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Abstract 
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ABSTRACT 

Ultrasound scan is one of the most reliable imaging for detecting/diagnosing of 

gynaecological abnormalities. Ultrasound imaging is widely used during pregnancy and has 

become central in the management of the problems of early pregnancy, particularly in 

miscarriage diagnosis. Also ultrasound is considered as the most important imaging modality 

in the evaluation of different types of ovarian tumours.  

The early detection of ovarian carcinoma and miscarriage continues to be a challenging task. 

It mostly relies on manual examination, interpretation by gynaecologists, of the ultrasound 

scan images that may use morphology features extracted from the region of interest. 

Diagnosis depends on using certain scoring systems that have been devised over a long time. 

The manual diagnostic process involves multiple subjective decisions, with increased inter- 

and intra-observer variations which may lead to serious errors and health implications.  

This thesis is devoted to developing computer-based tools that use ultrasound scan images for 

automatic classification of Ovarian Tumours (Benign or Malignant) and automatic detection 

of Miscarriage cases at early stages of pregnancy. Our intended computational tools are 

meant to help gynaecologists to improve accuracy of their diagnostic decisions, while serving 

as a tool for training radiology students/trainees on diagnosing gynaecological abnormalities. 

Ultimately, it is hoped that the developed techniques can be integrated into a specialised 

gynaecology Decision Support System. 

Our approach is to deal with this problem by adopting a standard image-based pattern 

recognition research framework that involve the extraction of appropriate feature vector 

modelling of the investigated tumours, select appropriate classifiers, and test the performance 

of such schemes using sufficiently large and relevant datasets of ultrasound scan images. We 

aim to complement the automation of certain parameters that gynaecologist experts and 

radiologists manually determine, by image-content information attributes that may not be 

directly accessible without advanced image transformations. This is motivated by, and benefit 

from, advances in computer vision that led the emergence of a variety of image 

processing/analysis techniques together with recent advances in data mining and machine 

learning technologies. 

An expert observer makes a diagnostic decision with a level of certainty, and if not entirely 

certain about their diagnostic decisions then often other experts’ opinions are sought and may 

be essential for diagnosing difficult “Inconclusive cases”. Here we define a quantitative 
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measure of confidence in decisions made by automatic diagnostic schemes, independent of 

accuracy of decision.  

In the rest of the thesis, we report on the development of a variety of innovative diagnostic 

schemes and demonstrate their performances using extensive experimental work. The 

following is a summary of the main contributions made in this thesis. 

1. Using a combination of spatial domain filters and operations as pre-processing 

procedures to enhance ultrasound images for both applications, namely miscarriage 

identification and ovarian tumour diagnosis. We show that the Non-local means filter 

is effective in reducing speckle noise from ultrasound images, and together with other 

filters we succeed in enhancing the inner border of malignant tumours and reliably 

segmenting the gestational sac. 

2. Developing reliable automated procedures to extract several types of features to 

model gestational sac dimensional measurements, few of which are manually 

determined by radiologist and used by gynaecologists to identify miscarriage cases. 

We demonstrate that the corresponding automatic diagnostic schemes yield excellent 

accuracy when classified by the k-Nearest Neighbours. 

3. Developing several local as well as global image-texture based features in the spatial 

as well as the frequency domains. The spatial domain features include the local 

versions of image histograms, first order statistical features and versions of local 

binary patterns. From the frequency domain, we propose a novel set of Fast Fourier 

Geometrical Features that encapsulates the image texture information that depends on 

all image pixel values. We demonstrate that each of these features define Ovarian 

Tumour diagnostic scheme that have relatively high power of discriminating Benign 

from Malignant tumours when classified by Support Vector Machine. We show that 

the Fast Fourier Geometrical Features are the best performing scheme achieving more 

than 85% accuracy.    

4. Introducing a simple measure of confidence to quantify the goodness of the automatic 

diagnostic decision, regardless of decision accuracy, to emulate real life medical 

diagnostics. Experimental work in this theis demonstrate a strong link between this 

measure and accuracy rate, so that low level of confidence could raise an alarm.     

5. Conducting sufficiently intensive investigations of fusion models of multi-feature 

schemes at different level. We show that feature level fusion yields degraded 

performance compared to all its single components, while score level fusion results in 
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improved results and decision level fusion of three sets of features using majority rule 

is slightly less successful. Using the measure of confidence is useful in resolving 

conflicts when two sets of features are fused at the decision level. This leads to the 

emergence of a Not Sure decision which is common in medical practice. Considering 

the Not Sure label is a good practice and an incentive to conduct more tests, rather 

than misclassification, which leads to significantly improved accuracy.     

The thesis concludes with an intensive discussion on future work that would go beyond 

improving performance of the developed scheme to deal with the corresponding multi-class 

diagnostics essential for a comprehensive gynaecology Decision Support System tool as the 

ultimate goal.  
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CHAPTER 1 

INTRODUCTION 

Medical imaging refers to several technologies that are used to view body parts/organs in 

order to monitor, diagnose, or treat medical conditions (Bushberg and Boone 2011, 

WiseGeek 2013). These technologies have been increasingly deployed in the past few 

decades leading to significant improvement in our understanding of diseases and guiding 

treatments. There exist various imaging modalities such as Ultrasound (US), Magnetic 

Resonance (MR), X-ray, etc. They all provide a variety of images with different structures 

and functions of internal anatomies (Dhawan 2011, WiseGeek 2013). Figure 1.1 illustrates 

some examples of medical images of different modalities. However, no imaging method in 

existence today is capable of providing all the information that a doctor or a surgeon needs 

for diagnosing a condition or treating a patient (Bushberg and Boone 2011, Dhawan 2011).  

       

                              (a)                                                (b)                                              (c) 

Figure 1. 1: Examples of different types of medical images (a) US image of fetal (b) MRI of the brain (c) X- ray 

of the teeth                                                                                               

Ultrasound imaging is probably the most commonly deployed medical image modality. It has 

been used for over half a century and is considered to be the most common diagnosis tool 

deployed in hospitals around the world, especially in detecting abnormalities in the 

gynaecology field (Michailovich and Tannenbaum 2006). US images are distinguished from 

imaging systems generated by waveforms of the electromagnetic spectrum, in that they are 

generated by frequency sound waves. The reflected sound wave echoes are recorded and 

quantised for display as a real-time image (Hangiandreou 2003). Applications of US imaging 

have rapidly grown from simple measurements of anatomical dimensions to detailed 

screening for fetal abnormalities, detection of changes in tissue texture, diagnosis of different 

types of tumour and detailed study of blood flow in arteries (Hoskins, Martin et al. 2010). 

According to (Geirsson and Busby‐Earle 1991, Kinkel, Hricak et al. 2000), ultrasound is the 

primary imaging modality in detecting abnormalities in ovary and evaluation of the ovarian 
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tumours. Figure 1.2 shows a US scan image of ovarian tumour and a US scan image of the 

gestational sac in the early stage of pregnancy.  

     

                                            (a)                                                                                        (b)  

Figure 1. 2: Examples of US scan images (a) Ultrasound image of ovarian tumour  (b) Ultrasound image of 

Gestational sac in two different planes 
              

Ultrasound scanning is considered as an effective imaging modality for monitoring 

pregnancy because of its safety without the hazard of radiation, especially in diagnosing 

abnormalities that lead to miscarriage at a very early stage in pregnancy (Hoskins, Martin et 

al. 2010). The first three months of pregnancy are the most crucial period. Monitoring 

pregnancy within this period enables clinics to evaluate the development, growth, and 

wellbeing of the fetus (Kaur and Kaur 2011). Loss of pregnancy before 24 weeks of gestation 

is termed as miscarriage. The estimated number of miscarriage cases in UK is 250,000 each 

year (England London HSCIC, 2013).  

Ovarian cancer is the fifth most common cancer after breast, bowel, lung and uterus cancer 

and the second most common gynaecological cancer after uterus (UK 2015). Around the 

world, nearly 200,000 women are estimated to develop ovarian cancer every year and about 

100,000 die from it. It has been reported that around 140,000 women died of ovarian cancer 

in the world in 2008 alone. In the United Kingdom, more than 7000 women are diagnosed 

with ovarian cancer each year and 4,200 deaths occurred this reported in 2014 (UK 2011). 

Ovarian cancer has the highest mortality rate of all gynaecologic cancers (Jeong, Outwater et 

al. 2000, Fishman, Cohen et al. 2005, Chan and Selman 2006, ACS 2014, UK 2015) and has 

been known as “the silent killer” because of its non-specific symptoms (Chan and Selman 

2006). According to the first prospective study in (Braem, Onland-Moret et al. 2012), 

multiple miscarriages are also associated with an increased risk of ovarian cancer.  

This thesis is concerned with the analysis of ultrasound images for the detection and 

classification of gynaecological abnormalities. In particular, the focus is on analysing US 
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scan images of ovarian tumour for signs of malignancy as well as the analysis of US scan 

images of gestational sac for diagnosing miscarriages. Our investigations will follow a 

pattern recognition approach and develop digital image processing and analysis techniques 

both in the spatial domain and frequency domain. We also test the performance of our 

developed schemes.  

Automatic medical image analysis and their use in detecting/classifying abnormalities is 

shrouded with tough challenges for a variety of reasons such as inadequate image quality as 

well as shortcomings of the existing computational models. For example in medical 

diagnosis, distinguishing between positive and negative cases is a crucial task, which gives 

rise to two types of errors: false negative and false positive. A false-positive error occurs 

when test result indicates that a person has a specific disease or condition when the person 

actually does not. A false negative error occurs when test results indicate a person does not 

have a disease or condition when the person actually has it. In both situations there could be 

serious consequences and inconveniences. For instance, a patient that has been diagnosed 

falsely as having malignant tumour (false-positive) may undergo unnecessary procedures 

including surgery and/or biopsies (Myers, Bastian et al. 2006). On the other hand, if a patient 

has been falsely diagnosed with benign tumour, vital timely treatments of malignancy may be 

missed with the severe consequence on fatality and survival rates. 

In general biomedical image analysis, a specific region in the image is relevant to the purpose 

of the medical examination, which is referred to a region of interest (ROI). For example in 

US images of ovarian tumour, the ROI is the tumour lump while the ROI of US scan for 

pregnancy tests is the gestational sac. Detecting the ROI automatically with reasonable 

accuracy is a serious challenge for a variety of reasons including inadequate image quality as 

well as the absence of a crisp universally agreed model of these regions. The following US 

images illustrate such difficulties.  

             

                                                    (a)                                                     (b)  
Figure 1. 3: Examples of challenging cases for automatic segmentation of ovarian tumour (a) Tumour and its 

background have a similar texture (b) A tumour with unclear border 

https://en.wikipedia.org/wiki/Binary_classification
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Currently, quantifying the region of interest and discriminating between positive and negative 

cases in the areas of miscarriage diagnosis and ovarian tumour are done manually from real-

time scanned ultrasound images. The diagnostic procedure entirely depends on the operator 

experience and involves multiple subjective decisions. Subjective decision-making can result 

in inter- and intra-observer variations. Inter-observer variation is the amount of difference 

between the results obtained by two or more observers when examining the same material. 

Intra-observer variation is the amount of difference one observer experiences when observing 

the same material more than once. Such differences may increase difficulties and even lead to 

errors in the diagnosis stage, which may have undesired consequences on patient health and 

increased patient anxiety (Pexsters, Daemen et al. 2010). Moreover, according to (Wang, Itoh 

et al. 2002, Huang, Chen et al. 2008, Rocha, Campilho et al. 2011), interpretation of an 

ultrasound image is highly dependent on the ability and experience of the medical observer as 

well as the reliability of the data preparation.   

In order to avoid human errors in both the quantification stage and diagnosis stage, as well as 

reduce the false negative and false positive rates, computer-based image processing and 

analysis tools need to be developed, tested and integrated into the clinical diagnosis process. 

Addressing such a challenging task in the analysis of ultrasound images for the detection and 

classification of gynaecological abnormalities, or for that matter in any area of biomedical 

image analysis, rely on serious research investigations and development of interdisciplinary 

technology that combines image processing techniques, machine learning and pattern 

recognition solutions in close consultation with the domain experts. We should recognise that 

computer-based tools can never compensate for the wealth of knowledge and expertise 

accumulated by medical experts and specialists through long life training. The hybrid 

approach that combines computing tools and human experts is the reliable strategy for 

achieving improved accuracy of abnormality detection, patient care and patient management. 

In addition, such a technology can provide tools that will serve the purpose of training 

radiology students and personnel in medical schools and hospitals.  

In general, when designing computer-based tools for medical image analysis, one needs to be 

clear about the purpose that the system is serving. If the tool is not to be endowed with 

decision-making capabilities, then the required tool could be designed to work as a traditional 

software tool to just automate the extraction of the features/parameters that the domain expert 

requires. On the other hand, another type of computer-based tools is needed when decision 

capabilities are expected. Such tools must go beyond traditional expert systems and deploy 
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some machine learning techniques that may need to extract features not normally used by the 

experts. Designing computerised tools with decision capabilities is desirable but much more 

challenging and success depends on selecting the appropriate data representation and data 

analysis models. This thesis is concerned with the development of tools that have 

characteristics of the second type of computerised tools while the role of domain experts 

continue in the evolution of the tool in the future, i.e. the tools will continue to be guided by 

the expert knowledge and needs.  

1.1 Thesis Aim, Objectives and Contributions 

1.1.1 Thesis Aim and Objectives 

This thesis is devoted to the analysis of ultrasound images, obtained for gynaecological 

examinations, either during routine pregnancy scans or for diagnostic purposes in relation to 

ovarian abnormalities. The overall aim of this thesis is to develop, and test the performance 

of novel automated and computerised solutions that analyse gynaecological ultrasound 

images to detect and classify abnormal objects or cases that have health implications for 

women. Advances in imaging technology, image processing/analysis theory and the 

emergence of sophisticated data mining and machine learning models provide the appropriate 

incentive for our computational investigations.  

In particular, the main objectives of this thesis include investigating automatic methods for 

discriminating between different types of ovarian tumours (Benign or Malignant), developing 

automatic methods to analyse ultrasound images of the gestational sac GS, in order to 

identify miscarriage from Pregnancy Unknown Viability (PUV) cases. A suite of the intended 

computerised methods can form the core of Computer Aided Diagnosis (CAD) tools that 

could provide support for biomedical scientists to achieve efficiency as well as reducing false 

negative and false positive cases. 

Reliable CAD tools for the main applications, under investigation in this thesis, are expected 

to help in: (1) diagnosis of miscarriage in the very early stages of pregnancy, (i.e. 

discriminating between Miscarriage and normal/PUV cases); and (2) distinguishing between 

different types of ovarian tumours (Benign/Malignant).  

Currently, the first task is dealt with by manually measuring the size of the Gestational Sac 

GS from live ultrasound scan images. Computerising this task is very much dependent on 

accurate detection of the GS in the scanned US images, and knowledge of known facts about 
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the geometry of the GS to determine its dimensions. In theory, the developed tool can work 

as Expert-Guided CAD (EG-CAD) tool and diagnosing miscarriage should be based on some 

thresholds specified by the domain expert community. However, in the course of this work 

and the various discussions with domain experts we come to realise that different medical 

communities apply different criteria for declaring miscarriage (see Chapter 2 for more 

details). This an incentive to investigate some machine learning training techniques that can 

learn from the variety of datasets of pregnancy US scan images. The results of experiments 

conducted to test the performance of the developed tool and procedures, that include 

subjective tests, demonstrate the added value of going beyond the development of EG-CAD 

tool and confirm the benefits of using data mining techniques for intelligent CAD tools.     

Designing CAD tools to computerise ovarian tumour diagnosis is very much more 

challenging than dealing with miscarriage detection. This due to many factors; the most 

important factor is the difficulty of encapsulating domain-experts knowledge using simple 

rules/heuristics. Although tumour diagnosis/classification by medical experts rely on 

examining the ovarian US image and take into account measurements/features visible and 

recognisable by them from the tumour images, such as texture and size of lesion, they 

conduct a variety of medical tests and their final decisions are made by a team of experts who 

rely on technical knowledge acquired through intensive life-long training. Therefore, our 

approach to deal with this challenge by adopting machine learning strategy at the outset 

whereby a variety of ovarian US image dataset will be investigated, analysed and 

computerised tools will be developed through training based on a hybrid set of image features 

that combines texture features in the spatial and the frequency domains. These texture 

features used in the developed tools from a mathematical model of the image texture 

information that are estimated and categorised by medical experts using their knowledge 

gained over time. The most important adopted features are either difficult to be determined 

by human visual examination or even not accessible directly by medics e.g. frequency 

domain image coefficients. Our investigations that result in the development of Machine 

Learning based CAD tools will incorporate different classifiers; test their performances and 

that of the fusion at different levels.  

The first step in the process of developing automatic analysis methods and tools for the 

intended application is the detection of the region(s) of interest (ROI) and removal of the 

background. In this research project, the experimental datasets of US images were acquired 

from different machine settings and sources. Moreover, the operators of the equipment may 
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have a different level of experience. Furthermore, achieving reliable segmentation of ROI 

depends on the removal of noise and image artefacts that may affect US images. Accordingly, 

automatic analysis methods start by pre-processing the US scan images for enhanced image 

quality and reduced noise level in order to make objects of interest more identifiable and well 

prepared for the ROI segmentation. Beside the sought after automatic analysis, the enhanced 

images output from such pre-processing procedures can also be used directly in the manual 

process of diagnosis by experts.  

This thesis also aims to perform quantification and data analysis following feature extraction 

using computational techniques to detect interesting textural and anatomical changes inside 

the tumours or gestational sacs. These extracted features then can be used as a key to 

distinguish between different classes in each of the two main applications under consideration 

in this thesis.  Furthermore, to develop automatic methods that can be closer to the reality, we 

introduced the idea of supporting the classification with a level of confidence. This automatic 

method provides the experts with a decision of a certain degree of strength in classifying a 

particular case. These following points summarised the main objectives of our work:  

 De-noising and enhancing the ultrasound scan images used in the intended 

applications. 

 Automatic segmentation of the region of interest ROI in US images. 

 Defining and identifying features from greyscale (B-mode) ultrasound image that is 

deemed to have an impact on the diagnostic processes. These features extend the list 

of the features that are currently extracted manually by experts, to include new image 

features that relate to different mathematical models of images.  

 Developing automated procedures to extract and quantify features from the extracted 

ROI, and test their reliability. 

 Implement appropriate classification tools with an acceptable level of accuracy.  

 Develop CAD tools that incorporate the above objectives and are endowed with 

decisions recommendations. These tools should be designed in a manner that supports 

the clinician through the decision- making process in the diagnosis of ovarian tumours 

and miscarriage diagnosis. 

 Develop a framework for evaluating the achieved accuracy of diagnostic decision 

output by the above tools. Decisions are to be recommended with a level of 

confidence in the decision. Such a confidence based prediction outcomes are to be 
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more meaningful and useful for reducing false positives and false negatives in the 

diagnosis of the ovarian tumour as well as in the area of miscarriage cases.   

1.1.2 Thesis Contributions 

The research carried out in this thesis has made a number of contributions: 

 Developing an automatic method for enhancing ultrasound images of ovarian tumours 

based on Non-local mean filter followed by a negative transformation and the 

absolute difference function. This enhancement method highlights the anatomical 

information, especially visualising the inner border inside the malignant tumours, this 

tool can be easily used in the clinic. 

 Developing an automatic enhancing method of the ultrasound image of the gestational 

sac based on a mean related operation. 

 Automatic segmentation of ultrasound image of the gestational sac based on Otsu 

thresholding followed by a set of image processing procedures to remove all non-sac 

binary objects.  

 Investigating the effectiveness of local features in comparison to global features for 

gynaecological US images.  

 Proposing a set of novel frequency domain features to be extracted from binarized 

FFT spectrum.  

 Automating the quantification of known features of US images of the GS to identify 

miscarriage cases at early stages of pregnancy. We also investigated and evaluated a 

range of other geometric features of the GS for miscarriage detection.  

 Investigating the contribution of image texture features in spatial/frequency domains 

of US images to discriminate different classes of abnormalities for both applications. 

 Automatic classification of ovarian tumour. Furthermore, supporting the classification 

accuracy with the level of confidence, and introducing the idea of “Inconclusive case” 

in classification task for those cases that the machine is not sure about the class label, 

which is based on levels of confidence in a feature-based decision level fusion 

scheme. 

  Automatic classification of the gestational sac. Further, supporting the classification 

accuracy with the level of confidence. 
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1.2 Research Collaborators  

The datasets of this study were provided by our collaborators with all required information. 

The ethical approval in using the data was granted by the School of Science Ethics 

Committee. We are grateful for our collaborators for offering the advanced training course 

and providing useful information regarding the medical side of the images. The collaborators 

are acknowledged as follows: 

 Department of Early Pregnancy, Imperial College, Queen Charlotte's and Chelsea 

Hospital, London, UK. 

 Department of Cancer and Surgery, Queen Charlotte's and Chelsea Hospital, Imperial 

College, London, UK 

 Department of Obstetrics and Gynaecology, University Hospital KU Leuven, Leuven, 

Belgium. 

1.3 Training Courses and Invited Talk  

1.3.1 Training Courses  

 International Ovarian Tumour Analysis (IOTA) group, International Society of 

Ultrasound in Obstetrics and Gynaecology (ISUOG) educational course, Advanced 

Course in Gynaecological Ultrasound: Imaging in Oncology, on 17-18 January 

2014, London, UK.   

 International Ovarian Tumour Analysis (IOTA) group, International Society of 

Ultrasound in Obstetrics and Gynaecology (ISUOG) educational course, Advanced 

Course in Gynaecological Ultrasound: Using Ultrasound for the Diagnosis and 

Management of Gynaecological Malignancy, on 30 November and 1 December 

2012, London, UK. 

1.3.2 Invited Talk  

 International Ovarian Tumour Analysis (IOTA) group, International Society of 

Ultrasound in Obstetrics and Gynaecology (ISUOG) educational course, Advanced 

Course in Gynaecological Ultrasound: Imaging in Oncology, on 17-18 January 

2014, London, UK.   

 First International Ovarian Tumour Analysis (IOTA) Congress, Department of 

Obstetrics and Gynaecology, University hospital KU Leuven, on 26-27 April 2013, 

Leuven, Belgium. 
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Development Program HCDP, Kurdistan students conference, University of 

Nottingham, Nottingham, UK, 2013. 

1.5  Dissertation Layout 

The dissertation layout will be as follows: 

Chapter 2: Presents background information about medical images, ultrasound scan images, 

and female reproductive system with detailed information about ovarian tumours and 

miscarriage cases.   

Chapter 3: This chapter briefly describes our research methodology and highlights the 

research process. The chapter also explains the experimental protocol and details about 

datasets that are used in this study. 

Chapter 4: Reviews the literature on de-noising, enhancement and segmentation of ROI in 

ultrasound images. The knowledge acquired will be exploited to initiate our first research 

component of this thesis, by developing and proposing methods for enhancing ultrasound 

images of ovarian tumours as well as our method for automatic segmenting of the gestational 

sac.  

Chapter 5: Presents a literature review of features extraction of ultrasound images as a 

prelude to present our proposed novel methods for feature extraction. We shall also present 

results of experiments to test the effectiveness of those extracted features in diagnosing the 

ovarian tumour status and miscarriage cases.  

Chapter 6: This chapter is divided into three parts. The first part starts with the literature 

review on classification models. We conduct and discuss the results of experiments 

conducted on the appropriate US datasets to test the performance of using another different 

classifier that different from classifier method that used in Chapter 5. In the second part, we 

introduce our novel idea for adding the level of the confidence to the accuracy of 

classification. The concept of fusion in different levels is introduced in the third part. 

Moreover, all experiments, results and discussion are presented in this chapter. 

Chapter 7: Concludes the thesis with a summary of the major findings from this research 

and highlights potential future research directions. 

 



Chapter 2                                                                                                                 Backgrounds 

12 

 

CHAPTER 2 

BACKGROUNDS 

The field of medical imaging and their use as an aid in diagnosis and treatment has evolved 

and expanded rapidly in the early decades of last century. This chapter is devoted to 

describing the basic background of medical imaging and the essential medical concept of 

miscarriage and ovarian cancer. This chapter highlights the current clinical techniques used to 

characterise ovarian tumours and detect miscarriage cases. We briefly introduce various 

medical imaging systems and in particular, describe the different types of ultrasound imaging 

systems and their importance in detecting and diagnosing gynaecological abnormalities and 

diseases.  

This chapter is divided into three main sections. Section 2.1 describes the aims of different 

medical imaging systems in abnormality detections. In particular, we introduce in detail 

ultrasound imaging systems as the ideal imaging system for gynaecological disease 

diagnoses. We also outline the process of ultrasound image acquisition. Section 2.2 describes 

the female reproductive system, highlighting key stages of pregnancy development. In 

section 2.3, we provide an overview of different types of ovarian tumours. In particular, we 

review all existing rules and models for ovarian cancer diagnoses that are currently in use. 

Section 2.4 gives a background of the normal pregnancy and miscarriage, and introduces the 

current rules in the diagnosis of abnormality in early stages of pregnancy based on the 

ultrasound image variables. Section 2.5 will be the brief summary of this chapter. 

2.1 Medical Imaging Systems  

Medical imaging refers to a number of different technologies that are used to view the human 

body in order to monitor, diagnose, or treat medical conditions (Bushberg and Boone 2011, 

Dhawan 2011) The main goal is to provide a picture of internal body structures in a way 

which is as non-invasive as possible (WiseGeek 2013). For example, the medical imaging 

system can help in determining bone fractures, detect and classify tumours and monitor 

pregnancy stages, etc. There are a variety of methods to obtain the images, depending on the 

technology being used and the area of the body which is being imaged (WiseGeek 2013). 

Common types of medical imaging modalities include:  
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 X-ray. This imaging modality is a type of radiation; it has a higher frequency and can 

pass through the human body. The parts of the body that are made up of dense material, 

such as bones, appear as clear white areas on an X-ray image, The parts of the body that 

are made of softer tissues, such as heart and lungs, show up as darker areas. This modality 

is normally used to create images of bone fractures, tooth problems, abnormal curvature 

of the spine, lung problems, heart problems, and breast cancer. Because of the high 

levels of radiation, there is slightly increased the risk of cancer (Suetens 2009). Figure 2.1 

shows two X-ray images. 

                  
                                                           (a)                                                         (b) 

Figure 2. 1: Example of X-ray images (a) Chest  (b) Hand 

 

 Magnetic Resonance imaging (MRI). This modality uses magnetic fields and radio 

waves to show detailed images of organs, soft tissues, bones, ligaments and cartilage 

(Suetens 2009). During the scan, the patient lies inside a tube. MRI can be used for 

brain and spinal cord, bones and joints, breasts, heart, blood vessels and internal 

organs, such as the lungs and liver. The disadvantage of MRI is that some patients 

may find it claustrophobic. Also, MRI cannot be undertaken in some situations (e.g. 

when there is a pacemaker). Figure 2.2 shows examples of MRI images. 

             
                              (a)                                                                   (b)  

Figure 2. 2: Examples MRI images (a) Knee (b) Right to Left: cervical, thoracic and lumbar spines 

 

 Ultrasound Scan (US). An ultrasound is a “cyclic sound pressure with a frequency 

greater than the upper limit of human hearing (20 kHz)”.  Ultrasound scan is used to 

create images of soft tissue structures, such as the gallbladder, liver, kidneys, 

pancreas, bladder, and other organs and parts of the body. Ultrasound can also 

http://www.nps.org.au/medical-tests/medical-imaging/for-individuals/types-of-imaging/mri-magnetic-resonance-imaging
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Human
http://en.wikipedia.org/wiki/Hearing_(sense)
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measure the blood flow inside vessels, monitoring fetal growth and detecting tumours 

(Suetens 2009). Figure 2.3 shows examples of US images. The main disadvantages of 

US it is highly operator dependent in (1) obtaining high-quality images and (2) 

interpreting these images. The existence of air in the body is also one of the factors 

which can affect image quality and the body mass index BMI (the person body size). 

A special preparation may be required before a procedure (e.g. full or empty 

bladder). Figure 2.3 shows examples of US images. 

 

    
                                             (a)                                                                  (b)  

Figure 2. 3: Examples of US images (a) 20 week twins (b) Normal liver 

While each type of imaging modality has its different use, it is not always the case that one 

kind of imaging is better than another. Which type of the medical imaging system to use 

depends on the medical conditions and diagnosis of the diseases. Among medical imaging 

modalities, Ultrasound image is currently one of the most important, widely used, and 

multipurpose imaging modalities in medicine. The most common use of ultrasound imaging 

system is in detecting gynaecological abnormalities (Geirsson and Busby‐Earle 1991).   

2.1.1 Medical Ultrasound Image  

An Ultrasound Scan (US) is sometimes called a Sonogram. It has been in use since the mid- 

twentieth century. Karl Theo Dussik , an Austrian neurologist, was the first to use ultrasound 

as a medical diagnostic tool to image the brain (Edler and Lindström 2004). Today, US is one 

of the most commonly used imaging technologies in medicine, especially in gynaecological 

disease detection because ultrasound imaging is considered to be safe without ionising 

radiation, non-invasive, portable, and relatively inexpensive in cost when compared with 

other imaging modalities, such as MRI and CT (Geirsson and Busby‐Earle 1991).  

Furthermore, the ultrasound scan is a real-time imaging system. US images are also 

tomographic, i.e. offering a “cross-sectional” view of anatomical structures. An ultrasound 

http://www.ob-ultrasound.net/dussikbio.html
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scan can be used in several different ways, such as monitoring an unborn baby, diagnosing a 

condition such as an ovarian tumour or guiding a surgeon during certain procedures (Chan 

and Perlas 2011).  

2.1.1.1 Ultrasound Equipment and the Process of Scanning  

An ultrasound scanner consists of a number of components including a transducer (probe), a 

central processing unit (CPU), display screen, keyboard/cursor, disc storage devices and a 

printer. The transducer is a small hand-held device, and come in different shapes and sizes for 

using in different scanning purpose (Hoskins, Martin et al. 2010). The probe sends out 

frequency sound waves into the body and then listens for the returning echoes from the 

tissues in the body. The ultrasound image is directly visible on a video display screen 

(monitor) (Hoskins, Martin et al. 2010). “The image is created based on the amplitude 

(strength), frequency and time it takes for the sound signal to return from the area of the 

patient being examined to the transducer and the type of body structure the sound travels 

through”. There are different kinds of ultrasound machine ranging from very large machines 

which are fixed in special clinical rooms, to small portable lightweight machines that are 

mobile and can be carried by a sonographer. Figure 2.4 shows three different types of the 

ultrasound machine.  

 

Figure 2. 4: Examples of three different sizes of ultrasound machines [12] 

The scanning process starts by applying a thin layer of jelly that is placed between the probe 

and the skin to make sure all the sound enters the body. The probe contains a transmitter and 

a receiver. A pulse of ultrasound is sent out by the transmitter. The pulse is reflected from a 

surface and returns to the receiver.  The ultrasound machine measures how long it takes for 

the pulse to return (Hoskins, Martin et al. 2010, NHS 2015). Figure 2.5 shows the functional 

components of a typical ultrasound machine and illustrates how the process of scanning 

works. 
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Figure 2. 5: Overview of scanning process 

In gynaecology, the most common two methods of ultrasound scan are the transabdominal 

and transvaginal scans which differ in shapes of the probe due to its application to the 

different parts of the body (NHS 2015): 

1. Transabdominal ultrasound (external ultrasound).  A transducer probe is located onto 

the patient skin surface and moved over the part of the body being scanned. See 

Figure 2.6(a). 

2. Transvaginal ultrasound (internal ultrasound). A specially shaped transducer is placed 

inside a woman's vagina. A transvaginal ultrasound is ideal for diagnosis of female 

problems such as fertility, early pregnancy scanning, or closely search for a certain 

condition such as an ovarian tumour or uterus. See Figure 2.6 (b).  

    
                                                     (a)                                                        (b) 

Figure 2. 6: Different types of ultrasound scan (a) External transabdominal scanning (b) Transvaginal scanning 

2.1.1.2 Types of Ultrasound Images  

In general, there are four types of ultrasound images that may be generated by the different 

equipment. Using which type depends on the condition to be diagnosed and the purpose of 

scanning (Palmer 1995). 
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1. B-mode (Brightness-mode) Ultrasound Imaging 

The B-mode is a most common type of ultrasound image. It is a sequence of two-dimensional 

cross section images of the scanned part. The real-time scanning it can be taken in different 

planes as explained in below and illustrated in Figure 2.7  

 The sagittal plane. It divides the body into left and right. 

 The coronal plane or frontal plane. It divides the body into back and front portions. 

 The transverse plane. It divides the body into cranial and caudal (head and tail) portions. 

 

Figure 2. 7: Illustrates the transverse, sagittal, and coronal planes of the body 

Gynaecologists usually examine scan image in the sagittal plane, i.e. the vertical longitudinal 

plane to locate the ROI, where two points on the boundaries of the ROI are selected using 

calibre marks to measure its diameters (major and minor). Afterwards, they change the probe 

angle by 90 degrees to capture the image in the transverse plane, i.e. the horizontal plane that 

is perpendicular to the coronal and sagittal planes, and then takes another diameter 

measurement; these measures depend on the purpose of diagnosis. Figure 2.8 shows 

examples of 2D B-mode ultrasound images. 

 

     
                                                       (a)                                                                    (b) 

Figure 2. 8: Examples of 2D B-mode ultrasound images (a) US in Sagittal and Transvers plane for GS (b) US 

image in Sagittal plane of 37 weeks of fetal 

 

 

https://en.wikipedia.org/wiki/Sagittal_plane
https://en.wikipedia.org/wiki/Frontal_plane
https://en.wikipedia.org/wiki/Transverse_plane
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2. 3D Ultrasound Imaging 

This is performed by scanning tissue cross sections at several different angles and rebuilding 

the data received into a three-dimensional image (Fenster and Downey 1996). Figure 2.9 

illustrates two 3D ultrasound images. The 3D images allow observers to get a better 

appearance of the:  

 Early detection of cancerous and differentiation between benign tumours.  

 Visualising a fetus development, especially for detecting the abnormal development 

of the face and head. 

 Visualizing blood flows in various organs or a fetus. 

              

                                                                (a)                                                      (b) 

Figure 2. 9: Examples of 3D ultrasound images  (a) 3D US images of ovarian tumour (b) 3D US images of fetal  

 

3. 4D Ultrasound Imaging 

In the 4D ultrasound, the fourth time dimension allows a 3-dimensional picture in real-time 

and creates the most accurate representation. In some cases, 3D and 4D ultrasound image can 

detect abnormalities not seen in 2D ultrasound (Smythe 2004). 

4. Doppler Ultrasound Imaging 

Techniques of Doppler ultrasonography have been available to clinicians for nearly 40 years 

(Boote 2003).  It helps doctors evaluating blood flow through major arteries and veins. Three 

types of Doppler ultrasound are currently also used in addition to 2D grey scale ultrasound 

imaging: Colour Doppler, Power Doppler, and Spectral Doppler (Palmer 1995).  Figure 2.10 

presents some examples of 2D images ultrasound image with and without colour Doppler. In 

Figure 2.10 (d), the image shows a very high vascularization for a malignant ovarian tumour. 

 

http://www.webmd.com/heart/picture-of-the-arteries
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                                                           (a)                                                          (b) 

 

     
                                                          (c)                                                          (d) 

Figure 2. 10: Examples of 2D US images of colour Doppler (a) US image of ovarian tumours (b) Colour 

Doppler US image of ovarian tumour (c) US image of ovarian tumours (d) Colour Doppler US image of ovarian 

tumour         

2.1.1.3 Common indications of ultrasound scan in Obstetrics and Gynaecology 

Here is a short list of the most indications of ultrasound scanning Obstetrics and Gynaecology 

(Mason, Broaddus et al. 2010):  

 To diagnose early miscarriage by measuring gestational sac in the very early stage of 

pregnancy. 

 To estimate the expected date of delivery by measuring the fetus size. 

 To determine the position of the fetus (cephalic, head down and breech). 

 To check the position of the placenta, to avoid bleeding during birth.  

 To determine the number of fetuses in the uterus. 

 To identify the fetus gender. 

 To assess the fetus growth. 

 To detect ectopic pregnancy (outside the uterus pregnancy). 

 To evaluate the amniotic fluid. 

 To diagnose gynaecological tumours 

 To characterise ovarian tumours. 

Moreover, US are also used in Cardiology, Urology and ultrasound scans guide a surgeon 

performing some types of biopsy.  

Like other image modalities, Ultrasound scan images have weakness/limitations during the 

use (Mason, Broaddus et al. 2010): 
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 Ultrasound waves cannot penetrate through bones, and are affected by environmental 

factors e.g. air or gas, i.e. US images may not be able to produce clear and detailed 

images of some parts of the body.  For example, US modality is not used to scan the 

brain, because it is surrounded by bone. 

 Large patients are harder to image by ultrasound because the greater amount of tissue 

decreases the sound ability to penetrate into the body. 

 Ultrasound images contain noises such as speckle noise which result in reduced 

contrast in the images; this may affect the diagnosis accuracy. 

2.1.2 Other Imaging Modalities used in Gynaecology 

Computed tomography (CT) has been used mostly on patients with gynaecological 

malignancies to assess the extension and separate of the disease. However, ultrasound is at 

least as good as in characterising ovarian tumours, comparing with CT. Besides being more 

expensive, another major disadvantage of CT imaging is that it contains ionising radiation. 

According to (Chen, Ruiz et al. 2003, Jokubkiene, Sladkevicius et al. 2007, Alcázar and 

Jurado 2011), a combination of ultrasound morphology and Doppler blood flow is 

comparable to MRI. However, the major limitations of MRI are: (a) not available in every 

clinical centre, (b) more expensive comparing with ultrasound image and (c) more time- 

consuming compared with the US. MRI is recommended when US findings is not diagnostic 

(Sayasneh, Wynants et al. 2013). According to the Royal College of Obstetricians and 

Gynaecologists RCOG guideline (RCOG 2003) there is no routine role yet for Doppler, MRI 

or CT in ovarian tumours characterization due to the relative expense and limited availability 

of these modalities, which can cause a delay in the clinical management. 

2.2 Background on Female Reproductive System 

The female reproductive system contains two main parts: uterus and ovaries. The female 

reproductive organs consist anatomically of five parts (Hamlett and Koob 1999). Figure 2.11 

illustrates each of the five parts and how they are connected.  

1. Uterus. It is a pear shape and it normally hosts the fetus. The uterus size changes 

based on age and pregnancy status.  

2. Cervix. It is the lowest narrow portion of the uterus where it joins with the top end of 

the vagina. 
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3. Vagina. It is a flexible muscular tube that connects the cervix of the uterus to the 

external of the body. 

4. Fallopian tubes. Are a couple of muscular tubes that extend from the left and right 

corners of the uterus to the edge of the ovaries 

5. Ovaries. are a pair of oval-shaped structuers, measuring 2-4 cm in diameter and 1 cm 

thick. They are located within the pelvis, one on each side of the uterus. Two different 

functions of the ovaries are: (i) to produce the eggs, and (ii) to produce the female 

hormones. Figure 2.12 represents an ultrasound image of a normal ovary with its 

corresponding laparoscopic view. 

 

 

Figure 2. 11: Schematic drawing of female reproductive organs, frontal view  

       

                                                           (a)                                                     (b) 

Figure 2. 12: Represents ultrasound image of a normal ovary with its corresponding laparoscopic view (a) 

Ultrasound image of the normal left ovary (b) Laparoscopic view of the normal left ovary   

The ovarian follicle is a cellular structure created in the ovary where immature eggs mature, 

leading to ovulation and either pregnancy or menstruation (Krivanek and Sonka 1998, 

Hamlett and Koob 1999). Women are born with nearly a million ovarian follicles, each with 

the possibility to grow into an egg with the chance for fertilisation. Figure 2.13 shows a 

normal ovary and the stages of ovulation. 

Furthermore, ovaries produce the female sex hormones, oestrogen and progesterone, the 

hormones control the menstrual cycle. As women get older (postmenopausal), these 

hormones and periods eventually stop altogether.  
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Figure 2. 13: Semi diagrammatic representation of a normal ovary and the stages of ovulation (Tatjana-Mihaela 

2002) 

In this thesis, we are focusing on the diagnosis of abnormalities in the main parts of female 

reproductive system: first, ovarian tumour diagnosis based on 2D B-mode ultrasound images 

of ovarian, and second, miscarriage identification based on 2D B- mode ultrasound image of 

the gestational sac. For this reason, we need to know about the abnormalities of ovarian 

tumours and gestational sac. 

2.3 Ovarian Cancer  

2.3.1 Overview of Ovarian Cancer 

In general, the growth of any cell in the body is controlled by a certain gene. If this gene 

misses its function, it might lead to a formation of a tumour. A tumour that is not cancer is 

known as benign while a cancerous tumour is known as malignant. Benign tumours do not 

infect the tissues around them and nor spread to other parts of the body. However, malignant 

tumours have the ability to attack and destroy the tissues around them. Cancer cells can 

spread via the bloodstream or the lymph system and reach to other parts of the body (Tan, 

Agarwal et al. 2006). Ovarian cancer is strongly related to the age; although it could develop 

at any age, it is most likely to occur in older women especially from age 55 and over (Cancer 

Research UK 2014) Examples of benign ovarian tumours are teratoma, Endometrioma, 

Serous cystadenoma and Mucinous cystadenoma. Examples of malignant ovarian tumours 

are serous adenocarcinomas and mucinous adenocarcinomas, which originated from 

epithelial cells. According to (Bell 1991) epithelial tumours occur in pre-menopausal and 

post-menopausal age and 85% of ovarian cancer cases are epithelial cell (Chen, Ruiz et al. 

2003). Although extensive research has been carried out, the real causes of ovarian cancer are 

still unknown. However, the two most effective factors linked to the risk of developing 

ovarian cancer are age and the presence of certain gene mutations. Other factors that may 

affect the risks of increasing ovarian cancer are described below:   
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 Infertility, the risk is lower in women who had birth, compared to women who did 

not have children (Permuth-Wey and Sellers 2009).         

 Family and previous cancers history, women with a mother or sister diagnosed with 

ovarian cancer have a higher risk of developing ovarian cancer. Similarly, women 

with a previous breast cancer have double the risk of ovarian cancer (Permuth-Wey 

and Sellers 2009). 

 Miscarriage, multiple miscarriages are associated with an increased risk of ovarian 

cancer (Braem, Onland-Moret et al. 2012). 

2.3.2 Ovarian Pathology 

In this section, we describe the two main types of ovarian tumours benign and cancerous: 

2.3.2.1 Physiological Cysts (Benign) 

The term ovarian cyst often refers to a sac that has a fluid-filled develops in women of all 

ages. There are several different types of ovarian cysts. The most common one is known as a 

functional cyst, forms during the menstrual cycle and can be diagnosed by scanning (RL, 

Bogumil et al. 1971). Ovarian follicles larger than two centimetres in size are also considered 

as ovarian cysts (Loue and Sajatovic 2004). Beside ovarian cysts that are entirely filled with 

fluid only, other types of benign tumours additionally contain teeth, hair, fat, or blood clots 

inside the tumour. Different types of benign tumours may have different anatomy structures, 

and its correct diagnosis is important because each type of benign tumour or cystic needs 

particular treatment and care (RL, Bogumil et al. 1971). There are some cases of benign 

tumours that are still challenging to diagnose even by experts. Figure 2.14 illustrates some 

examples. 

       
(a)                                                              (b) 
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                                                        (c)                                                           (d)  

 

       
                                                         (e)                                                           (f)  

 

Figure 2. 14: Examples of US images of different types of benign pathology (a) Simple cyst                                        

(b) Fibroma (c) Teratoma (d) Mucinous cystadenoma (e) Endometrioma (f) Polycystic ovaries 

2.3.2.2 Malignant Ovarian Pathology (Cancer) 

Malignant tumour or ovarian cancer starts and is caused by ovarian cells growing out of 

control. There are many types of ovarian cancer with their characteristics and behaviour. 

Ovarian cancer is generally grouped into three major types according to the tissue/cells that 

formed the lump: (i) epithelial, (ii) germ cell, and (iii) sex cord-stromal cell (Levine, Brown 

et al. 2010, Stany, Maxwell et al. 2010, UK 2014), Figure 2.15 shows clearly each cell. 

1. Epithelial tumours. Approximately 85% of reported cases of ovarian cancer are 

epithelial. Epithelial ovarian tumours develop from the cells that cover the outer 

surface of the ovary (Chen, Ruiz et al. 2003).  

2. Germ cell tumours. Such tumours grow from the egg-making cells in the ovary 

(Chen, Ruiz et al. 2003), and forms 5% - 10% of the reported cases of the cancerous 

ovarian tumour.  

3. Stromal cell tumours. This type of ovarian cancer accounts for about 5% malignancy 

types. It develops from connective tissue cells that hold the ovary together and 

produce female hormones (Chen, Ruiz et al. 2003). 
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Figure 2. 15: Illustrating pathogenesis of ovarian cancer cell [45] 

2.3.4  Stages of Ovarian Cancer 

Ovarian cancer is divided into four stages. Stage 1 is limited to the ovary or ovaries while 

Stage 4 is wide-spread. Each stage is determined by the location of the cancer cells (Kurtz, 

Tsimikas et al. 1999, UK 2014). Figure 2.16 illustrate all the four stages of ovarian cancer. 

Stage 1: Cancer cells are found only in the ovaries (one or both), known as early cancer.  

Stage 2:  Cancer cells are found in one or both ovaries or in fallopian tubes and may have 

spread to other organs (such as the uterus, fallopian, etc.), within the pelvis. 

Stage 3: Cancer cells have spread outside of the pelvic area to the abdomen. Tumours are 

very larger. 

Stage 4: Cancer cells have spread to distant organs, such as the liver or lungs. This cancer is 

still known as ovarian cancer because the cancerous cells started in the ovaries. 
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Figure 2. 16: Illustration of the extent of the spread of ovarian cancer - (a) - (d) for stages 1 to 4 (UK 2014) 

Furthermore, there is another kind of tumour known as Metastatic tumour that started 

somewhere else (uterus, breast, pancreas, gastric, lung cancers) outside the ovaries but then 

spread to various body organs and arrived to the ovaries.  

2.3.5 Diagnosis of Ovarian Cancer  

Diagnosing ovarian cancer can be very challenging and the treatment entirely depends on the 

stage of the tumour (ACS 2014). Ovarian cancer is often diagnosed at a very late stage in 

most patients because there are no specific signs and/or clear symptoms of this disease.  

Diagnosis of ovarian cancer may be made using the following methods: physical 

examination, the blood test for CA-125 marker, and imaging procedure (Ultrasound / CT / 

MRI). The only definite ways to confirm exactly the diagnosing of ovarian cancer is by 

removing tissue from the suspicious area and examine it under a microscope (ACS 2014), 

which is known as a biopsy. We will now discuss the non-physical examination methods 

next.  

2.3.5.1 Tumour Markers  

Cancer Antigen 125 (CA-125) test identifies an abnormal level of a particular marker in the 

serum. It is used as a tumour marker to identify some types of cancer and is considered as an 

ideal for diagnosing ovarian cancer (Chen, Ruiz et al. 2003, Luo, Katsaros et al. 2003). Most 

often, the CA-125 test is used to assess the cancer response to treatment. The CA-125 marker 

is detected in approximately 80% of ovarian cancer, but not in early stages according to the 

Guideline No: 34 of the Royal College of Obstetricians and Gynaecologists (RCOG) (RCOG 

2003). It remains the most useful tumour marker clinically that has been recommended by 

RCOG. CA-125 can be used together with B-mode transvaginal US for the assessment of 

ovarian cysts.  
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Research has started to be conducted to identify new biomarkers that can be used together 

with, or instead of, CA-125. Recently, Human epididymis secretory protein-4 (HE4) was 

found to be complementary to CA 125 for the detection of malignant disease. It has recently 

been reported that combining these two biomarkers increased overall sensitivity and 

specificity comparing with the use of a single biomarker (Moore, Brown et al. 2008). 

2.3.5.2 Ultrasound-based Ovarian Cancer Diagnosis 

Ultrasound-based assessment for ovarian tumours characterisations can yield two types of 

information depending on the type of US imaging modalities used: (i) morphological 

information which is based on B-mode images, and (ii) blood flow information which is 

based on Doppler imaging. Different levels of performance have been reported in the 

literature for various assessment schemes and models. In a study by (Kinkel, Hricak et al. 

2000) it was found that the accuracy of ultrasound examiners using their subjective 

impression in reading real-time ultrasound images is 94% for B-mode ultrasound and 88% 

for colour Doppler flow. The only study that used both static B-mode and Doppler images 

together, has reported an accuracy of 85%. Ultrasound techniques that combine gray-scale 

ultrasound morphologic assessments with tumour vascularity imaging information (colour 

Doppler imaging) in a diagnostic system, are significantly better in ovarian lesion 

characterisation compared to using colour Doppler flow imaging, or gray-scale ultrasound 

morphologic alone (Kinkel, Hricak et al. 2000, Togashi 2003). Below we discuss the role of 

US imaging and morphology information in diagnosing ovarian tumours.  

1. B-mode Ultrasound Image in Diagnosing Ovarian Tumours 

Diagnosing complex ovarian cancer from B-mode ultrasound scan images is based on 

extracting morphological  features which include the cystic and solid tumour structure, the 

presence and type of septations, and papillarities (Chen, Ruiz et al. 2003). Determining large 

size tumour is also another interesting features of ovarian cancer (Twickler and Moschos 

2010). Figure 2.17 (a) and (b) are examples of B-mode images of an ovarian tumour.      
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                                                (a)                                             (b)   

Figure 2. 17: Examples of ovarian large size tumours (a) Irregular multilocular tumour of largest diameter (b)  

Irregular solid tumour/Carcinosarcoma 

 

While assessment of ultrasound findings is the best method for discriminating between 

benign and malignant tumours (Ameye, Valentin et al. 2009), this entirely depends on the 

observer experience (Wang, Itoh et al. 2002, Huang, Chen et al. 2008, Rocha, Campilho et al. 

2011, Shung 2015). Standardising the terms and procedures in the interpretation of 

gynaecological ultrasound images is necessary for such diagnosis (Timmerman 2000). The 

researchers from the International Ovarian Tumor Analysis (IOTA) group has produced a 

document entitled “Terms, Definitions and Measurements to Describe The Sonographic 

Features of Adnexal Tumors: A Consensus Opinion From The International Ovarian Tumor 

Analysis (IOTA) Group”  (Rocha, Campilho et al. 2011). Several mathematical models and 

scoring systems for morphological features have been developed for discriminating between 

benign and malignant to increase the test performance. So far, several versions of the risk of 

malignancy index have been published. Examples of these scoring system are: Risk of 

Malignancy RMI, Logistic Regression models: LR1, LR2, Simple rules and ADNEX model. 

A study by (Chan and Selman 2006) has found that the most popular version of the scoring 

system used in the United Kingdom is the system that is published by the Royal College of 

Obstetricians and Gynaecologists in October 2003 (RCOG 2003).    

a. Risk of Malignancy Index (RMI): 

The risk of malignancy index (RMI) is a standardised index commonly used for clinical 

evaluation of patients with ovarian tumours that who are likely to have ovarian cancer. RMI 

is a very common type and it is used by many European countries (Vaes, Manchanda et al. 

2012), and is defined by the formula:  

RMI = U  M  (CA-125) 

 The score U is based on adding 1 point for each of the following five ultrasound 

image characteristics: Multilocular cyst, Evidence of solid areas, Evidence of 
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metastases, Presence of ascites, and Bilateral lesions. If the total ultrasound score is in 

the range 2–5, then U is given the value 3; otherwise, 1.  

 M = 3 for all postmenopausal women, M=1 for all premenopausal women.   

 CA-125 refers to the serum CA-125 measurement in u/ml and can vary between 0 and 

hundreds or even thousands of units. The normal range equal and less than 35u/ml. 

The RCOG Guideline No.34 categorises the associated risk with different RMI ranges as 

follows: 

Risk                                  RMI 

Low                                  < 25 

Moderate                            25-255 

High                                 >255 

 

b. Logistic Regression Models :LR1 and LR2 

The international IOTA organisation developed two models to estimate the likelihood of 

malignancy. The data was collected and analysed at nine centres which led to the 

development of two logistic regression models called LR1, LR2 (Timmerman, Testa et al. 

2005, Timmerman, Van Calster et al. 2010). There are number of variables that have used in 

the scoring system, see Tables 2.1 1nd 2.2:   

Table 2. 1: Logistic Regression models LR1  

1 Personal history of ovarian cancer (yes = 1, no = 0) 

2 Current hormonal therapy (yes =  1, no = 0)  

3 Age of the patient  (in years) 

4 Maximum diameter of the lesion (in millimetres) 

5 The presence of pain during the examination (yes = 1, no = 0) 

6 The presence of ascites (yes = 1, no = 0) 

7 The presence of blood flow within a solid papillary projection (yes = 1, no = 0) 

8 Maximal diameter of the solid component  

9 Irregular internal cyst walls (yes = 1, no = 0) 

10 The presence of acoustic shadows (yes = 1, no = 0) 

11 The colour score (1, 2, 3, or 4) 

12 Presence of a purely solid tumour (yes = 1, no = 0) 
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The above table lists all 12 variables that are included in the model LR1. The LR1 model 

estimates the probability of malignancy. Between these 12 above variables, the pain and 

acoustic shadows tend to increase the possibility of having benign cases.   

The model’s estimated probability of malignancy equals to 1/(1 + e−z), where z = −6.7468 + 

0.0326(1) + 1.5513(2) + 1.1737(3) + 0.0496(4) + 1.1421(5) − 2.35 50(6) + 1.5985(7) − 

0.9983(8) + 0.00841(9) − 0.8577 (10) + 0.9281(11) + 0.4916(12), and e is the mathematical 

constant and base value of natural logarithms (Timmerman, Van Calster et al. 2010). 

A simpler version using six variables was also developed based on the LR1 they have 

selected number of variables: 

Table 2. 2: Logistic Regression models LR2  

1 Age of the patient  (in years) 

2 The presence of ascites (yes = 1, no = 0) 

3 The presence of blood flow within a solid papillary projection (yes = 1, no = 0) 

4 Maximal diameter of the solid component expressed in millimetres 

5 Irregular internal cyst walls (yes = 1, no = 0) 

6 The presence of acoustic shadows (yes = 1, no = 0) 

 

The model’s estimated probability of malignancy of LR2 is equals to 1/(1 + e−z), where, z = 

−5.3718 + 0.0354(1) + 1.6159(2) + 1.1768(3) + 0.0697(4) + 0.9586(5) − 2.9486(6) 

(Timmerman, Van Calster et al. 2010). 

Both models have excellent diagnostic performance with a very high accuracy. Accuracy of 

LR1 and LR2 were found to be almost similar, and both LR1 and LR2 have a higher 

detection rate than RMI (Timmerman, Testa et al. 2005). Since LR2 requires fewer variables 

than LR1 does, LR2 is preferred.  

 

c. Simple Rules 

The multicentre IOTA has also recommended standardised examination techniques and 

standardised terms and definitions for examining patients and collecting data using 

ultrasound and Doppler ultrasound parameters to develop the newest rule. They have 

developed new rules to predict malignancy (M-rules) and (B-rules) to predict Benign. They 

chose various ultrasound variables or the combination of ultrasound variables that had the 
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highest positive predictive value with regard to malignancy. The variables are presented in 

Table 2.3 (Timmerman, Testa et al. 2008):   

Table 2. 3: Ultrasound variables for Simple rules 

Rule No. M-rules B-rules 

1 Irregular solid tumour Unilocular cyst 

2 Very high colour content on 

colour Doppler examination 

Presence of solid components for 

which the largest solid component 

is <7 mm in largest diameter 

3 Irregular multilocular - solid tumour 

with a largest diameter of at least 

100mm 

The presence of acoustic shadows 

4 At least four papillary structures Smooth multilocular tumour 

5 The presence of ascites ascites 

 

No detectable blood flow on 

Doppler examination 

 

Combining the (M-rules) and (B-rules), IOTA has outlined three main malignancy prediction 

rules, as listed below in Table 2.4:  

Table 2. 4: Three main rule for the that used for Simple rule 

Rule 1:  

If one or more M features were present in the absence of a B feature, they classified the 

tumour as Malignant. 

Rule 2:  

If one or more B features were present in the absence of an M feature, we classified the 

tumour as Benign.  

Rule 3: 

If both M features and B features were present or if none of the features was present, 

the simple rules were Inconclusive. 

 

The diagnostic performance of the simple rule was shown to be relatively high and is used in 

many centres due to the easiness in applying these rules. Figure 2.18 shows some example 

ultrasound images with the ultrasound features that taken from (Kaijser, Bourne et al. 2013). 

The US images from B1–B5 display benign features; while the US images from M1–M5 

show malignant features. The B5 and M5 are colouring US images, showing the status of 

blood flow. 
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B1: Unilocular cyst                   

 
M1: Irregular soild tumour 

 
B2: Presence of solid components, with largest 

diameter < 7 mm 

 
              M2: Presence of ascites 

 
B3: Presence of acoustic shadows      

  
M3: At least four papillary structures 

 

 
B4: Smooth multilocular tumour, with largest 

diameter < 100 

 
M4: Irregular multilocular solid tumour, with 

largest diameter ≥ 100 mm 

 

 
B5: No blood flow  (colour score 1)                                                               

 
 M5:Very strong blood flow  (colour score 4) 

Figure 2. 18: Ultrasound images and features used for Simple Rules 

Table 2.5 sumarises the diagnosis accuracy rates together with sensitivity and specificity rates 

for 3 different models. 

Table 2.5: Comparison performance of LR2, Simple rule and RMI derived by the IOTA 

group 

Models Accuracy (%) Sensitivity (%) Specificity (%) 

LR2 89 92 86 

Simple rule 91.5 90 93 

RMI 81 67 95 

From this table, it is clear that the IOTA Simple rules have the best performance among the 3 

models. 
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d. The ADNEX Model  

Recently, the IOTA group published the Assessment of Different NEoplasias in the adneXa 

(ADNEX) model, the model is considered as a first risk model that distinguishes between 

benign and four types of malignant ovarian tumours: borderline tumours, stage I cancer, stage 

II-IV cancer, and secondary metastatic cancer. This approach is novel compared to the 

existing models (RMI, LR1, LR2, simple rule) that only differentiate between benign and 

malignant tumours (Van Calster, Van Hoorde et al. 2015). 

The ADNEX model consists of three clinical predictors and six ultrasound predictors. The 

clinical predictors are age (in years), serum CA-125 (U/ml) and type of center to which the 

patient has referred for ultrasound examination. Type of centre has been divided into 

oncology centers versus other hospitals (Van Calster, Van Hoorde et al. 2015). Table 2.6 

below shows clearly the six variables that are used in the ADNEX model, Figure 2.19 shows 

examples of the ultrasound image of the ovarian tumour with an explanation about the six 

variable of ADNEX model. 

Table 2. 6: Six ultrasound predictors for ADNEX model 

1 Maximal diameter of the lesion (mm) 

2 Proportion of solid tissue (%) 

3 Number of papillary projections (0, 1, 2, 3, > 3) 

4 Presence of more than 10 cyst locules (yes = 1, no = 0) 

5 Acoustic shadows (yes = 1, no = 0) 

6  Presence of ascites (yes = 1, no = 0) 

 

 
                               (a) 

      
    (b)  
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(c) 

                 
 (d) 

 
                                     (e) 

      
 (f) 

Figure 2. 19: Ultrasound image characteristics chosen as predictors for ADNEX model (Van Calster, Van 

Hoorde et al. 2015) (a) Maximal diameter of the lesion (mm) (b) Proportion of solid tissue (%) (c)More than 10 

cyst locules (d)Number of papillary projections (0, 1, 2,  3, morethan 3) (e)Acoustic shadows (yes = 1, no = 0) 

(f)Presence of ascites (yes = 1, no = 0) 

Table 2.7 presents the risk rates for the different final diagnoses using the combined data 

from IOTA phase 1-3 dataset (n = 5909). More details can be found in (Van Calster, Van 

Hoorde et al. 2015).  

 

Table 2. 7: Baseline risk for the different final diagnoses using ADNEX model (Van 

Calster, Van Hoorde et al. 2015) 

 Overall (%) Oncology centre (%) Other centre (%) 

Benign 68.2 48.8 83.7 

Malignant 31.8 51.2 16.3 

Borderline 6.3 9.3 3.8 

Stage I invasive 7.4 10.3 4.6 

Stage II-IV cancer 14.1 24.3 6.4 

Secondarymetastatic 4.0% 7.3% 1.6% 

 

Although the use of a scoring system helps to improve the test performance, according to  

(Gramellini, Fieni et al. 2008), the existence of several scoring systems may cause difficulties 

and inconsistency in clinical practices generally for the following reasons:   

(i) Experienced ultrasound examiners use additional demographic information when 

they are estimating the tumour types, the less experienced ultrasound examiner 

have difficulty in acquiring the ultrasound morphology information that needs 

experience and training.  
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(ii) A high percentage of tumours do not conform to these rules. Not all masses 

clearly yield the relevant information.  

(iii) The scoring systems work well with tumours that are easily classifiable using 

pattern recognition, but less well with tumours that are difficult to classify using 

pattern recognition (Timmerman, Testa et al. 2008). In addition, there is no 

general agreement about some morphology information while trying to transfer 

this information to a scoring system. 

2. Doppler Ultrasound Images  

The Doppler ultrasound imaging system provides additional technology to measure the blood 

flow (Hoskins, Martin et al. 2010). Colour Doppler imaging technology is the efficient 

method and first step to detect the malignant lesion. This feature allows the assessment of 

tumour vascularity because malignant masses are expected to have the active blood vessel in 

comparison to normal masses. The blood flow detection within a mass is an indication of 

malignancy (Kinkel, Hricak et al. 2000). It has mainly been used for distinguishing between 

benign and malignant lesions (Alcazar 2006). Assigning a colour score to the amount of 

blood flow inside the tumour is dependent on the subjective assessment of the ultrasound 

examiner see Table 2.8.  

Table 2. 8: Colour score based on Doppler ultrasound image 

Colour score   Amount of blood flow based on color Doppler image 

1 No blood flow 

2 Minimal blood flow 

3 Moderate blood flow 

4 High blood flow 

 

According to (Timmerman 2000) using colour Doppler ultrasound is very critical because:  

the assessment is (i) subjective, and (ii) it depends on the quality of the equipment and the 

settings.  

 

3. 3D Ultrasound Imaging for Ovarian Tumour Assessment  

The use of 3D scan imaging in the assessment of tumour may add some extra information 

that is not available from standard 2D scanning in ovarian cancer diagnosis. However, a 

comparison study of 2D and 3D power Doppler imaging diagnostic capabilities for the 
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prediction of ovarian cancer has concluded that 3D power Doppler imaging did not have a 

better diagnostic performance over 2D power-doppler imaging for the discrimination between 

benign and malignant tumours, (Alcazar 2006). Further studies have conducted  by a number 

of research groups (e.g. (Kurjak and Kupesic 2003, Testa, Ajossa et al. 2005, Jokubkiene, 

Sladkevicius et al. 2007, Dai, Hata et al. 2008), they concluded that 3D US images is effects 

on  the characterising of ovarian tumours and improve the diagnostic accuracy, but later in a 

study (Alcázar and Jurado 2011) concluded that further studies are needed to establish the 

role of 3D ultrasound in clinical practice in gynaecological oncology.   

2.4 Early Pregnancy and Miscarriage 

2.4.1 Pregnancy Overview  

Throughout the fertile life time of a woman, ovulation should occur 14 days before a 

woman's next menstrual period begins (Edwards and Steptoe 1975, Findlay, Kerr et al. 2009). 

An egg can be fertilised 12 - 24 hours after ovulation  

Within 24-hours after fertilisation, the egg begins dividing rapidly into many cells. The 

fertilised egg, called a zygote, continues to divide (then called a blastocyst) as it passes 

slowly through the fallopian tube to the uterus. It next  attaches itself to the uterus in a 

process called Implantation (Edwards and Steptoe 1975, Brown 2014).  Figure 2.18 presents 

all stages from Ovulation to Implantation.  

Within three weeks, while the blastocyst cells continue to grow, and the endometrium 

develops around it, a structure is formed known as the Gestation Sac (GS). The GS is the first 

sign and measurable element of an early pregnancy by ultrasonography.  

Baby developing is called an embryo from the moment of conception to the eight week of 

pregnancy. After the eighth weeks and until the moment of birth, the developing baby is 

called a fetus (Edwards and Steptoe 1975, Campion, Doubilet et al. 2013). Figure 2.20 clearly 

show the stages of Ovulation and fertilisation. 
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Figure 2. 20: Female Ovary Showing Ovulation and fertilization (Campion, Doubilet et al. 2013) 

A normal pregnancy is 40 weeks long (plus or minus two weeks). The first symptoms of 

pregnancy are missed the menstrual period. Pregnancy tests, usually performed on the urine, 

are designed to demonstrate the presence of Human Chorionic Gonadotropin (hCG) 

(Campion, Doubilet et al. 2013). If the urine test is positive, then the first scan will be offered 

to find out the age of the gestational sac and determine the due date.  Figure 2.21 clearly 

present an example of the anatomical structure of the early pregnancy. The anatomical 

structures of the early pregnancy are characterised by:   

1. Amniotic sac. It is a bag of clear, pale fluid inside the uterus where the fetus starts to 

develop and grow. It is connected to the yolk sac at the later stage (Omaha Nebraska 

2013). 

2. Gestational sac (GS). It is a structure that surrounds an embryo, in the very early stages of 

pregnancy. This sac grows by approximately 1mm per day. Figure 2.22 (a) show 

ultrasound image of the gestational sac.  

3. Yolk sac. It is the ring-shaped structure identified within the gestational sac. Figure 2.22 

(b) shows YS inside the GS. The yolk sac will be visible before a clearly definable 

“embryonic pole” (Omaha Nebraska 2013). 

4. Heartbeat. It will be seen along with the yolk sac. Failure to identify fetal heartbeat is a 

sign of abnormal pregnancy this may lead to miscarriage later (Omaha Nebraska 2013).  

Figure 2.22 (c) show the embryo attached to the YS inside the GS. 

http://en.wikipedia.org/wiki/Yolk_sac
http://www.wisegeek.com/what-is-an-embryo.htm
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Figure 2. 21: The anatomical structures of the early pregnancy A: Gestational sac (GS), B: Crown rump length 

(CRL) of embryo, C: Amniotic sac and D: Yolk sac 

         
                                      (a)                                              (b)                                             (c) 

Figure 2. 22: Examples shows the ultrasound images of a very beginning of pregnancy until 

developing the embryo (a)  Gestational Sac (b) YS within GS (c) embryo attached with YS within GS 

2.4.2 Early Ultrasound Scan  

A positive pregnancy test will normally be followed by a first scan on the 12th week   

pregnancy. However, if the pregnant woman feels abdominal pain or bleeding and any 

abnormalities then she will be sent immediately to an early pregnancy scan unit to: 

 Measure the gestational sac,  

 Monitor the development of the yolk sac YS within gestational sac GS,  

 Detect  the embryo, and 

 Detect the heartbeat of the embryo. 

2.4.3 Miscarriage Diagnosis 

Miscarriage happens when a woman loses her pregnancy in the first three months. This 

means the gestational sac stops growing or the embryo stop developing (Jurkovic, Overton et 

al. 2013, ACOG 2015). Most miscarriages are caused by a “chromosomal fault within the 

cells of the developing pregnancy”. For an Embryo to grow properly must have the right 

number of chromosomes. In very rare cases the uterus shape or the mother’s immune system 

can cause miscarriage as well (RCOG 2015). 

The first measurable sign of an early pregnancy are the geometric characteristics of the 

Gestational Sac (GS). The first feature calculated is the mean sac diameter MSD of the GS. 
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MSD is the average of the three diameters that taken from two planes of the GS. These two 

planes are sagittal and transverse planes. Figure 2.23 presents an example image of the GS 

taken in respective sagittal and transverse planes. The red rectangle represents the main fan 

area. The GS is the dark region in the centre. The area outside the red rectangle is called the 

margin area. It is used to display information about the patient (blocked for anonymity), the 

date and time that the image was taken and the ultrasound machine setting. The Figure shows 

the three manual measurements of the GS size marked by yellow dotted lines. The 

measurement results in millimetres are present in the margin area. There are other signs of 

likely miscarriage. For example, the border of the GS appears irregular in its shape. The same 

process of scan is repeated at the later stage when the yolk sac is starting grow to check the 

pregnancy. Figure 2.24 is the second stages when the YS is growing inside GS. 

 

 
                                        Sagittal plane view           Transverse plane view 

 

Figure 2. 23: Ultrasound image of GS in Sagittal and Transverse planes 

 

Figure 2. 24: Show later stage of pregnancy when YS is grows inside the GS 

In the later stage when the GS and YS are developed without any problem, the embryo starts 

to grow and attaches to the YS. Measuring the embryo is quite different from the sacs. Crown 

Rump Length (CRL) is used to measure the length of embryos and from the top of the head 
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(crown) to the bottom of the buttocks (rump) (Omaha Nebraska 2013). After that, attention 

focuses on detecting the embryo heartbeat by switching to the colour Doppler ultrasound 

image.  The most important aspects of normal pregnancy in ultrasound image scanning are 

(Campion, Doubilet et al. 2013): 

 The Gestational Sac GS should be visible in 4.5 -5.5 weeks.   

 The yolk sac is a definite within 5.5 - 6 weeks.   

 Embryo with heart beat  within  6- 6.2 weeks,  

2.4.3.1 Existing Rules for Diagnosing Early Pregnancy Failure 

Analysis of ultrasound images can assist diagnosis of possible miscarriages at a very early 

stage in pregnancy i.e. in the first three months, which is medically called the first trimester 

(Geirsson and Busby‐Earle 1991). Monitoring pregnant women at this stage enable the 

specialists to evaluate the development, growth, well-being of fetus and to predict the due 

date (Kaur and Kaur 2011). Different criteria have been used to diagnose miscarriage. For 

example, the American College of Radiology guideline defines miscarriage as being an 

empty GS with a Mean Sac Diameter (MSD) greater than or equal to 16 mm (Levi, Lyons et 

al. 1990, Bourne and Bottomley 2012) whereas the Royal College of Obstetricians and 

Gynaecologists in the United Kingdom recognises miscarriage as being an empty sac with 

MSD greater than or equal to 20 mm (NICE clinical guideline,154 2012).  A recent study 

reviewed the rule in (NICE clinical guideline 154, 2012) and concluded that an empty GS 

with MSD greater than or equal to 25mm should be introduced as a new guideline to 

minimise the risk of false positive diagnosis of miscarriage (NICE clinical guideline,154 

2012).  Table 2.9 below represent the most recent cut-offs for miscarriage diagnosis.  

Table 2. 9: Miscarriage identification cut-offs according to the NICE guidline 154, 2012 

1 Mean gestational sac diameter (MSD) of  ≥ 25 mm with no obvious Yolk sac (YS) 

2 Mean sac diameter of (GS and YS) of  ≥ 25 and no embryo define  

3 Crown-rump length (CRL) of ≥7 mm and no heart beat detection 

2.4.3.2 Accurate Prediction of Pregnancy Viability Based on Simple Scoring System 

Physicians have an important role in accurate and certain miscarriage diagnosis. The exact 

incidence of miscarriage is difficult to assess, but in the above section, we referred to a 

number of expert guidelines on specific cut-offs of miscarriage diagnosis. In addition, 
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recently the group of researcher have developed a new simple scoring system based on an 

individual demographic and ultrasound factors, such as maternal age and vaginal bleeding 

(Bottomley, Van Belle et al. 2013). These factors, combined with ultrasound diagnosis based 

on Table 11 rules, have demonstrated that routine clinical information about the mother and 

her symptoms as well as some simple ultrasound parameters can be combined to very 

accurately determine viable pregnancy at the end of the first trimester. The combination of 

such factors (age, bleeding score, gestational age, mean GS and YS sizes and the presence of 

fetal cardiac activity) provide a more reliable prediction of viability than any of the individual 

factors alone. This model is easily transferable to the clinical setting by way of the presented 

scoring system, where both maternal and ultrasound variables are easily available to the 

physician and can be used to make an accurate assessment of the likelihood of viability. 

Table 2.10 present examples of the scoring system variables. More details about a scoring 

system are in (Bottomley, Van Belle et al. 2013). 

Table 2. 10: Demographic and symptom variables 

Variables Categories Points 

Maternal age 

(years) 

< 35 

35-39 

≥ 40 

0 

-1 

-2 

Bleeding score 

0 

1 

2 

3 

4 

0 

-1 

-2 

-3 

-4 

In addition, the following factors are also associated with miscarriage (Brown, Emerson et al. 

1990) 

 Uterine Abnormalities  such as T-shaped uterus or low uterine position 

 Irregular contour of GS  

 Polycystic ovary syndrome 

 Aged >40 years 

 Smoking 

 Diabetes 

 Thyroid disease 
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2.5 Summary and Conclusion 

This chapter reviewed the background on medical imaging and its use as a reliable tool that 

helps to diagnose, treat and monitor patients. The US is considered as an ideal imaging 

system for gynaecological diagnosis abnormalities. Ovarian cancer is one of the most 

common cancers in women and is the leading cause of death from gynaecologic 

malignancies. Miscarriage is a very common problem to happen during the first 12 weeks of 

pregnancy. Based on a recent study there is also a strong link between miscarriage and 

ovarian cancer development (Braem, Onland-Moret et al. 2012). This means that finding 

effective computer-based solutions to solve both problems is timely and desirable, and any 

positive contributions that can be made will bring benefit to improve patient care and reduce 

the loss of life. 

The interpretation of the ultrasound image, however, is highly dependent on the ability and 

experience of the observer. Very often, an observer makes a diagnostic decision with a level 

of certainty. In certain cases, the observer may not be entirely certain in his/her diagnostic 

decisions, and often in those cases, expert opinions, sometimes from more than one 

expert, may be sought in assisting the diagnosis by combining the decisions into a final 

sensible outcome. This process will increase the level of confidence and lead to better 

diagnosis results. Also quite often, there will be different opinions from different experts in 

diagnosing a specific case, resulting in an “inclusive case” that needs to be further examined.  

Regrettably, the limitations in the human eye-brain visual system, reader fatigue, distraction, 

and the presence of overlapping structures in images may cause detection and interpretation 

errors. This increases the number of false-positive and false negative results. Therefore, there 

is a need to develop a computer-aided diagnosis system CAD for the purpose of detecting the 

gynaecological abnormality in early stage. CAD may be used as a support tool for automating 

the measurements of the values for certain parameters in order to improve measurement 

precision and avoid intra and inter observer variations in manual measurements of the 

parameters. Besides, modern image processing techniques that have been developed and 

matured in the past few decades may offer alternative and effective features that can be 

directly extracted from US images that are “outside” of the known parameters to medical 

experts. Indeed, we have already started to witness rapid developments of such “alternative” 

descriptive features in various fields of application in recent years. 
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In the next chapter, we will present our research methodology and a road map of 

our investigation for automatic solutions for accurate classification of ovarian tumours and 

efficient prediction of miscarriage cases. 
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CHAPTER 3 

RESEARCH FRAMEWORK FOR GYANCOLOGICAL US 

IMAGES ANALYSIS AND DIAGNOSIS 

In Chapter 2, we presented background information on medical imaging system in diagnosing 

gynaecological abnormalities. We highlighted the role of B-mode ultrasound images in the 

diagnosis of the most common diseases in female reproductive organs with a focus on 

miscarriage cases and ovarian tumours. Moreover, we explained different types of ovarian 

tumours and different type of IOTA models for their diagnosis in the clinical setup.  

Furthermore, for miscarriage, we explained the details of the process that lead to miscarriage 

and the NICE guideline on the stage of miscarriage identification. We have also explained the 

manual discrimination between positive and negative cases in early miscarriage identification 

and ovarian tumour diagnosis from real-time ultrasound images. This thesis argues that the 

manual process involves multiple subjective decisions which may increase the inter- and 

intra-observer variations that could subsequently leads to difficulties and even errors in the 

diagnosis stage based on (Wang, Itoh et al. 2002, Giger, Chan et al. 2008). In fact, 

interpretation of ultrasound images is highly dependent on the medical expertise and 

experience of the observer and this is subject to considerable variation, see (Wang, Itoh et al. 

2002, Huang, Chen et al. 2008, Shung 2015). Therefore, reliable automatic diagnosis can 

provide a decision support tool that helps experts to increase the accuracy of diagnosis.  

This chapter outlines the framework of our work in the area of automatic analysis of B-mode 

ultrasound images of ovarian tumours and gestational sac for miscarriage identification. This 

framework consists of the main tasks of image processing, feature extraction, classification 

techniques, evaluation and experimental protocols for the gynaecological abnormalities under 

investigation. The chapter is organised as follows: Section 3.1 describes image processing 

and analysis stages used in typical image analysis systems. Section 3.2 explains our 

framework to identify different types of ovarian tumours. The framework of the early 

miscarriage identification from US images of Gestational sac is described in section 3.3. In 

section 3.4 we explained the datasets of US images used throughout this thesis. Section 3.5 

describes different types of classifier methods that used in this study. A concept of fusion 

methodology briefly is explained in section 3.6. Experimental protocols and performance 
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evaluation of this thesis in ovarian tumour classification and miscarriage identification are 

described in section 3.7. Summary of this chapter is presented in Section 3.8. 

3.1 Ultrasound Image Processing and Analysis  

Digital images contain a huge quantity of data and information the interpretation of which 

needs effective image processing and analysis solutions. For automatic diagnostic purposes, 

effective image features that model the medically relevant information need to be first 

extracted efficiently and reliably. Reliability of the extracted features is dependent on the 

image quality which cannot be guaranteed at the capturing stage, and thus improving image 

quality is an essential task. Analysing the automatically extracted features is the main 

diagnostic objective in our research which will require the use of advanced machine learning 

techniques and classification tools. Computer-based analysis plays an important role in 

extracting useful information using automatic and semi-automatic algorithms to perform 

image analysis with high levels of accuracy and speed. Automatic image processing and 

analysis is desirable to help the sonographer/gynaecologist to get accurate results for better 

and reliable diagnosis. 

In general, image processing encompasses a variety of application-dependent procedures that 

relate to the desired objectives. For our purposes, it can be defined as the manipulation of US 

images in preparation of extracting gynaecology-related data and information features from 

the images. This preparation often begins by quality enhancement tasks which may require an 

alternative representation of the image from the captured spatial domain representation.  

Image processing techniques are based on image operators that transform any input image to 

produce an output image model, as described in equation (3.1), suitable for feature extraction 

and analysis. Image operators either manipulate the spatial information (transformation in the 

spatial domain) or manipulate the frequency information (transformation to the frequency 

domain) (Gonzalez, Woods et al. 2004).  

g (𝑥 , 𝑦 ) = T( f (𝑥 , y))                                                     (3.1) 

where g (x, y) is the output image, f(x, y) is the input and T is the image operator 

The main steps of medical image processing and analysing are: image enhancement, de-

noising, segmentation, feature extraction and classification. Figure 3.1 shows the general 

block diagram of the framework of automatic ultrasound image processing and analysis.  
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Figure 3. 1: Block diagram of the major steps of automatic vs manual ultrasound image analysis 

1) Image Pre-processing: Ultrasound images are affected by noise such as speckle noise 

which we suppress using filtering techniques (de-speckling) to enhance the images for better 

visualisation and to highlight hidden information/texture. 

2) Image Segmentation: This stage partitions the image into a number of small portions and 

separates the region of interest (ROI) from the background.  

3) Feature Extraction: Features relevant to general US image analysis include measurement 

types of features on the ROI (e.g. diameters of a tumour or the GS) plus other more image-

content related features in the ROI that distinguish it from its exterior and variation of which 

may characterise different classes under investigations (e.g. texture parameters in a tumour or 

the GS).  In this work, the ROI digital features are either extracted from the US image spatial 

or frequency domain. Extracted features are the main input into classification procedures.  

4) Classification: The extracted features are input into various classification methods with 

the aim of building a classification model (classifier) to label the ROI as Normal or 

Abnormal. A variety of classifiers are available in the literature that have been developed for 

general pattern recognition tasks and forms the essential component of machine learning. 

3.2 Overview of the Proposed Ovarian Tumour Classification 

The diagram in Figure 3.2 depicts the components of the various US image-based automatic 

steps outlined at the end of section 3.1, that lead to the diagnosis of ovarian tumour. The 

static B-mode ultrasound image of the ovarian tumours is the input. 
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Figure 3. 2: Block diagram of the process of analysing B-mode ultrasound images of ovarian tumours 

We shall now describe our research methodology to implement the various steps of the above 

process.  

1. Usually ultrasound images are corrupted by random noise during data acquisition 

processes. For this reason, we need to apply image processing filters to remove the 

artefact and to enhance the images by highlighting the details of the region of interest 

ROI, i.e. the inner and outer border and/or the texture inside the ROI. Removing the 

noise from ultrasound images helps a human observer (radiologist) in clinics to easily 

and accurately detect the ROI and capture the anatomical information inside the 

region. Furthermore, removing noise and enhancing the images in the automatic 

analysing process will also lead to more accurate segmentation of the ROI, easier 

extraction of effective features, and eventually more accurate automatic diagnosis 

results. Our approach to deal with the issue of noise removal will benefit from 

existing knowledge about common noise removal techniques. We used the Non-local 

means filter that differs from traditional filters in that it attempts to exploit 

redundancy and self-similarity in the input image, and hence enables the removal of 

noise while keeping almost all meaningful information. More details are given in 

Chapter 4, Section 4.3.2. 

2. After removing the noise, image will be ready for the segmentation of the ROI from 

the image background. Various traditional methods, such as Thresholding, Region 

growing, etc. are available for segmenting the ROI. It has been recognised in the 

literature that automatic segmentation of ultrasound images is a complex, challenging 

and domain-specific task, and still an open problem for research. In order for our 

research not to be bogged down at this single step of the automatic diagnosis process, 
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we adopted a semi-automatic method to deal with the very complex natures of the US 

images we encounter. More details about these complex natures and our method can 

be found in Chapter 4, Section 4.3.3.   

3. The next stage is the extraction of the most important features from the segmented 

images of tumours. These features could be in spatial or frequency domain. The 

extracted features for automatic tumour diagnosis are additional and different from 

those features that extracted manually by the radiologist. Although the size/volume of 

the tumour is an important feature for the manual diagnosis by the experts, in our 

research we focus on texture-related features rather than the measurement features. 

These features can be easily saved in a vector and labelled by the class that belong to. 

This part of the research is described in details in Chapter 5. 

4. The next obvious step, in our work, is to feed the features extracted from an ovarian 

US image to an appropriate classifier in order to produce a diagnostic score/decision. 

Although there are varieties of types of benign and malignant tumours, in this work 

we shall only focus on using binary classifiers for the two states of the tumours. The 

extracted features from any input US image will be fed into such a binary classifier 

for diagnosis as a benign or a malignant tumour. In Section 3.5, we briefly discuss the 

different classifiers employed in this work. The classification results based on 

extracted features are presents in Chapter 5.   

5. The fact that, we have been extracting different feature vectors from different image 

representation domains means that we can get diagnosis results by different schemes 

that use different feature vectors and/or different classifiers. This common 

characteristic of many pattern recognition problems has been exploited to improve 

accuracy of recognition/classification by using the concept of Fusion at different 

levels. A main innovative feature of our research framework, for ovarian tumour 

classification, will be the investigation of various fusion schemes. In particular, our 

work will include fusion at the feature level prior to classification, at the score level 

post classification, and at the decision level also post-classification. This will be 

discussed in Chapter 6. Our novel decision level fusion will be described in Chapter 6, 

Section 6.5.3.   

6. One of the main issues that have been often overlooked in the case general automatic 

pattern recognition and classification is how reliable is the decision output by the 

classifier. To evaluate false positive and false negative cases, the specificity and 

sensitivity rates are used to provide a measure of confidence in the accuracy rate of 
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the classification procedure. However, individual classification decisions are based on 

some thresholded scores, and surely the strength of such a decision must be dependent 

how near the actual score is to the set thresholds. Therefore, in our work we introduce 

a quantitative concept of decision strength into the classification stage which will be 

based on how far a sample score is from the cut-off threshold. We discuss this concept 

in details in Chapter 6, section 6.3 and we argue that the level of decision strength 

provide more insight into the real performance of the adopted classification methods 

and sets the level of confidence in the individual diagnosis.  

3.3 Overview of the Proposed Early Miscarriage Diagnosis 

The static B-mode ultrasound image of gestational sac GS is the starting input of our work in 

relation to miscarriage. Each image is presented in two planes (Sagittal and Transverse).  

Figure 3.3 describes our work in the area of miscarriage identification from B-mode 

ultrasound image of the gestational sac.  

 

Figure 3. 3: The block diagram of the main process behind human B-mode ultrasound image of GS 

classification 

The various steps of the developed scheme and the relevant research investigations conducted 

for this case differ from the steps of the ovarian tumour case only in that the main geometric 

features of the GS are known in the application domain and some additional geometric 

measurements of GS are also explored. Below is the summary of this process: 

1. The input US image is enhanced to produce a more visibly highlighted GS. 

2. Automatically segment the GS as the ROI and remove the background from the 

enhanced image.  
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3. Apply an automatic procedure to extract the three well-known diameter measurements 

of the ellipsoid shape GS and calculate their mean which is called Mean Sac Diameter 

(MSD). In addition, we extracted a new set of image-based features such as 

(Perimeter, Volume, Area, etc.). More details discussed in Chapter 5, Section 5.3. All 

these features are saved in a feature vector. 

4. These automatically extracted features are then used in the classification stage to 

identify the miscarriage cases from the pregnancy of unknown viability PUV cases.  

5. Additionally, as in the above case, we also introduce the concept of level of 

confidence into the classification result. We argue that the level of decision strength 

provide more insight than other classical classification methods and makes the 

proposed decision closer to the practical diagnosis. 

 Each stage of our work for both areas will be explained in details in the followed Chapters.  

3.4 Datasets used in this Study 

Testing the performance of any automatic pattern recognition and medical diagnostic 

schemes rely heavily on the choice of the datasets of relevant US images that will be used in 

the experimental work using the appropriate evaluation protocols. In general, the classes of 

the ovarian tumours/GS are known in these sample images in order to be able to determine 

success and failure of the automatic classification scheme. It is essential that the sources of 

such datasets are widely known and recognised for credibility and relevance of their work.   

3.4.1 Static B-mode Ultrasound Images of Ovarian Tumours 

All static ultrasound images of ovarian tumours used in this part of the study are the results of 

US scans conducted on women recruited into the IOTA study (Timmerman, Van Calster et al. 

2010). All women in this study underwent surgical removal of the tumours between 

November 2005 and November 2013 with a known histological diagnosis. They all signed a 

written informed consent form to allow the use and analyse the data for research purposes 

(Timmerman, Van Calster et al. 2010). This study was granted ethical approval by the 

University of Buckingham’s School of Science & Medicine. We retrieved a total of 187 

ultrasound images of 177 anonymous patients from the IOTA database (Astraia software 

gmbh, Germany) at the Department of Gynaecological Ultrasonography, Campus 

Gasthuisberg, KU Leuven, Belgium. This means that for ten of the patients we obtained 

additional 10 images with another representative region of interest (ROI) that reflected the 

final histopathology. 
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Each image is a 2D B-mode ultrasound scan image of the surgically removed tumours. The 

used image for each tumour, selected by Dr Jeoren Kaijser of the KU Leuven Hospital on 

subjective impression, was the most representative of the final histopathology. Out of the 187 

US images, 112 show benign tumours and 75 malignant tumours. Histology results for all 

tumours corresponding to the images available in Table 3.1. 

Table 3. 1: Histopathology of ovarian tumours included in our training and test groups. 

Histopathology N (total N=187) 

 B
en

ig
n

(n
=

1
1

2
) 

Mature teratoma 
23 

Endometrioma/endometriosis 
15 

Mucinous cystadenoma 
23 

Functional cyst 
5 

Ovarian fibroma 
6 

Serous cystadenoma 
21 

Serous cystadenofibroma 
13 

Other  Benign 

6(1 tubal abscess, 1 Brenner tumour, 1Multilocular peritoneal 

inclusion cyst MPIC, 1 Mucinous cystadenofibroma, 1 subserous 

adenomyoma, 1 hydrosalpinx) 

M
al

ig
n

an
t 

(n
=

7
5

) 

Borderline mucinous tumour 15 

Borderline serous tumour 6 

Serous cyst/adenocarcinoma 28 

Mucinous cyst/adenocarcinoma 3 

Endometrioid adenocarcinoma 6 

Other ovarian cancer 

17 (1 Lymphoma, 7 metastatic  tumours(3 intestinal, 1 breast, 1 

pancreatic, 1 gastric, and 1 lung cancers), 1 leiomyosarcoma, , 1 

stromal tumour, 1germ cell tumour, 2 clear cell carcinomas, 2 

carcinosarcomas, 1 immature teratomas, 1 endometrial cancer) 

 

The data set reflects a wide range of variations in tumour types and shapes/components from 

a large number of patients. This is to ensure the developed automatic diagnosis solutions can 

deal with these various forms of tumours. 

3.4.2 Static B-mode Ultrasound Images of Gestational Sac 

The ultrasound images used in this component of our research project were obtained in two 

batches. The first dataset batch contains 94 ultrasound images: 79 images are PUV cases and 
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15 images of known miscarriage cases. The second independently sampled dataset contains 

90 images among which 78 images are PUV cases and 12 are of known miscarriage cases. In 

total, the experimental dataset consists of 184 images of which 157 are images of PUV cases 

and 27 images are of miscarriage cases. 

All images were taken at various points of time in the first trimester of pregnancy, collected 

and labelled by Dr Jessica Farren in the Early Pregnancy Units, Imperial College Healthcare 

Trust, London, UK. These images were collected between 17/6/2013 to 16/6/2014. The two 

batches of images are taken from different machines and at the different time. Each image 

consists of two views of a GS from both sagittal and transverse planes. All images are 

provided with the MSD values based on manual measurements and the diagnosis results. All 

patients signed a written informed consent form to allow the use and analyse the data for 

research purposes. This study was granted ethical approval by the University of 

Buckingham’s School of Science & Medicine. 

3.5 Classifier and Classification Methods 

Classification is a main task in machine learning. It is a process of discrimination between 

two or more different classes by labelling each similar set of data with a certain label to 

differentiate it from other classes. Image classification is performed in two stages, training 

and testing. a set of training sample images with known class labels are used to train a 

classifier such as k-Nearest Neighbour (k-NN), Support Vector Machine (SVM), decision 

tree (DT), etc. More details about various types of classifiers can be found in (Fix and 

Hodges Jr 1951). Once the classifier is trained, it is used to predict the class of an image. The 

performance of the classifier can be judged by classifying a test image of known class: if the 

predict class is the same as the known class of the test image, the classification is accurate; 

otherwise it is not.  

Our classification framework consists of selecting an appropriate classifier(s) that fit our 

requirements, adopting appropriate evaluation protocols, and investigate fusion strategies. In 

addition, our exploration of effective classification methods is motivated by two reasons. 

First, we want to find classifiers that are effective to be applied to the extracted features. 

Second, we want to apply classifiers that are effective for each of the two problem areas, i.e. 

the diagnosis of ovarian tumour and identification of miscarriage cases in early pregnancy. 

The feature spaces for the two problem areas are very different. The dimensionality of the 

feature space for ovarian tumour diagnosis is high, while the dimensionality of the feature 



Chapter 3                                                                                                    Research Framework 

 

53 

 

space for miscarriage identification is very low (See Chapter 5 for more discussions on the 

proposed features). After an extensive review of the existing classification methods, we focus 

on two specific solutions: k-Nearest Neighbour (kNN) and Support Vector Machines (SVM). 

Both classification methods are directly applicable to the types of features we extracted from 

ultrasound images, i.e. vectors of numeric quantities, without further pre-processing to the 

feature vectors. Besides, according to the research, kNN classifier with the Euclidean 

distance should be suitable for a low dimensional feature space (Beyer, Goldstein et al. 

1999). An SVM classifier, on the other hand, should be suitable for a feature space of high 

dimensionality (Han and Kamber 2001). More details about these two classifiers will be 

explained next. 

3.5.1 k- Nearest Neighbour (kNN) Classifier  

The kNN method was first described in the early 1950s (Fix and Hodges Jr 1951). It has since 

been widely used in the area of pattern recognition. It is a simple algorithm that stores the 

examples from the training set as templates and classifies a new unknown test case based on a 

similarity measure (e.g. a distance function) between the new case and every template. The 

test case is classified by assigning the class label of the majority among the k nearest 

neighbouring templates of the new case. “Closeness” can be defined in terms of a distance 

metric, such as Euclidean distance (Webb 2003). The kNN algorithm for classification is 

outlined as follows: 

1. Compute the distance between test case X = (x1, x2, …, xn) and each training template 

Y = (y1, y2, …, yn) using a distance measure such as the Euclidean distance D2: 

𝐷2(𝑋, 𝑌) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                    (3.2) 

2. Sort all distances in ascending order and identify k nearest neighbors of X: Y1, Y2, …, 

Yk, where k  1 

3. Assign X the class label of the majority among Y1, Y2… Yk, 

Figure 3.5 illustrates an example of the kNN algorithm in action. A test case X has its class 

unknown. When k = 1 as shown in Figure 3.4 (a), the nearest neighbor of X is of the negative 

class, and therefore, the test case is assigned to negative. When k = 3 as shown in Figure 3.4 

(b), the majority voting by three nearest neighbours also determines that the test case is of the 

negative class by two negative votes against one positive vote (Han and Kamber 2001).  
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                                        (a) 1- nearest neighbour        (b) 3- nearest neighbours 

             Figure 3. 4: Illustration of the working of kNN classifier 

3.5.2 Support Vector Machine (SVM) 

The original SVM algorithm was invented by Vladimir N. Vapnik and was proposed by 

Vapnik and Corinna Cortes in (Cortes and Vapnik 1995). SVM is based on the concept of 

decision planes that define decision boundaries. A decision plane separates a set of objects of 

the positive class from those of the negative class. An illustrative example is shown in Figure 

3.5 (a). The separating line defines a boundary between the objects of the two classes (BLUE 

and RED). Any new object falling to the right side of the line is classified as BLUE, or to the 

left side as RED. The white circle object in the example is therefore classified as BLUE. The 

example in the figure is a typical example of a linear SVM classifier, i.e. the separation 

boundary between objects of their respective groups is a straight line. This separation line 

between two classes in higher dimensions is known as a hyperplane.  

There are many possible hyperplanes that can separate the data of two classes, but there is 

only one that maximises the margin (maximises the distance between the plane and the 

nearest data point of each class). Such a hyperplane is known as the optimal separating 

hyperplane (Han and Kamber 2001). Figure 3.5 (b) shows different lines with the best 

separating hyperplane marked in green. It is optimal because it maximises the differences 

between the two classes. Only the features on the margin boundaries are used to discriminate 

between the two classes; these features are called “support vectors”.  
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(a)                                                               (b) 

Figure 3. 5: (a) Schematic representation of the principle of SVM. SVM tries to maximise the margin from the 

hyperplane in order to best separate the two classes (red positives from blue negatives) (b) Optimal separating 

hyperplane 

The algorithm to classify a new case goes through the following steps: 

1. Dataset was split into training and testing subsets, and then SVM was trained on the 

training data set regarding the labels of the classes, to find the best hyperplane based 

on margin maximisation between the two classes: 

SVM train (Training set, Labels of training set) 

 

2. Find the support vectors after standardize all training points according to the mean (µ) 

and the standard deviation (σ) of all training samples for each feature component 

domain: 

Si =
xi−µ

σ
                                                                    (3.3) 

3. Calculate the score (Sc) of the test case x based on Lagrangian formulation [13][12] 

 

Sc(x) = ∑ αi k (Si, x
n

i=1
) + b                                     (3.4) 

where Si is a support vector, αi is the weight of Si, n is the number of support vectors, k is a 

kernel function. In the case of linear classifier, the kernel function k is simply the inner 

product <si, x> and the bias b. 

4. If Sc ≥ 0, then x is classified as positive, otherwise it is classified as negative.  
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Both kNN and SVM are popular classifiers and have been successfully used in many fields of 

application, such as bioinformatics, text, image classification, face recognition and medical 

image recognition (Cristianini and Shawe-Taylor 2000). 

3.6 Fusion Methodology 

A common practice in pattern recognition, and particularly when different recognition 

schemes are known to solve the problem but none achieves acceptable/desirable level of 

accuracy, is to fuse/combine one or more of these schemes with the hope that they can 

complement each other and collectively improve accuracy of recognition.  Over the years, the 

benefits of fusion have been observed in a variety of pattern recognition applications from 

different disciplines and as result fusion has become one of the major research topics in 

classification and pattern recognition. Accordingly, fusion is an essential component of our 

adopted research framework. 

As we explained in Chapter 2, the fusion of diagnosis decisions is a common practice in 

clinics, particularly for ovarian tumour diagnoses. Moreover, the levels of confidence 

associated with the diagnosis decisions are reflected by assessing a risk factor of malignancy 

as explained in details in Chapter 2. Fusion often leads to improving diagnosis confidence 

and better and more accurate eventual diagnosis decision. Occasionally, fusion may also 

create conflicts between the classifiers that lead to a rather not-so-certain situation where a 

further investigation is required. Therefore, the scheme of fusion in this thesis is largely 

motivated by and hence close to this clinical practice, details about our novel work can found 

in Chapter 6, Section 6.5.  

Various approaches for fusion have been successfully implemented for different applications 

over the past years, such as recognitions of fingerprints, irises, facial images, and hand 

geometry (Hangiandreou 2003, Bushberg and Boone 2011). In general, four levels of fusion, 

i.e. pixel level fusion, feature level fusion, scores level fusion and decision level fusion, have 

been investigated (Bushberg and Boone 2011), and summarised as follows: 

a. Pixel level fusion: At this level, pixels of individual source images are fused, usually 

through some forms of processing to the source images (e.g. edges extraction or texture 

analysis) (Dhawan 2011), into an abstract meta-image before features useful for image 

classification are extracted from the meta-image.  

b. Feature level fusion: This level of fusion combines different feature vectors obtained by 

multiple feature extraction algorithms. Often, the feature vectors are concatenated into a 
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single feature vector or some forms of feature aggregation are applied (Bushberg and 

Boone 2011, Dhawan 2011). 

c. Scores level fusion: This fusion scheme combines classification scores into a final score 

that further determines the class. In general, score level fusion can be divided into three 

categories: (a) Transformation-based score level fusion, (b) Classifier-based score level 

fusion, and (c) Density-based score level fusion (Michailovich and Tannenbaum 2006).  

d. Decision level fusion: This fusion approach combines classification decision outcomes, 

which can be made by different classifiers or by using different feature vectors, into a 

final decision (Bushberg and Boone 2011). 

 

3.7 Experimental Protocol and Performance Evaluation 

3.7.1 Evaluation Protocols  

Classification is achieved in two stages: training (input samples with their extracted features 

and known class labels are used to learn in the model from the data) and testing (determining 

classes of test examples with class labels and calculating the accuracy of the predicted classes 

by the model). Given a set of data, a protocol/policy is needed to decide how to divide the 

data into training and testing sets. Among such protocols, one can select the: 

 Hold-out. This method randomly divides the data into two subsets A and B. The 

classifier is trained with the subset A and tested with the subset B first, and then 

trained with B and tested with A (Webb 2003). The accuracy is taken as the average 

of the accuracies of the two tests. 

 k-fold Cross Validation. This method divides a given data set into k sub-sets with the 

equal number of examples. A classifier is tested on each subset and trained on the 

rest of the data. This training and testing process is repeated k times with different 

testing sets, and the average performance of the N tests is the classifier performance 

(Duda, Hart et al. 2001, Webb 2003).  

 Leave-One-Out method. Is a special case of the N-fold cross validation. The data set 

is split into a training set of size N-1 and a testing set of size 1, and the classifier is 

trained and tested. This process is repeated until all the data in the data set are tested 

(Webb 2003).  
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In this study, we used a stratified k-fold cross-validation, which means applying the leave-

one-out strategy to utilise the use of training examples. More details about this protocol are 

below. 

3.7.1.1 Evaluation Protocol for Ovarian Tumour Diagnosis Schemes 

In Section 3.4, we described in detail the experimental data set of ultrasound image of 

ovarian tumour that has been used in this study. To address the class imbalance problem 

between  Benign (112 cases) and Malignant (75 cases) in the dataset and to develop a fair 

classification model for both cases, we randomly down-sampled 50 images of  Benign and 50 

images of Malignant tumours, totalling 100 images for training and testing. The sampling 

was performed without replacement using the Randsample function in Matlab (50 Benign 

with Randsample (112, 50), and 50 Malignant Randsample (75, 50). For evaluation of 

performance, we employed a stratified leave-one-out cross validation, i.e. in an iterative 

process, one partition consisting of two samples (one Benign and one Malignant) was taken 

as the test examples and the rest for training the SVM (Figure 3.6). We repeated this process 

15 times with a different random selection of 100 images (50 Benign and 50 Malignant) to 

reduce the random effect and make the performance measurement more reliable. Then at the 

end, we take the averages of accuracy, sensitivity and specificity respectively for the 15 

rounds. 

 

Figure 3. 6: Randomised balanced cross validation for selecting training and test groups – Flow chart 
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3.7.1.2 Evaluation Protocols for Miscarriage Identification Scheme 

As mentioned earlier the ultrasound miscarriage related images used in this thesis were 

obtained in two batches. In the medical science field, testing a new model of diagnosis 

normally follows a split testing strategy (as to cross-validation for machine learning). The 

model is first developed using a medical centre’s own data and then tested with an 

independently sampled set of internal test data from the same medical centre. This is then 

followed by using an external set of independent test data collected from a different medical 

centre, We therefore, tried to follow both approaches of testing from the medical science field 

(without the external testing part because of the constraint on data source) as well as from 

machine learning, and hence conducted two different sets of experiments to test the 

performance of the developed miscarriage identification scheme. Unfortunately, we could not 

do so for the ovarian tumour diagnosis problem because the sample images were from the 

IOTA database where the images are from multiple medical centres). 

So in the first set of experiments, we used the first set of 94 images (79 images are PUV 

cases and 15 images of miscarriage cases) as a training set and the newest set with 90 images 

(78 images are PUV cases and 12 are of miscarriage cases) as an internal test set. To 

overcome the class imbalance problem between the PUV and miscarriage cases in the 

training set, we employed a sampling strategy in rounds, similar to that as explained in 

Section 3.7.1.1. In each round, we randomly selected 15 images from 79 images of PUV 

cases and combined them with the 15 images of miscarriage cases to form a training sample 

of 30 images. We then train a classifier using the 30 images, but we test the performance of 

the classifier using the whole of the internal test set. We again repeated the training with 

different random samples of 30 images and testing with the internal test set 15 rounds and 

then collected the averages of accuracy, sensitivity and specificity respectively. Figure 3.7 

illustrates this testing protocol. 
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Figure 3. 7: Randomised balanced cross validation process of selecting the training set – Flow chart 

In the second experiments, we adopted a typical machine learning test option by combining 

all datasets in a single dataset of 184 images (157 PUV cases and 27 miscarriage cases). A 

stratified cross-validation was employed as the validation protocol for this experiment. We 

also used a similar sampling strategy to resolve the class imbalance problem. Namely, a 

random sample was drawn 15 times. For each sample, 25 randomly selected (out of 157) 

PUV images and 25 randomly selected (out of 27) miscarriage images were chosen to feed 

into the cross-validation. We then determine the average of accuracy, sensitivity and 

specificity.  Figure 3.8 clearly explain the testing protocol for this experiment. 

 

Figure 3. 8: Randomised balanced cross validation for selecting training and test groups – Flow chart 
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3.7.2 Performance Evaluation 

Evaluating the performance of any procedure proposed to solve a pattern recognition scheme 

or a classifier would require the adoption of standard evaluation measures. We first use the 

overall classification accuracy. The accuracy rate refers to the proportion of the number of 

successfully classified test cases to the total number of tested cases. The formula for 

calculating the accuracy rate is presented as follows and the terms used are explained in 

Table 3.2: 

Accuracy = 
TP+TN

TP+ FP+ TN+ FN
                                               (3.5) 

 

Table 3. 2: Description of Performance parameters obtained in the binary 

classification test. 

True positive TP: Sick people correctly diagnosed (correctly identified) 

False positive FP: Healthy people incorrectly identified (incorrectly identified) 

True negative TN: Healthy people correctly identified (correctly rejected) 

False negative FN: Sick people incorrectly identified (incorrectly rejected) 

We also calculate two measures of the performance of a binary classification test: Sensitivity 

and Specificity, which are commonly used to evaluate clinical tests. 

 Sensitivity: It refers to the rate of correctly identifying those patients who actually 

have the disease. 

Sensitivity = 
TP

 TP+FN
                                                       (3.6) 

 Specificity: It refers to the rate of correctly identifying those patients who actually do 

not have the disease. 

Specificity= 
TN

TN+FP
                                                        (3.7) 

As mentioned above, our frameworks for measuring the performance of the proposed 

schemes include the introduction of an innovative measure of the strength/reliability of each 

single diagnostic decision made by the adopted classifier. See Chapter 6 for more details. 

https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Classification_rule
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3.8 Summary 

In this Chapter, we presented an overview of our research framework for automatic analysis 

and diagnosis of gynaecological abnormalities from Ultrasound scan image. The framework 

outlined the research to be detailed in the following chapters about each of the steps in the 

process starting with enhancement, followed by feature extraction and classification. We also 

included the framework for the experimental test validation procedure. In particular, we 

described the datasets used in the following chapters of the thesis for both medical problems, 

i.e. scan images of different types of ovarian tumour and two datasets of gestational sac. 

Lastly, the experimental protocol and performance evaluation used in the following chapters 

were explained in details. In the next chapter, we will present our research work on automatic 

pre-processing enhancement methods. 
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CHAPTER 4     

ENHANCING AND SEGMENTING GYNOLOGICAL 

ULTRASOUND IMAGES 

Ultrasound scanning is the most commonly used imaging system in the gynaecological area. 

The main purpose behind the scanning is to detect a region of interest ROI such as a tumour 

to monitor a specific type of disease or diagnose cases of miscarriage from GS in an early 

stage of pregnancy. Having introduced the research problem dealt with in this thesis and 

discussed the background material relevant to our project, we now embark on the first 

component of our investigations. This chapter focuses on pre-processing and segmentation 

tasks relevant to computational aspects of gynaecological ultrasound images in preparation 

for the subsequent analysis steps. In particular, the main contributions of this chapter are:  

 Proposing a new method for enhancing ultrasound images of ovarian tumours based 

on non-local mean filter followed by a negative transformation and the absolute 

difference function. 

 Automatic enhancing of ultrasound image of the gestational sac based on a mean 

related operation. 

 Automatic segmentation of ultrasound image of the gestational sac based on Otsu 

thresholding followed by a set of image processing procedures to remove all non-sac 

binary objects 

In section 4.1, we briefly explain a specific type of noise that affects the ultrasound images 

namely, the speckle noise. We also highlight how to exploit different image processing 

techniques to eliminate the effect of this type of noise in order to enhance the quality of the 

anatomical information content of ultrasound images. The section concludes by explaining 

the segmentation task and review existing work in the literature on extracting the regions of 

interest in medical ultrasound images. Enhancement/segmentation objectives vary according 

to the requirements associated with the two types of ultrasound images under investigations.  

Section 4.2 describes our work on enhancing and segmenting the gestational sac ultrasound 

images, while section 4.3 is devoted to our work for enhancing ovarian tumours in ultrasound 

images. Section 4.4 summarises the work carried out in this Chapter. 
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4.1 Literature Review 

In general, there are many artefacts (including noise) that affect the quality of medical 

imaging modalities with possibly adverse impact on the automatic processing/analysis of 

these images for the intended purposes. Each type of modalities is often corrupted by a 

different type of noise, which tends to reduce diagnosis accuracies. For instant, Rician noise 

is a specific noise that is known to corrupt MRI imaging system. The noise belongs to the 

additive type of noises which makes the quantitative measurement difficult. Salt & Pepper 

noise affects CT scan images. This type is impulse type of noises. For more details, see 

(Dangeti 2003) and (Gonzalez, Woods et al. 2004). 

Despite the wide use of ultrasonography imaging in medicine, the interpretation of such 

images is considerably dependent on visual examination by domain experts, and hence high 

image quality is an essential requirement. Ultrasound images are known to be corrupted by a 

special type of noise, known as “Speckle noise” consisting of artefacts caused by interference 

of energy from randomly distributed scattering (Zhu, Ni et al. 2009). The noise belongs to the 

multiplicative noise type. Figure 4.1 shows the speckle noise and its effect on ultrasound 

images of ovarian tumour. Speckle noise has a negative impact on image quality by hiding 

and blurring important details particularly on edges and, therefore, affecting the later image 

segmentation and other post-processing operations, and eventually may reduce the diagnostic 

value of the image (Loizou and Pattichis 2008, Zhu, Ni et al. 2009). Speckle noise reduction 

is a particularly important requirement for automatic processing and analysis of ultrasound 

images.  

      

(a)                                                         (b) 

Figure 4. 1: Illustrates the speckle noise and its effect on ultrasound images of ovarian tumour (a) Example of 

Speckle noise (Dangeti 2003) (b) Ultrasound image of ovarian l tumour corrupted by a speckle noise 

 

In automatic biomedical image processing and analysis, it is very important to eliminate or at 

least reduce the effect of noise to minimise its negative impact on the later stages i.e. the 
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segmentation and features extraction stages, and to increase diagnosis (classification) 

accuracy manually or automatically. There are two main factors that tend to affect the 

ultrasound scanning process and image capturing. First, there is a wide range of ultrasound 

machines with possible different parameter settings. Second, sonographer’s expertise and 

experience in capturing the US images can vary significantly. Both factors may result in US 

images of different qualities and inclusion of noise levels. There are different de-nosing and 

enhancing techniques that have been used to improve medical imaging modalities including 

ultrasound images with varying degrees of success (Rose and Allwin 2013). Unfortunately, 

there is no specific single method for removing the noise and enhancing images that works on 

all types of ultrasound scan images. To eliminate the effect of the noise, computer scientists 

should be careful in selecting and choosing their de-nosing techniques as some may affect the 

anatomical information inside ROI. Therefore, an experienced and expert radiologist 

(sonographer) needs to be consulted on the best de-noising approach by evaluating the 

resulting US images. In the following sub-sections, we shall explore existing methods and 

techniques in de-noising and enhancing US images.        

4.1.1 Existing Methods for Ultrasound Image De-noising and Enhancing 

There are several published works in de-noising/enhancing ultrasound images for different 

types of medical diseases, where various techniques are used to enhance the image for 

automatic segmentation or facilitate visualising image details for manual diagnosis (Malathi 

and Shanthi 2010, Thaipanich and Kuo 2010). Image de-noising is a known image processing 

problem that is usually resolved by applying noise filters. Many de-nosing filters have been 

developed in both spatial and frequency domains (Buades, Coll et al. 2004). Different speckle 

noise reduction filters have also been proposed in the literature. The commonly used linear 

low-pass filters, such as mean filters, are not suitable for reducing the speckle noise of US 

images since they also remove the high frequencies which result in smoothing out image 

edges (Xie, Jiang et al. 2006). The median filter and its adaptive version can effectively 

suppress speckle but fails to preserve other useful details (Xie, Jiang et al. 2006).  Czerwinksi 

et al. proposed the stick filter (Czerwinski, Jones et al. 1999) for reduce the speckle as well as 

improving the edge information. This filter has been used to de-noise prostate ultrasound 

images. Despite the limited success, however, a recent survey conducted by (Zhu, Ni et al. 

2009) summarised and highlighted some major disadvantages of the existing works. Firstly, 

each filter is sensitive to a specific model of noise. Secondly, most filters succeed in reducing 

noise in smooth and background areas, but not sufficiently well with enhancing image 
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features such as edges. Thirdly, most existing filters are not adaptive and have the 

“smoothing effect” on edges and other distinct image features. Therefore, noise removal for 

medical ultrasound images is still a challenging task. 

Over recent years, a more effective approach of applying a noise removal filter followed by 

special image enhancement operations started to emerge. In (Pathak, Haynor et al. 2000), 

speckle noise reduction was achieved for prostate ultrasound images by using stick filter 

followed by anisotropic diffusion filter to smooth the images for successfully segmenting 

prostate tumours, leading to improved results in diagnosis. Further improvement of automatic 

segmentation of prostate US images using stick filter and top-hat transform was reported in 

(Rafiee, Salimi et al. 2008) where the result achieved was very close to the manual 

segmentation. A simple method using histogram equalisation was also applied to enhance the 

placenta ultrasound images (Malathi and Shanthi 2010), which was effective enough for 

improving the quality of the image by highlighting the ROI for accurate segmentation. A new 

de-nosing approach using the so called Non-local means filter was proposed in (Buades, Coll 

et al. 2005). This filter replaces each pixel by the weighted averaging of all pixels in the 

image that have similar neighbourhoods. This method aims to remove the noise while 

keeping all meaningful information. It aims to take advantage of the redundancy and self-

similarity of the image. Adaptive Non-local means filter was proposed in (Thaipanich and 

Kuo 2010) to effectively improve ultrasound images. The method also was successfully 

applied to MRI images of removing the Rician noise (Zhang, Hou et al. 2014, Yang, Fan et 

al. 2015).  

There is also a great deal of research in frequency domain for de-nosing ultrasound image of 

follicles. The Gaussian low-pass filter was used on follicle in ultrasound images followed by 

histogram equalisation (Hiremath and Tegnoor 2010). The main aim of that work was to 

highlight the follicles for detection at the later stage. The method was further improved in 

(Hiremath and Tegnoor 2013) by using a negative transformation on the enhanced image, 

which improved the detection significantly.  

Research work in the area of GS ultrasound image de-nosing and enhancing is very limited. 

In (Chakkarwar, Joshi et al. 2010), contrast enhancement was used followed by a 

combination of smoothing low pass filter and wiener filter. The result was helpful in 

segmenting the GS. From the literature on ultrasound image de-noising and enhancing, we 

noticed that different filters and methods were used for different purposes, i.e. just removing 
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the noise from the image or de-noising for the purpose of highlighting the ROI to be prepared 

for segmentation stage or de-noising for the reason of highlighting the anatomical structure 

inside the ROI to be prepared for feature extraction step. There is no a specific method that 

works for all types of ultrasound images because each image comes from a different source 

machine with the different setup and captured by different sonographer who tends to have the 

different level of experience.   

4.1.2 Ultrasound Image Segmentation 

In the context of image analysis, segmentation is the process of separating the distinguished 

or interesting image objects from the image background, i.e. partitioning the image into 

meaningful regions and then selecting the wanted region known as Region of interest (ROI) 

(Setarehdan and Singh 2012). Image segmentation is an important step that can make the 

image analysis easier. In medical imaging applications, ROIs are often extracted either 

manually by experts or automatically using image segmentation methods before analysing the 

image for the purposes that were captured for. Figure 4.2 show examples of B-mode 

ultrasound images of ovarian tumours, and manually segmented ROIs, i.e. tumours 

highlighted from the background by yellow border lines. 

 

Figure 4. 2: Ultrasound images of ovarian tumours and highlighting the ROI 

Segmenting an ultrasound image is strongly influenced by the quality of the image (Özgen 

2011). One of the main difficulties is that in some cases the ROI and the background have the 

similar texture which makes automatically finding the ROI very difficult (Zhang 2006). 

Various traditional methods and innovative approaches have been developed. Straightforward 

binary segmentation methods such as “thresholding” and “region growing” may be preferred 
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due to the fact that they are both easy to implement and fast (Manay and Yezzi 2003, Özgen 

2011). However, such methods normally have rather limited success in dealing with complex 

US images of tumours. 

Several approaches were proposed to segment the ROI in ultrasound images, for detecting a 

different kind of diseases. For example automatic detection of the liver tumour in ultrasound 

images was proposed using Otsu thresholding after images were enhanced (Hiransakolwong, 

Hua et al. 2003). In (Al-Bayati and El-Zaart 2013), Otsu thresholding was also used to 

segment the breast tissue in ultrasound images and good results were reported in detecting 

normal breast tissues.  

A novel method for automatic prostate segmentation in ultrasound images was presented in 

(Rafiee, Salimi et al. 2008), for extracting the boundary of the prostate. This method works 

by selecting seed point inside the prostate for an active contour procedure. A number of 

experiments were conducted to validate this method and the results showed that the algorithm 

output was very close to the manual method of extracting the prostate boundary by experts.  

A number of techniques have been investigated in the area of follicle detection in ultrasound 

images of ovaries. Follicles appear as dark regions in ultrasound images. Therefore, the goal 

of the segmentation process is to identify most of the dark regions in an ultrasound image. In 

(Harrington 2007), a method for follicle detection was proposed that works in two steps: 1) 

segmenting of all dark regions in the image and 2) removing the non-follicle regions from the 

set of segmented regions. The segmentation step uses geometric active contour models 

(snakes). However, the performance of that algorithm in detecting small follicles (diameter 

smaller than 3 mm) could be adversely affected by the poor quality of ultrasound images. 

Determining suitable parameters for automatically initiating the construction of snakes is a 

challenge that remains unresolved. Recently a novel method for follicle detection by 

employing active contour method was published in (Hiremath and Tegnoor 2010), because 

ovarian follicles are oval shaped compact structures, which resemble the ellipse, 

characterized by the seven geometric features, namely, the area, the ratio of major axis length 

to minor axis length, the compactness, the circularity, the tortuosity, the extent and the 

centroid. Experimental results demonstrate the effectiveness of this method. Another 

approach to follicle segmentation in ultrasound image was proposed in (Hiremath and 

Tegnoor 2010) that apply canny edge detection followed by morphological dilation operator 

to fill broken edges. The results of experimental tests demonstrated the efficiency of follicle 
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segmentation by this algorithm when compared with the inferences drawn by the medical 

expert.  

Unfortunately, research in the area of automatic segmentation of gestational sacs in 

ultrasound image is somewhat limited. In (Chakkarwar, Joshi et al. 2010), Otsu thresholding 

was applied on a rather small dataset of 12 ultrasound images, and the gestational sacs were 

segmented successfully after enhancing the images. In (Zhang, Chen et al. 2011), an 

algorithm for detecting the GS from a video was proposed, using the AdaBoost method to 

detect the GS from each frame. The algorithm was tested on 31 videos and achieved a GS 

detection rate of 87.5%.  

To the best of our knowledge, there are no other specific techniques reported in the literature 

to segment ultrasound images of ovarian tumour. In fact, it can be argued that ovarian tumour 

segmentation in ultrasound images is still an open problem and a challenging task due to 

some difficulties related to the tumour structures (Sohail, Rahman et al. 2010, Hamid 2011). 

4.2 Enhancement and Segmentation of US Images of Gestation Sac (GS)  

In this section, we describe in details our proposal for enhancing and segmenting pregnancy-

related US images where the region of interest in this case is the GS. Although such US 

images are also corrupted by noise, the fact that the GS is a single object of interest whose 

internal intensity distribution can easily be distinguished from its surroundings removes the 

need for de-noising the image first. Thus, GS segmentation requires somewhat simple 

enhancement procedures. 

In general, ultrasound image contains two parts: the fan shaped area, which represents the 

image of interest obtained by an ultrasound scan, and the marginal area, see Figure 4.3 (a). 

The marginal area contains information about the patient (blocked for anonymity), date and 

time that the image was taken and the ultrasound machine setting. Figure 4.3 (b) shows 

ultrasound image with both parts. The Fan area is important part which contains ROI.  
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(a)                                                                  (b)  

Figure 4. 3: Example of ultrasound image with fan and margin areas (a) The boundaries of the fan and margin 

areas (b) Ultrasound image present both areas 

4.2.1 Image Preparation 

Figure 4.4 presents an example of the ultrasound image of the GS taken in respective sagittal 

and transverse planes. The red rectangle represents the main fan area. The GS is the dark 

region in the centre of the fan area. The area outside the red rectangle is the margin area. In 

the Fan area, three manual measurements of the GS size (in millimetres) are marked by 

yellow dotted lines, and their estimated values are displayed in the margin area.  

 
Sagittal plane view                Transverse plane view 

Figure 4. 4: Ultrasound images of GS in Sagittal and Transverse planes 

 

Before the process of GS segmentation starts, the margin areas of both views need to be 

removed. We used the imcrop function in Matlab with a fixed position vector parameter (30, 

150, 900, and 500). The cropped image is as shown in Figure 4.5 (a). Then we separate the 

two views from the middle of the image. The resulting two images are shown in Figure 

4.5(b). 
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4.2.2 Image Enhancement 

Ultrasound images of the GS are typically dark, causing difficulties in segmenting the GS. 

However, the GS is somewhat darker than its surrounding. There are various techniques to 

enhance such images. We use a simple method to make the bright areas brighter while the GS 

become more highlighted, using a heuristically defined simple filter:   

𝐽(𝑖, 𝑗) =  {
2 × 𝐼(𝑖, 𝑗)     𝑖𝑓 𝜇 ≥ 55

4 × 𝐼(𝑖, 𝑗)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                       (4.1) 

Where I(i,j) is the intensity value of the pixel at (i, j) position, and  is the mean of all pixel 

intensity values. Unlike histogram equalisation, this simple pixel value transformation gives 

more weight to the less dark pixels in the surrounding areas of the GS by stretching them 

over the whole greyscale range. The main outcome of this enhancement is that it highlights 

the GS as a single dense region which is easy to segment, see the highlighted area of the GS 

in Figure 4.5 (c). 

   

Ultrasound image of GS (Both plane views)                                          (a)  

       
   (b)  
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(c)  

Figure 4. 5: Shows steps of image subtraction, separation and enhanced (a) The Cropped image (b) Separated 

both planes (c) The Enhanced images in both planes 

 

4.2.3 GS Segmentation 

The GS segmentation stage involves a series of operational steps that overcome the effects of 

the blurry and noisy nature of the surrounding area near the sac as depicted in the block 

diagram shown in Figure 4.6. 

 

Figure 4. 6: The block diagram of the process of segmenting GS 

Step 1: Otsu Thresholding (Otsu 1975). This thresholding technique is widely used in 

medical image and specifically in ultrasound image segmentation because of effectiveness as 

well as simplicity of implementation. The idea of the Otsu threshold is that the object of 

interest and background in a given image f(x,y) have intensity levels grouped into two parts. 

Basically this method search for the threshold that minimizes the intra-class variance. If the 

image intensity f(x,y) less than the threshold T this associated with the background, otherwise 

it is associated with the object (see Figure 4.7). Thresholding defines a mapping function M 

of the input image f(x,y) and producing the thresholded output T(x,y) so that [51]: 

𝑇(𝑥, 𝑦) = 𝑀(𝑓(𝑥, 𝑦))                                                   (4.2) 
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In our work, we first applied the Otsu thresholding on the enhanced image to obtain a binary 

image as shown in Figure 4.7(a). In the binary image, the GSs as well as a number of false 

regions and small irrelevant objects are isolated from the background. 

Step 2: Smoothing. A median filter (Gonzalez, Woods et al. 2004) with a window size of 

15x15 is applied to the resulting image of step 1. As illustrated in Figure 4.7(b). This 

operation smooths the boundary of the sac without losing its original shape, fills small 

holes/gaps in the GS region, and helps to connect the non-sac or false regions to image 

borders for later removal. 

Step 3: Removing attached regions with border. The imclearborder function in Matlab is then 

applied to clear all false regions that are connected to the image border, resulting in a clean 

image well inside the frame as shown in Figure 4.7 (c). 

Step 4: False regions removal. Any small objects remaining in the image are considered as 

noises and should be removed. This was done by labelling each object using the Matlab 

function bwlabel, calculating the area of each object, and then deleting all small objects. The 

only remaining object is the GS as shown in Figure 4.7 (d). Our automatic segmentation was 

highly successful. 

        
(a)  

     
(b) 
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                                                                                       (c) 

   
(d)  

Figure 4. 7: Steps of GS segmentation (a) Binary image  (b) Filtered image  (c) Cleaned image from false region 

(d) Cleaned image from small objects 

                              

4.3  Enhancement and Segmentation of US Images of Ovarian Tumours 

US images of ovarian tumours are usually corrupted with noise and unlike the GS, the 

region(s) of interest is complex and are difficult to distinguish from the surrounding by non-

expert radiologists. This section introduces our automatic denoising and enhancing method 

for segmenting ultrasound images of ovarian tumours. We shall reoprts on the performance of 

our methods and highlight the limitations of the automatic segmentation of ovarian tumour.      

4.3.1 Image Preparation  

The margin areas of US images of ovarian tumour do not contain the region of interest, but 

affects the de-nosing and enhancing procedures and adds extra tasks that complicate the 

feature extraction stage. Therefore, we need to focus on the ROI and remove all unwanted 

areas such as the margin area and also the part of fan area which is considered as a 

background of the ROI. Accordingly we need to crop the image before applying the 

necessary enhancement and segmentation procedures. The experimental dataset are taken 

from a different machine and the tumour area is of variable size, and our algorithm would 
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have variable sets of parameters depending on whether the tumour is small or large. The 

imcrop Matlab function with a fixed position vector parameter may need to be modified 

through manual intervention. Figure 4.8 showed the example of the original image and 

cropped ROI. An example of cropped ROI is shown in Figure 4.8(b).  

 

     
  (a) The original image                                (b) The extracted sub-image                                                        

Figure 4. 8: An example of original image and cropped the ROI of ovarian tumour (a) The original image (b) 

The extracted sub-image                                                        

4.3.2 De-Noising and Enhancement Procedures: 

Ultrasound scan can perform better than tumour markers or other medical image modalities 

in diagnosis of ovarian tumour (Timmerman, Schwärzler et al. 1999, Timmerman, Testa et al. 

2005, Van Calster, Timmerman et al. 2007, Timmerman, Testa et al. 2008, Timmerman, Van 

Calster et al. 2010, Van Calster, Van Hoorde et al. 2015), de-noising and enhancing the 

ultrasound images of ovarian tumour helps the experts to improve their diagnosis by 

highlighting the anatomical information. The general requirements for removing the artefact 

in the ultrasound image are to suppress speckle noise as much as possible without affecting 

the anatomical information. The Non-local means filter is our choice of noise removal 

mechanism, inspired by the work in (Buades, Coll et al. 2005). 

 

The Non-local Means Filter (NL-means) 

Images are full of redundancies and many small blocks exhibit a great deal of similarity. The 

Non-local means filter, proposed by (Buades, Coll et al. 2005) differs from traditional filters 

in that it attempts to exploit redundancy and self-similarity in the input US image, and hence 

enables the removal of noise while keeping almost all meaningful information algorithm 

which will be helpful in area of medical image de-nosing (Buades, Coll et al. 2004, Buades, 

Coll et al. 2005). 
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Basically, the NL-means filter is based on non-local averaging of all pixels in the image that 

have similar neighbourhoods instead of taking the average in the filter neighbourhood. It 

estimates each pixel’s intensity from the information provided from the entire image and 

hence it exploits the redundancy caused due to the presence of similar patterns and features in 

the image. In this technique, the returned grey value of each pixel is found by the weighted 

average of the grey values of all pixels in the image but with different weights. The weight 

assigned to each pixel is dependent on the level of similarity between the local 

neighbourhood of the pixel under consideration and the neighbourhood corresponding to 

other pixels in the image. An example of self-similarity is illustrated in Figure 4.9, below, 

which shows three pixels p, q1, and q2 and their respective neighbourhoods. The 

neighbourhoods of pixels p and q1 are similar, but the neighbourhoods of pixels p and q2 are 

not. Because of this, pixel q1 will have a stronger influence on the de-noised value of p and 

q2.More details can found in (Buades, Coll et al. 2004, Buades, Coll et al. 2005). Figure 4.10 

shows an example of a US image obtained from a scan of an ovarian tumour, together with its 

NL-mean filtered version.  

 

Figure 4. 9: Represents the blocks of neighbourhood pixel similarities 

 

       
(a)                                                                        (b) 

Figure 4. 10: An example of a typical noisy US image and the NL-means filtered version Original Image                         

(b) De-noised image 
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The Full Enhancement Method 

De-noising is the major component of our enhancement scheme which consists of two more 

steps as illustrated in Figure 4.11. The NL-means filter is only the first step, while the full 

enhancement by taking the absolute difference between the NL- means filtered image and its 

negative.   

 

Figure 4. 11: Block diagram of the enhancing ultrasound image of ovarian tumour 

Step 1: Apply the NL- means filter on the input image to de-noise it, with kernel ratio (radius 

of local Patch) =3, window ratio (radius of neighbourhood search window) =3, and filter 

strength (strength of the NLMF filtering = 0.05). Figure 4.12 shows an example of an original 

image and its de-noised image. 
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(a)                                                               (b) 

Figure 4. 12: Effects of NL-means filter (a) original image (b) De-noised version 

Step 2: Compute the Negative of the de-noised image output in step 1, to enhance white or 

grey detail embedded in dark regions of an image (Gonzalez, Woods et al. 2004). Figure 4.13 

is an example of the negative transformation of ultrasound images of ovarian tumour. 

 

      

(a)                                                                    (b) 

Figure 4. 13: The negative of the de-noised image (a) The de-noised image (b) It negative image 

Step 3: Finally, in this step we compute the absolute difference function between de-noised 

image and its negative transformed version. The Absolute Difference between the 

corresponding pixel values I1(i) and I2(i), from the two input images I1 (the filtered image) 

and I2 (the negative of the filtered image) is defined as: 

𝑟(𝑖) = |𝐼1(𝑖) −  𝐼2(𝑖)|                                                   (4.3) 

Where r(i) is the ith pixel value in the resulting image. We apply the absolute difference 

operation on the de-noised image from the NL-means filtering step and its negative image. 

This means that 

𝑟(𝑖) = |𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑎𝑥 − 2𝐼(𝑖)|                                            (4.4) 
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This means not only that the resulting image is negative of the original scan image, but also 

that the edges which are marked as white or light grey pixel color will become darker in the  

resulting image, thereby preserving and highlighting the edges. An example is presented in 

Figure 4.14, and the result image clearly shows the highlighted edges and the texture inside 

the tumors are much clear (the light grey shades in the resulting image). 

 

 

 

Figure 4. 14: The enhanced image all inner border are clear which is preferred by experts 

More examples of the ultrasound image of ovarian tumours denoised and the result of 

enhancing are shown below in Table 4.1 column (1) is original images, column (2) is 

denoised images with NL-means filter and column (3) is the last result of enhanced images. 

 

Table 4. 1: Example of de-noised and enhanced images of ovarian tumours 

Original image De-noised images Enhanced images 
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Non-medical experts, like myself, may notice that the output of the three steps enhancement 

procedure are clearer images, but such a naive comment may hide obvious ignorance of the 

medical significance of the procedure. We evaluated the result of this three-step enhancement 

of the ultrasound images of the ovarian tumour by sending our dataset of  US images of 

ovarian tumour, before and after enhancement, to three domain experts at Queen Charlotte's 

and Chelsea Hospital. The feedback we received was as follows: “The enhanced images were 

found to be helpful. the results are interesting in highlighting the borders particularly in the 

irregular border of the tumours. This improves our assessment for these tumours. On another 

scale, it highlights the difference between echogenicity in irregular malignant tumours”. 

Table 4.2 displays three different diagnostic results for a sample of cases: before 

enhancement, after enhancement, and actual diagnostic which was based on follow-up 

surgery/ biopsy.  

For example, image 24, when the original image was used without enhancing,  the result of 

the subjective assessment to diagnose this specific case was “Benign”,  with the degree of 

certainty of “Certain Benign”. However, when used the enhanced image instead, they 

diagnosed the case associated with this US imageas “Malignant” with the degree of certainty 

of “Possible Malignant”. And at the end the actual “Malignant” diagnosis was provided from 

the original source. This indicates that our enhancing method helps to understand better the 

images.  
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Table 4. 2: US images of ovarian tumour: Before, After and the Actual Diagnostics 

Image 

ID 

Diagnosis before 

Enhanemnet 

Degree of 

Certaintly 

Diagnosis after 

Enhancment 

Degree of 

Certaintly 

Actual 

Diagnosis 

1 Benign Certain benign Benign Certain benign Benign 

9 Malignant Possible malignant Malignant Possible malignant Benign 

24 Benign Certain benign Malignant Possible malignant Malignant 

30 Malignant Possible malignant Malignant Certain malignant Malignant 

40 Benign Certain benign Malignant Possible malignant Malignant 

44 Benign Possible benign Malignant Possible malignant Benign 

51 Benign Possible benign Malignant Possible malignant Malignant 

52 Benign Possible benign Malignant Certain malignant Malignant 

53 Malignant Possible malignant Malignant Certain malignant Malignant 

 

Figure 4.15 summarises the following findings from the table above:  

1. No change to diagnosis (50% of our dataset): when the diagnoses before and after 

image enhancement agree on the same diagnosis, of which 45% was correct diagnosis 

(i.e. it matches the actual diagnosis) e.g. image number 1 from the table above and 5% 

was incorrect diagnosis e.g. image number 9. 

2. Enhancement has led to correct diagnosis (20% of our dataset) i.e. the decision was 

corrected to match the actual diagnosis after image enhancement e.g. the image 

number 40.  

3. Enhancement has led to improving the diagnosis confidence (27% of our dataset) i.e. 

the correct decision has changed from possible to certain after the image enhancement 

e.g. image number 30.  

 

4. Enhancement has led to incorrect diagnosis (3% of our dataset) i.e. the decision was 

correct before the enhancement and became incorrect afterwards e.g. the image 

number 44.  
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              Figure 4. 15: Summary of the effect of the image enhancement on experts’ decisions 

A pilot enhancement software tool has been implemented together with a graphical user 

interface. The tool can be conveniently used by experts when they have a specific case that is 

not so easy to diagnose because of unclear information inside the tumour. This tool can help 

better understanding of the cases and thereby improve diagnosis accuracy. Figure 4.16 shows 

the screenshot of the interface of the tool.  

 

Figure 4. 16: Example of a Matlab Tool for End Users 

4.3.3 A Semi-Automatic Segmentation of US Images of Ovarian Tumour 

Enhancing the US scan images of the ovarian tumour is expected to enable the segmentation 

of the images and detect the tumour area from which digital diagnostics related features can 

be extracted from the spatial domain or the frequency domain. Though desirable, the 

automatic ovarian tumour segmentation was beyond the scope of this thesis. In fact, our main 

aim was to extract new image content features that are not usually considered by medical 
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experts in tumour classification but may add extra support for experts’ decisions. Moreover, 

so far automatic ovarian tumour segmentation is still an open problem and was reported in 

(Sohail, Rahman et al. 2010) (Hamid 2011) as a difficult challenge. In fact, the huge variation 

in tumour shape, size and position noted in our dataset of US images are some of the 

limitations that make a fully automatic segmentation of the ovarian tumour very complex that 

would hinder the feature extraction. Below we list a number of reasons for opting to adopt a 

semi-automatic approach to tumour segmentation.  

1. The image quality affects the segmentation because the border of the tumour is not 

clear. 

2. The size of the tumour in the images of our dataset can be very large and there can 

be an undefined boundary of the tumour inside the fan area of the ultrasound images.  

3. The similarity of texture may exist inside the tumour area and its nearby 

background in some images. This problem leads to difficulty in automatically 

defining the border of the tumour especially when we have only one static B-mode 

image.  

4. The different textures may exist inside one tumour in some cases. Besides, 

multiple components with their own inner borders, such as multilocular cysts, may 

exist inside one tumour.  

5. The combination of the above may occur in a single image. 

Table 4.3 lists some examples that illustrate the different problems mentioned above 

Table 4. 3: Highlighting some examples that made automatic 

segmentation difficult 

  

(a) Ovarian tumour texture and the 

background are very similar and missing the 

border 

(b) Large ovarian tumour undefine 

the border 
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(c) Undefine the border for the tumour (d) Different textuer inside a tumour 

  

(e) Large size of the tumour (f) Tumour and the background are 

the same texture 

  

(g) Different texture representataion in the 

tumour 

(h) Different texture in the tumour 

and undefined the border of the 

tumour 

  

(i) Different texture and the large size of the 

tumour 

 

(j) Large size of tumour and 

different texture 

 

 
(k) Poor quality of the image 

 

Despite the above observations, we are confident that automatic segmentation is still doable, 

but our interest was more on the reliability of feature extraction. The segmentation task was 
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therefore performed manually with guidance from domain experts, and the results have been 

reviewed and double checked by the experts. The manual segmentation was done using 

ImageJ that is widely used in biomedical image analysis. Table 4.4 presents some examples 

of the manually segmented ovarian tumour images defined by the yellow borders. 

Table 4. 4: Example of highlighting the border of the 

ovarian using image J tool 

  

  

 

4.4 Summary 

In this chapter, we presented a literature review of the current existing work on ultrasound 

image de-noising and enhancement as well as segmenting the region of interest. We argued 

that there is no single method or algorithm that can effectively work for enhancing US 

images from all kinds of problem domains and extracting the regions of interest from the 

enhanced images. Moreover, we highlighted the fact that the ovarian tumour segmentation is 

still an open research problem. Furthermore, we introduced our method for GS extraction and 

enhanced the image with promising results. We have shown some images that were 

unsuccessfully segmented.  

We also described in details our method for enhancing ultrasound images of ovarian tumour. 

We showed that the enhancement method helped to better diagnosis by highlighting hidden 

information in the image. The positive feedback from domain experts indicates that the 

enhanced images do help the experts in their diagnosis of the tumour status. The effect of 

enhanced images in term of feature extraction and automatic classification will be discussed 

in Chapters 5 and 6. Furthermore in this chapter, we highlighted the main difficulties that 



Chapter 4                                                                                   Enhancement and Segmentation 

 

86 

 

automatic ovarian tumour segmentation methods face, especially for complex and 

challenging images. 

In the next chapter, we shall use the enhanced images and the segmented ROIs resulting from 

this chapter to extract the significant and meaningful features for accurate diagnosis. These 

features of interest would expand the set of features currently used by medical experts to 

include new image-content based features that could add more information and value for 

medical diagnosis. 
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CHAPTER 5 

CHARACTERISING FEATURES OF ULTRASOUND IMAGES 

IN GYNAECOLOGY  

Having pre-processed the US images and segmented the ROI for the gynaecological 

abnormalities under investigations, the next step in the analysis of these images is to extract 

relevant features that will form the basis for the analysis and diagnosis. In image-based 

automatic pattern recognition applications, the main goal of feature extraction is to obtain the 

most discriminating information from an image. Such features are either encapsulated in the 

image spatial domain and/or after transforming it into another domain such as frequency or 

wavelet domain. The extracted features are then represented as feature vectors to be fed into a 

classifier to the next stage in the identification process. The main investigations in this 

chapter are concerned with complementing existing features, currently determined manually 

in clinics for diagnosis, by innovative sets of spatial/frequency domain features that can be 

used in the analysis of gynaecological ultrasound images for both types of investigated 

abnormalities (i.e. ovarian tumour and miscarriage). We investigate, develop, and test the 

performance of new sets of image-related features in discriminating the different classes of 

the two investigated gynaecological abnormalities. The specific contributions in this chapter 

include: 

 Investigating the effectiveness of local features in comparison to global features for 

US images.  

 Proposing novel frequency domain features to be extracted from binarized FFT 

spectrum.  

 Automating the quantification of known features of US images of the GS to identify 

miscarriage cases at early stages of pregnancy, and investigating and evaluating new 

geometric features of the GS for miscarriage detection.  

 Investigating the contribution of image texture features in spatial/frequency domains 

of US images to discriminate different classes of abnormalities for both applications. 

This chapter is organised as follows. In section 5.1, we review the literature about different 

feature extraction and/or texture analysis methods that used for analysing US images. 

Sections 5.2 describes our proposed feature extraction methods for US images of ovarian 

tumours in spatial domain and describe our novel method based on frequency domain 
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features, and demonstrate their discriminating power between benign and malignant tumours. 

Section 5.3 will be devoted to investigating the suitability of these and other combination of 

existing and new geometric features for the detection of miscarriage from ultrasound images 

of the gestational sac. In Section 5.4 we summarise the work in this chapter, present 

concluding remarks about the result and identify the next set of challenges.   

5.1 Literature Review   

5.1.1 Image Features and Features Extraction 

Features are a set of data attributes that encapsulate useful information about an entity (i.e. 

image), and ideally, it should be discriminating attributes that can be used to distinguish one 

sample from another. Basically, the process of transforming an input sample data into a set of 

features (usually called feature vector) is referred to as feature extraction (Lee and Landgrebe 

1993) and (Guyon and Elisseeff 2006). In image-based pattern recognition applications, 

features extraction is often preceded dimensionality reduction to deal with the curse of 

dimension problem, and image information can be extracted from different image-

representation domains (Spatial or Frequency) (Nixon 2008). Moreover, these features could 

be derived from the texture analysis of images to represent information about the 

arrangement of colours and/or intensities in an image. The main goal of a feature extraction 

technique is to extract the most relevant and discriminating attributes from the original data 

and represent the extracted feature vector in a space of lower dimension. If the feature 

extraction is carefully chosen, the extracted feature set is expected to perform well at the 

classification stage. In general, extracting feature vectors that yield optimum classification 

results and work for all relevant images all the time is a serious challenge. We note that 

capturing images of the same object do not produce the same raw data due to a variety of 

factors that cannot be perfected. In a typical image analysis application, various image pre-

processing techniques (i.e. de-noising, image enhancing and ROI extraction) are required 

before extracting useful features (Nixon 2008). In this chapter, we assume that the US images 

have been pre-processed, enhanced and segmented as required.    

5.1.2 Image Texture and Texture Analysis 

In general term, image texture is a quantitative property that is meant to describe the 

smoothness (or otherwise) of the surface geometry and structure of the object as it appears in 

the image. Therefore, in image processing texture is defined as an attribute representing the 

spatial arrangement of the grey levels of the pixels in an image or a specific region of interest. 
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The texture is one of the most common features used to analyse, and interpret medical images 

(Kurani, Xu et al. 2004). In the context of this thesis, texture is defined in terms of the spatial 

distribution and variation of pixel grey value (intensity) of B-mode images. In general, there 

are different methods to compute texture features. 

The texture analysis is the term used for methods developed to quantify image texture and 

describe image properties by textural features (Mathias, Tofts et al. 1999) (Nailon 2010).  

The purpose of performing texture analysis is to define a set of texture features that will 

identify the important properties of a texture for a defined ROI (Smutek, Šára et al. 2003). A 

texture analysis of medical images is widely used to differentiate between pathological and 

healthy tissues or to the segmentation of specific anatomical structures (Castellano, Bonilha 

et al. 2004).   

5.1.3 Texture Analysis Approaches 

There are several ways to categorise different texture analysis approaches. However, the most 

common way is to categorise them into Statistical-based, Model-based, Structural-based, and 

Transform based texture analysis (Materka and Strzelecki 1998, Bharati, Liu et al. 2004, 

Castellano, Bonilha et al. 2004, Materka 2004). 

 5.1.3.1 Statistical-based Texture Analysis 

Statistical parameters of the texture features distribution are the basis of early methods 

investigated in machine vision (Castellano, Bonilha et al. 2004). Due to their simplicity and 

the ease of implementations, these are widely used in medical image analysis including 

ultrasound images (Bharati, Liu et al. 2004). Statistical based approaches can be further sub-

divided into three categories: first-order, second-order, and higher-order description statistics 

(Materka and Strzelecki 1998). 

1. First-order description statistics: this approach deals with the intensity of the pixels 

and measures the likelihood of observing a grey value at the image. In other words, 

the occurrence probability of intensity in an image (the image histogram) is the main 

source (Gonzalez, Woods et al. 2004). It does not take into account the spatial 

relationship between pixels but depend only on individual pixel values (Materka and 

Strzelecki 1998). In this thesis, First-order description statistics methods are employed 

using histograms and their First order statistical parameters. 

2. Second-order description statistics: this method is taking into account both the 

distribution of pixels intensity and the relationship among neighbouring pixels 
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(Materka and Strzelecki 1998). An example of this method is Grey level co-

occurrence matrices (GLCM), which used to express the correlation of spatial location 

and grey level distribution of an image. 

3. Higher-order description statistics:  this method deals with the relationship between 

three or more pixels (Materka and Strzelecki 1998). Local Binary Pattern (LBP), 

which is a grey-value image operator that represents a pixel in terms of its order 

relation to the certain pattern of its immediate neighbours, can also be considered as 

higher order statistical features. We adopt LBP in our work, and more detail 

description is given later. 

5.1.3.2 Model-based Texture Analysis 

Model-based approach generates an empirical model of each pixel in the image, based on a 

weighted average of the pixel intensities in its neighbourhood. These estimated parameters of 

the image models are used as textural feature descriptors (Materka and Strzelecki 1998). An 

example of the model-based texture analysis approach is Markov random fields (MRF) 

(Kervrann 1995). 

5.1.3.3 Transform-based Texture Analysis 

Texture properties of the image can be analysed in different image domains other than the 

spatial domain. Transform-based (also known as signal processing) methods apply texture 

filtering for extracting features but after transforming the image into different transfer domain 

image representation (Materka and Strzelecki 1998). Examples of model-based texture 

analysis approach are Fourier, Gabor and wavelet transforms. In this thesis, we investigate 

and develop a new novel transform-based method using Fast Fourier Transformation FFT. 

More details are explained in (section 5.1.5.4 and 5.2.2). 

5.1.3.4 Structural-based Texture Analysis 

The texture is characterised by texture primitives or texture elements, and the spatial 

arrangements of these primitives. Thus, the primary goals of the structural approaches are 

firstly to extract texture primitives, and secondly to model or generalise the spatial placement 

rules. The texture primitives can be as simple as individual pixels or a region with uniform 

grey scales. The placement rules can be obtained through the modelling geometric 

relationship between primitives or learning their statistical properties. The advantage of the 

structural approach is that it captures the semantic of the image, in terms of its content, 

providing a good symbolic description of the image (Castellano, Bonilha et al. 2004).  
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It is obvious that these three different approaches to structural analysis can be combined in a 

variety of ways. For example, it is rather natural to use extract statistical texture features from 

frequency rather than spatial domain representation of images. In fact, all the statistical 

features can be extracted from wavelet transformed images. To some extent, the Local Binary 

Pattern (LBP) texture method is a combination of the structural and statistical approaches. In 

fact, the LBP has both of the properties of a structural analysis method: texture primitives and 

placement rules. On the other hand, the distribution is just a statistic of a non-linearly filtered 

image, clearly making the method a statistical one. For these reasons, it is to be assumed that 

the LBP distribution can be successfully used in recognising a wide variety of texture types, 

to which statistical and structural methods have conventionally been applied separately 

(Ojala, Pietikäinen et al. 1996, Materka and Strzelecki 1998, Ojala, Pietikäinen et al. 2002). 

The pattern recognition literature has ample examples of successful use of LBP in different 

application such as face recognition and medical images (Mäenpää and Pietikäinen 2005, 

Pietikäinen, Hadid et al. 2011). 

5.1.4 A Review of Existing Texture Analysis Methods for US Images 

In the medical domain, interesting results of using texture analysis methods were reported. In 

the area of ultrasound images, many studies have been carried out to characterise the B-Mode 

images. Texture analysis of ultrasound images is motivated by the principle that if disease 

processes affect the structure/texture of tissues, then the diseased tissue should reflect 

ultrasound wave signals in a different way than that of normal tissue (Morris 1988), i.e. 

texture features value extracted from the US scan of diseased tissue differs from those 

extracted from US scanned healthy/normal tissue. The transformation of cancerous tissue, for 

example, will result in the changes in the tissue characteristics. Therefore, it is expected that 

textural features derived from cancerous tissue and normal tissue will differ. 

Texture analysis has been used in ultrasound image analysis for different applications. In 

(Malathi and Shanthi 2010), a method for automatic classification between ultrasound images 

of normal and abnormal placenta was reported. The textural feature was extracted from the 

ultrasound image of placentas based on statistical properties of intensity histogram such as 

mean, standard deviation, contrast, correlation, and entropy. Another study showed that grey 

level co-occurrence matrices (GLCM) features derived from ultrasound images have a 

significant difference between the placenta of smoker and non-smokers where fourteen 

features were extracted from the GLCM matrices and in four different angles 0°, 45°, 90° and 
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135° (Morris 1988). The extracted features were an angular second moment, contrast, 

correlation, inverse different moment, sum average, sum variance, sum entropy, entropy, 

difference variance, difference entropy, two information measures of correlation, 

autocorrelation, and absolute value. 

Furthermore, a similar method based on the fourteen GLCM features in the four dimensions 

was proposed in the area of automatic detection of heart disease (Tsai and Kojima 2005), The 

features were extracted from ultrasound images to classify heart disease where four features 

out of the fourteen were identified to have the most powerful discrimination ability (angular 

Second moment, contrast, correlation and sum entropy).  

The texture analysis has also been applied extensively on ultrasound images for liver related 

diseases. Statistical-based texture analysis (GLCM) matrix was utilised to evaluate the texture 

features of the liver tumours in (Xian 2010). Five textural features were extracted from the 

GLCM matrix (energy, contrast, correlation, entropy and homogeneity) using the average of 

the four directions. It was demonstrated that the method can distinguish between benign and 

malignant tumours of the liver. Moreover, in (Mojsilovic, Popović et al. 1998), wavelet 

transform features were used to capture texture characterisation of B-mode liver images 

where the energies of the transformed regions were used to characterise the textures.   

Texture analysis of ultrasound images has been also applied on thyroid gland. A promising 

result was reported in (Smutek, Šára et al. 2003) in which chronic inflamed thyroid tissues 

were automatically differentiated from healthy ones. The extracted features were based on the 

following six spatial features:  gradient magnitude, difference from sample mean, horizontal 

curvature, vertical curvature, and original pixel grey levels. The six features were then 

combined with the following nine haralick texture features: cluster tendency, texture entropy, 

texture contrast, texture correlation, texture homogeneity, inverse difference moment, 

maximum probability, and uniformity of energy. 

Furthermore, texture analysis was used to discriminate between benign and malignant breast 

tumours from ultrasound images. In (Lefebvre, Meunier et al. 2000), the texture parameters, 

derived from first-order statistics, run-length matrices and co-occurrence matrices. It was 

argued that texture features were able to help physicians in reducing the number of 

unnecessary biopsies. In (Garra, Krasner et al. 1993), four different types of ultrasound 

images of breast tumours were studied namely, cancers, cysts, fibroadenoma, and fibrocystic 

tumours. The analysis of image texture was performed using fractal analysis and 
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statistical texture analysis methods. The most useful features were those derived from the 

GLCM matrices based on the contrast and correlation features. It was argued again 

that ultrasonic image texture analysis is a simple way to significantly reduce the number of 

benign lesion biopsies without missing additional cancers. 

Besides breast cancer, texture analysis has been also applied on ultrasound images of 

prostate. In (Sheppard and Shih 2005) GLCM is generated based on the above fourteen 

extracted features from prostate ultrasound images. Then, five of the fourteen features were 

chosen namely, angular second moment, contrast, inverse difference moment, entropy, and 

sum entropy. These features were successful in distinguishing between normal and cancer 

tissues in prostate US images.  

A rather limited research has been conducted to evaluate texture analysis on US images of 

different types of ovarian tumours. In (Sohail, Rahman et al. 2010), an automatic method was 

proposed to classify three different types of benign ovarian tumours namely; Simple Cyst 

(187-images), Endometrioma (154-images) and Teratoma (137-images) in total 478 images 

were used. The features were extracted from statistical texture using 64 features based 

histogram moments along with 56 features extracted from GLCM in four directions. An 

average of classification accuracy 86.90% was achieved to identify different types of benign 

tumours.   

In (Acharya, Vinitha Sree et al. 2012), Higher Order Spectra (HOS) features were used for 

the characterisation of different types of US images of ovarian tumours namely, Benign and 

Malignant. A small dataset of 20 patients (10 benign and 10 malignant) was used to evaluate 

the method where each patient has 100 images i.e. 1000 benign and 1000 malignant 

ultrasound image in total. A classification accuracy of 95.1%, sensitivity of 92.5% and 

specificity of 97.7%, was achieved to identify different types of ovarian tumours.  

More research on automatic identification of US images of ovarian tumour was reported in 

(Acharya, Mookiah et al. 2013) where three different types of features extracted from each 

ultrasound image of 20 patients (10 benign and 10 malignant). These features are: Hu’s 

invariant moments features (invariant to object scale, position, and orientation), 2D Gabor 

wavelet features at six directions, and Yager’s measure and Kapur’s entropy to estimate the 

subtle variation in the pixel intensities. An average classification accuracy of 99.8 %, 

sensitivity of 99.2 % and specificity of 99.6 % was reported to identify different types of 

benign tumours. 
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To the best of our knowledge, there is no publication in the literature on using texture 

analysis in the area of gestational sac to identify early miscarriage cases. 

5.1.5 Texture Analysis Methods used in this Study 

This section discusses the methods that we employed in this thesis for texture analysis of the 

US images of both investigated gynaecological abnormalities. The investigated methods 

include, Histogram of grey scale, First order statistical features of histogram image, Local 

Binary Pattern LBP, Fast Fourier transformation FFT. By extracting each of these features, 

we produced a feature vector of certain dimension as representing the US scanned images 

that will be feed into one of the chosen classifiers (kNN or linear SVM).   

When using kNN classifier for automatic diagnosis of the two gynaecological abnormalities 

under investigation, we need to define a distance/similarity function between extracted 

histogram feature vectors extracted from the US scan images. Histogram intersection and 

Euclidean distance function are among the most popular comparison between histogram 

feature vectors of a template and a test image. For this purpose, we use the Euclidean distance 

function. But when using linear SVM, we shall use the inner product kernel function between 

the support vectors and the above-extracted features vector of the probe US images.    

5.1.5.1 The Histogram of Grey Scale Intensity 

Basically, an image histogram represents the frequency distribution of pixels intensity value 

in the image over the full grey-scale (Malathi and Shanthi 2010). For an 8-bit grayscale 

image there are 256 different possible intensity bins, and so the histogram will graphically 

display 256 numbers showing the distribution of pixels amongst those grayscale values 

(Malathi and Shanthi 2010). The histogram of an image conveys information about 

brightness and contrast in the image.  A comparison between the three histograms, shown in 

Figures 5.1 (a) - (c), reveals a significant difference which seems to provide a discriminating 

feature between an image of the malignant tumour (figure (a)) and those of a Benign one 

(figure (b)). The first histogram of the US scan of malignant tumour has a clear normal 

distribution most of the mass area is of grey colour, indicating the presence of solid tissues 

within the tumour. The histogram of the benign tumour has a negative exponential shape 

concentrated to the left side of the greyscale with a small hump around the middle of the 

greyscale, indicating the presence of clear fluid within the tumour. The third image is a scan 

of the gestational sac, and its histogram has two almost separated regions where the 

background is represented by a more of a normal curve near the middle of the dynamic range 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
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and the inside of the GS to the left side of the greyscale because there are a dark region inside 

the gestational sac.  

Histograms can also be used to study the distribution of various components of the images. 

For instance, it can be used to segment the ROI or distinguishing between two different 

classes if the two classes have different histogram distribution. But the main disadvantage is 

because it represents the frequency of the pixel intensity values but with no spatial 

information. Sometimes two scan images of different disease classes may have a similar 

histogram but they may be different in the content and texture.  

         
                                        (a)                                                                                        (b) 

 
(c)  

Figure 5. 1: Histogram distributions for different ultrasound images (a) US image of malignant ovarian tumour 

with its histogram (b) US image of benign ovarian tumour with its histogram (c) US image of uterus include 

gestational sac in a sagittal plane with its histogram  

The Histogram feature vector extracted from a US image is the 256-dimensional vector: 

𝑣 = [𝑣0, 𝑣1, … , 𝑣𝑖 , … ,  𝑣255],  

Where vi is the frequency of the pixel value i in the image. 

5.1.5.2 The First-Order (FO) Statistics Histogram Properties 

Different useful statistical parameters can be worked out from the histogram to quantitatively 

describe the first-order statistical properties of the image. Most often the so-called central 

moments are derived from it to characterise the texture these features include mean, variance, 

smoothness, third moment, kurtosis and entropy (Levine 1985, Materka and Strzelecki 1998). 
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If z is a random variable representing an image pixel intensity, p(z) is the histogram of the 

intensity levels in an image, and L is the total number of pixel in the image then the FO  

features can be computed using the equations (5.1 – 5.6), below: 

 

Mean: The mean takes of the average level of intensity of the image, and show the brightness 

of the image.    

                                                          (5.1) 

Standard Deviation STD: The STD describes the variation of intensity around the mean (i.e. 

contrast).  

                                                       (5.2) 

Smoothness: The smoothness measures the relative smoothness of the intensity. 

                                                              (5.3) 

Skewness: the skewness or (Third-moment) measures how the histogram is balanced around 

its mean and which side has the longer tail. The skewness is zero if the histogram is 

symmetrical about the mean. Otherwise, it is either positive or negative depending whether it 

has been skewed above or below the mean. 

                                                        (5.4) 

Kurtosis: The kurtosis measure how sharpness of the peak of a frequency-distribution 

curves. 

 

                                                                 (5.5) 

Entropy: The entropy measure of randomness of the different intensity frequencies. 

                                                      (5.6) 

Together all these features provide information about the shape and distribution of the 

histogram, such measurements might have a high discriminative power to distinguish 
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between different kinds of images (Castellano, Bonilha et al. 2004). The extracted feature 

vector from a US scanned image is a six-dimensional vector whose entries are the above six 

values in the above order.   

5.1.5.3 The Local Binary Pattern (LBP) 

There are many ways of describing the texture in an image, but in all cases, it refers to local 

changes in intensity. The LBP as a texture feature was first proposed by (Ojala, Pietikäinen et 

al. 1996) that refers/maps each pixel to an 8-bit binary code that is derived from the intensity 

of its neighbouring pixels within a given window. For a 3×3 block, the value of the centre 

pixel is subtracted from that of each of its eight neighbouring pixels. Depending on the sign 

of the subtraction result, the surrounding neighbouring pixels s(x) are set to 1 (for +) and 0 

(for -) as shown in the equation 5.7. The generated bits of all the neighbouring pixels are then 

concatenated into 8-bit codes, starting with the top left corner neighbour and moving in a 

clockwise direction. The decimal value of the LBP code for the centre pixel (xc, yc) is 

calculated as in equation (5.8) where n runs over the eight neighbours of the central pixel, ic 

and in are respectively grayscale values of the central pixel,  
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The above definition can be generalised in different ways, depending on the size of the 

neighbouring window and the greyscale resolution. The LBP operator LBPP,R  produces 2p 

different output values, corresponding to 2p different binary patterns formed by the P pixels 

in the neighbourhood of radius R as illustrated in Figure 5.2. Figure 5.3 shows the centre of 

an LBP block with different radius P=8, R=1(3x3), 2 (5x5). 

 
Figure 5. 2: Shows the LBP coding and the result of the LBP image with R=1 
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Figure 5. 3: Represent the centre with 8 neighbouring 

One of the advantages of the image information provided by LBP is its invariance against 

monotonic grey level changes. Moreover, the most interesting property is its computational 

simplicity. The histogram of the LBP provides various texture discriminative methods, 

depending on the grouping of the different LBP patterns depending on a defining a similarity 

relation among the patterns. Grouping the different patterns results in creating a histogram 

bin for each group, so that the frequency of a bin is the total number of appearances of all the 

8-bit LBP patterns in that bin.  The most common types of LBP methods are: 

1. Simple LBP (256) bins:  

In this case similarity of LBP is defined as equality of the patterns. Therefore, the feature 

vector extracted in this case is simply the frequency of all the different 8-bit binary codes 

defined by the LBP mapping, i.e. it is the histogram of the LBP mapped image obtained from 

the different decimal grey-level values representing the 8-bit codes. In this basic type of LBP 

method, one is simply using the 256 bins histogram of LBP map of the image.  

2. Uniform LBP (59 bins):  

The method is based on defining similarity between local binary patterns that is defined in 

terms of the number of transitions between 0 and 1 in the patterns. The most common 

approach in this case creates different classes of patterns one of which is termed as the 

“uniform” pattern, denoted LBP u2
𝑃, 𝑅 , where P are the pixels in the neighbourhood of radius R. 

A local binary pattern is called uniform if it contains a maximum of two bitwise transitions 

from 0 to 1 or vice versa where the corresponding bit string is considered circular. For 

instance, 00000000 (0 transitions) and 01111110 (2 transitions) are uniform whereas 

11101101 (4 transitions) and 01011011 (6 transitions) are not. It has been shown, that there 

are at most 58 different uniform 8-bit LBP patterns that occur in any image. Moreover, the 

distinct uniform patterns are deemed to encapsulate the most discriminating the distribution 

of texture features in any image. Therefore, uniform LBP histogram based method group 

together all the binary patterns that have more than two transitions (i.e. a non-uniform 

patterns) the total frequency of which will be under the 59th bin of the histogram, and the 
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frequency of the remaining uniform patterns will recorded in 1-58 bins of the histogram 

(Ahonen, Hadid et al. 2004). 

Depending on the version of LBP scheme, the extracted feature vector is either of the form    

𝑣 = [𝑣0, 𝑣1, … , 𝑣𝑖, … ,  𝑣255], 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑖𝑚𝑝𝑙𝑒 𝐿𝐵𝑃 𝑠𝑐ℎ𝑒𝑚𝑒, 𝑎𝑛𝑑  

𝑣 = [𝑣0, 𝑣1, … , 𝑣𝑖 , … ,  𝑣59], 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝐿𝐵𝑃 𝑠𝑐ℎ𝑒𝑚𝑒. 

Where vi is the frequency of the pixel value i-th bin in the image, and in the case of uniform 

LBP the 59th bin represents the frequency of the non- uniform patterns. 

5.1.5.4 The Fast Fourier Transformation (FFT)  

All the methods explained above were extracted from the spatial domain where an image is a 

matrix of grey-level intensity. The frequency domain of an image refers to the rate at which 

the grey-level intensity changes, providing a new representation of the image. In the case of 

images captured by a digital camera, the frequency representation of the image can be 

computed using mathematical transformations that map image pixel intensity with the 

frequencies of the “light” waveforms that hit the surface of the photographed scene. The 

same mathematical transforms can be applied to any other type of images, regardless of the 

capturing device and the generating source of waveforms, to obtain its frequency domain. In 

general, the frequency domain representation of an image captures particular changes in the 

image spatial domain, such as rapid changing in grey values which corresponds to high- 

frequency waveform (e.g. borders of image components). In contrast, the appearance of low 

frequency waveforms indicates minor changes in grey values which are associated with 

smooth regions. There are many mathematical transforms that help to model the frequency 

domain of images. The Fourier transform is the most common and the oldest form of 

mathematical tools that analyses an image into its spectral components determined by 

wavelength which is equivalent the waveform frequency (Gonzalez, Woods et al. 2004). 

Other useful transforms include discrete wavelets transforms and Discrete Cosine 

Transforms. 

It is assumed that for any image waveforms of different frequencies contributes to the 

generation of a single pixel value. In fact, we already know that the Sun’s visible light is a 

mix of a large number of different frequencies that form the colour of the rainbow, which can 

be seen when sun light passes through a prism. Naturally objects photographed reflect 
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different proportions of these contributing frequencies depending on texture and orientation 

of the object with respect to the light as well as the orientation of the object.  The same apply 

to US images or images generated by any source of waveforms. The Fast Fourier Transform 

(FFT) is an efficient algorithm that returns the contribution of the different frequency 

waveforms that determine the pixel values of the image.  

The Discrete Fourier Transformation DFT of an image extracts the strength of the different 

frequency waveforms contributing to the pixel values of the image (Gonzalez, Woods et al. 

2004). The DFT signal and its inverse can be computed using FFT. The DFT of an image f 

for any frequency pair (u,v) is a complex number that depends on all the spatial pixel values 

f(x,y) computed by the formula: 

                              (5.9) 

The output of the FFT is a size two array, which is also represented for each pair (u,v) of 

frequencies as a complex number whose real part Re(F) is the first entry in the above 

expression and imaginary part Im(F) entry. Unfortunately, we cannot display the output as an 

image. However, another more useful way of representing the complex numbers F(u,v) is in 

terms of the spectrum of F defined as its modulus: 

‖F(u,v)‖=√(Re(F(u,v)))2+(Im(F(u,v)))2                                       (5.10) 

and its phase: 

∅(F(u,v))= arctan (
Im(F(u,v))

Re(F(u,v))
)                                       (5.11) 

The spectrums of the FFT of an image have been used as an indicator of power possessed by 

the FFT. Figure 5.4 shows the ovarian ultrasound image with the spectrum of FFT.    

         

                                                            (a)                                                 (b)       



Chapter 5                                                                                                Characterising Features 

 

101 

 

Figure 5. 4: Example of ultrasound image of ovarian tumour before and after FFT(a) Original image (b) FFT 

spectrum of the image 

5.2 The Proposed Feature Extraction Method for Ovarian Tumours   

Classification from US Images  

This section is concerned with the testing the performance of our proposed list of feature 

vectors defined in the last section. Apart from the FFGF feature vector model, all the other 

feature vectors can be extracted locally by subdividing images into blocks of different sizes.  

First we shall investigate the effectiveness of extracting those local features instead of the 

global ones by using blocked based version of the above feature extractions. We then propose 

test the performance of the FFGF feature vector extracted from ultrasound images in terms of 

its discriminating benign and malignant ovarian tumours.  

In this section, all experimental results are based on ultrasound images that were cropped and 

pre-processed (Enhanced ROI) using the method that was described in (Chapter 4, Section 

4.3). The aim of the current identification experiments is to rank the various feature vectors in 

terms of their discriminating power. We therefore only use the linear SVM classifier, 

described in (Chapter 3, Section 3.5) to evaluate and compare the performances of the 

different feature extraction schemes. In Chapter 6, we investigate the use of other classifiers. 

In these experiments, we adhere to the evaluation protocol that was explained in details in 

(Chapter 3, Section 3.7).  

5.2.1 Extracted Local Features from the State-of-art Methods 

5.2.1.1 Localised Histogram Intensities Features  

Extracting feature vectors from the entire image (e.g. histograms) may not be ideal for 

discriminating two ultrasound images of different ovarian tumours. Figure 5.5 shows two 

images that have very similar histograms and different classes which are difficult separate by 

any classifier. However, there are obvious local variations in the intensity distribution, which 

is the motive for investigating the discriminating power of block-based local histogram 

feature vectors.  
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(a)                                                                         (b) 

Figure 5. 5: Two different types of ovarian tumours with their histogram (a) Benign tumour with its histogram         

(b) Malignant tumour with its histogram 

 

We extracted local features instead of the global ones by dividing the images into sub-blocks, 

getting the histogram of each block, and concatenate all histograms to form a single feature 

vector representing the input image. Figure 5.6, illustrate a 3x3 blocks partitioning example.  

 

Figure 5. 6: an example of 3x3 blocks with concatenated histograms 

We investigated the performance of 9 different sizes block subdivision. Figure 5.7 

demonstrates the effectiveness of local features over the global one. The figure shows the 

accuracy rate obtained by the linear SVM classifier each one of these nine different 

subdivision schemes. We notice signification improvements in terms of classification 

accuracy from 66.46% for using the whole image to over 70% for most of the blocking 

schemes attempted and thereby confirm that local features can capture more information 

relevant to distinguishing malignant from benign ovarian tumours. The optimal accuracy of 

76.33% is achieved for the 4x4 blocking scheme, but the figure also shows that using more 

blocks does not always help in capturing more relevant information. In fact, when we have 

9x9 blocks, the extracted features might become too localised and thus, the overall accuracy 

deteriorates. 

 

Figure 5. 7: Accuracy of local based histogram using SVM 
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5.2.1.2 Localised First-Order Statistical Features  

As in the previous section, we extract local version of the six-dimensional statistical 

parameters of the US image intensity histogram for the same nine block-subdivision schemes. 

We calculated these features based on the equations presented in (Section 5.1.5.2). The 

corresponding feature vector of each block is six. For example, the 2x2 block subdivision 

scheme produces a 24-dimensional feature vector.  

The performances of the various subdivision schemes as shown in Figure 5.8 confirm that the 

local features improved the accuracy of ovarian tumour classification as a result of capturing 

more relevant information to distinguish these two classes. Diagnosis accuracy was improved 

from 67.2% using a global feature to 73.46% and 74.46% using 4x4 and 5x5 blocks 

respectively. Again, the figure also shows that using more blocks does not help in 

distinguishing between different classes as features might become too localised and thus the 

overall accuracy decreases.  

 

Figure 5. 8: Classification result based on local statistical histogram features using SVM classifier 

 

Moreover, diagnosis accuracy of the statistical features of histograms (74.46%) is slightly   

lower than those based on using the whole histograms (76.33%) presented in the last section, 

indicating the limitations of the localised six moments in capturing local variations. 

5.2.1.3 Localised Histogram of LBP Features  

Having established that the localised 4x4 feature vectors have resulted in best/high 

performance when used with both previous feature vectors, we first conducted an experiment 

to compare the performances of the localised simple LBP histogram (i.e. the 256 bins 

scheme) with that of the uniform LBP histogram (59 bins scheme) when the images were 
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divided into 4x4 blocks. We also tested the effect of removing the 59th bin that contains all 

non-uniform patterns. We want to establish which type of LBP histogram has the optimal 

classification performance. The second experiment, in this section, is designed to test the 

performance of localised versions of the optimal LBP feature vectors established from the 

first experiment after subdividing the images into nxn blocks for n=1,2,…,9. 

 

Figure 5. 9: Example of blocked based LBP histogram for ultrasound image of ovarian tumour 

Figure 5.10 compares the classification results together with sensitivity and specificity rates 

based on LBP 256, 59, 58 bins extracted from each block of a 4x4 image subdivision. The 

result demonstrates that the simple LBP 256-bin histogram scheme outperforms the other two 

in terms of distinguishing between benign and malignant ovarian tumour. This confirms that 

the frequency of each of the 256 bins is important for discriminating these two classes of 

tumours. Accordingly, grouping all non-uniform bins under one bin seems to have some 

negative impact on the overall accuracy. This also explains the observation that the LBP-58 

scheme slightly outperforms LBP-59, in terms of diagnosis accuracy.  

 
Figure 5. 10: Accuracy rates of classification using LBP 256, 59, 58 bins 
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The results of the second experiments conducted to test the performance of various localised 

versions of the simple LBP feature vectors, for different image subdivision methods, are 

shown in Figure 5.11 These results confirm that capturing the local LBP 256 bins features 

yield better diagnosis accuracy compared with the global version (i.e. 1x1 subdivision 

scheme). The figure reports that the overall diagnosis accuracy was improved from 72.6% 

using the whole image to 78.5% using 4x4 blocks. The figure also illustrated that more 

blocks lead to decreasing the overall classification accuracy.  

 

Figure 5. 11: Effect of blocking on the LBP image based on 256 bins 

 

A close analysis of the results, presented in this section and previous sections, reveals that 

some images that were not successfully classified using the image histogram feature have 

been correctly classified using LBP and vice versa. For example, Figure 5.12 presents of the 

histogram of colour intensities and that of LBP 256-bin of two images of different tumour 

classes, one benign and another malignant. Clearly, intensities histograms are similar but 

LBP histograms are different. This is an important observation and suggests that features 

fusion could improve diagnosis accuracy. This will be investigated further in Chapter 6. 

jj           

      

 (a)                                                         (b) 
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(c)                                                         (d)  

Figure 5. 12: Intensities histograms Vs LBP Histograms for different US images of ovarian tumour (a) 

Histogram of benign tumour (b) Histogram of malignant tumour  (c)  LBP Histogram of benign tumour  (d) 

LBP Histogram of malignant tumour             

5.2.2 Novel Feature Extraction Method based on Fast Fourier Geometrical 

Features FFGF 

The results in the previous sections, on the automatic identification of ovarian tumours, have 

demonstrated beyond any doubts that the various feature vectors extracted from the spatial 

domain of the US scan images can significantly contribute, to better diagnosis when used as 

an aid to the medical experts. The lowest accuracy rate reported by the variety of schemes 

exceeds 65% which is certainly way above the capability of the random guess. These 

schemes mostly extract local texture data from the spatial domain. The fact that image 

frequency domain provides a rich and tested source of texture information was the main 

incentive to extract frequency domain feature vectors, we have developed the novel and 

elegant FFGF feature vector extracted from the binarized spectrum of the FFT of US images.  

The FFT spectrum by itself only provides information about the directions of the dominant 

discontinuities in the image (e. edges and other geometric features) without giving any spatial 

information about the position of such discontinuities. The discontinuities are indicated by 

the highlighted rays that seem to be radiating from the central frequency at (0,0) which 

represents the total energy (also known as the DC component in the image). Binarizing the 

FFT septum image using some sensible thresholds produces an elliptic shape like object in 

the centre whose axes and size are good indicators of the orientation of dominating textures 

in the original image. Accordingly, we propose the following Fast Fourier- based Geometric 

Features (FFGF) to model the shape of low frequencies spectrum extracted by the following 

steps: 
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The regionprops function in Matlab is used to fit an ellipse to the spectrum by matching the 

normalised second central moments as a threshold (Haralock and Shapiro 1991). Then from 

the fitted ellipse, we extracted a set of three features FFGF feature vector: 

FFGF() = [Major axis    Minor axis    Ellipse Area].  

Figure 5.13 illustrates the block diagram of our FFT geometric feature extraction method. 

 

Figure 5. 13: Block diagram of the proposed method based in frequency domain 

We conducted experiments using the same evaluation protocol, used above, and we built the 

linear SVM classifier to obtain the support vectors for the FFGF features extracted from the 

same training set of US images of ovarian masses. Figure 5.14 displays the result of 

automatic identification of the probe set of images in terms of accuracy rate and the 

corresponding sensitivity and specificity measures.  These results demonstrate the significant 

benefits of extracting feature vectors from the FFT domain in discriminating benign and 

malignant tumours. The significance of these results stems from the fact that the extracted 

frequency domain features are even less accessible to medical experts through visual 

inspection than the other three sets of spatial domain feature vectors. More importantly, that it 

takes only three basic frequency domain features to achieve the accuracy of above 85%. This 

would certainly provide a valuable contribution to medical tools with very little added cost. 

The figure also shows a significant performance in terms of Sensitivity and Specificity 

measures. 

 

Step 1: Pre-process the US scan image using the method explained in (Section 4.3). 

Step 2: Transforming an image into FFT frequency domain and compute its spectrum. 

Step 3: Binarise the FFT power spectrum, using a sensible threshold.                                     

Step 4: Determine the best ellipse fit of the highlighted shape in the centre of the binary 

spectrum image. 
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Figure 5. 14: Classification result based on FFGF using SVM classifier 

The rationale behind the proposal is that all detailed information including the texture of the 

image is represented by low frequencies around the centre of the spectrum. It is medically 

known that US scan images of malignant tumours tend to contain more details and complex 

structures compared to the much simpler images of benign tumours. Images listed in Table 

5.1 confirmed this observation when we modelled the shape of low frequencies spectrum by 

the FFGF features. The table shows that malignant images tend to have bigger/fatter ellipses 

i.e. more details and more complex structures compared with those of benign cases.  

 

Table 5. 1: Comparing Spectrum of US scans of ovarian benign and malignant tumours 

Enhanced ROI FFT Spectrum Binary spectrum with best fitted ellipse 

 
(a) Benign Tumour 

  

 
(b) Benign Tumour   

 
(c) Malignant 
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(d) Malignant 

 

 

 
 

 

 

 

To appreciate the implications of these results we present in Figure 5.15 a comparison of the 

performance of the FFGF based method with that of the other spatial domain features 

discussed in the last few sections. The figure clearly shows the proposed FFGF features were 

able to capture the differences between the two classes of tumours, particularly in the success 

in correctly identifying benign tumours.  

 

Figure 5. 15: Classification results using all feature vectors (SVM) 

These results also indicate that fusion may provide even more improved accuracy. This will 

be elaborated on in Chapter 6. It would be interesting to see how effective this newly 

proposed feature can be in our other area of interest, i.e. identification of miscarriage. 

5.3   The Proposed Method for Miscarriage Identification from US Scans of 

the Gestational Sac 

In this section, we investigate automatic schemes for identification of miscarriage from US 

scan image of the GS in pregnant women. Gynaecologists manually extract certain geometric 

parameters of the GS and examine various aspects of the GS such as the presence/absence of 

the Yolk sac and embryo heartbeat before deciding whether a miscarriage has occurred or 

not. The contributions of this section are two folds. We first attempt to automate the 

extraction of the GS geometric parameters currently obtained manually by gynaecologists, 
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plus a few other GS geometric parameters that have not been used and develop computer-

based schemes for classification of miscarriage from US scan of the GS. We also test the 

possibility of extracting the various image-texture based feature vectors, introduce in section 

5.1.5, from US scan of the GS for identification of miscarriage.      

Again we point out that we first enhance and segment the gestational sac using the 

procedures described in Chapter 4, Section 4.2, we prepared the segmented sac to the features 

extraction step. Once the various existing and new features are extracted, we conduct 

performance testing experiments, with the US scan of GS dataset described in (Chapter 3, 

Section 3.7) but this time using the kNN classifier with the Euclidean distance. The effect of 

using different classifier will be discussed in Chapter 6.  

5.3.1 Geometrical Measurement Features from Gestational Sac 

As explained earlier, each GS is viewed in two perpendicular planes. The GS is usually round 

in shape at the early pregnancy, but as the sac grows it becomes more elliptical. Therefore, 

our algorithm aims to find the best-fitted ellipse for the segmented GS for each plane. The 

regionprops function in Matlab is used to fit an ellipse to the sac region (Haralock and 

Shapiro 1991). This function returns four parameters: Major and Minor axes, Centroid and 

Orientation which is the angle between major and minor axes, as shown in Fig 5.16 

Assuming that the GS has an ellipsoidal shape in 3D, the three principal axes of the ellipsoid 

has traditionally been estimated by the major axis (A), minor axis (B) of the ellipse from the 

sagittal plane and the major axis (C) from the transverse plane.  After that, we define the 

following geometric set of features from each GS: 

 

              

                                                       (a)                                               (b)  

Figure 5. 16: Automatic best fitted ellipse on segmented GS with the Major and Minor axes (a) Segmented GS 

in sagittal plane (b) Segmented GS in transfer plane     
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1. Mean Sac Diameter (MSD):  

This is simply the average of three principal diameters along the A, B, and C axes, from the 

two planes of the GS. 

2. Volume:  

The GS volume can be estimated using the three principal diameters (Figure 5.17) as follows: 

                                      V =
1

8
.

4

3
∙ π ∙ A ∙ B ∙ C                                                   (5.12) 

we take the cubic root of the volume as a volume measure.  

 

Figure 5. 17: An ellipsoid shape with its three principal axes 

3. Perimeter:  

This is calculated by counting the number of pixels around the boundary of the GS, and then 

taking the average of the perimeter from both planes to produce a single perimeter measure.  

Besides the above features, in some cases, gynaecologists estimate his/her decision based on 

the shape of the GS (i.e. irregular border of the GS). Here, we define such features as image 

parameters, and test their performance separately to see if any benefits can gain. These 

features are: 

4. Circularity: 

 A very common shape factor is the circularity, if circularity 1 indicates for circle shape. This 

feature depends on the area and perimeter of the object. We calculated the average of the 

circularity from both planes, to produce a single circularity measure. 

Circularity = 4π ∗
Area

Perimeter^2
                                         (5.11) 

5. Compactness: 

This factor shows the roughness of the GS boundary. The smaller value indicates the most 

roughness. Averages of both planes are taken to produce one compactness measure. 

Compactness =
Peremtier2

Area
                                              (5.12) 
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6. Solidity:  

Show irregularity of object border, the value of solidity will be small if the border is irregular. 

From the average of both planes we produced one solidity measure.  

   Solidity =
Area

Convex Area
                                                   (5.13) 

7. Eccentricity:  

The eccentricity is the ratio of the distance between the foci of the ellipse and it is major axis 

length the value is between 0 and 1. We calculated the average of the eccentricity from both 

sections to produce a single eccentricity measure. 

 

8. Maximum Diameter:  

After we found major and minor for each section, then chose the maximum diameter between 

four measurements.      

The MSD is the one measure that is common between the above automatically extracted 

features and the ones used by gynaecologists. Therefore, it is natural to compare between 

Automatic MSD and the Manually measured MSD. This also helps illustrate the effectiveness 

of our automatic segmentation.  Figure 5.18 presents a scatter plot of all 184 images as points 

along the automatically computer estimated and the manually measured MSD dimensions. 

The figure shows that the values of automatic MSDs are closely correlated to the manual 

MSD (R-square = 0.98). Also, the approximation line across the points has an angle close to 

45% with points located near to the line on both sides, indicating that (a) the automatic 

measurement, in general is close the manual measurement, and (b) there is no systematic bias 

in the automatic measurements. We should also emphasise on the point that there lacks of a 

“ground truth” in manual measurement that we can rely on to correctly identify the margins 

of error made by the automatic measurement.  
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Figure 5. 18: Differences between manual and automatic measurements of MSD (R- square= 0.98) 

Table 5.2 presents the images of the two example GSs with manual landmarks as well as 

automatic measurements of the two diameters in the sagittal plane (d1 and d2). The Figure 

shows that both types of measurement lead to margins of error from the actual size of the GS. 

The automatic method always attempts to search for the maxima when estimating the 

diameters of the best-fit ellipsoid, whereas human operators do not and can be very 

subjective.   

 

Table 5. 2: Examples of manual vs. automatic measurements 

Manually measured d1 & d2 Detected Border of GS Estimated d1, d2 vs Manual d1, d2 

   

(a) A regular shaped GS where manual and automatic measurements are close 

   

(b) An irregular shaped GS where manual and automatic measurements are different 

                                                           



Chapter 5                                                                                                Characterising Features 

 

114 

 

5.3.2 Performance Testing Experiments 

For each US image, the above-listed features can be treated as separate parameters or as an 

attribute of a feature vector for diagnosis purposes. The aim of this section is to test the 

performance of automatic identification of miscarriage from US images of the GS in pregnant 

women. The experimental dataset for this task arrived in two batches (94 in the first batch 

and 90 images in the second). The second set differs from the first set due to the difference in 

source scan machine, time of the scan, and the observers. Accordingly we conducted two sets 

of experiments. The main purpose behind the first set of experiments is to train the proposed 

methods on one dataset and test it on another independent dataset whereas the second set of 

experiments was conducted on a combined dataset using the cross-validation protocol.  

1. First Experiments:  

This experiment was designed to train our automatic identification schemes by using the first 

set (94 images) and testing the accuracy using the new set (90 images) as test images. In this 

experiment, the old set consisted of 79 PUV cases and 15 miscarriage cases, while the new 

set consisted of 78 PUV cases and 12 miscarriage cases. We used separately each of the first 

three geometrical features defined above extracted from the best-fitted ellipse imposed on the 

gestational sac area and then we concatenated the three features to see the effect of combined 

features on classification results.  

Figure 5.19 shows the result of this set of experiments. Using the automatic MSD feature 

alone, an overall accuracy near to 99% with sensitivity (miscarriage) of 100% and specificity 

(PUV) of 98% was obtained. This is comparable to the accuracy of 98.8 % (sensitivity 100%, 

and specificity 97.6%) when used the volume feature alone, and an overall accuracy of 97% 

(sensitivity of 100% and specificity of 94.1%) when used the perimeter feature alone. 

Combining all three features does not seem to lead to better classification results. This is 

because the three types of features are highly correlated.  

It should be said that the perimeter remains as a robust feature which is automatically 

measurable from each single image of the GS and still gives the relatively good performance, 

and hence should not be easily dismissed. Moreover, its roughness can also be used as added 

information in unsure cases.  
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Figure 5. 19: Experiment 1: Miscarriage classification using MSD, perimeter, volume and combine all three 

 

2. Second Experiment (Combining Dataset 1 and Dataset 2):  

We conducted another set of experiments by combining the two datasets 1 and 2, i.e. we have 

184 ultrasound image of GS were used as a new set (157 PUV cases and 27 miscarriage 

cases).  The testing protocols are all described in Chapter 3, Section 3.6.1.2. From Figure 

5.20 is appear that the accuracy result is marginally higher when using MSD (99.2%) and 

Volume (99%) while for the Perimeter we achieve a marginally lower accuracy of 96.6%. 

Combining all three features yields accuracy of 98.8%, which is an improvement of more 

than 1% on the results of experiment 1, but it is still less than MSD.  

In short, the results from the second set of experiments on the effectiveness of the extracted 

features give similar readings as those from the first experiments confirming that the 

accuracy rates are not influenced by the differences between the two data sets, i.e. the system 

works well regardless of the scanning machine, the time of the scan and operator skill. While 

the sensitivity remains high for MSD and volume features, the specificity for the perimeter 

feature is reduced marginally. At the same time, the sensitivity for each type of feature has 

improved to 100% while sensitivity dropped slightly.  
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Figure 5. 20: Experiments 2: Miscarriage classification using MSD, perimeter, volume and combined all three 

features  

We now investigate the performance of the additional six geometrical features defined above 

(i.e. area, compactness, circularity, solidity, maximum diameter and eccentricity) for 

identification of miscarriage cases. The results of the classification tests, using the same setup 

as in experiments 1 and experiment 2 above, on these features are shown in Figure 5.21 to be 

significantly inferior to the performance obtained by the other three features. These 

experiments confirm that these features have little additional diagnostic value for miscarriage 

cases. The rather high performance of the Area, and to some extent the Max Diameter, 

features reflect the fact that these parameters are closely related to the various diameters.  The 

reason for the poor performance of the other features may well be due to the images in our 

data set where most sacs, miscarriage or PUV have regular and smooth borders. However, 

more images of various border characteristics are needed in future investigations to draw 

solid conclusions 

 

Figure 5. 21: Performance of the six additional features, using kNN classifier 
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Close examination of the misclassified PUV images, i.e. false positives, reveals that their 

MSDs varied from 20 to 25 mm which is very close to the borderline between PUV and 

miscarriage cases. Our expert collaborator, who prepared the dataset, confirmed that all these 

borderline PUV cases eventually became cases of miscarriage in follow-up diagnoses. Table 

5.3 shows the borderline examples that were diagnosed by the expert compared to the 

automatic method, confirming that our automatic method enabled more accurate and advance 

prediction than the manual method in this case. More experiments are needed to consolidate 

this finding. 

Table 5. 3: Represents the Manual vs. Automatic diagnosis 

Image ID 
Manual Diagnosis Computer Based Diagnosis 

MSD First Diagnosis Ultimate Diagnosis MSD Automatic Diagnosis 

17 19.15 PUV Miscarriage 19.18 Miscarriage 

67 22.67 PUV Miscarriage 24.06 Miscarriage 

46 15.30 PUV Miscarriage 17.39 Miscarriage 

 

5.3.3 Image Textural based Feature Vectors for Identifying Miscarriage Cases   

Having demonstrated that the first three automated geometric features of the GS have almost 

perfect performance, we decided to investigate whether the image based features extracted 

from the spatial/frequency domain of the US scan images of ovarian tumour tumours can add 

any benefits for the identification of miscarriages. 

We extracted the FFGF, the LBP and the Grayscale Histogram features as texture feature 

space of the US scan images of the GS from the two sets of images used in experiment 1 and 

experiment 2, above. The experimental results demonstrate a rather modest discriminating 

power of these image-based features. The results shown in Figure 5.22, are very poor 

compared with the performance of the three geometrical features tested in the last section. 

These results confirm that miscarriage identification is entirely dependent on the shape and 

size of the GS sac. However, the texture inside the GS tends to be very similar in both cases 

(PUV and miscarriage).   
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Figure 5. 22: Accuracy of identification of miscarriage and PUV cases for all three feature vectors 

5.4 Summary and Conclusions 

This chapter was primarily devoted to select and extract features from pre-processed US scan 

images of gynaecological that have a high capability in discriminating different types of 

abnormalities. In our research framework, this is an essential component and identifying 

appropriate features is an application-dependent effort. Hence, we dealt with the 

identification of miscarriages separately due to the fact that medical experts use the well-

defined set of features.  

We have successfully developed and demonstrated the reliability of automated procedures to 

extract several features that represent various GS dimensional measurements, few of which 

are manually determined by a radiologist and relied upon by gynaecologists to identify 

miscarriage cases. The experimental work conducted to test the performance of automatic 

diagnostic schemes based on these features have shown beyond any doubt excellent accuracy 

rates when the kNN classifier used, with the MSD achieving in the high 90’s. The choice of 

kNN is based on the widely accepted knowledge of its suitability for low dimensional feature 

spaces.   

For the other gynaecological application of diagnosing Ovarian Tumours, our investigations 

where more motivated by the well-known practices in image based pattern recognition 

applications and was guided by medical expert advice on the importance of texture in 

distinguishing between benign and malignant tumours. Image analysis theory provides a 

range of tools to determine image texture information both in the spatial and frequency 

domains. We adopted a number of feature vectors well-known for their ability to encapsulate 

local as well as global image texture information. In the spatial domain, such features include 

image/sub-image histograms, statistical moments of grey scale, and local binary patterns 

(LBP). Relevant frequency domain features can be defined using different frequency analysis 
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transforms, but the FFT spectrum of the image is known to provide a rich source of global 

image texture information. We developed an innovative new condensed low dimensional 

feature vector obtained from a special threshold-based binarised FFT spectrum. This feature 

encapsulates the image texture information that depends on all image pixel values. We 

denoted this three-dimensional feature vector, extracted from an ellipse shaped object, by 

FFGF. The experimental work conducted to test the performance of automatic Ovarian 

tumour diagnostic schemes, based on these various spatial/frequency domain image-texture 

features using the SVM classifier, have demonstrated that each one of these schemes has the 

satisfactory-to-considerable power of discriminating Benign from Malignant tumours that 

cannot be attributed to chance. Interestingly, our innovative three-dimensional FFGF feature 

vector has significantly outperformed the spatial domain features, achieving more than 85% 

accuracy. Again the choice of SVM, in this case, was based on the widely accepted 

knowledge of suitability for high dimensional feature spaces. Note that, the FFGF 

encapsulates global image-texture that is extracted from the high dimensional FFT spectrum.     

The successful outcome from this chapter investigation indicates the potentials of using 

machine learning to provide support for vital health decision-making in the highly specialised 

branch of biomedical image analysis for gynaecological abnormalities. This will be the main 

focus of the investigations in the next chapter. 
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CHAPTER 6 

FUSION BASED CLASSIFICATION OF GYNAECOLOGICAL 

US IMAGES SUPPORTED BY LEVEL OF CONFIDENCE  

In the previous chapter, we investigated the automatic extraction of a mix of different 

existing and new sets of features from US scan images to characterise ovarian tumours and 

gestational sacs. We illustrated the performance results of these sets of feature vectors by 

using one specific classifier (SVM for ovarian tumour classification and kNN for miscarriage 

identification). Based on the research rationales outlined in Chapter 3, the next step of our 

research is to investigate the effectiveness of using multiple classifiers and fusion scheme, for 

improved diagnoses of ovarian tumour states and miscarriage cases. The fusion investigations 

will be confined in fusing at different levels, the outcome of the SVM and kNN classifiers 

only for each of the extracted single/concatenated feature vectors. Moreover, in this chapter 

we introduce the concept of level of confidence to the diagnosis outcome. The specific 

contributions in this chapter include: 

 Improving the performance of the automatic binary classification based on various 

fusion approaches in multi-feature schemes. 

 Introducing the concept of level of confidence in the classification decision relevant to 

the two applications, namely miscarriage diagnosis and ovarian tumour identification. 

 Fusing different sets of features at the decision level supported by the level of 

confidence measures, and introducing a Not Sure decision to flag the difficult cases 

that could have been misclassified. 

In Section 6.1, we review the literature about classifying different diseases using ultrasound 

images. In Section 6.2, we extend the work in Chapter 5 and test the performance of the 

various sets of feature vectors for both gynaecology abnormalities when using the other 

classifier (i.e. kNN for ovarian tumour classification and the SVM classifier for the 

identification of miscarriage). Automatic decisions made by these two classifiers rely on 

meeting some criteria that depended on a distance function or a similarity score, and the 

distribution of the computed distances/scores could provide some indication of the 

reliability/confidence of/in the classification. In Section 6.3, we introduce the concept of 

confidence level and models for quantifying confidence in decisions made by kNN and SVM 

classifiers. In section 6.4, we test the performance at three levels of confidence of (1) the 
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kNN classification for the various GS miscarriage application schemes, and (2) the SVM 

classification for the various Ovarian Tumour application schemes. In Section 6.5, we 

investigate various types of multi-schemes fusion to improve the accuracy of SVM 

classification of Ovarian Tumour US images. This investigation includes fusion at the feature 

level, at score level and decision level. The decision level fusion includes a novel approach 

which would be based on levels of confidence, and demonstrate the effectiveness of this 

approach with experimental results for US images of Ovarian Tumours. Section 6.6 

summarises the chapter with concluding remarks. 

6.1 Classification of Ultrasound Images - Literature Review  

In the medical domain, different classification techniques have been applied for different 

medical diagnosis purposes. In recent years, there have been increasingly more research 

works in the area of ultrasound image classification for different diagnostic purposes. As we 

see next several research projects, have been reported in the literature on the classification of 

ovarian abnormalities, but to our knowledge, no existing work has been reported in the 

literature the area of automatic GS classification.  

A multi-class SVM classifier was applied on histogram moments with Grey Level Co-

Occurrence Matrix (GLCM) as features to classify three different types of ovarian cysts: 

Simple Cyst, Endometrioma, and Teratoma (Sohail, Rahman et al. 2010). The method was 

tested on 478 ultrasound images of ovarian cysts with a claimed average accuracy of 86.90%. 

More work on ovarian tumour classification was done using the Decision Tree classifier on 

Higher Order Spectra (HOS) textural features (Alcázar and Jurado 2011). This technique was 

validated using 1000 benign and 1000 malignant images obtained from 10 patients with 

benign tumours and 10 with malignant tumours respectively. With a 10-fold stratified cross- 

validation, a high accuracy of 95.1% (sensitivity of 92.5% and specificity of 97.7%) was 

reported. The limitation of this work is that the images are obtained from just 20 patients and 

with limited pathology. Later, the same team of researchers proposed a new solution in 

(Acharya, Mookiah et al. 2013) based on Hu’s invariant moments, Gabor transform 

parameters and entropies. These features were first extracted from 2D colour Doppler and 3D 

ultrasound images of ovarian tumour. Then probabilistic neural network (PNN) classifier was 

then applied to discriminate between benign and malignant tumours. The proposed solution 

was evaluated using a 10-fold cross-validation on 1300 benign images and 1300 malignant 

images obtained from 10 patients with a benign tumour and 10 with a malignant tumour, and 
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an average classification accuracy of 99.8 % (sensitivity of 99.2 % and specificity of 99.6 %) 

was reported. Again this work was done based on the abundant supply of images but from a 

very limited number of patients (20). 

In a research project about breast tumour classification in (Liao, Wan et al. 2011), three types 

of classifier SVM, ANN and kNN were evaluated on 321 ultrasound images to differentiate 

benign from malignant breast lesions based on the moment features that describe the contour 

of the breast lesions in sonography. The authors concluded that the performances of all three 

classifiers achieved the accuracy rate of over 80%, with SVM achieving the best accuracy of 

86.9%. In a study on prostate cancer lesion classification (Moradi, Mousavi et al. 2009), 

SVM was used to classify the ROI’s of 35 ultrasound images, and 12 feature components 

representing texture were extracted. Four of the features were the statistical moments of the 

pixel intensities (i.e. mean, standard, skewness, and kurtosis) and the remaining eight features 

were from the co-occurrence matrices (namely correlation, energy, contrast, and homogeneity 

in the 0 and 90 directions). An overall accuracy of 91.7% (sensitivity of 86.6%, and 

specificity, of 94.7%) was reported.  

In the next section, we expand our work reported in Chapter 5, using two different classifiers 

(SVM and kNN) for the automatic classification of the ovarian tumour as well as 

identification of miscarriage from US scans of the GS. We shall do that using the variety of 

feature vectors. In our work, the numbers of scan images are smaller than those reported 

above, but the numbers of patients are considerably more, in ovarian tumour dataset we have 

187 images which these belong to 177 patients, whereas in GS dataset we have 184 patients.  

6.2 Performance of Different Classifiers for Gynaecological US Images  

6.2.1 Classification of Ultrasound Images of Ovarian Tumours  

We followed the experimental protocols as explained in Chapter 3, Section 3.7 to evaluate the 

performances of our two chosen classifiers, i.e. kNN and SVM using the different individual 

and multiple features as described in Chapter 5. Except for the FFGF feature scheme, for all 

other schemes, corresponding features extracted from a 4x4 block subdivision of the images 

are concatenated.  

In this subsection, we look at the classification of ultrasound images of ovarian tumours first. 

For simplicity we set k=1 for the kNN classifier, Figure 6.1 shows the overall classification 

accuracy rates achieved by each single feature scheme with both SVM and kNN classifiers. 

The figure clearly shows that the SVM consistently outperforms the kNN classifier on all 
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types of features for classifying benign and malignant tumours. The performance differences 

between the two classifiers range from 8.6 % for the statistical histogram features to 16.7% 

for the FFGF features. Since most types of feature vectors are of relatively high dimensions, 

the good performance of SVM in high dimensional feature spaces partially explains its 

advantage over the kNN classifier. However, it should be noted that SVM also has the best 

performance over kNN for the FFGF features that are of significantly low dimensionality 

(three attributes only).  

In other words, the rather very low three-dimensional image-texture based features extracted 

from the Fourier transform spectrum are better separated by the linear hyperplane of the SVM 

than the Euclidean distance of the nearest neighbour. This raises some questions about and 

exceptions to the validity of the widely accepted characteristic of the SVM as being more 

suitable for high dimensional feature space. A possible justification of the exception in this 

case relates to the way the FFGF features encapsulate the information in their source. The 

FFGF is extracted from the FFT spectrum image each pixel value of which represents the 

texture information throughout the US image that proportionally highlighted by the pair of 

waveform frequencies indicated by the spectrum pixel position (u,v). This makes FFGF as a 

compressed version of the entire image texture with little loss of information, i.e. FFGF acts 

as a very effective dimension reduction procedure.       

 

Figure 6. 1: Ovarian tumour classification accuracy by SVM and kNN 

 

The classification results still demonstrate the reasonable success of single feature schemes 

but still not optimal. The highest level of overall accuracy is only 85.9% for the FFGF 

features, and the lowest level of accuracy is only 73.46% for the statistical features of the 

histogram. Either classifier could result in misclassifications. After closely examining the 

types of ultrasound images classified as well as sensitivity and specificity by each classifier, 
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we realise that both the SVM and the kNN tend to make correct predictions for benign 

tumours of relatively simple textures. However, for malignant tumours of complex textures 

and structures, the SVM makes better classification decisions than the kNN classifier, but 

both the SVM and the KNN also makes errors with benign tumours of lesser complex 

textures and structures. Figure 6.2 presents some example images together with the 

classification results by the kNN and SVM classifies on the extracted FFGF features. This 

interpretation tends to suggest that fusion of different classifiers with the same or different 

feature vectors may complement each other and make better diagnostic classifications (see 

further discussions on this issue later in this section). Testing the fusion of the two classifiers 

but with different feature vectors involve a great deal of experimental tests which will 

certainly be of serious interest especially for discriminating the various subclasses of 

malignant and benign tumours, which is outside the scope of the current project. In this 

chapter we shall focus on fusing one classifier with different feature vectors.    

         

                                      (a)                                              (b)                                             (c) 

Figure 6. 2: Example images correctly classified or misclassified by SVM and kNN (a) Benign ovarian tumour 

correctly classified by both classifiers kNN and SVM (b) Malignant tumour correctly classified by SVM but 

misclassified by kNN (c) Benign tumour correctly classified by kNN but misclassified by SVM 

6.2.2 Classification of Ultrasound Images of Gestational Sac 

Here we expand the work reported in Chapter 5 to examine and compare the classification by 

the kNN and SVM classifiers on US scan images of gestational sacs for identification of 

miscarriage cases. We follow the same evaluation protocol as described in Section 3.7. As in 

Chapter 5, we conducted two sets of experiments. The overall accuracy rates are presented in 

Figure 6.3 and 6.4 for experiment 1 and experiment 2, respectively.  
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Figure 6. 3: Comparing performances of SVM and kNN for classifying GS - Experiment 1 

 

 
Figure 6. 4: Comparing performances of SVM and kNN for classifying GS - Experiment 2 

One can easily observe that for this set of features the relative performance of the two 

classifiers is the opposite to what was observed for the classification of ovarian tumours. In 

fact, the kNN classifier gives consistently better though comparable results to those attained 

by the linear SVM for all types of extracted features in experiment 1, and for most of the 

types of features in experiment 2.  However, for the image texture based features (Histogram, 

LBP and FFGF), the relative performance of the two classifiers are in the opposite direction. 

This is a further confirmation that SVM favours the high-dimensional feature vectors as well 

as the FFGF.      
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Figure 6. 5: SVM Vs. kNN for classifying miscarriage for image texture based features 

 

However, the better performances of the SVM with the image texture based features are still 

way below the almost perfect performance of the kNN with the simple GS measurement 

features (i.e. MSD, Perimeter, and Volume). Note that such features are not applicable to 

ovarian tumours due to the fact that these tumours often consist of several sac-like 

compartments.  The combined results can be summarised as follows:  

 With very few exceptions, kNN marginally slightly outperforms the SVM in 

identifying miscarriages when features relating to the dimension of the GS are used, 

but this pattern is reversed when image texture based features are used. 

 As established in chapter 5, the best performing feature vectors when kNN was used 

achieved the same performance ranking when SVM classifier is used.  

 Comparing to the SVM classifier’s relatively good performance for high dimensional 

feature vectors in the ovarian tumour diagnosis, the kNN classifier performs better 

than SVM for the low dimensional feature space in miscarriage case identification 

except for the FFGF feature vector.  

 In the problem domain of miscarriage case identifications, the performance differences 

by different classifiers are much less than the performance differences by the features 

used. For most features, and in particular, the better performing ones, the accuracy 

rates of the two different classifiers are only marginally different. 

Again these results provide motivation to consider fusion as a plausible approach to achieve 

better and more reliable solution of the miscarriage identification problem. However, this 

motivation is not strong as in the case of ovarian tumour classification since the performance 

of both classifiers are very similar and already very high. 
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6.3 Quantifying Confidence in Classification Decisions 

In real life medicine, diagnosing any types of health related abnormalities using medical 

images (e.g.  Ultrasound, MRI, X-ray, etc.), the observer first examines carefully the relevant 

scanned image and then makes the diagnosing decision using a well-established set of rules. 

However, different observers may come to different diagnostic decisions even when 

following the same procedure. In fact, diagnosis of medical conditions and the diagnosis 

accuracy very much depend on the experience of the observer. Very often, he/she will label 

the image as a negative or positive case, with the level of certainty. Sometimes, there can be 

cases where the observer alone cannot decide the diagnosis outcome when the level of 

certainty is lower than what makes the observer sufficiently sure in making a diagnosis 

decision. In such a scenario the observer often seeks opinions from other experts, to ensure 

raising the level of certainty regarding an outcome. In certain cases, however, combining 

different opinions may have a negative effect on the eventual diagnosis: instead of more 

certain, the observer becomes less certain. For instance, in some cases, two experts may reach 

opposite conclusions of the diagnosis; even each of them makes the decision with a high level 

of confidence. In such a situation, the diagnosis is considered inconclusive, and further 

medical checks such as surgery/biopsy on the patient are conducted. This informs us that 

medical diagnosis in practice is often not only concerned with whether a case is correctly 

diagnosed, but also how strong and reliable each diagnosis decision tends to be, and very 

often a final diagnosis decision making involves multiple decision makers. Therefore, it 

makes sense to investigate and design a quantitative confidence measure that could be 

embedded into the framework of automatic classification decisions that could also be 

exploited when fusing multi-classifiers for detecting the different classes of gynaecological 

abnormalities.  

6.3.1 Level of Confidence in Classification 

Generally in a space of data points of negative and positive classes, there exists a boundary 

that separates data points of one class from data points of another class. Classification models 

tend to locate or estimate such boundaries between training examples. At classification stage, 

the further away from the boundary a test data point is, the higher the level of confidence that 

could be associated with the decision about the class that the data point belongs to. On the 

contrary, the nearer to the boundary the data point is, the less confident the decision about the 

class to which the input data point belongs. In an extreme case when the data point is exactly 
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located on the boundary, the confidence is the least: it is most uncertain about which class the 

data point should belong to, i.e. a not sure case. 

Decision strength has been embedded in many data mining solutions. In association rule 

mining, for example, confidence is defined as a posterior probability between the support of a 

rule and the support to the condition part of the rule (Agrawal R 1993). In Bayesian 

classifiers, the differences among the conditional probabilities of the classes that the data 

point belongs to can be taken as an indication how strong the final decision of taking the most 

probable class is (Pang-Ning Tan 2005). In decision trees, the proportion of the majority class 

examples at a leaf node can also show the strength of the classification decision arriving at 

that leaf node. In the context of a basic kNN classifier with majority voting, if all k nearest 

neighbours of a test image are from one class, then the classification decision will be most 

certain with the highest level of confidence. However, when there is a tie among the k nearest 

neighbours, i.e. the border line situation, the level of confidence regarding the class of the test 

image is the lowest. When the distances of the k nearest neighbours are considered, the level 

of confidence should reflect which class side the test data object should be more aligned to. 

In the context of an SVM classifier, the further away a test sample is from the separating 

hyperplane, the higher the level of confidence is about the class of the test image, and the 

nearer it is to the hyperplane, the lower the level of confidence becomes. 

A measure of confidence in a decision made by a classifier will certainly depend on the 

criteria used by the adopted classifier. In this section, we shall attempt to introduce a simple, 

and easy to calculate, the measure of confidence together with a discrete concept of level of 

confidence that could be adopted in the area of automatic medical image diagnosis. We 

introduce a simple measure and levels of confidence for both kNN and SVM classifiers that 

is based on the distribution of distances/scores for test samples. Later in the chapter, we study 

the defined levels of confidence in the classification decisions made for the different 

gynaecological abnormalities. We shall close the chapter by focusing on multi-schemes 

fusion in general and expand this by introducing and testing the performance of confidence-

based fusion for Ovarian Tumour identification.    

6.3.2 Assigning Level of Confidence for the kNN Classifier  

Consider the use of kNN as a classifier for a given binary classification problem, and assign 

the symbol “+” for one class and “-“ for the other class. With each classification decision, at 
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the testing stage, we associate one of three levels of confidence through the following 

method: 

Step 1: Calculate the distance between the test sample and each template in the gallery, and 

normalise the set of signed distance measurements using the division-by-range 

method and then obtain the mean µ and the standard deviation σ over the distances. 

Then multiply each distance by the sign of the corresponding template class.  

Step 2: Determine the k nearest neighbours of the testing sample. 

Step 3: Calculate the average of the k nearest signed distance measurements and use the 

average as a decision score (Sc). 

Step 4: Determine the level of confidence in the kNN decision by using Sc against the value 

σ, obtained in step 1, according to the following three rules:  

Table 6. 1: Rules for assigning a level of confidence in kNN decisions 

Rule Condition Level of Confidence 

1 (Sc ≤ -σ) Or  (Sc ≥σ)  High 

2 (Sc ≥ σ/2 And Sc< σ) Or (Sc ≤ -σ/2 And Sc > -σ) Medium 

3 -σ/2 < Sc < (σ/2 Low 

The rationale behind this confidence level setting scheme is that the overall mean distance 

defines a near zero separation of the positive and negative classes. The thresholds adopted in 

the rules are heuristically determined. In fact, assuming the right choice of gallery templates, 

the distribution of distances between any new sample and the gallery templates is expected to 

be normal. This means that there well-known rules about the fraction of samples’ distances 

that fall within multiples of σ from the mean (e.g. there are around 68% and 95% of the 

scores within one and two standard deviations accordingly). The decision score, i.e. the 

average signed distances of the k nearest neighbours will give an indication on how far away 

the combined distance is from the mean and which side (+ or -) of it. The nearer the sample 

scores to the mean the less confidence one associates with the decision determined by the 

kNN rules. 

6.3.3 Assigning Level of Confidence for the SVM Classifier  

As explained in Chapter 3, section 3.5  and in (Duda, Hart et al. 2001), the SVM decision for 

a sample x depends on the score Sc(x) which represents the distance between x to the support 
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vectors near the hyperplane separating positive and negative classes. In this section, we first 

describe a set of rules to map a classifier score from an SVM classifier to an appropriate level 

of confidence.  

It is natural to adopt the approach used for the kNN classifier for the SVM classifier and 

associate  a decision confidence level to a sample x using the position of its score Sc(x) within 

the distribution of decision scores of a training subset (a random sample) relative to the 

standard deviation σ of the training scores. Accordingly, we use the corresponding three rules 

of Table 6.1. 

Figure 6.6 shows a hyperplane of an SVM with samples from the two classes being 

categorised into three levels of confidence based on their distance (i.e. scores) from the 

hyperplane. If the score of an image is on the far side of the positive samples from the 

hyperplane, then the sample will be classified as a benign with high level of confidence. 

However, if it’s still on the negative side closer to the hyperplane, then it will still be 

classified as a benign but the level of confidence will be medium or low.  

 
Figure 6. 6: Binary SVM with confidence level intervals 

6.4 Confidence-related Accuracy for Gynaecological Abnormalities 

Classification 

This section re-evaluates the accuracy of the main classification schemes, studied so far, 

within the level of confidence framework by implementing the above models of confidence 

measures. Based on the conclusions in section 6.2, we only workout the confidence levels 

using kNN only for the miscarriage identification and using SVM only for Ovarian Tumour 

classification. In each case, we use the best performing features.  
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6.4.1 Confidence Level of Miscarriage Classification Decision.  

The identification of miscarriage using the kNN classifier with a number of geometric 

measurements of the scanned GS has been shown to achieve near perfect accuracy (about 

99%) while the same or other features have significantly lower accuracy when classified with 

SVM. In this section, we investigate the effectiveness of applying the concept of confidence 

level to the miscarriage diagnosis problem, and for that, we revisit the distance calculations 

made to achieve the reported accuracy using the geometrical features of GS (such as MSD, 

Volume, and Perimeter) to calculate the level of confidence in discriminating miscarriage 

cases from PUV cases. Figure 6.7 show the block diagram for the process.  

 

 
Figure 6. 7: The block diagram of confidence level computation of kNN decision 

For these experiments, reported here, we set k = 3 for the kNN tests. Figure 6.8 presents the 

accuracy rate  for the classification at the associated level of confidence for each type of 

feature first and then three types of features combined into a three component single feature 

vector. In other words, for each feature vector and at each level of confidence the displayed 

values represent the percentage of those images that are accurately classified at that level.  

For example, when the MSD feature is used in Experiment 1, then among the 90 test images, 

39 images were classified with High level of confidence and 97.5% of them (i.e. 38 images) 

were correctly classified. Similarly, the decision on 40 other images were given the Medium 

level of confidence and 39= 40*0.975 image were accurately classified, while the decision 

about the remaining 11 images were given a Low level of confidence but only 9=11*0.8075 

images were accurately classified. Similar innerpretation made about the 184 test images 

used in experiment 2. 
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Figure 6. 8: Classification of miscarriage, for different features, at different levels of confidence 

 

These results indicate a strong link between the level of confidence and accuracy rate for both 

experiements. In general, a decision made with high/medium level of confidence is highly 

likely to be accurate, while decisions made with low level of confidence could raise the alarm 

and in line with the medical practice it is safe to classify as PUV and a later scan should be 

conducted and re-investigated.  A close examination of  most images classified with low level 

of confidence are those where MSDs are measured between 13 mm and 26 mm, close to 

borderline cases (when MSD is between 16 mm and 25 mm) according to the guideline given 

in (Liao, Wan et al. 2011). Figure 6.9 show some examples of such images. The borderline 

cases in practice are more challenging to diagnose even for specialists. We note that there is a 

certain degree of disagreement between the United States guideline (MSD > 16mm) and the 

UK guideline (MSD > 25 mm). This means that our decision strength levels correspond 

closely to the guideline’s findings. 

 Furthermore, we also have found that most images that classified with the High level of 

confidence are of miscarriage cases whereas most images that classified with Low or 

Medium levels of confidence are PUV cases. This finding is also somehow expected: it is 

more certain to diagnose large size clear empty gestational sacs as miscarriage cases than 

identify various complexes and often less certain pregnancy of uncertain viability (PUV) 

cases. More work is needed to look into the factors that affect the outcomes, and ultimately 

increase the certainty element of PUV cases.  

     



Chapter 6                                                                                          Fusion-based Classification 

 

133 

 

                         (a)                                                   (b)                                                   (c) 

Figure 6. 9: Examples of PUV cases with Low level because they are much near to border line  (a) MSD=20.385   

(b) MSD=17.897  (c) MSD=24.071 

6.4.2 Confidence Level of Ovarian Tumour Classification Decision.  

The classification of Ovarian Tumours (into Benign and Malignant) using the SVM classifier 

with the various image-texture based features extracted from Ovarian US images have been 

shown to significantly outperform their classification by the kNN. In Chapter 5, we found 

that FFGF, LBP (256) and Histogram were the best three performing features when Ovarian 

Tumour US images were classified by SVM. Figure 6.1 includes the accuracy rates achieved 

by each of these three single features within each level of confidence when classified by 

SVM. These rates are calculated as the average from 15 repetitions of the experiment rounds, 

and each represents the average percentage of accurately classified images among those given 

the corresponding level of confidence. For example, when FFGF was used 22 images (out of 

total input of 100) where classified with High level of confidence of which 19.2=22x0.8638 

images were correctly classified, 38 images were classified with Medium level of confidence 

of which 35.33=38x0.9296 images were correctly classified, and the other 40 images were 

classified with Low level of confidence of which 30.6=40x0.7687 images were correctly 

classified. Note that, the LBP has significantly lower overall accuracy than the FFGF but has 

higher accuracy at the high level of confidence.    

 
Figure 6. 10: SVM Classification of Ovarian Tumour image, for different features & confidence levels 

6.5 Fusion of Multi-Schemes Classification of Ovarian Tumour   

The results of using single classifier for distinguishing benign and malignant ovarian tumours 

with the various image-texture based feature vectors have revealed a range of reasonable to 

high degree of accuracy especially by SVM, but this still well below the desired accuracy for 

such a life-threatening disease. As mentioned earlier, the fusion of multi-schemes pattern 
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recognition is a common practice for improved accuracy.  At the heart of our proposed fusion 

framework, there are two fundamental ideas: (a) single classifier fusion of multi-feature 

vectors schemes and (b) fusion of multi-classifiers that use the same or different feature 

vectors. Here, we shall confine our investigations to the first approach and, whenever 

possible, the incorporate level of confidence associated with each of the different feature-

based schemes. 

The single classifier multi-schemes fusion is a possible way of improving accuracy as long as 

there are a number of different feature vectors representing the space of data items, and a 

classifier exist with which each of these feature vectors define a reasonably recognition 

scheme. In Chapter 5, we established that a variety of image-texture feature vector 

representations of US scan images of Ovarian Tumours that lead to considerably successful 

classification when fed into a binary linear SVM classifier. But the performance of these 

schemes has reduced when fed into the kNN classifier. In this section we investigate various 

applicable fusion models. Here we investigate different fusion models that we described 

earlier in Chapter 3.    

6.5.1 Feature Level Fusion  

In this model, two or more feature vectors of the data items (i.e. US images) are concatenated 

to form one feature vector before input into a chosen classifier. Taking into account the three 

best performing image-texture based feature vectors we repeated the experiments conducted 

in Chapter 5 and in section 6.1, above, we tested the performance of various schemes that can 

be formed by the combinations of the three identified effective feature sets, i.e. Blocked 

based histogram (256 bins), Blocked based histogram of (LBP 256 bins) images and FFGF 

(Major, Minor and Area). Figure 6.11 depicts the workflow of the feature-level fusion, 

whereby we apply the SVM classifier to each combination of the three feature vectors. 
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Figure 6. 11: Flow diagram of the feature level fusion 

Figure 6.12 shows the overall accuracy rate achieved when SVM was used with each meta-

feature obtained by concatenating different combination of original features, together with the 

associated accuracy rates within each confidence level. For comparison we also include 

accuracy rates for the individual features. The results show that combining the histogram with 

the LBP features leads to a similar level of accuracy of the LBP feature alone, and hence the 

histogram has no significant “added value” on the LBP feature although the improvement 

over the histogram feature alone is still nearly 4%. However, combining the histogram, the 

LBP or both with FFGF produce worse results than using the FFGF only.  These results show 

that feature based fusion does not improve accuracy relative to the best performing features 

but only relative to the less performing component(s). This is possibly due to the huge 

difference in the dimension and the nature of the vector components for the histogram or the 

LBP and the FFGF features. For instance, in the combined LBP+FFGF meta-feature vector, 

there are 4x4x256 attributes for LBP, and yet only three attributes for FFGF. This extreme 

difference means the influence of FFGF in the combined meta-feature vector is very small.  

Comparing the accuracy rates within each level of confidence, we can see a slight 
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improvement 

 

Figure 6. 12: Performance of SVM for the feature level fusion with levels of confidence 

We conducted the same experiments for feature level fusion but using the kNN, and the 

results are presented in Figure 6.13, below. As expected for all feature level fusion schemes, 

the performance of the kNN is significantly outperformed by the SVM versions. Moreover, 

just as in the case of SVM, with the exception of the FFGF+LBP scheme, each feature level 

fusion with kNN is outperformed by single feature schemes on their owns. 

 
Figure 6. 13: Performance of kNN for each feature alone and concatenated features 

 

The rather disappointing failure of fusion at the feature level is most likely to be the 

differences in the nature of the component feature vectors. 

6.5.2 Score Level Fusion  

The next common model of fusion, whereby the classification scores for all the individual 

feature scheme are combined according to some rule to deduce aa fused score that will be 

used for final classification decision. We fuse at the score level various combinations for the 
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same three individual feature vectors (Histogram, LBP and FFGP) and also determine the 

levels of confidence for each combination using the SVM related rules described in Section 

6.3.2. First, the SVM classifier is applied in each feature space separately, and records the 

signed score for each feature. We then take the average of the three signed classification 

scores obtained for the three features. The sign of the average score determines the final 

class, and the average of score value is then mapped to a level of confidence according to the 

rules presented in Section 6.3.2. Figure 6.14 illustrates the workflow of the fusion method. 

 

Figure 6. 14: Block diagram of the score level fusion 

 

Figure 6.15 presents the classification results of the score level fusion of the various different 

combinations of the three image texture-based features, by listing the overall accuracy rate 

with and without the reference to the three levels of confidence. Recall that the rate reported 

for any fused scheme at each of the level of confidence represent the percentage of US 

tumour images that are correctly classified out of all images for which the classification 

decision were assigned the given confidence level. For example, the FFGF+LBP score fusion 

scheme achieves an overall accuracy rate of 88.53, and for every 100 testing images that are 

classified at the High level of confidence 93.74 of these images would have been accurately 

classified.   
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Figure 6. 15: SVM Score level fusion with for the 3 levels of confidence 

 

The results reported above demonstrate that the best accuracy (88.53%) is achieved when 

scores of FFGF is fused with scores of LBP representing an absolute 2.2% increase on the 

original FFGF scheme. These two features complement each other in capturing the image 

texture, one at the local level in the spatial domain (LBP) and the other at the global 

frequency domain (FFGF). The histogram does not contain texture information explicitly. 

Out of the three levels of confidence, the FFGF+LBP combined scores also outweigh 

significantly the combined scores of three types of features for the medium and low levels 

confidence but not at the high confidence level. Interestingly comparing fusion at the score 

level with fusion at the feature level, for the various combined schemes, reveals that only for 

the combination of Histogram and LBP features the score level and the feature level fusions 

have similar accuracy, but in all other cases the score level fusion significantly outperforms 

the feature level fusion.  

Replacing the SVM classifier, in the simple score level fusion experiments, with the kNN 

classifier has revealed an opposite pattern of performance to the SVM results. Figure 6.16 

confirms that all the score based fused schemes are significantly outperformed by each of 

their single feature schemes (see Figure 6.1). Not only, the SVM score fusion schemes 

outperform the kNN ones but the confidence measure for each of the three levels are 

significantly lower.  



Chapter 6                                                                                          Fusion-based Classification 

 

139 

 

 
Figure 6. 16: kNN Score level fusion of the 3 levels of confidence 

 

The fact that there significant differences between the performance of each of the three 

individual features (85.9% for FFGF, 78.5  for LBP, and 76.33 for Histogram) is a motivation 

to apply the alternative form of score level fusion known as the Weighted Average Score level 

fusion.  This method follows exactly the same workflow of score level fusion, accept that the 

various individual scores are added with different weights that reflect their individual 

classification performances as reported above, i.e. we use the classification accuracy rate of 

each type of feature divided by the total accuracy rate of the three types of features. Since 

76%, 78%, and 86% are respectively the reported accuracy rate for the Histogram, the LBP 

and the FFGF features, the classification score weight for each feature is to be set to 

76/(76+78+86), 78/(76+78+86), and 86/(76+78+86), respectively.   

We are slightly modified score level fusion block diagram shown in Figure 6.14 to reflect the 

workflow for this method by incorporating the weighted average with the above weights in 

the last step of computing the score level fusion. We then repeated the same experiments 

above with this strategy using the SVM classifier. Figure 6.17 presents the achieved accuracy 

rates together with the confidence rate for each of the three levels of confidence. The 

accuracy rates for each of the schemes has increased but by a marginal amount < 0.93%.   
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Figure 6. 17: Weighted score level fusion with the confident level based 

 

These results demonstrate modest benefits, in terms of accuracy, of using the weighted 

average instead of simple average based score fusion. However, by looking at the three levels 

of confidence, the confidence rates are marginally reduced for the high and medium levels, 

but increased for the low confidence level has been increased by 1.95%. Therefore, the 

increase in accuracy is achieved at the expense of increased border cases that would require 

further medical intervention. This performance pattern seems to indicate that the weighted 

score fusion based on the individual feature performances is crude and has a limited success, 

and perhaps one can find a slightly modified weights to avoid the disadvantage of losing 

confidence rate. However, this would require the extensive set of experiments together with 

careful consideration with little benefits for the current binary classification of Ovarian 

Tumours (Benign Vs Malignant). 

Replacing the SVM classifier with the kNN classifier was not expected to change the 

emerging pattern of results. But we still decided to conduct the weighted-average score level 

fusion schemes of the various combinations of three feature vectors for the kNN classifier, to 

see if this provides a more positive impression that has emerged so far about the performance 

of the various fusion approaches when kNN is used. Here, the final weighted average score 

was calculated in a similar way to the SVM case when the weights was meant to reflect the 

relative performance of each feature, i.e. the final score is obtained by the following formula: 

Score (FFGF)*0.343+ Score (LBP) * 0.33+ Score (Histogram)* 0.327 

Figure 6.18 demonstrates that the accuracy rate for each weighted average score fused 

scheme is identical with that achieved by the corresponding simple score fused scheme. The 
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confidence measures across all levels are subject to some changes for few schemes in a 

manner that could not lead to improving the emerging impression of kNN being irrelevant to 

the classification of Ovarian Tumour from US images.  

 

Figure 6. 18: Score level fusion with for the three levels of confidence 

 

The similarity in the performance of weighted average score level fusion to that of the simple 

score level fusion for the kNN classifiers is most influenced by the chosen weights which are 

almost equal reflecting the fact that all the three features achieve nearly the same accuracy 

with kNN. However, we repeated the same experiments with a set of different weights (0.42 

for FFGF, 0.32 for LBP and 0.26 for Histogram) the accuracy rates of the fused scheme did 

not change in a big way though was lower than in the above table.  

6.5.3 Decision Level Fusion  

This fusion model differs from the score level fusion in that instead of just using the score for 

each feature scheme, the final decision will be based on the decisions made for each feature 

component scheme as a voting system. The simplest and most common criteria for making 

the final decision would be based on the class that receives the largest number of vote. Since 

we are dealing with a binary classification problem then fusing an odd number of feature 

schemes then the majority rule will always yield a clear decision. We have implemented the 

fusion of the three image-texture based schemes (Histogram, LBP and FFGF) at the decision 

level, and tested the performance of this scheme using the same experimental setup in the 

previous section for simple score-level fusion, but for comparison, we used both classifiers 

SVM and kNN. Figure 6.19 presents the results of these experiments.   
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Figure 6. 19: Decision based Fusion –Majority rule 

 

These results demonstrate that the majority rule for Decision based Fusion is outperformed 

considerably by the single best-performing feature scheme (FFGF) for the SVM classifier, 

but for the kNN classifier it is significantly outperformed by each of the components features 

(see Figure 6.1). Nevertheless, in the case of SVM, the Decision based Fusion outperforms 

the corresponding feature level fusion. Moreover, the both types of score level fusion of the 

same three feature schemes significantly outperform the majority Decision Fusion.  

The feature level fusion and score level fusion have both improved accuracy when two 

feature components rather than the three features are fused. Hence, the rest of the chapter is 

devoted to investigating Decision Level Fusion for each pair of the three image-texture based 

features. The problem under investigation, being a binary classification, presents a challenge 

when only two feature schemes are available due to the fact that the majority voting decision 

criterion is no longer possible. When only two classification decisions are to be fused the 

challenge is what to do when the two schemes disagree. Our approach to deal with this 

problem is to take into account the confidence measure/level associated with the two 

decisions. Classifying a sample simply by the class of higher confidence, among the two 

different decision, lead to another question as to what would be the confidence in the fused 

decision? The last question also arises even when both decisions identify the same class. In 

the rest of this section and chapter, we attempt to answer these questions and develop a 

decision level fusion model that yields classification outcomes supported by the level of 

confidence. We also develop rule for associating the level of confidence to the output 

classification decision. In the proposed scheme, only one classifier (the SVM) is used for 

reasons explained throughout the chapter about the kNN. Moreover, only pair-wise fusion of 

the classification outcomes from two features is considered. Figure 6.20 outlines the 

framework of the proposed fusion scheme. 
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Figure 6. 20: SVM based Decision level fusion of pairs of feature schemes (Histogram, LBP, & FFGF) 

The proposed fusion scheme initiate the SVM classification of an input sample and feeds into 

the decision level fusion unit the classes chosen by the single feature schemes together with 

the corresponding computed confidence level. The fusion unit outputs a final class decision 

and determines the level of confidence of this decision using a specially designed criterion, 

described below. Recall that for any SVM classification scheme we already have three rules 

that governs the position of the classification score the level of confidence as presented in 

Table 6.1, according to the final classification outcome by the fusion, also requires a clear set 

of rules to define the level of confidence of the outcome. The rules should cover two possible 

scenarios: (a) when the pair of classifiers yields the same class outcome, and (b) when the 

pair of classifiers yields two different class outcomes. Table 6.3 presents the definition of the 

level of “combined” confidence based on the level of confidence from each of the two SVM 

classifiers for all possible situations. The rules can be explained in this table below: 
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Table 6. 2: The main rules of decision level fusion scheme  

Rule 1  

If the class outcomes are the same and the levels of confidence are the same before fusion, then the 

fused class outcome is the same class, and the level of “combined” confidence remains the same. 

Rule 2 

If the class outcomes are the same but the levels of confidence are different before fusion, then the 

fused class outcome is the same class, and the level of “combined” confidence is adjusted according 

to the specific values as follows: 

o If one level of confidence is High and the other is Medium before fusion, the level of 

“combined” confidence is set to High; 

o If one level of confidence is High and the other is Low before fusion, the level of 

“combined” confidence is set to Medium (i.e. the middle value); 

o If one level of confidence is Medium and the other is Low before fusion, the level of 

“combined” confidence is set to Low. 

Rule 3 

If the class outcomes are different and one level of confidence is High and the other is Low before 

fusion, then the fused class outcome is the class with High level of confidence before fusion, and the 

level of “combined” confidence is set to Low. 

Rule 4 

In any other cases, the fused class outcome is set to Not Sure, and the level of “combined” confidence 

is set to unspecified. 

 

The rationale behind these rules can be summarised as follows:  

1. When the class outcomes from both classifiers are the same, it means the classifiers 

agree with the outcome. The fused level of confidence should reflect the true strength of 

confidence in the decisions. When one prior level is High, and the other is Low, setting 

the fused level confidence to Medium is a compromise. Setting the combined confidence 

to High, when one prior confidence is High, and the other is Medium, it is prudent to set 

the combined confidence to Medium. We also take a more cautious stand and set the 

combined confidence to Low when one prior level of confidence is Medium and the 

other is Low. This approach is partially influenced by the views of end users. 

2. When the two classifiers yield different class outcomes, the fused decision needs to 

resolve the conflict. Therefore, the prior levels of confidence become important in the 

final judgement. If one class prediction is made with High confidence and the other class 

with Low confidence, the decision with High confidence should win in determining the 
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final class outcome, but the combined confidence should reflect a reduction in the 

strength of the class prediction. Again, we take a quite prudent stand on this and decide 

to set the level of combined confidence to Low in this case to reflect the conflict in the 

class outcomes. 

3. We introduce a special case of the Not Sure (NS) class to reflect strong opposite class 

predictions from the two classifiers. In total, this may happen in 14 cases. Table 6.3 

below depicts these rules in a concise manner. 

Table 6. 3: Rules for Decision Level Fusion 

Case 1 

HB MB LB HM MM LM 

Case 2 

HB HB HB MB NS NS LB 

MB HB MB LB NS NS NS 

LB MB LB LB LM NS NS 

HM NS NS LM HM HM MM 

MM NS NS NS HM MM LM 

LM LB NS NS MM LM LM 

 
Here, HB: High Benign, MB: Medium Benign, LB: Low Benign, HM: High Malignant, 

MM: Medium Malignant, LM: Low Malignant, NS: Not sure 

The over-prudent decision of classifying the 14 NS cases is a reflection of the fact that in 

medical applications such automated decisions should be subject to medical expert’s advice 

in order to avoid serious consequences of errors in classification. Perhaps one could relax the 

rules slightly to reduce the number of NS cases, but this kind of investigations will be left for 

the future. Although, the introduction of the NS class is desirable it raises a question on how 

to rate these cases when one evaluate the performance of the classification scheme: Should 

the declared NS cases be considered as success? Or should these be considered as 

misclassification? Moreover, since this concept is not relevant to all other schemes discussed 

above, then it is difficult to compare the performance of this with that of the earlier ones. In 

practice, medical experts often ask for the second opinion or even request more 

tests/procedures to be conducted when they have no convincing evidence either way, and 

such an approach by the expert will not be seen as misclassification. In other words, declaring 

NS in automatic diagnosis should not be considered as a failure, but should be taken as good 
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practice although it would be difficult to consider all NS cases as successful classification.  In 

what follows, we present performances of the confidence based Decision level fusion for 

different scenarios.   

We conducted a new set of experiments with the same dataset of US scans of Ovarian 

Tumours using the above rules in the context of the decision fusion scheme. We follow the 

evaluation protocol as described in Chapter 3, Section 3.7. Taking into account the above 

discussion regarding the NS cases, we first present the accuracy rates by excluding the NS 

cases from the calculation of the accuracy rates. Figure 6.21 shows the decision level fusion 

accuracy with this scenario together with “combined” confidence levels of high, medium, and 

low. We conclude that when we ignore the NS cases the decision level fusion significantly 

improved the classification accuracy in comparison with using each feature set alone, feature 

level fusion and score level fusion of the corresponding pair of features. For example, the 

decision level fusion of FFGF+LBP achieves a high accuracy of 93.87% against 78.33% for 

the corresponding feature level fusion, 88.53% for score level fusion, and 89% for the 

weighted score level fusion. Moreover, the accuracy achieved within the different levels of 

confidences is significantly higher than the weighted and unweighted score level fusion 

schemes.   

 

Figure 6. 21: Accuracy of decision level fusion with confident based level 

 

For the above experiments, the average numbers of NS cases were as follows: 25 cases for 

(Hist+ FFGF), 18 cases for (Hist+LBP) and 22 cases for (LBP+FFGF). Note that the 

averages for NS and the accuracy are worked out over 15 repetitions of the experiments. 

Table 6.4 below gives, these averages of NS cases for the three decision fused schemes 

together with corresponding averages for Benign and Malignant classes.   
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Table 6. 4: Average No. of NS cases for the three decision fused schemes 

Decision Fused Scheme All Benign Malignant 

FFGF + LBP 22.6 11.7 10.9 

FFGF + Histogram  25.4 12.8 12.6 

LBP + Histogram 17.6 9.9 7.6 

A prominent collaborating expert in the field commented that most of our NS cases could be 

better classified as Low malignant due to a rule of thumb practised in real-life clinics “if in 

any doubt, consider the tumour as malignant”. If we to heed this advice and declare all NS 

cases as Malignant (nominally with Low confidence) then the estimated average accuracy for 

the three schemes will be reduced to: 83.6 % for (FFGF + LBP); 82.2% for (FFGF + 

Histogram); and 74.8% for (LBP + Histogram). These results are certainly lower than those 

in figure 6.20 where we disregarded the NS cases. The decision level fusion with majority 

rule of the three features FFGF+ LBP+ Histogram is slightly outperformed by the 

FFGF+LBP scheme, and only marginally better than the FFGF+ Histogram (see Figure 6.19).      

To shed more light on the above set of different results and analyse various data, we retrieved 

and examined the sets of NS images for each of the three fused methods. Interestingly, 

different sets of images were labelled as NS in the different 15 repetition rounds of the 

experiments. However, close examination of those lists revealed that the seven images are 

shared in all 15 rounds and form the intersection of the NS image sets in the three fusion 

methods. We found that images that been considered as NS cases most of them were 

malignant. Furthermore, we discussed with experts the classification of those seven NS 

images and they confirmed that those images are very difficult to classify as well by the 

expert. These images are displayed below in Table 6.5. Interestingly, six of these seven 

images are malignant and this is in line with the expert advice given earlier.  

Further extensive work is needed if we to incorporate expert advice into the decision level 

fusion to deal with NS cases. Such work should aim at reducing the number of NS cases by 

involving other image-based features and/or modifying the levels of confidence intervals. 

One approach to reducing the number of NS cases might involve subdivided the current 

confidence levels into sublevels so that to facilitate the resolving many more conflicting 

classifications. Alternatively, is to change the boundaries using different multiples of the 

standard deviations. 
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Finally, we remark that table 6.3 is generic and doesn’t take into account any knowledge that 

we may have about the performance of each of the contributing scheme at each level of 

confidence. For example, we found in Figure 6.10 that at the High level of confidence, the 

LBP has higher accuracy than the FFGF, this may justify reducing the cases of NS when we 

have LBP returns a HM decision while the FFGF returns a MB decision especially if the 

corresponding scores are well separated. However, such consideration requires more 

investigation using the larger number of samples.    

Table 6. 5: The seven  NS images common to all three decision level fusion schemes 

    

Invasive malignant  Invasive malignant Invasive malignant Invasive malignant 

   

Borderline  Borderline Serous cystadenoma 

 

We close this section by showing several images that were misclassified by each feature set 

alone but became NS by the confidence based decision level fusion method. These examples 

are shown in Table 6.6 and illustrate the benefit of introducing the NS case, as 

misclassification could have serious health consequences.  
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Table 6. 6: NS images that were originally misclassified by the various single features 

    

Benign/ Teratoma Benign/Endometrioma Benign/Serouscystdenoma Malignant/Borderline 

    

Malignant/Borderline Malignant/Borderline Metatastic Malignant Invasive Malignant 

6.6 Summary and Conclusions  

This chapter builds on the work done and a conclusion made in the last chapter, and 

investigates various aspects of machine learning approach to consolidate and/or improve the 

performance of the automatic binary classification schemes that introduced in Chapter 5, for 

the different applications of miscarriage detection and ovarian tumour identification.  

We first extended the performance testing investigations, conducted in Chapter 5, in terms of 

discriminating power of the different sets of application-dependent image feature vectors 

using alternative classifiers. The experimental works confirmed that the SVM classifier 

significantly outperforms the kNN classifier when used with each of the image-texture based 

features (FFGF, LBP, and Histogram) for distinguishing benign and malignant ovarian 

tumours. However, the experiments demonstrated that kNN outperforms the SVM but not by 

a relatively small margin when used with each of the GS measurement features (MSD, 

Perimeter, Volume, etc.) to identify miscarriages from US scan images GS. The last set of 

results and the fact that for Ovarian Tumour classification the SVM yielded the best accuracy 

with the low-dimensional FFGF feature suggests that the common wisdom that SVM is best 

suited for high-dimensional problems may not be valid for every type of low-dimensional 

features, especially those that encapsulate the entire application-relevant information hidden 

in a high-dimensional space.  

We then turned our attention to the goodness of automatic decision making by introducing a 

quantitative measure and level of confidence in a decision relevant to the two applications 
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under consideration in this thesis. This was motivated by the need to emulate what happens in 

real life medicine when diagnosing health related diseases from medical radiology images. 

When well-experienced specialists made final decisions they use well-established sets of 

rules and backed up medical evidence, but when the diagnosis is inconclusive further medical 

checks such as surgery/biopsy on the patient are conducted. The results of various 

experiments indicate a strong link between the level of confidence and accuracy rates so that 

a decision with the high/medium level of confidence is highly likely to be accurate while 

decisions made with the low level of confidence could raise alarm in line with medical 

practice.   

Investigating the various approached to fusions of multi-feature schemes revealed some 

interesting challenges. First of all, feature level fusion cannot improve on any of the single 

components perhaps due to differences in the nature of the various participating features. 

Score level feature fusions (weighted/unweighted average) have led to improved results but 

there is more potential for improving the performance of classification of Ovarian Tumour 

cases. The decision level fusion of three sets of features using majority rule outperformed the 

feature-level fusion scheme but was still less than the best single feature. On the other hand, 

our pilot innovative decision level fusion of two sets of features supported by the level of 

confidence measures provided a chance to make a Not Sure decision and with some positive 

consideration of this one can get a significantly improved accuracy. Again, extensive future 

research is needed to develop this approach to a mature system that can be part of a wider 

Decision Support System in this field. In the next chapter, some light will be shed on possible 

ideas along this line.     
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CHAPTER 7 

CONCLUSION AND FUTURE AND ONGOING WORK 

Since the introduction of X-ray into medical practices early last century, there has been 

growing development and interest in the deployment of a variety of medical imaging systems 

for diagnostic purposes. This thesis was devoted to investigate and develop automatic tools 

for computer-aided diagnosis of gynaecological abnormality from B-mode ultrasound 

images. Accurate and early diagnosis is essential in the management of gynaecological 

problems such as ovarian tumour and miscarriage diagnosis. It facilitates effective treatment 

and prevents developing into serious stages of the disease. For example, distinguishing 

benign from malignant ovarian tumours is important, not only to ensure proper treatment for 

tumour types, but also to avoid unnecessary diagnostic procedures such as biopsy/surgery. 

However, early detection of ovarian carcinoma continues to be a difficult challenging task not 

only due to technical problems but due to factors relating to patients unawareness of relevant 

symptoms as well as limited availability of well trained staff to deal with the volume of data 

and US scan images. On the other hand, the first trimesters are the most crucial period in 

pregnancy to evaluate the development, growth, and wellbeing of the fetus and the mother. 

The first sign and measurable element of early pregnancy is the appearance of the GS. 

Quantifying the GS shape and dimensions from US scan images is the common medical tool 

for identifying the cases of miscarriage. Early detection of miscarriage is essential in 

preventing health complications for mothers.    

Our investigations were motivated by recent successful deployment of image-based pattern 

recognition and datamining techniques on one hand and the growing realisation that machine 

learning is becoming necessary to deal with rapidly growing demands in the health service. 

This work was conducted in collaboration with UK and European prominent medical experts 

as part of an effort to eventually develop a decision support system in this field. The rest of 

the chapter is organised as follows: Section 7.1 summarizes the research work carried out in 

this thesis and highlights the main contributions. In Section 7.2 explores some future research 

directions backed up by initial results from pilot works in progress. 

7.1 Summary of Main Findings   

The investigations reported in this thesis have mainly focused on developing reliable 

computational tools to deal with two gynaecological problems, first, automatic classification 
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Ovarian Tumours (Benign or Malignant). Second, is automatic identification of Miscarriage 

cases from Pregnancy unknown viability PUV in early stage of pregnancy from US images of 

the Gestational Sac. The aim and objectives of our research work was to complement the 

automation of certain quantitative parameters that gynaecologist experts and radiologists 

manually determine using basic computer vision tools, with attributes that encapsulate image-

content information that are not directly observable/accessible from the image without 

applying sophisticated mathematical transformations.  

Although ultrasound imaging is considered as one of the most important and effective 

imaging modality in detecting gynaecological abnormalities, analysing these images is highly 

dependent on operator experience. Moreover, limitations of the human eye-brain visual 

system as a result of tiredness and the presence of overlapping and obscured structures in US 

images may cause detection and/or interpretation errors. An expert observer makes a 

diagnostic decision with a level of certainty, and if not entirely certain about his/her 

diagnostic decisions then often other expert opinions are sought and may be essential for 

diagnosing specific cases. This process will increase the level of confidence and lead to better 

diagnosis results. Different experts could make different diagnoses which are often labelled 

as “inconclusive cases” that merit further clinical examinations and perhaps new scans with a 

different imaging modality. Therefore, there is a need to develop a computer-aided diagnosis 

system CAD for the purpose of detecting gynaecological abnormality in early stage.  

Through regular discussions/consultation with our medical experts in the field, we identified 

a number of characteristics for the sort of support CAD tool that we should be developing. 

First of all we need image processing techniques to automate the measurement of certain 

parameters that experts determine manually and use in their respective diagnosis. Such 

techniques should improve the efficiency and precision of the measured attributes in order to 

avoid intra and inter observer variations in manual measurements of the parameters. 

Motivated by advances in image-based pattern recognition applications we identified 

additional characteristics for the developed tools to go beyond the confine of automating 

known parameters by investigating additional measurements as well as alternative and 

effective discriminating features that can be directly extracted from US images that 

are “outside” of the known or directly accessible parameters to medical experts. Lastly the 

accuracy of diagnosis of both gynaecological problems is needed to be supported with a level 

of confidence. Therefore, we also attempted to make the developed diagnostic tool to be 

closer to the reality in diagnosis by introducing the confidence level to the diagnosis 
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outcome. These factors were taken into account when designing the research framework of 

the investigations conducted, not necessarily in strict linear order, during the life of the 

project. The work reported in this thesis covered the various components of the framework in 

the order of presentation and the various experimental works established the validity of the 

various innovative approaches adopted in successfully meeting the main research objectives. 

1. Pre-processing the US images is necessary as a mean to reasonably successful 

segmentation of ROI. US images often suffer from the effect of speckle noise beside the 

presence of artefacts that even make ROI manual segmentation a challenge. We used a 

combination of spatial domain filters and operations as pre-processing procedures to enhance 

US images for both applications. We have shown that the Non-local means (NLM) filter is 

effective in reducing speckle noise from US images. We have demonstrates that these 

procedures help enhance the inner border of malignant tumours and reliably segment the GS 

as well as the ovarian regions.  

2.  Successful image pre-processing was only the prelude for the feature extraction step.  

a. We developed reliable automated procedures to extract several types of features to 

model GS dimensional measurements, few of which are manually determined by 

radiologist and used by gynaecologists to identify miscarriage cases. Testing the 

performance of the corresponding automatic diagnostic schemes has undoubtedly 

contributed to achieving excellent accuracy when the kNN classifier was used. 

Even the misclassified PUV images turned out to have border line MSD and 

became cases of miscarriage in follow-up diagnoses, indicating that with some 

refinement our automatic method can be enabled to give advance prediction.  

b. Recognising the importance of image texture for manual diagnosing of Ovarian 

Tumours by experts, we introduced and test the performance of several local as 

well as global image-texture based features in the spatial as well as the frequency 

domains. The spatial domain features included image histograms, first order 

statistical features, and versions of LBP. From the frequency domain the binarised 

FFT spectrum, as a rich source of global image texture information, we extracted 

the innovative new condensed three features FFGF feature vector that encapsulates 

the image texture information that depends on all image pixel values. We have 

demonstrated, with experiments, that each of these spatial/frequency domain 

image-texture features can define an automatic Ovarian Tumour diagnostic scheme 
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that have relatively high power of discriminating Benign from Malignant tumours 

when classified by SVM. The FFGF best performing scheme achieving more than 

85% accuracy. These excellent results indicates the potentials of using machine 

learning + health decision making in the highly specialised branch of biomedical 

image analysis for gynaecological abnormalities.  

3.  The influence of different classifiers on the performance of the adopted feature vectors 

was investigated and it established empirically that for Ovarian Tumour classification, SVM 

lead to significantly improved performance with the image-texture features (FFGF, LBP, and 

Histogram) compared to the kNN classifier. For miscarriage identification, however, the GS 

measurement features (MSD, Perimeter, Volume, etc.) had better accuracy with kNN than 

with SVM but by a small margin.  

4.  Introduced a rather simple measure of confidence to quantify the goodness of automatic 

decision making, primarily for the chosen applications, to emulate real life medical 

diagnostics from medical radiology images. It differs from the common statistical concept of 

confidence in that it is calculated with each decision as it is made regardless of decision 

accuracy rather than an aftermath measure that depend on the statistics of success and failure. 

Experimental results demonstrated a strong link between this measure and accuracy rates, so 

that high/medium level of confidence for a decision is most likely accurate while decisions 

made with low level of confidence could raise alarm. Further work is needed to refine this 

concept perhaps by introducing more than three levels and/or changing their boundaries.    

5.  Our investigations of fusion models of multi-feature schemes revealed that feature level 

fusion yields degraded performance compare to all its single components perhaps due to 

differences in their nature. But, score level feature fusions (weighted/un-weighted average) 

have led to improved results and the decision level fusion of three sets of features using 

majority rule is slightly less successful. For decision level fusion of two sets of features, we 

attempted to resolve conflicting decisions by using their associated level of confidence 

measures. This has resulted in cases where it was difficult to resolve the conflict which we 

labelled as Not Sure (NS) decision. If we consider the NS label as good practice and an 

incentive to conduct more tests, rather than misclassification, then we get significantly 

improved accuracy. Again, extensive future research is needed to develop this approach to a 

mature system that can be part of a wider Decision Support System in this field. Again 

refining the concept of confidence as discussed above may lead to improved performance.    
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7.2  Future Work  

The developed innovative classification schemes and the proposed fusions strategies and the 

simple, though useful and medically relevant, concept of level of confidence of a 

classification decision provide the main ingredient of a computational Decision Support 

System (DSS) to deal with gynaecological abnormalities with a wider objectives than the 

ones we dealt with in this thesis. Achieving such a noble goal, however, require expanding 

the remit of the work reported here and further refined the technological tools and concepts 

investigated so far. Here we give a brief description of our future work and identify the 

essential issues that need to be investigated in depth. 

The general directions of our future work in both areas will continue to focus on automatic 

classification of the same two gynaecological abnormalities from US scan images, and build 

the success we achieved so far in collaboration with gynaecologists toward designing the 

ultimate CAD that can be deployed in hospitals for a more extensive testing on a significantly 

larger number of images. We shall now discuss the main components of our future work in 

the two selected applications.   

7.2.1 Ultrasound Images of Ovarian Tumour  

Although reasonably high accuracy rate was achieved (in access of 86%) in distinguishing 

Malignant from Benign tumours, improving accuracy and reducing the NS cases that occur 

when fusing two features at the decision level is necessary if the scheme is to be embraced by 

the gynaecology community. Our intended accuracy improving approaches include:   

1.  Develop new or modified sets of features to model Ovarian Tumour masses using both 

spatial and frequency image domains. For example we shall extend the extraction of the LBP 

features into frequency domain with focus on wavelet sub-bands with the possibility of using 

different versions that rely on shorter patterns. We shall also investigate statistical parameter 

features obtained from distribution of the high frequency wavelet sub-bands. Another 

possibility is to use apply the FFGF in blocks rather than in the whole image, or extracting 

multiple FFGFs ellipses from the binarised FFT spectrum using multiple thresholds.    

2.  The variety of features mentioned above should provide opportunities to fuse more 

combinations of features than we have so far with the possibility of using other than the kNN 

and SVM. Moreover, we should extend the fusion work to include the fusion of multi-

classifiers with the same or different types of features.  
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3.  Investigate different ways of reducing the number of NS cases for example by refine the 

concept of decision conference. Such possibilities include subdividing each of the three levels 

into sublevels or changing the boundaries between the different levels.     

4.  Investigate the effectiveness of using different types of US images such as colour Doppler 

images, and 3D US scans (see Figure 7.1 for examples of such US images). 

5.  More importantly, extend our work on binary classification of Benign and malignant 

ovarian tumour, into multi-class Ovarian Tumour identification. In fact, there is a more 

interest in distinguishing between different types of benign tumours or different stages of 

malignancy as well as the Borderline Benign/Malignant cases. Note that, the above intended 

extension of our work in the future will be an essential ingredient for success in this case. In 

fact, we have conducted some pilot studies using our existing image-texture features for 

automatic diagnosis of three different types of benign ovarian tumours (Mucinous 

cystadenoma, Serous cystadenoma, Serous cystadenofibroma). The results these limited 

investigations are promising and add to our determination to do the above listed set of future 

work and to extend the application to the various multi-class ovarian tumours identification.    

       
                       (a) (b) (c) 

Figure 7.1 Different US images (a) 3D scan of Endometrioma/benign tumour (b) 2D colour Doppler of 

metatastic malignant, (c) 2D power Doppler for highly vascularized malignant tumour. 

7.2.2 Ultrasound Images of Gestational sac 

The fact that our experiment on miscarriage classification using few GS dimension 

measurements should not be used to claim that it works in all cases. Those experiments 

excluded two important cases where miscarriage may or may not be detected either due to 

lack of sufficient examples or due to the fact that miscarriage may occur at more advance 

stage of pregnancy which we did not cover. Hence our future work would focus on those un-

investigated cases rather than improve accuracy for the cases covered in this thesis.    

1.  Expert can predict Miscarriage from the shape of the GS in the first scan. In our 

investigation, such scans were not sufficiently included in our experimental datasets.  If the 

GS border appears irregular in its shape, then abnormality with GS growth is predicted that 
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may lead to a miscarriage at a later stage. Figure 7.2 is shows some examples. In order to deal 

with such cases, other features capturing the characteristics of GS border and shape need to 

be included in modelling the GS. Sought after features should be able to represents the 

irregularity of the GS perimeter. We anticipate that perimeter length and significant deviation 

from circular shape may be useful in dealing with this problem, but first we need to collect 

sufficiently large number of such samples.  

       
                            (a)                                          (b)                                          (c) 

Figure 7.2 Represents the miscarriage cases that confirm by expert with irregular border 

2.  Initiate the segmentation, quantification and classification of other stages of miscarriage 

cases i.e. GS with Yolk or Embryo inside. Figure 7.3 shows example of both these different 

types of miscarriage in different stages.  

3.  It would be interesting to investigate the use of 3D ultrasound scan of gestational sac 

which allows a more accurate estimation of the GS volume and other parameters. 

4.  Finally, we plan to investigate the effect of external descriptors (demographic) such as age 

and level of human Chorionic Gonadotropin (hCG) on miscarriage. 

     
                                                              (a)                                                (b) 

Figure 7.3 Ultrasound images of GS (a) with Yolk Sac (b) with embryo inside 
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