting which has been successful when to binary 

structures with large holes. On the other hand, a TV model to minimise the Laplacian 

norm was proposed in (Peiying Chen & Yuandi Wang 2008) as an alternative to the 4th 

order TV model.  

The authors in (Chen & Wang 2009) have improved the Non-TV technique in 

(Bertalmio et al. 2000) that is based on the anisotropic diffusion principle and the 

connectivity principle of human visual perception; they proposed forward a novel 

nonlinear PDE inpainting model. The procedure allows for the transporting and 

diffusing of image information simultaneously. More recently, the authors in  (A. L. 

Bertozzi et al. 2007) proposed a modified Cahn-Hilliard (mCH) equation for the 

inpainting of binary images. A generalisation of Cahn-Hilliard inpainting for grey value 

images, called 𝑇𝑉 − 𝐻−1 inpainting, was also proposed in (Burger et al. 2009). These 

are the non-TV based inpainting scheme, and details are given in section 4.3.2. In the 

next sections, some important inpainting models of 2nd and high order PDE are 

described in more details.  
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4.2 Second-Order PDE-BI methods 

Even though 2nd-order PDEs have been extensively studied theoretically, well 

established and not difficult to solve numerically, in inpainting they do not perform well 

when the size of the region of interest is substantial. The main disadvantage occurs 

when there are discontinuities of lines (edges) over a large distance in the image of 

interest and where features like corners, curvatures and edges need to be reconstructed. 

Next, four existing 2nd-order PDE-BI models are introduced and applied. A detailed 

introduction to these models is not given; for this, the interested reader needs to consult 

(Shen & Chan 2002), (Rudin et al. 1992), (Tsai et al. 2001), (Perona & Malik 1990), 

and (Haar Romeny 1994).   

4.2.1 Isotropic Diffusion (Tikhonov Regularisation Technique) 

The isotropic equation is simple and is the most investigated in image processing, 

specifically in image inpainting (Aubert & Kornprobst 2006). Initially, it was used to 

recover blurred images(Weickert & Stuttgart 1998), (Weickert 1996), and (Guillemot & 

Le Meur 2014). The heat equation is presented in two ways: 

Let 𝑓 ∈ 𝐿2(𝛺) be the given image, and D ⊂ Ω is a missing-information region in an 

image, the inpainted image 𝑢 is calculated as the solution of the heat equation as below: 

                                                                   {
𝜕𝑡𝑢 = ∆𝑢,    𝑡 ≥ 0，

𝑢(0, 𝑥, 𝑦) = 0.         
                                                   (4.5) 

Also, the solution of equation (4.5) can be understood as the solution of the 

minimisation functional of squared total variation (4.6): 

                                 𝑚𝑖𝑛
𝑢∈𝐿2(𝛺) 

{∫∫ |𝛻𝑢|2
 

𝐷

𝑑𝑥𝑑𝑦       𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     𝑢 = 𝑓   𝑖𝑛 𝛺\𝐷}                          (4.6) 

The gradient descent process with the Euler-Lagrange equation has been used on 

minimisation functional (4.7): 

                                                                         𝑢𝑡 = 𝛥𝑢                                                                         (4.7)  

The isotropic model for image denoising is applied by adding a fidelity term as 

proposed in (Weickert & Stuttgart 1998). This leads to the following formula: 

                             𝑚𝑖𝑛
𝑢∈𝐿2(𝛺)

𝐹(𝑢) = ∫∫ (|𝛻𝑢|2 +
𝜆

2
(𝑢 − 𝑓)2)

 

𝛺

𝑑𝑥𝑑𝑦                                      (4.8) 

Applying the Euler-Lagrange equation on (4.8) leads to 

                                                           𝜕𝑡𝑢 = 𝛥𝑢 + 𝜆 (𝑢 − 𝑓)                                                  … (4.9) 

To remove the noise from the image,  the equation 𝑢 =
1

𝜆 
𝑓 + 𝛥𝑢  with Neumann 

boundary condition is solved by using a finite difference method, as shown in 
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Figure4-3.For reconstructing a missing region in an image, Equation 4.7 with Neumann 

boundary condition is solved  based the information around the missing region. The 

explicit finite difference method was used to find the numerical solution, as explained in 

section 2.5.2. The numerical solution of equation (4.7) with Neumann boundary 

conditions is found at each pixel in each (R, G, B) channel of the image to recover the 

missing regions.  

The above solution of equation (4.5) mimics that of a heat equation over the image 

domain. The heat equation models the propagation of a temperature field over a time 

interval in all directions given the boundary conditions, and its solution is smooth. 

Equation (4.5) is meant to model a discrete process of filling missing regions, and 

therefore its solution may fail to reconstruct edges and corners. The Gaussian filtering 

and averaging of images is equivalent to diffusion of the pixel values all across the 

image. Figure4-3 clarifies how the image gets blurred under isotropic smoothing, 

because of the numerical mixing of pixels from different regions by solving model (4.9), 

especially in image b.    

                         (a)                                             (b)                                               (c)  

Figure4-2: Inpainting based isotropic model, (a) original image, (b) masked image, (c) 

inpainted image. 

The results were blurry because of the edges, the averaging of pixels across edges, and 

letting these pixel values across edges be mainly mixed up, which is why obtained 

blurring, as seen in Figure4-2. The process was isotropic smoothing; it didn’t matter 

whether or not boundaries were present. The performance of model (4.5) is done well 

when surrounding areas of the missing region are homogeneous; otherwise, the sharp 

edges are lost when the surrounding area is non-homogeneous, as seen in Figure4-2. To 

overcome the smoothness propagation information's, harmonic image inpainting has 

been proposed to solve this defect. Also, Figure4-5b clarifies the performance of heat 

model at the missing edges. In summary, both the connectivity principle and the 
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curvature preservation are not fulfilled through applying this model to recover small 

missing region.  

4.2.2 Harmonic Extension Equation 

Harmonic image inpainting represents a simple example through which to understand 

the image interpolation process. The inpainted image can be defined as the solution of 

the Laplace equation, or as the result of the minimisation of the Dirichlet energy over 

the inpainting domain.  

Let 𝑓 ∈ 𝐿2(𝛺) be the given image with inpainting domain 𝐷 ⊂ 𝛺. The authors in  (Shen 

& Chan 2002) have used the idea of a denoising formula, where the inpainted image 𝑢 

can be defined as the minimiser of energy 

𝑚𝑖𝑛
𝑢∈𝐿2(𝛺)

∫∫ (|∇𝑢|2 + 𝜆|𝑢 − 𝑓|
𝐿2(𝛺)
2 )

 

𝛺
𝑑𝑥𝑑𝑦 = 0,    𝑖𝑛 𝐷,         𝑢 = 𝑓  𝑜𝑛𝜕 𝐷                  (4.10) 

Where 𝜆 is a large constant. Minimising (4.12) over 𝐻1(𝛺), a minimiser is equivalently 

characterised as the solution to the corresponding Euler-Lagrange equation 

−Δ𝑢 = 0,                          𝑖𝑛 𝐷,  

                                                {
−Δ𝑢 = 𝜆(𝑓 − 𝑢),           𝑖𝑛 Ω\𝐷,

  𝑢 = 0,                          𝑜𝑛 𝜕Ω.          
                                        (4.11) 

where 𝜆 ≥ 1 is a tuning parameter of the technique, the second term of the functional is 

called the fidelity term of the inpainting technique, which forces the minimiser 𝑢 to stay 

close to the given image 𝑓 outside the inpainting domain, based on the value of 𝜆.  

The five-point finite difference method has been used to solve equation (4.11). The first 

step rewrites the equation (4.11) in discrete space by using a finite difference series 

(Euler series) as follows: 

              𝑢𝑖,𝑗
𝑛+1 =

𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛

ℎ1
2 +

𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛

ℎ2
2 + 𝜆(𝑢𝑖,𝑗

𝑛 − 𝑓𝑖,𝑗)         (4.12) 

where  ℎ1 = 1, ℎ2 = 1, and ∆𝑡 = 0.1; equation (4.12) can be rewritten as follows: 

                𝑢𝑖,𝑗
𝑛+1 =

1

ℎ1
2 ((𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 − 4𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗+1
𝑛 + 𝑢𝑖,𝑗−1

𝑛 ) + 𝜆(𝑢𝑖,𝑗
𝑛 − 𝑓𝑖,𝑗))       (4.13) 

Where 2 ≤ 𝑖 ≤ 𝑀 − 1 and  2 ≤ 𝑗 ≤ 𝑁 − 1 . The equation (4.13) with Neumann 

boundary condition is calculated the pixel value in each channel of the image.  

Figure 4-7 to 4-10, demonstrate that the harmonic model is a good candidate for 

inpainting smooth images. However, the harmonic equation does not deal adequately 

with edges and large missing regions (see in Figure 4-8, 4-9 and 4-21). The 

performance of the harmonic model has been a smooth reconstruction of the large 
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region. In general, the harmonic model outperforms the isotropic model in propagating 

the information in the large missing region. However, it doesn't reconstruct well the 

edges and corners. In summary, the curvature preservation is not fulfilled, but the 

harmonic model successfully recovered small missing region (the connectivity principle 

is fulfilled). To reconstruct the edges successfully, the total variation has been used in 

the proposed anisotropic model. 

4.2.3 Anisotropic Diffusion (TV Regularisation Technique) 

Anisotropic diffusion equation has been proposed to remove the noise from an image 

while preserving the edges in the image (Perona & Malik 1990). This equation is 

modelled on the dependence of the diffusivity constant on the size of the image gradient, 

to reduce the amount of diffusion that occurs near edges. Anisotropic diffusion is a 

nonlinear 2nd-order equation, which addresses the shortcomings that face isotropic 

diffusion and harmonic extension models. The model formula is introduced in two ways:  

                                                            {
𝜕𝑡𝑢 = 𝑑𝑖𝑣 (

𝛻𝑢

|𝛻𝑢|
) , 𝑡 ≥ 0，

 𝑢(0, 𝑥, 𝑦) = 𝑢0(𝑥, 𝑦).        
                                             (4.14) 

With initial conditions 𝑢(𝑡 = 0) and  𝑢(𝑡 = 𝑇) . The model 4.14 with Neumann 

boundary conditions and initial conditions is applied to the same image in Figure4-5a 

Figure4-5c. Also, this equation can be obtained through minimisation of total variation 

as follows: 

                                      𝑚𝑖𝑛
𝑢∈𝐿1(𝛺)

{∫ |𝛻𝑢| 
 

𝐷

𝑑𝛺  such that 𝑢 = 𝑓 𝑖𝑛 𝛺\𝐷}                                    (4.15) 

The Euler Lagrange equation with has been used for functional minimisation 4.15 then 

the gradient descent process has been used on it: 

                                                                  𝜕𝑡𝑢 = 𝑑𝑖𝑣 (
𝛻𝑢

|𝛻𝑢|
)                                                          (4.16) 

The anisotropic model for image denoising is applied by adding a fidelity term as 

proposed in (Rudin et al. 1992). This leads to the following formula: 

                                               𝑚𝑖𝑛
𝑢∈𝐿1(𝛺)

𝐹(𝑢) = ∫∫ (|𝛻𝑢| +
𝜆

2
(𝑢 − 𝑓)2)

 

𝛺

𝑑𝑥𝑑𝑦                    (4.17) 

Applying the Euler-Lagrange equation on (4.17) with the gradient descent method leads 

to 

                                                  𝜕𝑡𝑢 = 𝑑𝑖𝑣 (
𝛻𝑢

|𝛻𝑢|
) + 𝜆(𝑢 − 𝑓)                                                (4.18) 

The Neumann boundary condition has been used with equation (4.18).  
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While, the Dirichlet boundary condition has been used with equation 𝑢 =
1

𝜆 
𝑓 +

𝑑𝑖𝑣 (
𝛻𝑢

|𝛻𝑢|
). The right-side term of this equation represents the curvature of the level lines 

of the image 𝑢. Anisotropic diffusion is going to try to average pixels values only on the 

right side of the object, on the right side of the edges on the correct object. Figure4-3 

clarifies the application of anisotropic diffusion on the image. Image c represents the 

result of it; we see that this equation only mixes the pixels on the side of the boundary 

without going in all directions because then sharper edges are obtained, while it also 

removes noise inside the objects, and the image(c) of the brain is much smoother, and 

the boundaries are preserved very nicely.   

 

Figure4-3: Isotropic and anisotropic process: (a) original image. (b) Image by using isotropic 

equation. (c) Image by applying anisotropic diffusion. 

For reconstructing the missing regions in an image, equation (4.14) with Neumann 

boundary condition is solved to reconstruct the missing region based the information 

around it. Equation (4.14) can be rewritten as follows: 

                       𝑢𝑡 =
𝜕

𝜕𝑥

(

 
𝑢𝑥

√𝑢𝑥
2 + 𝑢𝑦

2

)

 +
𝜕

𝜕𝑦

(

 
𝑢𝑦

√𝑢𝑥
2 + 𝑢𝑦

2

)

 , ∀𝑡 > 0, 𝑥, 𝑦 ∈ Ω                (4.19) 

The explicit finite difference method was used to find the numerical solution, the partial 

derivative in the equation (4.19) converts to the finite difference formula: 

𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 +
𝑘

ℎ

(

 
 
 
 

∆−
𝑥

[
 
 
 
 
 

1

√𝜖2 + (
∆+

𝑥𝑢𝑖,𝑗
𝑛

ℎ
)

2

+ (
∆𝑜

𝑦
𝑢𝑖,𝑗

𝑛

ℎ
)

2

∆+
𝑥𝑢𝑖,𝑗

𝑛

ℎ

]
 
 
 
 
 

+ ∆−
𝑦

[
 
 
 
 
 
 

[
 
 
 
 
 

1

√𝜖2 + (
∆𝑜

𝑥𝑢𝑖,𝑗
𝑛

ℎ
)

2

+ (
∆+

𝑦
𝑢𝑖,𝑗

𝑛

ℎ
)

2

∆+
𝑦
𝑢𝑖,𝑗

𝑛

ℎ

]
 
 
 
 
 

]
 
 
 
 
 
 

)

 
 
 
 

 

            = 𝑢𝑖,𝑗
𝑛 +

𝑘

ℎ2

(

 
 
 

[
 
 
 
 
 

𝑢𝑖+1,𝑗
𝑛 − 𝑢𝑖,𝑗

𝑛+1

√𝜖2 + (
𝑢𝑖+1,𝑗

𝑛 − 𝑢𝑖,𝑗
𝑛

ℎ )

2

+ (
𝑢𝑖,𝑗+1

𝑛 − 𝑢𝑖,𝑗−1
𝑛

2ℎ )

2
−

𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖−1,𝑗

𝑛

√𝜖2 + (
𝑢𝑖,𝑗

𝑛 − 𝑢𝑖−1,𝑗
𝑛

ℎ )

2

+ (
𝑢𝑖−1,𝑗+1

𝑛 − 𝑢𝑖−1,𝑗−1
𝑛

2ℎ )

2

]
 
 
 
 
 

+ 

[
 
 
 
 
 

𝑢𝑖,𝑗+1
𝑛 − 𝑢𝑖,𝑗

𝑛+1

√𝜖2 + (
𝑢𝑖+1,𝑗

𝑛 − 𝑢𝑖−1,𝑗
𝑛

2ℎ )

2

+ (
𝑢𝑖,𝑗+1

𝑛 − 𝑢𝑖,𝑗
𝑛

ℎ )

2
−

𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗−1

𝑛

√𝜖2 + (
𝑢𝑖+1,𝑗−1

𝑛 − 𝑢𝑖−1,𝑗−1
𝑛

2ℎ )

2

+ (
𝑢𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗−1
𝑛

ℎ )

2

]
 
 
 
 
 

)

 
 
 

 

a b c
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We use a fixed-point Gauss-Seidel iteration method for the above equation, and solving 

for 𝑢𝑖,𝑗
𝑛+1, we obtain:  

 𝑢𝑖,𝑗
𝑛+1 = (

1

1 +
𝑘
ℎ2 (𝐶1 + 𝐶2 + 𝐶3 + 𝐶4)

)

∙ [𝑢𝑖,𝑗
𝑛 +

𝑘

ℎ2
(𝐶1𝑢𝑖+1,𝑗

𝑛 + 𝐶2𝑢𝑖−1,𝑗
𝑛 + 𝐶3𝑢𝑖,𝑗+1

𝑛 + 𝐶4𝑢𝑖,𝑗−1
𝑛 )]                               (4.20) 

Where 𝐶1 = √𝜖2 + (
𝑢𝑖+1,𝑗

𝑛 −𝑢𝑖,𝑗
𝑛

ℎ
)
2

+ (
𝑢𝑖,𝑗+1

𝑛 −𝑢𝑖,𝑗−1
𝑛

2ℎ
)
2

 ,  𝐶2 = √𝜖2 + (
𝑢𝑖,𝑗

𝑛 −𝑢𝑖−1,𝑗
𝑛

ℎ
)
2

+ (
𝑢𝑖−1,𝑗+1

𝑛 −𝑢𝑖−1,𝑗−1
𝑛

2ℎ
)
2

 

𝐶3 = √𝜖2 + (
𝑢𝑖+1,𝑗

𝑛 − 𝑢𝑖−1,𝑗
𝑛

2ℎ
)

2

+ (
𝑢𝑖,𝑗+1

𝑛 − 𝑢𝑖,𝑗
𝑛

ℎ
)

2

 , 𝐶4 = √𝜖2 + (
𝑢𝑖+1,𝑗−1

𝑛 − 𝑢𝑖−1,𝑗−1
𝑛

2ℎ
)

2

+ (
𝑢𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗−1
𝑛

ℎ
)

2

 

Finally, we mention that one can perform inpainting across larger regions by 

considering a two-step method. The inpainting is done first and its results in the 

topological reconnection of shapes with edges smeared by diffusion. The second step 

then uses the results of the first step and continues with a much smaller value of 𝜖 in 

order to sharpen the edge after reconnection. In practice, such a two-stage process can 

result in inpainting of a stripe across a region that is over ten times the width of the 

stripe, without any a priori knowledge of the location of the stripe, as see in the 

Figure4-6b. 

The equation (4.20) recovers the sharp geometric structures and promotes 

discontinuities. The shortcomings of this model are that it is unable to recover large 

missing regions and it also has a problem with the edges because it does not preserve 

their directions in the direction of the boundary of the damaged parts.  Equation (4.18) 

has also been applied for denoising and for decomposing images into structure and 

texture components which that use in Chapter 6, (see Figures6.3 and 6.4 respectively). 

In summary, both the connectivity principle and the curvature preservation are not 

fulfilled by applying this model to recover the large missing region. Nevertheless, this 

model successfully propagates the smooth information in the small missing region (the 

connectivity principle). 

4.2.4 Mumford-Shah Model (MSM) 

The model of MS originally designed and proposed for segmentation problem (Tsai et 

al. 2001) based on the idea of decomposing an image into piecewise smooth parts that 

are separated by an edge set 𝛤. Afterwards, the MSm has proposed (Esedoglu & Shen 

2002) for image inpainting problems. This model is a nonlinear 2nd-order PDE, the 

following of the minimising energy functional: 



Chapter 4: PDE Based Full Inpainting Methods    
 

  96  
 

                                      𝐸[𝑢, 𝛤] =
 

𝑚𝑖𝑛
𝑢

𝐹(𝑢) =
𝜆

2
∫ (𝑢 − 𝑓)2𝑑�⃗�

 

𝛺\𝐷

+ 𝐽[𝑢, 𝛤].                         (4.21) 

with 

                                                   𝐽[𝑢, 𝛤] =
 

 
𝛾

2
∫ |𝛻𝑢|2𝑑�⃗� + 𝛽0ℋ

1(𝛤).                             

  

𝛺\𝛤

     (4.22) 

Where �⃗� = (𝑥, 𝑦),  𝛾  and 𝛽0 are non-negative constant, and ℋ1  indicates to the one-

dimensional Hausdorff measure, which computes the length of curves in the region and 

𝛤 indicates the collection of edges. ℋ1(𝛤) is conveniently substituted by length (𝛤), 

under the assumption that 𝛤  belongs to the Lipschitz class. Formula (4.21) aims to 

recover a damaged region into its piecewise smooth area 𝑢 in the 𝐻1 norm and its edge 

set 𝛤 in one-dimensional Hausdorff ℋ1(𝛤). So, the authors in (Ambrosio & Tortorelli 

1990) proposed the use the Ambrosio–Tortorelli approximation (i.e. convergence of 𝛤) 

(Esedoglu & Shen 2002) for finding the numerical solution of Formula (4.22) to address 

the problem of non-differentiability and discretisation of the unknown edge set 𝛤.  

There a sequence of regular functionals  𝐽𝜎  is considered which approximates 𝐽  and 

solves the minimisation problem for 𝐽𝜎, 𝜎 < 1.   Let ℤ𝜎: Ω →  [0, 1] which represents 

function of the edge set instead of 𝛤 in (4.22); that is nearly 1 almost everywhere in Ω 

except on an 𝛤𝜎  around  𝛤 , where it is close to 0. Then 
1

𝜎
|1 − ℤ𝜎|𝑝, 𝑝 ≥ 1,  is an 

approximation of the Dirac delta measure of 𝛤—𝛿𝛤(𝑥):  

𝐿𝑒𝑛𝑔𝑡ℎ(𝛤) =  ∫𝛿𝛤(𝑥)𝑑�⃗�
 

Ω

 =  𝑐𝑜𝑛𝑠𝑡.∫
|1 − ℤ𝜎|𝑝

𝜎

 

Ω

𝑑�⃗�.    

In fact, in (Ambrosio & Tortorelli 1990) approximation, ℤ𝜎  is computed for a given 

image 𝑢, is designed to the minimiser of  

                           𝐽𝜎(𝑢, ℤ) =  
𝛾

2
∫  ℤ2|𝛻𝑢|2𝑑�⃗�

 

Ω

+ 𝛽0 ∫ (𝜎|𝛻𝑢|2 + 
(1 − ℤ )

2

4𝜎
)𝑑�⃗�

 

Ω

             (4.23) 

In summary, they propose to carry out inpainting by minimising the Γ-convergence 

approximation of the exact model (4.21), namely 

𝐽𝜎[𝑢, ℤ|𝑓, 𝐷] =
𝛾

2
∫ ℤ2|𝛻𝑢|2𝑑�⃗� + 𝛽0 ∫ (𝜎|𝛻𝑢|2 + 

(1 − ℤ )
2

4𝜎
)𝑑�⃗�

 

Ω

+
1

2
∫𝜆(𝑢 − 𝑓)2𝑑�⃗�         (4.24)

 

Ω

  

𝛺

 

Taking variations on 𝑢 and ℤ separately yields the Euler–Lagrange system,  

                                    𝜆(𝑢 − 𝑓 ) − 𝛾𝛻 · (ℤ2 𝛻𝑢) =  0,                 𝑖𝑛 Ω,                                       (4.25)   

                                 (𝛾|𝛻𝑢|2)ℤ + 𝛽0 (−2𝜎∆ℤ +
ℤ − 1 

2𝜎
) =  0,     𝑖𝑛 Ω,                                 (4.26) 

                                                   
𝜕𝑢

𝜕�⃗⃗�
=   

𝜕ℤ

𝜕�⃗⃗�
= 0,                                𝑖𝑛 𝜕Ω,                                  (4.27) 
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where �⃗⃗� is the outward-pointing normal to 𝜕Ω. For solving this nonlinear system of 

equations is to approximate it iteratively by sequence of linear equations as follows: 

𝑢(0) = 0 and ℤ(0) = 0, and solve for 𝑘 = 1,2, …  

                                                    𝐿
ℤ𝜎

(𝑘)𝑢(𝑘) =
𝜆

𝛾
 𝑓,          𝑀𝑢(𝑘−1)ℤ𝜎

(𝑘)
= 1                              (4.28) 

with elliptic operators 

𝐿ℤ = −𝛻 · (ℤ2𝛻) + 𝜆/𝛾,          𝑀𝑢 = (1 + (
2𝜎𝛾

𝛽0
) |𝛻𝑢|2) − 4𝜎2∆. 

Given a pair of the current estimation u and ℤ, both Lℤ  and Mu  are positive definite 

elliptic operators. In the beginning, the solution of  Mu for ℤ is found, then using ℤ in 

solving Lℤ  for u  in equation (4.28). So the solution of equation (4.28) can be also 

parallelised by solving the linear equations (4.25) and (4.26) for u and ℤ simultaneously. 

The numerical solution of the MSm formula (4.21) using the Ambrosio-Tortorelli 

approximation (4.28), for more information about numerical solution, we refer the 

readers to (Schonlieb 2015). Figure 4-7 to 4-10 show the inpainted image u and its 

edges set ℤ in the Ambrosio-Tortorelli approximation. The previous iterate ℤ(n−1)rather 

than the current iterate ℤ(n)  is used in the computation of Lℤ . However, this model 

suffers when the size of the missing region is big, or there is/are edges need to be 

propagated. As a 2nd-order model, it is then unable to reconstruct curved objects. 

In summary, both the connectivity principle and the curvature preservation are not 

fulfilled by applying this model to recover the large missing region. Nevertheless, this 

model successfully propagates the edges and curvature in the small missing regions. 

4.3 Higher-Order PDE-BI methods 

As previously mentioned the 2nd-order PDEs have some limitations which led to 

investigating methods that higher-order PDEs ideally for better performance. Higher-

order PDEs can recover/reconstruct edges, corners, and curvature as well as larger 

regions in comparison with 2nd-order PDEs. Next, a summary introduction to the 

higher-order PDEs-based inpainting methods is given. The interested reader can find 

more details about higher-order PDEs in (Esedoglu & Shen 2002), (Cahn & Hilliard 

1958),  (A. L. Bertozzi et al. 2007),  (Bertalmio et al. 2000), and (Burger et al. 2009). 

4.3.1 Mumford-Shah-Euler Model (MESM) 

The MESm is proposed to overcome the shortcomings of the MSm by improving its 

embedded curve model with Euler’s Elastic curve model (Esedoglu & Shen 2002). The 

formula of the MESm can be expressed as follow: 
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                                              𝐸(𝑢, 𝛤) = 𝑚𝑖𝑛
𝑢

𝐹(𝑢, 𝛤)

 

=
𝜆

2
∫ (𝑢 − 𝑓)2

 

𝛺\𝐷

𝑑�⃗� + 𝐽(𝑢, 𝛤)                              (4.29) 

with 

                                                  𝐽(𝑢, 𝛤) =
𝛾

2
∫ |𝛻𝑢|2𝑑�⃗� + ∫(𝛼 + 𝛽𝑘2)𝑑𝑠

 

𝛤

                                              (4.30)
 

𝛺\𝛤

 

where  𝛼  and 𝛽  are regularisation parameters, 𝑘  denotes the curvature, 𝑑𝑠  the length 

element. The first and second integral represents the MSm, while the second integral in 

(4.30) is the Euler elastic model which is based on the mechanical properties of a thin 

and torsion-free rod (Love 2013). For numerical purposes, the same numerical method 

that is used for solving MSm is followed; the authors in (Schonlieb 2015) consider an 

elliptic approximation De Giorgi of Euler’s elastic energy in the second integral in 

(4.30), can be written as follows: 

                             𝐽𝜎(ℤ) = 𝛼 ∫ (|𝛻ℤ|2 +
𝑊(ℤ)

4𝜎
) 𝑑�⃗� +

𝛽

𝜎
∫ (2𝜎∆ℤ −

𝑊′(ℤ)

4𝜎
) 𝑑�⃗�.

 

𝛺

                          (4.31)
 

𝛺

 

As explained before, ℤ is an 𝜎-approximation of the edge set 𝛤, and 𝑊 is the symmetric 

double potential 𝑊(ℤ) = (1 − ℤ2)2 = (1 − ℤ)2(1 + ℤ)2.   

The latter replace the regularisation energy (4.29) in the inpainting scheme, which 

writes as follows:  

                                     𝐸𝜎(𝑢,ℤ)
 

=
𝜆

2
∫ (𝑢 − 𝑓)2

 

𝛺

𝑑�⃗� +
𝛾

2
∫ℤ2|𝛻𝑢|2𝑑�⃗� +

 

𝛺

𝐽𝜎(ℤ)                                    (4.32) 

Taking variations on 𝑢 and ℤ separately yields the Euler–Lagrange system,  

                                        𝜆(𝑢 − 𝑓 ) − 𝛾𝛻 · ((ℤ2 + ℎ(𝜎)) 𝛻𝑢) =  0,                              (4.33) 

                                       𝛾|𝛻𝑢|2ℤ − 𝛼𝑓 − 𝛽0 (−4∆𝑓 +
𝑊′′(ℤ) 

2𝜎2
𝑓) =  0,                  (4.34) 

                                      2𝜎∆ℤ − 
𝑊′′(ℤ)

4𝜎
= 𝑓,                                                                  (4.35) 

Now the steepest-descent method is used for solving 𝐽𝜎 in ℤ, that is, 

ℤ𝑡 = −𝛾|𝛻𝑢|2ℤ + 𝛼𝑓 − 4𝛽0∆𝑓 +
𝛽0𝑊

′′(ℤ) 

2𝜎2
𝑓 =  0,    

Then to discretise in time, the semi-implicit scheme is used as 

                           (1 + ∆𝑡𝐴𝑢)ℤ
𝑛+1 = ℤ𝑛 + ∆𝑡𝑔(ℤ𝑛),                                                      (4.36)   

where  

𝐴𝑢 = 𝛾|𝛻𝑢|2ℤ − 2𝛼𝜎∆ + 8𝛽0𝜎∆2, 

and 𝑔(ℤ) collects all the non-linear terms in ℤ, that is  
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𝑔(ℤ) = −
𝛼

4𝜎
𝑊′(ℤ) +

𝛽0 

2𝜎2
𝑊′′(ℤ)𝑓 +

𝛽0

𝜎
∆𝑊′(ℤ) 

The numerical solution of this model recovers the missing regions in a digital image. 

More details about this model can be found in (Esedoglu & Shen 2002);  it succeeded in 

recovering the lines, and corners in the small non-textured missing regions in the 

processed images. The MESm has been used to deal with large-scale image-inpainting 

problems, where this model uses the curvature to overcome the issue of large missing 

regions and accurately recovers the borders of missing regions. As a result, in (Esedoglu 

& Shen 2002), the researchers proposed the MESm to improve the shortcomings of the 

MSm. The minimisation of (4.29) leads to a 4th-order PDE via the Euler-Lagrange 

Equation. Implementations of this model are illustrated in Figure 4-8 and 4-9. 

In summary, both the connectivity principle and the curvature preservation are fulfilled 

through applying this model to recover large missing region in the non-texture images. 

Nevertheless, this model failed to propagate the more edges and curvature in the large 

missing regions. 

4.3.2 Bertalmio Approach (Transport Model) 

The underlying mechanism of the previous equations was diffusion. In this section, 

PDE-BI methods that are solely based on transport dynamics are introduced. Bertalmio 

et al. in (Bertalmio et al. 2000), paved the way for modern digital image inpainting 

based PDE. Their discrete PDE model was motivated by the work of art conservators, 

borrowing heavily from the idea of manual inpainting. The changed of 

information's δLn due to smoothing propagation equals zero when projected onto the 

propagation direction 𝑁⃗⃗ ⃗⃗ 𝑛:  

                                                  𝛿𝐿𝑛 ∙ �⃗⃗⃗�𝑛 = 0                                                                 (4.37) 

In other words, the gradient of information is propagated to be perpendicular to the 

direction in which are propagating. This information needs to be perpendicular in the 

sense that we want to propagate information 𝐿𝑛such a way that it  is not changed in the 

direction of the propagation by being moved in that direction. The equation (4.37) 

basically describes how the 𝐿𝑛propagation of information along with directions �⃗⃗⃗�𝑛.To 

make the image change in time, information propagation is governed by the condition: 

                                     𝑢𝑡
𝑛(𝑖, 𝑗) = 𝛿𝐿𝑛(𝑖, 𝑗) ∙ �⃗⃗⃗�𝑛(𝑖, 𝑗)                                                   (4.38) 
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where 𝛿𝐿𝑛(𝑖, 𝑗) is a measure of the change in the information Ln(i, j). With this equation, 

the information 𝐿𝑛(𝑖, 𝑗)  is estimated and its change along the N⃗⃗⃗n(i, j)  direction is 

computed. When the change of the image via propagation approaches zero, the steady 

state has been attained (4.37). The propagation of information should be smooth to 

avoid big jumps inside the missing region. The Laplacian is the better operator for 

describing smooth information. If there is an edge, the gradient of the image is 

perpendicular to the edge, where 𝑁⃗⃗ ⃗⃗ 𝑛(𝑖, 𝑗) = 𝛻⊥𝑢𝑛(𝑖, 𝑗). In order to implement this, we 

must first define what a direction �⃗⃗⃗�𝑛 for the 2D information propagation will be. One 

possibility is to define �⃗⃗⃗�n as the normal to the signed distance to 𝜕𝛺, i.e., at each point 

(𝑖, 𝑗) in 𝛺 the vector �⃗⃗⃗�𝑛will be normal to the “shrank version'' of 𝜕𝛺 to which (𝑖, 𝑗) 

belongs, see Figure4-4. 

(a) (b)  

Figure4-4: Explanation of Bertalmio module. (a) Propagation direction by perpendicular 

normal operator to the edge, (b) Propagation direction in missing region. 

This iterative process propagates linear structures (edges) of the surrounding area (i.e. 

isophotes) into the missing region; it is denoted by using a diffusion process given by 

                         ∆𝑡 𝑢𝑡
𝑛(𝑖, 𝑗) = 𝑢𝑛+1(𝑖, 𝑗) − 𝑢𝑛(𝑖, 𝑗),      ∀(𝑖, 𝑗) ∈ 𝛺                                     (4.39) 

where 𝑛 is the iteration number, (𝑖, 𝑗) are pixel co-ordinates, Δt is the rate of the change 

of inpainting and 𝑢𝑡
𝑛(𝑖, 𝑗)is the update factor on the image 𝑢𝑛(𝑖, 𝑗). 

                                          𝑢𝑡
𝑛(𝑖, 𝑗) = (𝛿𝐿𝑛(𝑖, 𝑗) ∙

�⃗⃗⃗�𝑛(𝑖, 𝑗)

|�⃗⃗⃗�𝑛(𝑖, 𝑗)|
) |𝛻𝑢𝑛(𝑖, 𝑗)|,                              (4.40) 

Where  

                𝛿𝐿𝑛(𝐼, 𝑗) = (𝐿𝑛(𝑖 + 1, 𝑗) − 𝐿𝑛(𝑖 − 1, 𝑗), 𝐿𝑛(𝐼, 𝑗 + 1) − 𝐿𝑛(𝐼, 𝑗 − 1))                (4.41) 

                                                𝐿𝑛(𝑖, 𝑗) = 𝑢𝑛
𝑥𝑥(𝑖, 𝑗) + 𝑢𝑛

𝑦𝑦(𝑖, 𝑗),                                               (4.42) 

                                         
�⃗⃗⃗�𝑛(𝑖, 𝑗)

|�⃗⃗⃗�𝑛(𝑖, 𝑗)|
=

(−𝑢𝑛
𝑦(𝑖, 𝑗), 𝑢

𝑛
𝑥(𝑖, 𝑗))

√(𝑢𝑛
𝑥(𝑖, 𝑗))

2
+ (𝑢𝑛

𝑦(𝑖, 𝑗))
2
,                                     (4.43) 
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                                                    𝛽𝑛(𝐼, 𝑗) = 𝛿𝐿𝑛(𝐼, 𝑗) ∙
�⃗⃗⃗�𝑛(𝑖, 𝑗)

|�⃗⃗⃗�𝑛(𝑖, 𝑗)|
,                                               (4.44) 

and 

|𝛻𝑢𝑛(𝑖, 𝑗)| =

{
 

 √(𝑢𝑛
𝑥𝑏𝑚)2 + (𝑢𝑛

𝑥𝑓𝑀)
2
+ (𝑢𝑛

𝑦𝑏𝑚)
2
+ (𝑢𝑛

𝑦𝑓𝑀)
2
 ,    𝑤ℎ𝑒𝑛𝛽𝑛 > 0 

√(𝑢𝑛
𝑥𝑏𝑀)2 + (𝑢𝑛

𝑥𝑓𝑚)
2
+ (𝑢𝑛

𝑦𝑏𝑀)
2
+ (𝑢𝑛

𝑦𝑓𝑚)
2
 ,     𝑤ℎ𝑒𝑛𝛽𝑛 < 0

      (4.45) 

We first compute the 2D smoothness estimation 𝐿 in (4.42) and the isophote direction 

�⃗⃗⃗�  /|�⃗⃗⃗�  |  in (4.43). Then in (4.44), we compute  βn , the projection of L  onto the 

(normalised) vector �⃗⃗⃗�  , that is, the change of L is computed along the direction of �⃗⃗⃗�  . 

Finally, βnis multiplied by a slope-limited version of the norm of the gradient of the 

image,|𝛻𝑢 |, in (4.45). A central differences realisation would turn the scheme unstable, 

and that is the reason for using slope-limiters. The sub-indexes b and fdenote backward 

and forward differences respectively, while the subindexes 𝑚  and 𝑀  denote the 

minimum or maximum, respectively, between the derivative and zero (we have omitted 

the space coordinates (𝑖, 𝑗)  for simplicity), see (Osher & Sethian 1988) for details. 

Finally, let us note that the choice of a non-normalised field �⃗⃗⃗�  instead of a normalised 

version of it allows for a simpler and more stable numerical scheme, see (Rudin et al. 

1992) and (Osher & Sethian 1988).  

Note once again that when the inpainting method arrives at steady state, that is, ut
 = 0, 

 ∇⊥u = 0, is geometrically solved,  meaning that the “smoothness” is constant along the 

isophotes. When applying equations (4.39)-(4.45) to the pixels in the border ∂Ω of the 

region Ω to be inpainted, known pixels from outside this region are used. That is, 

conceptually, equations (4.39)-(4.45) are computed in the region, although only the 

values inside Ω are updated (that is, (4.39) is applied only inside Ω). One of the main 

drawbacks of this technique is that it underperforms in the replication of large textured 

regions due to blurring artefacts created by the diffusion process and the lack of explicit 

treatment of the pixels on edges. The transport model considers one of the pioneering 

works within PDE-BI approaches in  (Bertalmio et al. 2000) which the result of 

multiplying the directional propagation by the change of the rate of the smoothness 

operator. This model succeeded in reconstructing edges. It is a 3rd-order PDE, and it is 

applied as shown in Figure 4-7 to 4-10. In summary, the curvature preservation is not 

fulfilled in the large missing regions, but the transport model successfully recovered 

large missing region (the connectivity principle is fulfilled). 
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4.3.3 Modified Cahn-Hilliard Model (mCH) 

The mCH equation is a semi-linear 4th-order PDE which is proposed for binary image 

inpainting (A. L. Bertozzi et al. 2007). Also, this equation uses in material sciences 

(Cahn & Hilliard 1958). Let 𝑓(�⃗�) be a given image in domain 𝛺, where 𝑥⃗⃗⃗ = (𝑥, 𝑦), and 

suppose that 𝐷 ⊂ 𝛺  is that the inpainting domain. The formula of this equation 

introduced as follows:  

                                  𝜕𝑡𝑢 = ∆(−𝜖∆𝑢 −
1

𝜖
𝐹′(𝑢)) + 𝜆 (�⃗�)(𝑓 − 𝑢),   𝑖𝑛𝛺                             (4.46) 

Where  𝜆(�⃗�) = {
0               𝑖𝑓 �⃗� ∈ 𝐷   

𝜆0            𝑖𝑓 �⃗� ∈ 𝛺\𝐷
 

Equation (4.46) is called the mCH equation, due to the added fidelity term 𝜆 (�⃗�)(𝑓 −

𝑢),where 𝐹(𝑢) is called a double-well potential, and𝐹(𝑢)  =  (1 − 𝑢2)2/4, where ϵ is 

a positive parameter that is intended to go to zero. To solve equation (4.50), it is enough 

to solve the energy functional (4.47): 

                                  ∫
𝜖

2

 

𝛺

|𝛻𝑢|2 +
1

𝜖
𝐹(𝑢)𝑑�⃗� + 𝜆0 ∫ (𝑓 − 𝑢)2

 

𝛺\𝐷

𝑑�⃗�                                   (4.47) 

where the left term represents the energy of a gradient flow using an 𝐻−1the norm 

which will produce the mCH equation (4.47), and the second term is the fidelity term in 

(4.47) which can be derived from a gradient flow under an 𝐿2 norm for the energy.  

Similar to the convexity splitting for the anisotropic diffusion inpainting, the following 

splitting leads to the 4th-order total variation equation. The fitting term is a gradient flow 

in 𝐻−1(𝛺) and 𝐿2(𝛺) of the energy respectively. Where 𝐻−1(𝛺) is the dual Sobolev 

space of 𝐻0
1(𝛺) with corresponding norm ‖∙‖−1. For 𝑓 ∈ 𝐻−1(𝛺), the norm is defined 

as follows: 

‖𝑓‖−1
2 = ‖∇∆−1𝑓‖−1

2 = ∫(∇∆−1𝑓)2𝑑�⃗�
 

𝛺

. 

Where ∆−1denotes the inverse of Laplacian operator, such that 𝑢 = ∆−1𝑓 is the unique 

solution to  

−∆𝑢 = 𝑓,   𝑖𝑛 𝛺,    where 𝑢 = 0,   𝑜𝑛 𝜕𝛺 

Let        

              𝑅1 = ∫
𝜖

2

 

𝛺

|𝛻𝑢|2 +
1

𝜖
𝐹(𝑢)𝑑�⃗�     and       𝑅2 = 𝜆0 ∫ (𝑓 − 𝑢)2

 

𝛺\𝐷

𝑑�⃗�                    (4.48) 

A convexity splitting is applied for both 𝑅1  and 𝑅2  separately; 𝑅1 is splitted as 𝑅1 =

𝑅11 − 𝑅12, where 

              𝑅11 = ∫
𝜖

2

 

𝛺

|𝛻𝑢|2 +
𝐶1

2
|𝑢|2𝑑�⃗�      and   𝑅12 = ∫ −

1

𝜖
𝐹(𝑢) +

𝐶1

2
|𝑢|2𝑑�⃗�

 

𝛺

           (4.49) 
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Likewise,  𝑅2 = 𝑅21 − 𝑅22 can be writtenas follows: 

              𝑅21 = ∫
𝐶2

2
|𝑢|2𝑑�⃗�

 

𝛺\𝐷

      and   𝑅22 = ∫ −𝜆0(𝑓 − 𝑢)2 +
𝐶2

2
|𝑢|2𝑑�⃗�

 

𝛺\𝐷

              (4.50) 

Analogous to the above the resulting time stepping scheme is 

𝑢𝑛+1 − 𝑢𝑛

𝑘
+ 𝜖𝛻4𝑢𝑛+1 − 𝐶1𝛻

2𝑢𝑛+1 + 𝐶2𝑢
𝑛+1

= 𝛻2 (
1

𝜖
𝐹′(𝑢𝑛)) + 𝜆(�⃗�)(𝑓(�⃗�) − 𝑢𝑛) − 𝐶1𝛻

2𝑢𝑛 + 𝐶2𝑢
𝑛                  (4.51) 

The success of this model is that it can recover large missing gaps without producing 

artefacts (A. L. Bertozzi et al. 2007), as seen in Figure4-6c. The results of this model 

and MESm have outperformed on other inpainting models; introduced in (A. L. 

Bertozzi et al. 2007). 

In summary, both the connectivity principle and the curvature preservation are fulfilled 

through applying this model to recover large missing region.  

4.3.4 Fourth-Order Total Variation Model 

The 4th-order version of the total variation flow model corresponds to a generalisation of 

the mCH equation on grey-value images (Burger et al. 2009). Higher-order PDEs treat 

the shortcomings of the TV flow approach. The formula of this model is as follows: 

                                                    𝜕𝑡𝑢 = − △ (𝑑𝑖𝑣 (
𝛻𝑢

|𝛻𝑢|
)) + 𝜆(�⃗�)(𝑓 − 𝑢)                              (4.52) 

Similar again to the convexity splitting for anisotropic diffusion inpainting, the 

following splitting leads to the 4th-order total variation equation. The fitting term is a 

gradient flow in 𝐻−1 and 𝐿2of the energy respectively.  

                                  𝑅1 = ∫ |𝛻𝑢|
 

𝛺

𝑑�⃗�         and      𝑅2 =
1

2
∫ 𝜆0(𝑓 − 𝑢)2

 

𝛺\𝐷

𝑑�⃗�                        (4.53)  

We split 𝑅1in 𝑅11 − 𝑅12, where 

                           𝑅11 = ∫
𝐶1

2
|𝛻𝑢|2𝑑�⃗�

 

𝛺

         and     𝑅12 = ∫ −|𝛻𝑢| +
𝐶1

2
|𝛻𝑢|2𝑑�⃗�

 

𝛺

               (4.54) 

Likewise,  𝑅2 = 𝑅21 − 𝑅22 can be written as follows 

                𝑅21 = ∫
𝐶2

2
|𝑢|2𝑑�⃗�

 

𝛺

      and     𝑅22 =
1

2
∫−𝜆0(𝑓 − 𝑢)2 + 𝐶2|𝑢|2𝑑�⃗�

 

𝛺

                     (4.55) 

Analogous to the above, the resulting time stepping scheme is 

𝑢𝑛+1 − 𝑢𝑛

𝑘
+ 𝐶1𝛻

4𝑢𝑛+1 + 𝐶2𝑢
𝑛+1

= 𝐶1𝛻
4𝑢𝑛 − 𝛻2 (𝛻 ∙ (

𝛻𝑢𝑛

|𝛻𝑢𝑛|
)) + 𝐶2𝑢

𝑛 + 𝜆(�⃗�)(𝑓(�⃗�) − 𝑢𝑛)                   (4.56) 
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To make the scheme unconditionally stable, the constants C1 and C2 have to be chosen 

so that 𝑅11
 , 𝑅12

 , 𝑅21
 ,  and 𝑅22

  are convex. The choice of 𝐶1  depends on the 

regularisation of the total variation that is used. Using the square regularisation, |𝛻𝑢| is 

replaced by √|𝛻𝑢|2 + 𝛿2 the conditions turn out to be 𝐶1 >
1

𝛿
 and 𝐶2 > 𝜆0. This model 

with two boundary conditions gives improved results, especially on edges. It is applied 

to reconstruct the edges even within large holes (See Figure4-6d). In summary, both the 

connectivity principle and the curvature preservation are fulfilled through applying this 

model to recover large missing regions.  

4.4 Examples of PDE-BI Methods in Spatial Domain 

This section introduces examples of recovering missing regions in natural RGB colour 

images by using PDE-BI methods. The selected 2nd- and high-order PDE methods will 

be applied to recover the missing regions separately in each colour channel. To compare 

the performance of the 2nd- and high-order PDEs, two sets of experiments have been 

conducted. The first experiment was a study of the effect of the choice of order in PDE 

methods on the reconstruction of edges in missing regions of different sizes in the 

natural images. The second experiment was a study of the abilities of the 2nd- and high 

order PDE methods to remove texts in the natural images. Isotropic diffusion, 

anisotropic diffusion, 4th-order total variation and the mCH equation have been studied; 

these represent linear 2nd-order, nonlinear 2nd-order and nonlinear 4th-order PDEs 

respectively. These models are discussed in the following Figures:  Figure4-5b shows 

the recovery of a missing region through the use of isotropic diffusion (i.e. via heat 

equation) where the result was not good because these results spread in four directions 

which causes restoration blur in the missing region.  

Meanwhile, anisotropic diffusion (i.e. TV model) solved the problem which was faced 

as shown in Figure4-5a by propagating the restoration information in the missing region 

in two directions, as seen in Figure4-5c. 
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Figure4-5: Recovering hole in an image. (a) Masked image, (b) inpainted image using isotropic 

method, (c) inpainted image using anisotropic method. 

Although the anisotropic diffusion equation performed better than the heat equation, it 

failed to build the sharp edges over large missing areas in an image because it is a 2nd-

order PDE, as seen in Figure4-6b.  

The deficiencies of the anisotropic diffusion equation have been addressed by higher-

order PDEs. Higher-order PDEs satisfy the connectivity principle because of their 

ability to recover large missing regions. In the same vein, they also succeeded in 

reconstructing edges and corners inside missing patches. There are many higher-order 

PDEs which may be used to solve the inpainting problem, such as 4th-order total 

variation and the mCH equation, as can be seen in Figure4-6c and Figure4-6d. 

 

Figure4-6: Recovering large hole in an image. (a) Masked image, (b) inpainted image using 

anisotropic method, (c) inpainted image using mCH method, (d) inpainted image using 4th order 

TV method.   

The second experiment is focused on removing texts and dates from images by using, 

which are harmonic, MS, transport, MES and mCH methods. Figure 4-7 to 4-10 

represent examples of the removal of texts in different-sized images. The Figure 4-8 and 

4-10 show the removal of texts that have small- size fonts and large size, respectively; 

all these models have succeeded in reconstructing the image after removing the texts. 

The harmonic equation is faster than MS, and transport, equations in removing the texts 

and repairing images. The harmonic equation has a simple computation because it is a 

2nd-order PDE. On the other hand, the MS and transport models utilise huge and time-

consuming computation in repairing an image. 
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Figure4-7: Removing text using a PDE inpainting method. (a) Masked image, (b), (c), and (d) 

inpainted image using Harmonic, MS and Transport models, respectively. 

Figure 4-8 and 4-9 display the scratches and texts removal that has a thick size font, 

where the performance of the harmonic model was not good, while other models have 

succeeded in removing texts from the images. The results using the harmonic model 

were not that promising, whereas the MES and transport models achieved better results. 

 

 

 

 

 

 

 

Figure4-8: Removing scratches PDEs inpainting methods. (a) Masked image, (b), (c), and (d) 

inpainted image using Harmonic, MES and Transport models, respectively. 

 

 

 

 

 

 

 

 

 

Figure4-9: Removing bold text using PDEs inpainting methods. (a) Masked image, (b), (c), and 

(d) inpainted image using Harmonic, MES and Transport models, respectively. 
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Figure4-10: Removing bold text by PDEs inpainting methods. (a) Masked image, (b), (c), and 

(d) inpainted image using Harmonic, MS and Transport models, respectively. 

For image inpainting problems, the inpainting domain could be determined depending 

on the particular applications scenarios. So for text, scratch, and object removal, the 

inpainting domain is spatial, while the wavelet domain is used to recover the missing 

information which that especially lost through the image compression process (Chan et 

al. 2006). So, the linear and nonlinear 2nd-order PDEs techniques cannot preserve 

discontinuous image features such as edges that span large holes in an image and not 

good in the connection and holistic principle. 

High-order PDE methods have been managed to address the shortcoming of the 

connection and holistic principle in the 2nd-order PDEs techniques, the researchers have 

found the higher-order PDEs able to repair this shortcoming. Where these techniques 

have utilised much of information from the source region that used to propagate the 

information in the missing region into an image. These techniques managed to fix edges 

problem in the damaged region, and their results were better than 2nd-order results, but 

these techniques still not have able to restoration large missing region in an image. To 

overcome this issue, the results of those 4th-order PDEs when they are used to recover 

the damaged regions of a structured (geometry) part in hybrid technique are analysed; 

see Chapter 5. 

On the other hand, unlike most classical inpainting problems briefly reviewed above, 

the available image information is often given on complicated transform-based (spatial 

or frequency domain) sets instead of finite discrete ones (i.e. the given images). These 

complicated sets could contain 2-D sub-domains. An ideal inpainting scheme should be 

able to simultaneously benefit from all these different types of available information, to 

reconstruct the original images as faithfully as possible.   
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4.4.1 Second-Versus Higher-Order PDE Methods in Inpainting 

In this section, the differences between the performances of 2nd- and higher-order 

models in inpainting are highlighted in order to analyse their impact on image quality. 

First of all, the order of TV inpainting methods is determined by the derivatives of the 

highest order in the corresponding Euler-Lagrange equation, while the order of PDE-BI 

methods is determined by the derivatives of the highest order in the equation formula. 

C.-B. Schönlieb in (Schönlieb 2009) emphasised the difference between 2nd- and 

higher-order PDE-BI models in inpainting, and the author clarified their preference for 

using higher-order models instead of 2nd-order models in inpainting. For example, the 

TV model in (Chan & Shen 2002) has drawbacks when it comes to the connection  of 

edges over large distances (i.e. Connectivity Principle) and the smooth propagation of 

level lines into the damaged domain (i.e. Curvature Preservation), because of the 

minimising process with 2nd-order derivatives in connecting level lines from the 

boundary of the inpainting domain via the shortest distance (linear interpolation), and 

this process has limitation with the length of the level lines. 

The higher-order variational inpainting methods usually use two boundary conditions, 

whereby the second boundary condition is necessary for the well-posedness of the 

corresponding Euler-Lagrange equation of 4th-order. For example, the Dirichlet 𝑢 = 𝑓  

and Neumann 𝛻𝑢 =  𝛻𝑓  conditions are defined on 𝜕𝐷  of given image f; these 

conditions are used with the mCH inpainting model; the performance of this model 

supports the continuation of the image gradient into the inpainting domain. More 

precisely, the authors in (A. Bertozzi et al. 2007) proved the performance of mCH 

inpainting equation fulfils a stationary solution through recovering missing region; this 

means the information that wants to propagate in the inpainting domain will not only 

specified  on the boundary of the missing region but also the gradient of the given 

image (i.e. on the directions of the level lines). 

Also, there are drawbacks with the variational 3rd-order method to image inpainting, for 

example, the CDD model in (T. Chan and J.Shen 2001) successfully propagate the 

smooth information in missing regions (i.e. solving the problem of connecting level 

lines over large distances) but it failed to preserve the edges and curvature because the 

level lines are still interpolated linearly.  

Finally, it is worth mentioning that high-order PDE-BI methods are time-consuming 

and not easy to compute. Also, when the missing region has a large and rich-textured 



Chapter 4: PDE Based Full Inpainting Methods    
 

 109  
 

neighbourhood, PDE methods, in general, will produce blurring artefacts. In the next 

section, the proposed new approach is presented.  The PDE-BI methods are used for the 

recovery of missing regions based on the concepts of the colourisation process.   

4.5 Inpainting based on PDE and Colourisation Methods in Spatial 

Domain 

The above PDE methods recover missing image regions by applying the adopted 

methods in each colour channel separately.  A new class of PDE-BI methods is 

proposed, that benefits from the colourisation methods of section 3.4.2. Below, the steps 

of this proposed approach are presented:  

1. Converting the masked image into YCbCr colour space. 

2. Recovering the missing regions in the Y channel by applying PDE-BI 

methods, 

3. Adding the colour to missing colour regions in Cb and Cr channels by using 

PDE colourisation methods. 

4. Converting the inpainted YCbCr image back to the RGB colour space. 

In particular, after converting the masked RGB image to YCbCr space, the MES and the 

mCH methods are applied to recover the missing regions in the Y channel, then the 

Poisson and 4th order PDE colourisation methods as developed in Chapter 3 are used, , 

to add colours to missing Cb and Cr colour channels. Finally, the inpainted images in 

the YCbCr space have been converted to RGB image space. The proposed scheme has 

been applied on a set of natural in the database images, and its results are compared 

with results of applying only PDE-BI methods, as shown in Figure 4-11 and Figure 4-12. 

 

Figure 4-11: Recovering missing regions using PDE-based inpainting and colourisation 

methods in the spatial domain. (a) Original image, (b) masked image, (c), (e), and (g) inpainted 

image using harmonic, MESm, and mCH models, respectively, (d), (f), and (h) inpainted image 

using harmonic, MESm, and mCH models with colourisation method, respectively. 
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Figure 4-12: Recovering missing regions using PDE-based inpainting and colourisation 

methods in the spatial domain. (a) Original image, (b) masked image, (c), (e), and (g) inpainted 

image using harmonic, MESm, and mCH models, respectively, (d), (f), and (h) inpainted image 

using harmonic, MESm, and mCH models with colourisation method, respectively. 

We note our combined colourisation and PDE methods slightly improve visual quality 

compared to only using PDE methods (Figure 4-11 & Figure 4-12). However, the 

proposed method has the same limitations, of the original methods, when used with 

large size missing regions and with the high texture surrounding areas. A more detailed 

study of the performance of the various methods was conducted to recover two 

inpainting domains on 100 natural images, the traditional statistical measurements have 

applied to assess the quality of inpainted regions, as can be seen in section 4.7.2. 

4.6 PDE-BI Method in the Frequency Domain 

In this section, the PDE-BI method is applied in a frequency domain whereby the image 

is first converted from the spatial domain into the frequency domain using mathematical 

transforms, there are many kinds of transformation, but we confine our discussion on 

the use of the Discrete Wavelet Transform (DWT). 

In the frequency domain obtained by using wavelet transforms various image analysis 

problems have been solved due to their multiresolution properties and decoupling 

characteristics. The wavelet transform has advantages, for application to image 

inpainting; in this way, for instance, the size of a missing region will be reduced, which 

has a very favourable effect on the application of PDE methods. By comparison with 

other inpainting methods, we can expect a better global structure estimation of a 

damaged region in addition to better shape- and texture-preserving properties. The 

utilisation of wavelet transforms for image inpainting are proposed, owing to their 

advantages, as mentioned previously. The next section shows the application of PDE-

based inpainting methods on the natural images in the wavelet domain. 
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This PDE-BI method mimics the approach taken in the previous chapter, and 

reconstruct damaged regions of images in the wavelet domain using the following steps:  

Step 1. The region from the original image to be inpainted is marked manually by 

the user.  

Step 2. The original image with a damaged region is decomposed into the low and 

high-frequency components based on the Haar wavelet filter. 

Step 3. The damaged region is repaired by using the PDE method applied to the low-

frequency sub-band.  

Step 4. The intensity values of the damaged region in high-frequency sub-bands are 

set to zero, this will cause some quality loss in the inpainted area, but this 

will not be noticeable especially if the area has relatively less edges. 

Step 5. The inverse wavelet transform will be applied to reconstruct the inpainted 

image. (i.e. the inverse wavelet transform is used to convert these four sub-

bands to one image which is called the inpainted image). 

Initially, the PDE method is applied to recover the damaged region in each sub-band, 

and after studying the nature of the high-frequency coefficients (Gonzalez & Woods 

2008), we found that the high three sub-bands have information in relation to the 

vertical, horizontal, and diagonal edges. Setting these values to zero for the inpainting 

area only will have a small effect on the quality after applying the wavelet inverse 

transform. Moreover, we could apply the PDE differently based on the edge direction in 

these three sub-bands, but this needs more investigation as there is some discontinuity 

in the edges information in these high-frequency sub-bands. So, we decided to sacrifice 

the quality and leave applying PDE on the high-frequency sub-bands for the future.    

This method has been applied to natural images in two scenarios, referred to as the first- 

and 2nd-level wavelet domains. In the first scenario, the PDE has been applied to 

reconstruct the missing region in the low-frequency sub-band (i.e. approximation sub-

band), and in the other three sub-bands, the values of missing high-frequency 

coefficients have been estimated. In the second scenario, the PDE has been applied to 

reconstruct the missing region in the low-frequency sub-band in the 2nd level wavelet 

domain, and the values of missing high-frequency coefficients have been estimated in 

six other sub-bands. Four PDE methods have been applied to reconstruct the missing 

region in the low-frequency sub-band see Table 4-1. The steps of this method in several 
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instances are illustrated in Figure4-13. This Figure shows the implementation of the 

PDE-BI methods in the first and 2nd level wavelet domains. The harmonic model has 

been applied to recover the missing regions in the low-frequency sub-band domain. 

A process of image inpainting in 2-level DWTA process of image inpainting in 1-level DWT  
Figure4-13: Inpainting based-PDE method in 1st and 2nd level Haar wavelet domain. 

The left column represents the process of the PDE method in level-1in DWT domain, 

while the process of the PDE method in the level-2 DWT domain is represented in the 

right column. There is no difference between the inpainted images visually in the last 

row of each column, but the inpainted image in the level-1DWT domain may be 

described as a little better than in the level-2 DWT domain based on values of MSE and 

PSNR measures. The white mask that was used in Figure4-13 will be applied to a set of 

natural images; then different PDE-BI methods will be used to recover the missing 

regions in different levels of the DWT domain. Table 4-1represents the averages of 

MSE and PSNR for image inpainted in different level DWTs via PDE-BI methods. 

Equations Harmonic Transport MESm mCH 

Levels MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

1st 953.209 19.7273 916.273 19.6507 802.234 20.4884 766.063 20.4429 

2nd 1023.694 18.1239 975.391 18.7723 886.348 19.6722 813.759 19.8872 

3rd 1153.776 17.8537 1016.87 18.1962 964.997 19.9472 905.358 19.9723 

Table 4-1: The average values of MSE and PSNR of inpainted images of PDE methods in 

different levels of DWT. 



Chapter 4: PDE Based Full Inpainting Methods    
 

 113  
 

The averages of MSE and PSNR from inpainted images in level-1 DWT are better than 

those resulting from other levels of DWT; the values of MSE and PSNR become 

gradually worse as the levels of DWT rise, which means that the efficacies of the PDE-

BI methods became gradually worse in recovering the missing regions when applied to 

increasingly high-level DWT sub-bands. In the figures below, some of the experimental 

results are demonstrated for different PDE-BI methods in different inpainting domains. 

So, these PDE-BI methods have been applied to recover the missing regions in level-1 

DWT domain.  

Figure4-14 shows inpainted images by using PDE-BI methods in the Haar wavelet 

domain while in Figure 4-15 presents the inpainted images by applying PDE methods in 

the Daubechies 8 wavelet domain.   

(c)(b)

(d)

(a)

(f)(e)  

Figure4-14: Removing scratches using PDE inpainting methods in the frequency domain. (a) 

Original image, (b) original image with scratches, (c), (d), (e) and (f) inpainted images using 

Harmonic, Transport, MES and mCH models, respectively. 

(f)

(b)(a)

(e)

(c)

(d)  

Figure4-15: Removing scratches using PDE inpainting methods in the frequency domain. (a) 

Original image, (b) original image with scratches, (c), (d), (e) and (f) inpainted images using 

Harmonic, Transport, MES and mCH models, respectively. 

As shown in the above Figures, PDE-BI methods have succeeded in recovering small, 

smooth missing regions with non-textured areas around them, while PDE-BI methods 
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still have a problem in recovering missing regions with textured surrounding areas in 

the spatial domain, as seen in  

Figure4-14 and 4-15.  

In Chapter 6, the properties of wavelet transforms in image analysis are used to 

characterise non-textured and textured image components (i.e. low-frequency 

coefficients and high-frequency coefficients). Moreover, the PDE-BI methods are used 

to recover missing regions via the low-frequency sub-band, and another inpainting 

method will be used to recover the high-frequency sub-bands then the results will be 

combined. Comparisons will be made about the performances and efficacies of methods 

as well as their abilities to recover deleted areas in the spatial and frequency domains, in 

sections 4.7.2.1, 4.7.2.2 and 4.7.2.3. 

To deeply study the efficacies of 2nd and high PDE-BI methods in the spatial and 

wavelet domains, we have applied them to two sets of images (natural and faces 

databases). Statistical measurements and the TDA approach have been used to study 

and compare the results of the implementations of these equations in each domain. The 

next section will show these databases and the results of applying these methods to 

them in the spatial and frequency domains. 

4.7 Image Quality Assessment Post Inpainting 

The aim in this section is to test the qualities of various images which have been 

inpainted using various PDE-BI methods. In general, high-order PDE-BI methods are 

expected to produce better quality images than the 2nd-order PDE-BI methods. 

Therefore, the efficacies of the various 2nd- and high-order PDE-BI methods as bases for 

inpainting in spatial and frequency domains are compared by assessing the qualities of 

their output images using a variety of quality measures. Next, two databases used in our 

experiments, the first consisting of natural images and the other of face images. 

4.7.1 Databases Description 

This subsection gives a brief description of two publicly available databases; a face 

biometric database and a natural image database that is used in our experiments to 

evaluate the suitability of the different PDE-BI methods. Statistical measurement 

methods and topological data analysis methods have been used to evaluate the efficacy 

of these PDE-BI methods. The first database is Berkeley segmentation dataset and 

Benchmark database (Pablo Arbelaez 2007) as described in Chapter 3. The inpainting-
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based PDE methods have been applied to100 images of this database. These images 

have been selected based on the quantity of texture and structure which helps to check 

the efficacy of the PDE-based inpainting methods in recovering small missing regions. 

Figure4-16 illustrates examples of natural images from the Berkeley segmentation and 

Benchmark database. 

 

Figure4-16: Example of eight out of 300 training natural images. 

The second database is the Extended Yale B database (Lee et al., 2005) in (Deng Cai, 

Xiaofei He, Yuxiao Hu 2005) which is widely used to test the performance of face 

recognition schemes. This database consists of 2414 face images of 38 individuals each 

having 64 images, in frontal pose. The reason of choosing this database is the fact that 

the inpainting techniques can improve the performance of face recognition applications, 

for example, in the case of having occluded face images with missing regions, these 

PDE-BI methods recover the missing region and provide a better-quality image which 

boosts the application performance. Moreover, these techniques can be used for object 

removal, for example, removing glasses from face images. The size of these images is 

192×168. The images in the database are divided into five subsets. The inpainting-

based PDE methods have been applied to 76 images of this database.  

Figure4-17 shows some examples of training face images taken from the Extended Yale 

B database.  

 

Figure4-17: Example of eight out of 114 training face images. 
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4.7.2 Statistical Measurements for Image Quality 

This subsection shows the results of two groups of experiments, which have been 

conducted and are reported in both; spatial and frequency domain. Also, the quality 

assessment of the inpainted images for these experiments is checked by using statistical 

measurements and the TDA approach. On the other hand, the performance of each 

PDE-BI method used in these experiments has been studied and discussed by using the 

TDA approach. To keep to chronological order, the statistical measurements to check 

the quality of inpainted images of these two groups of experiments in the spatial and 

frequency domains. 

4.7.2.1 Experiment 1: Results of using PDE on the natural dataset 

Different experiments are conducted to measure and compare image quality in the 

inpainted images concerning the original images in the spatial and frequency domain, 

using MSE, PSNR, SSIM and entropy quality measures. The test images were inpainted 

using various PDE-BI methods. The original images of the Berkeley database were used 

as the reference by which to measure the quality of inpainted images. In this section, 

five experiments have been applied to 100 images of this data set. The aim of these 

experiments is to study the effect of the order of PDE-BI methods on the reconstruction 

of the edges in different sizes of missing regions in the natural images and to study the 

performance of these methods in reconstructing these missing regions. These 

experiments have used harmonic, transport, MES, and mCH methods in the spatial and 

frequency domains. In general, image inpainting can be described as follows: Let Ω be 

the image domain, let 𝑓: Ω → 𝑅+be the given original image, and domain 𝐷 ⊂  Ω 

represents the region with missing information. We refer to domain 𝐷 as the inpainting 

domain, and we assume it has already been identified, as illusturted in Figure4-1.  

Five cases of inpainting domains (damaged regions) have been created in the images by 

using binary masks. The next equation represents how the scratches and texts are added 

to the original images, 

                            𝑓𝐷𝑎𝑚𝑎𝑔𝑒𝑑(𝑥, 𝑦) = 𝑀−1(𝑥, 𝑦) × 𝑓(𝑥, 𝑦) + 𝑀(𝑥, 𝑦)                             (4.57) 

where 𝑓 is the original image, 𝑀 is the mask image and 𝑀−1 is the logical inverse of the 

mask image, where  

𝑀−1(𝑥, 𝑦) = 1 − 𝑀(𝑥, 𝑦) 

The size of the mask is the same as that of the original image. Multiply every element in 

the inverse mask matrix by the corresponding element in the original image matrix. The 
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mask images have been chosen based on the width of the texts and scratches; the first 

two masks represent the different sizes of text. The font sizes in the texts of the mask 

images in C1 and C2 are 12pt, and 16pt respectively. The other mask images represent 

two different-sized scratches (C3, C4) and two missing blocks (C5). Figure4-18 

represents these five cases of damaged regions in images which have been applied to the 

database images to study the efficiency of these PDE-BI methods. The first four masks 

will be applied to the set of natural images to study the efficacy of PDE-BI methods.  

On the other hand, as mentioned before, we are dealing with high textured colour 

natural images, and these PDE-BI methods cannot deal with the highly textured images. 

Therefore, the mask C5 will be used to check the ability of PDE-BI methods to recover 

large missing regions. These PDE-BI methods will be applied to recover the missing 

regions in each channel image. 

 

Figure4-18: The same natural image with five different inpainting domains. 

Harmonic, transport, MES, and mCH methods have been used to remove the texts and 

scratches from the damaged natural images; these methods are applied on 100 images 

from the Berkeley database in spatial and frequency domain.  

Figure4-19 and 4-20 show the results of removing the scratches in the natural images in 

the spatial domain. An accurate evaluation of PDE-BI methods which simultaneously 

assesses inpainted images qualitatively and quantitatively is not an easy task. The 

qualitative evaluation of PDE-BI methods is conducted visually for inpainted images, 

while the quantitative evaluation of PDE-BI methods is done by applying statistical 

measurements between original and inpainted images.  

Damaged image, C4Damaged image, C3Damaged image, C1 Damaged image, C2 Damaged image, C5
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(a) (b)

(d) (e)

(c)

(f)  
Figure4-19: Removing scratches using PDE-BI methods in the spatial domain. (a) Original 

image, (b) original image with scratches, (c), (d), (e), and (f) inpainted image using Harmonic, 

Transport, MES, and mCH models, respectively. 

 

(a)

(f)

(c)

(e)(d)

(b)

 
Figure4-20: Removing scratches using PDE-BI methods in the spatial domain. (a) Original 

image, (b) original image with scratches, (c), (d), (e), and (f) inpainted image using Harmonic, 

Transport, MES, and mCH models, respectively. 

(d)

(a)

(e) (f)

(b) (c)

 
Figure4-21: Recovering missing regions using PDE-BI methods in the spatial domain. (a) 

Original image, (b) masked image, (c) Harmonic inpainted image at iteration 800, (d) Transport 

inpainted image at iteration 900, (e) MES inpainted image, (f) mCH inpainted image at iteration 

550. 
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(a) (b) (c)  
Figure4-22: Recovering missing regions using PDE-BI methods in the wavelet domain. (a) 

Transport inpainted image at iteration 600, (b) MES inpainted image, (c) mCH inpainted image 

at iteration 400. 

We note that the inpainted images in Figure4-19 are visually almost identical to the 

original images. In Figure4-20 and 4-24, the harmonic inpainted images are visually not 

identical to the original images, whereas other inpainted images are visually identical to 

the original images. Also, the inpainted images created in the wavelet domain, as shown 

in Figure4-22 can be seen to be visually identical to those created in the spatial domain, 

shown in Figure4-21. Experimental testing shows that visually acceptable images may 

have different image qualities by numerical measures. The efficacy of these methods in 

recovering small missing regions has been studied by using the first four masks on the 

set of natural images. Their abilities to recover large missing regions have also studied 

by applying C5 on the set of images; this is the challenge for these methods.  

To check further the quality of an inpainted image, statistical measurements are used, in 

particular, to check the efficacy of PDE-BI methods in the spatial and frequency 

domains. To get better-quality image inpainting, the qualities of the inpainted regions 

are checked by statistical measurements, so the SSIM, PSNR, MSE and entropy have 

been calculated only between the inpainted regions and the corresponding regions in the 

original images in both domains. Table 4-2 and 4-3 will summarise the comparison of 

the qualities of PDE-BI methods in the spatial and frequency domain respectively; the 

times taken to get the results using these models are also shown. 
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Cases Equations MSE PSNR SSIM Entropy Time (S) Iteration 

C
a

se
1

 

Harmonic 105.066 29.058 0.9230 2.6235 90 300 

Transport 99.4891 29.329 0.9324 2.6247 213 250 

MESm 48.7816 32.227 0.9376 2.6230 107 1 

mCH 76.0662 31.817 0.9168 2.6218 128 150 

C
a

se
2

 
Harmonic 80.5039 30.263 0.9201 2.8960 135 300 

Transport 75.9052 30.568 0.9352 2.8971 159 200 

MESm 32.8185 33.929 0.9347 2.8961 112 1 

mCH 71.7534 34.892 0.9215 2.8941 131 100 

C
a

se
3

 

Harmonic 145.232 27.613 0.9075 3.2861 143 350 

Transport 138.855 27.838 0.9201 3.2893 188 250 

MESm 102.398 27.992 0.9231 3.2835 142 1 

mCH 125.403 28.472 0.9024 3.1910 129 200 

C
a

se
4

 

Harmonic 124.396 28.467 0.9296 1.4232 142 400 

Transport 120.454 28.618 0.9422 1.4230 210 300 

MESm 121.108 28.980 0.9430 1.4222 191 1 

mCH 112.138 29.350 0.9080 1.4212 175 250 

C
a

se
5

 

Harmonic 906.190 19.618 0.9696 1.8905 285 800 

Transport 899.007 19.660 0.9705 1.9075 293 900 

MESm 803.808 20.493 0.9713 1.8911 179 1 

mCH 711.960 21.284 0.9942 1.8855 253 550 

 

Table 4-2: The average values of MSE, PSNR, SSIM, and entropy are shown for image 

inpainting using Harmonic Transport, MES and mCH models in the spatial domain.  

Cases Equations MSE PSNR SSIM Entropy Time (s) Iteration 

C
a

se
1

 

Harmonic 213.048 25.913 0.9883 2.6232 60 220 

Transport 188.726 26.371 0.9892 2.6231 165 200 

MESm 179.757 26.577 0.9897 2.6189 80 1 

mCH 158.180 28.021 0.9885 2.6170 90 100 

C
a

se
2

 

Harmonic 175.986 26.766 0.9870 2.8888 100 250 

Transport 148.280 27.424 0.9886 2.8939 124 150 

MESm 143.517 27.577 0.9890 2.8206 85 1 

mCH 125.296 28.352 0.9894 2.7767 116 80 

C
a

se
3

 

Harmonic 264.086 24.776 0.9843 3.2756 121 280 

Transport 277.645 24.751 0.9826 3.2868 151 200 

MESm 238.389 25.356 0.9845 3.2789 128 1 

mCH 185.293 26.998 0.9892 2.9002 91 150 

C
a

se
4

 

Harmonic 226.494 25.868 0.9948 1.4185 117 300 

Transport 199.765 26.265 0.9952 1.4225 181 250 

MESm 195.582 26.378 0.9953 1.3903 168 1 

mCH 176.072 27.778 0.9911 1.3682 156 200 

C
a

se
5

 

Harmonic 953.209 19.727 0.9124 1.2445 240 550 

Transport 916.273 19.650 0.9705 1.1035 237 600 

MESm 802.234 20.488 0.9712 1.0996 120 1 

mCH 766.063 20.442 0.9708 1.0923 190 400 
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Table 4-3: The average values of MSE, PSNR, SSIM, and entropy are shown for image 

inpainting using harmonic transport, MES and mCH models in the frequency domain.  

Table 4-2 and 4-3 show the average values of MSE, PSNR, SSIM and entropy resulting 

from the applications of harmonic, transport, MES and mCH equations for recovering 

the missing regions in the spatial and frequency domain. In both domains, the values of 

MSE, PSNR, SSIM and entropy obtained using the MES and mCH equations are better 

than those obtained using the harmonic and transport equations and the number of 

iterations of these equations to accomplish their tasks is less than required with other 

equations.  On the other hand, the harmonic equation requires less time per iteration 

than those applied in the transport, MES and mCH methods. Also, MSm can be solved 

in a single step.  

In the qualitative assessment, the images inpainted in the spatial and frequency domains 

look almost identical. On the other hand, in the quantitative assessment, the MSE, 

PSNR, SSIM and entropy measures resulting from these methods in the spatial domain 

are a little better than those obtained by using frequency-domain methods, while the 

number of iterations and computation time needed to recover the missing regions is less 

in the frequency domain than in the spatial domain. Also, the above tables show that 

high order PDE-BI methods are capable of effective region filling and give relatively 

high PSNR values with low MSE values, and the SSIM values are close to 1. Also, the 

MES and mCH methods got lower entropy value than harmonic and transport methods 

in both spatial and frequency domains. 

To confirm current results regarding each PDE-BI method in both domains, Yale B 

database face images have been used to check the efficacy of the PDE-BI methods 

because face-recognition methods provide an excellent test for the qualities of inpainted 

images. In the next section, the results of applying PDE methods on Yale B Database 

images are introduced. 

4.7.2.2 Experiment 2: Results of using PDE on the face dataset 

The Yale B. database is famous, and this database has been used in the assessment of 

resolution enhancement of face images and image classification (image recognition). As 

the face images in this database are sensitive, even small changes are visually noticeable. 

Therefore, a set of experiments was conducted on the frontal face images from the 

Extended Yale B database, where the damaged images were generated by different 

mask images. Five mask images have been used to study the performance of the PDE-
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BI methods and the quality of the inpainting results in the spatial and frequency 

domains. In general, the size of the damaged region affects the performance of the PDE-

BI methods in the reconstruction of an image, which means it will affect the result of 

inpainting images as well. Equation (4.62) has been used to restore missing regions in 

the original images (i.e. face images) based on the mask images. These inpainting 

domains (damaged regions) have been chosen based on the width of the scratches, texts 

and blocks. The scratch inpainting domains (damaged regions) have contained different-

sized scratches, where three mask images are scratches, and one consists of text and one 

of the blocks. Figure4-23 represents these five cases of database face images in which 

damaged regions have been created to study the efficiency of these PDE-BI methods in 

the spatial and frequency domains. 

Damaged image, C3 Damaged image, C5Damaged image, C2Damaged image, C1 Damaged image, C4  
Figure4-23: The same face image with five different inpainting domains. 

These inpainting domains (damaged regions) have been applied on the 76 face database 

images. Harmonic, transport, MES, and mCH methods have been used to remove the 

scratches, text, and blocks from the damaged face images. Figure4-24 to  

Figure4-28 show the results of removing the scratches, text and blocks in the natural 

images in the spatial domain.  

(c)

(e)

(a)

(d)(b)

(f) (g)  
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Figure4-24: Scratch removal using the harmonic model in the spatial domain. (a) Original 

image, (b) masked image, (c) at iteration 100, (d) at iteration 200, (e) at iteration 300, (f) at 

iteration 400, (g) at iteration 500. 

(a) (c)

(d) (e) (f)

(b)

 

Figure4-25: Scratch removal using the mCH model in the spatial domain. (a) Masked image, 

(b) at iteration 50, (c) at iteration 100, (d) at iteration 200, (e) at iteration 250, (f) at iteration 

300. 

(d)

(a) (b) (c)

(e) (f)  

Figure4-26: Text removal using the harmonic model in the spatial domain. (a) Masked image, 

(b) at iteration 25, (c) at iteration 50, (d) at iteration 100, (e) at iteration 200, (f) at iteration 250. 
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(a) (b) (c)

(e) (f)(d)  

Figure4-27: Scratches removal using the transport model in the spatial domain. (a) Masked 

image, (b) at iteration 100, (c) at iteration 200, (d) at iteration 300, (e) at iteration 500, (f) at 

iteration 800. 

(a) (b) (c)

(d) (e) (f)  

Figure4-28: Object removal using the transport model in the spatial domain. (a) Masked image, 

(b) at iteration 100, (c) at iteration 400, (d) at iteration 700, (e) at iteration 1300, (f) at iteration 

2000. 

Different scratches have been removed in Figure4-24, Figure4-25, and Figure4-27 by 

using harmonic, mCH and transport methods respectively at different numbers of 

iterations in the spatial domain. The scratches have different thicknesses. Figure4-26 

illustrates the removal of text from the face image in the spatial domain by using the 

harmonic method at different numbers of iterations.  

Figure4-28 introduces the replacement of missing regions (i.e. blocks) from the face 

image in the spatial domain by using the transport method at different numbers of 

iterations. Figure4-29 and Figure4-30 show the results of PDE-BI methods in the 

frequency domain.  
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(c)(a) (b)

(d) (e) (f)  

Figure4-29: Scratches removal using PDE-BI methods in the frequency domain. (a) Original 

image, (b) masked image, (c) Harmonic inpainted image at iteration 1100, (d) Transport 

inpainted image at iteration 1000, (e) MES inpainted image, (e) mCH inpainted image at 

iteration 400. 

(d) (e)

(a) (b) (c)

(f)  

Figure4-30: Object removal using PDE-BI methods in the frequency domain. (a) Original 

image, (b) masked image, (c) Harmonic inpainted image at iteration 1100, (d) Transport 

inpainted image at iteration 1000, (e) MES inpainted image, (e) mCH inpainted image at 

iteration 400. 

In the above Figures, experimental testing shows that visually acceptable images may 

have different numerically-assessed image qualities. Also, that the numbers of iterations 

needed to remove the scratches, text, and blocks by using the harmonic and transport 

method were more than were needed when using the MES and mCH methods in the 

spatial domain. 

In the above Figures, all inpainting PDE-BI methods which were applied to recover the 

missing regions were faster in the frequency domain than in the spatial domain. 

Statistical measurements been have used to check numerically the quality of inpainted 

images and the efficacy of PDE-BI methods. SSIM, PSNR, MSE and entropy have been 

calculated only between the inpainted regions and the corresponding regions in the 
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original images to get better measures of image inpainting quality. Table 4-4 and 4-5 

will summarise the qualitative comparison of the inpainting PDE-BI methods in the 

spatial and frequency domain, where MSE, SSIM, PSNR and entropy have been used to 

measure the quality of image inpainting and the times taken to get the results using 

these models are shown as well.  

Cases Equations MSE PSNR SSIM Entropy Time (s) Iteration 

C
a

se
1

 

Harmonic 307.125 23.843 0.9375 0.5924 60 450 

Transport 272.136 20.550 0.9375 0.5897 195 500 

MESm 52.5334 31.988 0.9426 0.5846 78 1 

mCH 134.103 25.193 0.9599 0.5838 71 250 

C
a

se
2

 

Harmonic 162.620 23.597 0.9415 1.2619 95 500 

Transport 135.300 23.523 0.9407 1.2829 127 500 

MESm 131.798 28.291 0.9454 1.2606 88 1 

mCH 133.947 27.593 0.9589 1.2525 89 300 

C
a

se
3

 

Harmonic 89.7650 28.770 0.9104 0.9324 104 250 

Transport 46.6170 28.673 0.9293 0.9297 165 300 

MESm 44.5452 31.922 0.9327 0.9146 108 1 

mCH 25.4027 34.458 0.9476 0.9238 97 100 

C
a

se
4

 

Harmonic 117.959 23.889 0.9282 2.5001 102 500 

Transport 113.496 23.622 0.9325 2.5327 180 700 

MESm 103.051 28.179 0.9407 2.5004 165 1 

mCH 109.507 27.440 0.9522 2.4828 140 400 

C
a

se
5

 

Harmonic 210.958 23.948 0.9311 1.3364 241 1700 

Transport 243.732 24.770 0.9543 1.3321 254 2000 

MESm 185.653 24.978 0.9522 1.3090 111 1 

mCH 201.333 25.129 0.9617 1.3025 210 550 

 

Table 4-4: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image 

inpainting using harmonic, transport, MES and mCH models in the spatial domain.  
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Cases Equations MSE PSNR SSIM Entropy Time (s) Iteration 

C
a

se
1

 

Harmonic 500.004 21.673 0.9953 0.5818 45 300 

Transport 591.847 21.253 0.9951 0.5816 165 350 

MESm 155.775 22.349 0.9951 0.5802 57 1 

mCH 279.081 24.235 0.9971 0.5536 53 200 

C
a

se
2

 
Harmonic 282.439 25.263 0.9970 0.5714 69 350 

Transport 260.869 25.236 0.9966 0.5711 88 300 

MESm 197.422 26.519 0.9974 0.5708 67 1 

mCH 229.500 26.300 0.9972 0.5699 64 200 

C
a

se
3

 

Harmonic 170.002 21.073 0.9783 2.6289 81 150 

Transport 163.588 22.226 0.9950 2.6327 123 200 

MESm 107.365 23.292 0.9958 2.6275 78 1 

mCH 131.978 23.498 0.9852 2.6072 69 50 

C
a

se
4

 

Harmonic 313.530 23.378 0.9809 2.4888 85 350 

Transport 308.715 23.408 0.9779 2.4932 150 400 

MESm 303.160 23.534 0.9811 2.4839 132 1 

mCH 276.612 24.846 0.9938 2.4837 111 250 

C
a

se
5

 

Harmonic 514.422 22.236 0.9756 1.2987 214 1100 

Transport 453.196 23.613 0.9813 1.3050 217 1000 

MESm 339.910 23.771 0.9814 1.2654 82 1 

mCH 309.268 23.833 0.9749 1.2928 180 400 

 

Table 4-5: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image 

inpainting using harmonic, transport, MES and mCH models in the frequency domain.  

Table 4-4 and 4-5 showed the average values of MSE, PSNR, SSIM and entropy 

resulting from the application of the harmonic, transport, MES and mCH models for 

recovering the missing regions in the spatial and frequency domains respectively.  In 

both domains, the values of MSE, PSNR, SSIM and entropy using the MES and mCH 

models are better than those obtained by application of the harmonic and transport 

models, and the number of iterations needed for this equation to accomplish its tasks is 

less than needed for other equations. Also, the harmonic equation consumes less time to 

accomplish its tasks than the transport, MES and mCH equations. In the qualitative 

assessment, the inpainted images in the spatial and frequency domains look almost 

identical. On the other hand, in the quantitative assessment, the results of MSE, PSNR, 

SSIM and entropy assessments show that spatial domain applications of the methods 

give better than frequency domain applications. Also, the above tables show that high-

order PDE-BI methods are capable of effective region filling and give relatively high 

PSNR values with low MSE values, and the SSIM values are close to 1. Also, the MES 

and mCH methods got lower entropy value than harmonic and transport methods in 

both spatial and frequency domains. 
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4.7.2.3 Experiment 3: Results of using PDE and colourisation methods 

The PDE with colourisation methods have been used to recover two inpainting domains 

on 100 natural images which shown in Figure 4-11 and Figure 4-12. The traditional 

statistical measurements have applied to assess the quality of inpainted regions in the 

spatial domain. Table 4-6 presents the statistical results of using the proposed method 

and traditional inpainting based PDE methods.                                                  

Cases Equations MSE PSNR SSIM Entropy Time (s) 

C
a

se
1
 

 

Harmonic 614.707 21.8401 0.97940 0.89047 1500 

Harmonic & colourisation 456.952 23.1512 0.98149 0.89367 1900 

MESm 462.342 22.9065 0.98025 0.86222 100 

MESm & colourisation 339.608 24.2289 0.98214 0.87801 350 

mCH 526.774 22.0069 0.97874 0.86251 650 
mCH & colourisation 361.611 23.9189 0.98152 0.87516 800 

C
a

se
2
 

Harmonic 1410.73 17.7137 0.97550 0.68849 2000 

Harmonic & colourisation 1353.16 18.4127 0.97588 0.68549 2200 

MESm 1027.05 18.1708 0.97721 0.65637 100 

MESm & colourisation 1017.18 19.5025 0.97725 0.65813 400 

mCH 1307.31 17.2358 0.97521 0.66711 750 
mCH & colourisation 1234.91 17.9722 0.97545 0.66334 1100 

 

Table 4-6: The average values of MSE, PSNR, SSIM, and entropy are demonstrated for image 

inpainting using only harmonic, MES and mCH models and these models with colourisation 

method in the spatial domain.  

In Table 4-6, the MSE, PSNR, SSIM and entropy measurements resulting from these 

methods are a little better than only PDE methods obtained in the spatial-domain 

methods because the colourisation helped to add colours to Cb and Cr channels based 

the information that recovered in the Y channel. Also, the PDE methods work better on 

the greyscale images. 

4.7.2.4 Results Analysis 

This section discusses the qualitatively and quantitatively evaluation of inpainted 

images obtained by using harmonic, transport, MES, and mCH models in both the 

spatial and frequency domains. In the qualitative evaluation, the inpainted images 

obtained by using four PDE models in Figure4-19 are visually almost identical to the 

original images because the scratches are small and all these PDE models successfully 

fulfilled the connectivity principle and the curvature preservation through recovering the 

missing regions in the spatial domain. Moreover, Figure4-20 and 4-21, the harmonic 

inpainted images are visually not identical to the original images, whereas other 

inpainted images are visually identical to the original images because the harmonic 

model is not connectivity propagate the information in the large missing region without 
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produce artefacts and not preserve the curvatures by recovering the missing regions. On 

the other hand, the high order PDE models successfully in preserving the curvatures and 

connectivity propagate the information in the large missing region without produce any 

artefacts.  On the other hand, the inpainted images created in the wavelet domain, 

shown in Figure4-22 are visually identical to those created in the spatial domain, shown 

in Figure4-21. Therefore, these inpainting PDE models need to assess the quality of 

inpainted images and the efficacy of these models quantitatively.  

To sum up, the experimental testing shows that visually acceptable images may have 

different image qualities by statistical measurements. The inpainted images using 2nd 

and high order PDE methods in the spatial and frequency domains look almost identical 

in the first four masks on the set of natural and faces images. While their abilities of 

these methods to recover large missing regions have also studied by applying C5 on the 

set of natural and faces images; this is the challenge for these methods, the high order 

PDE methods have the ability to recover the large missing regions partly better than the 

2nd-order PDE methods. Also, the inpainted images in both spatial and frequency 

domains are almost identical but at the same time, they have different statistical quality 

measurements. 

On the other hand, in the quantitative assessment, the MSE, PSNR, SSIM and entropy 

measurements resulting from these methods in the spatial domain are a little better than 

those obtained in the frequency-domain methods because the intensity values of the 

damaged region in high-frequency sub-bands are estimated to zero, this will affect the 

quality of the inpainted area, and that will produce more error. Moreover, the number of 

iterations and computation time needed to recover the missing regions is less in the 

frequency domain than in the spatial domain, because the size of the damaged region in 

the frequency domain is smaller than its size in the spatial domain, as seen in Table 4-2, 

4-3, Table 4-4, and 4-5.  

In both domains, these tables show that high-order PDE methods (i.e. MES and mCH) 

are outperforming the 2nd- and 3rd-order PDE methods (i.e. Harmonic and transport), 

where the high order PDE methods are capable of effective region filling and give 

relatively high PSNR values with low MSE values, and the SSIM values are close to 1 

for all the natural and faces images. The high order PDE models have been successful in 

preserving the curvatures and connectivity while propagating information into the 

missing regions and produce less error than the other equations. The reason behind this 
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is that high order partial derivatives contain lower errors than 2nd order ones, and also 

because there is more information in the boundary conditions. Also, the MES and mCH 

methods got lower entropy value than harmonic and transport methods in both spatial 

and frequency domains, which means that the amount of disorder in the inpainted image 

obtained by using MES and mCH methods less than in the inpainted images obtained by 

harmonic and transport methods. 

In both domains, the values of MSE, PSNR, SSIM and entropy obtained using the MES 

and mCH equations are better than those obtained using the harmonic and transport 

equations and the number of iterations of these equations to accomplish their tasks is 

less than required with other equations. On the other hand, the harmonic equation 

requires less time per iteration (because of its lower-order PDE) than those applied in 

the transport, MES and mCH methods. Also, the MESm can be solved in a single step 

because it is an elliptic equation. During the testing, it was found that while some 

images could look visually pleasing and similar, they have different PSNR values in 

both domains.  

Moreover, these statistical approaches used to evaluate the outcome of inpainting based 

PDE methods in spatial and frequency domain such as MSE, PSNR, SSIM and entropy. 

During the work, we noticed the MSE is not always an ideal error estimation. An 

example of this is that a low error value will result in a visually pleasing result, but a 

large error value does not necessarily has to result in a poor visual result. This 

observation is shown in Figure4-31. We want to investigate if this quantitative 

estimation matches the quality of the images as perceived by human beings eyes. This is 

done by creating an experiment to analyse some of these observations; the high value of 

MSE in the natural images does not mean the image is not visually acceptable. 

 

 

Figure4-31: Example to the MSE of image. First row: input image, masked image, second row: 

first result (high error) and the second result (low error). 
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Despite its popularity in the image processing community, PSNR is not a reliable image 

quality measure. The PSNR depends on differences between corresponding pixels in the 

images under comparison and does not correlate well the visually perceived qualities of 

the images from which it is derived. In particular, PSNR does not take into 

consideration the spatial distribution of image pixel values. For instance, Figure4-32 

shows two images which have the same PSNR whereas their perceived quality is very 

different, together with two inpainted images where one is visually more acceptable 

than its counterpart but with contradicting PSNR values. 

In the end, the some of the quantitative evaluation measurements inversely proportional 

with the qualitative evaluation of the PDE inpainting results are concluded. This means 

the MSE and PSNR measurements do not match with visual assessment especially 

when the high texture images. The MSE and PSNR are not reliable quality 

measurements for assessing the image inpainting results. 

 

Figure4-32: First row; an example of two images with different perceptual quality but the same 

PSNR (Winkler & Mohandas 2008). Second row; two inpainted images (a) visually acceptable 

inpainted image with PSNR = 15.3988 and (b) not the good inpainted version with PSNR= 

17.0959. 

In 2016, Aras et al. in  (Asaad et al. 2017) proposed a method to assess the quality of 

degraded images using the emerging scheme of topological data analysis (TDA). They 

used Local Binary Pattern (LBP) as a texture feature descriptor, then they construct 

simplicial complexes for selected groups of uniform LBP bins and calculate persistent 

homology invariants (e.g. a number of CCs). Then they investigated image quality 

discriminating characteristics of these simplicial complexes by computing these models 

for a large dataset of face images. Lastly, they clarified the number of CCs not only 

distinguish between different levels of shadow effects but also help detect the infected 
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regions as well. So the TDA approach deals well with texture in the images using LBP 

landmarks. Also, the TDA has been used to detect the tampering in the images which 

that been applied to detect the image shadow (Asaad et al. 2017), morphing (Asaad & 

Jassim 2017), and steganalysis (Asaad et al. 2018), so we will use it to detect the 

inpainted regions in the image. 

The same topological approach is used to assess the quality of PDE-based inpainted 

images in spatial and frequency domain. Next, the TDA approach will use to check the 

quality of inpainted images based on build topological objects from images (inpainted 

regions).  

4.7.3 TDA for Image Quality Assessment 

The idea introduced in section 2.6.2 is followed, which builds a sequence of SC to 

assess the quality of the inpainted region. Here, the task is to assess the quality of 

inpainted methods, we deploy to recover the missing regions in natural and face images.  

 

Figure4-33, below illustrates this idea by showing the simplicial complexes constructed 

from the positions of a single ULBP code for an original image and its inpainted version. 

The Rips complex graph for inpainted image and the original image are identical, except 

the inpainted region which we highlighted by red box. Therefore, the CCs will be 

calculated for inpainted regions and the same regions in the original image. 

 

 

Figure4-33: LBP and simplicial complexes of the original and inpainted image at threshold 

T=10. 

TDA approach is applied to study the performance of PDE-BI schemes, by quantifying 

the quality of the inpainted image at different iterations. As mentioned in section 2.6.2, 

Inpainted image

Original image

LBP of inpainted image

LBP of original image Rips complex when there is 6 ones in LBP code for original image

Rips complex when there is 6 ones in LBP code for inpainted image
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the uniform LBP patterns determined by the number of ones in such patterns in natural 

images from the database of (Ojala et al. 2002). To estimate image inpainting quality, 

the number of CCs, at different thresholds, in the inpainted regions and the original 

regions are compared. 

The TDA approach for evaluating the image inpainting quality is applied by counting 

the number of CCs in the inpainted regions, where the CCs is computed in 8 rotations in 

each one of these 7 geometries at different thresholdings. The TDA approach is 

successful in studying texture deeply in the inpainted regions. The results of the TDA 

approach matched the qualitative results. These results are outperformed by those 

obtained using statistical measurements in terms of their corresponding with their 

qualitative results, which  means that the TDA approach gives good evaluation of image 

inpainting quality, as seen in the first row of Figure4-32, where the two images have the 

same PSNR value, but visually these images are not corresponding.  

 The TDA approach gives good description of these images in terms of the drawing of 

SC and the numbers of CCs in these images at the eight rotations in each one of the 7 

geometries at different thresholds, as seen in Figure 4-34 which represents the SC shape 

of rotation R1 of geometry G6 at threshold T=10 (as mentioned in 2.6.2). The SC 

shapes of these images are clearly different and also the numbers of CCs are different.  

Hence, the TDA approach is successful in detecting the differences between these 

images where some of the statistical measurements failed. These results are also 

important in applications such as image forgery detection. For future work, the TDA 

approach can be used to detect forged images and to locate suspect regions in them. 

 

 

 

 

 

 

Figure 4-34: Example of drawing SC for two images that have same value of PSNR described 

in first raw in figure 4-32. (a) SC of left image in the first row. (b) SC of right image in the first 

raw. 
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Figure 4-34 shows the SC of the images which have a different shapes of SC and also 

different numbers of CC. 

The limitations of using the TDA approach are the time consumed when checking all 

these rotations in each of these geometries, then repeating them at different thresholds. 

In the future, we will try to reduce these huge computational processes. 

The 7 ULBP geometries (G1, G2, …, G7) in eight rotations (R1, R2,…,R8) are studied 

at different thresholds T=0, T=5, T=10, and T=15, for the inpainted images of the two 

above experiments, the geometries G4 and G6 at threshold T=10 giving a good 

description of the results of PDE-BI methods at different iterations in five cases of 

damaged images that been studied, and below it is shown that geometries G4 and G6 

are more sensitive to differences between inpainted and original regions in the natural 

images. Figure4-35 shows the average number of CCs of inpainted regions obtained 

using PDE-BI methods at different iterations for five damaged regions from natural 

images in both spatial and frequency domains. The Geometry 6 at threshold T=10 is 

shown below. 
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Figure4-35: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations 

in G6 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs in inpainted regions in the spatial domain. Right column: Average of the 

number of CCs in inpainted regions in the Frequency domain. 

Figure4-35 clarifies the number of CCs. It has been found that in the G6 domain at 

threshold T=10, the inpainted images obtained using MES and mCH methods are closer 

than those obtained by the harmonic and transport methods to the original regions with 

respect to the to the numbers of CCs in the both spatial and frequency domains.  



Chapter 4: PDE Based Full Inpainting Methods    
 

 136  
 

Figure4-36 shows the average number of CCs of inpainted regions which obtained 

using PDE-BI methods at different iterations for five damaged regions from natural 

images in the both spatial and frequency domains. The Geometry 3 at threshold T=10 

describe below. 

 

Figure4-36: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations 

in G3 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs in inpainted regions in the spatial domain. Right column: Average of the 

number of CCs in inpainted regions in the Frequency domain. 
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The number of CCs in the other geometries at threshold T=10 is fickle. Moreover, the 

numbers of CCs in inpainted regions obtained by using harmonic and transport 

equations are close to those found in the original regions of natural images, which 

means that these geometries do not correspond  well to the image quality assessments of 

these inpainting methods, as can be seen in Figure4-36; geometry G3 at threshold T=10. 

On the other hand, in the face images database, the number of CCs have been calculated 

in the inpainted images which were obtained by using four different PDE-BI methods in 

four inpainting domains (damage cases) in the both of spatial and frequency domains. 

Figure4-37 and Figure4-38 show the results of G6 and G3 in the spatial and frequency 

domains respectively. Also, the numbers of CCs in the inpainted areas which obtained 

using PDE-BI methods in the spatial domain are closer to those of the original areas in 

comparison with those obtained in the frequency domain. 
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Figure4-37: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations 

in G6 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs in inpainted regions in the spatial domain. Right column: Average of the 

number of CCs in inpainted regions in the Frequency domain. 
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Figure4-38: Evaluation of performance of PDE-BI methods using TDA approach at 8 iterations 

in G3 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs in inpainted regions in the spatial domain. Right column: Average of the 

number of CCs in inpainted regions in the Frequency domain. 
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The results of face images are similar to the results of natural images. The numbers of 

CCs in the geometries G4 and G6 at threshold T=10 of inpainted images obtained by 

using MESm and mCH are closer to the numbers of CCs of the original regions than in 

the inpainted images obtained using harmonic and transport methods. The geometries 

G4 and G6 are a better descriptor to image inpainting quality, as seen in the above 

Figure4-35 and Figure4-37 which that show the number of CCs in the inpainted areas 

and corresponding original areas at threshold T=10, in G6. 

For other geometries, the numbers of CCs are wobbling in the inpainted images, as seen 

in Figure4-36 and Figure4-38, which clarify the numbers of CCs in G3 at threshold 

T=10. In all these PDE-BI methods, the numbers of CCs of the inpainted areas in the 

spatial domain are closer to the CCs of original areas in comparison with the obtained in 

the frequency domain. 

4.7.3.1 Results Analysis 

As mentioned in section 2.6.2, the TDA is sensitive to tampering in the image (Asaad et 

al. 2018), (Asaad et al. 2017), and (Asaad & Jassim 2017), so any change in the image 

will be detected by  the TDA approach,  based on the number of CCs in certain regions 

(i.e. inpainted regions). In both spatial and frequency domains, the TDA approach has 

been applied to the inpainted regions and corresponding original regions in both the 

natural and face images in seven geometries at different thresholds; using the numbers 

of CCs in geometries  G4 and G6 at threshold T=10 of inpainted images as measures of 

similarity to the original images, those obtained using the MES and mCH methods are 

closer to the original images than those obtained using harmonic and transport methods, 

in both spatial and frequency domains. The geometries 4 and 6 describe the edges and 

the end lines in the natural images (Ojala et al. 2002), while the same geometry 

describes the corners in the face images (Chan 2007). That means the MES and mCH 

methods have succeeded in reconstructing the edges and the end lines in the missing 

regions of the natural images and in reconstructing the corners in the missing regions of 

the face images (Esedoglu & Shen 2002), (A. L. Bertozzi et al. 2007). 

Therefore, the best descriptor for image quality is based on the number of CCs resulting 

from the inpainting methods, where the best image inpainted quality is mCH then 

MESm then transport and the lastly harmonic equation for all rotations in the 

geometries G4 and G6. Moreover, the number of CCs of the inpainted areas obtained by 

using PDE-BI methods in the spatial domain is closer to the CCs of original areas in 
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comparison with the results obtained in the frequency domain because the intensity 

values of the damaged region in high-frequency sub-bands are estimated to zero, and 

this will affect the quality of the inpainted area and will produce more error, as shown in 

Figure4-35 and Figure4-37. 

On the other hand, the number of CCs in the other geometries (i.e. G1, G2, G3, G5, and 

G7) at threshold T=10 are fickle, the numbers of CCs of inpainted regions in both 

natural and face images obtained by using harmonic and transport equations are close to 

those in the  original regions of natural images. This means that these geometries at 

threshold T=10 do not correspond well to the image quality assessments of these 

inpainting methods in both spatial and frequency domains, as seen in Figure4-36 and 

Figure4-38. The results of the geometries G1, G2, G4, G5, and G7 at threshold T=10 

will be presented in the appendix (see Appendix A). 

The TDA approach has been successfully used to study and check the image inpainting 

qualities, because it is a very sensitive process which enables the study of inpainted 

regions at seven geometries, and each geometry has eight rotations which means that all 

the inpainted regions will be covered. Therefore, the TDA approach will be used to 

study the performance of PDE-BI methods in the next section. 

4.7.4 TDA for PDEs Performance 

This subsection shows the use of TDA to study the behaviour of PDE-BI methods and 

compare the results of 2nd-and high-order PDE-BI methods at different iterations. The 

TDA approach has been used to study the behaviour of PDE-BI methods. As mentioned 

before, two types of PDE-BI methods are applied which are elliptic and parabolic. The 

elliptic equations each have only one solution, while the parabolic equations have a 

finite iteration number of numerical solutions through which to recover the missing 

regions.  For these reasons, the solutions of these equations are studied at different 

iterations, in order to check which one of these equations arrives at a steady state rapidly 

and thereby takes a low number of iterations to recover a missing region. The TDA 

approach has been applied to the inpainted image obtained by using these methods at 

different iterative solutions of the PDEs. After checking the quality of the results 

obtained by PDE-BI methods; the geometries G4 and G6 at threshold T=10 gives a 

good description to PDE-BI methods at different iterations in five cases of damaged 

images. Therefore, the TDA approach is used to study the behaviour of PDE-BI 

methods on four cases of damaged regions; we focus only on the study of these 
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damaged cases on geometries G4 and G6. The number of CCs has accounted for the 

differences between inpainted regions and corresponding original regions at different 

iterations. The performances of PDEs have been checked based on the number of CCs 

of inpainted areas and corresponding original areas. 

Figure4-39, 4-41, 4-43, and 4-45 below, show inpainting results of images at different 

iterations of four PDE-BI methods. Each row in these Figures represents inpainted 

images by using four PDEs at a specific iteration and so on for other rows. 

 Figure4-40, 4-42, 4-44, and 4-46 below, display the numbers of CCs in the inpainted 

regions and corresponding original regions at threshold T=10 in G6. Each Figure has 

four graphs which clarify the numbers of CCs for original and inpainted regions 

obtained by 4th PDE-BI methods at different iterations. 

Cahn-HilliardMumford-Shah-EulerHarmonic Transport  

Figure4-39: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4 

inpainted images using four models at 100, 200, 400, and 500 iterations, respectively. 
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Figure4-40: Evaluation of performance of PDE-BI methods using TDA approach at different 

iterations for case inpainting 1 in G6 at threshold T=10. 

TransportHarmonic Mumford-Shah-Euler Cahn-Hilliard  

Figure4-41: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4 

inpainted images using four models at 100, 200, 400, and 500 iterations, respectively. 
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Figure4-42: Evaluation of performance of PDE-BI methods using TDA approach at different 

iterations for case inpainting 2 in G6 at threshold T=10. 

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard  

Figure4-43: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4 

inpainted images using four models at 100, 200, 400, and 700 iterations, respectively. 
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Figure4-44: Evaluation of performance of PDE-BI methods using TDA approach at different 

iterations for case inpainting 4 in G6 at threshold T=10. 

Harmonic Transport Mumford-Shah-Euler Cahn-Hilliard  

Figure4-45: Object removal using PDE-BI methods. Row 1, Row 2, Row 3, and Row 4 

inpainted images using four models at 200, 500, 1700, and 2000 iterations, respectively. 
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Figure4-46: Evaluation of performance of PDE-BI methods using TDA approach at different 

iterations for case inpainting 5 in G6 at threshold T=10. 

We found the high-order PDEs takes less number of iteration than the 2nd-order to 

recover the missing areas in the face and natural images. Also, the transport equation 

consumes time more than other PDEs for reconstructing missing areas.   

4.7.4.1 Results Analysis 

As obtained in section 2.6.2, the best topological threshold is T=10, and the geometries 

G4 and G6 give the best description to the quality of inpainted images obtained by using 

PDE-BI methods. The TDA approach is used to study the performance of PDE-BI 

methods based on studying the outputs of these methods at different iterations. This 

study aims to evaluate the performance of PDE-BI methods by studying these 

progressions iteration gradually. The performances of PDE-BI methods are assessed by 

applying the TDA approach to the G6 at the threshold T=10; the numbers of CCs in the 

inpainted region obtained by those methods get closer to the number of CCs of the 

original regions as the number of iterations  gradually increases. Moreover, the numbers 

of CCs of inpainted images by MES and mCH methods are closer to those in the 

original regions than are the corresponding numbers of CCs in the results of harmonic 

and transport methods. The MESm can be solved in a single step because it is an elliptic 

equation. The iterations of the harmonic equation arrive in the steady state faster than in 

the transport and mCH methods because the harmonic equation is of 2nd order. 
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On the other hand, in the transport and mCH methods need large numbers of iterations 

to arrive in a steady state. This means the high-order PDE-BI methods outperform the 

2nd-order methods in recovering missing regions in an image. The efficacies of high-

order PDE-BI methods for recovering missing regions are better 2nd-order equation 

methods, based on the numbers of CCs. 

4.8 Summary and Conclusion 

The aim of this chapter is the quality evaluation of the PDE based image inpainting 

method. Topological and statistical-measurements are proposed to evaluate the qualities 

of the image inpaintings in both the spatial and frequency domains. Also, the TDA is 

used to study the efficiency of PDE-BI methods. The MSE, PSNR, SSIM and entropy 

statistical measurements have been used for quality evaluation. The TDA method is 

used to count the numbers of CCs in the inpainted images and the corresponding 

original images to see in which inpainted image the number of CCs is closest to that 

found in the original image.   

Two experiments have been conducted on natural and human face datasets obtained 

from the Berkeley and Yale databases respectively. Four PDE-BI methods have been 

applied to the two datasets in both the spatial and the frequency domains. The results of 

each method on both datasets are similar, as assessed by using both TDA and statistical 

measurements. It can be observed from the results that the image inpainting quality 

obtained by the mCH and MESm high-order PDEs are better than those obtained by 

harmonic and transport PDEs in both the spatial and frequency domains. Furthermore, 

the results of image inpainting quality obtained by PDE in the spatial domain are better 

than those obtained by PDE in the frequency domain. 

The values of the MSE, PSNR, SSIM and entropy measurements applied to inpainted 

images obtained by the mCH and MES models are better than those obtained when 

harmonic and transport models. The TDA approach also has been applied to check the 

efficiency of PDEs by counting the number of CCs of the image inpainted at different 

iterations until the whole region is recovered. This shows that the efficiencies of 

harmonic and transport PDEs are less than those of the mCH and MES equations at 

different iterations.  

To sum up, this chapter has experimentally demonstrated that high order PDE-BI 

methods outperform 2nd-order PDE-BI methods in recovering small missing regions in 

the natural images. However, these methods have limitations when they deal with large 
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size missing regions and with large amounts of texture in the surrounding areas. 

Therefore, to address these problems, the next chapter will introduce the Topological 

EBI (TEBI) technique to reconstruct the texture and structure simultaneously in the 

missing regions in natural images.  
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Chapter 5 TOPOLOGICAL EXEMPLAR-

BASED INPAINTING 

The image inpainting schemes, developed over the last two chapters, focused on 

propagating colours into a missing region from its boundary using differently 

constructed PDEs in which the intention is to preserve the continuity of features through 

the missing regions in a manner compatible with the overall image content and 

semantics. However, the success of those schemes depends on a number of factors 

including the propagation of approximation errors resulting from numerical solutions 

which is particularly the case in a large missing area. The widely accepted observation 

that images contain many similar patches that are repeated in different places, motivated 

and led to the development of Exemplar-Based Inpainting (EBI) methods. Here, the 

similarity is not taken as rigid equality of intensities. The main challenge in designing 

EBI is the choice of patch size that can yield a realistic similarity measure that is 

relevant to the texture and structure of the missing region's neighbouring area. Existing 

EBI schemes tend to use relatively small size patches which can only model simple 

texture and structure similarities. In this chapter, a novel approach to extend the 

applicability of the EBI approach by using Topological Data Analysis (TDA) is 

presented. In particular, this is based on the topological parameters of simplicial 

complexes constructed, at different distance thresholds, as models of the shapes of the 

neighbourhoods of the missing regions. Texture-dependent parameters of particular 

interest are the number of CCs of simplicial complexes associated with uniform LBP 

landmarks. The patch propagation priority function is modified by using the curvature 

properties of isophotes and improves the matching criteria of patches by calculating the 

correlation coefficients from the spatial, gradient and Laplacian domains. The 

performance of the modified schemes is tested, in comparison to existing state-of-the-art 

EBI schemes, in terms of use several image quality measures, and demonstrate their 

superiority.  

5.1 Introduction 

In general, image inpainting schemes are application dependent, and accordingly filling 

a gap in an image is dependent very much on the significant texture, structure and 
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semantic information that are conveyed by the rest of the image. In the last two chapters, 

the performances of existing PDE based methods have been  reviewed and improved, 

based on  the restorations of small cracks or removed lines or texts, and the propagation 

of missing colour(s) into regions where  grayscale information may or may not be 

present. These schemes used 2nd order (linear and non-linear) PDEs as well as higher 

order PDEs in order to preserve the continuation of certain texture/smooth features and 

recovering edges. However, the various PDE methods have limitations in restoring large 

missing region with rich textured resulting in the presence of blurring artefacts.  

Alternative inpainting schemes have been investigated and developed that exploit the 

similarity between incomplete image blocks with patches elsewhere in the image in 

terms of intensity, texture and geometric information. Criminisi et al. in (Criminisi et al. 

2004) were the first to propose the idea of using a patch based-exemplar method, where 

they simultaneously reconstructed the missing region's texture and structure. This task is 

mainly dependent on the filling order decision which must be made to make sure that 

linear structures will be propagated before texture filling in order to preserve the 

connectivity and continuity of object boundaries. This method does not seem to work 

well when removing a large object or when the surrounding area is rich with texture.  

In this chapter, the ideas in (Anupam et al. 2010), (Hesabi & Mahdavi-Amiri 2012), and 

(Deng et al. 2015) are adopted and improved on by using the geometrical structure 

features of images. In particular, we will further improve the inpainted region when the 

surrounding area is rich in texture and structure. The main components of the developed 

scheme can be summarised as follows: 

(1) Determine the size of the patch (a window within the whole image) to be searched 

for based on its match/similarity other patches in terms of the texture quantity in the 

surrounding areas of the missing region via Topological Data Analysis (TDA) 

scheme. 

(2) Prioritise patch filling according to the curvature of isophotes. 

 

(3) Introduce different patch-matching criteria in two stages; firstly, calculate the Sum 

of Squared Distance (SSD) for Laplacian, gradient and spatial image domains and 

select the nearest 30 patches. Secondly, compute the Normalised cross-correlation 

coefficients of the 30 patches to select the nearest patch. 
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The rest of this chapter is organised as follows. Section 5.2 introduces the traditional 

exemplar-based inpainting method. Section 5.3 presents a literature review of the EBI 

method. Section 5.4 proposes a topological EBI method to recover the missing regions 

in high-resolution images and explains the TDA approach to the analysis of the 

surrounding areas of the missing region and illustrates new definitions of patch-filling 

priority and matching criteria. The results of the proposed method are explained in 

section 5.5. The performance testing experiments is presented in Section 5.6, while 

section 5.7 summarises the chapter and the main conclusions. 

5.2 Existing Exemplar-Based Inpainting (EBI) 

Unlike the non-exemplar-based schemes, the order of filling missing region by existing 

EBI methods is determined by what is known as a 'priority function' which is used to 

select the next patch to be recovered. These schemes proceed by searching for the 

nearest patch outside the missing region to the selected according to a 'matching 

function'. A major drawback of this EBI method is the bias caused by selection of few 

incorrect patches in the priority based filling mechanism, resulting in initial incorrect 

completions and spiralling errors that undermine the stability of the inpainting process. 

In what follows, the input image 𝐼 is assumed to be composed of two disjoint regions: 

the source region 𝛷 and the target region Ω. The source region is defined to be the 

visible part and the target region is the missing one. Additionally, 𝛿Ω represents the 

pixel set of the target region boundary. The pioneering EBI method of (Criminisi et al. 

2004), fixes the patch size to be a window of 9 × 9 pixels for any input image that has a 

missing region to be inpainted. For each block (patch), the priority function selects the 

next pixel position on the current 𝛿Ω, and a template patch 𝜓𝑝 centred at the selected 

pixel is determined. The priority computation is encouraged to reconstruct the patches 

which are on the continuation of strong edges and are surrounded by high-confidence 

pixels. The priority function is defined as the product of data and confidence terms. The 

data term is a function of computing the structure information (i.e. broken lines and 

corners which tend to connect) in the patches by using isophotes “flows” to encourage 

linear structures to be reconstructed first. While the confidence term is a measure 

function of the amount of reliable information surrounding the pixel (i.e. to reconstruct 

texture information). 

A matching function is then used to find the closest patch (recover target patch) that has 

similar information based on the sum of squared distance (for example  𝜓𝑞′or 𝜓𝑞′′ ). 
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After selecting the target patch, they update the template patch by copying the 

information from the target patch. This process will be repeated until recovering all the 

missing regions, see Figure5-1. 

(c)(b) (d)(a)  

Figure5-1: The EBI procedures for recovering the missing region in the image (Criminisi et al. 

2004). 

This EBI Method was designed for removing large objects from digital photographs and 

replacing the selected object by a visually reasonable background that imitates the 

appearance of the source region. It proposes a unified framework, by combining the use 

of texture synthesis and isophote driven inpainting according to a priority mechanism. 

The patches in the target region are filled by selecting the highest priority patch.  

Figure5-1(b) illustrates a point 𝑝 with high priority lying on the contour of the target 

region boundary. The highest priority patch is then filled by finding the best matching 

patch in the known regions (rest of image) as explained in Figure5-1 (c). The pixels of 

the best-matching patch will be copied in the highest priority patch as described in 

Figure5-1 (d). This process continues until the entire gap is filled.  

The patch size can be varied depending on the underlying characteristics of the image, 

but in this method, the patch size is fixed at  9 × 9 . This EBI removal technique 

performs well for a wide range of applications such as the restoration of small scratches 

and larger objects that are surrounded by simple texture and structure area. However, 

synthesising of regions for which similar patches are rare is a challenge, and the method 

doesn’t handle curved structures.   

5.3 Literature Review 

Here, the existing attempts to improve EBI as described in (Criminisi et al. 2004) are 

reviewed, and ed the limitations and drawbacks are highlighted. The first category of 

those methods consists of those which are focused on improving reconstructed texture 

(Sharma & Mehta 2013), (Cheng et al. 2005), (Desai 2012), (Anupam et al. 2010), and 

(Hesabi & Mahdavi-Amiri 2012) whereas those in the second category  are 

modifications of the work in (Criminisi et al. 2004) to restore structure into missing 
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regions more accurately from the surrounding areas (Sangeeth et al. 2011), (Waykule & 

Patil 2012), (Zongben Xu & Jian Sun 2010), (Gaikar et al. 2014), (Abdollahifard & 

Kalantari 2016), and (Deng et al. 2015).  

Several studies attempted to adjust the EBI scheme as described in (Criminisi et al. 

2004) by redefining the confidence term, the data term formula and matching criteria 

(Sharma & Mehta 2013), (Cheng et al. 2005), and (Sangeeth et al. 2011). Other studies 

focused on the efficiency of the scheme. Waykule et al. (Waykule & Patil 2012), for 

instance, proposed a new method for eliminating big objects from photographs/images, 

through redefinition of the data term on the positions of the control points of a contour 

going into a damaged region. The new data term formula uses a bi-dimensional 

Gaussian kernel filter on the positions of the control points of ∂Ω, then 𝒏𝑝 is estimated 

as the unit vector orthogonal to the front ∂Ω. The technique has been successful in 

reconstructing both linear structures and two-dimensional textures of small scratches 

and larger objects in the target region. This modified EBI scheme improves the 

inpainting achieved by the earlier techniques in terms of both perceptual quality and 

computational efficiency. Also, a Gaussian kernel filter has been used in (Sharma & 

Mehta 2013) to redefine the data term. 

W. H. Cheng et al. in (Cheng et al. 2005) present a robust algorithm for developing a 

generic priority function that integrates well the overall structure and texture 

information into the missing region to facilitate the image reconstruction. The new 

priority function definition and the selection of component weighting factors are 

designed to reduce the difficult computations of information propagation by the EBI 

method. The proposed method in this paper is effective in both the visual quality 

improvement and user preference consideration. 

K. Sangeetha et al. in (Sangeeth et al. 2011) proposed a new EBI method with an 

enhanced priority term that describes the filling sequence for patches in  

photographs/images. The proposed method is based on patch transmission by inwardly 

transmitting the image patches from the source area into the inside of the target area 

patch by patch. The exemplar-based image inpainting method with best patch match is 

introduced in this work, and for obtaining this best patch match an enhanced patch 

priority term and a suitable choice of search region are introduced. This research is not 

wholly limited to the reconstruction of damaged areas or the matching area complete 

accurately but also concerns itself with the repair the image’s minute spots, scratches 
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and large damaged areas completely. The results of the proposed method show that it 

has an obvious enhancement in visual quality as compared to the conventional 

exemplar-based inpainting method. This work deals with the inpainting of 

images/photographs, and it can also be expanded for inpainting of video frames. 

Also, Liang-Jian Deng et al. in (Deng et al. 2015) introduced a new priority definition to 

face the problem of improper selection of exemplars in the traditional EBI method. The 

independent strategy of priority definition has been defined based on the separation of 

the priority definition to first propagate structure then synthesise image textures, aiming 

to well recover both image properties. Also, an automatic approach has been designed 

to estimate steps for the new separated priority definition. This proposed method has 

been successfully applied to the reconstruction of the structure in missing regions. 

However, this method faces a problem in recovering the texture in missing regions. The 

idea of the estimation of the number of steps is used for recovering the structure and 

then the texture in the images by estimating the weight parameters of the texture and 

structure in our proposed method. 

In a recent work, Z. Xu and S. Jian (Zongben Xu & Jian Sun 2010) proposed a gradient-

based search space reduction. The spatial behaviour of selected regions to be implanted 

is controlled by a gradient vector. Also, they used a different distance measure for 

determining the patch matching. 

M. Desai in (Desai 2012) presented an adapted fast and improved EBI to solve the 

unknown row filling difficulties. This improved method is adaptive in updating criteria 

in a fast and enhanced EBI method described in (Anupam et al. 2010) which presents a 

technique that deals with the case when two or more patches have a same mean square 

error, by calculating variance. A reduced search area is suggested, to decrease the 

computational difficulty entailed in searching the whole image. The proposed method 

resolves the difficulty of unknown row filling and provides better results than the 

original fast and enhanced exemplar-based image inpainting method.  But images 

produced by this approach still suffer from some difficulties because it adds some 

unwanted incorrect information from a background in the photograph/image. 

Shivani el al. in (Gaikar et al. 2014) utilised two methods to enhance the EBI method 

(Criminisi et al. 2004) which are: Discrete Cosine Transform (DCT) and Fast Marching 

Method (FMM). So, the DCT method has used with EBI to remove the unnecessary big 

objects from the damaged image and replace them with a visually acceptable 
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background by sampling & copying colour values from the source. The FMM is utilised 

to eliminate all scratches within the image. This scheme has several benefits including 

being easy to implement more efficiently. 

M. Abdollah and S. Kalantari in (Abdollahifard & Kalantari 2016) introduced an 

efficient method harmonious with the core of the labour in (Criminisi et al. 2004). This 

method is presented by a gradient-based search space reduction and two changes are 

adopted. First, the spatial behaviours in selected regions to be implanted are controlled 

by a gradient vector. Secondly, the application of Euclidean distance as the only 

measure to compare patches (selected regions) is to be avoided. Instead of a simple 

gradient-based similarity measure to select the best matches (template) patch, 

dG(G(𝜓𝑝), G(𝜓𝑞)) = {  |𝜓𝑥( 𝑝) − 𝜓𝑥(𝑞)| & |𝜓𝑦( 𝑝) − 𝜓𝑦(𝑞)| < 𝑡},       (5.1) 

Where dG(G(𝜓𝑝), G(𝜓𝑞)) represents an 𝐿2-norm (SSD), and 𝑡 is a threshold value and 

the partial derivatives of the image 𝜓  in 𝑥 and 𝑦 directions are denoted by 𝜓𝑥 and 𝜓𝑦 

respectively. Using the properties of gradient magnitude and making the size of patch 

21 × 21, the proposed method has succeeded in reducing the search space by a factor of 

up to 100. Therefore,  similar visual results to those of the original method of (Criminisi 

et al. 2004) are obtained more efficiently.  

The authors of (Cheng et al. 2005) presented an adapted fast and improved EBI method 

to solve the unknown row filling difficulties. Since EBI-method results almost always 

depend on the selection order, this method uses a redefined priority function to improve 

selection order so that the results get better. 

Most of the improved methods for EBI continue to use the same 9 × 9 size of patch 

propagation, which seems to produce visual artefacts when the surrounding area of the 

missing region is very rich with texture and structure (Criminisi et al. 2004). Also, the 

priority function cannot precisely locate positions on the border of the missing region 

where there are strong and long edges in the surrounding area. All in all, EBI can only 

be applied to images which have simple texture and structure in missing regions' 

surrounding areas. 

The work in the next section aims to overcome and consequently improve EBI 

regarding the size of patch propagation, to improve the priority function and matching 

criteria, and to reduce the artefact problem to an unnoticeable level. To accomplish this 

task, the emerging Topological Data Analysis scheme is applied.  
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5.4 Topological Exemplar-Based Inpainting Method (TEBI) 

To the best of our knowledge, no method has addressed the patch size selection in 

Criminisi’s et al. method. We propose to adaptively select the size of the patch 

propagation based on quantifying the texture and structure in the surrounding areas of 

the missing region, using the innovative TDA based strategy.  Also, a new definition of 

priority will be proposed to determine the priority of patch filling place based on the 

concepts of the curvature and the total variation of an isophote to encourage priority 

filling of the edges and corners in the patches. Finally, new matching criteria has been 

introduced to choose approximate true patches from the source region to recover the 

regions with high texture and structure surrounding it. Figure5-2 shows the flowchart of 

the proposed topological EBI method. 

 

Figure5-2: Flowchart of the proposed topological EBI method. 

The steps involved are determining the size of propagating patches by the TDA 

approach; and recovering edges and corners in the missing regions with high texture and 

structure areas surrounding the missing regions by using a new modified priority 

function and new matching criteria. These steps are illustrated in the subsections below. 
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5.4.1 Topological Image analysis 

The TDA approach studies the correlation between structure/texture and the patch size. 

To quantifying the amount of local texture existing in missing region’s surrounding area, 

the image is first transformed into the LBP domain and select landmark points of ULBP 

codes as the 0-simplices as the initial step in building a sequence of increasing Rips 

simplicial complexes from the missing region's neighbouring area. The ULBP pixels are 

divided into a number of geometries according to their number of 1’s in their byte code, 

and each geometry represents a different texture type. Also, each geometry is divided 

into 8 different rotations depending on the initial position of the 1’s run within the byte 

binary representation. For each geometry and each rotation, we will have an initial set of 

0-simplicies that form the start of building of the sequence of simplicial complexes. At 

each threshold, the number of CC will automatically quantify the nature of the given 

geometry-related texture in the regions surrounding the missing area. The rest of this 

section is aimed at using these quantifications to determine the appropriate size of patch 

propagation of our intended TEBI scheme. 

5.4.1.1 Experimental Dataset and Protocols 

To test the performance of our TEBI scheme, a number of experiments is conducted by 

using different assembled datasets of images and adopting a number of training-testing 

protocols. We assembled an initial dataset of 240 randomly selected natural google 

images: 120 are known to be of low-texture, and 120 are known to be of rich-texture 

taken from (Vedaldi 2014). Figure5-3 shows a sample of these images. We recognise 

that image texture is not uniformly expressed in images, and any of the selected images 

are expected to have regions with different intensity of texture, and the given label 

depends on the texture in a majority of image sub-regions. Accordingly, to determine 

the type of texture of unknown input images, five non-overlapping blocks from each of 

the images are randomly selected.  For our experiments, we randomly selected 5 sub-

images of size 25×25 from each image in our dataset to we end up with 1200 image 

subsets of 240 original images where 600 of them are subsets of rich textured images, 

and the other 600 are subsets of low-textured ones. 
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Figure5-3: Samples of low texture images selected from google image. 

 Four different training-testing protocols are used to evaluate the performance of our 

developed TEBI schemes:  

    S1) 17% Training - 83% testing protocol (40 images for training and 200 for 

testing), 

    S2) 33% Training - 67% testing protocol (80 images for training and 160 for 

testing),  

    S3) 50% Training - 50% testing protocol (120 images for training and 120 for 

testing), 

    S4) 83% Training - 17% testing protocol (200 images for training and 40 for 

testing).  

There are various parameters that need to be chosen that will help us determine a 

practical way for implementing our TEBI scheme which requires a specific way with 

which to classify image texture. Accordingly, our experiments are designed to 

determine three choices, the appropriate ULBP geometry, the best threshold to model 

texture, and what strategy to follow when linking the extracted topological invariant of 

the chosen geometry at the chosen threshold to the type of image texture. Accordingly, 

any input image needs to be subjected to three checks to be classified as a rich/high 

textured image or not. First, out of 8 uniform LBP code rotations, at least 5 rotations 

must vote in favor of High Texture (HT) so that an image subset will be classified as a 

textured subset. Second, out of 5 image subsets, at least 3 must vote in favour of high 

texture for the image to be cast as a rich textured image. Following the same process, an 

input image may be classified as a Low-Textured (LT) image. Finally, out of the 3 best 

ULBP geometries, at least two geometries must vote in favour of HT or LT, then the 

image will be casted as a HT or LT. Hence, a missing region's surrounding area will be 

treated as a HT or LT when the EBI method is applied.  
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In these experiments, the Support vector machine (SVM) method is used to obtain our 

optimal criteria to be used in our proposed TEBI scheme. The support vector machine 

(SVM) is one of the most widely used supervised classifiers which aims to find an 

optimal separating hyper-plane among different classes of a given n-dimensional dataset 

(training set). The optimal separating hyper-plane is the one that has a maximum 

distance to the nearest data samples (the so-called support vectors) in the training set. 

Such optimisation technique endeavours to maximise the margin between the hyper-

plane and the support vectors, expecting a better classification accuracy. 

5.4.1.2 Classification Results 

As mentioned above, an increasing sequence of simplicial complexes is constructed at 6 

different distance thresholds only and compute the number of CCs at each threshold. A 

linear SVM (i.e. classification technique) is first used to determine the best threshold 

that accurately discriminates images in terms of their quantified texture. The SVM 

classifier is used to classify the images into high and low texture based on the number 

of CCs in each geometry at different thresholds for the four different protocols that are 

used for classification. The features were fed into the classifier in two different ways in 

each experimental protocol: First, a feature vector of size 40 × 1 is created from the 8 

CC numbers obtained from the five image subsets at each geometry, and the decision is 

based on the majority vote. Second, at the first stage, the CCs of each image subset are 

used as a feature vector of size 8 × 1 independently and decide the type of texture in 

image subsets using a majority vote, and at the second stage, we again make a decision 

among the seven-geometries-based majority vote. Each of the above four protocols will 

be repeated 100 times to ensure that we are covering as much as possible different 

selections.  

Figure5-4, displays the achieved accuracy rates for the testing images showing the use 

of a topological feature vector of size 40 ×1 in an SVM classifier for 7 ULBP 

geometries at different thresholds in four different protocols. 
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Figure5-4: Texture classification results using SVM classifier for different protocols, 7 ULBP 

groups at 6 topological features (thresholds).   

Figure5-5 noticeably displays the use of a topological feature vector of size 8 × 1 in an 

SVM classifier for 7 ULBP geometries at different thresholds in four different protocols; 

where the SVM classifier will apply on each image subset and make a decision among 

the image subsets using a majority vote. 
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 Figure5-5: Texture classification results using an SVM classifier for different protocols, 7 

ULBP groups at 6 topological features (thresholds). 

In these experiments, the results clearly show that topological features at threshold 

T=10 perform better in discriminating rich textured regions in comparison with other 

thresholds, and among 7 ULBP geometries G1, G2, and G5 are performing better at 
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discriminating texture features. Therefore, these three geometries are used to quantify 

the amount of texture in a missing region’s surrounding area, and consequently, the 

patch size will be determined. The charts, also reveal that there is no need to have a big 

training set as the accuracy when the training is 17% is nearly similar to the 83%, 50%, 

and 33% training when using T10 that means the features (the number of CCs) that used 

in SVM classifier method are strong and the big training set doesn’t effect on the results. 

Also that means the TDA approach has been successfully discriminating between the 

high and low texture images.   

We have also seen the SVM classifier is adapted, the experimental results justify the 

assertion that SVM performs better in higher dimensional spaces. The input feature 

vector was fed to the SVM in different numbers of dimensions, the first with 8 

dimensions, and the second set with 40 dimensions. We observed that SVM classifies 

the higher dimensional feature vector with higher accuracy, and from this comes the fact 

that, as the number of dimensions gets higher, the separation of different classes gets 

better. 

5.4.1.3 Determination of Patch Size 

From the above set of experiments, the topological features at threshold T=10 perform 

better discrimination of high textured regions in comparison with other thresholds, and 

among 7 ULBP geometries G1, G2, and G5 are performing better in discriminating 

texture features in each experimental protocol. However, we note that the best 

topological threshold is not always T=10; this may change according to the nature of the 

images as well as the landmark point distribution. Rich textured images used for 

training and testing have many strong edges and lines. The reason behind the good 

performance of ULBP geometries is that G1, G2 and G5 are edges and corners 

descriptors inside an LBP. 

Therefore, the three best-performing geometries are used to quantify the amount of 

texture in the missing region’s surrounding area, and consequently, the propagation 

patch size will be determined adaptively depending on the outcome from the 5 image 

subsets according to the heuristic rules: 

1. If 3 image subsets voted for HT, then select a patch size of 7 × 7, 

2. If 4 or 5 image subsets voted in HT, then select a patch size of 5 × 5,  
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3. Else if 3 image subsets voted in LT then select the patch size to be 11 × 11, 

13 × 13 or 15 × 15 if 4 image subsets voted LT. Otherwise, select the patch 

size to be 21 × 21. 

The next step after selecting the appropriate patch size for filling procedure is patch 

filling priority. In other words, where is the best place to start the information 

propagation into the missing region? The next section contains a discussion about the 

priority function which modified by adding what is known as isophote curvature to the 

priority function to make sure that the strong/long edges on the border of the missing 

region are restored sequentially. 

5.4.2 Patch Filling Function 

One of the challenges in filling the missing region is to decide: where should the filling 

procedure start? The best filling method would be the one that gives high preference to 

the regions that continue the structure of the image into the missing area in the 

beginning then propagating the texture within the missing area. Criminisi et al. in 

(Criminisi et al. 2004) proposed that one can decide the order of filling priority based on 

1) how reliable is the information surrounding the pixel (known as confidence term) and 

2) a function that measures the strength of the  isophote that first hits the front of the 

border of the missing area (known as Data term). The priority function 𝑃(𝑝) is the 

product of two terms (Criminisi et al. 2004): 

                                                             𝑃(𝑝) = 𝐶(𝑝) ∙ 𝐷(𝑝)                                                      (5.2) 

where 𝐶(𝑝)  is the confidence term and 𝐷(𝑝)  is the data term, and they are defined as 

follows:  

                                                           𝐶(𝑝) =
∑ 𝐶(𝑞)𝑞∈𝜓𝑝∩(𝐼−Ω)

|𝜓𝑝|
                                               (5.3) 

                                                                 𝐷(𝑝) =
|𝛻𝐼𝑝

⊥.  𝑛𝑝|

𝛼
                                                … (5.4) 

Where |𝜓𝑝| is the area of 𝜓𝑝, ∇𝐼 is a gradient of the imageI, 𝛼 is a normalisation factor 

(e.g., α = 255  for a typical grey-level image), ∇Ip
⊥ is the isophote (direction and 

intensity) at point𝑝, np is a unit vector orthogonal to the front 𝜕Ω in the point 𝑝 and ⊥ 

denotes the orthogonal operator. The data term boosts the priority of the patch that an 

isophote flows into. 
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Different definitions of the priority function have been tested when the summation and 

multiplication of data and confidence terms, and different kinds of data and confidence 

terms also have been used. The definition of the priority function also has been tested 

when the subtraction of data and confidence terms; the negative sign has affected on the 

values of confidence and data terms. Table 5-1 shows the advantages and disadvantages 

of some of the priority functions P(p) that were tested by using different formulas of 

confidence and data term.  

P(p) Advantage Disadvantage 

 

𝐶(𝑝) ∙ 𝐷(𝑝)  

in (Criminisi et al. 

2004) 

This priority function helps to 

recover small missing regions 

and to remove small objects.  

Poor texture propagation in 

missing regions and poor 

geometry propagation in 

large missing regions 

 

𝐶1𝐶(𝑝) + 𝐶2𝐷(𝑝) 

in (Anupam et al. 

2010) 

This priority function improves 

texture propagation in small 

missing regions as well as when 

removing larger objects. 

Poor geometry propagation 

in missing regions. But 

improved results if different 

patch size and different 

weight values are used.  

St1:𝑃(𝑝) = 𝐷(𝑝) 

St2:𝑃(𝑝) = 𝐶(𝑝) 

in (Deng et al. 

2015) 

Enhances the process of 

geometry propagation in the 

missing regions and also when 

removing objects. 

Poor texture propagation in 

the missing regions as a 

result of using fixed patch 

size. 

 

𝐶1𝐶(𝑝) − 𝐶2𝐷(𝑝) 

Helps fill the information in 

small missing regions and when 

removing small objects. 

Poor texture and geometry 

propagation in large missing 

regions. 

Table 5-1: Description of the priority functions tested in this study. 

5.4.2.1 Innovative Adaptive Priority Function 

Having implemented and observed the performance of the above-mentioned priority 

functions, we found that priority functions that are linearly dependent on the data and 

confidence terms, such as the Anupam et al. (Anupam et al. 2010) function, have 

reasonable results especially when dealing with surrounding areas of missing regions 

have edges and corners. Initial tests of the above schemes helped to develop a new 

innovative adaptive linear priority function by tuning the confidence and the data terms. 

The rest of this section is devoted to describe the tuning steps. 
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𝑃(𝑝) = 𝐶1 × 𝑅𝑐(𝑝) + 𝐶2 × 𝐷(𝑝) + |∇𝐼𝑝|
−
1
2        … (5.6) 

𝐷(𝑝) =
|𝛻𝐼𝑝

⊥.  𝑛𝑝|

𝛼
+ |∇.

∇𝐼𝑝

|∇𝐼𝑝|
|       … (5.5) 

𝑅𝑐(𝑝) = (1 − 𝜀) × 𝐶(𝑝) + 𝜀,                    0 < 𝜀 < 1. 

The first change was to add a total variation operator  |∇𝐼𝑝|
−

1

2 to the weighted sum of 

the new confidence term and the data term. This TV operator is of fundamental 

importance because it encourages linear structures to be synthesised first, and, thereafter 

propagated securely into the target region. The confidence term is slightly modified, to 

control the smoothness of curves, using a regularization term 𝜀 as follows: 

where 𝜀  is the regularising factor for controlling the curve smoothness of the 

information in 𝐶(𝑃). However, even with these two changes, we noted that in some 

cases the data term vanishes, producing artefacts after the filling procedure is complete. 

To overcome this, the data term is additionally redefined by adding the curvature of 

isophotes (Shen & Chan 2002),  The redefined data formula after curvature isophote 

addition is as follows: 

where 
∇𝐼𝑝

|∇𝐼𝑝|
 is the normal direction of the isophote; ∇.

∇𝐼𝑝

|∇𝐼𝑝|
 is the curvature of the 

isophote. Finally, our Priority function is defined by:  

Where 𝐶1 and 𝐶2 are respectively the component weights of the confidence and the data 

terms and 𝐶1 + 𝐶2 = 1. Anupam et al in (Anupam et al. 2010) suggest the use of 𝐶1 =

0.7 and 𝐶2 = 0.3. 

The curvature model (5.6) enhances the driving of diffusion along the isophote 

directions and thus allows the propagation of thicker regions in the beginning. This 

approach works in some scenarios. However, it will not produce a good reconstructed 

image in other cases when using 𝐶1 = 0.7 and 𝐶2 = 0.3.   

Therefore, our final modification of linear priority function is based on an adaptive 

selection of 𝐶1and 𝐶2. Inspired by the work of Deng et al in (Deng et al. 2015), this 

adaptation will be based on a measure of the quantity of structure needed to propagate 

inside the missing region. Accordingly, the idea of the work in (Deng et al. 2015) is on 

separating the task of filling the template patch into two phases: the first phase is about 
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𝑇Ω𝑠
=

𝐴Φ𝑠

𝐴Φ
𝑇Ω = 2𝜌 ∙

 𝐴EΦ 
𝐴Ω

𝐴ΦA𝜓𝑝

,       … (5.7) 

recovering the structure patches by propagating geometry, and the second phase is about 

recovering the texture.   

Our adaptive estimation of 𝐶1and 𝐶2 is based on computing the number of propagation 

steps of structure patches in the missing region; then subtracting them from all 

propagation steps to determine the number of propagation steps of texture patches. 

Let the source region and target region are defined as Φ = {Φ𝑠 ∪ Φ𝑡\ Φ𝑠 ∩ Φ𝑡 =  ∅}, 

and Ω =  {Ω𝑠 ∪ Ω𝑡\ Ω𝑠 ∩ Ω𝑡 =  ∅,  where Φ𝑠, Ω𝑠  represent the structure in Φ and Ω, 

respectively, and Φ𝑡, Ω𝑡 represent the textures in Φ and Ω, respectively. The structure 

part is computed via some edge detectors, e.g., “canny” or “Sobel” detectors. A 

structure patch's propagation step in the missing region may be described by the 

equation: 

where 𝐴Φ and 𝐴Ω represent the areas of the source Φ and target Ω regions, respectively. 

Also 
𝐴𝛷𝑠

𝐴𝛷
=

𝐴𝛺𝑠

𝐴𝛺
, 𝐴𝛷𝑠

= 𝜌𝐴𝐸𝛷
, and 

𝐴𝛺𝑠

𝐴𝛺
=

𝑇𝛺𝑠

𝑇𝛺
, where EΦ is the edge map of the source 

region Φ.  𝐴EΦ
 is computed by the quantity of nonzero elements in EΦ, and 𝜌 is set to 

be 𝑛, where the size of patch is 𝑛 ×  𝑛. In addition, the total step number 𝑇Ω can be 

estimated by the areas of patch 𝜓𝑝 and the target region Ω, i.e., 

𝑇Ω = 𝐴Ω/(0.5A𝜓𝑝
). 

We used equation 5.7, i.e. the ratio of the calculated number of structured patches that 

need to be filled in the missing region, to compute 𝐶1, and 𝐶2. As follows:  

 𝐶2 =
𝑇Ω𝑠

𝑇Ω
, and   𝐶1 = 1 − 𝐶2. 

We now reformulate our adaptive priority function as follows: 

 

𝑃(𝑝) = 𝐶1 × 𝑅𝑐(𝑝) + 𝐶2 × 𝐷(𝑝) + |∇𝐼𝑝|
−
1
2 

Where 𝑅𝑐(𝑝) is improved confidence term, which defined as 𝑅𝑐(𝑝) = (1 − 𝜀) ×

𝐶(𝑝) + 𝜀, 𝐷(𝑝) is improved Data term, which defined as 𝐷(𝑝) =
|𝛻𝐼𝑝

⊥.  𝑛𝑝|

𝛼
+ |∇.

∇𝐼𝑝

|∇𝐼𝑝|
|, 

and 𝐶1, 𝐶2 are the weight components which are determined based on the quantity of 

structure in an image.  
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This adaptive priority function will be shown to improve the reconstruction of the 

structure of the missing region (i.e. curves, corners, and edges) in a more deterministic 

and trustful way that only depends on the content of the image. Having defined the 

patch priority function, at each step the patch of the TEBI with the highest priority 

(called the template) need to be filled using matching criteria that is used to search in 

the rest of the image. This is the aim of the next section.  

5.4.3 Matching Criteria 

Finding the patch that best matches the selected (template) patch, from the previous 

section, to reconstruct the missing region is critical. The SSD between template patch 

and the candidate patch outside the missing region in the spatial domain is used by 

(Criminisi et al. 2004), (Sharma & Mehta 2013), (Cheng et al. 2005) and (Deng et al. 

2015). In (Hesabi & Mahdavi-Amiri 2012) the computed SSD between the template 

patch and the candidate patch outside the missing region is conducted in the spatial as 

well as in divergence and gradient domains. The later approach improved missing-

region texture recovery. However, still in some cases, visible artefacts are produced. To 

avoid this in this final stage, the procedure is experimentally improved by first 

computing SSDs in the spatial domain then in the gradient and Laplacian domains. In 

other words, the SSD in the spatial, gradient and Laplacian domains is added between 

the template patch and candidate patches. Equation (5.8) shows the procedure to 

compute the SSD between a candidate and a template patch. 

𝜓�́� = argmin𝜓𝑝∈Ω ds(I(𝜓𝑝), I(𝜓𝑞)) + dg(G(𝜓𝑝), G(𝜓𝑞)) + dL(L(𝜓𝑝), L(𝜓𝑞))… (5.8) 

where ds, dg and dLare spatial, gradient and Laplacian distances, respectively. As can 

be seen in Figure5-1, 𝜓𝑝 and 𝜓𝑞 are template and candidate patches respectively. Recall 

that this is the first stage matching criteria. The patch with the smallest Euclidean 

distance is not necessarily the best candidate for replacement by the 

template/destination patch.  

Therefore, the second stage of similarity measurement is suggested as follows:  

 Determine the 30 nearest patches to the template patch with the smallest SSD 

values.   

 Measure the Normalised Correlation Coefficients (NCC) between the template 

and the 30 nearest candidate patches to get the patch which has the NCC value 

closest to 1. 
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The formula for NCC is given as: 

dNCC (I(𝜓𝑝), I(𝜓𝑞)) =
(∑(𝜓𝑝). (𝜓𝑞))

2

∑(𝜓𝑝)
2
∑(𝜓𝑞)

2         … (5.9) 

We tested the outcomes of selecting all the patches in the surrounding area of the 

missing region and calculated the NCC in each case, and the results with all 30 patches 

were similar. Therefore, to reduce the time we stick to the 30 smallest SSD patches.  

As a result, texture properties will be preserved by the second matching stage. This 

patch-based filling criterion helps achieve speed efficiency, accuracy in the synthesis of 

texture and accurate propagation of linear structures. Finally, the most similar patch is 

copied to the destination patch and update the information of the destination patch. The 

process in the last two subsections will be repeated until all missing region is recovered.  

5.5 Experimental Results 

In this section, the results of testing the performance of our TEBI method for 100 

different images are reported, in comparison to that of the Criminisi, Anupam, and 

Deng methods that introduced in (Criminisi et al. 2004), (Anupam et al. 2010), and 

(Deng et al. 2015). Table 5-2 shows the testing parameters of priority function, 

matching criteria and patch size used in these schemes. 

P(p) 

 

C(p) D(p) Matching criteria Patch Size  

𝐶(𝑝) ∙ 𝐷(𝑝), 

in (Criminisi et al. 

2004) 

∑ 𝐶(𝑞)𝑞∈𝜓𝑝∩(𝐼−Ω)

|𝜓𝑝|
 

|𝛻𝐼𝑝
⊥.  𝑛𝑝|

𝛼
 

Euclidean distance 

in spatial domain. 9 × 9 

 

𝐶1𝑅𝑐(𝑝) + 𝐶2𝐷(𝑝) 

where 𝑅𝑐(𝑝) =

(1 − 𝜔) × 𝐶(𝑝) + 𝜔, in 

(Anupam et al. 2010) 

∑ 𝐶(𝑞)𝑞∈𝜓𝑝∩(𝐼−Ω)

|𝜓𝑝|
 

𝑅𝑐(𝑝)

= (1 − 𝜀) × 𝐶(𝑝)

+ 𝜀 

 

|𝛻𝐼𝑝
⊥.  𝑛𝑝|

𝛼
 

 

Euclidean distance 

in spatial domain. 9 × 9 

St1:𝑃(𝑝) = 𝐷(𝑝) 

St2:𝑃(𝑝) = 𝐶(𝑝) 

in (Deng et al. 2015) 

∑ 𝐶(𝑞)𝑞∈𝜓𝑝∩(𝐼−Ω)

|𝜓𝑝|
 

|𝛻𝐼𝑝
⊥.  𝑛𝑝|

𝛼
 

Euclidean distance 

in gradient domain. 
9 × 9 

𝐶1 × 𝑅𝑐(𝑝) + 𝐶2 ×

𝐷(𝑝) + |∇𝐼𝑝|
−

1

2, where 

𝑅𝑐(𝑝) = (1 − 𝜔) ×

𝐶(𝑝) + 𝜔. 

∑ 𝐶(𝑞)𝑞∈𝜓𝑝∩(𝐼−Ω)

|𝜓𝑝|
 

|𝛻𝐼𝑝
⊥.  𝑛𝑝|

𝛼

+ |∇.
∇𝐼𝑝

|∇𝐼𝑝|
| 

Summation of 

Euclidean distance 

in spatial, gradient, 

and Laplacian 

domain. Then NCC 

Adaptable 

to the 

quantity of 

texture 

surrounding 
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in our proposed 

method. 

𝑅𝑐(𝑝)

= (1 − 𝜀) × 𝐶(𝑝)

+ 𝜀 

to determine the 

best. 

areas in the 

image 

Table 5-2: comparing priority function, matching criteria and patch size in Criminisi, Anupam, 

Deng and TEBI. 

Our test criteria is based on how visually the inpainted target region mimics the source 

region in appearance when we remove objects and fill the gap using the tested 

inpainting schemes. More precisely, the TEBI proposed method is tested on 100 natural 

images containing missing regions of different sizes at random locations for the same 

natural image. Below, in Figure5-6, 5-7, 5-8 and 5-9, the test for a selected number of 

images is illustrated.  

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (f)(e)  
Figure5-6: Removing Objects: (a) Natural image from the internet; (b) original image with 

occluded areas; (c), (d), (e) and (f) Inpainted image using Criminisi, Anupam, Deng and TEBI 

schemes, respectively. 

(c)(b)(a)

(d) (e) (f)

(c)

(f)

(b)(a)

(e)(d)  
Figure5-7: Region reconstruction using EBI. The natural image from the internet (a), original 

image with the occluded area (b); (c), (d), (e) and (f) inpainted image using Criminisi, Anupam, 

Deng and TEBI schemes, respectively. 
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(b)(a) (c)

(d) (e) (f)

(c)

(e)(d) (f)

(b)(a)

 
Figure5-8: Region reconstruction using EBI. The natural image from the internet (a), original 

image with the occluded area(s) (b); (c), (d), (e) and (f) Inpainted image using Criminisi, 

Anupam, Deng and TEBI schemes, respectively. 

(b)(a) (c)

(d) (e) (f)

(b)(a)

(f)(e)(d)

(c)

 
Figure5-9: Region reconstruction using EBI. The natural image from the internet (a), original 

image with the occluded area (b); (c), (d), (e) and (f) Inpainted image using Criminisi, Anupam, 

Deng and TEBI schemes, respectively. 

The above figures demonstrate how our proposed method is outperforming the 

Criminisi, and Anupam methods while getting a result roughly similar to that obtained 

with the Deng method. Figure5-6 and 5-8 clearly illustrate the success of our approach 

in removing unwanted objects in two images, while Figure5-7 and 5-9 clearly illustrate 

the success of proposed method in reconstructing the missing regions in the images.  

Furthermore, our approach is outperforming these state-of-the-art methods especially 

when the size of the missing region is big, and the surrounding area of the missing 

region has high texture and structure. More precisely, in Figure5-6 and 5-7 the missing 

region is relatively big and to reconstruct the missing information, one needs to extend 

the edges outside the missing region into the missing region. Figure5-7 and 5-9 

illustrate the success of our method in reconstructing the edges and corners in the 

missing regions of the images. This shows that our method can successfully reconstruct 



Chapter 5: Topological Exemplar-Based Inpainting   
 

 170  
 

sharp edges sequentially even when the missing region is large, due to good patch size 

propagation selection using topological invariants. As a result, the priority function 

determined the best location in which to propagate the information in a steady manner.  

The missing region reconstruction is now fully based on the information in the 

surrounding area. The success of any inpainting method is estimated in a precise way by 

the quality assessment of how well the geometric structure, photometric information 

and texture is propagated into the target region. Next, it is necessary to check the quality 

of the restored image so that one can check the suitability of the method as well as 

whether the produced image is visually acceptable or not. The next section will contain 

inpainting image quality assessment using different statistical measurements and the 

TDA approach. 

5.6 Image Quality Assessment 

The aim in this section is to test the qualities of various images which have been 

recovered using the proposed EBI method. The quality of its output images will be 

assessed by using statistical quality measurements and the TDA approach. The 

proposed EBI method has been applied to several natural images from the Berkeley 

database, as explained in section 3.6.1. The natural images in this database are classified 

into categories of low and high information (i.e. the quantity of texture in the images) 

based on TDA features that use in SVM classifier method; where the number of images 

in each category is 100 images. These images have been selected based on the quantity 

texture and structure (i.e. low and high information images) which that help to check the 

efficacy of EBI methods on each category of these image categories. 

Thus the effectiveness of the proposed TEBI method and Criminisi, Anupam, and Deng 

methods will be studied by applying them to each one of these categories. Also, the 

output images of the proposed EBI method has been compared with the output images 

of Criminisi, Anupam, and Deng methods described in (Criminisi et al. 2004), (Anupam 

et al. 2010), and (Deng et al. 2015). Figure5-10 and 5-11 show examples of high and 

low information natural images from the Berkeley database, respectively. 
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Figure5-10: Example of eight out of 100 training low-information natural images. 

 

Figure5-11: Example of eight out of 100 training high-information natural images. 

Five experiments will be conducted to evaluate the inpainting of images from each of 

the two texture (high/low) categories. The aim of these experiments is to study the 

efficacy of proposed method on the reconstruction of the missing regions of different 

sizes and with high texture and structure around them in the natural images and to study 

the performance of the proposed method in reconstructing these missing regions.  

We will be following the same steps that were presented in chapter Chapter 4 to create 

the inpainting mask. Five cases of inpainting masks have been used to study the efficacy 

of the proposed EBI method and to compare it with Criminisi, Anupam, and Deng 

methods. To cover all possibilities of using this TEBI method, these missing regions 

have been randomly selected in the mask images, and they are chosen based on different 

sizes of - different positions of-, and different numbers of missing regions in inpainting 

domains (Case1, Case2, Case3, Case4, Case5). Figure5-12 shows five cases of 

inpainting mask (i.e. inpainting domain) which represents five damaged regions in 

images that have been applied to both high and low texture database images to study the 

efficiency of the proposed EBI method. 
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Damaged image Case1 Damaged image Case2 Damaged image Case3 Damaged image Case4 Damaged image Case5  

Figure5-12: The same natural image with five different inpainting domains. 

To obtain evaluations of the output images of these experiments in each high and low 

texture category image, the statistical quality measurements and the TDA approach are 

used. The next two subsections will discuss and show the results of quality measures on 

two categories of natural database images. 

5.6.1 Statistical measurements for image quality   

The establishment of an accurate evaluation method which simultaneously assesses 

inpainted images qualitatively and quantitatively is a problem which has not been fully 

solved yet (Chandler 2013). Therefore, we depend on visual analysis to assess inpainted 

images qualitatively. However, for quantitative evaluation, the Mean Square Error 

(MSE), peak signal-to-noise ratio (PSNR), Structural Similarity (SSIM), Coherence 

structural quality measurement (CSQM), and entropy are calculated. To get better-

quality image inpainting, the values of MSE, PSNR, and SSIM are only calculated 

between the inpainted regions and the corresponding regions in the original images; and 

the values of SCQM and entropy are also calculated on the inpainted regions (cf. 

Section 2.6.1). 

Table 5-3 and 5-4 below summarise the comparison of the TEBI method with the 

Criminisi, Anupam, and Deng methods based on the average values of MSE, PSNR, 

SSIM, CSQM and entropy on the low and high information images, respectively; the 

times have taken to get the results using these methods are also shown. 
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C# Methods MSE PSNR SSIM CSQM Entropy T(s) 

C
as

e1
 

Criminisi method 300.275 24.969 0.9755 0.47039 1.1900 55 

Anupam method 253.685 25.711 0.9761 0.47170 1.1863 67 

Deng method 348.248 24.235 0.9753 0.47152 1.1865 92 

TEBI method 252.451 25.728 0.9763 0.47361 1.1750 121 

C
as

e2
 

Criminisi method 283.779 25.171 0.9503 0.25397 2.0543 65 

Anupam method 279.927 25.239 0.9503 0.25477 2.0533 73 

Deng method 285.493 25.141 0.9503 0.25398 2.0545 96 

TEBI method 378.261 24.046 0.9492 0.25831 2.0336 136 

C
as

e3
 

Criminisi method 401.215 23.432 0.9234 0.20356 2.5216 78 

Anupam method 383.021 23.677 0.9243 0.20333 2.5145 93 

Deng method 597.413 21.549 0.9220 0.20187 2.4765 111 

TEBI method 379.917 23.668 0.9242 0.20537 2.2144 165 

C
as

e4
 

Criminisi method 425.420 23.288 0.9408 0.26899 1.9857 67 

Anupam method 367.423 23.562 0.9410 0.26841 1.9815 78 

Deng method 575.560 22.065 0.9397 0.26672 1.9494 93 

TEBI method 355.304 23.761 0.9414 0.27810 1.9208 133 

C
as

e5
 

Criminisi method 593.974 21.952 0.9178 0.22847 2.3045 88 

Anupam method 574.116 22.060 0.9182 0.22810 2.2993 95 

Deng method 809.893 20.420 0.9186 0.22469 2.2422 127 

TEBI method 573.177 22.054 0.9184 0.23808 2.2195 178 

Table 5-3: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM 

and Entropy for low information dataset images. 

C# Methods MSE PSNR SSIM CSQM Entropy T(S) 

C
as

e1
 

Criminisi method 975.919 18.883 0.9556 0.81145 1.2310 79 

Anupam method 926.117 19.089 0.9559 0.80826 1.2283 86 

Deng method 1307.57 17.705 0.9533 0.81071 1.2142 112 

TEBI method 922.282 19.408 0.9579 0.89128 1.2077 167 

C
as

e2
 

Criminisi method 1149.85 18.173 0.9078 0.43602 2.1312 87 

Anupam method 1025.25 18.608 0.9088 0.43608 2.1252 98 

Deng method 1404.03 17.360 0.9050 0.43624 2.0859 121 

TEBI method 1018.40 18.955 0.9189 0.45565 2.0237 183 

C
as

e3
 

Criminisi method 1442.66 17.155 0.8651 0.34645 2.6378 96 

Anupam method 1364.21 17.335 0.8662 0.34640 2.6296 111 

Deng method 1779.13 16.195 0.8623 0.34381 2.5674 137 

TEBI method 1359.10 17.863 0.8862 0.34913 2.4296 201 

C
as

e4
 

Criminisi method 1571.17 16.863 0.8938 0.45931 2.0989 83 

Anupam method 1451.14 17.075 0.8945 0.45804 2.0907 91 

Deng method 1839.31 16.103 0.8918 0.45551 2.0331 116 

TEBI method 1411.64 17.667 0.8978 0.46902 2.0189 178 

C
as

e5
 

Criminisi method 1995.07 15.682 0.8578 0.38833 2.4670 110 

Anupam method 1868.96 15.949 0.8586 0.38460 2.4510 132 

Deng method 2390.96 14.847 0.8564 0.38252 2.3474 165 

TEBI method 1848.71 16.378 0.8786 0.39557 2.4199 241 

Table 5-4: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM 

and Entropy for high information dataset images. 
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Table 5-3 and 5-4 show that the TEBI method is capable of effective region filling in 

low and high information natural images and gives a relatively higher PSNR value with 

low MSE value and that it leads to values of SSIM close to 1. The image quality 

measures used in Table 5-3 clearly show that TEBI is outperforming the Criminisi, 

Anupam, and Deng methods; however, the TEBI method takes a bit more time due to 

the amount of calculation entailed in the matching stage. During the testing, it was 

found that while some images could look visually pleasing and similar, they have 

different PSNR values. All the methods have succeeded in recovering the missing 

regions in the low information database images; the values of MSE, PSNR, SSIM from 

inpainted areas obtained by the TEBI method and other Criminisi, Anupam, and Deng 

methods are closer to each other than to the high information database images. The 

average values of PSNR and SSIM of inpainted areas obtained by the Anupam method 

are better than those obtained by the proposed method in Case2 and Case5, while the 

value of entropy is a measure by which the proposed method outperforms all the other 

methods. The TEBI method got lower entropy value than other methods. Also, the 

TEBI method got higher values of CSQM than other methods. 

5.6.1.1 Results Analysis 

To discuss the results of statistical measurements for low-information inpainted images, 

we found the average values of MSE, PSNR, SSIM from inpainted areas obtained by 

the TEBI method and other Criminisi, Anupam, and Deng methods are closer to each 

other in the low- information database images. The average values of PSNR and SSIM 

of inpainted areas obtained by the Anupam method are better than those obtained by our 

method in Case2 and Case5, while the value of entropy and CSQM are a measure by 

which TEBI outperforms all the other methods for all inpainting cases because the 

CSQM measure has been used to study the inpainted areas based on the coherence of 

inpainted areas with the remainders of the images,and entropy studies the amount of 

disorder in inpainted areas. So, in most situations, lower entropy is better than higher 

entropy.  

The TEBI method got lower entropy value than those obtained other methods in both 

low- and high-information images. This means that the amount of disorder in the 

inpainted image by TEBI is less than the disorder in the inpainted images obtained by 

the Criminisi, Anupam, and Deng methods. While, the high values of CSQM represent 

better results; the TEBI method got higher values of CSQM than other methods in both 
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low- and high-information images; this means the inpainted regions obtained by the 

TEBI method are more coherent with the remainders of the images.  

To sum up, the proposed TEBI method and the Criminisi, Anupam, and Deng methods 

succeeded in recovering the missing regions in the low-information database images. 

These methods have the ability to deal with simple texture and structure images (low-

information images) as these methods proposed for this purpose. Moreover, we found 

the efficacy and the significant superiority of the TEBI in the reconstruction of the 

texture and structure in the missing regions in the high information images database due 

to good patch size propagation selection using topological invariants and the 

performance of matching criteria that used to give good matching patches especially for 

reconstructing the edges and corners in the missing regions of the image. 

On the other hand, TEBI takes more time due to the amount of calculations entailed 

during the size patch decision and the matching stage. The TEBI and other methods 

need more time in reconstructing the missing regions in the high-information images 

than in the low-information images because the matching criteria needs more time to 

find the similar patch. During the testing, it was found that while some images could 

look visually pleasing and similar, they have different PSNR values. 

As mentioned earlier, the MSE and PSNR are not reliable measures for checking the 

quality of image inpainting. Therefore, the TDA approach will be used, in the next 

section, to assess and compare the quality of inpainted images reconstructed in both the 

low and high information images databases.  

5.6.2 Topological Data analysis for image quality 

The TDA approach for the evaluation of the quality of image inpainting and the efficacy 

of the inpainting technique has been explained and introduced in section 2.6.2). To get 

inpainted-relevant image quality, this approach has been studied only the inpainted 

regions in the images, i.e. the number of CCs has only been calculated in the inpainted 

regions and the corresponding original regions. The same steps are followed in the 

construction of the Vietoris-Rips complex as introduced in section 2.6.2.2.  

The 7 ULBP geometries have been studied at different thresholds T=0, T=5, T=10, 

T=15, for the inpainted images of the above experiments (i.e. five inpainting domains 

cases). The numbers of CCs are got in the geometries G3, G4, G5 and G6 at threshold 



Chapter 5: Topological Exemplar-Based Inpainting   
 

 176  
 

T=15. It needs to be said that the numbers of CCs for all methods in the other 

geometries at threshold T=15 are ill-conditioned. 

Figure5-13 shows the average numbers of CCs of inpainted regions as obtained by the 

TEBI method and by the Criminisi, Anupam, and Deng methods for five damaged 

regions from low and high information natural images datasets in the geometry G4 at 

threshold T=15. 

Figure5-14 shows the average numbers of CCs of inpainted regions which were 

obtained by the TEBI method and by the Criminisi, Anupam, and Deng methods for 

five damaged regions from low and high information natural images datasets in the 

geometry G7 at threshold T=15. 
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Figure5-13: Evaluation of performance of EBI techniques using TDA approach in the inpainted 

regions of high and low-information natural images in five inpainting domains at threshold 

T=15, in G4. Left column: Average of the number of CCs inpainted regions in low-information 

natural images. Right column: Average of the number of CCs inpainted regions in high-

information natural images. 
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Figure5-14: Evaluation of performance of EBI techniques using TDA approach in the inpainted 

regions of high and low-information natural images in five inpainting domains at threshold 

T=15, in G7. Left column: Average of the number of CCs inpainted regions in low-information 

natural images. Right column: Average of the number of CCs inpainted regions in high-

information natural images. 
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As mentioned before, the uniform LBP pattern classifications based on the number of 

ones included in the pattern in the natural images database was introduced in (Ojala et al. 

2002). The numbers of CCs in the inpainted areas that are recovered by the proposed 

method are closer to the numbers of CCs in the original areas than in the inpainted 

images obtained by other methods in the geometries G3, G4, G5, and G6 at threshold 

T=15 in both the low and high information natural images. Further, the numbers of CCs 

in the inpainted regions that are obtained by the TEBI method and by the Criminisi, 

Anupam, and Deng methods are wobbling in the geometries G1, G2, and G7 in both 

low and high-information images databases. 

The rest of the numbers of CCs in other geometries G1, G2, G3, G5, and G6 at 

threshold T=15 are presented as an Appendix at the end of thesis (cf. Appendix B).  

5.6.2.1 Results Analysis 

The numbers of CCs in the inpainted areas that are recovered by the TEBI method are 

closer to the numbers of CCs in the original areas than in the inpainted images obtained 

by using other methods, as counted in the geometries G3, G4, G5, and G6 at threshold 

T=15 in both the low and high information natural images. This means the TEBI 

method has been successful in reconstructing the corners, edges and the line ends in the 

missing regions because of the patterns that are described in the geometries G3, G4, G5, 

and G6 geometries. This means the TEBI method has been successful in reconstructing 

the corners, edges and the line ends in the missing regions because of these geometries 

G3, G4, G5, and G6 geometries described the pattern of the corners, edges and the line 

ends in the image (Ojala et al. 2002). 

The numbers of CCs in the inpainted areas in the low natural images that have been 

recovered by the TEBI method and other methods are closer to the numbers of CCs in 

the low information original areas than to the numbers of CCs in the high-information 

original areas. This means the TEBI and other methods have succeeded in 

reconstructing the missing regions in low information images because these methods 

already work well with simple texture and structure images (low-information images). 

However, the TEBI method is better than other methods in recovering the missing 

regions in high-information images based on the number of CCs in the inpainted regions 

because the proposed method is successful in reconstructing the edges and corners in 

the missing regions of the images due to good patch size propagation selection using 

topological invariants and the performance of matching criteria that have been used to 



Chapter 5: Topological Exemplar-Based Inpainting   
 

 180  
 

give good matching patches especially for recovering the texture in the missing regions. 

As a result, the priority function determined the best location in which to propagate the 

information in a steady manner, and the proposed method has successfully worked in 

recovering the missing regions in both low and high information natural images. 

The numbers of CCs in the inpainted regions that are obtained by using the TEBI 

method and by the Criminisi, Anupam, and Deng methods are wobbling in the G1, G2, 

and G7 geometries in both low and high-information image databases because the 

inpainted regions are not totally identical to the original images owing to the inpainted 

region representing the approximation solution which can be close to the corresponding 

region of the original image but not totally identical because the  missing information 

cannot be found in the image,  although closely approximating information will be 

searched for in the rest of the image. Nevertheless, the TEBI method has succeeded to 

recover the regions in the both low- and high-information images. The TDA approach is 

used successfully to evaluate the qualities of inpainted images obtained by using the 

TEBI and other methods. The efficacy of these methods has been checked by the TDA 

approach as well. 

5.7 Summary and Conclusion 

A novel topological exemplar-based inpainting method (TEBI) has been proposed to 

improve the EBI method to remove and reconstruct large missing regions based on 

adaptive patch sizing when there is high texture in the missing region’s surrounding 

area. An innovative adaptive priority function is introduced by adding a total variation 

term, uses a curvature operator to gain more insight into the structures of template 

patches and propagates lines and edges into the missing regions. A new criterion for 

matching template patches with candidate patches in the missing region’s surrounding 

area is proposed. Experimental results illustrate the success of the TEBI method, which 

creates visually plausible images. 

The proposed method performed well in recovering the image geometry but could not 

recover curved or cross-shaped structures completely. Nevertheless, the proposed 

method showed better visual results than other compared exemplar-based methods for 

the case of curved or cross-shaped structures. In particular, our method performed not 

so well in cases where the missing region has no similarity with other regions in the 

image. 
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The next chapter will introduce a hybrid inpainting technique based on decomposing the 

image into texture and structure components, after which the TEBI and PDE methods to 

recover the missing regions in texture and structure components, respectively.  
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Chapter 6 HYBRID IMAGE INPAINTING 

TECHNIQUE 

In chapter Chapter 5, a topological data analysis approach was developed to improve the 

EBI technique that simultaneously reconstructs texture and structure in missing regions 

in an image. The resulting TEBI scheme helped determine the appropriate size of 

patches for propagating information into the missing regions. The success of 

simultaneous propagation of texture and structure, however, occurs only when there are 

regions similar to the missing regions in the rest of the image. In this chapter, the 

decoupling of the reconstructions of texture and structure information to be separately 

propagated into the missing region is investigated. A hybrid inpainting technique that 

combines a TEBI scheme to restore the missing region texture component with a high 

order PDE algorithm to recover the missing region structure component is developed.  

The results of using the hybrid inpainting technique in reconstructions of missing 

regions are promising, because both the TEBI and high-order PDE-based inpainting 

methods have been successful in recovering missing regions with high texture and 

structure in the surrounding areas. The hybrid scheme has been conducted in both 

spatial and frequency domains, and its performance has been assessed by using 

statistical and topological image quality measures. To clarify their superiority,  the 

results of the proposed hybrid technique is compared to the results obtained from the 

techniques described in (Bertalmio et al. 2003) and (Jassim et al. 2018).  

This chapter consists of five sections. Section 6.1 reviews the literature on existing 

hybrid-based inpainting algorithms. Sections 6.2 and 6.3 describe the design of our 

hybrid-based inpainting schemes in both the spatial and frequency domains, and present 

some experimental results of their use. Image qualities resulting from inpainting via the 

PDE algorithm are assessed by using statistical measurements and the TDA approach in 

both spatial and frequency domains, as discussed in section 6.4. Lastly, a summary and 

conclusions will be presented in section 6.5. 
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6.1 Hybrid inpainting techniques - A Literature Review 

A hybrid inpainting scheme is meant to combine two or more inpainting approaches, 

each of which has own limitations but for different reasons. Ideally, a hybrid scheme 

should provide desirable visual results when applied to a variety of inpainting 

applications that cannot be achieved by its constituent schemes applied separately. In 

this section some papers which shed light on the studies of various hybrid inpainting 

techniques which include either texture Synthesis, PDE and/or exemplar-based 

algorithms are reviewed. 

The shortcomings of existing single-approach inpainting schemes seem to be deeply 

rooted in the extremely difficult task of simultaneously understanding and analysing 

image features at different scales. By no mean is this problem confined to inpainting, 

and indeed many image applications that require feature detection/manipulation suffer 

from the difficulty of finding one image algorithm that can simultaneously 

manipulate/repair image features at different scales. Indeed, our inability so far to tackle 

the tough challenge of recovering large missing regions can be attributed in part to the 

difficulty of determining with certainty the scale of missing features within the region. 

It is worth noting that the EBI schemes that were investigated in the last chapter, 

including the TEBI, do recognise this issue and attempt to deal simultaneously with 

missing information at large scales (referred to as structural component) and small 

scales (referred to as textural component). 

Images can be decomposed/analysed in many different ways, and multi-resolution (e.g. 

wavelet-based) approaches have been dominant in many applications.  In relation to 

image inpainting, one is usually interested in decomposing an image into its structural 

components, representing the main large image features/objects at microscales, and a 

textural part, with microscales feature representations. The definition of these two 

components is somewhat vague as a result of the absence of agreement on scale for 

different applications. At a given scale, a structure may be construed as texture in 

another larger scale. Textural, and to a less extent structural, features are expected to 

appear repeatedly throughout the image perhaps with some orientational variation. 

Appropriate decomposition of damaged images into texture and structure components 

provides a useful background understanding of the challenges of image inpainting 

especially for large missing regions and provides the initial step of existing hybrid 

inpainting techniques. 
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Hybrid inpainting has a rich literature and remains an active area of research. Therefore, 

it is not an easy task if one wants to cover all aspects of these models. Most existing 

hybrid inpainting techniques attempt to combine inpainting schemes that are good at 

recovering missing information at small scales with those that are good at recovering 

missing information at large scales. Their success, however, strongly depends on the 

ability to adequately decompose/analyse images at a multi-scalar level in order to 

identify the types of missing information at different scales. Another factor that 

influences the success of hybrid schemes is their strategy for restoring the two different 

types of missing information.  

Bertalmio et al. in (Bertalmio et al. 2003) have proposed the first known Bertalmio 

hybrid technique that combines the results of using texture-based synthesis and a PDE-

based method. The idea of this technique is to divide the image into texture and 

structure components by using a total variation model (i.e. 2ndorder PDE) which was 

applied in (Rudin et al. 1992). Restoration of each component is implemented 

separately. The missing regions in those components are recovered by texture based 

synthesis (Efros & Leung 1999) and a PDE-based method (Bertalmio et al. 2000) 

respectively. The transport model has been used to recover the missing region in the 

structure component. This scheme performs better than many other hybrid schemes 

proposed later when the same reconstruction algorithms is applied (e.g. either texture 

synthesis or PDE-based inpainting). 

Many researchers in recent years have adopted the Bertalmio et al. hybrid design 

strategy as a benchmark.  In (Jiying Wu & Qiuqi Ruan 2008) another hybrid image 

inpainting model was proposed that uses a bidirectional diffusion PDE to reconstruct 

the missing regions in the structure components. This PDE restores information 

smoothly and preserves linear structures. At the same time, the missing regions in the 

texture components have been reconstructed by an improved EBI method which is 

constrained by a cross-isophote diffused data term. The inpainted regions in structure 

and texture components are then combined. The results of this novel hybrid model were 

very favourable for both the texture and structure components, and it performs better 

than those in (Bertalmio et al. 2003) for reconstructing small missing regions. 

In an attempt to reconstruct large missing regions, the authors in (Chen 2006) proposed 

a method to recover the structure and texture simultaneously in the missing regions, 

applying  a wavelet decomposition model to the texture and the structure of the image. 
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The wavelet transform is used to decompose the image into high frequency and low-

frequency parts. Subsequently, a Compactly Supported Radial Basis Function (CSRBF) 

(Kojekine et al. 2003) and texture synthesis methods are used to recover the missing 

regions at the low and high-frequency levels, respectively. The results of this method 

have been compared with the results of using the transport method  (Bertalmio et al. 

2000) on natural images, and the outputs of this method outperform those obtained 

using the transport method. 

The authors in (Sangeetha et al. 2011) have proposed yet another hybrid technique to 

recover the large missing areas based on the same idea as in (Bertalmio et al. 2003). The 

image is decomposed into texture and the structure components by the 3rd-optimal PDE 

algorithm which was proposed in (Bertalmio 2006). For recovering the missing regions 

in structure components. The Quick Curvature-Driven Diffusions (QCDD) model 

introduced in (Xu et al. 2008) has been used; the QCDD model is a 3rd-order PDE, 

which is an improved version of the CDD model. The authors have suggested 

improving the exemplar-based inpainting algorithm by using new matching criteria to 

measure patch similarities in order to recover the missing regions in the texture 

components. The inpainted image can be represented by the combination of outputs of 

inpainted texture and structure components. This method was very effective for 

reconstructing large missing regions in the texture and structure components. The 

results of this technique have been compared with some present methods on different 

natural images, which has demonstrated the eligibility of this proposed approach in 

providing high-quality inpainted images. 

The above reviewed hybrid techniques have been shown to be capable of recovering 

rather small missing regions with texture and structure surrounding them, but their less 

than satisfactory dealing with difficult cases such as large missing regions doesn’t seem 

to be due to an ineffective way of splitting texture and structure information but rather 

more to the strategy of simultaneous recovery of texture and structure information in the 

missing regions using the same information propagation method. Our proposed hybrid 

approach attempts to depart from the strategy of using the same inpainting scheme for 

simultaneous/separate recovery of texture and structure information, while we continue 

to use image decomposition methods to analyse the image into its texture and structure 

components. Moreover, our hybrid scheme exploits the improvements achieved in the 

last 3 chapters on both the EBI and PDE-based method. 
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6.2 Hybrid inpainting technique in the spatial domain 

In this section, a new hybrid inpainting technique is proposed that is followed the 

above-established trend in starting with the decomposition of images into texture and 

structure components, to be followed by the selection of possibly different inpainting 

schemes for recovering these two components in the  missing region. Based on our 

adopted TV and PDE models of the image inpainting problem, image decomposition 

schemes are investigated and a geometry- based structure-texture decomposition 

procedure is adopted. In selecting the appropriate texture and structure components for 

recovery, it would be natural to exploit the benefits of using the schemes developed in 

the earlier chapters of this thesis due their established desirable performances compared 

to other schemes. In chapters Chapter 3 and Chapter 4, PDE-based inpainting 

algorithms (using different order PDEs) are developed to recover the texture in missing 

regions, which succeeded in restoring the textures and structures of small missing image 

regions. In the last chapter, the alternative TEBI scheme was developed and tested, but 

its success depended on the presences of patches in the rest of the image that have 

similarities with the region’s boundary blocks. The TEBI highlighted the importance of 

distinguishing between image texture and structure by dealing with them 

simultaneously, whereas the PDE-based schemes do not explicitly take into account this 

distinction in the recovery process. The TEBI performs well in recovering the geometry 

of a missing region but not curved or cross-shaped structures completely. These 

observations necessitate the need for choosing a geometry-compatible texture-structure 

image decomposition 

The next subsection is devoted to the description of the decomposition models of 

interest to our hybrid inpainting. After that, subsection 6.2.2 shows the texture-structure 

components recovery schemes, and outlines fully the steps of our hybrid scheme. 

6.2.1 Image decomposition methods 

In this section, the image decomposition approach is introduced as one of the three key 

ingredients in the hybrid inpainting algorithm. As mentioned earlier, the preference is 

geometric based decomposition schemes. The main ingredient of such image 

decomposition schemes was originally developed in the process of image restoration 

and denoising using total variation minimisation (Rudin et al. 1992), (You & Kaveh 

2000), and (Vese & Osher 2003). Here we note, that denoising is reliant on 

decomposing an image into the unknown clean image and the added noise model. 
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The basic idea of the decomposition model used in this chapter is: 𝐼(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) +

𝑣(𝑥, 𝑦), where 𝐼(𝑥, 𝑦) is the input damaged image, 𝑢(𝑥, 𝑦) is the structural component, 

and 𝑣(𝑥, 𝑦) is the texture component. The end goal of the decomposition method is to 

have a very smooth image 𝑢(𝑥, 𝑦) which preserves all the dominant edges in an image 

but is smooth on interior regions, and an image 𝑣(𝑥, 𝑦) which contains all the texture in 

an image as well as the noise. These images (components) will then be fed into a PDE-

based inpainting method and a TEBI method, respectively. The output of those methods 

can be recombined to obtain the final image. 

In (Rudin et al. 1992), the problem of denoising 𝐼  by taking a minimisation of this 

problem in the space of functions of bounded variation BV(ℛ2).The total variation 

𝑇𝑉 − 𝐿1 model is  

𝑚𝑖𝑛
𝑢∈𝐵𝑉(Ω)

{𝐽𝜆[𝑢] =  ∫ |𝛻𝑢| + 𝜆‖𝑣‖𝐿1
 

 

Ω

, 𝐼 = 𝑢 + 𝑣  }
 

      (6.1) 

where  𝜆 > 0  is a scaling constant. The first part represents a regularising term, to 

remove noise or small details with observance of important features such as sharp edges 

and corners. The energy (a fidelity) term is represented in the second part. The TV 

regularisation model is applied to decompose the image into a structure part and a 

texture part, where the difference between 𝐼  and 𝑢  represents the texture part. The 

minimising model is expressed formally as the Euler-Lagrange equation (6.1): 

{
 

 𝑢 = 𝐼 +
1

𝜆
𝑑𝑖𝑣 (

𝛻𝑢

|𝛻𝑢|
)       𝑖𝑛 𝛺    

𝜕𝑢

𝜕�⃗� 
= 0                         𝑜𝑛 𝜕𝛺.        

       (6.2) 

while the formula of the total variation that defined in TV − L2 model is 

𝑚𝑖𝑛
𝑢∈𝐵𝑉(Ω)

{𝐽𝜆[𝑢] = ∫ |𝛻𝑢|2 + 𝜆‖𝑣‖𝐿2
 

 

Ω

, 𝐼 = 𝑢 + 𝑣  }
 

       (6.3) 

The Euler-Lagrange equation corresponding to (6.3) is: 

{
𝑢 = 𝐼 +

1

2𝜆
𝛻2      𝑖𝑛 𝛺         

𝜕𝑢

𝜕�⃗� 
= 0                  𝑜𝑛 𝜕𝛺.        

      (6.4) 

The finite difference method has been used to apply the model (6.2) with a simple 

Dirichlet boundary condition which will produce a smoothly structured image. More 

information about the numerical application can be found in (Vese & Osher 2003). The 

numerical application of the model (6.4) is similar to model (6.2). 
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In addition, the 4th order model has been used to decompose the image into texture and 

structure components. Originally, this model was proposed in (You & Kaveh 2000) 

again for image de-noising as well as image decomposition, and its performance was 

compared with that of the total variation model.  This model is based on the following 

minimisation equation:  

𝑚𝑖𝑛
𝑢∈𝐵𝑉(Ω)

{𝐽𝜆[𝑢] = ∫𝑓(|𝛻2𝑢|  )𝜕
 

Ω

Ω }
 

        (6.5) 

where 𝛻2denotes the Laplacian operator and𝑓(∙) > 0 and is an increasing function. The 

Euler-Lagrange equation derived from the model (6.5) is 

𝑓′(|𝛻2𝑢| )
𝛻2𝑢

|𝛻2𝑢|
= 0           (6.6) 

The general details of the variational problem and application of the Euler-Lagrange 

equation on the model (6.5) can be found in (You & Kaveh 2000) and (Strobel 1989). 

The following gradient descent procedure has been applied to the model (6.6): 

𝜕𝑢

𝜕𝑡
= 𝑓′(|𝛻2𝑢| )

𝛻2𝑢

|𝛻2𝑢|
          (6.7) 

The finite difference method can be used to solve the model (6.7). This model is 

proposed for the removal of noise and the preservation of edges. The properties of the 

model (6.7) and its numerical solution have been introduced and discussed in (You & 

Kaveh 2000) and (Bertozzi & Bertozzi 1998).  

In order to help with the determination of our preferred texture-structure decomposition 

scheme, the above denoising schemes are implemented. Figure6-1, below, illustrates the 

noise removal process from a colour image by the (6.2) model. Figure 6-2 presents the 

denoised images obtained from the (6.2), (6.4), and (6.7) models. 

 

Figure6-1: Image denoising example. Row (1) original images, row (2) the noise images, row 

(3) denoised images by using model (6.2). 
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(a) (b)

(d)

(c)

(e)  
Figure 6-2: Comparison of three denoising models. (a) Original image, (b) noisy image, (c) 

TV-L1 model, (d) TV-L2  model, and (e) 4th-order model. 

We can observe that the 4th order model has failed to completely remove the noise 

because piecewise planar images have less masking capability than step images. 

Furthermore, the edges have been preserved in the denoised image by the 4th order 

model while TV models tend to generate multiple false edges. 

In the decomposition task, the models (6.2), (6.4) and (6.7) have been studied and used 

to decompose images into texture and structure components. The results of applying 

these models to the original image were smooth structure images, where the original 

image is without noise. On the other hand, the texture image is the difference between 

the original image and the structure image. Figure6-3 illustrates the decomposition of 

the previous image into texture and structure components using the (6.2) model. The 

decomposition of another general image into texture and structure components by the 

(6.2), (6.4), and (6.7) models are shown in Figure6-4.   

 

Figure6-3: Image decomposition example. Row (1) the original images, row (2) the structure 

component images by using model (6.2), row (3) the textured component images. 

(a) Original colour image            (b) Red channel                    (c) Green image                   (d) Blue image

(e) Structure colour image.   (f) Structure red channel       (g) Structure green image     (h) Structure blue image

(i) Texture colour image.        (j) Texture red channel         (k) Texture green image        (l) Texture blue image
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(b2)(b1) (b3)

(c3)(c2)(c1)

(a)

 
Figure6-4: Comparison of three decomposing models: (a) Original image, (b1) and (c1) 

structure and texture components by 𝑇𝑉 − 𝐿1 model, (b2) and (c2) structure and texture 

components by 𝑇𝑉 − 𝐿2 model, and (b3) and (c3) structure and texture components by 4th-order 

model. 

As seen in Figure6-4, the structure component generated by TV − L1 is sharper than that 

by TV − L2(Jiying Wu & Qiuqi Ruan 2008) and 4th order models (You & Kaveh 2000).  

The structure component generated by a 4th order model (6.7) is sharper than that by 

TV − L2 model (You & Kaveh 2000). This means that if the structure component is 

smoother, the texture component will be higher. Therefore, the texture and structure 

components of the image generated by the TV − L1 model (6.2) are a better 

representation than those generated by other models. Therefore, the TV −

L1decomposition model is used to analyse images into texture and structure components 

in the hybrid inpainting technique. 

6.2.2 Inpainting methods for reconstructing the texture and structure 

images 

Having decomposed an image with a missing region (s) into its texture and structure 

components, appropriate inpainting methods which can be used to reconstruct the 

missing region through these components are selected. Naturally, the results of the 

previous chapters in our information recovery of missing regions are exploited. In 

particular, the use of the TEBI and PDE-based inpainting methods to recover the 

missing regions in the texture and structure components, respectively, is tested.  

For example, the topological exemplar-based inpainting method (TEBI described in 

chapter Chapter 5)  is most suitable for use in reconstructing the texture components of 

missing regions, see (Jassim et al. 2018). This choice is also supported by efficiency 

consideration. In contrast, the texture synthesis method inefficiently propagates 

information into the missing region recursively, i.e. pixel by pixel until the entire 

missing region is filled. The optimal combination of these various algorithms will be 
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designed to form our proposed technique which will be used to reconstruct small as well 

as large regions. Besides improving inpainting quality, this method is computationally 

efficient. In the subsequent sections, the merits and shortcomings of this approach are 

discussed.  

The proposed hybrid technique starts by decomposing the image into texture and 

structure components, after which the damaged regions are separately recovered by 

different inpainting methods. The hybrid technique has been used for the simultaneous 

rebuilding of the textures and structures of missing regions in an image, in the spatial 

domain. The ingredients that are used in this technique are the TV model, the TEBI, and 

the PDEs inpainting model. The idea of this approach is to first decompose the image 

into two components which are the texture and structure components by using the TV 

model then rebuilding each one of these components separately by using TEBI, and 

PDEs inpainting methods respectively. Finally, inpainted structure and texture 

components are combined. 

Figure6-5, below, depicts a block diagram of our proposed hybrid inpainting algorithm. 

The image decomposition step is not specified in this diagram, but the proposed scheme 

implements the TV − L1decomposition model, as discussed in section 6.2.1. 

 

Figure6-5: Flowchart Hybrid technique in the spatial domain. 

This technique works with a combination of inpainting algorithms of image structure 

and texture. The steps of the proposed method can be represented as follows: Firstly, 
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read the input image, then mark the region of interest in it. After initialisation, a marked 

image is decomposed into its structure and texture components. Next, inpainting of the 

structure and texture components of the image are carried out by the PDE-based 

inpainting and the TEBI methods, respectively. Two kinds of PDE-inpainting 

techniques (the MES, and the mCH schemes) are proposed for the reconstruction of 

image structures. The texture image component can be efficiently reconstructed via the 

TEBI method. The quality of the results of this hybrid technique will be compared with 

the results of the benchmark Bertalmio technique by using statistical measurements and 

the TDA approach.  

Here we recall that the TEBI method has been used to rebuild missing-regions' textures 

by using the matching criterion described in chapter Chapter 5. In (Jassim et al. 2018), 

we established that this method produces very good texture synthesis results. In  

Figure6-6, we illustrate that the proposed TEBI approach succeeds in reconstructing the 

straight edges and corners, whereas a well-known inpainting algorithm, (Efros & Leung 

1999), results in the appearance of highly visible artefacts. Note that this image shows 

the same relatively small structure repeated periodically, and therefore only the texture 

needs to be repaired because the TEBI method has a good priority function and a strong 

matching criteria that helped to success in recovering the missing regions with highly-

textured surrounding areas. 

(a) (b) (c)  

Figure6-6: Recovering missing texture region. (a) Masked image, (b) and (c) inpainted image 

by using the algorithm (Efros & Leung 1999) and TEBI method, respectively. 

On the other hand, PDE-based inpainting methods are our obvious choice to reconstruct 

the missing regions in highly structure images. The key idea behind these methods is to 

spread the image information from outside of the missing region (i.e. boundary of the 

missing region) to inside it in the direction of minimal change (isophotes). The 

numerical solution of these algorithms creates the propagation of information in the 

direction of isophotes.   

The work in Chapter Chapter 4, shows that high order PDE models provide the best 

way to treat the missing regions in structure images because these models have certain  
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advantages such as the ability to propagate the information into large missing regions 

(i.e. continuity property), and they also smoothly propagate grey-values in gradient 

directions. As we experimentally demonstrated in chapter 4, the performances of high 

order PDEs are better than that of the 2nd order PDE in recovering the missing regions 

in an image. Therefore, two kinds of high order PDE-inpainting methods are used to 

recover the missing regions in the structure image, which are MES (Esedoglu & Shen 

2002) and mCH models (A. L. Bertozzi et al. 2007).  

The next section introduces some examples of using the hybrid technique to recover the 

missing regions in the natural images in the spatial domain. Also, these results will be 

discussed and be compared with the results of the Bertalmio technique.  

6.2.3 Experimental results in the spatial domain 

The hybrid technique is applied to the rebuilding of missing structure and texture 

simultaneously. This approach is implemented on different size regions in several 

images, and MES and mCH models have been used to recover the structure missing 

regions as previously clarified in chapter Chapter 4. The missing texture region is 

recovered by the topological exemplar-based inpainting algorithm, which was 

previously introduced in chapter Chapter 5. 

The process implemented by the hybrid technique is introduced step by step by 

Figure6-7. To check the efficacy of the proposed hybrid technique, some comparisons 

are conducted between it and the single inpainting methods and with the Bertalmio 

technique. Therefore, comparisons between the results of the proposed hybrid technique 

and the results of texture-synthesis and PDE-based inpainting methods are undertaken 

to demonstrate that the combining of two inpainting methods leads to better results than 

a single method in recovering the missing regions in natural images, as seen in the 

Figure6-8 and 6-9. Figure6-7 shows the recovery of the missing regions by the hybrid 

inpainting technique, using again the decomposition steps as in Figure6-4 to recover 

each component in the missing region. 
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(d) (e)

(c)(a) (b)

(f)  
Figure6-7: Hybrid inpainting process. (a) Masked image, (b) and (c) masked texture and 

structure images, respectively, (e) and (f) inpainted texture and structure image, respectively, (d) 

combining inpainted texture and structure images, 

Also, Figure6-8 illustrates the comparison between the proposed hybrid technique and 

three kinds of PDE-based inpainting methods used to recover the missing regions in the 

image; transport, MES and mCH models. 

(a) (b) (c)

(d) (e)  
Figure6-8: Recovering the missing region using the hybrid technique. (a) Masked image, (b) (c), 

(d), and (e) inpainted image by our proposed hybrid approach, transport, MES and mCH PDE 

methods, respectively. 

 

Figure6-9 shows examples of object removal and the results of the proposed hybrid 

technique with texture synthesis and transport methods. 

(e)

(c)(a)

(d)

(b)
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Figure6-9: Object removal by hybrid technique. (a) Original image, (b) masked image, (c), (d), 

and (e) inpainted image by PDE (Bertalmio et al. 2000), Texture-synthesis method (Efros & 

Leung 1999), and proposed hybrid technique, respectively. 

Finally, Figure6-10 introduces the examples of object removal and for comparison the 

results of the proposed hybrid technique with the Bertalmio technique. 

(c)(b)

(a) (d)(c)(b)  
Figure6-10: Comparison of the proposed hybrid technique with the Bertalmio technique. (a) 

Original images, (b), (c), and (d) inpainted image by Bertalmio technique, proposed hybrid 

technique with MES method for structure image, and the proposed hybrid technique with mCH 

method for structure image, respectively. 

The output of the hybrid technique, in the above examples, has outperformed the texture 

synthesis and PDE-inpainting methods. Visually, its results are more acceptable than 

those of single methods, which are texture synthesis and PDE-based inpainting methods. 

The TEBI method has been applied to the reconstruction of the information in the 

texture images; and also the propagation of information block by block. This means the 

propagation of information into the missing region by using the TEBI method, which is 

faster in this context than the texture synthesis method. The MES and mCH methods 

have qualitatively outperformed the transport method, as seen in Figure6-8 and 6-9.  

The second comparison is made between the results of the proposed hybrid technique 

and the results of the original hybrid technique of Bertalmio et al. scheme. The 

proposed hybrid technique has been applied to recover the missing regions by using the 

MES method and mCH methods to recover the missing regions in the structure images. 
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Figure6-10, below, displays the results of the proposed hybrid technique and the 

original hybrid technique. Large missing regions have been recovered in different 

texture and structure images; the high order PDE methods have been applied to recover 

large missing regions in the structure images. The TEBI method has successfully 

reconstructed the large missing regions in the texture images. Therefore, the proposed 

hybrid technique when using the mCH method to recover the missing region in a 

structure image visually outperformed both the original hybrid technique and the 

proposed hybrid technique when using the MES method for the same task. Eventually, 

the results of the proposed hybrid technique in both cases turn out to be better than the 

results of the original hybrid technique. The task of assessing image inpainting quality 

will be studied and discussed after the discussion of the implementation of the proposed 

hybrid technique in the frequency domain. 

As we mentioned in chapter Chapter 4, the image in the frequency domain has been 

analysed into non-textured and textured image components (i.e. low-frequency 

coefficients and high-frequency coefficients), and the size of a missing region will be 

reduced, which has a very favourable effect on the application of PDE algorithms. 

Therefore, the next section studies the hybrid technique in the frequency domain, and 

the application of this technique on a set of images, and the results will be compared 

with those obtained by applying the same technique in the spatial domain.  

6.3 Hybrid inpainting technique in the frequency domain 

Wavelet filter banks provide well-established tools for multi-resolution decomposition 

of images; the low-frequency response components capture coarser features (i.e. 

structure) while the higher-frequency response components capture image features at 

finer scales (i.e. texture). This fact motivates the development of a hybrid inpainting 

algorithm for digital reconstruction based on the combination of wavelet 

decompositions. The proposed hybrid algorithm will also use a PDE-based inpainting 

algorithm to recover missing coefficients in the low-frequency sub-band, and for texture 

recovery, TEBI methods will be used to recover missing coefficients in the high-

frequency sub-band.  

Tin the hybrid technique, the wavelet transform is used to decompose the image into 

low- and high-frequency sub-bands.. The steps of the technique are as follows: 

1. Step 1. The region of the original image to be inpainted is marked manually by 

the user.  
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2. Step 2. The masked image is decomposed into non-texture and texture images 

(i.e. the low and high-frequency components) by using the Haar wavelet 

transform. 

3. Step 3. The damaged region in the non-texture image (i.e. low-frequency sub-

band) is reconstructed by using the PDE-based inpainting method. 

4. Step 4. The intensity values of the damaged regions in texture images (i.e. high-

frequency sub-bands) are recovered by the TEBI method. 

5. Step 5. The inverse wavelet transform is used to convert these images (i.e. four 

sub-bands) to one image (which is called the inpainted image). 

As described in the last section, the first step of the spatial domain hybrid technique 

decomposes the image into a non-texture image and a texture image. However, the 

standard wavelet image decomposition by filtering to depth 1, produces one non-texture 

image and three texture images. Hence, this proposed frequency-domain hybrid scheme 

uses PDE-based inpainting method to recover the missing region in the non-texture 

image and EBI method will be applied to reconstruct the missing region in each of the 3 

texture images. Finally, the wavelet transform will be inverted in the usual way.  

At a k-level depth wavelet decomposition there would be 1 non-texture image but 3k 

texture images at different scales. For the sake of understanding the impact of the 

transform depth, the wavelet-based hybrid scheme is applied to natural images in two 

scenarios, referred to as the 2nd and 3rd-level wavelet domains. In the first scenario, the 

PDE-based inpainting method has been applied to reconstruct the missing region in the 

non-texture image (i.e. low-frequency sub-band) in the second level of wavelet 

decomposition, and TEBI method has been used to recover the missing information in 

the six other texture images (i.e. six high-frequency sub-bands). In the second scenario, 

the PDE-based inpainting method has been applied to recover the missing region in the 

non-texture image (i.e. low-frequency sub-band) in the 3rd level wavelet domain, and 

TEBI method has been used to reconstruct the missing information in the nine texture 

images (i.e. nine high-frequency sub-bands).  

Two kinds of high order PDE inpainting methods have been applied to reconstitute the 

missing region in the non-texture image (i.e. low-frequency (approximation) sub-band) 

which are MES and mCH methods. The TEBI inpainting method has been used to 

recover the missing regions in the LH3, HL3, and HH3 images in the 3rd level and then 

the same three procedures were applied to recover the missing regions in the LH1, LH2, 
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HL1, HL2, HH1, and HH2 images. The aim for each method in practice is to follow the 

same priority in choosing the block which is to be filled and the same similarity block 

that is determined from the rest of the image (the same steps as are used to recover the 

missing regions).  

Therefore, if the size of the block that is used to recover the missing region in LH3, 

HL3, and HH3 images is 3×3, then the size of the block that is used to recover the 

missing region in LH2, HL2, and HH2 images is 6×6, while the size of the block that is 

used to recover the missing region in LH1, HL1, and HH1 images is 12×12, as seen in 

Figure6-11.  

 

Figure6-11: The representative value of the wavelet transform for 1𝑠𝑡 , 2𝑛𝑑 and 3𝑟𝑑 levels. 

Through the implementation of the hybrid technique in the frequency domain, we found 

that inverting the wavelet transform back to the spatial domain the accuracy of image 

reconstruction depends on the size of the image. For instance, the size of the image is 

150 × 150 for 1st level, the size of each sub-band is 75 × 75, while the size of each 

sub-band is 38 × 38  in the 2nd level. Then when using the inverse of the wavelet 

transform to return the image to the spatial domain, the size of the image will increase 

and will be 151 × 151, and that will affect the accuracy of the image. Therefore, to 

overcome the problem, we need to use images of 2𝑛 × 2𝑛 before to convert the image to 

the frequency domain. 

In practice, the wavelet inverse transforms process influences the edges of objects in the 

image because the size of sub-bands needs to be resized as it converts from the 3rd level 

to the second level. Therefore, the damaged images have been cropped to be 2  𝑛 such 

as  2  9 = 512 , the size of the image being  512 × 512 , or the  2  8 = 256 , the size 

being 256 × 256. The cropping task has been treated the effects of resizing on the 

edges of objects in the images, and the new size of the image means that the image 

doesn't need to be resized when it's converting from 3rd to second and from 2nd to the 1st 
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level. Figure6-12 presents the effects of resizing on the sub-bands before converting 

from 3rd to second and second to the first level after recovering the missing regions.  

(b) (c)

(e) (f)

(a)

(d)  
 

Figure6-12: Hybrid-Based Inpainting technique in the 2nd and 3rd level wavelet domains. (a) 

Original image. (d) masked image, (b) and (c) inpainted images in the 2nd and 3rd level wavelet 

domains with using resize for sub-bands, respectively, (e) and (f) inpainted images in the 2nd and 

3rd level wavelet domains with using cropping the image in before reconstructing the missing 

regions, respectively. 

The image cropping task helps to solve the effect of the resizing of the sub-bands when 

trying to convert the image from 3rd to 2nd level, or from 2nd to 1st level. The effect of 

resizing the image when converting from 3rd to the 2nd level will be more apparent than 

that from converting from the 2nd to the 1st level. The image cropping process has been 

done in two ways; either cropping whole the borders of the image even get the size 2𝑛 ×

2𝑛, or cropping the size 2𝑛 × 2𝑛 from left to right, then using the hybrid technique to 

recover the missing region and after that restoring its original size then do cropping 

again but this time from right to left, and the same thing from up to down, or down to up. 

This means the missing region in each cropped piece from the image will be recovered 

because the hybrid technique has been applied to each cropped piece of the image. The 

second cropping process has been followed to recover all the missing regions in the 

image. 

The steps of this technique in several instances are illustrated in Figure6-13 which 

shows the same image as recovered by the PDE algorithm described in Section 4.6. The 

hybrid technique is used to recover the missing regions in the 2nd and 3rd level wavelet 

domains. The MES method has been applied to recover the missing regions in the non-

texture images (i.e. low-frequency sub-band domain). The results are better than those 

obtained using PDE inpainting models as shown in Figure 4-16 because the texture has 

been recovered by the TEBI method while the missing regions in high sub bands are 
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estimated zero value in Figure4-13.  This is only a typical example of natural images, 

demonstrating that using one inpainting algorithm for both structure and texture 

components is less effective than our wavelet-based hybrid scheme that treats the high-

frequency sub-band image differently from the structure image modelled by the low-

frequency sub-band.     

(b) (c)(a)  
Figure6-13: Inpainting based-hybrid technique in 2nd and 3rd level wavelet domains. (a) Masked 

image, (b) and (c) inpainted images using hybrid technique in the 2nd and 3rd level wavelet 

domains, respectively.  

To deeply study the efficacies of hybrid inpainting techniques in the spatial and 

frequency domains, the set of natural images is used, as described in 3.6.1. Statistical 

and TDA quality measures have been used to evaluate and compare the results obtained 

by using these techniques in each domain. The experimental results of will be presented 

next. 

6.4 Performance of the hybrid scheme in terms of Image Quality 

This section studies the quality of the inpainting of images which have been recovered 

using the various proposed hybrid techniques. In general, hybrid techniques are 

expected to produce better quality images than the single methods. Therefore, the 

effectiveness of the hybrid inpainting techniques are compared in both the spatial and 

frequency domains, by measuring the quality of their output images using a variety of 

quality measures. Statistical measurements and the TDA approach are used to check and 

estimate the quality of the image inpainting. The results of the proposed hybrid 

technique are also compared to the results of the Bertalmio technique, in both the spatial 

and frequency domains. The next subsection will show the evolution of image quality 

according to statistical measurements on natural images databases. 

6.4.1 Statistical image quality measures 

The experiments on the natural images have been conducted, and the results in both the 

spatial and frequency domains are reported. The MSE, PSNR, and SSIM have been 

used to quantify the qualities of inpainted images in both the spatial and frequency 

domains. The results of two kinds of hybrid techniques have been checked and 
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compared with the results of the Bertalmio and TEBI techniques described in 

(Bertalmio et al. 2003) and (Jassim et al. 2018), respectively. This subsection clarifies 

and presents these groups of experiments and their results in both the frequency and 

spatial domains. 

The experiments have been conducted to measure and the compare image quality in the 

inpainted images with respect to the original images in the spatial and frequency 

domains, using MSE, PSNR, SSIM and entropy quality measures. The test images were 

inpainted using three kinds of hybrid techniques and TEBI method. The original images 

of the Berkeley database were used as the reference by which to measure the quality of 

inpainted images; this database has been introduced in chapter Chapter 4. In this section, 

five experiments have been applied to 80 images of this data set. The aim of these 

experiments is to study the effect of combining two methods on the reconstruction of 

the missing regions of different sizes and with high texture and structure around them in 

the natural images and to study the performance of the proposed techniques in 

reconstructing these missing regions. The steps as presented in chapter Chapter 4 are 

followed to create the inpainting mask. Five cases of inpainting masks have been used 

to study the efficacy of the hybrid technique and to compare it with the Bertalmio and 

TEBI techniques, respectively. The mask images have been chosen based on the size of 

the missing regions and quantity of texture in the surrounding areas of the missing 

regions; the first three masks (Case1, Case2, Case3) represent the different sizes of 

missing regions at different positions in the images. The other mask images represent 

two missing blocks at different positions in the images (Case4, Case5). These images 

have been selected based on the complex texture and structure which that help to check 

the efficacy of hybrid inpainting methods in recovering separately texture and structure 

in small missing regions.  

Figure 6-14 shows five cases of inpainting mask (i.e. inpainting domain) which 

represents five damaged regions in images which have been applied on 80 images from 

the Berkeley database in spatial and frequency domain to study the efficiency of these 

hybrid techniques.  



Chapter 6: Novel Hybrid Image Inpainting Technique   
 

 202  
 

Damaged image Case1 Damaged image Case5Damaged image Case2 Damaged image Case4Damaged image Case3  

Figure 6-14: The same natural image with five different inpainting domains. 

The proposed hybrid techniques are used to reconstruct missing regions in natural 

images; the MES method is applied to reconstruct missing areas in the structure image 

as part of the method referred to hybrid 1, while the hybrid scheme that uses mCH 

method for recovering the missing structure regions is called hybrid 2. The objective of 

the two inpainting domains (i.e. Case1, and Case2) is to evaluate the performance of the 

hybrid techniques by reconstructing the texture in small missing regions. The objective 

of the other inpainting domains (i.e. Case3, Case4 and Case5) is to check the ability of 

the hybrid technique to recover the large missing regions with texture in the surrounding 

areas of them. The performance of the hybrid scheme is assessed both qualitatively and 

quantitatively. The qualitative assessment subjectively reviews the inpainted images 

visual quality, but as before the quantitative evaluation is based on statistical and TDA 

measures. Figure 6-15 and 6-16 show the results of recovering the damaged regions for 

some typical natural images in the spatial domain. The achieved image quality, 

presented here is typical of most tested images.  

(c)

(e)(d)

(a)

(f)

(b)

 
Figure6-15: Recovering missing regions in the spatial domain. (a) Original image, (b) masked 

image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and Proposed 

Hybrid 2 methods, respectively. 
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(f)

(a)

(e)

(c)

(d)

(b)

 
Figure6-16: Recovering missing regions in the spatial domain. (a) Original image, (b) masked 

image, (c, d, e, f) inpainted images using Bertalmio, TEBI, proposed Hybrid 1 and proposed 

Hybrid 2 methods, respectively. 

Figure6-17 and 6-18 illustrate the results of reconstructing the damaged regions in 

natural images in the frequency domain. 

(d)

(c)(a) (b)

(f)(e)  
Figure6-17: Recovering missing regions in the frequency domain. (a) Original image, (b) 

masked image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and 

Proposed Hybrid 2 methods, respectively. 

(b) (c)

(e) (f)(d)

(a)

 
Figure6-18: Recovering missing regions in the frequency domain. (a) Original image, (b) 

masked image, (c, d, e, f) inpainted images using Bertalmio, TEBI, Proposed Hybrid 1 and 

Proposed Hybrid 2 methods, respectively. 
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To get a comprehensive quantitative inpainted image quality, the qualities of inpainted 

images by various schemes are checked. The SSIM, PSNR and MSE have been 

calculated only between the inpainted regions and the corresponding regions in the 

original images in both domains (cf. Section 2.6.1). Table 6-1 and 6-2 summarize the 

comparison of the qualities of inpainting hybrid techniques in the spatial and frequency 

domain respectively; the times taken to get the results using these techniques are also 

shown. 

C# Equations MSE PSNR SSIM Entropy T(s) 

C
as

e1
 Bertalmio method 1499.223 18.66756 0.986235 0.395273 506 

TEBI method 793.3923 21.15446 0.986612 0.394516 90 

Proposed Hybrid 1 1244.128 18.70744 0.986409 0.388296 130 

Proposed Hybrid 2 1113.426 19.92023 0.986666 0.380634 150 

C
as

e2
 Bertalmio method 311.1367 24.81957 0.993912 0.346964 450 

TEBI method 193.6683 27.19607 0.995629 0.349171 78 

Proposed Hybrid 1 290.4463 25.24197 0.993989 0.336341 120 

Proposed Hybrid 2 248.5659 26.32689 0.995164 0.320051 134 

C
as

e3
 Bertalmio method 974.6182 20.18458 0.954591 1.271754 680 

TEBI method  652.3106 22.02176 0.955993 1.266625 110 

Proposed Hybrid 1 829.3944 19.73906 0.954471 1.240264 145 

Proposed Hybrid 2 753.6958 20.81098 0.955591 1.238316 167 

C
as

e4
 Bertalmio method 678.9732 21.01168 0.965138 1.139665 986 

TEBI method  401.5857 24.10073 0.965989 1.138165 187 

Proposed Hybrid 1 492.4136 22.71132 0.968253 1.122888 265 

Proposed Hybrid 2 476.2108 22.85803 0.968555 1.120781 289 

C
as

e5
 Bertalmio method 856.9898 19.57195 0.928726 1.957309 957 

TEBI method  453.1367 23.33227 0.930119 1.947071 194 

Proposed Hybrid 1 566.7113 21.86056 0.937431 1.915651 259 

Proposed Hybrid 2 529.5586 22.12666 0.937918 1.928869 249 

Table 6-1: The average values of MSE, PSNR and SSIM are shown for image inpainting using 

Bertalmio, TEBI techniques and our proposed hybrid techniques in the spatial domain. 
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C# Equations MSE PSNR SSIM Entropy T(s) 

C
as

e1
 Bertalmio method 1066.283 20.56447 0.988515 0.395273 232 

TEBI method  894.4014 20.83924 0.987874 0.379203 65 

Proposed Hybrid 1 961.7229 20.43006 0.986235 0.378938 92 

Proposed Hybrid 2 920.8161 20.60669 0.988744 0.385993 114 

C
as

e2
 Bertalmio method 343.5751 24.78881 0.994658 0.350051 253 

TEBI method 307.3867 24.85707 0.993911 0.345554 51 

Proposed Hybrid 1 316.5131 24.94827 0.994838 0.290051 89 

Proposed Hybrid 2 312.1997 25.25388 0.994994 0.345115 97 

C
as

e3
 Bertalmio method 1209.187 20.20774 0.963136 1.271754 356 

TEBI method  831.9352 20.71266 0.962888 1.249958 93 

Proposed Hybrid 1 1122.919 20.37882 0.961024 1.221049 111 

Proposed Hybrid 2 924.6182 20.43458 0.954591 1.220746 129 

C
as

e4
 Bertalmio method 657.7232 21.08668 0.965188 1.139665 487 

TEBI method 493.9757 22.76874 0.975935 1.119615 110 

Proposed Hybrid 1 568.8276 22.20677 0.975448 1.113111 148 

Proposed Hybrid 2 526.6572 22.55822 0.976358 1.113351 152 

C
as

e5
 Bertalmio method 838.2398 19.67195 0.928726 1.957309 466 

TEBI method  566.0581 21.85964 0.949031 1.920873 123 

Proposed Hybrid 1 698.0841 21.17582 0.947483 1.908716 156 

Proposed Hybrid 2 656.9365 21.46956 0.949809 1.906103 161 

Table 6-2: The average values of MSE, PSNR and SSIM are shown for image inpainting using 

Bertalmio, TEBI techniques and our proposed hybrid techniques in the frequency domain. 

6.4.1.1 Results analysis 

In this section, the performance of hybrid techniques is analysed based on statistical 

results for inpainted regions in the natural images. The results of these techniques have 

been evaluated qualitatively and quantitatively. The qualitative evaluation shows a good 

reconstruction of the texture in Figure6-15 and 6-16. When the PDE-inpainting methods 

is used to recover the missing regions in the structure component, a problem with edges 

of the missing regions is detected where the colours will be overlapping on the edges of 

objects, and this will produce a blur on the edges of objects in the image. The inpainted 

images created by using the proposed hybrid techniques in Figure6-17 are visually 

closer to the original images than the inpainted images created by the TEBI technique. 

On the other hand, the inpainted images obtained by using the proposed technique could 

not outperform those inpainted by TEBI. Also, we found inpainted images created in the 

wavelet domain in, shown in Figure6-17 and 6-18 to be visually identical to those 

created in the spatial domain.  

Lastly, the hybrid technique performs well when there are regions similar to the missing 

region because of the TBEI process, for more information about TBEI method, we refer 

the reader to chapter Chapter 5. In addition, the hybrid technique performs well when 

the missing region is small and has a complex texture around it along with structure. 
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The performance of the hybrid technique in recovering large missing regions are 

illustrated in Figure6-10.  Experimental testing shows that visually acceptable images 

may have different image qualities by numerical measures. The efficacy of these 

techniques in recovering small missing regions has been studied by using the first two 

masks on the set of natural images. Their abilities to recover large missing regions with 

high texture and structure have also studied by applying Case3, Case4, and Case5 on the 

set of images; this is the challenge for these techniques because of the performance of 

PDE-inpainting methods in recovering the missing structure regions. 

In summary, the proposed hybrid techniques and the Bertalmio and TEBI techniques 

have successfully recovered the small missing regions in the natural images, while these 

techniques have reconstructed the large missing regions with some limitations about the 

size of the missing region and the quantity of the texture in the surrounding of missing 

regions. Also, when missing regions contain objects which don't have similarity in the 

rest of the image, this will have an effect on the reconstructing process. During the 

testing, it was found that while some images could look visually pleasing and similar, 

they have different PSNR values in both domains. The hybrid 2 technique outperforms 

the hybrid 1 technique. However, both proposed hybrid techniques have succeeded in 

removing texts, scratches and large spurious objects in images in both domains. 

Moreover, in both domains the values of MSE, and PSNR obtained using the proposed 

hybrid techniques are better than those obtained using Bertalmio technique in four cases. 

While the TEBI technique performs better than hybrid 1 in case3 in the spatial domain 

and case1 in the frequency domain. In addition, the results obtained using the TEBI 

technique are better than those of proposed hybrid techniques.  

On the other hand, the values of SSIM obtained using proposed techniques are better 

than those obtained using other techniques in 3 cases in the spatial domain and 4 cases 

in the frequency domain, while the TEBI technique performs better than other 

techniques in case2 and case3 in the spatial domain and case3 in the frequency domain. 

In most inpainting cases, the proposed hybrid technique outperformed other techniques 

in recovering the geometry of the image. In addition, the values of entropy obtained 

using proposed techniques are better than those obtained using other techniques in all 

cases in both domains. That means the hybrid techniques are capable of effective region 

filling and give relatively high PSNR values with low MSE values, and SSIM values are 
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close to 1 with the entropy value is less in the most of all inpainting cases, as shown in 

Table 6-1 and 6-2. 

On the other hand, the proposed hybrid techniques require less time to reconstruct the 

missing regions in natural images than the Bertalmio technique because of their TEBI 

technique that use blocks to recover the missing regions in texture images. Whereas, the 

TEBI technique takes less time to reconstruct the missing regions in natural images than 

the proposed hybrid techniques. Also, the MSE, PSNR, SSIM and entropy measures 

resulting from these algorithms in the spatial domain are a little better than those 

obtained by using frequency-domain algorithms, while the computation time needed to 

recover the missing regions is less in the frequency domain than in the spatial domain, 

because the size of the damaged region in the frequency domain is smaller than its size 

in the spatial domain, and also it does not use any decomposition method to analyse the 

image, but it instead uses the wavelet transform to analyse the image into high and low-

frequencies components. However, the proposed techniques take more time due to the 

amount of calculation in the spatial and frequency domain. 

 Other quality measurement which is TDA approach will be used to compare the 

proposed hybrid technique with Bertalmio and TEBI techniques in the next section.  

6.4.2 Topological Data Analysis for image quality 

As explained in Section 2.6.2, the TDA approach has been proposed to evaluate the 

quality of image inpainting. Therefore, the TDA approach has been applied to study the 

results of hybrid techniques, and it is also applied on natural image datasets. To get 

better results of image inpainting quality, this approach has been applied to study only 

the inpainted regions in the images, this means, the number of CCs has only been 

calculated in the inpainted regions and the corresponding original regions, where the 

number of CCs in the other parts of the inpainted image and the original image are the 

same. The same steps are followed in the construct of the Vietoris-Rips complex which 

was introduced in Section 2.6.2.2.  

We have studied 7 ULBP geometries at different thresholds T=0, T=5, T=10, T=15, for 

the inpainted images of the above experiments. We found the geometries G2, G4, and 

G6 at threshold T=10 giving a good description to proposed hybrid techniques in all 

five cases of damaged images because the c give the best descriptors of the texture in 

the images.  
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Figure6-19 shows the average number of CCs of inpainted regions as obtained from the 

proposed hybrid techniques and Bertalmio and TEBI techniques for five damaged 

regions from the natural image dataset in the both spatial and frequency domains. The 

Geometry G6 at threshold T=10 is shown below. 

 

 

Figure6-19: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G6 at threshold T=10 for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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The numbers of CCs in the other geometries at threshold T=10 are not robustly 

determined, we sometimes found the numbers of CCs in inpainted regions created by 

using Bertalmio technique and hybrid 1to be close to those seen original regions of 

natural images. So that means these geometries at threshold T=10 do not describe well 

of the image quality assessment of these inpainting algorithms, as seen in the below 

Figure6-20 which illustrate the number of CCs in the geometry G5 at threshold T=10. 

 

Figure6-20: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G5 at threshold T=10 for 5 inpainting cases of natural images Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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6.4.2.1 Results analysis 

The TDA approach has been used to assess the results of the five inpainting domains in 

both spatial and frequency domains obtained by using the proposed hybrid techniques 

and TEBI. The TDA approach has been applied to the inpainted regions and 

corresponding original regions in the natural in seven geometries at different thresholds. 

In both spatial and frequency domains, the number of CCs in the inpainted areas that 

recovered by the proposed hybrid techniques close to the number of CCs in the original 

areas than Bertalmio method in the geometries G2, G4, and G6 at threshold T=10 in the 

natural images. The geometries G2, G4 and G6 describe the corners, edges and the end 

lines in the natural images (Ojala et al. 2002). This means the proposed methods have 

been succeeded to reconstruct each of the corners, edges and the line ends in the missing 

regions because of the patterns that described in the geometries G2, G4, and G6 at 

threshold T=10. 

However, the numbers of CCs of inpainted regions which obtained by using TEBI 

technique is closer to those occurring in the corresponding original regions than those 

obtained using the hybrid 1, hybrid 2 techniques and the Bertalmio technique, in the 

both of spatial and frequency domains. Also, the numbers of CCs of the inpainted areas 

obtained by using hybrid techniques in the spatial domain are little closer to the 

numbers of CCs of original areas in comparison with frequency domain, as described in 

Figure6-19.  

For other geometries, the number of CCs is wobbling in the inpainted regions, as seen in 

Figure6-20, which shows the numbers of CCs in geometry G5. In all these types of 

hybrid techniques, the numbers of CCs of the inpainted areas in the spatial domain are 

closer to those observed in the original areas than in the frequency domain. Therefore, 

the best descriptor for image quality based on the number of CCs of the results obtained 

by using these methods, where the best image inpainted quality is TEBI method then 

hybrid 2 then hybrid 1 and the lastly Bertalmio method for all rotations in the 

geometries G2, G4 and G6. The results of geometries G1, G2, G3, G4, and G7 at 

threshold T=10 which are given in Appendix C. 

Finally, the TDA approach has been successful for to the study and checking of the 

qualities of image inpainting because this it involves a very sensitive process which 

enables the study of the inpainted region at seven geometries and each geometry has 

eight rotations which means that it will cover all the inpainted regions. 
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6.5 Summary and Conclusion 

This chapter introduced the improvement of the Bertalmio technique by using three 

different methods which permit the reconstruction of textures and structures in the 

missing regions simultaneously. Furthermore, two kinds of hybrid techniques are 

proposed. Each one of them uses a combination of image decomposition with PDE-

based inpainting and TEBI methods. Three kinds of decomposition methods have been 

studied to decompose the image into texture and structure components; the total 

variations in L1, L2and 4th order PDEs. The texture component obtained by using total 

variation in L1is sharper than the one obtained by using the other two methods. On the 

other hand, the TEBI method has been used to recover the missing region in the texture 

component. The results of this method show that it outperforms the texture-synthesis 

method described in (Efros & Leung 1999) in addition to consuming less computational 

time. 

The last step is the high order PDE-based inpainting which has been successfully used 

to recover the missing regions in the structure component. All in all, the proposed 

hybrid technique has been applied to recover texture and structure information in the 

missing regions in both the spatial and frequency domains. Furthermore, the proposed 

hybrid technique has been used to recover the information in the frequency domain by 

using the wavelet transform as a decomposition method to analyse the image into high 

and low-frequency sub-bands (i.e. structure and texture components). The TEBI and 

PDE methods have been applied to recover the missing regions in the low and high-

frequency sub-bands in the 2nd and 3rd level.  

The hybrid technique is used in two ways: 1) recovering missing regions and 2) 

removing unwanted objects r, as in Figure6-7, 6-8 and 6-10. The hybrid image 

inpainting technique provides better visual quality results compared to other single 

methods, as shown in Figure6-7 and 6-9. These techniques have been tested 

experimentally by applying them to five different inpainting domains (i.e. damaged 

regions) by using natural image datasets in both spatial and frequency domains. The 

quality of inpainted images has been evaluated by statistical measurements. The 

experimental results of the proposed hybrid techniques have been compared with the 

results obtained using the Bertalmio and TEBI techniques. The results of the proposed 

hybrid technique outperform the results obtained by using Bertalmio technique. 

However, the results obtained by using TEBI technique are more efficient than those 

obtained by using the proposed hybrid technique. The TDA approach has been proposed 
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to study the quality of image inpainting, and it is more successful in this application 

than statistical measurements. The overall execution time of the proposed technique is 

about 3–5 minutes without any improvements in its speed. Most of the computing time 

is consumed by the execution of the PDE method which includes a high number of 

iterations used to recover the missing region. As explained before, the hybrid technique 

is a combination of three main components, each of them includes several methods. 

Furthermore, finding the best combination among the available methods is still an open 

task. In the future, many experiments should be conducted in order to accomplish this. 

To conclude, the hybrid and TEBI techniques have successfully reconstructed the 

texture and structure simultaneously in the missing regions in the natural images. 

Nevertheless, these techniques still have drawbacks in reconstructing large missing 

regions in the natural images. Therefore, to address this issue, the next chapter 

introduces a novel additional step to our inpainting technique to be based on the 

interesting concept of seam carving. 
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Chapter 7 INPAINTING LARGE MISSING 

REGIONS BASED ON SEAM CARVING 

In the last 5 chapters of this thesis, are reviewed, modified, developed and conducted 

extensive comparative testing of the performances of a variety of partial/total inpainting 

approaches to restore missing image data. The common strategy in all schemes is that of 

information propagation from the missing region's neighbouring areas, pixel by pixel, to 

fill in the missing texture and structure information. The main existing and developed 

schemes are modelled on numerical solutions of different order partial differential 

equations based inpainting (PDE-BI), a variety of exemplar-based inpainting (EBI), and 

also hybrids of these models. Overall, the various tests show very promising results and 

lead to achieving the desired effects in most cases especially when dealing with 

relatively small missing regions. This chapter investigates the challenge of inpainting 

relatively large missing image areas and develops an innovative approach that exploits 

the benefits of the recently developed Seam Carving concept to reduce the investigated 

challenge to that of inpainting “relatively small” missing areas problem. We shall 

demonstrate empirically the success of this innovative reductionist approach.   

The rest of this chapter is organised as follows: The challenge and review existing 

approaches are introduced to the inpainting of large missing regions in section 7.1. The 

concept of the seam-carving operator is presented and explained in section 7.2. The 

reductionist seam-carving technique is introduced in section 7.3. The effect of different 

levels of seam carving on the inpainting challenge will be analysed in section 7.4, while 

in section 7.5 the inpainted image qualities are evaluated for various levels of seam 

carving. Finally, the conclusions and future directions are presented in section 7.6. 

7.1 Inpainting relatively large missing regions - Introduction 

The literature review that was conducted on image inpainting and the research work 

carried out in this thesis have shown that there are various viable single-approach based 

and hybrid models to solve this problem and that each has its own complexity, 

advantages and limitations as well as requirements. The common strategy in all schemes 

is the iterative propagation of information into the missing region either using numerical 
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solution of PDE’s with certain boundary conditions or using exemplar blocks in the rest 

of the image (or even from other images) that have “similarities” with border blocks. 

Naturally, both approaches are subject to error propagation which can have adverse 

effects on the quality of inpainted images which become more apparent with the large 

missing regions. This is more obvious in the case of PDE-BI, but provides partial 

explanation of how this limitation also affects the EBI based inpainting schemes that 

was designed for the task of recovering large missing regions, (e.g. see Criminisi et al 

(Criminisi et al. 2004)). It is worth noting that the larger the ratio of missing region size 

to the overall image size the less chances are there to find good exemplar patches. The 

various attempts that we made to improve the performance of developed schemes have 

led to noticeable improvements but with very limited success in inpainting large 

missing regions. These schemes include the TEBI, the higher order PDEs and hybrid 

schemes, which were successful in reducing the effect of error propagation and in 

recovering edges and corners but could not recover large missing regions especially 

when the surrounding areas have a rich texture. 

The image inpainting problem remains an active area of research and remains 

challenging in recovering large missing regions. There are several image inpainting 

approaches for recovering large missing regions which have been improved in recent 

years; they are roughly classified into two main types: non-Exemplar Based Inpainting 

(nEBI) and EBI methods.  

The first type, nEBI methods uses Partial Differential Equations (PDE) to propagate the 

information from the surrounding (or neighbouring areas of the missing region) to the 

missing region. The PDE based inpainting methods have been used to recover small 

missing regions such as cracks, dates, texts, advertising signs, or to remove small 

unwanted areas, as in (Bertalmio et al. 2000), (Chan & Shen 2002), (T. Chan and J.Shen 

2001), (Wei Guo & Li-Hong Qiao 2007),  (Bertalmio 2006), and (Esedoglu & Shen 

2002). These methods have limitations in reconstructing large missing regions with high 

texture in the surrounding areas (i.e. the size of missing regions more than 25%). 

Secondly, the EBI method proposes the idea of using a patch-based-exemplar method, 

with which textures and structures are simultaneously reconstructed in the missing 

region. This task depends mainly on the choice of filling order; an optimal choice will 

ensure that linear structures will be propagated before texture filling so that the 

connectivity and continuity of object boundaries will be preserved, for which some 
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improvements have been proposed, as introduced in (Sharma & Mehta 2013), (Cheng et 

al. 2005), (Desai 2012), (Anupam et al. 2010), (Hesabi & Mahdavi-Amiri 2012), 

(Sangeeth et al. 2011), (Waykule & Patil 2012), (Zongben Xu & Jian Sun 2010), 

(Abdollahifard & Kalantari 2016), (Deng et al. 2015), and (Jassim et al. 2018). These 

methods have limitations with reconstructing large missing regions with high texture 

surrounding areas. 

The size of the missing region affects the performances of inpainting methods, and both 

the nEBI and EBI methods do not perform a well in recovering large missing regions. 

Therefore, in this chapter, a novel inpainting technique for recovering large missing 

regions is introduced. 

In the literature of inpainting techniques for large missing regions, there are few 

publications that report significant success in recovering large missing regions but are 

targeting narrow types of applications that use range images. Pixels in any segmented 

region have similar range, and depth discontinuities coincide with intensity edges. 

Torres et al. in (Torres-Méndez & Dudek 2008) have introduced a technique to recover 

large missing regions for 3D indoor environments map colour images captured with 

range sensors. Their approximate MAP-MRF estimation at a pixel involves sampling a 

histogram of its neighbours, learning the intensity, range statistics via belief propagation 

(BP) and edge-detection to improve estimation at discontinuities. The edges have been 

built by using a process similar to that used in the inpainting method described in 

(Criminisi et al. 2004). The similarity measure which applies a Gaussian kernel to each 

neighbourhood has been used.  

The authors in (Bhavsar & Rajagopalan 2010) proposed a method which uses the image 

segmentation cue to recover large missing regions in range images. They used the 

improved mean-shift segmentation (Christoudias et al. 2002) which is more robust than 

edge detection in delineating regions. The framework of this method involved local cost 

computation based on plane-fitting and local medians over segments, and effectively 

used the properties of the mean-shift algorithm to guide the inpainting. The simple 

strategy involves plane-fitting and local medians over segments to compute local 

energies for labelling unknown pixels. This method achieved high-quality inpainting 

with very low errors in spite of significant missing data in observations (of the order of 

60% to 90%). 
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Since many of the schemes investigated/developed in this thesis work well with small 

missing regions, perhaps with some conditions, a plausible approach would be to try to 

reduce/transfer the problem to one involving a relatively small missing region. 

Conventional resizing the image cannot work due to the fact that such a transformation 

doesn’t change the ratio of the size of the missing region to the image size. Despite the 

fact that image compression reduces the image storage size, it is not clear how 

compression could help in this effort because the reduction is achieved by efficient data 

coding and decompressing restores the image size. In this respect, it is worth noting that 

the standard wavelet transformation of an image has the effect of reducing the 

inpainting of any missing region into a number of inpainting procedures of significantly 

smaller sizes. Unfortunately, such a transform is not shift invariant, may result in 

considerable loss of information and consequently may have a significant adverse 

impact on the quality of inpainting large missing regions. This can be clearly 

demonstrated by the following example, where a large region of a natural scene image 

was removed and recovered by the wavelet-based hybrid1 scheme presented in Section 

6.3.  

 
 

Figure 7-1: Failure of wavelet-based Hybrid inpainting for large missing region. 

We note that both conventional image size reduction and wavelet transform has the 

effect of uniform down-sampling, and interpolation, which leads to loss of significant as 

well as insignificant information throughout the image. This observation shows that for 

the intended reductionist strategy to succeed, we need a non-uniform image down-

sampling that removes pixels without losing important image content. Fortunately, the 

known concept of seam-carving, introduced by Avidan and Shamir in (Avidan & 

Shamir 2007), provide us with an appropriate content-aware approach to image resizing 

that can be used for both image size reduction and expansion. In this chapter, this 

concept is exploited to develop a novel inpainting technique designed especially for the 

reconstruction of relatively large missing regions without artefacts. Next, the use of the 

seam-carving is described and discussed for image resizing tasks. 
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7.2 Seam carving – Introduction and Implementation 

The seam carving method, (Avidan & Shamir 2007), is used for resizing the image 

without affecting its contents. The basic idea of seam carving is to remove redundant 

connected image paths, called seams, without having a noticeable visual effect. A seam 

is an optimal 8-connected path of pixels in an image from left to right and/or from top to 

bottom of the image, where an image energy function defines the optimality of the seam. 

Roughly speaking, the seam carving procedure will preserve pixels that have high 

energies in comparison with their surrounding pixels. Mathematically speaking, the 

energy of a pixel with respect to the  𝑥 and  𝑦  axes may be computed through the 

magnitudes of the derivatives with respect to 𝑥  and 𝑦  determined by the pixel's 

neighbourhood, which is known as gradient operator. Different energy functions have 

been proposed in (Rubinstein et al. 2008), (Ye & Shi 2017), (Zhu et al. 2016), (Itti et al. 

1998), and (Harris & Stephens 1988).   

Throughout this thesis we adopt the following mathematical equation for the energy 

function; let 𝑓 be an 𝑛 × 𝑚 image: 

                                                         𝑒 (𝑓) = |
𝜕𝑓

𝜕𝑥
| + |

𝜕𝑓

𝜕𝑦
|                                                                 (7.1) 

This energy function is used to determine the locations of candidate seams in the image 

to be removed and can be implemented in different ways. The Prewitt and Sobel filters 

are commonly used to compute the discrete differentiation operators, in the 𝑥 and 𝑦 

directions by convolution weighted 3×3 kernels with the input image. The Prewitt 

filters are defined  

𝑓𝑥 = [
1   
1
1
   

0
0
0

   −1
   −1
   −1

],   𝑓𝑦 = [
   1 
   0
−1

  1
  0
−1

  1
  0
−1

] 

 While the Sobel filters are 

𝑓𝑥 = [
1 
2
1

0
0
0

−1
−2
−1

],   𝑓𝑦 = [
   1 
   0
−1

   2
   0
−2

  1
   0
−1

] 

Where 𝑓𝑥  and 𝑓𝑦  represent the first derivative filters for the x and y directions 

respectively. Figure7-2 shows the applications of the energy function on a natural 

image. 
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(c)(a) (b) (d)  

Figure7-2: Different energy functions for the natural image. (a) and (b) Energy image by a 

gradient operator using Prewitt and Sobel filters, respectively. (c) Energy image by the entropy 

of the gradient operator. (d) Energy image by the histogram of the gradient.   

In the above Figure, the energy function calculated by using the gradient Sobel filter 

produces images with higher intensity values along edges within the image than that 

calculated using the gradient Prewitt filter. The output image obtained by using the 

entropy energy function is smoother and has higher intensity values along edges. The 

result of using the histogram energy function is higher intensity values along edges. 

More information about edge-detection filters can be found in (Gonzalez & Woods 

2008). 

It is worth noting that the type of energy function used to remove seams from a missing 

region is based on calculating an energy function from f, once by gradient and then by 

entropy operators, then adding both of them together as clarified in  

Figure7-4 b. 

The size of the image is retargeted to a smaller size by repeatedly carving out seams in 

both directions; a vertical seam Sx is defined as follows: 

                                                𝑺𝑥 = {𝑆𝑖
𝑥}𝑖=1

𝑛 = {(𝑥(𝑖), 𝑖)}𝑖=1
𝑛                                            (7.2) 

    Such that  ∀𝑖, |𝑥(𝑖) − 𝑥(𝑖 − 1)| ≤ 1,  and  𝑥  is a mapping defined as  𝑥: [1, … , 𝑛] ⟶

[1, … ,𝑚]. A vertical seam represents an 8-connected path of pixels in the image which 

goes from top to bottom and contains only one pixel in each row of the image, see  

Figure7-4 c.                                                                                                                

Similarly, a horizontal seam  𝑆𝑦 is defined as follows: 

                                              𝑺𝑦 = {𝑆𝑗
𝑦
}
𝑗=1

𝑚
= {(𝑗, 𝑦(𝑗))}𝑗=1

𝑚                                             (7.3)   

    Such that  ∀𝑗, |𝑦(𝑗) − 𝑦(𝑗 − 1)| ≤ 1, 𝑦  is a mapping defined as  𝑦: [1, … ,𝑚] ⟶

[1, … , 𝑛]. A horizontal seam represents an 8-connected path of pixels in the image 

which goes from left to right and contains only one pixel in each column of the image, 

see  
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Figure7-4 d. 

The pixels of the path of seam 𝑆 , for instance, a vertical seam {Si} will be 

𝑢𝑆  =  {𝑢(𝑆𝑖 )}𝑖=1
𝑛 = {𝑢(𝑥(𝑖), 𝑖)}𝑖=1

𝑛  

Observe that, after the removal of row or column from an image, the missing seam will 

be compensated for by shifting all the pixels of the image left or up. The energy of a 

seam is defined as follows:  

                                             𝐸(𝑆) = 𝐸(𝑢𝑆) = ∑𝑒(𝑢(𝑆𝑖)).

𝑛

𝑖=1

                                          (7.4) 

The optimal seam (path) 𝑆∗, which minimises the total seam energy of each pixel in the 

path is defined by the next formula: 

                                         𝑆∗ = 𝑚𝑖𝑛
𝑆

𝐸(𝑆) =𝑚𝑖𝑛
𝑆

∑𝑒(𝑢(𝑆𝑖))

𝑛

𝑖=1

.                                  (7.5) 

The general aim of using the seam-carving operator on an image is to resize the whole 

image for extension or shrinking. Figure7-3 shows the flowchart of the general seam 

carving approach for reducing/enlarging the size of the image. 

Image Seam finding

Seam 

Removal/

addition

Energy 

Function

Image 

Reduced/

Enlarged
 

Figure7-3: The flowchart of the seam carving approach for image reduction/enlargement. 

The process of applying the seam-carving approach is illustrated in Figure7-5, which 

shows the application of seam-carving to reduce the size of image vertically and 

horizontally by removing 20 seams vertically and horizontally from the image. 

(c)

(e)(d)

(a)

(f)

(b)

 

Figure7-4: Seam carving process. (a) Original image, (b) energy image, (c) and (d) determining 

20 vertical and 20 horizontal seams, respectively, (e) and (f) removing 20 horizontal and 20 

vertical seams in image, respectively. 



Chapter 7: Inpainting Large Missing Regions Based on Seam Carving Method   
 

 220  
 

As mentioned previously, the seam-carving approach targets the seams that have low 

energy values. Therefore, to applying seam carving to solve an image inpainting 

problem, the seam-carving approach is used to reduce the size of an occluded region to 

enhance the inpainting technique when it is applied to that region.  

Figure7-5 shows the application of seam-carving to an occluded region in an image. 

(a) (c)(b)

(f)(d) (e)  
Figure7-5: Seam carving process. (a) Masked image, (b) energy image, (c) and (d) determining 

20 vertical 20 horizontal seams, respectively, (e) and (f) removing 20 horizontal and 20 vertical 

seams in image, respectively.  

As explained before, the seam is chosen based on the energy intensity values of its 

pixels. The vertical and horizontal seams have been determined in different places on 

the pixel energy intensity values in  

Figure7-4 and 7-5. To reduce\enlarge the region of interest in the image, we set to zero 

the values in the region which needs to be recovered which means that the region of 

interest will have low energy values; this will help to determine the seams in the region 

of interest, as seen in  

Figure7-4 and 7-5. Different energy functions have been tested on the images; all these 

energy functions have helped to determine the seams in the occluded regions.  

Many inpainting methods have limitations with large missing regions. Based on our 

observations from the literature, the largest missing region that can be recovered using 

the TEBI method is of an area corresponding to 20% of the total area of the original 

image. Therefore, we are proposing to reduce the size of the missing region using the 

seam carving method, after which the TEBI method is applied to reconstruct the 

reduced size missing region. To recover the original size of the image, the old seams 

will be added back; this will leave missing thin lines that can be recovered using PDE-

BI method. The method of our technique will be explained in the next section. 
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7.3 Seam-carved approach to inpainting 

The aim of proposing this technique is to reconstruct a large missing region by using 

seam carving, TEBI, and PDE methods. The steps of the proposed technique are 

represented as follows:  

1. Read the input image with a marked region to be removed.  

2. The seam-carving approach is applied to shrink the missing region.  

3. The TEBI method is used to recover the shrunk missing region in the image 

(Jassim et al. 2018).  

4. Add back the old seams to recover the original size of the image. However, the 

original information of the added seams is missing.  

5. The MES method is applied to reconstruct the missing paths (seams). 

Whether the shrinking of the missing region occurs vertically or horizontally is based on 

the nature of the shape of the missing region in an image. The steps of the proposed 

technique are illustrated in Figure7-6. 

 

Figure7-6: Inpainting-based seam-carving approach. (a) Original image. b) Image with 

occlusion, (c) Shrunk occlusion by removing 30 seams. (d) TEBI Inpainted of (c). (e) Re-

inserting seams. (f) PDE-BI Inpainting of seams. 

In the next section, the proposed technique is described to be used for large object 

removal and for recovering large missing regions in natural images.  

7.4 Experimental results 

In this section, the proposed technique is tested on a variety of natural images, selected 

from the Berkeley Segmentation Dataset and Benchmarks 500 (BSDS500), see Section 

3.6.1, and compared the experimental results of the  proposed technique with those of 

the classical EBI method (Criminisi et al. 2004) and TEBI method (Jassim et al. 2018) 

(i.e. which has been implemented without the use of seam-carving). The seam-carving 
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inpainting is used to remove large unwanted objects, and to reconstruct missing regions 

of various large sizes. These experiments are meant to check the effectiveness of seam-

carving inpainting and establish the success of the reductionist strategy based on the 

direction and the number of removed seams.  

Figure7-7 displays some selected sample of images resulting from the implementation 

of our technique besides the EBI and TEBI methods for large objects removal. This 

figure provides a means of visual comparison of the performances of these three 

methods and demonstrates the superiority of the seam-carving inpainting approach.  

(e)(c)(a) (b) (d)  
Figure7-7: Large object removal examples. (a) Original images, (b) masked images, (c), (d), 

and (e) inpainted images using EBI, TEBI, and proposed inpainting methods, respectively. 

The above results show that the proposed technique outperforms EBI and TEBI 

methods. However, the number of seams to be removed is limited as it is directly related 

to the performance of the MESm. In the case of using a large number of seams, MESm 

produces artefacts when the seams are condensed next to each other. We found by 

experiments that the number of seams to be removed is better limited to between 20% 

and 30% of the size of the missing region.  
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The direction of seams can be determined based on the shape of a damaged region and 

the geometry of the surrounding areas of a missing region. That will help, after 

recovering the missing region, reinsert the seams without effect on the inpainted regions, 

as seen in Table 7-1, which presents the ratios of missing region sizes to the whole 

image size before and after using seam carving approach for each image illustrated in 

Figure7-7.  

Figure7-7: row number -              

Seam Direction 

Size % of the occluded 

region before reduction 

Size % of the occluded 

region after reduction 

Row 1- Horizontal 21.9097% 17.5681% 

Row 2-Vertical 22.7639% 18.2821% 

Row 3-Vertical &Horizontal 31.1759% 21.6329% 

Row 4-Vertical 25.9162% 19.6148% 

Row 5- Horizontal 23.8266% 19.3262% 

Row 6-Vertical 30.2734% 20.2324% 

 

Table 7-1: Ratios of missing regions size to whole images in figure 7-7 before and after seam-

carving. 

Table 7-1 is shown the direction and the quantity of removed seams that applied in the 

first step from the proposed technique process. The proposed seam-carving technique is 

also used to recover large missing regions in the natural image. Figure7-8 shows some 

results giving comparisons of the uses of the EBI and TEBI methods for recovering 

large missing regions. The visual comparison of their performances again demonstrates 

the superiority of the seam-carving schemes and the success of our reductionist strategy. 
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(a) (b) (c) (d) (e)  

Figure7-8: Recovering large missing regions examples. (a) Original images, (b) masked images, 

(c), (d), and (e) inpainted images using EBI, TEBI, and proposed inpainting methods, 

respectively. 

Similarly, the direction of seams can be determined based the shape of the damaged 

region and the geometry of its surrounding areas, as seen in the table below, which 

presents the ratios of missing regions sizes to the whole image size before and after 

using the seam carving approach for each natural image described in Figure7-8. 

Figure 7-8: row number -       

Seam Direction 

Size % of the occluded 

region before reduction 

Size % of the occluded 

region after reduction 

Row 1-Vertical 23.9573% 19.2061% 

Row 2-Vertical 21.8241% 17.5991% 

Row 3-Vertical 28.7831% 21.3971% 

Row 4-Vertical 23.2162% 18.6818% 

Row 5-Vertical 30.4921% 21.9861% 

Row 6-Vertical 20.8918% 17.1562% 

Row 7- Horizontal 29.8565% 23.6753% 

 

Table 7-2: The size of the missing regions to the whole images in figure 7-8 before and after 

reduction using the seam-carving method. 

From the various experiments, we observed that there is a clear logical link between the 

geometry directions of the surrounding areas of the missing region and the direction of 

the removed seams. More precisely, the direction of seams can be determined based on 
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the structure directions of the surrounding areas of missing regions. This helps the patch 

selection to be propagated better. As an example, the size of the missing region in row 2, 

4 and 6 in Figure7-7 is reduced vertically by removing the vertical seams. We can also 

see in row 1, 5 and 7 in Figure7-7 and 7-8, respectively, that the size of the missing 

region has been reduced horizontally. Also, we reduced the size of the missing regions 

in both directions as seen in row 3 Figure7-7. On the other hand, We found by 

experiments that the number of seams to be removed is better to be limited between 20% 

and 30% of the size of the missing region, that allows to PDE-BI methods to get better 

results, where the number of removed seams affects on the performance of PDE-BI 

methods. 

The subjective examination of the output from various experiments demonstrate beyond 

any doubts that the proposed technique outperforms the original EBI and TEBI methods, 

especially when the size of the missing region is relatively large, and the surrounding 

area of the missing region has high texture and structure. This can easily be seen in 

Figure7-7 and 7-8. More precisely, as shown in the third, fifth, and sixth rows images in 

Figure7-7 and the first, third, and sixth rows images in Figure7-8, the proposed method 

successfully reconstructed the missing regions in column (d), but there is a need to 

continue the edges from the outside of the missing region to the inside. Consequently, 

the proposed technique can successfully reconstruct sharp edges sequentially even when 

the missing region is relatively large, due to the use of the seam carving approach which 

enhances good patch-size propagation selection using topological invariants. As a result, 

the priority function determines the best location in which to propagate the information 

steadily. The missing region can then be reconstructed fully based on the information in 

the surrounding area. 

The next section will be focusing on quantitative evaluation of inpainting schemes, by 

assessing image quality for a sufficient number of different natural images in terms of 

different objective measurements. 

7.5 Image Quality Assessment 

It is widely accepted that image quality assessment is not an easy task and has not been 

fully solved yet (Chandler 2013). Notwithsatnding this difficulty, the qualities of image 

inpaintings produced by using the seam carving scheme have been assessed 

qualitatively and quantitatively. We rely on subjective visual analysis to assess 

inpainted images qualitatively. However, for quantitative evaluation, the common 
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statistical quality measures and the TDA approach have been used to evaluate the 

inpainted images and the corresponding inpainting techniques. The results of the 

proposed technique are compared to the results of the EBI and TEBI methods. To 

deeply study the efficacies of the proposed inpainting technique, we have applied it to 

the set of images (natural databases) described in section 3.6.1. The next two sections 

show the assessment of image inpainting by using statistical measurements and the 

TDA approach respectively. 

7.5.1 Statistical measurements for image quality 

A set of experiments has been conducted, and the results on the natural images are 

reported. The inpainted images have been evaluated in two cases when a reference 

image (i.e. original image) is available, and when it is not. The efficacy of the proposed 

inpainting technique is studied by measuring the quality of its output images using a 

variety of statistical quality measures. The performance testing experiments are 

conducted for two different inpainting tasks: removing large objects and restoring large 

missing regions.  

The original images of the Berkeley database were used as the references in order to 

measure the quality of inpainted images. For each of the two inpainting tasks, five 

experiments will be conducted on 50 images of this data set. These selected images 

have complex texture and structure, which help to check the efficacy of novel inpainting 

method in recovering texture and structure in large missing region. 

The aim of these experiments is to study the effect of combining two inpainting 

methods on regions of different sizes and with high texture and structure around them. 

The steps presented in Section 4.7.2.1 are followed to create the inpainting masks. Five 

cases of inpainting masks have been used to study the efficacy of the proposed 

technique and to compare it with the EBI and TEBI methods. The mask images belong 

to 5 different cases (Case1, Case2, Case3, Case4, Case5) representing different sizes 

and a different number of missing regions in different positions within the images. 

Figure7-9 illustrate these five cases of inpainting mask (i.e. inpainting domain) 

representing five damaged/removed regions applied to the database images.  

Damaged image Case1 Damaged image Case5Damaged image Case2 Damaged image Case3 Damaged image Case4  

Figure7-9: The same natural image with five different inpainting domains. 
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Recall that the first step of using the proposed technique is the application of the seam 

carving approach to reduce the sizes of the damaged regions. Table 7-3, below, presents 

the sizes of missing regions tin relation to the size of the whole image before and after 

applying the seam-carving approach to the damaged images cases that were shown in 

Figure7-9. We note that the larger the original size of the occlusion the bigger the 

reduction in its size by seam-carving. 

Figure 7-9: Damaged 

image Cases 

Size % of the occluded 

region before reduction 

Size % of the occluded 

region after reduction 

Case1-Vertical 23.9668% 19.8533% 

Case2-Vertical 25.9988% 19.8493% 

Case3- Horizontal 32.2152% 21.2498% 

Case4-Horizontal 34.5963% 23.8531% 

Case5-Vertical 35.4977% 25.8226% 

 

Table 7-3: The size of the missing regions to the whole images in figure 7-9 before and after 

reduced using the seam-carving approach. 

Figure 7-10 displays some selected images that show the implementation of the 

proposed technique and the EBI and TEBI methods to recover the large missing regions 

in different inpainting domains. 

(e)(c) (d)(a) (b)  
 

Figure 7-10: Recovering large missing regions examples. (a) Original image, (b) masked image, 

(c), (d), and (e) inpainted image using the EBI, TEBI and proposed inpainting methods, 

respectively.  
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7.5.1.1 Quality measures for removing large regions 

In the first case experiments, the proposed technique has been used to remove large 

objects in the natural images; its outputs have been visually compared with those 

obtained by using the EBI and TEBI methods, as illustrated in Figure7-7. Through the 

analysis of image inpainting results, we found that two main aspects need to be 

considered in image quality assessment. First, the completion is blindly performed 

without any cue from the original content of the image, that is, the restored regions 

depend only on the rest of the image. Therefore, the newly generated pixels should be 

consistent with those in the rest of the image. This refers to the coherence of inpainted 

regions and enables the detection of undesired visual artefacts. Second, the human gaze 

is more attracted by structures or contours than other parts; hence more impose should 

be associated with these salient features. As a result, the MSSIM (Shi et al. 2009), 

entropy (E) (Gabarda & Cristóbal 2007) and Coherence structure quality measurement 

(CSQM) (A. DANG Thanh Trung, B. Azeddine BEGHDADI 2013) have been used to 

check quantitatively the qualities of inpainted images. For more details information 

about these measurements see Section2.6.1. 

Table 7-4 presents the comparison of the statistical quality measurements values 

resulting from inpainting using the EBI, TEBI and proposed methods; the times taken to 

get the results using these techniques are also shown. 

Figure 7-7: row number Methods used Entropy MSSIM CSQM T(S) 

Results of Row 1 
EBI Method 4.5917 0.7347 0.0280 89 

TEBI Method 4.5827 0.7538 0.0289 117 

Proposed Method 4.5615 0.7970 0.0320 234 

Results of Row 2 
EBI Method 3.3167 0.8919 0.0231 84 

TEBI Method 3.4780 0.8835 0.0243 121 

Proposed Method 3.1094 0.8974 0.0271 231 

Results of Row 3 
EBI Method 5.2871 0.7834 0.0231 132 

TEBI Method 4.8853 0.8440 0.0236 167 

Proposed Method 4.5833 0.9045 0.0257 292 

Results of Row 4 
EBI Method 3.5814 0.8115 0.0234 137 

TEBI Method 3.5750 0.8426 0.0243 181 

Proposed Method 3.3842 0.8798 0.0266 265 

Results of Row 5 

EBI Method 4.6786 0.7613 0.0511 129 

TEBI Method 4.6783 0.7635 0.0514 141 

Proposed Method 4.6781 0.7887 0.0519 386 

Results of Row 6 

EBI Method 4.5643 0.8059 0.0232 137 

TEBI Method 4.4483 0.8494 0.0272 178 

Proposed Method 4.2549 0.8963 0.0283 297 

 

Table 7-4: Inpainted image quality assessment comparison using E, MSSIM, and CSQM. 
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In Table 7-4, the statistical quality results following removal of large objects 

demonstrated that our proposed technique is capable of effective region filling and gives 

high CSQM values with low Entropy values, and the MSSIM values are close to 1.  

7.5.1.2 Quality measures for reconstructing large missing regions 

This section continues the analysis of the statistical quality measures, but here we 

consider images with large missing regions in natural images. The proposed technique 

is applied to restore missing regions in a sample of 40 images from the Berkeley 

database. The outputs have been visually compared with the results of EBI and TEBI 

methods, as seen in Figure 7-10. The quality of inpainted regions has been studied when 

the reference images (i.e. original images) are available. The table below shows 

calculated averages of MSE, PSNR, SSIM and EI of our seam-carving inpainting in 

comparison with the averages obtained by using the EBI and TEBI methods.  

 C# Methods used MSE PSNR SSIM CSQM Entropy T(s) 

C
a

se
1

 EBI Method 2680.99 14.650 0.801 0.137 2.848 63 

TEBI Method 2971.46 14.823 0.838 0.147 2.722 120 

Proposed Method 2071.12 15.692 0.833 0.151 2.629 181 

C
a

se
2

 EBI Method 1804.44 16.417 0.842 0.146 2.671 72 

TEBI Method 1501.45 17.486 0.886 0.147 2.691 131 

Proposed Method 1189.15 18.182 0.883 0.161 2.629 197 

C
a

se
3

 EBI Method 2654.84 15.220 0.763 0.085 3.933 96 

TEBI Method 2144.90 15.639 0.712 0.091 4.140 176 

Proposed Method 1695.06 16.678 0.757 0.096 3.833 227 

C
a

se
4

 EBI Method 2409.83 15.617 0.756 0.001 3.940 103 

TEBI Method 1915.83 16.658 0.798 0.093 3.764 184 

Proposed Method 1519.99 17.183 0.792 0.097 3.713 243 

C
a

se
5

 EBI Method 1676.91 16.827 0.799 0.114 3.354 110 

TEBI Method 1294.35 18.160 0.864 0.115 3.332 196 

Proposed Method 934.440 19.460 0.866 0.118 3.312 283 

 

Table 7-5: Inpainted image quality assessment comparison using MSE, PSNR, SSIM, CSQM 

and Entropy. 

Table 7-5 clearly shows that the proposed technique again outperforms the EBI and 

TEBI methods when using them to recover the large missing regions.  

7.5.1.3 Results analysis 

This section introduces the analysis of the statistical results of the proposed technique 

for large object removal and recovering large missing regions. Firstly, for large object 

removal, Table 7-4 shows that our proposed technique is capable of effective removal of 

large object by region filling and gives high CSQM values with low Entropy values, and 
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MSSIM values close to 1. The entropy represents the amount of disorder in the 

inpainted image. Therefore, generally speaking, lower entropy values are better than 

higher entropy (Gabarda & Cristóbal 2007). The proposed technique obtained lower 

entropy value than the EBI and TEBI methods. The MSSIM measure is used to study 

the coherence extent of the inpainted region in comparison with the rest of the image. In 

addition, CSQM characterises the visual coherence of the inpainted regions and the 

visual saliency characterising the visual importance of the inpainted region. High values 

of MSSIM and CSQM represent better results (A. DANG Thanh Trung, B. Azeddine 

BEGHDADI 2013). The seam-carving scheme obtained higher values of MSSIM and 

CSQM than the EBI and TEBI methods, and hence the inpainted regions obtained by 

using our technique are more coherent with the rest of their images. 

For recovering large missing regions, the image quality measures used in Table 7-5 

clearly show that the proposed technique again outperforms the EBI and TEBI methods. 

The proposed technique is clearly capable of effective region filling giving high PSNR 

values and the SSIM values are close to 1. Moreover, the high CSQM values confirm 

the success of the proposed technique. However, it takes a bit more time due to the 

amount of calculation entailed during the matching stage. During the testing, it was 

found that while some images could look visually pleasing and alike, although they 

have different PSNR values. 

The performance of the proposed technique has dramatically improved the 

reconstruction of edges and corners in large missing regions. The reduced size of the 

missing regions introduces massive assistance and allows good patch propagation 

selection. We directed the seam carving approach to reduce the size of the missing 

region vertically if we want to reconstruct it horizontally and that helps the patch 

selection to propagate better as seen in Figure7-8 and 7-10. On the other hand, the seam 

carving approach has been applied to reduce the size of the missing regions horizontally, 

when we want to reconstruct the missing regions vertically. As mentioned earlier, the 

MSE and PSNR are not reliable measures to check the quality of image inpainting. 

Therefore, in the following section, the TDA approach will be used to assess the 

efficacy of the proposed technique and its output results (i.e. inpainted images).  

A warning. The proposed technique directly restores a clear image from a corrupted 

input image without any assumptions about the corrupted regions as seen in Figure7-7 

and 7-8. However, it does not work well when important structures or details are 

damaged because its work depends on the information in the rest of image. These 
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structures or details are usually unique to each image. The first four rows in Figure 7-10 

show some examples of undesired failure. This warning is a declaration that the results 

of restoring large regions that do not have high similarity with the rest of the image are 

less than acceptable. This may be due to difficulty in finding matching patches within 

the image, and such cases our technique is not guaranteed to recover some missing 

regions. Remedying this shortcoming will be a challenge to be dealt with in the future. 

Possible solutions could be developed by dictionary of images when searching for 

matching patches rather than searching the image itself. The use of deep learning may 

provide another solution, but this is outside the realm of this thesis. 

7.5.2 Topological Data analysis for image quality 

The TDA approach, as a measure of image quality was introduced in (Asaad et al. 2017), 

and has been used to evaluate the quality of image inpainting and study the efficacy of 

the various developed inpainting techniques. The TDA quality measure is defined in 

terms of the number of CCs, but its computation was confined to the inpainted regions 

in natural images, because the numbers of CCs in the remaining parts of the inpainted 

image and the original image are the same. The same steps are followed in the 

construction of the Vietoris-Rips complex which was introduced in 2.6.2.  

Recall that there are 7 ULBP geometries each coming in 8 rotations. In our experiments, 

the number of CCs is counted at different thresholds T=0, T=5, T=10, and T=15, for the 

inpainted images of the above experiments (i.e. five inpainting-domain cases). The 

volume of the resulting data from the experiments is far too large to be included in the 

thesis, but the results for T=10 are selected as a good representation of the patterns of 

TDA values for the entire set of experiment. Figure7-11 and 7-12 show the average 

number of CCs of inpainted regions as obtained by using the proposed technique and 

the EBI and TEBI methods for five damaged regions from the natural image dataset in 

the geometries G5 and G1 at threshold T=10, respectively. The rest of the results of 

geometries G2, G3, G4, G6, and G7 at threshold T=10 are presented as an Appendix at 

the end of thesis (cf. Appendix D). 
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Figure7-11: Evaluation of performance of the proposed inpainting technique using TDA 

approach at 8 iterations in G5 at threshold T=10 for 5 inpainting cases of natural images. 

 

 

Figure7-12: Evaluation of performance of the proposed inpainting technique using the TDA 

approach at 8 iterations in G1 at threshold T=10 for 5 inpainting cases of natural images 

Examining these charts we can easily ascertain that the numbers of CCs in the inpainted 

areas as recovered by the proposed method are closer to the numbers of CCs in the 
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original areas than those observed in the output images from other methods in Geometry 

G5 but to less extent in G1. We observed the same pattern of results for the geometries 

G4, and G6 at threshold T=10 in the natural images. The geometries G4, G5 and G6 

describe the corners, edges and the end lines in the natural images (Ojala et al. 2002). 

This means the proposed technique has been successful in reconstructing corners, edges 

and the line ends in the missing regions because of the patterns that are described in the 

geometries G4, G5, and G6 at threshold T=10. However, the numbers of CCs of 

inpainted regions obtained by using the TEBI technique are closer to the numbers of 

CCs of corresponding original regions than those ensuing from the EBI method. 

Unfortunately, the number of CCs in the inpainted regions for the geometries G1, G2, 

G3 and G7 do not follow a clear pattern, however, although the results of using method 

described in (Bertalmio et al. 2000) are not visually acceptable, sometimes the numbers 

of CCs of inpainted regions by using method described in (Bertalmio et al. 2000) are 

close to those observed in the original regions of natural images, which means that these 

geometries at threshold T=10 do not act as reliable measures of the image qualities 

resulting from these inpainting techniques, as seen in Figure7-12, where this Figure 

clarifies the number of CCs in geomatry G1 at threshold T=10.  

In conclusion, the TDA approach has been successfully used to study and check the 

qualities of image inpainting because this approach is a very sensitive process which 

allows the inpainted region to be studied via at seven geometries, and each geometry 

has eight rotations which means it will cover all the inpainted regions. 

7.6 Summary and Conclusion 

We have proposed a novel technique to reconstruct large missing regions in natural 

images using seam carving. This technique is based on a reductionist strategy which can 

be used to recover large missing regions with high texture contents around them. It 

could be used to remove large objects in natural images. Since most of the existing 

methods cannot recover large missing regions, the size of the missing region is reduced 

by using the seam carving approach. The developed approach acts in a hybrid manner, 

in that the TEBI method is used to recover the missing region after which the PDE 

method is used to recover the seam lines after adding them back to the inpainted image. 

This technique has been tested on many natural images with visually acceptable results. 

The proposed technique has succeeded in reconstructing the corners, edges, and line 

ends in the missing regions. Our results exhibit high-quality inpainting with very low 
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errors. The qualities of the inpainted images that were obtained by using the proposed 

technique have been checked by statistical measurements and the TDA approach. 

Furthermore, the proposed technique shows better performance than the EBI and TEBI 

methods without the resizing approach, as in (Criminisi et al. 2004). 
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Chapter 8 CONCLUSIONS AND FUTURE 

RESEARCH 

Over the last few years, there has been a growing interest in the process of Image 

inpainting (image editing) for a variety of purposes and outcomes including the 

recovery of lost image data such as colour in different types of regions, or the removal 

of undesired image objects. It has several applications such as automatic scratch 

removal in old images and films, the removal of dates, text, subtitles, or publicity from 

an image/film, adding colour to grayscale images after object removal. In addition, the 

emergence of tougher new challenges in this research field in parallel with rapid 

advances in, and convergence of, a variety of computational mathematics areas 

provided me with a strong motivation to embark on a PhD program of research in this 

field exploring its link with my background in numerical solutions of PDEs. Moreover, 

the existence of so many inpainting research publications made me realise that for my 

project to make useful contribution in the field I must keep awareness of other related 

advances in the mathematics of image processing/analysis field in order to inject and 

integrate relevant new emerging concepts and/or procedures into my work. In what 

follows, the main conclusions from this research work are presented, and then we 

briefly report few items of future work including a description of on-going pilot study 

extension of this research.   

8.1 Work summary 

The investigations conducted and frequently refined over the duration of the research 

programme, and reported in several chapters of this thesis, focused on reviewing, 

modifying, and developing a variety of novel partial/total inpainting approaches to 

restore missing image data/colour. Our work was of general nature targeting different 

types of images including natural images as well as other types that are subject to 

variations in the level and distribution of texture and structure.  

The extensive literature review, conducted continuously throughout the project-life, 

revealed a variety of general and special purpose inpainting schemes naturally reflecting 

the historical changes in the focus of relevant research as well as the emergence of new 
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well-intentioned as well as the malicious application of image restoration/reconstruction. 

Accordingly, our initial work focused on establishing an in-depth understanding of the 

working, and properties, of existing inpainting techniques. We found that a well-

performing PDE-based colourisation scheme was developed under unnecessarily 

restricted to certain 3-colour channels system that overlooked the well-established linear 

relationship to the other widely used 3-colour schemes. We also found that the less than 

adequate visual quality of that scheme was possibly due to restricting the geometric 

propagation criteria to a simple TV-model and low order PDE. The relaxation of these 

restrictions raised a new challenge on how to quantitatively compare the performances 

of our schemes with those of existing schemes. Due to the general objectives of 

inpainting, performances need to be evaluated in terms of the connection of edges over 

large distances (i.e. the Connectivity Principle) and depend on how smooth level lines 

are propagated into the damaged areas (i.e. Curvature Preservation).  

Testing the adequacy of such measures must be done through reconstructing small 

removed regions surrounded by limited when texture areas for a sufficiently large image 

dataset of different types (e.g. natural and face images). The current success of research 

conducted in the department on developing topological data analysis tools for detecting 

image tampering, revealed the relevance of using TDA approach as an image quality 

measure.   

Moreover, the study of the non-PDE inpainting approach, i.e. the EBI schemes, revealed 

that their success was limited to inpainting regions that are surrounded by highly 

textured areas. Again, the ability of TDA parameters to establish such properties 

highlighted the relevance of TDA to reducing the limitations of this inpainting approach.  

At that stage it was clear than neither of the two approaches, even with our 

improvements, could persistently produce visually acceptable images by reconstructing 

large missing regions, especially when these regions are surrounded by highly textured 

areas. Hence, the next obvious move was to develop hybrid combination inpainting 

schemes. However, the success of hybrid approaches has been found to be less than 

remarkable. Hence the alternative, was to attempt to develop a mechanism to reduce the 

problem of inpainting of large regions into a problem of inpainting relatively smaller 

sub-regions. Again, we found several benefits from incorporating the recently 

developed seam-carving content-aware image resizing procedure which helped by 
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providing us with an innovative reductionist strategy to deal with inpainting of large 

missing regions.    

The work done, and the achievements of this thesis can be summarised as follows: 

1. We extended the partial (YCbCr) colourisation technique proposed by Sapiro in 

(Sapiro 2005) for application in other colour spaces. This was based on the 

linear/affine relations between the colour spaces then these relations were used 

in order to apply this technique on seven other colour spaces. To overcome the 

overlapped colours on the edges (artefacts), the Sapiro technique by minimising 

total variation of (YCbCr) colour channels of two other geometric functionals is 

improved: (1) the directional derivatives of the gradients, and (2) the Laplacian. 

The performance of these proposed new schemes is tested on a known database 

of natural images in different colour spaces both in the spatial and frequency 

domains. Traditional statistical image quality measures have been used to 

demonstrate that the PDE algorithm cannot only compete with other algorithms 

but also creates acceptable visual inpainting in comparison with three 

colourisation algorithms which are given in (Levin et al. 2004), (Popowicz & 

Smolka 2014), and (Sapiro 2005). Furthermore, we successfully added colours 

to entire grayscale images by using the PDE method in different colour spaces in 

both the spatial and frequency domains. 

2. The success of the above PDE based partial inpainting algorithms was then used 

for total inpainting, when all colour channels are missing. We modified existing 

PDE total schemes, which apply the same PDE to restore each of the channels, 

by recovering the (grayscale channel) and then following the above Sapiro-like 

schemes to recover the rest of the channels. We compared the effects of using 

2nd and high order PDE methods. Two experiments have been conducted on 

natural and human face images sampled from the Berkeley and Yale databases 

respectively. Four PDE algorithms have been applied to the two datasets in both 

the spatial and the frequency domains. To quantitatively assess the performances 

of the various schemes with respect to the quality of the inpainted regions, we 

introduced the TDA quality measure to the traditionally used statistical image 

quality measures. While the qualitative subjective image quality assessment 

results were not reflective of the statistical quantitative measures, the 

quantitative TDA approach measures were reflective of the visual quality. The 
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results demonstrated that the image inpainting qualities obtained by using the 

high-order PDEs are better than those obtained by using 2nd and 3rd order PDEs 

in both spatial and frequency domains. Furthermore, the results of image 

inpainting quality obtained by using PDE algorithms in the spatial domain are 

better than those obtained by using the same algorithms in the frequency 

domain. Our modified total PDE-based algorithms were shown to be more 

efficient than existing ones. 

3. A novel topological exemplar-based inpainting method (TEBI) has been 

proposed to remove large objects and reconstruct large missing regions when 

there is high texture in the missing region’s surrounding area. The TEBI method 

has been introduced to improve the EBI method by selecting adaptively the size 

of the patch propagation based on the quantity of texture and structure in the 

surrounding areas of the missing region. Also, a new definition of priority has 

been proposed to determine the prioritisation of patch filling places based on the 

concepts of the curvature and the total variation of an isophote to encourage 

priority filling of the edges and corners in the patches. Finally, a new matching 

criteria has been introduced to choose approximate true patches from the source 

region to recover the regions surrounded with high texture and structure.  

Experimental results illustrated the success of the TEBI method, and image 

quality measures confirmed the suitability of the TEBI method. The proposed 

method performed well in recovering the image geometries but could not 

recover curved or cross-shaped structures completely. Nevertheless, the 

proposed method showed better visual results than other exemplar-based 

methods in such cases. In particular, the proposed method performed not so well 

in cases where the missing region has no similarity to other regions in the image. 

4. To allow the reconstruction of missing regions with high texture in the 

surrounding areas using PDE methods, we introduced the improvement of the 

technique described in  (Bertalmio et al. 2003) by using a hybrid of a PDE and 

TEBI methods to reconstruct the textures and structures in the missing regions 

simultaneously. The scenario of this technique starts by decomposing the image 

into texture and structure components using the PDE method, after which the 

damaged regions are separately reconstructed by TEBI and PDE methods 

respectively. Different PDE methods have been used for decomposing the image 

and for reconstructing the missing regions in the structure component. 
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Furthermore, the proposed hybrid technique has been used to recover the 

information in the frequency domain by using the wavelet transform as a 

decomposition method to analyses the image into high and low-frequency sub-

bands (i.e. structure and texture components). The TEBI and PDE methods have 

been applied to recover the missing regions in the low and high-frequency sub-

bands in the 2nd and 3rd level.  

The proposed technique has been tested experimentally on natural image 

datasets in both spatial and frequency domains. The hybrid technique is used in 

two applications which are: 1) recovering missing regions and 2) unwanted 

object removal. The experimental results of the proposed hybrid techniques have 

been compared with the results obtained from the techniques described in 

(Bertalmio et al. 2003) and (Jassim et al. 2018). The results of the proposed 

hybrid technique outperform those obtained in (Bertalmio et al. 2003). However, 

the results obtained in (Jassim et al. 2018) are more efficient than our hybrid 

technique. The quality of inpainting images has been evaluated by traditional 

statistical measurements and by the TDA approach. Meanwhile, the proposed 

method has failed to recover large missing regions with high texture and 

structure in the surrounding areas.  

5. Since most of the existing methods cannot recover large missing regions, we 

designed a reductionist strategy to reduce the problem to inpainting a relatively 

smaller regions. We developed a novel technique to reconstruct general large 

missing regions in the natural images using the seam carving content-aware 

resizing procedure. This technique can be used to recover large missing regions 

with high texture contents around them. Also, the proposed technique could be 

used to remove large objects in natural images. The size of the missing region is 

reduced by using the seam carving approach. Next, the TEBI method is used to 

recover the missing region. Then the PDE method is used to recover the seam 

lines after adding them back to the inpainted image. This technique has been 

tested on many natural images with visually acceptable results. The proposed 

technique has succeeded in reconstructing the corners, edges, and line ends in 

the missing regions. Our results exhibit high-quality inpainting with very low 

errors. The qualities of the inpainted images that were obtained by using the 

proposed technique have been checked by traditional statistical measurements 

and the TDA approach. Furthermore, the proposed technique shows better 
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performance than the EBI and TEBI methods without the resizing approach, as 

in (Criminisi et al. 2004). 

To sum up, the answers to the research questions that arose in section 1.3 have now 

been given in chapters 3, 4, 5, 6 and 7. 

8.2 Ongoing and Future Research Directions 

The work reported in this thesis not only demonstrated the viability of the adaptive PDE 

technique along with other inpainting techniques to overcome the problem of large 

missing regions in the natural images. However, several potential research directions 

have been identified for further exploration. Future work for this research includes 

immediate work to address the identified limitations of our current work, follow-up 

investigations, and new approaches and methods for inpainting. The immediate future 

work includes the following: 

1. As explained before, the hybrid technique is a combination of three main 

components, each of which includes several methods. Furthermore, finding the 

best combination among the available methods is still an open task. In the future, 

many experiments should be conducted to accomplish this. On the other hand, 

the step of segmentation of textured images will further improve the results on 

images with large variability in texture types might not be correctly handled by 

the TEBI step without segmentation. Different parameter selections at the image 

decomposition stage might also be needed for images containing textures at 

many different scales. This opens the door for future investigations in PDE-

based inpainting and TEBI combined with using decomposition method to split 

the image into more than two parts (e.g., texture and structure in a series of 

images at different scales). 

2. Expand the research on the TDA issues. Besides ULBP landmark points, that we 

used to quantify TDA measures, one can also use operators like local derivative 

pattern (Baochang Zhang et al. 2010), to build simplicial complexes and 

consequently extract topological features, and then  use the TDA approach to 

study the quality of the inpainted image and also to study the efficacy of 

inpainting techniques.  
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3. The work of TEBI method can also be extended to check the suitability of the 

TEBI method (Jassim et al. 2018) when the size of the missing region is more 

than 25% of that of the whole image. Computational complexity needs to be 

further reduced while retaining the quality of inpainting based on testing other 

definitions for priority function and patch matching. 

4. In relation to the seam-carving procedure, other definitions of energy functions 

that avoid content changing, can be explored for dealing with even larger 

missing areas.  

5. Automatic detection of inpainting based forgery images is a very challenging 

project that we have some evidences that it could benefit from using TDA. In 

collaboration with Buckingham colleagues, we recently conducted pilot study to 

test an innovative TDA-bases scheme to detect inpainting-tampered images 

(using the EBI method). The limited experimental results were promising when 

applied to natural and eyeglasses images. Collaborative research will be 

continued to refine the first version schemes and to extend this work in detecting 

the suspicious (inpainted) regions in the forged images, by studying the 

coherence between the blocks in the inpainted images and the original images 

(Yang et al. 2017), (Jian Li et al. 2015), and (Chang et al. 2013). 

6. .Finally, we shall also investigate recent attempts to use Convolutional Neural 

Network (CNN) deep learning inpainting algorithms to explore their 

performances in comparisons to the traditional schemes discussed in this thesis. 

In this respect and in order to mimic some kind of efficient machine learning, we 

also plan to modify the EBI scheme by not relaxing the search for exemplar 

patches within the image itself and instead using dictionaries of images patches 

constructed randomly from a large dataset of images (Laube et al. 2018), (Varga 

& Szirányi 2017) and (Dong et al. 2015).   
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APPENDICES 

A. Evaluation of performance of PDE algorithms 

Experiment 1: Evaluation of performance of PDE algorithms using the TDA approach 

in the inpainted regions of natural images in ten inpainting domains in both spatial and 

frequency domains at threshold T=10, these algorithms described in chapter Chapter 4. 

 

Figure A-1: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G1 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain.  
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Figure A-2: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G2 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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Figure A-3: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G4 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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Figure A-4: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G5 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain.  
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Figure A-5: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G7 at threshold T=10 for 5 inpainting cases of natural images. Left column: Average of the 

number of CCscomponents inpainted regions in the spatial domain Right column: Average of 

the number of CCs inpainted regions in the frequency domain. 
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Experiment 2: Evaluation of performance of PDE algorithms using the TDA approach 

in the inpainted regions of face images in ten inpainting domains in both spatial and 

frequency domains at threshold T=10, these algorithms described in chapter 4. 

 

Figure A-6: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G1 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain.  
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Figure A-7: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G2 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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Figure A-8: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G4 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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Figure A-9: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G5 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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Figure A-10: Evaluation of performance of PDE algorithms using TDA approach at 8 iterations 

in G7 at threshold T=10 for 5 inpainting cases of face images. Left column: Average of the 

number of CCs inpainted regions in the spatial domain Right column: Average of the number of 

CCs inpainted regions in the frequency domain. 
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B. Evaluation of performance of EBI methods 

Evaluation of performance of EBI methods using the TDA approach in the inpainted 

regions of high and low-information natural images in five inpainting domains at 

threshold T=15, these algorithms described in chapter 5. 

 

Figure B-1: Evaluation of performance of EBI techniques using TDA approach at 8 iterations 

in G1 at threshold T=15 for 5 inpainting cases of high and low-information natural images. Left 

column: Average of the number of CCs inpainted regions in low-information natural images. 

Right column: Average of the number of CCs inpainted regions in high-information natural 

images. 
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Figure B-2: Evaluation of performance of EBI techniques using TDA approach at 8 iterations 

in G2 at threshold T=15 for 5 inpainting cases of high and low-information natural images.  Left 

column: Average of the number of CCs inpainted regions in low-information natural images. 

Right column: Average of the number of CCs inpainted regions in high-information natural 

images. 
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Figure B-3: Evaluation of performance of EBI techniques using TDA approach at 8 iterations 

in G3 at threshold T=15 for 5 inpainting cases of high and low-information natural images.  Left 

column: Average of the number of CCs inpainted regions in low-information natural images. 

Right column: Average of the number of CCs inpainted regions in high-information natural 

images. 
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Figure B-4: Evaluation of performance of EBI techniques using TDA approach at 8 iterations 

in G5 at threshold T=15 for 5 inpainting cases of high and low-information natural images.  Left 

column: Average of the number of CCs inpainted regions in low-information natural images. 

Right column: Average of the number of CCs inpainted regions in high-information natural 

images. 



Appendix    

 284  
 

 

Figure B-5: Evaluation of performance of EBI techniques using TDA approach at 8 iterations 

in G6 at threshold T=15 for 5 inpainting cases of high and low-information natural images.  Left 

column: Average of the number of CCs inpainted regions in low-information natural images. 

Right column: Average of the number of CCs inpainted regions in high-information natural 

images. 
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C. Evaluation of performance of Hybrid techniques    

Evaluation of performance of hybrid techniques using the TDA approach in the 

inpainted regions of natural images in five inpainting domains in both spatial and 

frequency domains at threshold T=10, these algorithms described in chapter 6. 

 

Figure C-1: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G1 at threshold T=10, for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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Figure C-2: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G2 at threshold T=10 for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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Figure C-3: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G3 at threshold T=10 for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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Figure C-4: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G4 at threshold T=10 for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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Figure C-5: Evaluation of performance of hybrid techniques using TDA approach at 8 

iterations in G7 at threshold T=10 for 5 inpainting cases of natural images. Left column: 

Average of the number of CCs inpainted regions in the spatial domain. Right column: Average 

of the number of CCs inpainted regions in the Frequency domain. 
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D. Evaluation of performance of proposed technique based on 

seam carving 

Evaluation of performance of proposed technique for large missing regions using the 

TDA approach in the inpainted regions of natural images in five inpainting domains at 

threshold T=10, these algorithms described in chapter 7. 

 

Figure D-1: Evaluation of performance of the proposed technique using the TDA approach at 8 

iterations in G2 at threshold T=10 for 5 inpainting cases of natural images. 
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Figure D-2: Evaluation of performance of the proposed technique using the TDA approach at 8 

iterations in G3 at threshold T=10 for 5 inpainting cases of natural images. 

Figure D-3: Evaluation of performance of the proposed technique using the TDA approach at 8 

iterations in G4 at threshold T=10 for 5 inpainting cases of natural images. 
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Figure D-4: Evaluation of performance of the proposed technique using the TDA approach at 8 

iterations in G6 at threshold T=10 for 5 inpainting cases of natural images. 

 

Figure D-5: Evaluation of performance of the proposed technique using the TDA approach at 8 

iterations in G7 at threshold T=10 for 5 inpainting cases of natural images. 


