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ABSTRACT 

Biological image processing and analysis are concerned with enhancing and quantifying 

features that reflect different pathological states, based on the use of combinations of 

image processing algorithms. The integration of image processing and analysis 

techniques to evaluate and assess skin integrity in both human and mouse models is a 

major theme in this thesis. More specifically, this thesis describes computational 

systems for high-throughput analysis of skin tissue section images and non-invasive 

imaging techniques. As the skin is a largest organ in the mammalian body, and is 

complex in structure, manual quantification and analysis a hard task for the observer to 

determine an objective result, and furthermore, the analysis is complex in terms of 

accuracy and time taken.  

To look at the gross morphology of the skin, I developed high throughput analysis based 

on an adaptive active contour model to isolate the skin layers and provide quantification 

methods. This was utilised in a study to evaluate cutaneous morphology in 475 

knockout mouse lines provided by the Mouse Genetics Project (MGP) pipeline, that was 

generated by the Wellcome Trust Sanger Institute (WTSI). This is a major international 

initiative to provide both functional annotation of the mammalian genome and insight 

into the genetic basis of disease. I found 53 interesting adipocyte phenotypes, 18 

interesting dermal phenotypes and 3 interesting epidermal phenotypes.  

I also focussed on the analysis of collagen in the dermis of skin images in several ways. 

For collagen structure analysis, I developed a combined system of Gabor filtering and 

Fast Fourier Transform FFT. This analysis allowed the detection of subtle changes in 

collagen organisation. Using similar images, I also measured collagen bundle thickness 

by computing the maximum frequency of the FFT power spectrum. To assess collagen 

dynamics, I developed k-means clustering for segmentation based on colour 

distribution. The use of this approach allowed the measurement of dermal degradation 

with age and disease, which was not possible by existing means. 

Obtaining human skin material to facilitate the drug discovery and development process 

is not an easy task. The manipulation, monitoring and cost of human subjects makes the 

use of mouse models more suitable for high-throughput screening. Therefore, I have 
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evaluated skin integrity from mouse tissue rather than human skin, however, mouse skin 

is thinner than human skin and many morphological features are easier to visualise in 

human skin, which has implications for analysis.  

Skin moulds can be used to create an impression of the skin surface. Changes in texture 

of skin can reflect skin conditions. I developed a skin surface structure analysis system 

to measure the degree of change in texture of the human skin surface. The alterations 

detected in texture parameters in skin mould impressions reflected changes caused by 

sun exposure, ageing and many other clinical parameters. I compared my analysis with 

the existing Beagley-Gibson scoring system to find correlations between automated and 

manual analysis to inform a decision on the use of optimal methods. By removing 

subjectivity of manual methods, I was able to develop a robust system to evaluate, for 

example, damage resulting from UV exposure. 

My experimental analysis indicated that techniques developed in this thesis were able to 

analyse both histological samples and skin surface images in high-throughput 

experiments. They could, therefore, make a contribution to biological image analysis by 

providing accurate results to help clinical decision making, and facilitate biological 

laboratory experiments to improve the quality of research in this field, and save time.  

Overall, my thesis demonstrated that accurate analysis of the skin to gain meaningful 

biological information requires an automated system that can achieve feature extraction, 

quantification, analysis and decision making to find interesting phenotypes and 

abnormalities. This will help the evaluation of the effects of a specific treatment, and 

answer many biological questions in fields of cosmetic dermatology and drug 

discovery, and improve our understanding of the genetic basis of disease. 
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CHAPTER 1 

1.1 Introduction and Motivation 

In this thesis, I discuss measuring progressive changes in skin structure caused by aging 

and pathological mechanisms, and also changes that are caused by environmental 

factors such as sun exposure. The techniques of image processing and analysis have a 

critical role in histopathology by providing accurate diagnosis, and reducing time and 

laboratory costs. Automated image analysis enables investigation of therapies that 

reverse damage and abnormalities, and could theoretically replicate the expertise of a 

specialist in clinical and cosmetic dermatology. The skin is a fascinating tissue to study 

as it can reveal evidence of inflammation, hyperplasia, connective tissue disorders and 

underlying metabolic changes (in changes to the underlying fat layer) resulting from 

local and systemic influences. 

The skin is the largest mammalian organ, and although apparently simple, it is a highly-

organised tissue comprised of the epidermis, underlying dermis containing connective 

tissue and a deeper subcutaneous adipose layer. The overall structure of the skin is 

consistent throughout the body, but thickness and other skin features are different 

depending on function and location (Zaidi and Lanigan, 2010). Cutaneous integrity is 

known to degrade with chronological age, a process exacerbated by environmental 

stress with cosmetic and pathological implications (Sauermann et al., 2002). Strategies 

to mitigate or restore damaged matrix are highly desirable, thus objective morphological 

criteria and histological analysis are required to assess skin integrity. 

Many aspects of dermatology and associated treatments are widely researched. This 

research requires detailed understanding of the skin structure and organisation, and can 

require quantitative measurements.  Many research studies utilize manual methods for 

the quantification of skin features, which is a challenging task. Recently, however, there 

has been a move towards the automation of these techniques to improve accuracy and 

efficiency. This thesis is aimed at contributing to automation efforts in this area.  
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The skin contains many features that change quantitatively and qualitatively due to both 

innate mechanisms such as chronological ageing and environmental factors such as UV 

exposure. Among the features existing in digital images of skin sections, texture is 

probably the most important feature to be studied in terms of orientation, size, length 

and variety of shapes. In any image, the texture can be recognized, but it is difficult to 

define it, thus efficient image analysis techniques are required to analyze the skin 

texture in a histological skin section. In some images there are many textures that have 

different physical properties, whilst some textures have similar properties such as colour 

and intensity. In the analysis of skin histology, texture of collagen is an important 

factor. For example, collagen orientation and organisation in the dermis can 

qualitatively discriminate different ages, and measuring skin integrity to discriminate 

disease and healthy states is an important tool for investigators. 

Morphological changes in the skin layers indicate different clinical factors such as age, 

gender, body mass index (BMI) and disease.  Classical manual analysis of skin 

morphology is a challenging task, and time consuming. This was the motivation behind 

developing automated morphological analysis, to measure alteration in all of three main 

skin layers by quantifying changes in the thickness of each of these layers, and (more 

specifically) the number and size of adipocytes in the subcutaneous layer, and collagen 

organisation.  

Overall in this study, I aimed to identify features that characterized age- and disease-

related changes in the skin, using novel automated methods to enhance, segment and 

analyze images acquired from different types of microscope platforms in both mouse 

and human samples, either from biopsies or non-invasive techniques.  

For such research, a number of metrics are desired, including collagen organisation 

(particularly changes in texture), compartment size (to assess tissue loss), cell counting 

(for example, in assessing immune infiltration), levels of new collagen synthesis, 

measuring the thickness of each skin tissue layer and quantifying the subcutaneous fat 

(both area and number of cells). Ultimately, these analysis methods will facilitate 

accurate measurement of novel skin-restorative modalities. 
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1.2 Skin Structure and Skin Histopathology 

The skin consists of three main layers. Firstly, the outer layer is the highly-organised 

epidermis, secondly the underlying connective tissue layer (dermis), and finally a 

deeper adipose layer (the subcutis) as illustrated in Figure 1.1.  

 

 

Figure 1. 1: Overview of the organisation of the skin of mammalian. Adopted from (Shimizu 2007). 
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1.2.1 Layers of the Skin 

1.2.1.1 The Epidermis 

The epidermis is the outer layer that serves as the physical and chemical barrier between 

the interior of the body and the exterior environment, and is composed of layers of 

keratinocytes but also contains melanocytes, Langerhans cells and Merkel cells. The 

epidermis is composed of four layers: the stratum basal (basal or germinativum cell 

layer), the stratum spinosum (spinous or prickle cell layer), stratum granulosum 

(granular cell layer) and the stratum corneum (horny layer) as shown in Figure 1.2. 

Epidermal thickness depends on body site, e.g. on the eyelids it is about 0.05 mm, but 

on the soles of the feet and the palms of the hand (plantar skin), it is 0.8±1.5 mm 

(Gawkrodger, 1997). In thick epidermis, an additional layer called stratum lucidum can 

be seen, which represents a transition between the stratum granulosum and the stratum 

corneum (Montagna et al., 1992). 

 

 

 

 

Figure 1. 2: Upper layers of the skin. The four epidermal layers are shown, as well as the underlying 

dermis (Bolognia, Jorizzo et al. 2008). 
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1.2.1.2 Dermis  

The dermis is a deeper layer, providing structural support to the skin. The dermis is the 

area of supportive connective tissue between the epidermis and the underlying subcutis, 

and contains sweat glands, hair follicles, nerve cells and fibres, and blood and lymph 

vessels. The dermis is a relatively thick layer, varying in thickness from about 0.6 mm 

on the eyelids to 3 mm in plantar skin (Gherardi, 2008). The dermis is composed of two 

main layers: the papillary layer and the reticular layer. The papillary dermis is thin and 

lies below and connects with the epidermis. It contains thin and loosely arranged 

collagen fibres. The reticular layer contains thicker bundles of collagen that run parallel 

to the skin surface. The reticular dermis extends from the base of the papillary layer to 

the subcutis. The dermis is made up of fibroblasts, which produce collagen, elastin and 

proteoglycans, together with immuno-competent mast cells and macrophages (Shimizu, 

2007). More than 70% of the dermis consists of collagen fibres that give this layer 

strength and resilience. Elastin in the dermis maintains normal elasticity, while 

proteoglycans provide viscosity and hydration. The dermal vasculature, lymphatic 

system, nervous cells and fibres are embedded within the fibrous tissue of the dermis, 

and there are also sweat glands, hair follicles and small amounts of striated muscle 

(depending on site). 

1.2.1.3 The Subcutis (or Hypodermis)  

The innermost layer of the skin is the subcutis. It lies below the dermis and it contains 

loose connective tissue and fat cells, and it is also known as the adipose tissue layer. 

The human body contains many fat depots, including fat surrounding different organs 

(visceral fat), but the subcutis contains the largest depot of fat in the human body (Burns 

et al., 2010). The thickness of the subcutis varies in different parts of the body: this 

layer can be up to 3 cm thick on the human abdomen. Subcutaneous fat is separated 

from the rest of the body by a vestigial layer of striated muscle (Burns et al., 2010). 

There are two type of adipocyte in the human body, white and brown adipocyte, which 

have different properties, for example white adipocytes have less cytoplasm due to the 

large fat store within the cell. Brown adipocytes have a large amount of cytoplasm with 

a centrally located nucleus and smaller pockets of fat stores within each cell. The 

location and function of white and brown fat in the human body is different. White 

adipocytes function as energy stores and brown adipocytes function as energy 
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consumers. Normal skin contains only white adipocytes, however, the size and number 

of adipocytes can change  in different pathological states, so a decrease or increase in fat 

can indicate an abnormality e.g. obesity or diabetes (Britannica, 2014, Jo et al., 2009). 

1.2.1.4 Dermal-epidermal Interface (Dermoepidermal Junction) 

The boundary between the epidermis and dermis consists of a specialized aggregation of 

attachment molecules and connective tissue, collectively known as the basement 

membrane (Gawkrodger, 1997). This structure is complex and is of considerable 

interest as genetic defects in its composition leads to a variety of diseases, and it also 

serves as a target of autoimmune attack (Bolognia et al., 2008). The dermoepidermal 

junction flattens during ageing (Farage et al., 2010), which accounts in part for some of 

the visual signs of ageing. 

1.2.2 Function of the Skin 

The most obvious function of skin is to maintain a barrier that prevents the loss of fluids 

and protects against penetration by micro-organisms and UV radiation (Bolognia et al., 

2008). However the skin provides several other functions: it regulates body temperature 

by blood flow and limits the inward and outward passage of water. The secretion of 

sweat and lipids causes the elimination of a number of harmful substances resulting 

from metabolic activity. The skin also provides flexibility and strength to protect the 

body from friction and impact wounds. Also, the skin can act as a sensory organ as it 

has a large number of nerve fibres and nerve endings. The skin also produces vitamin D 

when it is exposed to the sun, which is an important substance in bone health 

(Gawkrodger, 1997, Gherardi, 2008). 

1.2.3 Histology Staining Methods in Skin Analysis 

The use of special stains highlights features and different structures within a specimen. 

In terms of analysis, staining can also facilitate image segmentation. Several staining 

methods are used in histopathology for highlighting different features in skin tissue 

sections (Key, 2006), and the main ones used in this study are explained below:  

Haematoxylin & eosin (H&E) is a general stain. It can allow assessment of overall 

structure. Acidic substances (i.e. nuclei) are stained blue and alkaline substances (the 

majority of other tissues) stain shades of pink. Figure 1.3a illustrates a skin tissue 
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section stained with H&E (provided by The Wellcome Trust Sanger Institute [WTSI] 

Mouse Genome Project [MGP]; unless otherwise stated all other tissues were generated 

in the Buckingham Institute for Translational Medicine). This staining is widely used in 

morphological analysis, where each skin layer can be discriminated, which helps to 

measure the depth of layers.  

Orcein and giemsa (O&G) staining is used to identify multiple features in the skin 

including collagen (staining pink), immune cells (red or purple), elastic fibres (black) 

and nuclei (blue) (Bancroft and Gamble, 2008, S.p.A., 2013). Figure 1.3b illustrates a 

skin section stained with O&G. 

Picrosirius staining can illustrate various features (Figure 1.3c-e). Collagen organisation 

can be identified under cross polar microscopy (Figure 1.3e), so that the basket-weave 

arrangement, and size and type of the collagen can be identified. Bright-field picrosirius 

imaging illustrates the loops and whirls of collagen (red) and the epidermis (yellow) as 

illustrated in Figure 1.3c. Under fluorescent imaging, collagen can be visualized, while 

epidermis does not autofluoresce to the same extent, and 3D imaging is possible with 

confocal microscopy (Figure 1.3d).  

Herovici’s polychrome staining allows collagen dynamics and organisation to be 

assessed. Newly formed collagen appears in blue and mature collagens appear in purple 

or red. Figure 1.3f shows a skin tissue section stained with Herovici (Watt and Fujiwara, 

2011, Turner et al., 2013).  

Periodic acid Schiff staining (PAS) highlights glycated proteins in the basement 

membranes and blood vessel walls, where they appear in dark pink. This makes 

collagen more distinguishable from the basement membranes due to the appearance of 

collagen in very light pink (Bancroft and Gamble 2008). Figure 1.3g is a skin section 

that has been stained with PAS, and the basement membrane of the epithelium in dark 

pink is highlighted. 
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Figure 1. 3: Examples of histological staining of C57B16 mouse skin. a) typical H&E stained skin 

section (20X original magnification); b) an example of an O&G stained skin section at 20X optical 

magnification, c) picrosirius stained skin section under bright-field, d) fluorescence (absorbance/emission 

~581/644 nm), e) dark-field cross-polar optics (original magnification 90X). f) an example of a Herovici 

stained skin section (20X). g) An example of a PAS stained skin section (20X). 
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1.2.4 Skin Ageing 

All organs lose functionality with age, and changes in the skin are the most visible signs 

of ageing (Sauermann et al., 2002). Skin ageing is induced by two main processes; 

intrinsic ageing, which is determined by genetics and time, and extrinsic ageing caused 

by environmental factors such as UV radiation. With ageing, greater variation in 

epidermal thickness is seen, and keratinocyte size is also increased (Farage et al., 2010). 

In addition, the number of pigment-containing cells (melanocytes) decreases, but the 

size of the remaining melanocytes increases (Farage et al., 2010). Aging skin appears 

paler and large pigmented spots (called age spots or liver spots) may appear in sun-

exposed areas. The skin loses its strength and elasticity because of changes in 

connective tissue, either changes in elastic fibres (elastosis) or in loss or fibrosis 

(thickening) of collagen, leading to the appearance of wrinkles and ridges in elderly 

skin.  The blood vessels of the dermis become more fragile, this leads to bruising and 

bleeding under the skin. In elderly skin, the sebaceous glands produce less oil, which 

can make it harder to keep the skin moist, resulting in dryness and itchiness. With 

increasing age, the subcutaneous fat layer may get thinner (Burns et al., 2010, Farage et 

al., 2010), which reduces its normal insulation and mechanical protection function. This 

increases the risk of skin injury and reduces the ability to maintain body temperature.  

1.2.4.1 Epidermal Changes in Ageing 

The most obvious change in the epidermis is that the dermal-epidermal junction is 

flattened in elderly skin and the surface contact between the epidermis and dermis is 

reduced, which causes a reduction in transfer of nutrients between these two layers. Cell 

turnover is decreased, so that the transit time goes from about 20 to about 30 days. The 

epidermis may grow thinner, and the number of melanocytes and Langerhans cells 

decrease (Sauermann et al., 2002, Puizina-Ivi, 2008, Farage et al., 2010). Keratohyalin 

granules decrease in the stratum granulosum. With age the skin becomes dehydrated, 

especially in stratum corneum, which exacerbates the appearance of wrinkles, where 

they often appear on the forehead, mouth and eyes. There are major clinical 

considerations in that wound healing is delayed (Minimas, 2007), and age-related 

malignancies are increasingly manifested, particularly basal and squamous cell 

carcinomas, which are among the most common human tumours. 

http://www.nlm.nih.gov/medlineplus/ency/article/001141.htm
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1.2.4.2 Dermal Changes in Ageing  

With increasing age, the dermal layer can lose up to 20% of its thickness. With ageing 

the collagen fibrils in the dermal layer become disorganised and deteriorate, and the 

accumulation of abnormal elastin (elastosis) is increased. In elderly skin, collagen is 

characterized by thickened fibrils that organise in  bundles, with loss of “basket-weave” 

structure (Bailey et al., 1998). The ratio of collagen types also changes with the ageing, 

seen in the loss of type I collagen in aged skin, accompanied by the loss of type IV and 

VII collagens, which contribute to wrinkle formation. In aged skin, the collagen bundles 

appear thicker, with increased spaces between bundles compared to young skin (Gogly 

et al., 1997), as illustrated in Figure 1.4. Collagens decrease if the skin is exposed to UV 

due to the action matrix metalloproteinases (MMPs) that degrade collagen fibres, and 

UV radiation also induces a thickening and coiling of elastic fibres. 

In the dermis, the elastic fibre network in younger people is composed of well 

distinguished oxytalan fibres oriented perpendicularly to the epidermis (Figure 1.5a). 

The oxytalan fibres that connect with elaunin fibres in the deep dermis run parallel to 

the epidermis (Figure 1.5b). Elastic fibres appear long and regularly positioned in the 

deep and middle of the dermis. In aged skin, oxytalan fibres fragment and thicken 

(Gogly et al., 1997). The amount of sugar and lipids decreases in elastin with age, and 

skin elasticity is gradually lost. 
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Figure 1. 4: Collagen (col) structure in the dermis. a) collagen in young skin,  b) collagen in aged skin. 

Images at 150X original magnification, taken from (Gogly, Godeau et al. 1997). 
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Figure 1. 5: Dermal elastic fibres (EF). a) elaunin in young skin, b) oxytalan (oxy) and elaunin (elau) in 

young skin. Original images at 200X magnification, adapted from (Gogly, Godeau et al. 1997). 

 

1.2.5 Diabetes and Obesity 

Diabetes and obesity are known to cause alterations in skin structure and function 

(Petrofsky et al., 2008, Sabol et al., 2014). Almost all individuals with diabetes and 

obesity will suffer skin complaints at some point, for example the attachment of glucose 

to proteins (glycation) affects the structure and function of many organs, including 

connective tissue. Diabetes is associated with skin complaints resulting from reduced 

blood flow and nerve damage, and people with diabetes are reported to have thinner 

skin. Diabetic skin is more sensitive to burns and injuries, wound healing is slower and 

nerve damage leads to loss of sensation, increasing the risk of physical injury (Petrofsky 

et al., 2008).  

Obesity also affects skin health. Obesity results from the enlargement in adipose tissue 

required to store excess energy intake. Wound healing is impaired in obese individuals, 

as is barrier function. Obesity also effects sebaceous glands, sweat glands, collagen 

structure and function, and most obviously the amount and composition of 

subcutaneous fat (Medical, 2013). Therefore, the development of automated methods 

for the determination of adipocyte size, both in the skin and at other sites, is important 

to studies of energy balance and glucose metabolism (Chen and Farese, 2002). 
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1.3 Biological Image Processing and Analysis Background 

Digital images contain a huge amount of information, and the interpretation of the 

information in these images needs effective image analysis solutions.  

Image processing techniques are the image operators that transform the original image 

(input image) to produce an output image (as described in equation (eq1.1)) that is more 

suitable for analysis. Image operators either manipulate spatial information 

(transformation in the spatial domain) or manipulate frequency information (frequency 

domain) (Gonzalez et al., 2004). 

𝑔(𝑥, 𝑦) = 𝑇(𝑓(𝑥, 𝑦))                                                   (𝑒𝑞1.1) 

g (x, y) is the output image, f(x, y) is the input and T is the image operator. 

Computer science plays an important role in the quantification of information within 

images by using automatic and semi-automatic algorithms to perform image analysis 

with high levels of accuracy, speed and throughput.  

Biological images come in many different forms, and even within the field of 

microscopy images can be acquired from many different types of microscopes and other 

devices such as whole-slide scanners. Extracting the complex information contained in 

these images is a demanding task, and manual methods tend to be inaccurate and not 

necessarily reproducible. Therefore, the biologist or physician increasingly needs 

automated image processing and analysis techniques to get an accurate result to reach 

an informed decision to help with diagnosis and appropriate management (Meijering 

and van Cappellen, 2006, Toennies, 2012).   

MATLABTM is a powerful scripting environment that readily allows the deployment of 

a broad range of image analysis operators, and is very powerful in prototyping novel 

analysis pipelines. Image analysis methods devised for extracting cutaneous features 

and analysis, are written in MATLAB 2011b. Packages can be made available to users 

without a MATLAB compiler as standalone .exe files. 

1.3.1 Image Acquisition (Image Sources) 

Biological images can be acquired from different sources, and most are now digital, 

which may require enhancement prior to analysis. Before capturing biological images 
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there are many processes to prepare the tissue or cells for photomicrography. These 

included fixation, sectioning and staining to preserve and highlight specific features of 

the section. 

1.3.1.1 Microscopy 

The human eye has a detection limit of wave lengths in the visible range of 400 to 750 

nm. In addition, perceiving the contrast in an image or object depends on the difference 

in intensity for two different regions (I1, I2) in an image, given by: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = log10(𝐼1/𝐼2)                                      (𝑒𝑞1.2) 

The human eye is limited to resolution of ~0.1 mm. The limitations in wavelength, 

contrast and resolution leaves the human eye insensitive to detect small objects, and 

unable to detect some polarization states (Rittscher et al., 2008).   

The microscope has been used to overcome limitations of the human eye. There are 

many different microscopic techniques that one can use to visualize small objects in any 

tissue and study cells or other structures. Figure 1.6 illustrates techniques for visualizing 

small objects with the human eye, and some types of microscopy. 

Microscopic techniques are based on specimen types that fall into three categories: 

single molecules, cells, and tissues. There are different imaging techniques that are used 

to study different biological specimens; in this thesis the following techniques are 

described: 

 Brightfield illumination: used to study stained tissue, naturally coloured 

specimens, hair and fibres.   

 Fluorescence illumination: suitable for fluorescent specimen such as cells in 

tissue culture or fluorochrome-stained sections. This is used in fluorescence and 

confocal microscopy. 

 Polarized illumination: commonly used to study birefringent specimens with a 

regular structure such as thin mineral sections, hairs and fibres, bones and 

feathers. Herein, I used this technique to identify collagen. 
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Figure 1. 6: Limitations of the human eye and microscopy for visualizing small objects. TEM: 

transmission electron microscopy. AFM: atomic force microscopy (Rittscher, Machiraju et al. 2008). 

1.3.1.2 Whole-slide Scanners (Digital Pathology Platforms) 

Whole-slide scanners produce huge image with a very high-resolutions, often by 

performing line-scanning followed by image stitching. Scanners such as the Aperio 

ScanScope provide images of up to 40x optical magnification and allow “virtual 

microscopy”. This technique has advantages in that it incorporates a huge amount of 

information in one file, and can show the entire tissue in one image that can be analyzed 

in one pass. However, the size of these images might slow down batch processing, and 

they cannot be easily analyzed by traditional image analysis techniques and require 

expensive commercial software, which requires expert optimisation and is generally not 

fast enough to give timely results. Figure 1.7 illustrates the Aperio whole-slide scanner 

and a typical display of the software. 



Chapter 1 
 

16 
 

 

Figure 1. 7: Aperio ScanScope Scanner. Taken from www.Aperio.com. 

 

1.3.2 Image Processing 

Object detection is a common biological image processing task that forms the first stage 

of automated bio-image analysis. There are many artefacts (including noise) in an image 

that need to be removed, and many other properties that need to be enhanced in a given 

image before the process of detection and quantification. The next stage is the 

partitioning of the image into meaningful regions and extracting the features that could 

be interesting for quantification and analysis. Image pre-processing comprises a range 

of image processing techniques as described in the following sub-sections. 

1.3.2.1 Image Enhancement 

Image enhancement is used to increase the visualization of specific objects and makes 

the object more easily detectable in the image by a human observer. Another use of 

enhancement is in pre-processing before further image processing and analysis. The 

general purpose of image enhancement is to map the image into another image, so that 

http://www.aperio.com/
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the objects in the processed image become easily detected and recognized. There are 

different enhancement techniques, which I will discuss below. 

1.3.2.1.1 Contrast Enhancement 

Contrast enhancement is the manipulation of the dynamic range in a given image, and is 

needed when the objects and the background are difficult to separate. There are different 

measurements to calculate contrast in an image, including global contrast, global 

variance, entropy, and contrast from the co-occurrence matrix. If the image has a high 

dynamic range, they tend to have a high contrast. The contrast of an image can be 

improved considerably by mapping its input range to the full output range. Contrast 

stretching is a good example of this operation (Gonzalez, Woods et al. 2004). Figure 1.8 

illustrates contrast stretching and the output image, taken from (Meijering and van 

Cappellen 2006). 

Global contrast enhancement is one of the methods for contrast enhancement; the 

method transform each pixel value f as follows: 

𝑔(𝑓) = (𝑓 − 𝑓𝑚𝑖𝑛)
𝐼𝑚𝑎𝑥

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

+ 𝐼𝑚𝑖𝑛                                   (𝑒𝑞1.3) 

Where fmin and fmax are the minimum and the maximum of colour intensities of the input 

image, and Imin and Imax are given parameters that represent the minimum and the 

maximum of colour intensities of the output image after contrast enhancement. The 

function to map f on g is called the transfer function (Toennies 2012). 

  

Figure 1. 8: Contrast stretching. Input cell image (left); centre panel, the mapping function M; and right 

panel the output image with increased contrast (Meijering and van Cappellen 2006). 
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1.3.2.1.2 Edge Enhancement 

Edge enhancement and detection is a common task in bio-image analysis, which starts 

with enhancing and detecting the object boundary. This process helps object detection 

and structure recognition. Edges in an image are local changes in the intensity in that 

image, this means that edges have a high frequency. However, image noise is a problem 

at high frequencies. Enhancing edges in a given image is associated with increasing the 

noise in that image, which is why edge enhancement should be combined with 

smoothing, and this is computed by convolving the image with different smoothing 

kernels. The Sobel operator, Gaussian kernel and Laplace operator are  good examples 

of the different kernels used to enhance edges in images (Toennies, 2012). There many 

other examples of convolution filters to enhance edges, such as averaging and 

sharpening.  

In some directional structure studies, edge enhancement is associated with the direction 

of edges, and this needs to combine different operators with a directional smoothing 

operator. The Gabor filter is an example of an enhancement model of directionally 

sensitive structure to provide edge detection by direction (Scherzer, 2011 , Toennies, 

2012).  

1.3.2.1.3 Noise Reduction 

Noise is additional random information in an image that is produced by the sensor or 

camera that captures the image. In biological image analysis, it is very important to 

remove the noise in a given image, because it will affect the quantification process and 

results will not be accurate. Noise reduction can be classified into three schemes: linear 

filtering, non-linear filtering and diffusion filtering. Linear filtering and non-linear 

filtering are the most used noise reduction filters in biological image analysis (Meijering 

and van Cappellen, 2006, Kueh, Marco et al., 2013). 

Linear filtering 

By using linear filtering, the output pixel value is computed as a linear combination of 

the values of the corresponding input pixel and its neighbours. These filters are called 

kernels. There are some examples of linear filters that work to remove the noise in an 

image (Figure 1.9). The averaging, sharpening, smoothing, and derivative filters of 

varying sizes are examples of this kind of filter (Meijering and van Cappellen 2006). 
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Figure 1. 9: Input and output produced using a linear filter (convolution filtering). 

 

Non-linear filtering 

The image output pixel value comes from a nonlinear combination of neighbouring 

input pixel values. The median filter is a non-linear filter, where each output pixel value 

is computed as the median of the corresponding input values in a neighbourhood of 

given size (Meijering and van Cappellen, 2006). This filter is widely used to remove 

noise in the image while preserving the edges in the image (Chan et al., 2005). 

The median filter neighbourhood is usually a square, covering an odd number of pixels 

of size 3×3, 5×5, or 7×7 neighbourhoods. The median filter is used for preserving sharp 

edges if the neighbourhood region of a median filter contains an edge. Figure 1.10 

shows an example of a nonlinear median filter with mask size 3×3. In Figure 1.10a, the 

intensity value 20 replaces the centre pixel, and the resulting image without noise is 

shown in Figure 1.10b. 
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Figure 1. 10: Example of median filtering.  a) filter of size 3×3, b) example of replacing the centre pixel 

with the median value of window pixels. A typical noisy image is shown in the left panel, and the median 

filtered image is shown in the right panel. 
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1.3.2.2 Segmentation and Feature Extraction 

Segmentation is a process that is used to subdivide an image into different regions or 

objects. Segmentation depends on properties and structure in the image, and the pixels 

related to the object region (Gonzalez et al., 2004).  

Biological image analysis and quantification needs objects to be detected and the 

features of objects identified. After segmentation, the segmented region can be 

analysed, then a meaning assigned to this region (Cisneros et al., 2011). The inputs in 

the segmentation method are images and the outputs are attributes extracted from those 

images.  

Segmentation approaches are divided into two categories. The first category applies to 

monochrome images and the second category applies to colour images (Hosea et al., 

2011). Segmentation of monochromatic images is based on properties of image 

intensity values such as discontinuity and similarity. There are many segmentation 

methods to detect points, lines and edges in images that depend on intensity 

discontinuity by running different masks through the image. Segmentation in colour 

images depends on the colour and texture of that image. 

1.3.2.2.1 Thresholding 

The technique of thresholding is widely used in biological image segmentation because 

of the simplicity of implementation. This process results in a fast image analysis if the 

threshold value can be chosen automatically and adaptively to be applied to all images. 

The idea of a threshold is that the object and background in a given image f(x, y) have 

intensity levels grouped into two modes. These modes are separated by the threshold T, 

in the intensity histogram of that image (Figure 1.11), such that any point at which f(x, 

y) is greater than the threshold T is an object, otherwise it is background. 

1.3.2.2.2 Piecewise Linear Transformation 

This intensity transformation works as an approach to brighten or darken a desired 

range of grey levels that makes the target object more suitable to be identified whilst 

preserving the grey level tonalities in the image (Gonzales and Woods, 2002).  
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Figure 1. 11: Intensity thresholding. Thresholding achieved by applying the threshold or mapping 

function M to the input image f(x,y) and producing the thresholded output T(x,y) so that T(x,y)= M(f(x,y)). 

a) grayscale image with the corresponding histogram underneath, b) segmented objects in binary form. 

Adapted from (Meijering and van Cappellen 2006). 
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1.3.2.2.3 Colour Segmentation 

Colour-based segmentation is the process that segments or subdivides an image into 

regions depending on the colour-texture pattern distribution in that image (Deng et al., 

1999). This process is about finding homogenous colour regions, and those not similar 

to the segmented region. Biological image segmentation should be accurate and robust, 

and subdivide an image to target objects and non-objects for further quantification. 

Colour segmentation is different from one colour space to another as there are many 

colour spaces representing colour in image. Example of colour spaces are: RGB that 

includes three channels red, green and blue; HSV that includes hue (colour information, 

H) and saturation (S) used to isolate regions in the hue image, and the intensity or value 

image (V), which carries no colour information (Gonzalez et al., 2004); and CIELAB 

represents lightness, where A and B are two colour dimensions in this colour space. 

There are many other colour spaces, however the above are widely used in image 

analysis (Ford and Roberts, 1998).  

Biological image segmentation is a difficult task because images are rich in colour and 

texture. Colour quantization facilitates the segmentation process, using a criterion for 

extraction of a few representative colours, where neighbouring regions can be 

differentiated in the image (Deng et al., 1999).    

1.3.2.3 Mathematical Morphology 

Morphological techniques can be used in the pre-processing and post-processing of 

geometrical structure in an image. Techniques can be applied to binary images and 

greyscale images. Mathematical morphology transforms the image according to the size, 

shape and connectivity. Binary morphology techniques control how the shape fits or 

misses the exact shape of the object in the image by using different morphological 

operations that help image analysis before and after segmentation ( Gonzalez et al., 

2004, Fisher et al., 2005, Meijering and van Cappellen, 2006). 

1.3.2.3.1 Erosion and Dilation 

Erosion and dilation are two basic mathematical morphology operators that are typically 

applied to a binary image. The erosion operator erodes away the boundaries of 
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foreground regions, and the dilation operator will enlarge the boundaries of foreground 

regions (i.e. white pixels).  

1.3.2.3.2 Closing and Opening 

Closing is similar to the dilation operator in that it enlarges the boundaries of a 

foreground image and shrinks the background in such regions. The closing operator can 

be derived from both erosion and dilation operations. This operator does not affect the 

background regions that have similar shape to the structuring element, while it changes 

all other background regions. The closing operator is defined simply as dilation 

followed by erosion using the same structuring element for both operations. 

Opening is another important mathematical morphology operator, derived from dilation 

and erosion and its effect on the image is similar to the erosion operator, in that it 

removes some pixels from the boundaries of the foreground region. This operator does 

not affect foreground regions that have a similar shape to the structuring element. An 

opening operation is defined as erosion followed by dilation using the same structuring 

element for both operations. 

Figure 1.12 illustrates the mathematical morphology operators using dilation, erosion, 

closing and opening, which are widely used in this thesis.  

 

 

Figure 1. 12: Principles of binary morphological erosion, dilation, closing and opening operators. 
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1.3.2.3.3 Skeletons 

Any shape can be represented as a graph in any planar region, in other words one can 

reduce the shape to a graph by obtaining the skeleton of the region using a thinning 

algorithm (Gonzalez et al., 2004). Skeletonization is the morphological process that 

reduces the foreground region of the binary image to a skeleton without losing the 

extent and connectivity of the original region of the image. The resulting skeleton can 

be described as the loci of centres of bi-tangent circles that fit entirely within the 

foreground region being considered. Figure 1.13 illustrates this in a rectangular shape.  

The skeleton of any region is defined by medial axis transformation (MAT). R is a 

region and b is the border for that region, the MAT for each point p in the R is created 

by finding the closest neighbour in b, if p has more than one neighbour it means that it 

belongs to the skeleton (Gonzalez, Woods et al. 2004). Figure 1.14 shows examples of 

skeletonisation. 

 

 

Figure 1. 13: Skeleton of a rectangle defined in terms of bi-tangent circles. 
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Figure 1. 14: Examples of skeletons and binary images. The first row shows binary images; the second 

row shows skeletons. Adapted from (Fisher, Perkins et al. 2005). 

 

1.3.3 Image Analysis 

In general, analysis methods are divided into two categories: image processing and 

analysis in either spatial or frequency domains. 

1.3.3.1 Image Analysis in the Spatial Domain 

The spatial domain is the standard image space, and all techniques that work in this 

domain are based on grey level mapping, and work on the intensity values on the image 

plane. Processing in the spatial domain is described by equation (eq1.1), and Figure 

1.15 shows an example of image analysis and quantification in the spatial domain. 

There are two main categories of processing in the spatial domain: 

1. Intensity transformation: works on a single pixel 

2. Spatial filtering: works on a neighbourhood of every pixel. 
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Intensity transformations are used as enhancement techniques in the spatial domain, and 

most of these processes have been used in this project including: 

 Threshold transformation 

 Log Transformation 

 Contrast stretching transform 

 Image negative 

 Gamma transformation 

 Histogram equalization 

 Piecewise linear transform (Gonzalez, Woods et al. 2004).  

Spatial filtering techniques are very important in image processing, in particular when 

the image contains noise and other artefacts. 

 

 

 

 

Application of analysis in the spatial domain: 

There are many techniques that have been used in the study and analysis of images of 

skin tissue sections in the spatial domain. Such analysis techniques work with properties 

of the image pixels as intensity, colour and texture (Rich and Whittaker, 2005, Cisneros 

et al., 2011, Aymeric Histace, 2014), and these will be described in the appropriate 

context in each Chapter.  
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Figure 1. 15: Image processing and analysis. a) original microscopic cell image, b) enhanced image 

using contrast adjustment, c) example of quantification stage (Kueh, Marco et al.). 
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1.3.3.2 Image Analysis in Frequency Domain  

The analysis in the frequency domain can find a signal in a given frequency band over a 

range of frequencies. The operator that transforms the image from the spatial domain 

(time domain) to the frequency domain is called a Fourier transform, which separates a 

signal (image) into its spectral components depending on its frequency content.   

The change in grey level in an image and the pixel intensity values affects the frequency 

content of that image. High frequencies come from rapid changes in the intensity 

values, while the low frequencies come from slower changes in intensity values, which 

can be analysed using a Fourier transform (Gonzalez, Woods et al. 2004).   

Fast Fourier Transform FFT: 

The Fast Fourier transform FFT is one of the algorithms used to compute the discrete 

Fourier transform to find the strength of the different frequencies in the image. The FFT 

is an efficient algorithm that returns the strength of the different frequency waveforms 

contributing to the pixel values of the entire image. The Discrete Fourier transform 

(DFT) of a signal and its inverse can be computed using FFT. The DFT of an image 

extracts the strength of the different frequency waveforms contributing to the pixel 

values of the entire image (Gonzalez, Woods et al. 2004).  

The DFT of an image f for any frequency pair (u,v) is a complex number that depends 

on all the spatial pixel values f(x,y) computed by the formula: 

𝑓(𝑢, 𝑣) =
1

𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(

𝑢𝑥
𝑀

+
𝑣𝑦
𝑁

)                              (𝑒𝑞1.4)

𝑁−1

𝑌=0

𝑀−1

𝑋=0

 

 This technique has been used to measure the structure of collagen in images previously 

(Wu, 2011). 

Application of analysis in frequency domain 

There are many biological analysis applications in the frequency domain, and there are 

various studies of the influence of  different factors on collagen architecture, such as age 

(Wu et al., 2011, Zhuo et al., 2009, Noorlander et al., 2002), and these will be described 

in the appropriate context in each Chapter.  
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1.3.4 Existing Biological Image Analysis Tools 

There are many existing tools for digital image processing and analysis, including both 

commercial and open-access software. The following applications were previously used 

in the Buckingham Institute for Translational Medicine.  

1.3.4.1 Commercial Software 

Visiopharm Integrator System (VIS) is commercial software package designed to 

perform complete analysis in digital pathology. The user can extract a great deal of 

information, such as numbers, length, area, volume, intensity, shape, and texture 

information in a short time. The software guides the user in a step-by-step fashion to 

find significant information in fields such as diabetes, dermatology and neuroscience 

research. VisiopharmDP enables the user to work with whole slide images, and can 

analyse the image in different magnifications, which help the user to save time if the 

analysis can be performed at lower magnification, i.e. analysis at 10X is faster than at 

20X magnification (Grunkin, 2008). However this software is very expensive and needs 

the user to be highly trained to create an optimal protocol for any particular analysis. 

Moreover, analysis of digital slides is very time consuming.  

1.3.4.2 Free Open-source Software 

ImageJ is a freely available tool used widely in biomedical image analysis. ImageJ is 

java- based open-source platform that has a list of plug-ins that make it helpful in a 

range of fields in science and engineering, including medical imaging and microscopy. 

Figure 1.16a illustrates the user interface of this program. One important feature in 

ImageJ is that it supports a variety of standard image formats, including 48-bit colour 

composite images. LOCI is a bundle of plug-ins that was developed to open over 65 

different image formats from bioscience, (www.loci.wisc.edu). ImageJ has a number of 

useful tools for intensity processing such as image filtering (as illustrated in Figure 1.16 

b and c), background subtraction and histogram manipulation, as well as a number of 

automated segmentation techniques such as Otsu thresholding, mixture modelling, 

maximum entropy, colour-based thresholding and k-means clustering (Collins, 2007, 

Baecker, 2010). There is also a growing range of user-written plug-in filters.  

 

http://www.loci.wisc.edu/
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There are many image enhancement techniques that can be easy performed by the user 

including:  

 Brightness and contrast adjustment 

 Enhance Contrast 

o Normalization or contrast stretching 

o Histogram equalization 

 Noise suppression 

o Mean filter 

o Gaussian blur filter 

o Edge enhancing filter 

 Filtering in frequency domain 

 Background subtraction. 

Tasks can be automated using the ImageJ scripting environment. However, 

implementing these tasks needs and experienced user, and it is not particularly suitable 

for high-throughput analysis which requires unsupervised, adaptive and automated 

system.  
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Figure 1. 16: Noise reduction using ImageJ. a) The ImageJ window. b) An example of an image 

containing noise before using mean filters, c) the image filtered with a mean filter. Taken from (Baecker 

2010). 
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1.3.5 Automated or Computational Biological Image Analysis 

Biological images contain a variety of objects, which may need to be extracted and 

quantified. Many of the existing tools do not cater for the array of objects found in the 

research or pathology context and there are difficulties in doing this in a time-efficient 

manner. For example there are few whole-slide application tools, and few resources for 

cutaneous research.  

Automated image analysis exists within the computational field, but is limited in 

biological applications. Automation has two major advantages: firstly it prevents bias 

and secondly the process can applied to a large number of images (Kueh, Marco et al., 

2013). Biological images are often complex and contain noise that necessitate image 

processing to enhance the image and allow extraction of meaningful quantitative 

information. Attempts have been made to automate biological image analysis; some of 

these studies are described in this section. 

Mathematical morphology and other segmentation methods using image processing 

techniques such as edge detection and region growing are used in biological 

applications (Sadeghian et al., 2009). Two segmentation processes were described in 

this work, nucleus segmentation and cytoplasm segmentation. The nucleus was 

segmented using edge detection and gradient vector flow (GVF) followed by an active 

contour snake model to segment and detect the boundary of the nucleus. The cytoplasm 

was segmented using intensity thresholding. However, nucleus segmentation in blood 

samples required an adaptive technique as the boundary of the nucleus was not very 

clear when using a region based technique for segmentation. In the process of cytoplasm 

segmentation, the threshold had to be adaptive to all images because of variation in 

cytoplasm intensity in order to achieve more accurate segmentation results.  

A method of characterizing different tissues by extracting morphological and 

topological features using segmentation and classification of different types of cells in 

epithelial and adipose tissue was reported by de Assis Zampirolli et al. (de Assis 

Zampirolli et al., 2010). Mathematical morphology was used for automated epithelial 

cell segmentation, beginning with converting the H&E stained colour image to 

greyscale, then thresholding before opening operators were used to segment cells and 

create a marker. Adipocytes were segmented by transforming the original image into an 
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inverse image, followed by a dilation operator to create a marker for each cell, followed 

by creating the outlines of cells using a watershed calculation. After the cells were 

outlined, a neighbourhood graph was constructed that extracted 16 features from each 

cell of the epithelial and adipose tissue. The extracted features described in this method 

are: perimeter, area, mean distance to the neighbours, major axis length, minor axis 

length, orientation, convex area, eccentricity, diameter, extent, solidity, form factor, 

roundness, aspect ratio and convexity. These features were fed into a Support Vector 

Machine Classifier (SVM) to evaluate how these features were able to describe the two 

types of tissues, as well as the ability to describe abnormalities such as cancer. The 

result of classification showed 100% of the epithelial cells were correctly predicted, and 

99.76% of the adipocytes were correctly classified, these results show that this feature 

was a good predictor using histological images. However, this technique cannot be 

utilized for clinical use for two reasons: firstly, the method to segment cells must be 

able to segment all cells accurately, which is not necessarily achieved using the 

watershed method. Secondly, only five images of epithelial tissue and five images of 

mammary gland adipose tissue were studied, which not enough to assess classification 

performance. 

In the diagnosis of neuromuscular diseases, the evaluation of the size and shape of 

muscle fibres revealed important information. The automated muscle fibre analysis of 

histology images was described by Brox et al. (Brox et al., 2006) by segmenting 

myofibres using an active contour model followed by post-process refinement with 

morphological filters. To determine the outline of myofibres in RGB H&E images, an 

active contour model was applied to separate the fibres from other parts of the image. 

The proposed active contour model was based on two parts; firstly, region-based 

separation of fibres of similar colour and texture from the intermyofibrillar connective 

tissue. Secondly, the edge based part of the active contour model separated these 

regions according to the properties of the edges of muscle fibres. Thirty images of five 

human muscle specimens were segmented, and the automated segmentation result was 

compared to the manual method, and this showed only a 2% misclassification rate. The 

accuracy of automated morphometric analysis was compared to human measurements 

performed by three observers in ten images containing 191 muscles. Area, perimeter, 

circularity, and diameter were calculated with both automated and manual methods, and 

the results didn’t show any significant difference between the manual and automated 
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analysis. This indicates that the system was valuable in muscle research, but further 

work was required if it was to be used for clinical diagnosis. In particular, it must work 

adaptively if there were variations in the properties of larger, or distinct, image sets. 

An automated evaluation of the quality of segmentation in cytological and histological 

images of stained samples in different colour spaces was proposed by Meas-Yedid et al. 

(Meas-Yedid et al., 2004). Two criteria were proposed to evaluate automatic 

segmentation, and this was compared to Liu’s and Borossoti criteria (Philips et al., 

2005), to test and evaluate the quality of segmentation without human interaction. Two 

segmentation methods were used, thresholding a 1D-histogram, which split the 

histogram into two classes, and segmentation based on colour quantization that reduced 

the number of colours in the image without colour distortion. Segmentation was tested 

in different colour spaces such as RGB, normalized RGB (NRGB), opponent colours 

(H1H2H3), I1I2I3, XY Z, Y IQ, Lab and Luv. Segmenting cytology images showed 

very good results in normalized RGB (NRGB) colour space. When applied to histology, 

the H1H2H3 and Luv colour spaces showed the best segmentation using the Meas-

Yedid criteria, whereas using Liu’s and Borsotti’s, the two colour spaces  I1I2I3 and Y 

IQ showed best performance.  

An automated system of nuclear segmentation in bladder and skin images was proposed 

by Korde et al. (Korde et al., 2009), in which karyometric analysis was used to evaluate 

variation in the nucleus. Cell nucleus segmentation was performed by both manual and 

fully automated methods, and the results were compared in terms of the proportional 

difference in the nuclear area and the total optical density, and median proportional 

difference in the karyometric features. Manual segmentation was performed with a user 

selected greyscale level threshold, and then nuclear boundaries were adjusted by the 

user until adequate segmentation was achieved. Automated segmentation used a 5×5 

median filter to remove noise, and this was followed by segmentation, categorization 

and cusp correction. The properties of the image histogram were used to select an 

optimal threshold at the segmentation stage. Finally, erosion and dilation operators were 

used to improve nuclear segmentation. In ten bladder and ten skin histology images, 

segmentation resulted in a sensitivity of 76.4% in bladder and 83% in skin. By 

comparison, manual and automatic segmentation for bladder cell nuclei showed a 

proportional difference in nuclear area of 4.1%, the proportional difference in total 
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optical density was 2.2% and the median proportional difference over all non-zero 

karyometric features was 3.1%. In skin images the proportional difference in nuclear 

area was 1.3%, the proportional difference in the total optical density was 1.1% and the 

median proportional difference over all non-zero karyometric features was 2.9%. The 

result of automatic segmentation showed agreement with karyometric analysis, 

however, the histogram-based threshold method for some images did not give clear 

peaks for nuclear and non-nuclear objects, and some of the images contained more than 

two peaks, making the segmentation process more complicated.  

Segmentation of any object in a digital image requires a robust algorithm for enhancing 

colour information and image intensity to account for variations in contrast and staining 

of input images. Feature extraction from H&E stained human skin using morphological 

processing and object classification rules to detect the class of tissue damage in 

epidermis was described by Haggerty et al (Haggerty et al., 2014). H&E stained images 

in this study were generated in skin explant assays that were developed to investigate 

the immunobiology of graft versus host disease occurring post hematopoietic stem cell 

transplantation in HLA-matched siblings. Skin biopsies were fixed, sectioned and 

stained with H&E. Forty skin samples were investigated in this study, and for each skin 

sample a digital 10X magnification image was created.  

Segmentation differed from other traditional methods in pre-processing, thresholding, 

segmentation and post-processing. Haggerty et al’s approach started with cropping the 

tissue area, followed by colour normalization to improve algorithm efficiency. The 

images were enhanced using colour conversion and contrast enhancement. Otsu 

thresholding was used to minimize the intra-class variance in images and segment the 

region of interest followed by the use of closing and opening morphological operations 

to create a binary mask of the epidermis. The objects that were not a part of the 

epidermis were excluded by classifying each object pixel. It is important to note that 

user interaction was necessary to improve object classification. Performance of the 

algorithm was evaluated, and the results showed that the mean specificity was 98.0%, 

the mean sensitivity was 91.0% and the mean accuracy was 96.8%. Without user 

interaction, the mean specificity was 97.7%, the mean sensitivity was 89.4% and the 

mean accuracy was 96.5%. This algorithm showed a high performance, however, there 

were some techniques used in this study that might adversely affect the accuracy of 
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segmentation for independent datasets, e.g. the colour normalization in some images 

might make objects of interest disappear, or other non-objects may appear as an object. 

Also, the use of threshold and morphological operators must work adaptively to handle 

variation in colour and intensity to reduce errors.  

1.4 Research Aim and Objectives 

Mouse models are invaluable in understanding human disease. Histological analysis 

provides a “gold standard” method to investigate tissue disruption in disease states. 

However, this has proved largely intractable to high-throughput image analysis that 

would allow quantification of diverse pathology, and so inform our understanding of 

disease aetiology and improve diagnosis and treatment.  

The overall aim of this research was to develop novel automated and computerized 

methods that can analyse histological images of skin in high-throughput analysis to help 

the biomedical scientist in identifying interesting features in images of tissues prepared 

with different histological stains, acquired from various invasive and non-invasive 

imaging platforms. Therefore, biological image analysis methods need to be able to deal 

with all intensity, colour, shape, and texture information in images, and work adaptively 

with different image datasets to evaluate skin integrity by assessing the morphology of 

skin layers, and to detect and quantify changes.   

In this research, the images were acquired from different microscope sources, a whole 

slide scanner, and from skin mould impressions. For quantification, the features of 

interest had to be highlighted and distinguished from other objects, as well as the image 

background, using intensity, colour, shape and texture. The analysis methods started 

with improving image processing techniques to work unsupervised and adaptively to 

enhance images in order to improve the reliability and accuracy of the experimental 

results, i.e. by enhancing contrast and reducing noise to make objects more identifiable, 

and prepare the region of interest (ROI) for segmentation. This thesis also aims to 

perform quantification and data analysis following feature extraction using 

computational techniques to detect interesting textural and morphological changes in 

the skin that describe discrete biological states.  Once a technique was developed using 

representative sample images, it could then be applied to a broader image dataset to 

investigate a specific biological question. 
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Many aspects of skin integrity change in ageing, and in disease states, including loss of 

skin strength, reduction in collagen synthesis and change in subcuticular fat. I set out to 

create a set of tools to evaluate diverse aspects of skin pathology in human subjects, and 

mouse models of human disease. These included: 

 Measuring skin integrity in skin stained with picrosirius red and imaged with 

cross-polar microscopy to evaluate loss of collagen integrity. This involved 

quantifying the directions of collagen bundles and measuring degradation in 

collagen organisation and changes in bundle thickness in an ageing series, as 

well as in a model of diabetic skin. 

 Development of a technique to quantify collagen dynamics by assessing 

Herovici stained skin from ageing and diabetic subjects. 

 Development of quantification techniques to assess skin layer morphology (size, 

number of adipocytes and depth of each skin layer) in high-throughput analysis 

and application of these techniques to a large bank of highly-indexed images 

from the WTSI MGP in order to identify novel genes involved in the 

pathogenesis of skin disease. 

 Development of a technique to measure the surface texture of the skin through 

the automated analysis of skin moulds from sun exposed and non-exposed 

human subjects.  
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CHAPTER 2 

Collagen Assessment in Histological Skin Sections  

2.1 Background  

Automatic extraction of texture information and quantifying collagen orientation in skin 

tissue is very important to assess skin structure. Cross-polar picrosirius images can 

visualize the organisation of collagen in the dermis. In this Chapter, I describe the 

quantification of changes in the basket-weave structure in different ageing states, and 

detect more subtle pathological changes in the dermis. Measuring collagen bundle 

thickness and investigating the decrease in thickness with aging was done by 

quantifying the foci distance from the vertex of the ellipse that was generated from the 

FFT scatter of the cross-polar images. Another analysis of collagen dynamics by 

evaluating new collagen synthesis in Herovici polychrome stained images was made 

using my novel scheme, which works adaptively with images with variations in hue and 

intensity. 

2.1.1 Collagen in the Skin 

Collagen is a structural extracellular matrix (ECM) protein that provides a supportive 

framework for cells in the dermis (Mays, McAnulty et al. 1995). The dermis contains 

the basket-weave conformation of healthy collagen, which changes with aging and other 

disorders. Alteration and damage to collagen structure can reflect the level of sun 

exposure or cutaneous pathology (Fligiel, Varani et al. 2003).   

2.1.2 Visualisation of Collagen in Skin 

There are different staining techniques that are used for visualising different 

components of skin tissue as described in Chapter 1, section 1.2.3. I describe two of 

these techniques that have been used in the collagen assessment in the skin. 

Picrosirius staining: 

The picrosirius staining and polarization procedure has been used in various studies to 

evaluate collagen structure and assess the basket-weave structure of the dermis 

(Junqueira, Bignolas et al. 1979; Rich and Whittaker 2005). Images of picrosirius 
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stained skin can reveal the exquisite structure of collagen and can be used for different 

purposes, such as the study of collagen orientation, collagen thickness and study of 

different types of collagen. Bright-field microscopy of picrosirius staining demonstrates 

the loops and whirls of collagen (red; Figure 2.1a) and the epidermis (yellow). 

Fluorescent microscopy of picrosirius stained skin identifies collagen but not the 

epidermis (Varani, Warner et al. 2000; Wu, Li et al. 2011), and 3D imaging is possible 

with confocal microscopy (Figure 2.1b). With cross-polar microscopy, the collagen 

basket-weave can be observed (Figure 2.1c) (Montes and Junqueira 1991).  

Herovici staining: 

Herovici staining colours larger mature collagen fibres red and the thinner young 

collagen blue. I used this discrimination to assess collagen dynamics, or how new and 

mature collagen appears, in the dermis (Turner, Pezzone et al. 2013) (Figure 2.2). 

Figure 2.2 illustrates the ability of this histochemical staining to visualize the different 

type of collagen in ECM in the dermis, so that the collagen in the reticular dermis is 

stained in blue or purple, and the collagen in the papillary layer is stained blue (Watt 

and Fujiwara 2011). 

There are other staining methods used in the study of collagen architecture. H&E 

staining is another method that can be used in the assessment of collagen content in the 

dermal layer, which colours the collagen pink. Many other staining methods are used 

also in collagen detection and analysis. Periodic acid Schiff (PAS) stains collagen pink, 

and is also used in the study of basement membranes, which stain dark pink. Verhoeff’s 

van Gieson stains collagen pink and elastic fibres brown/ black. Masson’s trichrome 

stains collagen blue and muscle red. Orcien-giemsa (O&G) stain stains collagen pink 

and elastic fibres black, and also gives information about inflammatory cells.  
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Figure 2. 1: Picrosirius stained skin. C57Bl6 mouse skin was stained with picrosirius and viewed under 

bright-field (left panel), fluorescence (absorbance/emission ~581/644 nm, centre panel) or dark-field 

cross-polar optics (right panel). Original magnification 90X, scale bar = 10µm in each case. 

 

 

Figure 2. 2: Herovici stained mouse skin. Mature collagen appears red and new collagen appears blue. 

Pixel dimensions = 1712×1074 pixels, 552.12×346.36 µm. 

.Measurement of Collagen in the Skin 

Existing techniques measure gross pathological changes, such as fibrosis, but are not 

sufficiently sensitive to detect more subtle and progressive pathological changes in the 

dermis, such as those seen in aging. Although most collagen staining is simply a tool to 
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allow the visualization of the dermis, some attempts were made to manually quantify 

collagen and its structure, which are time consuming and observer biased, and 

automated methods would solve problems of observer bias and provide more precise 

results. Existing automated analysis and measurement of collagen structure are based on 

the frequency spectrum obtained by transforming the image to its frequency domain 

using FFT (Gogly, Godeau et al. 1997; van Zuijlen, de Vries et al. 2002).  

In this section, I discuss existing methods to assess collagen thickness, content and 

orientation, including the pathological or diagnostic utility of these techniques. 

a. Fast Fourier Transform FFT 

The main image processing technique used to assess collagen architecture is the Fast 

Fourier Transform FFT, (as described in Chapter 1, section 1.3.3.2). Although there are 

other orientation estimation methods such as radon transformation (Jafari-Khouzani and 

Soltanian-Zadeh 2005) and the dual-tree complex wavelet transform CWT (Selesnick, 

Baraniuk et al. 2005), these are more suitable for ordinary texture analysis that captures 

variation in specific directions. Consequently, these transforms are not suitable for the 

analysis of collagen in the dermis due to the fact that in skin collagen fibres are oriented 

in different directions and organised (seemingly) randomly. I required a technique that 

could detect random variation in collagen organisation and direction throughout an 

image. There are other image processing techniques that could be used for texture 

information extraction in the spatial domain, such as Local Binary Pattern (LBP) 

described in detail in Chapter 4, section 4.4. However, this technique is only suitable for 

analysing the local texture inside a predefined LBP window. On the other hand, the FFT 

spectrum gives information about texture direction and organisation in the whole image, 

because each pixel in the FFT spectrum provides information about the variation in the 

values of all the pixels in the spatial domain of the image.    

b. Collagen Orientation 

Once the DFT has been computed, the resulting power spectrum from the FFT is used 

to determine the relative organisation or directionality of the original image texture (de 

Vries, Enomoto et al. 2000).  

A binarised image of the shifted FFT power spectrum can be generated using a suitable 

threshold. The significant pixel values cluster in the centre of the binarised spectrum 
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image in an approximately elliptical shape. The orientation index can be calculated from 

the major and minor axes of the fitted ellipse of significant values using the following 

equation: 

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 1 −
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
                               (𝑒𝑞2.1) 

These resulting index measurements can then be used to quantify structural changes in 

dermal collagen because the change of the index value represents the change of the 

object orientation, so that the zero and close to zero corresponds to randomly orientated 

collagen bundles, and one and close to one corresponds to parallel orientation of 

collagen bundles (de Vries, Enomoto et al. 2000; Wu, Li et al. 2011; Verhaegen, Marle 

et al. 2012).  

The FFT power spectrum and the  corresponding orientation index method  has been 

used to measure collagen bundle orientation and spacing, as well as collagen orientation 

in lesional scleroderma skin (de Vries, Enomoto et al. 2000). Scleroderma is a skin 

disorder that exhibits fibrosis in the dermis, which is characterised by the parallel 

alignment of collagen fibres. Lesional skin showed parallel alignment of fibres, in 

contrast to collagen in normal skin, which was in a basket-weave orientation. Briefly, 

H&E stained skin from non-lesional and lesional scleroderma tissue were subjected to 

laser scatter (passing light through the sample and then assessing the diffraction pattern) 

and the difference in the light diffraction patterns was assessed using a computer image 

analyser to assess collagen organisation, and the FFT and the orientation index method 

was also utilised to estimate collagen orientation in the image. The FFT was found to be 

more accurate than the laser scatter method, and as the laser scatter method uses 

expensive software, the FFT method was preferred. However, this study used a small 

number of samples, thus a more thorough investigation of the use of FFT in this way is 

required. 

Multiphoton microscopy (MPM) and second-harmonic generation (SHG) were also 

used in the study of collagen related changes in aging skin texture, and the changes 

associated with cancer progression (Zhuo, Chen et al. 2009; Wu, Li et al. 2011). 

Collagen morphology in aging skin has been quantified in images acquired using MPM 

and analysed using FFT (Wu, Li et al., 2011). Changes in collagen structure were 

monitored in mouse dermis in chronologically aged and photo-aged in vivo. This 
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analysis identified significant differences in collagen structure in different ages. The 

power spectra of the FFTs that were generated from the MPM images were assessed by 

calculating the Orientation Index as described previously (eq2.1). The result showed 

collagen changes in aged skin. The SHG also allowed the visualization of collagen 

structure status at different depths, where the SHG signal was strong in young skin at a 

depth of 56 µm and in elderly skin at a depth of 48 µm, and in photoaging was at a 

depth of <40 µm. This indicated that depth decreased with age and with a high level of 

UV sun exposure. The results in this work could allow one to monitor collagen changes 

in aged skin and photoageing, however, the use of MPM is expensive, and the SHG 

signal didn’t show any change between 50- 60 weeks or between 8-16 weeks, indicating 

that a more sensitive technique was required to detect the variation in collagen structure 

within these narrower age ranges.   

A microscopic method for determining collagen orientation changes in dermis resulting 

from mechanical stress was reported (Noorlander, Melis et al. 2002). Picrosirius stained 

piglet skin sections were used in this method to demonstrate changes in collagen 

orientation in skin stretched for 30 minutes. ImageJ image analysis software was used to 

determine the length of collagen fibres as a parameter of fibre orientation. In brief, the 

binary image was produced from the greyscale image and the best fitting oval was 

calculated for each numbered white object in the binary image. The minor and major 

axes of the oval were determined for all white objects and the mean length of the ten 

longest major axes was calculated and used as the parameter for the orientation of 

collagen fibres. From this value across three serial sections of a specimen, the collagen 

alignment index was calculated. The results showed significant differences with the p-

value <0.005 between control skin and stretched skin, however, the software used in 

this study is very limited, and for more precise measurement of collagen changes, a 

more sensitive image processing and analysis was again required. 

c. Collagen Thickness and Spacing 

Fourier first-order maximum analysis and distance mapping using Qwin Pro image 

analysis software (version 2.8, Leica Imaging Systems, Cambridge, U.K.) was used to 

assess collagen orientation, thickness and bundle spacing in H&E stained skin 

(Verhaegen, Marle et al. 2012). These parameters were calculated using distance 

mapping. The first step was to create a binary image from the bright-field H&E grey 
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image in order to segment the collagen bundles. A distance map and skeleton were then 

created, and the thickness measured by doubling the distance from the skeleton, which 

represented the centre of the object and the edge of the resulting grey image of the 

object from the distance map. The technique of FFT first-order maximum analysis was 

used by calculating the DFT to quantify bundle centre distance by measuring the 

distance from the centre of the gravity of the FFT power spectrum to the centre of the 

first order power spectrum. This study demonstrated that there were significantly 

thicker collagen bundles and significantly more spacing between the collagen bundles in 

healthy skin compared to scar tissue. Furthermore, this analysis introduced a technique 

to measure degradation in the collagen structure, and identified a need to assess collagen 

structure variation more precisely. 

Another technique was developed from FFT analysis to measure collagen bundle 

packing. 3D reconstructions of FFT plots acquired using MPM was followed by a 

quantification technique using FFT (Wu, Li et al. 2011). This quantitative analysis of 

collagen orientation index and collagen bundle packing was used to discriminate 

chronological and photo-ageing in the skin.  

d. Collagen Type/ Colour Separation 

Segmentation of the components of histological images of neuroma, and analysis of 

specific component in biological tissue sections was proposed by Cisneros et al 

(Cisneros, Cordero et al. 2011). This method examined the properties of each pixel in 

order to evaluate colour, then measured the distance between the colour of the pixel 

using Mahalanobis distance, and the average colour of each one of the components to be 

segmented. This was used in neuroma images from amputees to evaluate the effects of 

stimulation on the peripheral neuroprosthetic nerves. This method began with 

segmentation using pixel-based techniques, and classified pixels into component 1 and 

component 2 using colour features of individual pixels. Pixel determination (component 

1 compared to component 2) was based on the Mahalanobis distance that measured the 

distance between the colour of the pixel and the average colour of each one of the 

components to segment the target object. This method was compared to other 

segmentation methods used to count cancer cells in histological sections from different 

squamous cell carcinomas (Loukas et. al, 2003), using Laplacian of Gaussian (LoG) 

edge detection (Marr and Hildreth 1980). In this work, the components (brown cells) 
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were segmented and the results compared with segmentation using a k-means clustering 

algorithm  (He, Long et al. 2010). The proposed technique could be adapted to any 

histological image. The limitation was that the speed of analysis, and implementation 

was not easy to improve because of the small number operations used. 

Differences in collagen content, fibre colour, and fibre distribution were assessed in rat 

skin tissue and myocardium, and rabbit iliac arteries using picrosirius red stained 

sections in order to detect thin fibres (Rich and Whittaker 2005).  An image subtraction 

technique and colour threshold filters were used to quantify collagen content and assess 

the spatial distribution of fibres. In skin samples, there was a good correlation between 

the collagen content in skin obtained by two investigators. In the analysis of 

myocardium, there was an increase in scar collagen content one, three and five weeks 

after injury. There was a decrease in green (thin) fibres and increase in orange (thick) 

fibres. The analysis of arterial tissue showed that the tunica adventitia contained mainly 

yellow fibres, while the tunica media contained the least collagen (mainly green and 

orange) within the lesion. Subtraction and colour separation methods were used to 

analyse specific tissue sections, and so may not be applicable to another type of tissue.  

Colour segmentation was used in biomedical applications for detecting tumours in brain 

mass resonance imaging (MRI) scans images using k-means clustering for colour 

segmentation (Wu, Lin et al. 2007). The proposed method of clustering MRI images 

into three clusters showed good segmentation by combining histogram statistics and k-

means clustering to segment and track the tumour in the image by distinguishing the 

lesion size and region. The method started with generating an RGB colour image from 

the grey MRI image, followed by conversion into CIE Lab colour space and then 

clustering the colour image into three clusters. The result of k-means clustering and 

histogram-based clustering showed a segmented tumour in the image, however, some 

other white regions were segmented with the lesion region, indicating an error in the 

segmentation process. Therefore, more work was required to optimise this technique. 

The use of k-means clustering has important roles in other applications, as well as in 

biomedical images, and has been applied to satellite images. In satellite image analysis 

k-means clustering was used to segment images into five groups, and de-correlation 

stretching was used to enhance the colour separation in images to make geographical 

feature discrimination easier (Chitade and Katiyar 2010). These examples indicate that 
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k-means clustering has wide utility across image analysis problems, and can be used 

effectively as a segmentation tool. 

2.2 Aims and Objectives 

The research reported in the rest of the Chapter aims to develop an automated system to 

measure dermal integrity using texture orientation analysis. In general, I used picrosirius 

stained mouse skin of varying ages, in healthy and diabetic states, and assessed collagen 

dynamics in Herovici polychrome stained images. Specifically, my aims were to: 

 Develop image-based techniques to assess collagen orientation and the changes 

in collagen structure in picrosirius stained skin. This involves quantification of 

collagen bundle directions, and measurement of degradation in collagen 

organisation, as well as changes in bundle thickness in a calibrated series of 

ageing and diabetic skin. 

 Develop a technique to assess collagen dynamics in Herovici’s polychrome 

stained images by quantifying the ratio of newly formed (blue) to mature (red) 

collagen.  

 Test the performance of these techniques in a chronically aged databank of 

images of both healthy skin and skin from a model of type 2 diabetes. 

2.3 Automated Collagen Assessment  

2.3.1 Collagen Orientation Assessment 

Collagen orientation and organisation in the dermis can qualitatively discriminate 

different ages. The dermal layer of the skin contains the basket-weave conformation of 

healthy collagen, which changes with aging and other disorders. Cross-polar images of 

picrosirius stained skin reveal this exquisite structure. Herein, I shall utilize these 

images to create an automated measurement of collagen basket-weave and fibre 

orientation. 

2.3.1.1 Sources of Skin, and the Image Databank 

Reagents were supplied by Sigma-Aldrich (Poole, Dorset). Animal procedures were 

performed by Mr Ed Wargent and Dr Mohamed Zaibi, and histological preparations 

were provided by Mrs Parvathy Harikumar and Dr Joanne Selway. All animal 

procedures were conducted in accordance with the UK Government Animals (Scientific 
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Procedures) Act 1986 and approved by the University of Buckingham Ethical Review 

Board. For the calibrated series of ageing, wild-type C57Bl6 mice were killed at 7 

weeks, and 3, 8, 12 and 20 months of age. These provide a meaningful model of human 

ageing, ranging from young adult to extreme old age. Males were used for all studies, 

and tissues from at least 3 animals per group were studied (90 images from papillary 

and 90 images from reticular dermal layer).  

For the series of diabetic skin, both misty (normal control for db/db) and db/db mice 

were sacrificed at 6 weeks, 3, 5 and 6 months of age. db/db mice do not expresses a 

functional receptor for leptin, a hormone that regulates energy balance. These animals 

are hyperphagic and show rapid post-natal weight gain. By 12 weeks db/db animals are 

hyperglycaemic, providing and a meaningful model of human type 2 diabetes. The 

animals in the ageing studies were in a C57Bl6 background. Males were used for all 

studies, and tissues from at least 3 animals per group were studied (78 images db/db and 

90 images from misty mice). 

For picrosirius staining, skin sections were stained for one hour at room temperature in 

0.1% Direct Red 80 in saturated picric acid prior to differentiation in 0.5% acetic acid, 

dehydration, clearing and mounting as standard. Slides were imaged in bright-field, 

with cross-polars and under fluorescence with a Nikon TEi inverted microscope 

equipped with cross-polar optics (Nikon, Kingston, UK) and a QImaging CCD camera 

coupled to Nikon NIS imaging software. Images for each slide were captured using a 

90X objective in at least 3 different locations. For Herovici staining, nuclear staining 

with an acid-resistant nuclear stain (Weigert’s Iron Haematoxylin) for one minute was 

followed by 2 minute incubation in Herovici staining solution following by a tap water 

rinse. Slides were then immersed in 1% acetic acid before dehydration, clearing and 

mounting. Slides were visualised under bright-field using a whole-slide scanner 

(ScanScope CS2, Aperio, San Diego, CA, USA). 

Statistical analysis was performed in GraphPad PrismTM 5.0. Two-group tests between 

db/db and misty animals or between papillary and reticular compartments, were carried 

out using either Students’ t-test. One-way ANOVAs followed by Dunnett’s post-hoc 

analysis (where the ANOVA demonstrated significance) were performed when 

analysing more than two groups. Where appropriate, Pearsons correlation analysis was 

performed (p<0.05). 
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FFT and Gabor filter techniques were implemented using the MATLABTM 2011b image 

processing toolbox. 

2.3.1.2 Implementation of an Existing FFT Technique  

In order to assess the effectiveness of existing methodologies in measuring collagen 

orientation, I used the methodology described by Wu et al (Wu, Li et al. 2011) (section 

2.1.3.a). I investigated the qualitative decline in dermal integrity in young (3 months) 

and old (20 months) dermis of mouse skin. This was done by computing the FFT power 

spectrum for each image in the dataset of picrosirius stained papillary dermis for 

different age groups at 3, 8, 12, and 20 months (Figure 2.3a). Collagen orientation 

indexes were generated from the elliptic shape of the FFT power spectrum of each 

image, and then the orientation index calculated by equation eq2.1. I was able to 

measure the structural changes discriminating the extreme age groups (3 and 20 months, 

Figure 2.3b). However, I was not able to detect age-related changes between 3 and 12 

months (an approximation of middle-age), thus a more sensitive approach was required. 

This suggested that existing techniques were designed to measure gross pathological 

changes, such as fibrosis, but were not sufficiently sensitive to detect more subtle and 

progressive pathological changes in the dermis, such as those seen in aging. 
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Figure 2. 3: Analysis of picrosirius stained skin.   a) picrosirius  stained papillary dermis in 3, 8, 12 and 

20 month old wt mouse skin, magnification= 90X, pixel dimensions = 1600×1200 pixels, 114.72×86.04 

µm, b) scatter plot (vertical) of the result of the FFT analysis of chronological skin ageing, at least 3 

animals per age group, 2 sections per animal (a total of 90 images). The mean and standard deviation is 

shown for each group.  
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2.3.1.3 Development of a Gabor Filter with Fourier Transform method 

Collagen in the dermis is organised with fibres in different directions. To assess changes 

in collagen orientation, the amount of collagen in each direction has to be quantified, 

and one way of doing this was to use a directional or ‘wavelet’ filter such as a Gabor 

filter before texture analysis. In this thesis, I opted to exploit the directional 

characteristics of the Gabor filter (see section 2.3.1.3c). However, there were several 

pre-processing and other technical considerations to be evaluated first. 

a. Image Capture Parameters 

Initially 20X magnification (pixel dimensions = 2560×1920 pixels, 825.6×619.2 µm) 

picrosirius images were prepared (Figure 2.4). Figure 2.4b shows the 20X magnification 

picrosirius stained image and the objects detected in 8 directions using a Gabor filter. It 

was expected that the presence of hair follicles and sebaceous glands would affect 

collagen directional quantification because they are oriented in different directions, and 

to solve this problem I captured images in areas without hair follicles and glands. 

Another issue that affected the analysis process is that the FFT power spectrum in 

young skin and elderly skin at 20X magnification didn’t show a difference in collagen 

structure, as shown in Figure 2.5. Thus, to reduce the effect of hair follicles and other 

non-collagen fibres in images, 90X images (pixel dimensions= 1600×1200 pixels, 

114.72×86.04 µm) were used for analysis. Using a 90X image magnification, I could 

analyse the collagen in papillary and reticular dermis separately.  

b. Pre-processing Steps 

To detect the directional structure of collagen in each image, many pre-processing 

techniques were used before the final technique to enhance edges in images. For 

example, using the minimum and maximum filters separately in the colour space 

channels to emphasize the dark and bright area respectively in images provided the 

desired edge enhancement. Afterwards,  an unsharp mask filter was used as a final filter 

to enhance the edges of collagen fibres in the dermal skin layer in images. Figure 2.6 

shows the result of a filtered image using the above techniques, and shows some of the 

non-fibre objects as a directional structure. Also, it is of note that in collagen orientation 

analysis, the unsharp filter caused excessive collagen fibre detection. Therefore, I opted 

to limit pre-processing to the use of a 3×3 median filter  in order to reduce noise and 

other artifacts that are generated by capturing picrosirius cross-polar micrographs. 
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Figure 2. 4: Analysis of picrosirius images and edge detection in 8 directions. Left panel is the 

original 20X picrosirius  stained image, right panel is the Gabor filtered image. 

 

 

Figure 2. 5: The effect of hair follicles and sebaceous glands on the FFT power spectrum. a) 

picrosirius stained 3 month mouse skin and b) its FFT power spectrum. c) 20 month wt mouse skin and d) 

the FFT power spectrum. Images captured at 20X original magnification. 
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Figure 2. 6: Picrosirius stained reticular dermis from 3 months old wt mouse. Original image (a), the 

unsharp mask filtered image (b), image filtered with maximum filter (c) and (d) image filtered with 

minimum filter. Image captured at 90x original magnification. 

c. Gabor Filter Parameters 

A Gabor function in the spatial domain is a sinusoidal modulated Gaussian. For a 2D 

Gaussian with a spread of σx and σy in the x and y directions, respectively, and a 

modulating frequency ω, the real impulse response of the filter is given by: 

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒

−
1
2

(
𝑥2

𝜎𝑥2
+

𝑦2

𝜎𝑦2
)

𝑐𝑜𝑠(2𝜋𝜔𝑥)                                  (𝑒𝑞2.2) 

Where  = wavelength of the sinusoidal factor,  is the orientation of Gabor 

function,  is the phase offset,  is the sigma/standard deviation of the Gaussian factor 

and 𝛾 is the spatial aspect ratio of x and y axis of Gaussian. 

A Gabor filter calculates all the orientations of the input image with the Gaussian filter 

for all combinations of orientations and all phase offsets using the parameter values 

below: 
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Wavelength (lambda) = 8; Orientation degree (theta) = 0; Phase offset(s) (deg.) = [0 

pi/2]; Aspect Ratio = 0.5; Bandwidth = 1; Number of orientations = 8. The result is a 4 

dimensional matrix consisting of image coordinates, phase offset and the orientation: 

Result = ( : , : , phase offset(i), orientation(j))   

A Gabor filter was applied on an input image using 𝜃 values of 0° (and its equivalent 

180°), 45° (and its equivalent 225°), 90° (and its equivalent 270°), and 135° (and its 

equivalent 315°)  for all of 8-Directions, to detect and highlight collagen fibre edges. The 

use of 16-directions didn’t produce interesting information for analysis because of the 

ambiguity in the close directions resulting from the output Gabor filter when followed 

by a FFT transform. However, the shape of the generated binary images from differed 

ages could be discriminated by applying a Gabor filter in 8-directions (Figure 2.7, 3 and 

20 months wt mouse). 

Each two opposite directions of collagen, e.g. (00 , 1800), (450 , 225)0, (900 , 2700) and 

(1350 , 3150), generated an ellipse perpendicular to the collagen structure in these two 

directions, achieved by transforming the Gabor filtered image by FFT to create the 

power spectrum of each direction, and then converting the spectrum to its binary form. 

For all 8 directions, there were four ellipses generated, and an orientation index was 

calculated for each ellipse by use of the equation eq2.1.  

 

 

Figure 2. 7: FFT power spectra of Gabor filtered images. a) 3 month wt reticular dermis and its binary 

image (b),  20 month wt reticular dermis (c)  and its binary image (d).  



Chapter 2 

55 
 

d. FFT and Quantification 

The Fourier spectrum of Gabor-filtered images in each direction pair was represented as 

an ellipse, i.e. (00, 1800), (450, 2250), (900, 2700) and (1350, 3150) are in opposite 

directions. Figure 2.8 shows the direction of ellipses. For quantification, the power 

spectrum was transformed to a binary representation, and each ellipse was quantified as 

a function (Nωn) of the length of its minor and major axes. 

𝑁𝜔𝑛 = 1 − 
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
                                             (𝑒𝑞2.3) 

Figure 2.9 illustrates the whole process with a flow chart and the result of each step 

before the elliptical quantification process. 

 

Figure 2. 8: Ellipses generation from FFT power spectrum of Gabor filtered image. A typical FFT 

spectrum is shown in the upper left panel. In the upper right panel is an illustration of the elliptical 

measurements taken from the FFT for each ellipse. Below is the illustration of the ellipse measurements 

generated to produce the collagen orientation index (N) from the elliptical axes generated from ω values 

N1-N4. 
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Figure 2. 9: Overview of edge detection using a Gabor filter and collagen quantification in 

picrosirius images. Top panel, is flow diagram of FFT power spectrum generation. Lower figure: the left 

columns shows the original images; the middle columns shows Gabor filtered images, and in right 

columns shows the Fourier spectra of Gabor filtered images. 

2.3.1.4 Final Gabor Filter with Fourier Method and Validation 

In summary, the combination of Gabor filtering and FFT was used to produce a 

frequency spectrum from each direction of collagen bundles in the dermis (Figure 2.10). 

This spectrum was quantified using ellipse parameters that generated by converting the 

FFT spectrum to its binary form using Otsu threshold as explained  in MATLAB script 

below, to measure subtle changes in collagen fibre orientation and progressive 

pathological changes in the dermis. 

Level = graythresh(image); // Compute global threshold. 

bwI = im2bw(image,level); // Convert image to binary image by thresholding. 

2.3.1.4.1 Collagen structure in Ageing Skin 

By quantifying the spectra resulting from FFT images, either with or without an eight 

direction Gabor filter, I sought to evaluate the ability of my methodology to provide an 

index of collagen organisation. I assessed collagen integrity by determining collagen 

organisation in skin samples prepared from mice of increasing age. Superficially, a loss 



Chapter 2 

57 
 

of basket-weave structure was apparent in elderly skin by 20 months of age, and this 

difference could be determined in FFT images with or without Gabor filtering. 

However, FFT alone did not identify a progressive decline in skin integrity from 8 

months as I would have anticipated from qualitative observations and published 

observations of ageing skin structure (Varani, Warner et al. 2000; Wu, Li et al. 2011). 

Rather, a trend was only detectable with the introduction of the Gabor filtering process 

(Figure 2.11). 

I was able to demonstrate a significant inverse correlation between time and collagen 

organisation (Table 2.1). When compared to the use of FFT alone, the correlation 

between age and collagen organisation increased with Gabor filtering, with R2 values of 

0.842 and 0.95 respectively. 

 

 Overall Dermis Papillary Reticular 
Overall 

Dermis 
Papillary Reticular 

 
Gabor+FFT 

(max.OI/min.OI) 

Gabor+FFT 

(max.OI/min.OI) 

Gabor+FFT 

(max.OI/min.OI) 
FFT (OI) FFT (OI) FFT (OI) 

95% 

CI 

-0.999 to 

0.209 

-0.999 to 

0.284 

-0.999 to 

0.276 

-0.370 to 

0.999 

-0.574 to 

0.997 

-0.171 to 

0.999 

P 

value  
0.0128 0.0206 0.0111 0.0413 0.0683 0.0272 

R2 0.950 0.920 0.956 0.842 0.7454 0.8941 

 

 

Table 2. 1: Correlation of ageing with collagen structure in papillary and reticular dermis using 

FFT with and without edge detection. 
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Figure 2. 10: Use of a multi-directional Gabor filter. a) original cross polar image, b) the Gabor filter 

result image for each opposite direction pair (left panels), FFT spectrum ( middle panels) and binary 

image of each ellipse (right panels). 
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Figure 2. 11: Alterations in dermal integrity with age in wt animals. Scatter plot, vertical, of the result 

of analysis showing p value = 0.005 represented by **, 3m, 8m and 12m 4nimals per group and 20m 3 

animals, 3 images from each animal (90images). 

The dermis is divided into superficial papillary and deeper reticular layers, 

distinguishable by collagen organisation. I went on to evaluate differences in age-related 

changes in these two compartments. The reticular dermis consistently exhibited a lower 

orientation index in the presence or absence of the Gabor filter (Figure 2.12), and while 

this difference did not achieve significance, it is suggestive of a higher level of 

organisation in the papillary dermis. More importantly, the use of a Gabor filter 

revealed differential rates of collagen degradation in the two layers. The papillary 

dermis maintained consistent collagen organisation until 8 months, with a reduction in 

mean integrity by 12 months that was exacerbated by 20 months using a combination of 

a Gabor filter and FFT.  

A more progressive loss of structure was seen in the reticular compartment, with the 

changes between 8 and 20 months being less marked. A significant change in reticular 

collagen structure between 3 months  and 20 months wt was observed with the FFT 

alone (p<0.038) and with the inclusion of the Gabor filter (p<0.039) according to  

Students’ t-test. Both quantification methods demonstrated an inverse correlation 

between age and collagen orientation, but only with the addition of the Gabor filter was 
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the correlation significant in both the papillary and reticular dermis. Overall, with the 

Gabor filter, the reticular dermis has a higher correlation co-efficient (R2=0.956) 

compared to the papillary dermis (R2= 0.920) suggesting that the latter compartment is 

slightly more resilient to age-related damage. 

A progressive decline in integrity was seen in both papillary and reticular compartments 

by my method. While FFT alone was able to detect changes by 20 months, this method 

could not detect progressive decline in either compartment. Significance was 

established using an ANOVA with post-hoc Dunnett’s test relative to the 3 month group 

(n>3 animals per group). 

 

 

Figure 2. 12: Increasing age demonstrates differential patterns of decline in collagen organisation in 

the different layers of the dermis in wt mice. Using FFT with Gabor filter showed a decrease of 

Max.OI/Min.OI with age, which is significant in papillary dermis (3-4 animals per age group, 3 images 

per animal, 90 images) p value=0.0023, **. Whereas using FFT without Gabor filter showed increase of 

orientation index OI with age, in reticular dermis (same number of samples of papillary dermis) p value= 

0.02, represented by 1 asterisk*). 
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2.3.1.4.2 Diabetic Skin Evaluation 

By using my new techniques, collagen organisation in an in vivo model of type 2 

diabetes mellitus (the db/db mouse) was evaluated. 

Analysis of picrosirius stained skin by FFT alone showed a change in structure between 

6 weeks and 3 months, (by which time mice were hyperglycaemic), although after this 

time integrity appeared to stabilize (Figure 2.13). However, no statistically-significant 

differences in dermal integrity discriminated diabetic and lean mice. Application of the 

Gabor filter revealed a progressive loss in structure, and the variation seen at 6 months 

was consistent with the variation one would anticipate from an in vivo model. Misty 

skin, however, did appear to have a more ordered basket-weave structure compared to 

the C57Bl6 mouse, and this strain variation is a current avenue of biological 

investigation. Critically, inclusion of the Gabor filter allowed clear discrimination 

between lean and diabetic skin at each time point.  

Although there were qualitative differences between control misty and matched db/db 

picrosirius stained skin, more subtle changes between db/db time points were difficult to 

assess. When comparing the original Fourier transform alone with my refined method 

incorporating the Gabor filter, only my method differentiated between control and db/db 

skin. Furthermore, I demonstrate that the orientation indices calculated from my Gabor 

plus Fourier method exhibited a significant inverse correlation with increasing age of 

diabetic skin (R2= 0.9936) but not within the control skin (R2= 0.3737), whilst no 

correlation was observed with the Fourier alone method (Table 2.2). 
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Figure 2. 13: Dermal collagen organisation in lean and diabetic mice. A) db/db and B) misty skin 

quantification using the Gabor/ FFT methodology (C), ** is significance with p value= 0.002, *** p 

value= 0.0005, **** p value<0.0001 , or by FFT alone (D). 
 

 

 

Table 2. 2: Statistical analysis of diabetic skin data. Statistical comparison between each of db/db and 

misty collagen structure using Gabor filter with FFT and FFT along.  

 

 

 

 db/db using Gabor 
(max.OI/min.OI) 

Misty using 
Gabor 

(max.OI/min.OI) 
db/db FFT (OI) Misty FFT (OI) 

95% CI -0.9999 to 0.8511 -0.8481 to 0.9905 -0.6437 to 0.9964 -0.8531 to 0.9901 

P value  0.0032 0.3887 0.1676 0.4002 

R2  0.9936 0.3737 0.6929 0.3598 
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2.3.2 Collagen Thickness Quantification 

Collagen bundle thickness is strongly related to change in collagen dynamics caused by 

ageing or environmental factors and skin disease (Verhaegen, Marle et al. 2012). The 

aim of this experiment was to quantify changes in collagen structure through assessing 

changes in FFT spectra associated with collagen bundle thickness. 

As illustrated in the earlier sections of this thesis, the FFT spectrum of a picrosirius 

image provides information about collagen structure in different ages. This section 

describes a method for quantifying collagen bundle thickness in skin tissue sections 

stained with picrosirius from chronologically-aged mouse skin as described above based 

on the maximum amplitude of the FFT spectrum. This was achieved by transforming 

the original picrosirius stained image from the spatial domain to its frequency domain 

using FFT as shown in Figure 2.14.  

2.3.2.1 Existing Methods for Bundle Thickness 

It is  difficult to measure collagen bundle thickness because each section of the skin 

might not go through the thickest part of the fibre, and there are no many existing 

methods to measure the thickness of collagen. Therefore, this was my motivation in 

seeking an automated method to quantify collagen bundle thickness. 

 The only method described in the literature to measure collagen bundle thickness used 

the FFT first order maximum spectrum followed by calculating the distance between the 

centre of gravity and the centre of the FFT power spectrum (Figure 2.15) (Verhaegen, 

Marle et al. 2012). One problem with this method is that well-ordered skin, i.e. young 

skin, doesn’t present these two gravities in the power spectrum, therefore, an alternative 

is required. I developed quantification exploiting the ellipse parameter as described in 

the final methods section (2.3.2.2). The difference between old and young skin power 

spectra is illustrated in Figure 2.14. 

 

 

 

 



Chapter 2 

64 
 

 

Figure 2. 14: Maximum frequencies FFT power spectra from ageing mice. Top row: picrosirius 

stained collagen images from skin at 3, 8, 12 and 20 months. Lower panels, maximum amplitude of 

corresponding FFT spectra. 
 

 

 

Figure 2. 15: Power spectrum of two the image and measurement of collagen bundle thickness. 

a) FFT first order maximum spectrum, b) binary of the power spectrum that shows two gravity centres 

and the distance A (Verhaegen, Marle et al. 2012). 
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2.3.2.2 Determination of Collagen Thickness  

The collagen thickness method started by converting RGB images of picrosirius stained 

skin into greyscale images, and then measuring the maximum frequencies of the FFT 

that represent sudden changes of intensity in edges of collagen bundles using MATLAB 

according to this function: 

𝐹𝐹𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝑙𝑜𝑔 ( 𝑎𝑏𝑠( 𝐹𝐹𝑇2(𝑖𝑚𝑎𝑔𝑒))))) 

Calculation of the maximum FFT frequencies was followed by generating a power plot 

of the FFT spectrum. The resulting spectrum was transformed into a binary image, 

which was used in collagen thickness quantification. 

Elliptical Measurements: 

Two parameters were measured during the initial stage: the thickness of the collagen 

bundle and the bundle spacing (BS). These two parameters were based on quantifying 

the maximum amplitude in the FFT spectrum. Quantification was done by measuring 

the distance between the foci and vertex of the ellipse that fit to the binary image of the 

FFT power spectrum of the high frequencies in the picrosirius images as illustrated in 

Figure 2.16. The corresponding ellipse was found by finding the ellipse that has the 

same second central moments as the binary form of FFT spectrum, and major and minor 

axis were found using the MATLAB command below: 

 I  = regionprops (BW, 'MajorAxisLength', 'MinorAxisLength');  

Bundle thickness was calculated by the formula:   

𝑇 = 𝐴 − 𝐹                                                            (𝑒𝑞2.4) 

Where T is the bundle thickness, A is the major radius of the ellipse, and F is the 

distance from each focus to the centre of the ellipse (foci distance). The bundle spacing 

calculated in development stage, by subtracting T from foci distance.  

The foci distance was calculated as:  

𝐹 = √𝐴2 + 𝐵2                                                    (𝑒𝑞2.5) 

Where A and B are the major and the minor radii of the ellipse respectively. 

http://uk.mathworks.com/help/images/ref/regionprops.html#bqkf8jb
http://uk.mathworks.com/help/images/ref/regionprops.html#bqkf8jb
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Figure 2.17 illustrates the origin of these two parameters. The results for each of the 

measurements were averaged for each animal, and then for each age in the ageing 

series, as shown in the Table 2.3. 

The results of quantifying collagen bundle thickness and bundle spacing demonstrated 

that there was a change in collagen architecture as a result of aging. Table 2.4 shows the 

degradation in the bundle thickness with increased age, and the bundle spacing increase 

in aging is shown in Figure 2.18. 

In the quantification stage, determining the distance between the gravity centre and the 

centre of the power spectrum was not an easy task.  Some of the images, especially the 

image of young mice, showed one circle instead of the two gravities (Figure 2.16a). The 

final decision step for quantifying collagen thickness was by measuring the distance 

between the ellipse foci and the ellipse vertex. Figure 2.20e illustrates the thickness 

measurements from ellipse parameters. 

 

Figure 2. 16: Analysis of binary of maximum power spectrum. The binary of the maximum of the 

FFT power spectrum of a) 3 months wt picrosirius stained skin, b) 20 months wt skin, c) the fitted ellipse 

to the binary power spectrum with the foci and vertex of the ellipse and the distance between foci and 

vertex. 
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Figure 2. 17: Representation of collagen bundles, and the two parameters of the bundle thickness T, 

and the bundle spacing BS. 

 

 Foci 

Distance 

Bundle 

Thickness 

Bundle 

Spacing 

Animal 1 90.7 22.6 68.1 

Animal 2 114.7 17.4 97.2 

Animal 3 72.9 39.7 33.1 

Animal 4 136.4 27.4 109 

Mean 103.7 26.8 76.9 

 

Table 2. 3: Average measurements of bundle thickness and spacing of replicated animal in one age 

group (3 months). 

 

 

 

 
 
 
 

 

Table 2. 4: Average bundle thickness and bundle spacing at different ages. A significant decrease of 

bundle thickness (p=0.029), and increased bundle spacing with age (p=0.003) was seen. 
  

Age 

Bundle 

Thickness 

(mean) 

Bundle 

Spacing 

(mean) 

3 months 26.8 76.9 

12 months 17.9 74.6 

20 months 9.4 186.5 
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Figure 2. 18: Collagen bundle thickness and spacing plots. a) bundle thickness with age, *p = 0.029, b) 

bundle spacing in ageing wild-type animals without pre-processing, **p = 0.003. 

 

2.3.2.3 A Refined Method for Collagen Bundle Quantification 

Having developed a method to quantify collagen bundles, I was satisfied that this 

provided optimal analysis, so I investigated the value of additional pre-processing 

filters. The final technique described herein for quantifying collagen thickness starts by 

converting cross-polar RGB images of picrosirius staining at 90X magnification into a 

greyscale image. This was followed by image pre-processing using an unsharp mask 

filter to enhance edges in images in various orientations to highlight high-frequency 

components (Polesel, Ramponi et al. 2000; Mahmood, Razif et al. 2011), followed by 

generating the FFT power spectrum from the enhanced image to improve sensitivity. 

The sharpening process was implemented by: 
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𝐺(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) −  𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝑥, 𝑦)                                   (𝑒𝑞2.6) 

Where fsmooth (x,y) is the smooth version of original image f(x,y). 

The resulting sharpened image is produced by: 

𝐹𝑠ℎ𝑎𝑟𝑝(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) +  𝑘 ∗ 𝐺(𝑥, 𝑦)                             (𝑒𝑞2.7) 

Where k is a scaling constant between 0.2 (the default value in MATLAB) and 0.7  

The sharpening process was implemented using the following MATLAB functions: 

h = fspecial('unsharp'); 

sharp_image = imfilter (image, h); 

The negative Laplacian operator and mean smoothing filter were also used to implement 

an unsharp mask. The collagen thickness quantification method measured the maximum 

frequencies of the FFT as described in section 2.3.2.2. Binary image of resulting FFT 

spectra were then used in collagen architecture quantification. The flow chart in Figure 

2.19 illustrates the final process, including image enhancement using an unsharp mask 

filter. In the quantification stage, each spectrum was transformed to binary (Figure 

2.20), and quantification was based on the location of the foci and the length of major 

and minor axis of the corresponding ellipse to the maximum FFT power spectrum. The 

foci locations F were calculated by eq2.5 and bundle thickness T calculated by eq2.4. 

Elliptical measurements are illustrated in Figure 2.20e. 

2.3.2.4 Collagen Bundle Thickness in Ageing  

Aging can cause skin dermal structural change, including effects on collagen bundle 

architecture (Varani, Dame et al. 2006). I applied my new method to an image bank of 

picrosirius stained dermis from the series of ageing animals described in section 2.3.1.1 

to measure collagen bundle thickness (Figure 2.21). This analysis showed a significant 

decrease in collagen bundle thickness with age, in particular, a significant change at 12 

months was detected.    

2.3.2.5 Collagen Organisation in a Diabetic Series 

A change in dermal structure in diabetes was previously reported (Romano 1998, Al-

Habian, 2011). Figure 2.22a shows the result of collagen bundle thickness analysis of in 

a series of diabetic mice. The analysis methods were applied the 4 age groups (6 weeks, 
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and 3, 5 and 6 months). There was not a significant decrease in collagen bundle 

thickness in this age range, although there was a trend for a decrease overall.  

 

 

 

 

Figure 2. 19: Flow diagram for collagen bundle thickness quantification. 
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Figure 2. 20: Generation and measurement of ellipses. a,b) original picrosirius cross-polar image of 8 

and 20 months mice skin respectively, c,d) the corresponding binary power spectra, e) ellipse parameters 

and thickness measurement. 
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Figure 2. 21: The result of collagen bundle thickness in cross-polar images of picrosirius stained 

mouse skin from different animals at age 3, 12, and 20 months. This shows the decrease in collagen 

bundle thickness in an ageing skin series, p value< 0.001 represent with ** between 3mth and 8mth, and 

p value<0.0005, *** between 3mth and 20mth.  

 

Figure 2. 22: Collagen bundle thickness in diabetic and misty models. a) bundle thickness diabetic 

animals with age, b) bundle thickness in lean (misty) animals with age. 
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2.3.2.6 Use of Optical Sections to Improve Collagen Quantification 

Confocal microscope images of eosin or picrosirius autofluorescence allows the use of 

optical sections, meaning that images can be sampled in multiple planes. For most 

effective analysis, this requires the use of thick sections, but I investigated the 

information available in existing 5 m sections. Figure 2.23 shows “side-on” views 

created from optical sections, and these do indeed contain information about collagen 

structure. This is an area for future study, which may yield useful information on 

collagen bundle organisation. 

 

Figure 2. 23: Collagen auto-fluorescent confocal imaging in mouse skin. Collagen bundle thickness 

visualisation in multiple planes in  a) 3 month H&E stained image with a normal field of view (left 

panel), and “side-on” views compiled from optical sections of a 5 µm slide in perpendicular planes 

(centre and right panel)., and b) as above using picrosirius rather than eosin auto-fluorescence. 
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2.3.3 Collagen Dynamics 

As described above, the dermis is primarily composed of ECM proteins assembled into 

a mesh-work of primarily collagen fibres. The reticular dermis consists of large mature, 

well-organised collagen fibres in the lower layer of the dermis, interfacing with the 

subcutaneous fat. The papillary dermis is adjacent to the basement membrane, with 

thinner collagen fibres and distinct collagen organisation, also with a basket-weave 

structure. 

Histological stains can effectively identify collagen in tissue specimens, and one may 

make qualitative assessments of ECM integrity from photomicrographs. However, 

unbiased image analysis methods are preferable. The Herovici staining method is an 

informative connective tissue stain used to identify different objects in distinct colours. 

Therefore, colour segmentation of images of Herovici stained sections is of great benefit 

in distinguishing different types of collagen fibres as red pixels represent old fibres, 

while blue pixels indicate new fibres. This allows the determination of the ratio of 

young to mature collagen in the dermis, revealing any age-related change in collagen 

synthesis.  

2.3.3.1 Existing Methods for Colour Segmentation in Histology 

Different objects can be separated depending on the pixel colour value of that object, 

i.e. red, green and blue values in the RGB colour space (Hosea, Ranichandra et al. 2011; 

Menesatti, Angelini et al. 2012). 

2.3.3.1.1 Simple Thresholding Experiments 

Colour segmentation is widely used in different applications. The simplest way is to 

separate the hue value of the image (Rich and Whittaker 2005). This method starts with 

converting 8-bit RGB images to HSV colour space, and then separating 256 hue values 

as a proxy for colours. Thresholding red, green and blue pixel values is another  method 

that has been used to segment different regions in RGB images (Dadwal and Banga 

2012), and I implemented colour filter-based collagen segmentation in Herovici stained 

images to quantify newly synthesized and mature collagen within the dermis. This 

technique involved implementing pixel intensity values for each red, green and blue 

channel in the Herovici RGB image. This then allowed segmentation of red and blue 

pixels by reducing multiple colours in the image and selecting all red and reddish pixels, 

as well as the blue and bluish pixels using these two steps: 
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o Segment red range values using the follow criteria: 

                Red                 if  Value of R> (G+B)*C1  

                      255  otherwise 

o Segment blue range values using the follow criteria:   

  

                             Blue                 if Value of B > (G+R)*C2  

                              255  otherwise 

The constants C1 and C2 are different for differently stained images, due to variations 

in   image colour as a result of differences in the process of tissue fixation and staining.  

I optimised the constants to the values of C1=0.75 and C2=0.93 for the wild-type mice 

dataset that I described in section 2.3.1.1, according to the principles shown in  the flow 

chart in Figure 2.24a, and the resulting segmented blue and red collagen images are 

shown in Figure 2.24b-d. 

The result of colour filtering in the cropped region of an image without any skin 

appendages (e.g. hair follicles) is shown in Figures 2.25a and 2.25b, and the number of 

red and blue pixels and their ratio was quantified. 

A qualitative (but not significant) increase in mature (red) collagen relative to newly 

synthesized (blue) fibres was demonstrated by calculating the ratio of blue to red pixels 

(n=3 animals per age group). The result of segmentation, pixel values and the ratio of 

red to blue collagen using colour filtering is illustrated in Figure 2.25c-f. I found no 

correlation between collagen synthesis and age (3 to 20 months inclusive; R2=0.8723, 

p>0.05) due to the influence of inter-image variation (Figures 2.25g and 2.25h). 

2.3.3.1.2 Shortcomings of the Simple Colour Thresholding 

The  calculation  of constant values will need some modification for different data sets, 

even if images were stained with the same staining methods, as in a different laboratory 

(or at different time) there will be some variation in intensity and colour. Moreover, 

variation could also result in images within the same data set due to the fact that humans 

cannot exactly replicate the same procedure consistently. These variations meant that 

Red = 

Blue = 
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the use of the above colour thresholding alone is not sufficient for accurate colour 

segmentation. For these reasons, I have developed a new segmentation methodology for 

these images using  k-means clustering for segmenting red and blue fibres in Herovici 

polychrome stained skin images. This technique was used previously in different 

applications e.g. nuclear segmentation in H&E stained histological sections (Sertel, 

Kong et al. 2009).   

 
Figure 2. 24: Colour filtering and segmentation. a) segmentation process flow chart, b) the original 

Herovici stained wt mouse skin section, n=5 groups of ages, 4 animals in each group, 4-6 images per each 

section. (left) and the red (mature) and blue (young) collagen pixels, c) cropped 3 month wt mouse skin 

and the segmented red and blue collagen, d) cropped 20 wt month mouse skin and the red and blue 

collagen images.  
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Figure 2. 25: Colour filtering and segmentation in cropped ROI images. a,b) automatically cropped 

dermis for 3 month and 20 month mouse skin respectively, c,d) blue (young collagen) e,f) red (mature 

collagen). g,h) quantification of red and blue pixels, and the ratio of blue to red using the colour filtering 

method. At least 3 animals per each age group, 3-4 images per each animal.  
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2.3.3.2 Development of an Improved Herovici Segmentation Method 

a. k-means clustering 

To improve upon inconsistency between different images and datasets, I sought to use 

k-means clustering to separate the pixels within each image to identify the core colours.  

k-mean clustering classifies the data points (pixels) into a certain number of clusters that 

are sensitive to the location of the cluster centroids, in other words, different locations 

of the centroids lead to different results, and that causes batch analysis problems. k-

means clustering assigns the objects in the image to a group that has a closest initial 

centroid and then recalculates the position of the centroid by calculating the new means 

for the centroids of the new cluster until the all data points are grouped in that cluster. 

The clustering steps are as follows: 

 Choose the number of the clusters k. 

 k initial means are randomly generated within the data set e.g. k=3. 

 k clusters are created by associating every data point with the nearest mean. 

 The centroid of each cluster becomes the new mean. 

 Steps 3, 4 are repeated until the clustering has been reached. 

The cluster centroids are calculated by calculating the means of the data points in that 

cluster (cj). The Euclidian distance calculates the distance between the data points (xi(j)) 

and the cluster centroid. 

 𝑑 = ∥ 𝑥𝑖(𝑗) −  𝑐𝑗 ∥                                                               (𝑒𝑞2.8)          

The aim of k-means clustering is to partition the n data points xi into a centroidal 

Voronoi diagram S = (Si) of minimal squared error by: 

𝜎(𝑆) =  ∑ ∑ ∥

𝑛

𝑖−1

𝑘

𝑗−1

𝑥𝑖(𝑗) −  𝑐𝑗 ∥2                                         (𝑒𝑞2.9) 
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a. k-means Clustering-based Segmentation 

The RGB colour space was then converted to L*a*b* (luminosity or brightness layer, 

chromaticity layer 'a*' red-green, and chromaticity layer 'b*' blue-yellow) to reduce the 

multi-colour dimensionality of the RGB image.  

k-means clustering was then used to cluster the pixels in the image into a certain number 

of non-overlapping clusters using the Euclidian distance metric. I chose three clusters, 

the objects in the image having either a* or b* pixel value or neither a* nor b*. The last 

step in this process was segmenting each of the groups (clusters) of pixels in the original 

image. The two described steps of segmentation implemented using following 

MATLAB scripts: 

cform = makecform ('srgb2lab'); 

transformed_image=applycform (he,cform); // To convert RGB to L*a*b* 

k-means clustering: 

[cluster_idx cluster_center] =kmeans(ab,nColours,'distance','sqEuclidean','Replicates',3) 

Where ab represents the chromaticity colours a* and b* in L*a*b* colour space and 

nColours is the number of clusters (k). This repeats the clustering 3 times to avoid local 

minima. 

Figures 2.26 and 2.27 show the result of segmenting the training images without 

cropping the ROI. However, this shows that the presence of hair follicles and sebaceous 

glands in a region of the tissue section is an issue in the analysis process, and the ratio 

of the blue to red between the different ages did not show significant changes. This 

issue was solved by cropping a region from the image without hair follicles or glands.    
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Figure 2. 26: Segmentation of images using k-means clustering from the entire snapshot of wt 

mouse. a) original Herovici stained skin image, b) blue pixels (young collagen, c) red pixels (mature 

collagen). 
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Figure 2. 27: k-means clustering method to assess collagen dynamics and age in wt mice. a) blue and 

red pixels in each age group, b) ratio of the blue to red pixels. At least 3 animals per each age group, 3-4 

images per each animal. 
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b. Snapshot Magnification or Automated Region of Interest (ROI) Cropping 

A 20X magnification snapshot (pixel dimensions=1712×1074 pixels, 552.12×346.36 

µm) contains hair follicles and glands and many pixels around and inside these 

structures incorrectly segment as collagen. Therefore, the presence of skin appendages 

might affect the result of young and mature collagen area quantification, which may 

cause the overestimation of the collagen area. To solve this problem, a cropped region 

was used in the final method to measure just the collagen dynamics in Herovici stained 

skin images (Figure 2.28, pixel dimensions=257×257 pixels, 82.88×82.88 µm). The 

cropping process was done by converting the RGB image to HSV colour space, and 

then transforming the saturation channel to binary. The binary image area was then used 

as a mask to superimpose the original image to represent the ROI. 

c. Thresholding 

The k-means clustering method was applied to images in two different strategies, one 

with the post-process of histogram-based threshold by finding the optimum threshold 

that divides the histogram into two classes using Otsu threshold method. This removes 

all the bright pixels (non-object) in the segmented red or blue collagens. The second 

method omitted the last step of thresholding after the k-means clustering-based 

segmentation. The resulting images and quantification results were compared. 

Segmented images without thresholding are shown in Figure 2.29 and the quantitative 

results are shown in Figure 2.30. This method didn’t show discrimination of young and 

mature collagen in different age groups. The thresholding method (described in the 

following sections) showed a more promising result that can detect subtle changes in the 

ratio of young and mature collagen between different age groups of wt animals, as 

shown in Figure 2.33. 



Chapter 2 

83 
 

 

Figure 2. 28: ROI selection in a typical Herovici stained image of wt mouse. a) the original 20X 

magnification image, b) ROI without any skin appendages, c) automatically cropped region. 
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Figure 2. 29: Segmentation using k-means clustering without thresholding. a) original cropped 

Herovici stained skin image, b) blue pixels (young collagen), c) red pixels (mature collagen). 

 

 

Figure 2. 30: Quantification of the ratio of blue pixels to red pixels in different age groups without 

post-process thresholding in wt animals. At least 3 animals per each age group, 3-4 images per each 

animal.  
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2.3.3.3 Use of Thresholding to Improve Colour Segmentation 

The procedure starts with cropping the dermis layer (ROI) to facilitate collagen 

segmentation as described in section 2.3.3.2c. Figure 2.31 shows a flow chart of this 

process with the result of the original and cropped images. Image contrast enhancement 

was performed as before, based on a contrast stretching technique during pre-processing 

to increase the dynamic range of an input image. Contrast enhancement was 

implemented by the MATLAB function “imadjust (I,stretchlim(I))”  that maps the 

intensity values in grayscale image I to new values in result image, such that 1% of all 

pixel values are saturated at low and high intensities of I. 

The RGB colour space was then converted to L*a*b. k-means clustering was then used 

to cluster the pixels in the image into three clusters as described in section 2.3.3.2b. This 

was followed by image histogram-based threshold to remove bright pixels from 

segmented images. Figure 2.32 illustrates the resulting cluster images.  

2.3.3.4 Collagen Dynamics in an Ageing Series 

Herovici stained skin images were segmented (Figure 2.32) and analysed to investigate 

collagen dynamics. Pixel values and the ratio of blue to red collagen using the k-means 

clustering are shown in Figure 2.33. My quantification method did reveal an inverse 

correlation between the ratio of newly-synthesized collagen relative to mature collagen 

and age (R2=0.9438, p value<0.05; Figure 2.33).  

2.3.3.5 Collagen Dynamics in a Model of Diabetes 

A change in dermal layer thickness in diabetes is associated with collagen orientation 

changes, as described previously (Al-Habian, 2011). To assess any changes in collagen 

dynamics, Herovici images from at least 3 db/db animals per group at 6 weeks, and 3, 5 

and 6 months were analysed using my colour segmentation method. I observed a 

variation in the ratio of blue to red collagen in the dermal layer, which is comparable to 

the previous result from wt skin samples as shown in Figure 2.34. The ratio of blue to 

red collagen varied in the diabetic model between different age groups, and was distinct 

from the wt result. 
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Figure 2. 31: Automated ROI cropping and removing image background. a) original Herovici image, 

b) saturated image, c) binary of the saturated image, d) cropped ROI ( dermal layer only). 
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Figure 2. 32: k-means clustering method with thresholding. a) cluster 1: non-objects, b) cluster 2: blue 

pixels, c) cluster 3: red pixels. 

 

Figure 2. 33: Collagen dynamics in an ageing series in wt mice. a) red and blue pixel values achieved 

using k-means clustering for segmentation and thresholding, b) ratio of blue to red pixels (i.e. young to 

old collagen), p value<0.05 represented with *. At least 3 animals per each age group, 3-4 images per 

each animal. 
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Figure 2. 34: Collagen dynamics in an ageing diabetic series. a) red and blue pixels, b) the ratio of blue 

to red pixels (i.e. young to old collagen). 

2.4 Discussion 

Image analysis techniques that exploit the frequency domain are attractive as they 

generate spectra informed by texture. The combination of a Gabor filter and FFT can 

reveal important information about texture and structural organisation in an image, and 

the Gabor filter has been used to improve orientational edge detection prior to 

application of an FFT. This was demonstrated in the assessment of collagen orientation 

in cross-polar picrosirius stained images, and the combination of these two image 

processing procedures have shown to have utility beyond the quantification of skin 

texture and biological imaging. The FFT technique was used by other researchers in the 

investigation of dermal structure to study fibrosis in human skin (van Zuijlen, Angeles 

et al. 2002; van Zuijlen, de Vries et al. 2002; Khorasani, Zheng et al. 2011; Verhaegen, 
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Marle et al. 2012). However, these methods are neither being used in mouse skin tissue, 

which has considerably finer collagen structure, nor to discriminate more subtle age 

related changes in the structure, (e.g. in mouse skin between 8 and 12 months). MPM 

images of mouse dermis were quantified using FFT for assessing structural changes in 

collagen (Wu, Li et al. 2011), but this was not designed to specifically assess basket-

weave, and also it is an expensive technique. The use of a Gabor filter prior to the FFT 

in cross-polar images of picrosirius stained histological skin sections yielded a more 

complex FFT power spectrum. By quantifying pixel distributions in four planes, I was 

able to create a sensitive collagen orientation index. In this way, I was able to detect 

subtle changes in collagen that were not revealed using the technique of FFT alone. My 

improved method also enabled me to assess subtle age-related differences in the sub-

compartments of the dermis and, more importantly, to quantify collagen damage in 

models of diabetes (Osman,  et al. 2013). 

I also assessed collagen basket-weave in skin samples prepared from mice of increasing 

age, and was able to demonstrate a significant inverse correlation between time and 

collagen bundle thickness using the above combination of frequency domain 

techniques. I have exploited different properties of the elliptical shapes, formed by 

binarizing the maximum frequency of the FFT power spectrum, and measuring the 

distance between the ellipse foci and the vertex. The sequential application of edge 

enhancement using the unsharp mask filter, followed by the computation of the 

maximum frequency of FFT and quantifying the distance measurements in the resulting 

ellipse added to the efficiency and  the performance of my algorithm in assessing subtle 

changes in the bundle thickness with age (Osman et. al., 2014).   

The use of the k-mean clustering in colour segmentation overcomes problems associated 

with the widely used pixel intensity threshold (Rich and Whittaker 2005; Cisneros, 

Cordero et al. 2011). This is necessary due to the variation in colour and intensity in 

histological images resulting from variation arising from small inconsistencies in tissue 

fixation, staining and capturing images. I used the spatial domain and colour 

segmentation in my Herovici analysis method to measure collagen dynamics. Motivated 

by the use of the k-means clustering in other applications (Wu, Lin et al. 2007; Chitade 

and Katiyar 2010), I developed the idea of using clustering for segmentation and the 

result of the analysis confirmed the efficiency of the methods’ performance (Osman et. 

Al., 2014). 
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Conclusions 

Skin damage can arise from chronological aging, disease or from the effects the 

environmental challenges such as sun exposure. The ability to measure these changes 

accurately is, therefore, of clinical relevance. 

The computational techniques proposed in this Chapter were able to determine dermal 

structure and collagen orientation using texture information, providing crucial 

information in the evaluation of the level of damage in the dermal skin layer. The 

combination of a Gabor filter and FFT demonstrated the capability to detect more subtle 

changes in collagen orientation in ageing and diabetic skin than existing techniques. 

Collagen dynamic assessment in Herovici’s polychrome stained skin sections was 

achieved using an efficient colour segmentation method that exploits k-means clustering 

rather than simple thresholding alone. Having experimentally-tested clustering based 

segmentation in different images, I found that the ratio of new collagen to mature 

collagen decreased gradually with age. Collagen bundle thickness quantification was 

based on my proposed method of selecting the maximum amplitude of FFT spectrum, 

and this revealed a noticeable decrease in the bundle thickness with age. 

Having developed techniques to assess collagen structure and dynamics accurately 

within the skin, and having assessed the effectiveness of these methods in 

chronologically aged samples, I am now in a position to use these techniques to assess 

the effect of other environmental stressors, such as UV radiation. More importantly, 

these techniques can be used to assess the efficacy of potential therapeutics on collagen 

structure and dynamics, with cosmetic and therapeutic implications. Specifically, I am 

now in the process of analysing collagen integrity in diabetic skin exposed to insulin 

sensitising agents. Topical application of these agents may not only restore skin 

integrity, but could potentially improve wound healing, a major problem for those with 

type 2 diabetes mellitus. These techniques could also be used to evaluate collagen 

architecture in high throughput analysis and provide important information relevant 

pathology in a timely manner.   
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CHAPTER 3 

High Throughput Cutaneous Phenotype Detection and 

Quantification 

3.1 Background 

Cutaneous phenotype detection in huge numbers of gene knockout mice can take ages 

using conventional methods to extract features related to a particular phenotype. 

Automated image analysis to extract features in skin tissue sections can facilitate the 

process of phenotype detection in high-throughput analysis to find interesting 

morphological and metabolic phenotypes. 

3.1.1 H&E Staining of Skin  

Crucial features in different pathological cases can be highlighted using H&E stained 

tissue sections. The main advantage of using this staining method is its ablity to reveal 

considerable information about tissue organisation and structure (Bancroft and Gamble 

2008). H&E stained histological sections have been used in many projects, such as the 

morphometry of skin layer features such as as area, depth, length and shape (Bapure 

2011). This staining can also be used in evaluating the extracellularmatrix (ECM) and 

overall structure of the dermis  in terms of the collagen organisation and structure (de 

Vries, Enomoto et al. 2000). It can help visualize the hair folicle in the skin, and thereby 

reveal useful information such as their size, number and orientation (Bancroft and 

Gamble 2008). Traditionally, histologcal changes are qualitatively assessed by manual 

methods, but this is time consuming and the results subject to observer bias. This 

Chapter is devoted to the development of automated techniques to detect changes in 

morphology of the skin layers to detect interesting early phenotypes in a high-

throughput genetic screen.  

3.1.2 Wellcome Trust Mouse Genome Project 

The Wellcome Trust Sanger Institute (WTSI) generates mouse genetic and phenotypic 

data, and distributes this data and resources to the scientific community. Our 

collaboration with WTSI focuses upon the phenotyping of a subset of genetically 
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knockout mice. The program at WTSI to functionally annotate the mouse genome is 

illustrated in Figure 3.1.  

The primary phenotyping data generated by WTSI aims to discover genes involved in 

diseases, and the influence of diet. There are many other research projects that focus on 

the biological functions of genes in the mouse genetics area by WTSI, such as mouse 

behaviors, cancer and developmental genetics (Liakath-Ali, Vancollie et al. 2014). Data 

can be accessed via the mouse resources portal (http://www.sanger.ac.uk/mouseportal/).   

 

  

 

Figure 3. 1: Overview of the functional annotation process by the Mouse Genome Project (MGP) at 

the start of this project. Many more lines are now available to study. Image courtesy of the WTSI. 

 

 

 

  

http://www.sanger.ac.uk/mouseportal/
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3.1.3 Secondary Phenotyping from WTSI Resources 

Secondary phenotyping is about the detection of interesting features in gene-knockout 

tissue sections to detect early phenotypes. One example of secondary phenotyping is in 

the assessment of genetic determinants of bone mass and strength, which can be 

involved in the pathogenesis of osteoporosis (Bassett, Gogakos et al. 2012). Using high 

throughput investigation of mouse skeletons, biomechanical testing and statistical 

analysis of 100 mice generated by the MGP pipeline, nine new genetic determinants of 

bone mass and strength were found (Bassett, Gogakos et al. 2012).  

3.1.4 Skin Histopathological Image Analysis 

The WTSI Biobank maximizes the value of data on knockout mice but also helps to 

investigate new ideas to develop high-throughput analysis. The tissue biobank is a 

resource of many tissues from mice in the pipeline that can be used to follow up any 

novel findings from primary and secondary phenotyping. In this Chapter, I report the 

use of this resource to investigate skin phenotypes using histology image segmentation, 

and on linking phenotypes to biological information. Some work on annotation of skin 

features in knock-out mice was already done by the WTSI in collaboration with Ian 

Smyth and colleagues, although the focus of this work was on hair follicles rather than 

skin strata (Liakath-Ali, Vancollie et al. 2014). Moreover, this work relied on visual 

assessment of phenotypes. 

Image segmentation generally aims to partition an image into different regions that are 

different in intensity and texture. There are many segmentation processes used to isolate 

the desired object in a tissue section and prepare these areas for analysis. Segmentation 

techniques include thresholding and edge detection, which can segment regions of 

pixels with similar intensity, or by the gradient by the boundary of the object 

respectively. In biological image processing, and specifically histology analysis, 

common techniques used for segmentation are pixel intensity-based technique (such as 

thresholding) that depend on the intesity value and colour of the pixels in that image to 

isolate the foreground and background (Otsu 1975). The output image of thresholding is 

a binary image. Typically the white pixels represent the foreground and the black pixels 

are the background, or vice versa. There are different techniques of thresholding. Global 

thresholding sets the pixels above the threshold to foreground value, and all remaining 
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pixels to a background value in the overall image. Adaptive thresholding changes the 

threshold dynamically across the image. Edge-based segmentation has also been used 

widely in biological image analysis, and this technique is based on the uncertainty 

between the background and the boundary of the object. A sudden change in the 

intensity value of pixels in an image indicates the boundary of an object in the image.  

In order to select the appropriate automatic image segmentation method, I shall next 

describe the relevant skin features to be detected and quantified in histopathological 

images, and review existing techniques to deal with these tasks.   

3.1.5 Existing Skin Feature Quantification Techniques 

Changes in the size and number of adipocytes in skin tissue are one of the important 

skin features that reflect changes in metabolism i.e. an increase in adipocyte size and 

number correlates with metabolic diseases such as diabetes and obesity. Fat cell size is 

an important parameter that influences the cellular rate of metabolism. Adipocyte size 

can be quantified using efficient and accurate automated methods instead of manual 

calculation, which is very complicated and time consuming (Björnheden, Jakubowicz et 

al. 2004). Adipocyte size in the reproductive fat pad was determined efficiently using 

computer image analysis by measuring cross-sections of cell (Chen and Farese 2002). 

The images were analysed by converting into grayscale and then to binary format, 

before a watershed algorithm was used to detect the edges of the adipocytes. The binary 

image was then refined using erosion and a paint brush using existing tools. The results 

showed an increase in mean adipocyte size, and a great number of large adipocyte in 

mice fed a high-fat diet. However this method was supervised, and results might vary 

from one observer to the next. Moreover, the watershed algorithm sometimes segments 

individual cells into smaller cells. The cell diameter was determined using both manual 

methods (as a reference method), before the automated methods, based on the 

computerized image analysis, in the study of the adipose tissue metabolism 

(Björnheden, Jakubowicz et al. 2004). Human subcutaneous adipose tissue was obtained 

from 26 subjects, and cells were isolated using collagenase in order to allow efficient 

separation. Cell diameters were measured by photomicroscopy in one visual field at a 

time until all cell diameters were determined. The distribution of cell diameters was 

found using computer assisted image analysis, whereby image contrast was enhanced 

and images transformed to bitmaps in which fat cells were identified according to the 
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roundness and smoothness of the contours using a KS 400 computerized image analysis 

system (Carl Zeiss, Oberkochen, Germany). The advantages of the computerized 

method is that it can calculate a huge number of cell sizes in adipose tissue in a short 

time (10 fold more cells than with manual analysis) without any observer bias. 

Moreover, the images can be stored and used again as a future reference. However, the 

quantification of the cell size is compromised as the circles created to represent 

idealised cells do not exactly match “real” fat cell outlines in this study.  

Epidermal thickness has been evaluated manually, and the relationship between the 

thickness of the stratum corneum and the cellular epidermis was investigated to find any 

correlation between age, gender, body site, pigmentation, blood content, smoking 

history and skin type (Sandby-Møller et. Al.,  2003). Biopsies were taken from different 

areas such as dorsal forearm, shoulder and upper quadrant of the buttock. The results 

showed a significant influence of these factors on epidermal thickness. 

Thickness of the malphigian epidermis, stratum corneum, suprapapillary epidermis (a 

small area of dermis between rete pegs) and papillary dermis, as well as rete length were 

measured in psoriasis patients through the development of an H&E stained skin image 

analysis technique. The analysis of relationships between the above parameters and the 

age of the patient, type of psoriasis, total body surface area involvement, scalp and nail 

involvement, duration of psoriasis, and family history of the disease was performed 

(Alper, Kavak et al. 2004). Malphigian layer and stratum corneum thickness, as well as 

rete length in psoriasis was generally greater than in the control group, whereas the 

suprapapillary epidermis in both groups was similar. Although this study provided 

objective measurements, the number of subjects was not sufficient, and a limited 

number of parameters was measured. This study did, therefore, reinforce a need for the 

use of automated, unsupervised techniques to assess skin in high throughput 

histopathological analyses.  
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3.2 Automated Cutaneous Phenotyping based on Morphological 

Features  

The main objective of this analysis was to detect early skin phenotypes (mice were 

sacrificed at 16 weeks) in knockout mice generated by the WTSI MGP using automated 

high throughput analysis. I sought to develop methods to quantify the depth of the 

epidermis and dermis, and also assess changes in the size and number of adipocytes in 

the subcutaneous layer to identify genetic determinants of skin organisation. 

The plan of work divided into two parts. Firstly I shall describe algorithms to partition 

regions of interest in histopathological skin images into three layers (i.e. epidermis, dermis 

and subcutis). Secondly, I shall focus on developing and testing the performance of 

algorithms for the automatic quantification of biologically relevant parameters associated 

with each of these layers in images generated by the MGP. 

In this section, I propose a system to detect morphological features of the epidermis, 

dermis and subcutaneous layers of the skin. I introduce image processing techniques to 

segment the cutaneous layers and highlight objects for subsequent quantification. 

3.2.1 Skin Layer Segmentation using Active Contour Models  

Herein, I describe the use of active-contour segmentation for automatic partitioning of 

H&E stained mouse skin images into different skin layers to enable measurement. 

Firstly, I describe attempts to use existing methods to segment skin layers and discuss 

their effectiveness.  

3.2.1.1 Existing Image Segmentation Methods 

There are existing segmentation techniques, such as a threshold or the edge detection, 

however, these techniques might be not effective enough to isolate the layers in H&E 

stained skin sections because of homogeneity of colour intensities in the overall image 

that might affect the thresholding process. 

The simplest method to segment an image into different regions is the use of a global 

threshold, especially if the regions are different enough in terms of the intensity to allow 

the separation of the object and the background (Otsu 1975). Colour segmentation is 

widely used to separate image content into different regions. Some colour segmentation 

techniques were described in Chapter 2, but these could only be used only if the image 
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has sufficient variation of colour (Muthukannan and Moses 2010). Entropy calculation 

is another way of segmenting regions that possess the maximum value of entropy 

(Leung and Lam 1994). Figure 3.2 illustrates segmentation output results from existing 

methods, such as Otsu-based thresholding (Figure 3.2b), entropy-based thresholding 

(Figure 3.2c) and k-means clustering of L*a*b* colour space of the image (Figure 3.2d) 

(Muthukannan and Moses 2010). However, the results of these techniques do not 

always individually yield effective segmentation of the different skin layers, but each of 

these techniques may help with highlighting certain image features in other images 

stained with other staining methods.   

 

Figure 3. 2: Image segmentation with existing methods. a) original H&E stained image, pixel 

dimensions = 2000×1470 pixels, 645×474.07 µm, b) thresholding binary image, c) the result of 

computing maximum entropy in the image, d) k-means clustering output image (k=3).  
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3.2.1.2 Active contour model-based segmentation 

One of the most successful segmentation method, which is relevant to my investigation 

of the separation of different skin layers, is the active contour model (Yun, Ming-quan 

et al. 2009). This is based on global information about intensity and texture in the 

image.  Active contour segmentation has many advantages over classical segmentation 

methods. It is robust to noise and has better accuracy in segmenting objects and 

preserving boundaries by tracing a curve that moves forward until there is a significant 

change in spatial image information. Active contour is easy to implement and at the 

end, results to a closed contour as a segmented image (Yun, Ming-quan et al. 2009). 

The active contour model starts by creating an initialized curve that moves to reach the 

boundary of the object that is to be segmented using energy minimization (Chan, 

Sandberg et al. 2000; Chan and Vese 2001). This model is either implemented using a 

snake model that depends on the image gradient for energy minimization (Kass, Witkin 

et al. 1988), or  by using the region-based active contour without an edge, whereby the 

energy minimization depends on the global image information. The classical snake 

active contour model segmentation is based on the following energy formula: 

𝐸𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

Where Einternal represents the internal energy of the contour and controls the 

smoothness of the contour, while Eexternal attracts the contour to the boundary of the 

object in the image where: 

     𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛼 ∫ |𝑐′|21

0
𝑑𝑠 + 𝛽 ∫ |𝑐′′|2𝑑𝑠

1

0
    

and    𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = −𝛿 ∫ |∇𝐼|2𝑑𝑠
1

0
                                                                                      

The snake active contour is given by the following equation (Kass, Witkin et al. 

1988): 

𝐸𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 𝛼 ∫ |𝑐′|2
1

0

𝑑𝑠 + 𝛽 ∫ |𝑐′′|2𝑑𝑠 − 𝛿 ∫ |∇𝐼|2𝑑𝑠
1

0

1

0

               (𝑒𝑞3.1) 

Where α, β and δ are positive parameters, c is the contour, c’ and c” represent the 

regions inside and outside the contour C, and ∇I is the gradient of the image (known as 

an edge detector).  
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The region-based active contour method proposed by Yun et al. (Yun, Ming-quan et al. 

2009), is based on global information in the image instead of the gradient or local 

information in the image. It speeds up the curve evolution and reduces the effect of 

noise in the image. This segmentation process is based on the minimization of energy 

due to the fact that the boundary of an object is the curve energy minimizer that fits the 

curve to the target object. This report demonstrated the ability to detect objects in noisy 

images without the implementation of a second initial curve, and they detected objects 

of different intensities. It can also detect lines and curves that do not necessarily become 

closed. The resulting segmented images were compared to the result of the classical 

snake active contour model, to confirm better performance, especially in images that 

had a very smooth boundary. This method was compared to edge-based active contour  

and the region-scalable fitting energy (RSF) methods (Li, Kao et al. 2008) in terms of 

the accuracy of segmentation. The differences between this method and the classical 

active contour Chan-Vese model (Chan and Vese 2001) is that the initial curve was 

required to be directly on the boundary of the object because the edge-based active 

contour (snake method) utilizes the image gradient to stop the further movement of the 

curve on the boundary of the object.   

There are numerous other examples in biomedical research. An edge-based active 

contour model was used to automatically segment and classify different types of spiral 

bacterial cells in digital micrographs (Hiremath and Bannigidad 2012). An active 

contour model without edges was used for follicle recognition in ovarian ultrasound 

images in order  to extract important information relevant to ovarian ages (Hiremath and 

Tegnoor 2010).  

Embedding the technique of edge detection into the active contour model was also 

shown to improve the process of segmentation to measure cellular bio-mechanical 

responses during cancer radiotherapy in human prostate cells (Aymeric Histace 2014). 

This group used this method to develop a computational image analysis tool to segment 

cell membranes and track cell divisions. Cancer cell membranes were segmented in 

fluorescence confocal microscopy images using approximate entropy (ApEn) as an edge 

detector that was embedded into the geodesic active contour (GAC). However, an 

adaptive strategy was required to segment all cells in an image in terms of initialization, 
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and also validation with clinical analysis was required to see if the method could find 

correlations with clinical parameters in larger number of images.  

3.2.2 A Method for Automatic Skin Layer Segmentation  

I shall now describe my adaptation of an active contour based segmentation method to 

develop an automatic tool for cutaneous analysis. The complete automated layer 

segmentation process for high throughput analysis is summarised below in Figures 3.9. 

The model starts with pre-processing followed by layer segmentation using automated 

active contour-based segmentation. The process was developed through the following 

three stages: 

Stage 1: Pre-processing for Image Enhancement 

Pre-processing to enhance images was required prior to the next step of segmentation. 

For quantitative analysis, I needed to segment each of the three major skin layers 

(epidermis, dermis and fat layer). At the beginning, the grey level image was used as an 

input image in the segmentation process, but the resulting segmented image was not 

optimal to identify epidermis and dermis layers.  Figure 3.3 shows the result of 

segmentation when using grey scale images. This illustrates a significant shortcoming 

of such an approach as part of the dermis is missing. Later in this section, I shall show 

how to remedy this kind of problem using a refined segmentation method when applied 

to the saturation image channel obtained by converting RGB colour space into HSV 

colour space. 

Multiple pre-processing and refinement steps are needed in the development of an 

effective segmentation method, each of which helps improve and extend its predecessor. 

Pre-processing stages are:  

a) Contrast enhancement using image histogram stretching. 

b) Noise reduction using a median filter to remove noise and slide preparation 

artefacts. 

c) Adding the image to the image itself by adding each pixel intensity in the image 

with the corresponding pixel intensity in same image to produce an output image 

more suitable to detect epidermis in the image by turning epidermis region to 

darker area than other regions in the output image. In the rest of the section. 
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I will introduce refinement steps and provide a rationale before arriving at what I 

believe to be sufficient for my intended segmentation application. Figure 3.4 illustrates 

the use of the absolute difference of the grey level image and the complement image of 

an image (Figure 3.4a), followed by the application of the active contour model (Figure 

3.4b).  As one can see, segmentation showed an overestimation of the region of interest.  

 

 

Figure 3. 3: Result of active contour- based segmentation in grayscale image. a) grayscale image, b) 

segmented epidermis and dermis showing a missing region. 

 

 

Figure 3. 4: Result of active contour-based segmentation using absolute difference of greyscale.  

a) output image of absolute difference of the grayscale and the complement image, b) overestimated 

segmented image. 
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Stage 2: Transformation of Colour Space 

Individual red, green and blue channels of the RGB colour image (Figure 3.5) were 

used for segmentation using global thresholding. However, the segmentation result was 

not promising. For this reasons I converted RGB colour image to HSV colour space and 

the saturation channel was selected for the segmentation process because the region of 

interest (epidermis and dermis) contained saturated colours in the HSV colour space as 

shown in the figure 3.6.  The saturation channel in the HSV colour space shows all the 

intensities of the colours in the image. In the data set provided by the WTSI, the 

saturation channel for all the images produced a bright area containing the epidermis 

and dermis layers. 

Stage 3:   Segmentation by Active Contour without Edge Detection  

After pre-processing the original image and converting the RGB colour space to HSV 

colour space, and the selection of the saturation image, the active contour without edge 

was then applied to segment the image into sub-regions of contiguous layers. The active 

contour edge based functional energy is given by the following equation (Chan and 

Vese 2001): 

𝐹(𝑐1, 𝑐2, 𝐶) = 𝜇𝐿(𝐶) + 𝜈𝐴(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶))

+ 𝜆1 ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2𝑑𝑥𝑑𝑦
𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2𝑑𝑥𝑑𝑦
𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                                       (𝑒𝑞3.2) 

Where the L is the length of the curve and A is the area of the region inside the curve, µ, 

ν, λ1 and λ2 are fixed parameters, where µ≥0, ν≥0, λ1 and λ2≥0, c1 and c2 are the means of 

the region inside and outside C. 

The energy minimization process using equation eq3.2 is an iterative procedure to 

minimize the energy of the curve that is based on global information of the image to 

stop the curve on the desired boundary of the object, independent of the gradient of the 

image. Using my method to segment skin layers, the initial curve to start the active 

contour was created from the object itself (epidermis and dermis region) automatically, 

which speeds object boundary detection by reducing iterations of the energy 

minimization process (i.e. evolving the initial curve to detect boundary of the object). 
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Figure 3.7 illustrates the segmentation process using the active contour model without 

edge. The limitation of this stage was the huge number of iterations of curve evolution 

required to segment the skin layers, and the variation in the location and orientation of 

the region of interest in data set images.  

Generating an Initialisation Curve 

To reduce the number of iterations and develop a fast segmentation independent of the 

object location, I developed the following stepwise automated initialization curve 

generated from the ROI itself, using MATLAB functions below:  

 Convert RGB colour space to HSV space. 

ConvertedImage = rgb2hsv(image); 

 Select the saturation channel from HSV colour space. 

SelectetImage = ConvertedImage ( : , : , 2); 

 Threshold the saturation image into a binary image using Otsu method to 

partition the image into two components with white pixels being the region of 

the epidermis and dermis, and the black pixels being the background. 

 Select the largest object in the binary image that represents the initial curve. 

[L, N] = bwlabel(segmented region); 

D = regionprops(L, 'area'); 

w = [D.Area]; 

LargestObject = find(w == max(max(w))); 

Segmented_LargestObject = ismember(L, LargestObject); 

 Apply the “open” morphology operator using the disk structuring element of 

size 4, to make the initialize curve cover the whole area of the dermis and 

epidermis in the original image.  

StructuredElement = strel('disk',4); 

InitilizedCurve = imopen(Segmented_LargestObject,se); 

This process of generating the initialize curve is illustrated in the Figure 3.8. 
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Figure 3. 5: Use of RGB colour space. a) RGB model, b) red, c) green, and d) blue colour band.  
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Figure 3. 6: HSV colour space. a) hue channel, b) saturation channel, c) value (brightness). 
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Figure 3. 7: Segmentation process using the active contour model applied to H&E stained image 

and segmented image after 1000 iterations. 

 

 

Figure 3. 8: Generating an initialization curve. (a) saturated channel image (b) initialize curve. 

 

 

 

Saturated Image Initialize Curve 

Iterations Segmented Image 

Original Image 



Chapter 3 

107 
 

 

Figure 3. 9: Active contour iterations and segmented epidermis and dermis region. Top panel, 

overview of process. Lower panels: a) saturated channel of the HSV colour space, b) initialization start 

curve, c) curve evolution moves to the object boundary (iterations), d) segmented binary epidermis and 

dermis, e) superimposed epidermis and dermis. 

In summary, automatic cutaneous layer segmentation by adapting pre-existing 

techniques allowed epidermis and dermis to be isolated. The epidermal layer was 

segmented by first segmenting the upper two layers of epidermis and dermis, with 

additional pre-processing (adding the segmented epidermis and dermis image to itself to 

improve epidermis segmentation as explained in stage 1) to enhance contrast of the 

epidermal region (Figure 3.10b). The dermis layer was then segmented by subtracting 

the segmented epidermis from the segmented epidermis with dermis image (Figure 

3.11c), as illustrated in Figure 3.11e. The segmented epidermis and dermis depths were 

quantified using skeletonization-based quantification of segmented images, which was 

performed by measuring branch length in the skeletonized image (Figure 3.15).  

The adipocytes are immediately adjacent to the epidermis and dermis, thus they were 

isolated using subtraction of the segmented epidermis and dermis from the saturation 

image as showed in Figure 3.12b. The process of adipocyte segmentation is described in 

detail in section 3.2.4. The process starts with background subtraction in the saturated 

d c 



Chapter 3 

108 
 

image within the HSV colour space (Figure 3.12b), followed by the use of the piecewise 

grey level linear transformation to select the intensity range (0.079-0.125) that is 

equivalent to the intensity of the adipose cells in the image. Pixels in the selected range 

of intensity were converted to white, and the rest pixels were converted to black. The 

adipocyte segmentation was followed by fully automated post-processing steps to 

enhance cell boundaries, and fill holes and close gaps using mathematical morphology 

as shown in Figure 3.12c, d. 

The outcome from segmentation of each of the layers in the H&E skin images those 

provided by WTSI are shown in Figure 3.13, and this feeds into the next step of the 

quantification of parameters associated with each layer. 

 

 

 

 

Figure 3. 10 Image pre-processing for epidermal segmentation. a) H&E stained image, b) the result of 

function imadd(), that adds the image to itself. 
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Figure 3. 11: Epidermis and dermis segmentation. a) original H&E image, b) saturated image 

following image-add, c) binary image of segmented epidermis and dermis (result of process in Figure 

3.9), d) binary image of segmented epidermis from the result of the active contour on the image in step 

(b), e) superimposed segmented dermis image (result of subtracting image in step (d) from image in step 

(c). 
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Figure 3. 12: Adipocyte segmentation and quantification. Upper left is the original image, and upper 

right is the saturated image, the lower left shows binary segmented adipocytes and lower right is the 

binary image of labelled cells. 
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Figure 3. 13: Result of active contour-based segmentation. a) H&E image, b) segmented binary 

epidermis, c) segmented binary dermis, d) segmented binary adipocytes. 
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3.2.3 Quantification of Cutaneous Features  

The quantification of biologically relevant parameters follows the segmentation of each 

skin layer using the active contour method. Each skin layer contains features that help to 

evaluate morphological changes in in order to find out if there is a phenotype associated 

with a particular knockout mouse model. 

3.2.3.1 Skin Layer Depth Quantification 

The thickness of the epidermis and dermis was calculated in different ways in the 

development stage. Initially, the boundary lines of the epidermis were selected (the 

upper line and the bottom line; Figure 3.14b) and then the length of the two lines was 

normalized to calculate the distance of the opposite points of the two lines (Figure 

3.14c). The limitation by using this calculation was that the two lines may not have the 

same length, which causes splay between the two opposite points, so increasing the 

measured distance.  One of the causes of variation between the two lines is the inclusion 

of hair follicles that cause an expansion of the bottom line and skew the whole 

measurement.  This epidermis depth measurement method was then modified by 

calculating the distance from one point on the upper line of the layer to the closest point 

on the bottom line. Unfortunately, the result of calculating distance between two 

described points was not more successful than before due to the fact that the upper and 

lower boundary lines are highly irregular making it difficult to measure the real depth of 

the layer (Figure 3.14d).  Another modification was tried, again with limited success, to 

quantify the thickness by calculating the length of the perpendicular line from points on 

the upper line (upper boundary of epidermis) that intersects with the second line that 

represent lower boundary of epidermis (Figure 3.14e). 
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Figure 3. 14: The development of thickness measurements. a) typical segmented epidermal layer, b) 

upper and lower lines delineating the boundary of the layer, c) depth distribution based on normalized 

length of the two lines I1, I2 and distance between two opposite points, d) depth distribution based on the 

distance between one point the first line and the closest point on the second line, e) depth distribution 

based on the length of the perpendicular line that intersects with the corresponding point on the second 

line. 
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A final and more successful, approach to measure the depth distribution of the 

epidermis and dermis was by measuring the length of skeleton branches resulting from a 

skeletonization process, as described in the following section. 

3.2.3.2 An Accurate Depth Quantification Method 

The depth of each of the segmented epidermal and dermal layers was calculated 

automatically by generating a skeleton of the binary image of each layer using 

skeletonization (Gonzalez, Woods et al. 2004), after which the skeleton branches were 

used to quantify the depth by measuring the length of the branches to yield half the 

depth of the object. The number of branches of each image is different, and depends on 

morphology of the layer as described in Chapter 1, section 1.3.2.3. Figure 3.15 

illustrates depth measurements made using skeletonization and the quantification 

method flowchart up to this stage.  

 

 

Figure 3. 15: Skeletonization process and flowchart of skin layer depth quantification. 
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3.2.3.3 Adipocyte Size and Number Quantification 

Following fat cell segmentation (as described in section 3.2.2) adipocyte size and 

number were calculated. Existing manual methods for measuring adipocyte size 

measure major and minor axis of adipocytes in grids overlayed on micrographs, which 

is extremely time consuming. Moreover, this approach produces only an approximate 

area rather than the exact cell area as cell shape is approximated by an ellipse that can 

be calculated by estimating major and minor axes according to eq3.3.   

𝐴𝑟𝑒𝑎 = 𝜋 ∗ 1
2⁄ 𝑚𝑎𝑗𝑜𝑟 ∗ 1

2⁄ 𝑚𝑖𝑛𝑜𝑟                             (𝑒𝑞3.3) 

Where major is the long axis of the ellipse that fits the fat cell and the minor is the short 

axis of that ellipse. Figure 3.16 illustrates the calculation of an ellipse manually, 

providing a comparison with the actual shape of the cell (which can only be identified 

using automated methods as described below). Manual methods for quantifying 

adipocytes in images of gonadal fat in a model of obesity were previously performed in 

the BITM by Dr Malgosia Kepczynska over a period of many months. A method to 

automatically determine the cross-sectional area of cells from actual pixel values (that 

can be converted to μm2 by exploiting image resolution and original magnification), is 

therefore, essential for high-throughput studies.  

𝑨𝒓𝒆𝒂 = 𝝅 ∗ 𝑨 ∗ 𝑩 

 

 

 

Figure 3. 16: An explanation of manual method for calculating size on an individual adipocyte 

(actual cell represented in red). A is the major axis and B is the minor axis of the corresponding ellipse. 
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3.2.3.4 Segmentation and Quantification Summary 

The summary of the whole technique for segmenting and quantifying the epidermis, 

dermis and subcutaneous in images supplied by the WTSI is described below.  

1. Image pre-processing to improve object detection. I needed to prepare the image 

for the next step of segmentation by applying contrast enhancement, noise 

reduction using a median filter, and converting the colour space from RGB (red, 

green and blue) to HSV (hue, saturation and value) colour space, from which I 

selected the saturation channel. 

2. Region-based active contour model without an edge. This segments objects with 

different properties from surrounding objects, e.g. in isolating the epidermis-

dermis and the subcuticular fat layer. For epidermis segmentation, I applied the 

MATLAB function addimage (which adds the image to itself), because this 

helps significantly in highlighting the epidermis in the image. 

3. Measuring the branches of the skeletonised binary image to measure depth in 

segmented epidermis and the dermis. 

branchesLabeled = bwlabel( branches, 4 );  // Label connected components 

ba = regionprops( branchesLabeled, 'Area' ); // Extract branch number of pixels 

4. Accurate adipocyte size and number quantification from segmented adipocytes 

using a piece-wise linear transformation. 

       Image( i , j)  0.079 < Image( i , j)<0.125 

TransImage( I , j) =  

   0   else 

 

3.2.4 Automated Adipocyte Size and Number Quantification 

3.2.4.1 Adipocyte Image Data Set 

The method described herein is an automated process to determine the size of 

adipocytes in H&E stained paraffin sections, initially of murine gonadal adipose 

sections. I sought to detect all adipocytes in an image using segmentation, and then 

measure the size of the cells in each tissue sample. Adiposity increases with mammalian 

body weight, so I compared adipose organisation in biological replicates of lean mice 

(n=4 C56bl6 animals per group fed standard diets) with a model of obesity (n=5 high-



Chapter 3 

117 
 

fat fed C56bl6 animals per group), with two tissue sections per animal collected at 6 

weeks of age. These images came from a pre-existing study of manual adipocyte size 

quantification in the University’s Institute for Translational Medicine, and no animals 

were sacrificed specifically for this work. All work was performed under the terms of 

our Home Office licence, with local Ethical Review Board permission. Images were 

captured from two histological slides from each animal using an Aperio ScanScope CS 

whole slide scanner at optical magnification 40X, and at least 10 snapshots were used 

per slide (approximately 180 images in total).   

3.2.4.2 Adipocyte Segmentation 

The procedure starts by transforming the original RGB image to HSV colour space, 

from which the saturation image was selected (Figure 3.17). Background subtraction 

was been implemented as a pre-processing task on the saturation channel only with a 

median filter of 71 × 71 pixels to remove any dark areas in the image that could affect 

edge detection. Figure 3.18b illustrates the resulting segmented image with background 

subtraction, and Figure 3.18c without background subtraction. As can be seen, the 

version without background subtraction misses some small fat cells whose boundaries 

overlap with those of neighbouring cells.  Next, the intensity transformation piecewise 

linear grey level transform was applied to the saturation image. This was done in order 

to change the range of intensities in the grey level that represents the adipose cell pixels 

into ON pixels (white) and all other intensity values converted to OFF (black) pixels to 

improve accurate cell segmentation.  

After segmentation, the resulting image was in a binary form almost ready for 

quantification after further post-processing to remove some artefacts. For example, 

some segmented cells were connected to each other by thin objects and mathematical 

morphology operations were used solve such problems and isolate cells (Figure 3.19). 

Specifically, an opening operator was used to solve the problem of connected cells, 

which was followed by applying a dilation operator using a disk structuring element 

with two elements. Dilation reconnected some pixels that were removed by the opening 

operator (Figure 3.19) near the end of thin connections. The partial cells at the boundary 

of the image were removed via a MATLAB function (imclearborder (image)) to clear 

image borders by supress the objects that are connected to the image border, as shown 

in Figure 3.18b.  
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Figure 3. 17: Transformation to HSV colour space. Original RGB image (left), pixel dimensions = 

1712×1074 pixels, and the saturation channel of HSV colour space (right). 

 

Figure 3. 18: Use of background subtraction to improve adipocyte segmentation. a) cropped original 

RGB image of gonadal fat pad, b) segmented fat cells after image background subtraction, c) segmented 

cells without image background subtraction.  
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.  

Figure 3. 19: Use of morphological operators to improve fat segmentation. a) segmented fat cells are 

connected in many regions before applying the morphological process, b) the connected cells are 

disconnected using automated morphological opening operations. Areas of particular interest are circled. 
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3.2.4.3 Adipocyte Quantification 

After labelling adipocytes in the binary image utilizing the MATLAB function below, 

the actual area of the cells was calculated by counting constituent pixels (Table 3.1). 

[L, num] = bwlabel (BW, n);  

This function returns the number (num) and labels (L) of the connected objects in 

binary image BW. 

The cells were then grouped into different size groups or bins. The smallest group 

consists of all cells with an area <2000 pixels, with each group incrementing by 2000 

pixels. The largest of the ten groups contained cells with an area >18000 pixels. The size 

groups were then converted to μm2 according to the spatial resolution of the images. 

Typically, with the image resolution used in this analysis, each pixel equates to an area of 

0.25 μm2. Thus the bins range from <500 μm2 (consistent with a small, immature adipocyte) 

increasing by 500 μm2 up to the last group of very large adipocytes (>4500 μm2). In this 

way, a biologically meaningful range was created. Finally, a size threshold was applied to 

exclude cells of area < 240 um2, because below this size object were likely to be 

artefact.  

3.2.3.5 Results of Adipocyte Quantification 

Adipocyte size and number were measured in different mouse models. Figure 3.21 

contrasts automated and manual methods for measuring adipocytes in the mouse model 

of obesity. The only size category where I saw a significant difference between 

automated and manual quantification was <500 μm2.  These differences were due to the 

differences in calculating adipocyte area by each method (Figure 3.16). The automated 

method allowed more accurate size quantification, particularly at smaller sizes, as 

adipocytes have an irregular shape as shown in Figure 3.20 with examples of 

differences between the two methods. Two different measurements lead to a shift in the 

normal distribution of adipocytes size to the left using the automated method as shown 

in Figure 3.23. It is also possible that the automated method will include small cells 

more consistently than manual methods. Figures 3.24b and 3.24a show results with and 

without small cell thresholding respectively. 
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When ellipse measurements are made entirely manually, long and short axes may vary 

according to observer may vary, while this can be partially automated if computational 

methods are used to calculate the axes of the fitted ellipse, and so reduce observer bias. I 

recalculated these values automatically from the manual measurements (Figure 3.23). 

However, the final automated method that calculates the area of each cell in µm2 

provides the most reliable measure of adipocyte size, because it is less influenced by 

possible errors in fitting an ellipse into a cell.  

Although I saw differences in average adipocyte size in automated and manual methods, 

both methods identified significant differences between normal and high fat diets. 

I compared the method developed herein to an existing watershed-based method that 

splits large cells using the freely available ImageJ adipocyte tool macro. The ImageJ 

macro also led to an over-estimation of cells in the smallest size category Figure 3.22. I 

observed that the ImageJ watershed algorithm split larger adipocytes into many separate 

cells (Figure 3.22c), which obviously skews the results. Moreover, unlike my method, 

the ImageJ macro tool only handled individual images and was, therefore, not suitable 

for batch analysis. Therefore, my tool is a novel and accurate method for automated 

image analysis that can used in high-throughput analysis, as illustrated in Figures 3.22b 

and 3.22d. 

Fat Cell 
MajorAxisLength 

(A) 

MinorAxisLength 

(B) 

Area 

(Pixel) 

Aria I 

µm2 

Pi* 

0.5A*0.5B 

1 199.99 96.84 11418 2854.50 3802.9 

2 131.86 71.39 7082 1770.50 1848.5 

3 118.69 63.13 5527 1381.75 1471.5 

4 138.53 55.93 5448 1362.00 1521.5 

5 78.44 20.34 980 245.00 313.4 

6 60.53 15.38 608 152.00 182.8 

7 161.94 121.45 15130 3782.50 3861.8 

8 50.193 13.76 456 114.00 135.6 

9 132.87 73.88 6287 1571.75 1927.6 

10 77.58 39.40 2148 537.00 600.3 

 

Table 3. 1: Comparison of typical measurements from a subset of adipocytes obtained by manual 

and automated methods. The area in m2 was calculated by the automated method, whereas the final 

column is derived from the manual measurement method. 
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Figure 3. 20: Three typical examples of comparison between manual and automated methods. 

Segmented adipocytes using automated method include cells overall the image including small cells. Note 

that all cells in the image were counted with the automated method. 

 

 

Figure 3. 21: Comparison of automated and manual methods to determine adipocyte size in a 

model of obesity. The left panel shows a significant increase in mean adipocyte size in high fat diet 

animals (HFD) compared to chow diet animals (CF), p value= 0.0004 represented with ***. The results 

were consistent with automated measurements, which are shown in the right panel (p value= 0.0043, **).  
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Figure 3. 22 Comparing the automated technique with the imageJ macro tool in terms of 

segmentation and quantification. a) original adipose tissue image, b) segmented cells using my method, 

c) watershed-based segmentation with ImageJ, d) superimposition of b) on a), e) ImageJ quantification 

results, f) output with my method. Note overestimation of small cells with watershed method.  
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Figure 3. 23: Adipocytes size distribution in chow and high fat diet of gonadal adipose sections 

using manual and automatic quantification method. a) manual method b) automated method with 

small size thresholding. Both methods showing significant increase of small size categories adipocytes. 

 

 

 

 

Figure 3. 24: Adipocyte quantification of gonadal adipose tissue using different methods. Using 

automated method by measuring cross section cells area (MATLAB area), and the manual method with 

both manual (Manual ellipse) and automated determination of ellipses by measuring major and minor axis 

of adipocyte fitted ellipse (MATLAB ellipse). This was performed with and without the use of a 

minimum adipocyte size threshold of 240 µm2. 
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3.3 Results and Discussion  

3.3.1 Data Sets and Experimental Protocol 

My final method for high-throughput analysis was applied to three partitions of the 

MGP dataset. These were: 

1. Wild-type images 

H&E stained skin from 16 week-old female wt animals were from two genetic 

backgrounds (B6Brd;B6Dnk;B6N-Tyrc-Brd,B6N), and I wanted to test if this 

would impact my results. I also wanted to evaluate the effect of diet on my 

results. 

2. Development data set 

Development Data set was contain 202 H&E stained image with 20X of 

magnification and pixel dimensions 2000×1459. The images contained 15 wild-

type (wt) animals and 187 knockout animal selected randomly by WTSI. The 

data set was used to test my automatic method with respect to segmentation and 

quantification of all of the three skin layers.   

3. Full data set 

Full data set was contain H&E stained images ( pixel dimensions = 1440×908; 

464.4×292.83) of skin section of 34 wt high fat diet animals, 8 chow diet 

animals and 475 knockout mouse of high fat and chow diet animals. The design 

of the MGP pipeline (use of diets and genetic backgrounds etc. is beyond the 

scope of this thesis). There were 2-3 slides available from each animal, and 6-10 

images per slide (captured at the magnification and resolution above) were 

created. 

3.3.2 Measurement of Skin Phenotypes in a High-throughput 

Screen 

An automated segmentation protocol using an adaptive active contour model was 

developed for object detection and feature extraction in H&E images of mouse skin as 

described above. This method was shown to successfully segment and quantify the 

epidermis, dermis and subcutis. This method was then applied to H&E images from the 

WTSI MGP to enable investigation of the effect of different genes or environmental 

factors such as diet, on the morphology of the epidermis, dermis and subcutis in high-
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throughput screen. The process is summarised in the flow chart in Figure 3.9, and the 

results of segmenting each slide is shown in Figure 3.13. 

3.3.3 Quantification of Wild-type Data 

Quantification was applied to all wt images in the first instance, consisting of 34 high 

fat diet fed mice, and 8 chow fed (lean) mice in two genetic backgrounds 

(B6Brd;B6Dnk;B6N-Tyr<c-Brd>,B6N). The total number of images was in the order of 

1000 in this experiment. 

3.3.3.1 Epidermal Depth Quantification 

The depth of epidermal layer was quantified by calculating the skeleton branch length 

and determining the statistical moments of the distribution of widths of sections along 

the length to provide a representation of epidermal depth. Mean values from all images 

sampled is shown in Figure 3.25. This Figure illustrates that the distributions of depth 

along the length of the epidermis are not significantly different between the two 

different diet groups in a combined genetic background. 

3.3.3.2 Dermis Depth Quantification 

The dermis depth was calculated as above (Figure 3.26). Unlike the epidermis, a 

significant change in dermis depth characterised different diet groups. 
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Figure 3. 25: Effect of diet on epidermal depth in wild-type animals. a) the influence of diet (chow or 

high fat diet (HFD) in two genetic backgrounds (B6Brd;B6Dnk;B6N-Tyr<c-Brd>,B6N). b)  Effect of diet 

with combined genetic background does not show significant alteration in epidermis thickness. 34 HFD 

animals and 8 chow animals, 2-3 slide per animal and 4-10 images per slide.  
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Figure 3. 26: Effect of diet on dermal measurement in wild-type animals. a) the influence of diet 

(chow or high fat diet [HFD]) in two genetic backgrounds (B6Brd;B6Dnk;B6N-Tyr<c-Brd>,B6N). b)  

Effect of diet with combined genetic background. Dermis depth decreased significantly in HFD animals 

(P value< 0.0001, ****). 34 HFD animals and 8 chow animals, 2-3 slide per animal and 4-10 images per 

slide. 
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3.3.3.3 Adipocyte Number and Size  

Adipocyte analysis was applied to the wild-type images described above (Figure 3.27). 

The mean result in separate genetic backgrounds is shown in Figure 3.27a, and 

combined genetic background in Figure 3.27b. 

From the adipocyte quantification, I found that chow fed animals contained a higher 

number of small adipocytes compared to high fat fed animals (Figure 3.30a).  

 

 

Figure 3. 27: Effect of diet on adipocyte size in wild-type animals. a) the influence of diet (chow or 

high fat diet [HFD) in two genetic backgrounds (B6Brd;B6Dnk;B6N-Tyr<c-Brd>,B6N). b)  Effect of diet 

with combined genetic background. Significant increase in adipocyte size in HFD animals (P value= 

0.0007, ***). 34 HFD animals and 8 chow animals, 2-3 slide per animal and 4-10 images per slide. 
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3.3.4 Analysis of the Development Set 

I then went on to study the development images that included 202 snapshots of H&E 

mouse skin images. This training data set included wt skin images along with a selection 

of images from knockout animals to provide a proof of principle that my method could 

isolate interesting phenotypes in each skin layer. Figure 3.28 shows genes associated 

with variation in adipocyte size, and Figure 3.29 shows an example of these interesting 

genotypes, specifically Myo5a that increase adipocyte size and D11Wsu99e that is 

associated with a decrease in adipocyte size. Some genotypes are associated with 

changes in adipocyte size distribution, such as Vangl1/Vangl1 and Ush1c/+ (Figure 

3.30). 

The results of applying the developed method to the training test of images are shown in 

Figures 3.31, 3.32 and 3.33 showing the interested genotypes in each of the dermis, 

epidermis and adipocyte altered phenotype respectively.  

The MGP describe a stringent process to identify genotypes for further analysis, and I 

used the same criteria (Bassett, Gogakos et al. 2012). A comparison was performed 

between genetically-matched wt animals and individual genotypes by calculating a 

relative range (RR) for each genetic background, with mean, median and 95% 

confidence intervals (CI) determined. Individual genotypes were deemed to impact 

upon cutaneous morphology when at least 70% of the data points extracted for a feature 

were outside the RR 95% CI. Values of depth distribution in epidermis and dermis, and 

adipocyte size distributions were used to compute the 95% CI. The lower and upper 

95% CI were computed by the following equations: 

𝐿𝑜𝑤𝑒𝑟 95% 𝐶𝐼 = �̅� − 𝑧 ∗ (
𝑆

√𝑛
)                                                      (𝑒𝑞3.4) 

𝑈𝑝𝑝𝑒𝑟 95% 𝐶𝐼 = �̅� + 𝑧 ∗ (
𝑆

√𝑛
)                                                      (𝑒𝑞3.5) 

Where the �̅� is the mean of the data, z is a constant that equal to 1.96 for 95%Cl, S is the 

standard deviation and the n is the number of entries. 

The number of the entries that have smaller or bigger value as the lower and upper 95% 

CI in each wt +/+ section has been counted. Then for each tissue section, the number of 
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entries those were smaller than the lower 95% CI, and larger than the upper 95% CI of 

the wt data were counted. If the number of entries below the lower 95% CI was >70%, it 

was considered to be a hit, otherwise it was considered to be in the normal range. 

Likewise, if the number of entries above the upper 95% CI was >70%, it was considered 

to be a hit, otherwise it was considered to be in the normal range. 

From this initial analysis 24 genotypes exhibited changes in the epidermis thickness 

(Figure 3.32), and 41 genotypes demonstrated alteration in the dermis depth, many of 

which have no previous known association with cutaneous function (Figure 3.31). We 

have identified 31/187 (16.5%) genotypes that are associated with altered adipocyte size 

compared to the 15 wt (+/+ locked) images, including 3 genotypes with altered 

metabolic phenotyping data in the MGP as illustrated in the figure 3.33.  

 

Figure 3. 28: Comparison of adipocyte size distributions between specific knockouts and wt 

animals. Left panel, an example of a knock-out that decreases adipocyte size. Right panel, an example of 

a knock-out that increases adipocyte size. 
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Figure 3. 29: Images of genotypes with that influence adiposity compared to wt from development 

data set (202 images at 20X magnification). 
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Figure 3. 30: Adipocytes distribution in wild-type animals in development data set. a) adipocyte size 

distribution in wt chow and HFD, b) distribution in Vangl 1/Vangl 1 and HFD, c) distribution in Ush 1c/+ 

and HFD animals. 
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Figure 3. 31: Dermis measurements in development data. From analysing 202 development images 

for 187 KO mouse, 24 genotypes showed darmal depth increased (top), 17 genotypes showed a decreased 

in dermal depth (bottom). 202 images in total (187 knockout animals and 15 wt). 
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Figure 3. 32: Epidermis depth measurements in development data. From analysing 202 training 

images for 187 KO mouse, 8 genotypes showed epidermal depth increased (top), 16 genotypes showed a 

decreased in epidermal depth (bottom). 202 images in total (187 knockout animals and 15 wt). 
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Figure 3. 33: Adipocyte quantification result of development data. From analysing 202 training 

images for 187 KO mouse, 16 genotypes 7.9% showed adipocyte size increased (top). 15 genotypes 7.4% 

showed decreased in adipocyte size (bottom). 202 images in total (187 knockout animals and 15 wt). 
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3.3.5 Analysis of the Full Dataset 

Having successfully analysed the developmental data set and obtained encouraging 

results, I applied my active contour-based analysis technique to images from 475 

knockout mice and 35 wt animals. The same RR and 95% CI criteria were used to select 

hits, and genotypes impacting each compartment (in either dimension) are represented 

in a Venn diagram in (Figure 3.34) with an effect in both high fat diet and chow fed 

animals. It is interesting that no one knockout was associated with an effect in all 

compartments, and only one gene, Map3k1, showed an effect in more than one 

compartment (adipocyte and dermis). All 74 knockouts that were associated with 

cutaneous phenotypes are listed in Table 3.3. 

 

Figure 3. 34: Number of hits in each skin layer and overlap. Interesting phenotype in each of skin 

layer of 475 knockout animals. One gene overlapped between fat layer and dermis (Map3kl). 

  



Chapter 3 

138 
 

Adipocyte Hits Dermis Hits Epidermis Hits 

Chow HFD Chow HFD Chow HFD 

Spns2(b) Agpat3 Trpc2 Ldha Dph2 Gatc 

Scn3b Sympk Fggy Gsk3a  Pnpt1 

Tmc6 Sparc Mrap2 -   

Cbx5 Mir96 Wnt3 -   

Wdr37 Prmt5 Secisbp2(c)    

Mapk10 Eif2c1 Abca4    

Acsl4 Anks4b Actr6    

Mlec Fkbp7 Map3k1    

Arhgef7 Appl2 Inpp1(b)    

Map3k1 - Xbp1    

Ralb Irf1 Coq4    

Creb3l1(e) Sgol2 Trim29    

1700042B1
4Rik 

Tpi1 Ido2    

Cand2 Zfp106 Arvcf    

Nacad Stard13     

4932438H2
3Rik 

Myh9     

Myo7a Uba2     

Ush1c 
3010026O0

9Rik 
    

Ell2 Zmynd8     

Leprot Fto      

Ccdc160 Ccdc137      

Fam175b Amfr      

Ift80 Rhot1      

Rab5c Prmt3     

Arpc3 Dscc1     

-      

-      

-      

 

 

Table 3. 2: Knockout mice whose phenotype impacted on the dermis, epidermis and adipose. 
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3.3.6 Comparison with Other WTSI Phenotyping Data 

The MGP makes available an extensive range of phenotyping data from these animals 

via clickable hit maps, however, a detailed analysis is beyond the scope of this study, 

but I did look at the intersection between genes associated with a cutaneous phenotype, 

and those considered to express a metabolic phenotype, as shown in Figure 3.35. 

Epidermal depth-associated genes are shown in Table 3.3, and illustrated in Figure 3.36. 

One gene with an epidermal phenotype shared a metabolic phenotype, protein kinase C 

zeta, Prkcz. MGP phenotyping results indicated a change in plasma chemistry, and it 

will be interesting to investigate this relationship in more depth in future studies. It is 

also of note that a hair follicle phenotype was identified in an unrelated study. A more 

systematic analysis of these data are now underway. 

Dermal depth impacting genes are shown in Table 3.4, and illustrated in Figure 3.37. 

Seven genes were also known to express a metabolic phenotype: Dusp3, Map2k2, 

Mapk1, Ppp5c, Rhobtb3, Myl12b and Phf20. 

From the analysis of adipocyte size and number, eight fat phenotypes were detected, as 

shown in Table 3.5, and Figure 3.38 illustrates the genes associated with adipocyte size 

and number alteration. Two of the genes also have a metabolic phenotype, Bbx and 

Phf20, and again these are of interest for future study.  

 

Figure 3. 35: Venn diagram of the cutaneous and metabolic phenotypes. 

  

Cutaneous 
Phenotype

24 (14.6%)

Metabolic 
Phenotype

29 (17.7%)

9
(5.49%)
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Table 3. 3: A typical hit map of phenotyping information curated by the MGP for four genotypes 

with epidermal impact. 
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Table 3. 4: A typical hit map of phenotyping information curated by the MGP for 21 genotypes 

with dermal impact. 
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Figure 3. 36: Epidermal depth in four genotypes in relation to wt. 

 

 

 

Figure 3. 37: The dermal depth in 24 different gynotypes in relation to wt. 
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Table 3. 5: A typical hit map of phenotyping information curated by the MGP for seven genotypes 

with adipocyte impact.  
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Figure 3. 38: Adipocyte size and numbers in eight different genotypes in comparison to wt skin. 
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3.4 Conclusion and Future Work 

Automated cutaneous phenotyping was presented in this Chapter, in which I extracted 

morphological features from skin layers in high a throughput screen. I sought to deal 

with many problems that face high-throughput analysis, notably as time, reproducibility 

and cost. 

The use of the active contour algorithm to adaptively segment skin layers in a huge 

number of H&E stained images solved the problem of the variation in intensity and 

colour arising from the use of multiple laboratories and investigators, and between 

experiments performed in the same laboratory at different times. The novel depth 

quantification obtained by computing the length of skeleton branches was used 

successfully to quantify the depth of both the epidermis and dermis to identify 

interesting skin phenotypes. 

Quantifying adipocytes in gonadal fat H&E-stained images provided important 

information in determining the effect of a high fat diet on adipocyte size and number 

(Jo, Gavrilova et al. 2009). Adipose tissue expands by two mechanisms: hyperplasia 

(cell number increase) and hypertrophy (cell size increase). My adipocyte quantification 

method allows an assessment of the both of these factors within a tissue specimen 

(Osman, et. al. 2013). The automatic method also provides accurate measurements of 

the cross-sectional area of adipocytes in histological sections. The performance of the 

automated algorithm was consistent compared to the utilized manual methods and, 

moreover, the accuracy of the unsupervised area measurements is increased. This 

determined that the manual method of calculating the cross-sectional area of adipocytes 

uses assumptions that lead to an over-estimation of cell size.  

Changes in the epidermis may reflect hyperplasia or inflammation, both key biological 

processes, whereas changes to the dermis may reflect an impact on connective tissue 

(with implication for processes such as scarring or wound healing). Perhaps more 

importantly, changes in adiposity may reflect local or systemic metabolic changes (or 

both). The genes that were identified as exhibiting interesting phenotype are shown in 

Table 3.2. Some of these phenotypes are novel, while others were not previously 

reported. Selection of candidate genes for further investigation may be informed by the 

use of MGP primary phenotyping data, and this is a rich area for future study. 
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Moreover, more knockouts are emerging from the pipeline, and I will screen these as 

they become available. 

In conclusion, I have developed an automated high throughput screening method for the 

segmentation and quantification of cutaneous sections. This has enabled the 

identification of specific gene knockouts that results in a cutaneous phenotype, which 

would not have been possible (or at least realistic) using existing manual methods. My 

approach utilises novel techniques, specifically an active contour region-based model to 

isolate and quantify features of the epidermal, dermal and fat layers of the skin that can 

be output to an Excel spreadsheet to facilitate further analysis. It is likely that this 

rationale could be adapted for other tissue types. 

Future Work 

I would like to utilise other image data from the WTSI. This includes additional H&E 

stained skin and other tissues, as well as skin samples stained by immunohistochemistry 

to identify the epidermal proteins K10 (mature keratinocytes) and K14 (immature 

keratinocytes). As additional H&E images become available, I will expand the analysis 

across the whole pipeline of animals that are being phenotyped in the MGP, as shown in 

Figure 3.1. I am also in the processes of gaining access to the H&E original slides, as I 

would like to exploit eosin autofluoresence to provide both 3D visualisation, and higher 

resolution collagen imaging. If unstained slides became available, then picrosirius and 

Herovici staining could be used to image collagen basket-weave and inflammatory cells 

(and elastic fibres) respectively. 

With immune-stained skin, I would like to go on to investigate hair follicle organisation 

using K14 images and use the region-based active contour to segment the epidermis 

(Figure 3.39b) to investigate the orientation, size and number of follicles (Figure 3.39d). 

The genetic basis of disorders of hair follicles (such as alopecia) is of great scientific 

interest, and may yield novel treatments. 

Another technical aspect that I need to consider in future developments is to make the 

system adaptive in order to be applied to other data sets. For example, my techniques 

should be able to be applied to images from any laboratory, but this is complicated 

variation in contrast due to subtle differences in fixation, sectioning and staining. While 
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great care has been taken to minimise technical variation, inconsistency in colour and 

intensity, seen when the same staining method is performed at different times and in 

different places will significantly affect morphometry. By creating an adaptive 

technique to solve the problem of colour and intensity variation, I have thought about 

adding colour normalization as a pre-processing step. This normalise colour distribution 

across a range of source images  (Magee, Treanor et al. 2009). An example of such 

colour normalization is shown in Figure 3.40, achieved by mapping the colour 

distribution of source images (over or under stained) to that of an ideal target image 

(well stained image). 

Finally, in order to assess the effectiveness of my segmentation and quantification 

technique in the identification of genes that exhibit significant cutaneous phenotypes, I 

would like to use depth and size measurements to compute the Mahalanobis distances to 

find outliers in the whole data set. This was done previously to provide a quality control 

check on secondary phenotyping from WTSI MGP data (Bassett, Gogakos et al. 2012). 

Briefly, this will calculate the distance between each animal depth result and the centre 

of the cluster, and these clusters will hopefully represent ‘normal’ and ‘interesting’ 

phenotypes. In this way, I hope to maximise the impact that the MGP will have on our 

understanding of the genetic basis of disease.  
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Figure 3. 39: Segmentation of immature keratinocytes and hair follicles. a) K14 stained image from 

the training data set, b) segmented binary image of the epidermis and hair follicle/ sebaceous gland, c) 

epidermis, d) segmented hair follicles. 

 

 

 

 

 

Figure 3. 40: Colour normalization. a) target H&E stained image, b) source image, c) source image 

adjusted to exhibit the same colour distribution as the target. 
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CHAPTER 4  

Non-invasive Assessment of Skin Surface Structure  

4.1 Introduction 

The structure of the lines, ridges and wrinkles on the surface of skin may reflect 

important information about pathological and environmental effects. In this Chapter, the 

degree of change in skin surface structure using automated texture information 

extraction is described, with related experimental results. I shall investigate and develop 

a computational procedure for the analysis of the skin surface texture from a non-

invasive imaging method that can be used to automatically extract and evaluate 

alterations of skin surface topography. I first introduce the use of silicone skin moulds 

to capture skin integrity. The following sub-sections describe the features that reflect 

environmental impact on skin, and the widely used manual Beagley-Gibson (BG) 

scoring system previously used to quantify skin surface data.  In section 4.2, the aims 

and objectives of the work are described. In section 4.3, I introduce the image database, 

the related individual clinical parameters and describe manual analysis. In the following 

sections, I describe computational skin surface texture analysis. I conclude this Chapter 

with results discussion. 

A skin mould is the impression of the micro-topography of the skin surface generated 

from a flexible material. In this instance, the mould is made from silicone, and a skin 

impression is made by the placement of the silicone on the surface of the skin. This 

provides a negative of the topography of the skin.   

The strategy of generating an impression of the skin has many advantages over the 

techniques discussed in previous Chapters. It is non-invasive and does not alter 

topography, unlike the process of biopsy and subsequent histology as discussed in 

Chapters 2 and 3. Furthermore, several studies have suggested that skin ridges and 

wrinkles correlate with dermal as well as epidermal changes (Gherardi 2008; Mizukoshi 

and Takahashi 2014; Trojahn, Dobos et al. 2014). From a cosmetic or pharmaceutical 

perspective, the use of skin moulds or impressions can allow the degree of the damage 
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to be assessed in a controlled and quantitative manner that is not feasible with invasive 

techniques, enabling larger multi-centred studies.  

4.1.1 Skin Surface Topography 

Healthy skin displays a regular pattern of furrows or lines (visible to the naked eye), but 

depth and definition can change with age, and deeper wrinkles appear progressively. 

The texture of the skin surface is not the same in different regions of the body. For 

example the pattern of lines and pores on the face, arm and the soles of the feet vary 

considerably (Gherardi 2008; Sparavigna and Marazzato 2010). However, the skin over 

all these surfaces has common features, consisting of different shapes and patterns 

determined by different length and depth of lines. There are primary lines, which are 

wide, long and deep, and these primary lines are connected by shorter secondary lines 

which are finer (Tchvialevaa, Zenga et al. 2010). The intersections of primary and 

secondary lines form polygonal shapes of varying sizes.  The size of the polygonal 

shapes and distances between the lines can be used as a pattern to distinguish between 

skin of different individuals (Seddon, Egan et al. 1992). Various studies have 

demonstrated that the texture of the skin can vary with different life histories, and with 

different factors including environmental exposure, pathology, scars and chronological 

ageing (Gao, Hu et al. 2011). In order to invesitigate the different classes of skin texture 

patterns, and to quantify the impact of each of the age-related and environmental factors 

on these patterns, one needs a measure of similarity/dissimilarity that can reflect 

changes to the patterns. I shall introduce one such measure and discuss its computation.     

4.1.2 Skin Surface Structure Analysis 

The impression of the skin surface contains lines and shapes formed by the intersection 

of the parallel organised lines (primary lines) and intermediate lines between the 

primary lines (secondary lines). The organisation of the lines and the shapes formed 

from their intersection are the most important features of the skin surface, and alteration 

in their patterns may reflect interesting phenotypes caused by environmental impact or 

disease. 

4.1.2.1 Beagley-Gibson Scoring  

The clinical “gold-standard” for investigating skin surface structure is the Beagley-

Gibson (BG) scoring system, which was developed to classify skin structures into six 
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groups that differ in the regularity of the lines and shapes on the skin surface as shown 

in Figure 4.1 (Seddon, Egan et al. 1992). The first score has a perfect structure, with 

regular intersecting primary and secondary lines forming star shapes. Skin deteriorates 

progressively to score 6, which has no discernable regular structure, with large flat 

spaces between deep and irregular primary lines. The BG score reflects, therefore, a 

global analysis that refers to a multiplex of parameters used to measure different skin 

topography features, e.g. number of primary and secondary lines, the number of grids, 

number of closed polygons that are formed by the lines, and the mean area of blocks. 

Briefly,  skin is categorised as follows: score 1, primary and secondary lines are visible 

and of similar depth, forming star shapes; score 2, some of the secondary lines are 

flattened; score 3 the primary lines become uneven, the secondary lines flattened with 

little star formation score 4 is identified by deeper primary lines with loss of secondary 

lines; score 5 has flat areas between primary lines with few secondary lines; and  score 

6, there are no secondary lines with large flat spaces between deep primary lines.  

BG scoring has been used many times in evaluating skin integrity, for example skin 

micro-topography has been evaluated from skin moulds and compared to skin biopsies 

to assess elastosis  (Seddon, Egan et al. 1992).  The aim of this literature was to 

determine if any clinical parameters were correlated with skin structure on the dorsum 

of the hand. There were a number of significant correlations with micro-topography, 

including changes in texture in ageing, cigar smoking, lighter iris and skin color, male 

gender, and sun exposure. One interesting observation was that there was no significant 

correlation between biopsy scoring of elastosis and the BG score, suggesting that 

changes in elastic fibres may not be reflected in skin surface structure. 

There have also been many instances where individual features of the BG scoring 

method have been utilised to assess skin topography. The number of primary and 

secondary lines provides a grading parameter, alongside the BG score, to assess the 

level of sun exposure (Weiler, Knight et al. 2007). The number of primary and 

secondary lines in one square centimetre of the skin impression was calculated, with 

fewer lines indicating the highest level of sun exposure, and higher line counts 

associated with low levels of sun exposure. Skin line counting and BG scoring along 

with a self-reported indicator of lifetime sun exposure was used to examine the 

relationship between sun exposure, vitamin D intake and breast cancer risk (Weiler, 
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Knight et al. 2007). That study found associations between skin texture and many 

factors including age, skin colour, ethnicity and many other lifestyle variables. Both 

skin line count and BG scores showed significant association between alterations in the 

skin surface structure with age, sun, UV light and other variables, however, the BG 

system showed a greater age difference between higher and lower sun exposure than did 

the skin line counts. 

The closed polygonal shapes that are formed by the intersection of the primary and 

secondary lines are known as the grid structure. The number of grids in skin topography 

was used as another BG-related parameter to evaluate the effect of age and the level of 

sun exposure on skin surface structure (Gao, Hu et al. 2011). A higher number of grids 

was associated with a more intact skin structure. This study used an automated 

assessment of five parameters derived from the intersection of lines and textures on the 

skin surface. Three of these parameters, the difference between the angles, maximum 

angles and the distance between the primary lines, associated positively with the BG 

score. The other two parameters, the number of angles and grids, associated negatively 

with the BG score. In addition, these five parameters where compared to clinical 

information. There was a correlation between age, distance and grid structure, whilst 

maximum angle and angle difference correlated with sun exposure. The results of 

automated texture evaluation correlated with BG scores, however, the correlation was 

found only when considering only one texture parameter, while the BG system depends 

on many parameters to grade skin integrity (Gao, Hu et al. 2011). 

Changes in skin surface texture are associated with skin aging, which can be caused by 

physiological aging or from environmental effects, or both (Gao, Yu et al. 2013). 

Results from a non-invasive method for analysing skin surface texture were compared 

to demographic factors and lifestyle of individuals. Different texture parameters were 

evaluated, including the angles formed by the intersection of the lines, the distance 

between the primary lines and the number of grids as well as BG scores. This analysis 

showed an association between the grading scores, age and sun exposure, and 

individuals with high grades were more likely to smoke and drink.  

The correlation between the number of closed polygons (NCP) observed on the skin 

surface, and roughness parameters (smoothness, roughness, scaliness and wrinkles) with 

ageing has also been described (Trojahn, Dobos et al. 2014). In this article, three age 
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groups (children, teenagers and adults) were used to calculate the NCP and roughness 

parameters in volar forearm skin by three independent observers. Grayscale images 

were used in this study, taken by the use of a Visio Scan VC 98 device and the software 

SELS 2000 (Courage + Khazaka electronic GmbH, Cologne, Germany) to calculate the 

NCP and the roughness parameters. A negative correlation was found between 

NCP/mm2 and age, while roughness parameters positively correlated with age. This 

article suggested that for a larger number of subjects an automated system for 

calculating the NCP was required, and also that replicates from other skin regions can 

improve analysis. 

Another parameter SPm, defined as mean area of blocks of different shapes formed by 

the intersection of primary and secondary surface lines was described to assess skin 

topography (Zou, Song et al. 2009). The goal of this work was to evaluate skin ageing 

in healthy volunteers (without a history of smoking) using image processing techniques. 

Many different techniques were used, for instance a region growing algorithm was used 

to remove hair on the skin surface, followed by histogram equalization to reduce the 

effect of light variation in the image. Noise reduction and line detection were done 

using the watershed segmentation algorithm. The SPm was computed for all images of 

the dorsal and ventral hand and compared to age. A relationship was found between 

SPm values and age, with the value of SPm increasing in both dorsal and ventral skin in 

both male and females with time. 
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Figure 4. 1: Example images representing BG categories. (Seddon, Egan et al. 1992).  
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4.1.2.2 Computational Methods Exploiting Novel Features 

A reliable skin topographic measurement that used a capacitive device to provide an 

absolute measure of skin surface structure was reported by Bevilacqua et al 

(Bevilacqua, Gherardi et al. 2006). The device captured details by direct contact with 

the skin using an active capacitive pix 

el sensing technology, and this was compared to profilometric analysis of the surface 

topography from silicone moulds of the same region of the skin. The inter-wrinkle 

distance (IWD) represented the distance between two adjacent wrinkles in the images 

produced from capacitive device, and for the profilometer analysis, the darker pixels 

corresponded to wrinkles (Peaks) and brighter pixels to line depth (Valley shapes) in the 

skin tissue. The result of both methods showed high correlation, with R2=0.998. 

However, the maximum depth that was detected with the capacitive device was limited, 

and both methods required expensive instruments. 

4.2 Aims and Objectives 

The aim of this Chapter was to extract skin surface texture information associated with 

chronological and photo-aging from a range of skin mould images. 

To achieve this overall aim, I sought to address the following objectives: 

 Explore appropriate automated image processing and analysis techniques 

 Compare these techniques to the “gold-standard” BG scoring method 

 Apply the optimal method to a range of skin mould samples 

 Assess the correlation of clinical parameters, such as body mass index (BMI) 

and ageing, with texture measurements. 
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4.3 Towards Automatic Skin Texture Analysis 

In this section, I describe the skin image impression database, and related clinical 

parameters of each individual to find the possible relationship between skin surface 

structure and clinical parameters such as BMI, age, waist-hip ratio, blood glucose and 

total freckles (kindly provided with permission by Dr Veronique Bataille of the 

TwinsUK Registry, King’s College London). I shall describe the development of 

automated image analysis to evaluate any degradation in skin surface structure, and 

compare results with manual assessment using the BG scoring system. 

4.3.1 Clinical Parameters and Skin Impression Moulds (TwinsUK 

Database) 

The skin moulds and the clinical parameters that I have used were provided by 

TwinsUK, which is the biggest adult twins registry in the UK. It collects data to help 

researchers in the study of genetic and environmental effects, in ageing and disease. The 

database includes DNA profiles (which were not available for the individuals in this 

study), clinical data and questionnaires, used to estimate the genetic and environmental 

contribution to common conditions such as diabetes, osteoporosis and asthma by 

comparing the similarities and differences between the identical and non-identical twin 

pairs.  

The TwinsUK skin topography dataset, contains over 300 silicon moulds from 157 

individuals. Each individual has two moulds, one from the forehead, a sun exposed site, 

and one from the inner arm, a sun protected site. Associated clinical data is shown in 

Table 4.1. Note that the time of mould capture and clinical information varied between 

patients. Each mould was imaged with between 4 and 10 images captured per silicon 

mould using a standard Olympus dissecting binocular microscope under low 

magnification, equipped with a Nikon CCD camera and illuminated from above with a 

separate bright-field incident light source. 
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   BMI Age 

Waist-Hip 

Ratio Blood Glucose Total Freckles 

Mean 25.1 52.9 0.7 4.8 37.2 

Standard Error 0.4 0.5 0 0.07 4.8 

Median 24 52.4 0.7 4.8 2 

Mode 21.5 50.8 0.7 4.7 0 

Standard Deviation 5.3 6.1 0.07 0.74 40.5 

Sample Variance 28 37.3 0 0.55 164 

Range 33.5 28 0.7 3.8 160 

Minimum 18.1 40.6 0.6 2.6 0 

Maximum 51.7 68.7 1.3 6.4 160 

 

Table 4. 1: Clinical information from the TwinsUK phenotyping clinic. 

4.3.2 Manual Analysis Using Beagley-Gibson Scoring 

Before I discuss the automatic BG score-compatible texture analysis techniques 

developed herein, I discuss the performance of the manual BG scoring system.  Skin 

mould images were graded using the BG system by two independent expert observers in 

the Institute for Translational Medicine at the University of Buckingham. The images 

were scored from 1 to 6, as standard. The result of BG scoring can be used as a baseline 

for automated skin mould analysis. The final score for each image was averaged for 

each observer, and then the 4-10 images scores were averaged for each silicon mould. 

The effectiveness of the BG scoring system was analysed using Cohen’s kappa 

calculation to look at inter-observer reliability, which shows the degree of agreement 

ranging from 0 to 1, with 0 indicating perfect disagreement and 1 is perfect agreement. 

The Cohen’s Kappa was 0.229 as shown in Table 4.2, which suggests a poor agreement 

between observers, and the correlation for observer scoring of all images is shown in 

Figure 4.2. However, when I separated the silicon moulds into different sites, sun 

protected and sun exposed, there were a higher level of agreement in face skin moulds 

(0.48; Table 4.3) than arm skin moulds (0.229; Table 4.4), and the correlation is shown 

in Figure 4.3 and 4.5. This indicates that the scoring process is easier and more reliable 

for sun exposed skin using the BG scoring system than in sun protected skin.  
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Linear regression was performed for each image of the skin moulds, and a slope of best-

fit value of 0.886 ± 0.011 was determined, with an R2 of 0.776, p<0.0001 (Figure 4.2a). 

However, when the values for each patient were averaged from each observer and then 

linear regression, performed a slope of best-fit value of 0.918 ± 0.025 was determined, 

with an R2 of 0.818, p<0.0001 (Figure 4.2b). 

For sun exposed skin sites, the values for each patient were averaged from each 

observer and then linear regression performed, a slope of best-fit value of 0.265 ± 0.066 

was determined with an R2 of 0.097, p<0.0001 as shown in Figure 4.3b. For each 

individual image of sun protected side, I performed linear regression and determined a 

slope of best-fit value of 1.34 ± 0.042, with an R2 of 0.527, p<0.0001. Figure 4.4a 

illustrates this correlation, when the values for each patient were averaged from each 

observer and then linear regression performed, a slope of best-fit value of 1.587 ± 0.099 

was determined with an R2 of 0.637, p<0.0001 as shown in Figure 4.4b. 

   
Observer 1 

 

  

  1 2 3 4 5 6 Total 

 

O
b

se
r
v

er
 2

 

1 126 24 26 3 0 0 179 

 

2 97 78 203 122 12 0 512 

 

3 0 0 15 92 102 4 213 

 

4 0 0 2 8 52 19 81 

 

5 0 0 0 19 98 395 512 

 

6 0 0 0 3 16 341 360 

  

Total 223 102 246 247 280 759 1857 

          Cohen's Kappa 0.229 

      Std Error 0.013 

       

Table 4. 2: Matrix of scores and calculation of Cohen’s kappa for all images. 

Figure 4. 2: Correlation of observer scoring for all images using BG score. a) correlation between two 

observers for each individual image score, b) correlation of the average of scores for each individual by 

both observers. 
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    Observer 1   

 

    1 2 3 4 5 6 Total 

 

O
b

se
r
v

er
 2

 

1 0 0 0 0 0 0 0 

 

2 0 1 0 0 2 0 3 

 

3 0 0 0 0 9 1 10 

 

4 0 0 0 2 24 17 43 

 

5 0 0 0 19 98 395 512 

 

6 0 0 0 3 16 341 360 

 

Total 0 1 0 24 149 754 928 

          Cohen's Kappa 0.48 

      Std Error 0.016 

       

Table 4. 3: Matrix of scores and calculation of Cohen’s kappa for sun exposed silicone mould 

images. 

 

 

 

Figure 4. 3: Correlation of observer scoring in images of silicone moulds from sun exposed skin. 

Individual images (a) and the average score of each patient (b). 
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Observer 1 

 

  

  1 2 3 4 5 6 Total 

 

O
b

se
r
v

er
 2

 

1 126 24 26 3 0 0 126 

 

2 97 77 203 122 10 0 509 

 

3 0 0 15 92 93 3 203 

 

4 0 0 2 6 28 2 38 

 

5 0 0 0 0 0 0 0 

 

6 0 0 0 0 0 0 0 

 

Total 223 101 246 223 131 5 929 

          Cohen's Kappa 0.215 

      Std Error 0.015 

       

Table 4. 4: Matrix of scores and calculation of Cohen’s kappa for sun protected silicone mould 

images. 

 

 

 

 

Figure 4. 4: Correlation of observer scoring in images of silicon moulds from sun protected skin. 
Individual images (a), and the mean score of each patient mould skin images (b). 
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4.3.3 Methods 

Image texture provides important information about the spatial arrangement of 

variations in intensity and colour across images. These variations in colour and intensity 

represent the smoothness and coarseness of any surface. The texture from one skin 

surface is different to another in term of roughness, smoothness, lines and the difference 

from high to low points, and the space between these points (Gherardi 2008). Skin 

texture could be affected by many factors such diet, age, environmental effects and 

treatments (Sparavigna and Marazzato 2010). For example, with age skin becomes 

thinner with the appearance of wrinkles due to the deterioration of ECM caused by 

reduced production of collagen and elastic fibres by fibroblasts (Lagarde, Rouvrais et al. 

2005). There are many different methods to extract textural information in an image. 

Which method to use, depends on the variation of the texture dimension. There are 

statistical-based approaches to extract the statistical texture characteristics. Transform-

based methods provide another approach, such as Gabor transformation as described in 

Chapter 2. Structure-based texture analysis is uses the lines and shapes in the image, 

which provides an important description of image texture (Materka and Strzelecki 

1998). 

In this thesis, I describe automatic image-based skin surface structure analysis schemes 

that are compatible with BG scoring. My schemes are based on texture pattern 

recognition and use two steps: feature extraction and classification. 

a) Feature Extraction 

There are two categories of image texture related features that will be used in my work, 

together with various combinations of these categories. The first category is based on 

the use of Local Binary Patterns (LBP), which captures local texture in terms of 

variations in pixel values, and it may be extracted in different ways depending on 

neighbourhood window size, and on regional partitioning of images.  The second 

category is the Gray Level Co-occurrence Matrix (GLCM), which is a common 

technique in pattern recognition to overcome the effect of variation in the distribution of 

illumination in texture parameters. GLCM is related to the distribution of repeated 

patterns of neighbouring gray values. The various features (i.e. parameters) for each of 

these two categories are describe in sections 4.4 and 4.5, respectively. The feature 
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extraction experiments in this thesis are described in the corresponding method 

development section.  

b) Classification 

Feature extraction steps result in feature vector representations of input images, for 

which the pattern recognition literature includes a variety of classifiers. Herein, I shall 

mainly use the Support Vector Machine (SVM) classifier for skin mould image 

classification, following different feature extraction techniques. I shall also use a kNN 

classifier for comparison with SVM in terms of performance. 

SVM classification works by selecting 500 random samples of arm skin and 500 

samples from face. The classification process starts by selecting one sample from each 

site as data testing, and compares this with the rest of the images, which act as training 

data, for all 500 samples. From each SVM classification, a score of the classification 

was found by finding the distance of the feature vector of the sample from the hyper-

line of the SVM by eq. 4.1 (Cristianini and Shawe-Taylor 2000). Figure 4.5 shows the 

SVM hyper-plane, and the support vector example. 

𝑠𝑐𝑜𝑟𝑒 = ∑ 𝛼𝑖

𝑛

𝑖=0

𝑘(𝑉𝑖 , 𝑥1) + 𝑏                                                   (𝑒𝑞4.1) 

Where V is the support vectors set, n is the size of V,  is the alpha weights of V , K is a 

kernel function (a dot product <Vi, x1> in this case) and b is the bias. 
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Figure 4. 5: Example of an SVM classifier with an optimal hyper-plane between the two classes of 

support vectors. The red vectors represent arm skin mould images, and black vectors represent face skin 

mould images. The hyper-plane separates the two classes after finding the optimal line between them. 

 

The another Classifier is the k-nearest neighbour (k-NN), which works on the same 

number of random samples (as used in SVM classifier) to compute dissimilarity 

between the test and training samples for all data sets by measuring the Euclidean 

distance using equation eq4.2. 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                  𝑒𝑞 4.2 

 

The idea in k-NN classification is to identify k samples in the training set whose 

independent variables (x) are similar to (y). 

With this classifier, I have classified the images into two classes when k =3. The result 

of classification compared to SVM classifier result, kNN classifier was not effective as 

much as the SVM in term of classification accuracy result to classify two classes of skin 

mould images. 
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4.4 Local Binary Pattern of Image-based Texture Analysis 

The first proposed category of texture-based analysis uses the Local Binary Pattern 

(LBP) of the original image applied in different ways. LBP provides discriminating 

texture information with invariant against monotonic grey level changes and its 

implementation is computationally simple (Ojala, Pietikainen et al. 2002). Figure 4.6 

shows the process of calculating LBP for one pixel and Figure 4.7 shows the result of 

calculating the LBP for the whole image for two different LBP window sizes, different 

window sizes are shown in figure 4.8a and 4.9b. 

The value of the LBP of the centre pixel (xc, yc) is calculated by:  

𝐿𝐵𝑃𝑃,𝑅 =  ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝

𝑃−1

𝑝=0

                                                (𝑒𝑞 4.3) 

Where the gp and gc are the grey values of the neighbouring pixels and the centre pixel 

respectively, and s(x) is described as: 

𝑠(𝑥) =  {
1,     𝑖𝑓 𝑥 ≥ 0;

  0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

The process of LBP-based score analysis starts with creating an LBP image from the 

original skin mould image. The resulting intensity histogram of the LBP image was 

used in SVM classification. 

 

 

Figure 4. 6: Calculation of the LBP value for each pixel. 1) sample block containing the centre pixel 

and 8 surrounding pixels, 2) result of gp – gc for each of the 8 neighbour pixels, 3) if the value of the result 

≥0, then the result of function s(x) is 1, otherwise it is 0, 4) the output binary patterns added together 

(Pietikäinen, Hadid et al. 2011). 
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Figure 4. 7: LBP transformation outputs. Original skin mould image (top) and LBP image (bottom-

left) from calculating a LBP value with 8 neighbor pixels (r=6, block size is 13×13), and bottom-right 

LBP when r=3 and the block size is 7×7. 
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4.4.1 Evaluation and Results of LBP 3rd Neighbour Pixel 

Calculation 

The first method for texture-based analysis using LBP was done by using 8 neighbour 

pixels with r=3 from the centre pixel of each block of the skin mould images (Figure 

4.8a). The feature was extracted from each image in the data set by calculating the 

histogram of the LBP image and the number of pixels in each intensity value in the 

histogram, which was saved in a vector to represent the image in the classification step. 

All vectors (representing all images) were classified using SVM (as described in section 

4.3.2b) and the accuracy of the classification (97.52) with respect to negative class 

identification (sensitivity, 97.81) and positive class identification (specificity, 97.22) 

was found as shown in Table 4.6 in section 4.7. By applying the SVM to my two classes 

of images, the mean SVM scores was calculated for each individual from the median of 

scores of multiple images, and then correlated with BG scores. The correlation was with 

linear regression of 0.823, as illustrated in the Figure 4.8b. 

4.4.2 Evaluation and Results of LBP 6th Neighbour Pixel 

Calculation 

In the second method, the LBP was calculated in all skin mould images in the data set, 

but this time the selected block size for the calculation was 13×13. In this experiment, 

the 8 neighbour pixels with r=6 distance from the centre pixel were selected to generate 

the LBP image, and the one block example is shown in the Figure 4.9a. Selecting the 6th 

pixels from the centre of the block was due to edge preservation of the lines of interest 

in the image, as shown in Figure 4.7.  

The result of SVM scores was averaged for each individual, and correlated with BG 

scores, and the linear regression was found to be 0.8247 (Figure 4.9b). This shows that 

selecting a block size of 13×13 for the LBP calculation achieves higher accuracy in 

classifying my two classes of arm (sun protected) and face (sun exposed) images, and 

higher correlation with the BG score. The accuracy of the classification was (98.84), 

sensitivity (99.12) and specificity (98.57), as shown in Table 4.6 in section 4.7. 
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Figure 4. 8: Texture based analysis using 3rd LBP neighbourhood. a) example of the 3rd LBP 

neighbourhood of 8 neighbouring pixels in 7×7 window size, b) comparison with BG scores. 
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Figure 4. 9: Texture based analysis using 6th LBP neighbourhood. a) example of the 6th LBP 

neighborhood of 8 neighbouring pixils in 13×13 window size, b) comparison with BG scores. 
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4.4.3 A Block-based LBP Approach  

The third method utilising LBP begins by dividing the LBP image into 4 blocks, and 

histogram features were extracted from each block. These features were concatenated 

into a vector prior to classification (Figure 4.10). This was attempted due to variations 

in illumination by capturing the skin mould impression images, and blurring in different 

regions of the image, which potentially affect feature extraction.   

Results of the SVM classifier were found and correlation with BG scores was 

computed. Figure 4.11 shows this correlation with a linear regression=0.763. The 

accuracy of the classification was (98.46), sensitivity (98.40) and specificity (98.53).  

The accuracy was lower than the use of previous method in section 4.4.2 as shown in 

Table 4.6 in section 4.5.6, this was due to the variation in illumination in different 

regions of the image, however, LBP image were consistent in term of distribution of the 

overall texture in the image, the problem of variation illumination and blurring were 

solved by calculating LBP of original image.  

Thus, dividing the LBP image into 4 blocks didn’t improve classification accuracy, 

moreover, the correlation with BG scoring decreased. As this approach did not improve 

classification, this indicates that LBP calculation of the whole image as one block was 

able to handle variations in image brightness. 

 

 

Figure 4. 10: Block-based LBP feature extraction. Typical image divided into 4 blocks (left panel), 

associated histograms (centre panel) and results of concatenation (right panel).  
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Figure 4. 11: Comparison of LBP using 4 blocks with radius=6 with BG Scores. 

 

4.4.4 The Uniform LBP Approach  

The fourth method used was the analysis of uniform LBP images (r = 3) that reduce the 

features and detect uniform local binary pattern to investigate if there is improvement in 

texture detection. Binary patterns in the LBP calculation were produced by applying 

LBP operators containing different bit strings in 0 and 1 form. To produce the uniform 

LBP, the binary pattern should not contain more than two bitwise transitions from 0 to 1 

or vice versa, e.g. the value 10111011 has four transition (Wang, Mu et al. 2008). By 

computing the histogram in uniform LBP, all binary patterns that have more than two 

transitions (i.e. a non-uniform pattern) will localize in the 59th bin of the histogram, and 

the other uniform patterns in the histogram will localize in bins 1-58. SVM 

classification scores in this experiment were computed by classifying the uniform LBP 

images by taking each histogram as a vector, and each vector was classified as one of 

my two classes (arm or face). SVM classification was compared to BG scoring (Figure 

4.12), and the accuracy of the classification (96.40), sensitivity (96.81) and specificity 

(96.00) were determined, and the comparison with other method is shown in Table 4.6 

in section 4.7.  
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I found lower accuracy compared to using LBP images with all binary patterns. This 

was likely to be due to the loss of texture information by using only uniform binary 

patterns. However, the correlation achieved with this method was high (R2=0.834), but 

this didn’t necessarily indicate better classification, as the accuracy, sensitivity and 

specificity were lower than with the use of LBP with r=6. Low classification accuracy 

indicates the loss of the information, particularly information that represents the space 

between the lines on the skin surface, which might have been localized in the 59th bin of 

the histogram. 

 

 

 

 

 

Figure 4. 12: Comparison of uniform LBP with radius = 6 performance with BG scores. 
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4.5 Grey Level Co-occurrence Matrix (GLCM) Feature-

based Analysis 

The second general skin mould texture-based analysis method utilised a Gray Level Co-

occurrence Matrix (GLCM), which is widely used in image texture measurements. 

GLCM estimates image properties related to second-order statistics, and shows the 

relationship between two neighbouring pixels, and how different groups of pixel values 

occur in that image, these relationships illustrated in Figure 4.13 (Haralick, Shanmugam 

et al. 1973; Kumar 2013). The proposed method for classifying skin mould was done by 

creating a GLCM for each image, and the relationship between pixels was found in four 

directions (horizontal p (i; j; d; 0o), vertical p (i; j; d; 90o), left p (i; j; d; 135o) and right 

diagonal p (i; j; d; 45o)), as illustrated in Figure 4.14. Texture features were calculated 

by averaging over the four direction co-occurrence matrices, and were compared with 

texture features found in other images to classify skin moulds into two different classes 

using the SVM classifier.  

 

Figure 4. 13: GLCM analysis. a) 4X5 matrix of intensities ranging from 1-8, b) an example of the 

GLCM, and the relationship between two pixels in one direction. 

 

Figure 4. 14: Four directions for finding the relationship between pixels to calculate texture 

features.  



Chapter 5 

173 
 

4.5.1 Calculating the GLCM of the Original Training Skin Mould 

Images 

The fifth specific method for analysing skin topography was achieved by creating the 

GLCM for each skin impression image of arm and the face skin, and extracting 14 

features from the five statistical measurements (contrast, correlation, homogeneity, 

entropy and energy) of the GLCM in four directions (Elshinawy and Adviser-Chouikha 

2010; Zulpe and Pawar 2012), and then the result of all directions was averaged for each 

of the 14 features. 

The five statistical measurements used for feature extraction in the GLCM are listed 

below with their equations: 

• Contrast: calculates the local variations in the GLCM by: 

𝑐𝑜𝑛𝑡 =  ∑ |𝑖 − 𝑗|2

𝑖,𝑗

 𝑝(𝑖, 𝑗)                                                                (𝑒𝑞4.4) 

 

• Correlation: calculates the joint probability occurrence of the specified 

pixel pairs by: 

𝑐𝑜𝑟𝑟 =  ∑
(𝑖 − 𝜇𝑖 )(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

                                                 (𝑒𝑞4.5) 

 

• Homogeneity: calculates the close values on the main diagonal of the 

matrix by: 

𝐻𝑜𝑚 =  ∑
𝑝(𝑖, 𝑗)

1 + |𝑖, 𝑗|
𝑖,𝑗

                                                                           (𝑒𝑞4.6) 

• Entropy: calculates the certainty in the co-occurrence matrix by: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ − 𝑝(𝑥𝑖) 𝑙𝑜𝑔 𝑝(𝑥𝑖)                                                 (𝑒𝑞4.7)  

  

• Energy: measures the uniformity that is equal to the sum of squared 

elements in the co-occurrence matrix, calculated by: 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑝(𝑖, 𝑗)2                                                                        (𝑒𝑞4.8)

𝑖,𝑗
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The previous five statistical measurements along with the following features were 

calculated for each image, and used in the classification step: 

 

• Sum of average 

• Sum variance 

• Information measure of correlation1 

• Information measure of correlation2 

• Maximum probability 

• Sum of entropy 

• Sum of squares 

• Inverse difference moment 

• Difference entropy 

 The flow chart in Figure 4.15 illustrates the methodology of this texture-based analysis 

using the GLCM that starts with calculation of the GLCM of the whole image as one 

block, followed by feature extraction. 

 

Figure 4. 15: Illustration of the methodology of GLCM texture based analysis. 

 

For each image, 14 features were generated to create a vector that represents the image, 

and then the vector was compared to other images in the SVM classifier. An example of 

the vectors with corresponding images is illustrated in Figure 4.16 for arm and face skin 

mould impression images. 

 

 

 



Chapter 5 

175 
 

 

 

Figure 4. 16: Fourteen feature measurements from twins from the training data set for arm and 

face skin images.  

Where F1-F14 are defined as below: 

F1= Contrast 

F2= Correlation 

F3= Homogeneity 

F4= Sum average 

F5= Sum variance 

F6= Entropy 

F7= Information measure of correlation1 

F8= Information measure of correlation2 

F9= Maximum probability 

F10= Sum of entropy 

F11= Angular second moment 

F12= Sum of squares 

F13= Inverse difference moment 

F14= Difference entropy 

 

  

Original Image 

1 block 
GLCM 

Feature 

Extraction 
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4.5.2 Evaluation of GLCM of Whole Images 

SVM classification was used to grade images. The median result from different images 

of the same skin mould was calculated, and then the mean was used to find the 

correlation between the result from the automated method and the BG score (R2= 

0.6024; Figure 4.17). The accuracy of classification (69.51), sensitivity (96.54) and 

specificity (42.48), this compared to other methods as shown in Table 4.6 in section 4.7. 

The linear regression of this method with BG values was lower than with LBP-based 

analysis, and the accuracy of the SVM classifier also was lower than using LBP images 

to classify arm and face skin images. 

 

 

 

 

Figure 4. 17: Comparison of GLCM grading scores with BG scores. 
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4.5.3 Evaluation of GLCM of LBP Images 

GLCM was applied to LBP images of the whole data set. After calculating the LBP for 

skin impression images, as described above, a GLCM was created from LBP images. 

The 14 features were extracted and then classified using SVM. The scores from this 

process were correlated with BG scoring (Figure 4.18), however, linear regression (R2 = 

0.7316) showed lower correlation than with previous methods, and the GLCM of the 

LBP image has more information to assess the structure of the skin mould images. 

Accuracy of the classification was (94.14), sensitivity (94.73) and specificity (93.54), 

which compared to result of other experiments as shown in the Table 4.6 in section 4.7, 

revealing the inefficiency of the GLCM-based method in classifying arm and face skin 

images in my dataset. 

 

Figure 4. 18: Comparison of GLCM of LBP image grading scores with BG scores. 
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4.6 Development of Structure-based Analysis 

The texture of skin mould images is composed of well-defined elements, e.g. the 

arrangement of lines, and the polygonal shapes and angles created by line intersections 

(Seddon, Egan et al. 1992; Gao, Hu et al. 2011). In structure-based analysis, I tried to 

extract most of the structural information that reflect the level of damage that is known 

to be caused by environmental effects and diseases. 

4.6.1 Feature Extraction from Skeletonized LBP Images 

From the promising results of feature extraction with LBP, I thought about combining 

the LBP technique with a mathematical morphology process, such as skeletonization, to 

extract the lines and polygon shapes in the skin mould images. I used a structure-based 

skeletonized LBP image analysis to assess alteration in texture. 

LBP images were created from original skin mould images as described in section 4.4, 

and then the LBP image was transformed into its binary form. In this step, the 

advantages of using LBP images are the reduction of the effect of illumination and 

blurring in different regions of original images, as described in the Figure 4.19. The 

reason for transforming the LBP image into its binary form is to facilitate the extraction 

of structure information (Figure 4.20a). The next step was the use of a skeletonization 

technique, applied to the binary image, and this was followed by a pruning process to 

remove unnecessary short branches, before taking the inverse of the resulting skeleton 

image as illustrated in Figure 4.20c. In Figure 4.21, I have shown inverse skeletonized 

images of typical arm (Figure 4.21a and b), and face skin mould images (Figure 4.21c 

and d). The whole process of structure-based analysis is illustrated in the flow chart in 

Figure 4.20. 

The size and number of polygons was quantified to represent the extent of the flattened 

area of the skin surface. According to the BG scoring system (Seddon, Egan et al. 

1992), larger flattened areas represent a higher level of damage, and the skeletonised 

image was transformed to its negative to facilitate quantification (Figure 4.20c). 
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For each inverse skeletonized image, eight measurements were calculated to describe 

the structure (features) in each image, as described below: 

1. The ratio of the polygonal area to the total image area (RatioTotalArea). 

2. The total number of the shapes in the image (ShapeNum). 

3. Difference of the maximum area and minimum area of the shapes (AreaDiff).                           

Da = Maximum area-minimum area. 

4. Number of polygons those have area less than 4* standard deviations (STD) 

from mean area of all the polygons in the image (CloseArea). 

5. The means area of polygons those have area <4* STD (CloseAreaMean). 

6. Difference of the maximum line distance and minimum line distance in the 

whole image (DisDiff).  

7. Number of lines those have length less than 4 standared deviations (<4* STD) of 

length of all lines overall the image (CloseDis). 

8. The mean distance of the lines that are smaller than 4* STD (ClosDisMean). 

For each image, a vector of the eight parameters was used in the classification stage, 

and an example is shown in Table 4.5. SVM scores represent the distance of the vector 

from the SVM hyper-line between the two classes of the sun exposed and sun protected 

skin as described in section 4.3.3b. Skin impressions were graded according to SVM 

score, the smallest value representing least damage and the largest values the most 

damage. 
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Figure 4. 19: Difference between the binary of the original image without LBP transformation. 

(top panel) and the binary image from the LBP image (lower panel).   
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Figure 4. 20: Overview of the structure- based analysis process. A flow diagram is shown in the top 

panel. a) binary LBP image, (b) skeleton of the binary image, (c) the inverse image of the skeleton with 

artefact removal . 
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Figure 4. 21: Inverse skeletonised images of arm and face. (a,b) arm skin mould images and associated 

inverse skeleton images, (c, d) face skin mould images and associated inverse skeleton images. 
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Table 4. 5: Typical structural information from 8 measurements extracted from images of the arm 

and face. 

 

4.6.2 Structure-based Analysis using LBP (3rd Neighbour Pixel) 

The LBP was computed for the all images using r=3, binarised and then skeletonised as 

illustrated in figure 4.18. The result of classification of the extracted features of all LBP 

images acquired using 7×7 blocks to compute LBP (Accuracy of the classification was 

(91.72), sensitivity (93.06) and specificity (90.38)), this was compared to result of BG 

scores. Correlation with R2= 0.826 was found as shown in figure 4.22. This method, 

therefore, showed a high correlation with BG scores. 

 

Figure 4. 22: Comparison of structure-based LBP (r=3) performance with BG Scores. 
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4.6.3 Structure-based Analysis of LBP (6th Neighbour Pixel)  

For calculation of the LBP of the skin replica image, 8 neighbour pixels compared with 

the centred pixel with radius equal to 6, which means the window of LBP calculation is 

13×13 for each pixel. The result of SVM scoring using my structure-based technique 

was compared to the BG scores, R2= 0.826 was found as shown in Figure 4.23. The 

accuracy (91.6), sensitivity (92.57) and specificity (90.62) were found using the 

structure-based method for LBP block size 13×13. This values were lower than with the 

use of the LBP images alone for classification as shown in Table 4.6, in section 4.7. 

 

 

Figure 4. 23: Comparison of structure-based LBP (r=6) performance with BG Scores. 
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4.7 Novel Methods Performance Compared to BG Scoring 

Herein, I describe the use eight different methods to analyse skin mould images, and 

results are summarised in Table 4.6, with linear regression values and p values for each 

method compared to BG scores. The accuracy of the classification was lower than the 

use of texture-based analysis using LBP in both structure-based methods with r=3 and 

r=6. I have developed structure-based LBP methods to compare each of the line and 

shape measurement with clinical parameters and BG scores to see if there was any link 

between individual measurement, and any clinical parameter as shown in Figure 4.26. 

Figure 4.26 shows the comparison of the result from the structure-based analysis r=3 

with clinical parameters, and structure-based LBP with r=3 showed higher accuracy and 

linear regression than with r=6 (Table 4.6).   

There are two main objectives for choosing this method as a final structure-based 

method for skin mould analysis: 

1. Extraction of all texture information by analysing lines and shapes in images 

automatically. 

2. Separation of structural information and finding associations between each of 

these structures with the clinical parameters such as age and BMI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 6: Summary of automated measurements and BG scoring. 

 

Methods Accuracy Sensitivity Specificity 
Linear 

regression 
P value 

LBP r=3 97.52 97.81 97.22 0.82 < 0.0001 

LBP r=6 98.84 99.12 98.57 0.82 < 0.0001 

LBP 4 blocks 98.46 98.4 98.53 0.76 < 0.0001 

Uniform LBP 96.40 96.81 96 0.83 < 0.0001 

GLCM 

original image 
69.51 96.54 42.48 0.6 < 0.0001 

GLCM of LBP 94.14 94.73 93.54 0.73 < 0.0001 

Structure LBP 

r=3 
91.72 93.06 90.38 0.83 < 0.0001 

Structure LBP 

r=6 
91.6 92.57 90.62 0.81 < 0.0001 
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4.8 Comparison with Clinical Parameters 

I shall compare the results of automated methods and manual BG scoring in this section 

with clinical parameters such as BMI and age. I shall also describe the correlation 

between these parameters with each individual feature extracted from structure-based 

analysis. 

4.8.1. Correlation between BG Scores and Clinical Data  

The average BG score for each individual was compared to clinical data. Linear 

regression was performed comparing arm or face scores to each different clinical 

parameter to establish if BG scoring could indicate if there was any relationship 

between the skin integrity and clinical measurements. 

4.8.1.1 Skin Integrity and BMI 

Using all subjects that had sufficient clinical information available to calculate their 

BMI, the average BMI of the group was 25.1±5.3 (STD), with minimum and maximum 

values of 18.16 and 51.68 respectively. When compared to the BG score, I could 

observe no correlation between BMI and skin integrity at either sun-exposed (R2= 

0.017) or sun-protected sites (R2= 0.022; Figure 4.24). 

4.8.1.2 Skin Integrity and Age 

I had information on the age of 142 individuals. The average age of the group was 

52.9±6.1 years (STD, range 41 to 69 years). When compared to the BG score, I found 

no correlation between age and skin integrity at sun-exposed sites (R2= 0.008). There 

did appear to be a significant, albeit low, correlation between skin integrity and age at 

sun-protected sites (R2= 0.142; Figure 4.25). 
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Figure 4. 24: Comparison of BG scores with BMI. Sun exposed skin (a), sun protected skin (b). 

 

 

 

Figure 4. 25: Comparison of BG scores and age. Sun exposed skin (a), sun protected skin (b). 
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4.8.2. Comparison of Structure-based Method with Clinical 

Parameters 

The results of analysis using LBP structure-based technique was compared to the 

clinical parameters BMI and age. The comparison is shown in Figure 4.26 and 4.27 

respectively. When the LBP with r=3 structure-based scores were compared to the BMI, 

I observed no correlation at either the sun-exposed (R2= 0.0230) or sun-protected sites 

(R2= 0.0001; Figure 4.26). Also, when age was compared to structure-based scores, 

there was no correlation between age and skin integrity of the sun-exposed (R2= 0.0043) 

or sun-protected sites (R2= 0.0423; Figure 4.27). 

Each feature extracted using structure-based methods was compared with age and BMI. 

I found four features associated with BMI, which are as follows: 

1. The ratio of grid (polygon) areas to total image area. 

2. Number of grids. 

3. Number of grids close to the mean of the area of the grids. 

4. Number of secondary lines. 

 

Figure 4.28 illustrates the correlation of these four features with BMI from all 

individuals. Correlation was not very high, perhaps because of the limited number of 

subjects. The experiments didn’t show any association between the age and extracted 

features. This may be due to relatively limited age range (40-70 years) of the subjects.  
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Figure 4. 26: Comparison of LBP structure-based scores and BMIs. a) arm, b) face. 
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Figure 4. 27: Comparison of LBP structure-based scores and age. a) arm, b) face. 
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Figure 4. 28: Correlation between features from structure-based analysis with BMI. a) shape area 

with BMI, b) number of grids with BMI, c) number of grids of area less than 4*STD with BMI, d) 

number of secondary lines with BMI. 

 

4.8.3. Correlating Structural Features with BG Scores 

Structure-based analysis involved the extraction of eight features, as described in 

section 4.6.1. Each individual feature was compared to BG scores. The correlation was 

low, but there were five features that correlated with BG scores in sun protected 

samples (Figure 4.29). The correlation between the feature that described the difference 

of the maximum secondary line length and minimum line with BG scores was higher 

than other features in sun exposed skin (Figure 4.30). From the linear regression, I 

observed five features in particular that correlated with BG scores (Figure 4.29), which I 

would recommend for future analysis.  
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Figure 4. 29: Correlation between various structural features and BG scores in sun protected skin. 

a) correlation with the number of polygon shapes, R=0.33, b) correlation between the difference between 

the maximum area and the minimum area of the grids, R= 0.4, c) correlation with the number of polygons 

of area <4*STD (close to the mean), R= 0.4, d) correlation between the area of the shapes in (c), R= 0.43, 

e) correlation with the number of secondary lines R= 0.35. 
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Figure 4. 30: Correlation between structural features in sun exposed skin and BG scores. 
Comparison of the difference between maximum and minimum secondary lines and BG scores, R=0.15. 

4.9 Discussion  

Healthy skin has a regular pattern of furrows or lines, the loss of which is associated 

with chronological and biological age. Disrupted skin topography may also reflect 

underlying pathology. A method to quantify such features, particularly in the context of 

the TwinsUK study for which a great deal of genetic and clinical information is 

available is, therefore, of huge potential benefit. Moreover, an effective non-invasive 

technique, such as that provided by skin moulds, is very attractive for larger, population 

based studies. However, existing methods (most notable BG scoring) are time 

consuming, require expert analysis, and are inconsistent 

The LBP r=6 method used the local pattern of image pixels, rather than information 

about general structure, to extract texture information. This method able to extract 

texture information by compute LBP histogram, that can define the edges (lines) and 

shapes formed by line intersections were detected efficiently. The result of SVM 

classification in terms of accuracy, sensitivity and specificity utilizing this method, were 

higher when compared to other methods, as shown the Table 4.6. In order to further 

understand the relevance of the extracted features in classification by SVM, I also tested 

another (k-NN) classifier (Du 2010), where k=3, to classify the data set into two classes, 
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the result of classification showed lower accuracy 94.48% than the use of SVM 

(98.84%).  

The final method (LBP with r=6), was able to classify two different classes in the 

dataset (sun-protected and non-protected skin), even when samples had apparently 

similar texture to images in the other class, which was not achievable by existing 

means.  

Although the BG score is the “gold-standard” for structure-based analysis, I observed 

that the BG score was not perfect. By investigating skin mould images, there were many 

images were scored using the BG system by two observers as highly structured (grades 

1 or 2), where in fact they had less organised structures indicative of a 5 or 6 grades ( 

this was checked by comparing the manual and automated result, also checked manually 

by experts). Furthermore, when I considered the Cohens kappa value between two 

observers using BG scoring, I found a low agreement (0.229), which indicates a 

limitation of manual scoring. BG scoring does not, therefore, provide a “ground truth” 

for comparison with novel methods. In contrast, SVM classification accuracy was high, 

especially using LBP texture analysis. Due to difficulties in comparison with 

inconsistent BG values, I suggest that my novel methods are actually more accurate 

than the results of linear regression and accuracy results suggest. 

A better approach would be use a calibration set of histological images, from which 

much more quantitative data can be extracted (as described in previous Chapters). By 

analysis of a matched set of images derived from non-invasive means (i.e. moulds), I 

could more effectively validate my methods. This does, of course, present a number of 

challenges in execution, but could be possible in individuals undergoing skin biopsies in 

the course of treatment for other purposes. They would have to consent to having a skin 

mould made at the same time. 

The automated grading method described herein allows the discrimination of subtle 

variations with a continuous scale, as opposed to that provided a six scale method. This 

may also improve classification using SVM on the LBP features. Confidence levels 

were determined using the STD of the testing data to find the high, low and medium 

levels of confidence (Shan et. al., 2014), and in my experiment using optimal LBP r=6 

method, these were found to be 99.75%, 93.54% and 99.78% respectively. The 
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detection of subtle variations makes my method more suitable for cosmetic and 

pharmaceutical research, where changes in the skin surface may be small but of great 

clinical or cosmetic relevance. 

The correlation between scores and clinical parameters was low, and this may be due to 

limited variation in the clinical data. For example, age of the subjects was between 41 

and 69 years. Therefore, to find any significant correlation between scores and clinical 

data, more mould data from more subjects is required.  

Although overall structural analysis was not the highest ranked of the techniques used, 

some of the features considered were components of the BG scoring system. 

Individually, any of the eight features isolated might significantly correlate with clinical 

data or BG scoring. However, I observed no correlation between sun protected skin and 

the extracted features. I did find a small significant correlation between some of the 

features and sun exposed skin, however the correlation was low, perhaps because of the 

limited number of samples. A comparison of each feature with clinical data might help 

to find the features that are changed in UV affected skin but not changed in 

chronological aged skin or vice versa. This classification of features into those affected 

by intrinsic and extrinsic ageing could then be used in drug discovery techniques to find 

an efficient treatment. 

Future Work 

The main objective in the future is to try to apply these techniques to a larger and more 

varied dataset. However, comparison of scores with other clinical parameters might also 

be interesting, notably waist-to-hip ratios and blood glucose concentrations. As these 

may be indicators of type 2 diabetes mellitus (i.e. acquired insulin resistance), such 

analysis could be of utility in the early diagnosis of diabetes.  

To provide more precise analysis and validate the results of these techniques, I would 

like to analyse skin moulds alongside matched biopsy samples for each individual. 

Availability of histological data would a much more robust “ground truth” for the 

evaluation of non-invasive methods.   

3D image analysis may lead to important developments in skin structure analysis. By 

imaging skin moulds with surface scanning confocal microscopy, assessment of texture 
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in three dimensions would allow one to exploit all skin surface detail. The exact 

measurement of the contours, rather than primary and secondary lines, would provide 

more meaningful analysis. Moreover, 3D histology images created by confocal 

microscopy would also give more information about structure and volume in optical 

sections, which would again provide more information to inform a non-invasive skin 

grading system.  

Fusion of GLCM and LBP features might result in more accurate scores, because each 

technique gives different texture information. GLCM gives information about the 

relationships between neighbouring pixels in a whole image, whereas LBP can provide 

local texture patterns. The result of texture information extraction from the use of two 

techniques might provide higher classification accuracies compared to one technique.  

Clustering techniques, such as k-means clustering, might help in finding correlations 

with clinical parameters. For example, one could apply clustering to different age ranges 

to see how the skin degrades with age at sun exposed or protected sites.  

Conclusions 

The skin surface contains a large amount of texture information, changes in which 

reflect processes such as sun exposure and ageing. I was able to quantify loss of regular 

structure with sun exposure using an automated method (LBP with r=6) that could not 

be determined by existing, manual, methods. The development of effective, non-

invasive and wholly unsupervised techniques would facilitate high-throughput analysis 

in cutaneous research, with potential applications to screening and drug discovery. 
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CHAPTER 5 

5.1 Overall Conclusion and General Discussion 

This thesis has demonstrated the utility of combining computational spatial and 

frequency domain image processing techniques and the automated high-throughput 

image analysis tools that are designed primarily to detect, segment and quantify various 

components of skin tissue images. Moreover, the methods that have been developed are 

adapted to deal with different microscopic images and the snapshots of the tissue 

section images from whole slide scanner. The developed methods are able to enhance 

the images automatically to make sure that the methods can adaptively analyse the 

images with variation in colour distribution and intensity, that followed by extracting 

the interesting changes in texture and morphological feature in the skin tissue section.  

In Chapter 2 I have focussed on extracting and quantifying orientation and other 

information on collagen bundles in the dermis layer. Firstly I have used the combined 

techniques of Gabor filter and FFT to assess the collagen organisation in the papillary 

and reticular dermis which in turn facilitates the evaluation of age in terms of collagen 

orientation and organisation. This has been done by highlighting the collagen directions 

in the skin and quantifying the amount of collagen directed in each of selected 

directions. In the same Chapter, I have quantified collagen thickness by analysing the 

FFT spectrum of picrosirius images. The maximum frequency of the FFT spectrum 

provided sufficient information about the bundle thickness. Finally, in Chapter 2, I have 

used k-means clustering to cluster the colour components in an image combined with 

the mathematical morphology operation to segment and analyse the young and mature 

collagen in the dermis, in an attempt to assess collagen dynamics.  

In Chapter 3, I have developed a high-throughput automated image analysis system to 

detect interesting cutaneous phenotypes in gene-knockout mice provided by WTSI. This 

was developed using an active contour-based segmentation procedure to work 

adaptively by generating the initialized curve from the object itself in the H&E stained 

images. Each layer of the mouse skin tissue has been segmented and analysed using the 

ability of the adaptive active contour followed by mathematical morphology operations 

and intensity transformation to gain an accurate segmentation result.  
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The non-invasive analysis of skin surface structure using the impression of the skin 

surface in moulds, provided by the TwinsUK twin registry in Chapter 4 provided 

another opportunity to combine computational techniques to answer biologically 

meaningful questions. Different techniques as LBP, GLCM and skeletonized structure 

based method have been used to extract the features in the mould skin images and the 

most efficient and accurate technique has been chosen to score the skin into six different 

grades from protected skin gradually to the sun exposed skin. The novelty of this system 

can be attributed to the use of SVM classification scores to grade the images 

automatically.  The selection of the LBP window size has also provided accurate 

information about the secondary and primary line and all the shapes that formed from 

the intersection of these lines. 

5.1.1 Application of Techniques to Different Image Datasets 

General Considerations for Histology 

Variation in tissue processing during specific staining schemes produces variation in the 

intensity and colour of the target objects. For this reason automated methods have been 

created to work adaptively with these variations in different datasets. Techniques used 

in this research and work adaptively with different datasets include the active contour- 

based analysis that starts  by initializing a curve automatically from information known 

about the object itself. This internal control makes the system adapt to the intensity and 

colour variation in the images. Moreover the use of k-means clustering for colour 

segmentation in this work is also robust to the variation in images. In the future shall 

investigate the use of colour normalization to be applied to the whole dataset to reduce 

the variation in the set of images as described in Chapter 3, (see conclusion section 3.4). 

Application in Human Histology 

Although not reported in this thesis, I have applied some of the techniques described in 

this body of work on human skin histology. Generally I found that the pre-processing 

techniques need to be adpated across the two models of mouse and human, but 

sometimes novel techniques have been required. One example of this, is computing the 

local entropy in the image to successfully segment the epidermis sub-layers by 

segmenting the copact layer between the stratum corneum and malpighian, that because 

the gradient in intensity between this layer in between and the other two sub-layers. The 

need for different techniques for analysis is probably due to the difference between the 
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skin of those two models e.g. the thickness of the layer and the thin epidermis layer in 

mouse models, make the feature extraction more difficult in this layer. The texture-

based template matching to isolate the stratum corneum and malpighian layer in human 

samples is a new developement in human skin histology as we have investigated, but 

this might be applicable to mouse skin as well with some pre-procesing considerations. 

5.1.2 Application of Computational Techniques in Industry 

Automated skin image analysis has a crucial role in the context of drug discovery, by 

improving high-throughput analysis to detect changes in skin morphometry and 

structure in response to different drugs. One of the most important areas of skin research 

is in structural changes, both in ageing (intrinsic aging) but also in disease and as a 

result of environmental exposure (extrinsic aging). Skin ageing alters the skin structure 

and the skin tissue fibres, both from physiological and morphological viewpoints 

(Farage, Miller et al. 2010). This thesis is centred around developing novel systems that 

enhance skin histopathology research to assess the skin structure changes that caused by 

aging, diseases and the effect of different genetics. 

Human skin equivalents are used widely by pharmaceutical and cosmetics industry to 

develop treatments as an alternative to in vivo studies (Mertsching, Weimer et al. 2008). 

The skin equivalent has been generated from human keratinocyte on a collagen gel 

substrate. There are many in vitro assays that have been used in the test of drugs, but 

none of them can accurately predict patient response to treatment (Benbrook 2006). 

However, obtaining human skin slices is difficult in the drug discovery and 

development process. In the skin equivalent that could be prepared in the laboratory, it 

is possible to culture or select a cell of particular genotype and phenotype to manipulate 

the cellular structure of the skin (Bell, Sher et al. 1983). Therefore, the relatively easy 

manipulation, monitoring and low cost of the organotypic model make the use of this 

model more suitable for high throughput screening. 

The model of the skin equivalent or artificial skin offers all the flexibility that is 

required in any commercial system to make the high throughput screening possible. 

However, controlling, detecting and analysing the changes in a cutaneous high-

throughput screen require a strategy with powerful automated computational techniques. 

At present appropriate tools that are suitable for use by industry do not appear to be 
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evident in the field. I have investigated and experimented with specific techniques in a 

high-throughput environment and have had preliminary success to extract the 

morphological information automatically using automatic image processing and 

analysis techniques. 

The artifical skin image analysis enables the drug efficiency and reaction to be verified 

as a non-invasive method to detect any change in the skin in the context of drug 

discovery. Bringing these aspects together can produce a powerful tool in the research 

and drug discovery settings, allow new ideas and therapeutics to be tested efficiently 

and cost-effectively for the development of new compounds for cutaneous disease 

which in turn can be brought to the clinic quicker. Image processing techniques to 

reduce the cost and time of drug discovery and development, have already been 

demonstrated in measuring drug efficacy of chemical compounds in cultured cells, by 

tracking the cells in the fluorescence images (Yoshida, Yoshiura et al. 2008). However 

the ultimate and realistic contributions of automated image analysis techniques in the 

drug discovery are yet to be realised,  Here, we proposed automatic image analysis 

methods that facilitate the drug discovery and development for skin diseases and 

rejuvination while reducing financial risk of such research. By developing techniques 

applicable for histology images from biopsies or in artificial skin these techniques can 

automatically assess drug efficiency, disease severity or disease resolution. 

Furthermore, the application of these automated and rapid techniques to non-invasive 

structural analysis methods such as artificial skin mould analysis provides a novel 

pipeline for drug discovery and drug evaluation not currently available to the research 

community. 

Novel Developments of this Work 

A number of image processing and analysis techniques have been developed in this 

research project. We have described these novel biological image analysis methods and 

their use to evaluate the degradation of the skin collagen fibres and assessment of 

collagen dynamics. Assessment of the structural features of collagen fibres were based 

on using a novel combination of Gabor filter and FFT power spectrum analysis 

techniques. The excellent performance of this new technique was demonstrated on large 

set of skin images. Assessment of changes in the skin layer morphology, were based on 

using adaptive active contour without edges technique. The suitability and performance 
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of this novel technique have been demonstrated in the high accuracy detection of 

interesting textural features in the skin section in different environmental and disease 

condition as well as assessment of specific cellular content in cutaneous specimens.  

The quantification and analysis of different layers of skin tissues using developed 

image-based techniques have been instrumental for gaining insight into cutaneous 

biology. Specifically, these techniques helped analysing the dermis and collagen 

structure and identifying a calibrated decrease in collagen structure in ageing and in 

diabetic models. Moreover, the decrease in the ratio of young to mature collagen and the 

decrease in the bundle thickness with age have been identified.  

The Gabor filter and Fast Fourier Transform (FFT) elliptical analysis has been 

developed and used to quantify the collagen architecture in the extracellular matrix 

(Osman, Selway et al. 2013). The collagen directions specified by detecting the edges in 

different direction using Gabor filter, this gives novelty to the system in such 

application of analysis in picrosirius stained images. Also the way of quantifying the 

amount of collagen in each direction from the FFT power spectrum of each direction is 

a novel way to describe the subtle change in the collagen organisation. I have illustrated 

that this is a significant improvement upon existing methods (de Vries, Enomoto et al. 

2000). Using my developed method, the overlap of the collagen bundles did not affect 

the quantification, because the quantification is done in the FFT power spectrum which 

each pixel in the power spectrum gives information about all the pixels in the spatial 

Gabor filtered image. This method is unlike the quantification in the spatial image, e.g. 

converting the image to its binary form, to quantify the collagen orientation 

(Noorlander, Melis et al. 2002). Analysis in spatial skin section affect by overlapping 

the collagen bundles in the particular skin tissue section. 

Collagen bundle thickness measurements have been developed using FFT highest 

frequencies in the transformed image. The high frequency in the image indicates the 

sudden change of intensity in the image that represents the collagen bundle edges in 

picrosirius stained skin images. The automated thickness quantification from the 

elliptical shape of the FFT spectrum has been used as a novel method to assess the 

change in collagen bundle thickness in different group ages. The quantification has been 

done by considering the ellipse parameters reflect the collagen thickness in the spatial 
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image. Such analysis has been done previously, using existing software, and supervised 

by the expert users using different parameters (Verhaegen, Marle et al. 2012).   

 The assessment of collagen dynamics in the Herovici stained skin has been developed 

by combining different techniques: k-means clustering and colour filters. The colour 

dimensionality has been reduced in this method by converting the colour space from 

RGB to L*a*b* to facilitate the clustering step. Using k-means clustering method to 

partition the image content into different clusters allowed more accurate segmentation 

result in the dataset that exhibits noticeable variation in the colour and intensity. 

The developed techniques from Chapter 3, including the novel active contour 

procedure, have allowed the quantitative measurement of all the three structural layers 

epidermis, dermis and subcutaneous fat in H&E mouse and human skin. One novelty in 

this system is the ability of the technique to create the initialize curve automatically 

from the object itself and start the active contour model to segment the object. This 

helps to reduce the iteration of using the active contour model and make the model 

faster than the snake model (Kass, Witkin et al. 1988). 

A technique for automatically and accurately assess adipocyte size has also been 

developed and successfully deployed (Osman, Selway et al. 2013). I have proposed a 

novel adipocyte size quantification from computing the total pixels of each cell instead 

of the calculating the area manually as described by (Björnheden, Jakubowicz et al. 

2004). Using this developed method to assess the morphology of skin layers and 

adipose tissue size and number using active contour model and intensity transformation 

to segment the adipocytes, have identified interesting phenotypes. The study of the 

epidermis, dermis and adipocyte phenotypes using the methods described in Chapter 3, 

has shown the ability to detect known and novel phenotypes in each of the skin layers in 

H&E stained mouse skin images. 

Texture-based analysis methodology has been developed to extract features from mould 

skin images to assess the skin surface topography. This technique differs from the 

conventional BG score system (Seddon, Egan et al. 1992). The novel analysis of the 

texture in the skin surface images, using fully automated texture feature extraction 

through the use of LBP, provides accurate information about the skin surface structure. 

Using non-invasive techniques to assess skin structure, it has been possible to describe 
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the effect of environmental factors on the structure of human skin surface. The skin 

impressions have been classified into protected and sun exposed skin and the high 

classification accuracy results proved the efficiency of the developed method.  

Overall I believe that these techniques are novel, automated unsupervised methods, 

which have been validated by comparing them to other techniques and manual methods. 

Moreover all of these methods build on standard and commercially available tools, 

including existing computational spatial and frequency domain image processing tools 

(i.e. FFT reference) or gold-standard manual or qualitative techniques (i.e. BG scoring 

reference). 

The Significance of this Work 

Biological image processing and analysis provides techniques that help scientists to 

evaluate the effects of environmental exposure and physiological changes in a research 

context. These techniques may also be used to evaluate the effect of the treatments and 

drug efficiency in the context of the drug discovery. All of these analysis techniques 

could also be applicable clinically. In all applications, novel combinations of image 

processing/analysis techniques and pipelines will save time and are expected to produce 

more accurate results that will ultimately help or improve the speed and quality of 

dermatology and cosmetic treatments.  

The high-throughput analysis application of our developed techniques is particularly 

evident in Chapter 3. However all the techniques can be utilised in this manner because 

of their automated and adaptive nature. The collagen organisation assessment in Chapter 

2 and the skin surface structure analysis in Chapter 4 are all capable of high-throughput 

analysis but some further work may be required for fully adaptive automation.  

The results from using the image analysis and quantification techniques have proved 

that these methods are reliable and accurate without any user interaction. Moreover, the 

techniques are easy to use with little/no special knowledge of image processing. This 

illustrates the utility of this type of translational research. The reality of some of these 

packages is that they utilise some standard and well-known concepts in the field of 

image processing and analysis. For example the use of threshold and other intensity 

transformations, such as piecewise linear transformation, is common in computational 

image processing (Gonzalez, Woods et al. 2004). These techniques are sometimes used 
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and have been integrated into commercial software but not necessarily applied to 

specific biological problems through the lack of expertise in the histology field, which 

can cause problems in diverse image datasets. In this PhD research I have attempted to 

address this issue. 

5.2 Future work 

One future objective would be to make all the developed methods adaptive to different 

datasets. For example we shall attempt to develop appropriate image transformations 

that could be applied all the image dataset the same colour distribution using colour 

normalization (Reinhard, Ashikhmin et al. 2001). This technique has been used in the 

histopathological study to map the colour distribution of bad stained images, e.g. over 

stained or under stained onto an image that exhibit characteristics of a well stained 

image (Magee, Treanor et al. 2009). To some extent this has been achieved and 

investigated already as described in the conclusion section 3.4 of Chapter 3, when we 

used a technique based on the texture and other structural information rather than the 

colour distribution and intensity in the image, as well as the use of Gabor filter to detect 

the collagen in the dermis. However, images with high variation in intensity and colour 

present a real challenge. The underlying variation is often caused by variable laboratory 

procedures in the production of these image datasets, specifically during tissue 

processing, sectioning and staining.  

Though, these methods have proved the efficiency and capability of skin analysis using 

combination of different image processing techniques. The automated skin image 

analysis can be further improved. In particular, one could utilize the method of collagen 

architecture analysis using Gabor filter and FFT in a high-throughput analysis to assess 

the skin integrity in the human skin samples. This method helps the detection of the 

important pathological information and precise change in the collagen structure in the 

dermis. The assessment of the skin structure could also facilitate the evaluation of the 

effect of the use of different cosmetically treatments, and also more analysis in other 

mouse model and different disease state and diabetic pathologies.  

One could also extract more information from the picrosirius images and determine the 

type of collagen in the picrosirius stained skin section using image processing technique 

to differentiate between the thin and thick collagen, which is probably defined as the 
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collagen type I and type III respectively. The colour and intensity are two critical 

features to be utilized in identifying the type of collagen, because the thin and thick 

materials appear in different colour and intensity in the histological section. Similar 

analysis has been done to segment the young and mature collagen in the Herovici 

stained image in as described in Chapter 2 section 2.3.3.   

In the high-throughput active contour method phenotype detection, there are possible 

ways to improve the algorithm by conducting statistical analysis and classification to 

detect outlier data and remove their effects in order to classify interesting phenotypes 

related to different skin layers in gene-knockout mouse. For example, one may use the 

mahalanobis distance to identify the outliers as described in a recent paper (Bassett, 

Gogakos et al. 2012).  

I would also like to apply the texture and structural-based skin topographic techniques 

to a larger range of patients with a broader spectrum of clinical information such as age 

and BMI. This may improve the performance of the system to find the skin topographic 

structure that correlates to any clinical parameter e.g. correlation between the primary 

and secondary lines with BMI. 

One future development could involve the use of texture-based template matching 

techniques to analyse the human epidermis layers. I have completed some preliminary 

work using different techniques such as LBP in combination with extracted features 

from GLCM. The fusion of the extracted texture information from these algorithms in 

the pilot study has resulted in positive improvement of segmentation.    

Two graphical user interfaces (GUIs) have been created, one for the collagen 

architecture assessment, and the second tool is for accurate adipocyte quantification. As 

a future work for this research I would like to facilitate the use of various combination 

analysis tools to be used as a biological tool to assess the skin integrity. The GUI is 

important for the biologist to have a simple effort by following the GUI instruction, to 

get the analysis result quickly and gain an accurate result of analysis without bias that 

could affect the diagnosis. This can be used in the future as a part of WTSI pipeline to 

take a part in the phenotyping process, and also can be used as plug in for free analysis 

sources as imageJ to be available and accessed in biological image analysis. It would 

also be useful for training purposes. 
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Finally, a combination of image processing and analysis techniques can be used 

automatically in the high-throughput analysis to evaluate skin conditions in different 

diseases such as skin cancer, inflammatory disorders and cosmetic dermatology. My 

techniques can overcome the problem of the variation in histology and work with 

different staining to visualize and analyse the features that reflect some biological 

phenomenon. The analyses in this field can be continued by developing an image 

analysis source to help solve concerning issues of time consumption and inaccurate 

assessments. And also there are opportunities for using such system in other application 

of medical image analysis e.g. ultrasound, magnetic resonance image MRI, x-ray 

images by modifying these techniques to help the researchers in this field.  
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