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Abstract. Offloading of all or part of any cloud service computation, when 

running processing-intensive mobile cloud computing services (MCCS), to 

servers in the cloud introduces time delay and communication overhead. Edge 

computing has emerged to resolve these issues, by shifting part of the service 

computation from the cloud to Edge servers near the end-devices. An innova-

tive Smart Cooperative Computation Offloading Framework (SCCOF) to lever-

age computation offloading to the cloud has been previously published by us 

[1]. This paper proposes SOSE; a solution to offload sub-tasks to nearby devic-

es, on-the-go, that will form an “edge computing resource, we call 

SOSE_EDGE” so to enable the execution of the MCCS on any end-device. This 

is achieved by using short-range wireless connectivity to network between 

available cooperative end-devices. SOSE can partition the MCCS workload to 

execute among a pool of Offloadees (nearby end-devises such as Smartphones, 

tablets, and PC’s) to achieve minimum latency and improve performance while 

reducing energy consumption of the Offloader (end-device that is running the 

MCCS). SOSE established the Edge computing resource by: (1) Profiling and 

partitioning the service workload to subtasks based on a complexity relationship 

we developed, (2) establishing peer2peer remote connection with the available 

cooperative nearby Offloadees based on SOSE assessment criteria, (3) migrat-

ing the subtasks to the target edge devices in parallel and retrieve results. Sce-

narios and experiments to evaluate SOSE show that a significant improvement 

in terms of execution time (>40%) and energy consumption (>28%) has been 

achieved when compared with cloud offloading solutions. 

Keywords: Offloading, Edge Computing, Cooperative, Mobile Cloud Compu-

ting 
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1 Introduction 

The Smartphone (SP) is continually being improved to have more and more computa-

tional resources and connectivity, amongst many others such as memory, display, 

sensors, battery, etc. Nevertheless, SP’s are still lacking behind in terms of perfor-

mance and battery capacity, which are the main desired features for SP subscribers 

[2]. SP’s are now being used for running resource intensive MCCS, such as Tracking 

humans or animals in crowd sensing scenarios or “manipulating blind persons” via 

IoT Sensors [3]. Some of these MCCS require machine learning and AI algorithms to 

be executing live. Current SP’s will run out of puff processing, and the battery will 

run flat when running such MCCS. 

We believe that there will always be a big gap between SP resource offerings and 

developers of intensive processing MCCS. To fill this gap, many offloading solutions 

exist that ships the processing of such MCCS to a central server in the cloud. This 

intern will create large traffic in an already crowded spectrum. I.e. offloading the 

computation to servers in the cloud introduces time delay and communication over-

head cost. Edge computing has been emerged to resolve these issues by shifting the 

computation from servers in the cloud to servers near the edge to reduce both delay 

and communication cost. However, edge computing servers normally are planned as 

part of the infrastructure of the cloud in the vicinity. SOSE overcomes this limitation! 

SOSE a scheme that forms an edge computing resource to execute such MCCS on the 

go from cooperative nearby edge devices.  SOSE offloads sub-tasks for computation 

from the host device/SP of the MCCS to a network of nearby SP’s/devices. Figure 1 

shows SOSE end2end scheme. It shows that, the cloud server is used to host 

SOSE_INTELLIGENT, an intelligent engine to recruit cooperative end devices and 

authenticate their availability when needed. Also, SOSE_INTELLIGENT engine 

provides the end-device with decisions on the best scenario to partition and offload to 

achieve a low execution time and reduce the energy consumption. It also shows the 

newly formed SOSE_EDGE computing resource network (dotted circle in the dia-

gram). 

The Offloader will ask SOSE_INTELLIGENT engine for decisions of nearest device 

that has the lowest load and the highest resources of processing and battery capacity, 

as well as the best network connectivity to use. Then the Offloader will generate VMs 

(bundle them as APKs and JAR files) of all the partitioned subtasks and will establish 

connectivity with all available Offloadees as advised by SOSE-INTELLIGENT en-

gine. Finally, the Offloader will offload the VM’s to the Offloadees and retrieve the 

results. 
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Fig. 1. SOSE Scheme 

The novelty contributions of this paper are: 

• Introduces SOSE, a unique scheme that forms the edge computing resource, on the 

go, from nearby devices and share the execution of the MCCS in parallel among 

them via short range wireless connectivity. 

• The offloading between the devices on SOSE_EDGE is done intelligently by an 

SOSE_INTELLIGENT engine based in the cloud. SOSE_INTELLIGENT engine 

recruits cooperative device resources and monitors (processing capability, battery 

status, and availability) and authenticates (access, session keys and engagement 

status) them so to advice on available device nearby when the Offloader needs to 

form the SOSE_EDGE. 

The rest of this paper includes: Section 2 that summarizes the recent literature on edge 

computing implementations, while Section 3 presents the development of SOSE. 

Section 4 presents the experiments, results and analysis. Conclusions and further work 

are presented in section 5. 
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2 Recent literature on edge computing implementations 

Review of solutions that perform offloading to a centralised server in the cloud have 

been published in in our previous paper [1]. This review focuses on implementa-

tions/solutions that consider IoT intensive applications which offloads to nearby pre-

setup infrastructure of edge servers. SOSE proposed to deploy the SOSE_EDGE solu-

tion on the go when needed. This is achieved by recruiting a group of available pro-

cessing resources/devices nearby in a local network to form a cooperative sharing 

environment using SOSE_INTELLIGENT engine. 

IoT deployments have increased the amount of data generated to the cloud; the 

amount of data hosted in 2018 is equal to the data gathered in all prior years [4]. This 

has necessitated that data-handling tasks are shifted to the edge nearer to the IoT sen-

sors network, and so typical existing solutions focuses on offloading between the edge 

servers and the cloud center. Running these IoT services on cloud servers can have a 

negative impact on the offloading process due to network cost and bandwidth traffic. 

Therefore, an advantage of Edge computing is to provide resources near end us-

ers/nodes so to reduce long execution time and end-node battery consumption. A 

solution that facilitates offloading of complex services from a mobile node to an edge 

computing server has introduced a model that provides the use of virtual resources in 

the edge servers [5]. It achieves this by shifting the service execution from a single 

mobile node to the edge servers automatically, by dividing a single task to 5 subtasks 

using 0-1 integer liner programming method. It marks the tasks with a value of (0,1) 

where “0” stands for tasks to run locally on the mobile node, such tasks that access 

mobile local features or input and output tasks, while “1” stands for tasks to run on 

edge server which has multiple virtual resources to handle the execution of subtasks. 

This then followed by a “decision solver” engine to decide on which virtual resource 

to select for the incoming 5 subtasks, based on the virtual resource “current queue and 

completion time”. Experiments have affirmed that performing the execution at the 

edge servers can reduce the network cost and internet traffic. However, this model 

requires pre-setup infrastructure which is difficult to predict for IoT network type 

computation and so we believe a more dynamic model/solution that forms the edge 

computing resources on the go is needed so to achieve faster execution time. 

Tracking humans or animals with drones in crowd sensing scenarios like volcanos or 

disasters are examples of nowadays IoT applications. These applications require ma-

chine learning and AI algorithms engines to analyze streams of audio, video and im-

age data coming from many sensors. Such intelligent algorithms require a significant 

computational/processing resources that are not typically available at the edge, but 

rather available in large data centers in the cloud. An offloading solution that balance 

the computational workload between the available cloud and the edge resources has 

been proposed in [6]. It achieves this by shifting the training and testing phases of the 

workload to the cloud. I.e. the end-node/device will upload data, which are then la-

belled and tested by multiple ML algorithms, then, based on the chosen decision, the 

model is retrieved, sterilized and packed in a shared repository. Only the AI inference 

engine is positioned at the edge as a micro service that can be accessed through the 

shared repository. This model is impressive in that it sends less data to the cloud, 
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which reduces network cost and bandwidth traffic. However, it lacks a dynamic parti-

tioning algorithm that decides if a task is executed in the cloud/edge servers, but ra-

ther depends on a pre-processing developer analysis to decide where to execute every 

task. We believe that the concept of letting the cloud be responsible of the overall 

decision making in splitting the computation workload between the edge and the 

cloud is commendable. We shall deploy a similar concept in SOSE, we used AWS 

services to perform the creation of the DB and recognition using AWS rekognition 

service [7], only the recognition results of the extracted faces are saved in a local DB 

shared repository using SQLite. 

A solution that enhances the above described offloading model by including a dynam-

ic partitioning algorithm of tasks moved between the cloud and the edge is achieved 

by including an “optimal virtual machine selection technique” and a “dynamic task 

partitioning algorithm” [8]. These two algorithms offload the intensive tasks from 

end-device to the edge server and/or the cloud server. It achieves this by (1) sort algo-

rithm that topologically analyze a “task graph” to partition the tasks between edge and 

cloud servers to achieve a low computational complexity. (2) Then it ranks the avail-

able virtual machines based on the time it takes to execute in each virtual machine, (3) 

it selects the appropriate virtual machine and utilize the dynamic task partitioning 

algorithm to compute the minimum completion time for the executed task. However, 

it only considers execution time as a metric to evaluate the proposed model. We de-

ploy a similar concept to execute the subtasks in parallel on the nearby edge devices 

so faster execution time can be achieved. We also developed and calculated other 

metrics like computational complexity, battery consumption and communication 

overhead. 

Some IoT apps required DL algorithms to extract accurate information for classifica-

tion, especially for IoT devices deployed in complex environments such as vehicle 

tracking animals, drones tracking surveillance, e-health apps, DL-driven smart video 

surveillance and smart homes. (i.e. DL can predict accurately home electricity power 

consumption using data collected from smart meters). Nevertheless, DL algorithms 

require a significant amount of processing because each DL extra layer can bring 

extra processing among its multilayer structure. Therefore, Efficient scheduling 

mechanisms are needed to decide on how many DL layers can run on the edge serv-

ers.  A solution that facilities offloading strategy to optimize the performance of DL 

for IoT at the edge has introduced a model that provides offline and online scheduling 

mechanism [9]. It achieves this by checking each server capacity to decide how many 

layers each server can handle. I.e. the first input layers are consisting of many pro-

cessing compute layers, therefore it is more beneficial to run in the cloud server. 

Then, when the dimension of the DL network is reduced, and the size of the interme-

diate layers becomes smaller than the input layer. This allows moving the processing 

of these lower layers to the edge server. This proposed model uses AlexNet DL model 

which consists of 8 layers, the first 5 layers are deployed in the cloud server and the 

last 3 layers are deployed in the edge server. This model is unique in that it can gener-

ates less data transfer and reduces the response latency. This inspired us to form 

SOSE by forming a network of resource from end-nodes and schedule the subtasks 

among them. I.e. SOSE_INTELLIGENT engine schedules the subtasks and selects 
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the device with the lowest load and has the highest resources in terms of processing 

power and battery level. 

Offloading the intensive processing tasks and sharing the end-user data to the cloud or 

edge servers lead to an unsecure deployment inviting malicious activities. A solution 

that proposes to secure the offloading process has introduced a model that secures the 

data being shared between the edge servers during offloading [10]. It achieves this by 

(1) it segments and offloads the tasks to the edge server in a sequence order. (2) It 

syncs to the edge server through a middleware that handles the communication. (3) It 

provides a security manager interface to encrypt, exchange security keys and verify 

the data before offloading, it is responsible to monitor the offloading process and 

generate alerts if a breach occurred by observing all the edge devices. Despite the fact 

that, to the best of our knowledge this proposed model is the first to addresses security 

issues when offloading IoT apps to the edge server. Nevertheless, it lacks details of 

the used mechanism nor experiments to approve the novelty. Being said that, SOSE 

introduces (1) a SOSE_INTELLIGENT engine based in the cloud server that (moni-

tors and approve) the nearby end-devices for qualifying as being secure and fit before 

offloading. (2) Partitions the tasks and distribute the subtasks among a variety of 

nearby edge devices, so the shared data cannot be retrieved or invoked as a package, 

and so stealing the subtask will not impact the overall security of the offloading. (3), 

We are using AWS rekognition service, which is a highly secure service that uses 

access and secret keys to authenticate the nearby devices. (4) We used nearby 

peer2peer API protocol [11] to communicate the nearby devices, which is a secure 

middleware that provides fully encrypted P2P data transfer between nearby edge de-

vices. 

3 SOSE Architecture 

There are two distinct engines that make SOSE function. The SOSE_INTELLIGENT 

engine and the SOSE_EDGE. 

3.1 SOSE_INTELLIGENT engine 

This engine is meant to be active at all times. It is based in the cloud. Its main func-

tions are: 

1. Identify and recruit suitable devices that can be used when needed by 

SOSE_EDGE. This process is continuous, and we envisage that such devices, as a 

principle, are SP’s that are willing to contribute to help other SP’s when running 

demanding MCCS. We propose that such devices are assigned certain credits that 

they will be able to use when they are the one running the MCCS. A suitable ar-

rangement for controlling this will need to be in place, but out of the scope of this 

paper. Therefore, this engine will have a database of such devices, their local local-

isation, their resources, typical usage, availability and current load. 

2. When contacted by the SOSE_EDGE Offloader, this engine will: a) Perform pro-

filing and partitioning of the MCCS, if not already done in a previous request. B) 
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try and establish if such MCCS has been run elsewhere to learn from that experi-

ence (resource required, time to execute, and dependency between tasks), c) pro-

vide a list of potential available SPs/devices near the location of the Offloader to-

gether with their capability, d) advice the Offloader with the MCCS profiling and 

partitioning process. This information will help the Offloader to generate the Vir-

tual Machines (VMs) that will form the sub-tasks to be offloaded to nearby devic-

es. 

3.2 SOSE_EDGE 

This engine performs various stages resulting in forming the edge computing resource 

that will execute the MCCS and is led by the SP that is hosting the MCCS (Called the 

Offloader here). Any participating device in helping to run the sub-tasks are called the 

Offloadee. The process of SOSE_EDGE is as follows: 

1. The Offloader will generate VMs (bundle them as APKs and JAR files) of all the 

partitioned subtasks, based on the instructions provided by the 

SOSE_INTELLIGENT engine. Note that the choice of having the profiling and 

partitioning tasks of the MCCS in the cloud was to save battery of the Offloader, 

and source knowledge of the MCCS provided by the developer is more accessible 

to the cloud. 

2. The Offloader will establish connectivity with all available Offloadees as advised 

by the SOSE_INTELLIGENT engine. Note that the connectivity will be wireless, 

and that SOSE_INTELLIGENT engine will advise on the best wireless technology 

to use (e.g. Wi-Fi or BT, or Cellular) for each Offloadee device. 

3. The Offloader will offload the VM’s to the Offloadees and communicate the re-

sults from this process appropriately, including the termination of the contact. 

4. The Offloader will also be executing its own share of the sub-tasks as and when it 

is not busy with the other tasks. 

5. When the MCCS run is completed, a summary record of this experience is feed-

back to SOSE_INTELLIGENT engine to train and update it for future execution if 

needed by any other Offloader. 

Details of each of these steps will be detailed as part of the experiments we have done 

to prove the concept of SOSE. For example, all wireless connectivity is done on a 

peer2peer protocol, etc. 

4 Experiments, Results & Analysis 

The following experiment scenarios is used to prove that SOSE_EDGE can provide 

an on-the-go (dynamic) edge resource from available nearby devices, and will per-

form as good as, or better than, a structured pre-setup edge computing engine. The 

details of the implementation of SOSE_INTELLIGENT engine and the automation of 

the process will be documented elsewhere as being not the focus of this paper. 
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4.1 MCCS choice: Face Detection Service (FDS) 

FDS is chosen to demonstrate the computational complexity and the benefits of of-

floading (typically used by police or at an airport mobile search activities). It involves 

a variety of complex tasks including face detection and feature extraction. Processing 

one video frame using face detector takes an average of 3.2 seconds and costs 9.0 

Joules using a Samsung Galaxy Nexus i9250 [12], which means continually running 

FDS would drain a SP fully charged battery within 1.5 hour. We developed FDS us-

ing Android studio platform and Dlib library, which is an open source library for im-

age detection and recognition. It obtained a face bounding box using (x,y) coordina-

tors of the face in the image, and then it detects and draw 68 (x,y) coordinators in the 

face, and finally, it extract the face features. Asysnc class is basically used to run the 

heavy part of FDS algorithm on another thread so no pressure on the main thread that 

is also handling the Graphic user interface. We use the mface.train function to train 

the algorithm to perform the image detection process. Then we called the recog-

nizeAsync function to execute the algorithm. Then when we input a new image, the 

algorithm detects the faces and extract the features. Full details about the specification 

of the scenario and experimental devices are illustrated in section 4.2. 

To illustrate more sub-tasks, we also developed a more complex version of FDS, we 

call FDSC. This includes recognition functions. As shown in Figure 2, the main GUI 

of FDSC contains three main buttons which are Offloader, Offloadee and server. The 

offloader button is to specify whether to run the tasks locally on Offloader or remote-

ly on Offloadees. It shows a drop-down list of Offloadees {0-3}, (we have decided to 

use up to 4 Offloadees in this experiment, (note that the maximum number of devices 

to be used is 7 because the BT protocol only allows 7 actual devices to connect to one 

master node [13])).  The {0} means the task run locally on the Offloader, while {1-3} 

specify the number of Offloadees. The Offloadee button is to represent the participat-

ed Offloadees. The server button is for running the task remotely on the server, (we 

have decided to use 2 servers in this experiment, the first one is a cloud AWS EC2 

server, and the second is a local Edge WAMP server), it requires a server IP address 

to start the connection. After deciding where to offload the tasks, FDSC then displays 

2 buttons weather to “select an image” from the mobile device memory or “click pic-

ture” to capture real images on the go. 
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Fig. 2. Screenshots of FDSC 

We have developed a simple algorithm to distribute the images among the Offloadees 

and the servers. Firstly, we divide the number of images (n) equally among the total 

devices. After that we find the remaining number of images, if the remaining images 

are equal to 0, then the algorithm start distributing the images. If the remaining imag-

es are > 0 then we distribute the remaining images one by one to the Offloadees. (For 

example, if the number of connected devices = 4, number of images = 10, then 10/4, 

so initially each device gets 2 images, then for the remaining 2 images, it assigns one 

by one to the devices, so offloader = 2, offloadee1 = 3, offloadee2 = 3, offloadee3 = 2 

and so on). 

We use a third-party tool (AWS rekognition service) that uses storage-based API 

operations to create the DB that we need later to compare with the Offloader new 

images. It gets the images from FDSC local repository root, then we call Detectface 

request, callFaceDetails, and Detectfeatures functions to build a client-side index. 

4.2 Experimental Scenarios 

In this section, the various scenarios for the experiments that has been done to illus-

trate the overhead of forming the edge resource is described. The aim of these scenar-

ios is to examine the benefit of SOSE when offloading in terms of computation time, 

energy consumption and wireless connectivity costs when FDS & FDSC sub-tasks are 

executed by various devices together with the Offloader. These scenarios are referred 

as Edge Server Scenario (ESS), Edge Offloadees Scenario (EOS) and Cloud Server 

Scenario (CSS) in this paper, as follows: 
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4.2.1 The Offloader sends (FDS & FDSC) sub-tasks to a local edge server 

(ESS) 

In this scenario, we have created a WAMPSERVER 3.1.0, which acts as a local near-

by edge server. Both Offloader and server are connected through an IP address. If the 

decision is to run the tasks on ESS, the decision engine triggers the distribution algo-

rithm to partition the images between the Offloader and ESS. The Offloader generates 

a serializable interface and decides on the class name, method signature, serialized 

object, and required libraries to be offloaded. Then it invokes the remote manager, to 

connect to the server using IP address and post API and offload the images in parallel. 

The edge server waits and listen to any incoming tasks, it runs the requested tasks 

when receive the images, record the time using timestamps, convert it to JSON for-

mat, and send the results back to the Offloader as will be stated later in section 4.3. 

We used BroadbandChecker tool [14] to make sure that the network is stable when 

offloading using Wi-Fi with 334 Mbps downlink, 260 Mbps uplink and 43 ms laten-

cy. 

4.2.2 The Offloader sends (FDS & FDSC) sub-tasks to nearby edge 

Offloadees (EOS) 

In this scenario, we perform offloading to cooperative nearby edge-devices on the go. 

We have used one Offloader end-device and a maximum number of 3 end-Offloadee 

devices, full specification of the conducted devices used are shown in Table 1. All the 

devices are connecting through nearby API which is a peer-to-peer networking API 

that allows apps to connect, share, and exchange data with each other in order to 

communicate over a local area network. We have used nearby connections type since 

it offers unlimited payload to be shared and it supports sensitive data by encrypting 

the data for secure payload exchange. We have defined 5 classes to establish the 

communication between edge Offloadees, these are Start Discovery (), Start Advertis-

ing (), Endpoint Discovery Call back (), Request Connection (), and Payload Call 

back (). When the device is selected as an Offloadee, the Offloader starts accepting 

incoming connections (the number of incoming connections is equal to the number of 

the Offloadees).  When we select more than 0 in the drop-down list, the Offloader 

starts advertising itself to accept incoming connection from nearby Offloadees. The 

Offloadees then discovers the Offloader and send a request to connect. The Offloader 

then accept the connection and add the incoming Offloadee to the connected devices 

list. Then connection is established, and devices are ready to exchange images be-

tween them. 

We have developed a simple algorithm to distribute the images among Offloadees 

explained in section 4.1. (for example, if we have 20 images to run, then each device 

executes 5 images in parallel and perform the required tasks for the images, then send 

the results back to the Offloader). The Offloadees waits and listens for any incoming 

tasks, when it receives the images, it runs the grayscale, face detection and feature 

extraction tasks, record the time using timestamps and send the results back to the 

Offloader device. A total of 100 images to perform offloading between a variety of 



11 

edge end-devices are used. The images are set to have the same resolution (700X700) 

and have a maximum size of 300 KB, and tests are repeated 5 times to examine stable 

and unstable network when offloading. The results are calculated (an average of 5 

runs) in terms of computation time, energy consumption, communication saving, and 

offloading gain as illustrated in section 4.3. 

Table 1. Experimental (Offloader & Offloadees) specifications for EOS 

Devices speci-

fication 

CPU RAM OS Battery 

Samsung S2 

Sm-T710 

1.3 GHz 3 GB Android 7.0 4000 mAh 

Lenovo TB-

7304F tablet 

1.3 GHz 1 GB Android 7.0 3500 mAh 

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh 

LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh 

4.2.3         The Offloader sends (FDS & FDSC) sub-tasks to a cloud server (CSS) 

In this scenario, the workload computation of FDSC is offloaded from the Offloader 

to a cloud server. We have created a server in the cloud using Amazon AWS services, 

namely t2.micro Amazon Linux 2 AMI EC2 server. We have created the credentials 

(secret, access, and IAM keys) to authenticate the server with (FDS & FDSC), so it 

can connect and push images to the cloud server. We have also used FileZilla and 

Putty tools to install and migrate the necessary PHP files to the server. We created a 

S3 bucket to save the offloaded images if needed for future execution and/or to train 

SOSE_INTELLIGENT engine. If the decision is to run the sub-tasks on the server, 

the Offloader connects to the server and starts to offload the images through an IP 

address and POST API. The server waits and listen to any incoming tasks, it runs the 

requested tasks when receive the images, record the time using timestamps, convert it 

to JSON format, and send the results back to the Offloader as will be stated later in 

section 4.3. 

4.3 Results & Discussion 

This section presents all the results achieved from the conducted various experiments 

for the scenarios we designed to illustrate the concept of this SOSE solution. 

Figure 3 shows the computation time of executing FDS for ESS, EOS and CSS we 

described in section 4.2. Offloading to ESS and CSS has reduced the burden on the 

Offloader by 83.4% due to their unlimited resource capability. Note that the results 

are testimony that having an edge server is the correct decision since it will be less 

overhead when communication traffic is taken into consideration. It also clear that 

offloading to a single Offloadee is too costly with an increase of the task by 14.3% 

due to the overhead not meeting the crossover point of being advantageous. However, 
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offloading to >1 Offloadee has significantly improved the Offloader resource capabil-

ity (21.3% & 40.2% for 2 & 3 Offloadees respectively).   

 

Fig. 3. Computation time of FDS 

Figure 4 shows the computation time when running FDSC for ESS, EOS and CSS. it 

shows an increase of the complexity of the FDC, by adding more intensive tasks, such 

as matching the extracted features with a DB. This highlights the importance of 

SOSE, where the computation time became liner for all ESS, EOS and CSS. This 

means that the overall cost of SOSE is much less than having the offloading done to 

the cloud, without the network traffic caused by transporting the data to the cloud. For 

20 images with 4 edge end-devices, we achieved 10.13% in comparison to running 

the tasks locally, while 12.1% for the cloud scenario, which indicates the SOSE will 

outperform offloading to the cloud solution when complex tasks are executed on more 

participated edge end-devices. 
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Fig. 4. Computation time of FDSC 

The power consumption measured when executing FDSC for ESS, EOS, and CSS are 

shown in Figure 5, it clearly shows that same saving pattern is achieved with compu-

tation complexity. The behavioral trend we observed is, when only 2 nearby Offload-

ees are executing the FDSC, the battery consumption cost increased by 19.52%. 

However, when the number of Offloadees increases in EOS, we record a power sav-

ing of 28.8% for 4 Offloadees running FDSC in parallel, which is almost similar with 

ESS and CSS which record 31.8% power saving. 

Figure 6 shows the computation time of FDS sub-tasks for ESS, EOS, and CSS, it 

shows that the feature extraction task is the most intensive task compared to other 

tasks. also, it shows, the computation time dropped down continuously, almost up to 

81.2% saving when more Offloadees run FDS. 
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Fig. 5. Battery consumption of FDSC 

 

Fig. 6. Computation time of FDS sub-tasks 
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5 Conclusion and future work 

The discussion and analysis of the experiments in the above section concludes that we 

can form a network of Offloadees on the go as needed, that will, even small number 

of devices of 4 Offloadees will perform as good as an edge computing server with 

unlimited resources. Our future study on this thread will focus on the granularity and 

partition of the sub-tasks so to maximize the benefit from the Offloadees without 

having to run their battery to the ground or increasing the local connectivity traffic 

with them. For sure having only a single Offloadee to help with the MCCS is not an 

option. 

The impact of connectivity between our local edge resource network and the cloud is 

significant and depends on the location of the Offloader. For example, if the Cloud 

server is only accessible by cellular link, then the overheads will be 10x more than if a 

Wi-Fi connectivity is available to the server. This will give much more importance to 

our SOSE as we can form P2P connectivity with all Offloadees, including using a Wi-

Fi P2P link. 

For automating all the decisions on the offload or not, sub-tasks sizes, Offloadee 

choices and so on, an intelligent engine is very important to achieve efficient offload-

ing. The various variations for the type of intelligence algorithms is the next study 

phase of this project. 
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