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Abstract  

Uncertainty is unavoidable and addressing the same is inevitable. That everything is available at our 

doorstep is due to a well-managed modern global supply chain, which takes place despite its 

efficiency and effectiveness being threatened by various sources of uncertainty originating from the 

demand side, supply side, manufacturing process, and planning and control systems. This paper 

addresses the demand- and supply-rooted uncertainty. In order to cope with uncertainty within the 

constrained multi-objective supply chain network, this paper develops a fuzzy goal programming 

methodology, with solution procedures. The probabilistic fuzzy goal multi-objective supply chain 

network (PFG-MOSCN) problem is thus formulated and then solved by three different approaches, 

namely, simple additive goal programming approach, weighted goal programming approach, and 

pre-emptive goal programming approach, to obtain the optimal solution. The proposed work links 

fuzziness in transportation cost and delivery time with randomness in demand and supply 

parameters. The results may prove to be important for operational managers in manufacturing units, 

interested in optimizing transportation costs and delivery time, and implicitly, in optimizing profits. 

A numerical example is provided to illustrate the proposed model. 

 

Keywords: Multi-Objective Optimization; Supply Chain Network; Fuzzy Set Theory; Chance-

Constrained Programming; Fuzzy Goal Programming. 

 

1. Introduction 

The supply chain management (SCM) is nowadays considered to be a major driving factor in gaining a competitive 

advantage in turbulent markets. Nevertheless, its efficiency and effectiveness are being threatened by various 

sources of uncertainty, which may originate from the demand side, supply side, manufacturing process, and 

planning and control systems. Without a doubt, supply-chain uncertainty is a matter with which every manager 

has to cope.1 In the context in which these sources of uncertainty represent a major problem, understanding them 

would be of help to tackle the same systematically and proactively. This paper addresses the demand- and supply-

rooted uncertainty.  

In order to research supply-chain uncertainty, we must first define the related key concepts. The supply 

chain includes “all of those activities associated with moving goods from the raw-materials stage through to the 

end user”.2  The organization always looks for the selection of the right supplier/vendor to bring ease in the supply 

chain network, but should also bring revenue to the firm with minimum transportation cost, inventory cost, 

rejected items, and late-delivered items.3 
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Fig. 1. Supply Chain Network. 

 

 The term supply chain network (SCN) (Fig. 1) consists of a distribution network of the product supply 

from source to destination, i.e., the move of the raw material from suppliers to manufacturers, from manufacturers 

to distributors, then from distributors to retailers, and finally, from retailers to customers. The manufacturer 

receives the raw material from the suppliers and after processing it into finished goods, he supplies the latter to 

different warehouses and retailers to make them easily available for the customers. Throughout the 20th century, 

the SCN problem has been gaining importance due to the market globalization, which has increased the 

competition among the companies. Companies are obliged to maintain high customer services levels, while at the 

same time they are trying to reduce transportation costs and maintain their profit margins. Traditionally, the 

planning, purchasing, manufacturing, marketing, and distribution organisations along the supply chain operate 

independently. These organisations have their objectives, and these are often conflicting, but there is a need for a 

mechanism through which these different functions can be integrated together. Supply chain management is a 

strategy through which such integration can be achieved.4 

 During the formulation process of multi-criteria decision-making problems, the coefficients of the 

objectives and the constraints are usually specified by decision-makers (DMs). In most real-world problems, the 

potential values of these coefficients are vague or ambiguously known to the DMs. Accordingly, it would be more 

convenient for these coefficients to be represented as fuzzy numerical data.5-8 The subsequent mathematical 

programming problem which includes fuzzy coefficients would be seen as more factual than the traditional one. 

From this perspective, the coefficients exist in the objective functions, and the constraints of the problem are 

thought to be described by fuzzy numbers. Stochastic Programming (SP) consists of modelling uncertain 

optimization problems in which probability distributions governing the data are known or can be estimated using 

unknown parameters. This technique is a suitable mathematical tool for dealing with several real-world 

transportation problems (TPs). Biswas and Modak9, Roy et al.10, Mahapatra et al.11, Biswal and Samal12, and 

Barik13 considered a stochastic environment, wherein the random variable follows exponential distribution, 

Weibull distribution,  extreme value distribution, standard normal distribution, Cauchy distribution, logistic 

distribution, and Pareto distribution,respectively, in their formulated chance-constrained programming 

problem.More recently, Gupta et al14 formulated a special case of SCM by considering a capacitated transportation 

problem under certain and uncertain environments. They used fuzzy set theory, multi-choices technique, and 

probabilistic technique for the presentation of uncertainty in their formulated capacitated transportation problem 

and efficiently used a fuzzy goal programming approach for obtaining the optimal allocation.  



4 

 

 The work done here has been organized in various sections, as follows: a brief literature review on the 

MOSCN is given in Section 2. In Section 3, the formulation of MOSCN with fuzzy coefficient has been provided. 

Section 4 presents the fuzzy goal programming and probabilistic fuzzy goal programming formulation of the 

MOSCN with Pareto distribution. Solution approaches to the PFGP-MOSCN problem with Pareto distribution 

are then given in Section 5. A hypothetical numerical example is provided in Section 6 to show the efficiency of 

the developed methods along with the sensitivity analysis of the decision variable. Finally, in Section 7, 

managerial insights and contribution, limitations, and future scope are discussed and in Section 8, conclusions are 

drawn based on the solutions obtained from the numerical example. After discussing the relevant introductory, 

we now proceed to the literature review related to supply chain network.  

 

2. Literature Review 

Beamon15 presented a detailed overview of the literature on multi-stage supply chain modelling which mainly 

focuses on deterministic, stochastic, simulation-based supply chain models in the literature. Beamon15 had 

distinguished between various supply chain performance measures qualitatively and quantitatively. Shen16 

conducted a detailed survey and provided future research directions on integrated supply chain design models. 

Shen16 formulated supply chain models on profit maximization with demand flexibility, multiple commodities, 

unreliable supply, parameter uncertainty scenario, models on inventory cost, routing cost, capacitated distribution 

centres, a model with service consideration, among others. Mula et al.17 presented a review of different 

mathematical programming technique for SCM models and classified the different modelling approaches based 

on linear programming, non-linear programming, multi-objective programming, fuzzy programming, stochastic 

programming, and Heuristics algorithms and metaheuristics. 

 Many academics and practitioners have been continuously focussing on solving uncertain supply chain 

problems. There have been various articles published in academic journals focussing on the use of the fuzzy set 

theory to handle the imprecision or vagueness in multi-criteria supply chain problems. These include the work of 

Sabri and Beamon18, who developed an integrated model for solving multi-objective supply chain problem that 

integrates simultaneous strategic and operational planning together, i.e., production cost, delivery time with 

uncertain demand, also tries to reduce complexity by giving some reasonable simplifications. On the other hand, 

Bredstrom and Ronnqvist19 considered two independent mixed integer linear programming models, one for 

production planning, which considers transport costs, and the other one for distribution planning in a multi-period 

and multi-product environment. Ryu et al.20 suggested a bi-level modelling approach comprising two linear 

programming models with uncertain demand, one for production planning and one for distribution planning.  

Park21 further suggested an integrated transport and production planning model that uses mixed integer 

linear programming in a multi-site, multi-retailer, multi-product and multi-period environment with an overall 

objective of maximizing overall profits. Oh and Karimi22 put forward a linear programming model that integrates 

production and distribution planning for a multinational firm in the chemical sector in a multi-plant, multi-period, 

and multi-product environment. Aliev et al.23 integrated fuzzy mathematical programming with multi-period, 

multi-product fuzzy production, and distribution aggregate planning model in the supply chain by providing a 

sound trade-off between the filtrate of the fuzzy market demand and the profit. The optimization problem is solved 

by a genetic algorithm that provides a general near-optimal plan with more realistic results. Roghanian24 

formulated a probabilistic bi-level linear supply chain planning model where market demand, production capacity, 
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and resources available to all plants for each product were considered as random variables and followed a uniform 

distribution. Xu et al.25 proposed a spanning tree approach for random fuzzy multi-objective SC design problems 

with the aim of minimizing the total cost comprised of fixed costs of plants and DCs, and maximizing the customer 

services that can be rendered to customers in termsof acceptable delivery time. Selim and Ozkarahan26 developed 

a multi-objective SC distribution network design model to obtain the optimum numbers, locations, and capacity 

levels of plants and warehouses to deliver the products to the retailers at the least cost while satisfying the desired 

service level. Pishvaee and Torabi27 formulated a multi-objective possibilistic mixed integer programming model 

for SCN under a possibilistic environment.  

 Yeh and Chuang28 proposed multi-objective supply chain models for partner selection in green supply 

chain problems. They considered four conflicting objectives, such as minimization of total cost and minimization 

of total time comprised of product time and transportation time, and maximization of product quality and 

maximization of the green appraisal score, and solved them using two different multi-objective genetic algorithms. 

Liang29 developed a fuzzy multi-objective linear programming model with fuzzy imprecise aspiration levels, 

which attempts to simultaneously minimize total cost and total delivery time by using a fuzzy goal programming 

method. Sarkar30 represented three different probabilistic production-inventory models and used an algebraic 

procedure to obtain the minimum cost and optimum lotsize of the entire SCM.  Nasiri, et al.31 developed three-

echelon supply chain models for multiple distribution centres, production sites, and suppliers with uncertain 

stochastic demand. Jindal32 proposed a fuzzy mixed-integer linear programming model for an optimization of a 

multi-product, multi-time, multi-echelon capacitated closed-loop supply chain in an uncertain environment. The 

uncertainty related to ill-known parameters, such as product demand, return volume, fraction of parts recovered 

for different product recovery processes, purchasing cost, transportation cost, inventory cost, processing, and set-

up cost at facility centresis handled with fuzzy numbers. 

 Kim and Sarkar33 developed an SCM model with stochastic lead time demand, trade-credit policy, quality 

improvement of products, setup cost reduction of the supplier, and variable backorder rate. This paper aimed to 

minimize the total cost of the system related to overall supply chain. Sarkar et al.34 considered an assembly line 

manufacturing system with the primary aim to minimize the total cost of the entire SCM by simultaneously 

optimizing setup cost, process quality, number of deliveries, and lot size with constant demand rate. Latpate and 

Kurade35 proposed a fuzzy linear programming model for supply chain network by integrating procurement, 

production, and distribution planning activities into a multi-echelon supply chain network. Gupta et al. 36 gave an 

efficient fuzzy goal programming approach for solving the SCM problem. Their proposed model combined three 

well-known approaches, i.e., fuzzy programming, goal programming, and interactive programming, to 

simultaneously minimize total transportation costs and total delivery time concerning inventory levels, available 

initial stock at each source, as well as market demand and available warehouse space at each destination, and the 

constraint on the total budget under an uncertain environment.The SCM models focusing on the optimization of  

the inventory cost, transportation cost, and delivery time were discussed in the past by Sarkar et al.37, Sarkar38, 

Sarkar and Mahapatra39, Sarkar et al.40, and Soni et al.41 .  

Table 1 provides a comparison of the above-mentioned studies considering the nature of the parameters used and 

positions the present paper as unique in the literature. 
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Table 1. Shared Process Information of the Reviewed Works. 

Authors and Publication Year 

Nature of Parameters 

Certain Fuzzy Probabilistic  

Sabri and Beamon18 ×   

Bredstrom and Ronnqvist19 ×   

Ryu et al.20 ×   

Park21 ×   

Oh and Karimi22 ×   

Aliev et al.23 ×   

Roghanian et al. 24 ×  × 

Xu et al.25 × × × 

Selim and Ozkarahan26 × ×  

Pishvaee and Torabi27 ×  × 

Yeh and Chuang28 ×   

Liang29 × ×  

Sarkar30 ×  × 

Nasiri et al.31 ×  × 

Jindal et al.32 × ×  

Kim and Sarkar33 ×  × 

Sarkar et al. 34 ×   

Latpate and Kurade35 ×   

Gupta et al. 36 × ×  

Sarkar et al. 37 ×   

Sarkar38 ×   

Sarkar and Mahapatra39 × × × 

Sarkar et al. 40 ×   

Soni et al. 41 × ×  

This paper × × × 

                                    Note: × indicates the nature of parameter used in the respective paper. 

 

In this paper, motivated by such studies in the field of SCN, a probabilistic fuzzy goal programming (PFGP) 

technique has been developed to solve SCN problems. Because in real-world problems, the possible values of the 

coefficient of transportation cost and of the delivery time are often imprecisely known to the DM, it would be 

indeed more appropriate to interpret the coefficient as fuzzy. Here, the parameters are represented by fuzzy 
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numbers and are transformed into their deterministic form through a ranking function approach. Also, in 

formulating real-world problems, there may be situations when we do not precisely know the right-hand side of 

the constraints; to overcome this situation, we have considered that these parameters are random variables which 

follow a Pareto distribution with known mean and variance. Different types of goal programming models have 

been used to solve the formulated PFG-MOSCN problem for obtaining the optimal solution. After discussing the 

relevant literature related to supply chain network, we now proceed to the model formulation of the problem.  

 

3. The mathematical model of the multi-objective supply chain network 

Latpate and Kurade35 formulated the MOSCN model with imprecise data, wherein they considered a hypothetical 

system for the network. With some modification in their model formulation, we have considered the following 

notations which are listed below: 

 Notations and Terminology 

The notations and terminology used are as follows:   

Indices 

i index of retailers,  Ii ,......,2,1 ; 

j index of warehouses,  Jj ,...,2,1 ; 

k index of plants,  Kk ,...,2,1 ; 

l index of suppliers,  Ll ,....,2,1 . 

Parameters 

iD annual demand from the ith retailers, 

kA potential capacity of the kth plants, 

lB supply capacity of the lth suppliers, 

jE potential capacity of the jth warehouses, 

lkC cost of shipping one unit from the supply source l to the plant k, 

kjC cost of producing and shipping one unit from the plant k to the warehouse j, 

kiC cost of producing and shipping one unit from the plant k to the retailer i, 

jiC cost of shipping one unit from the warehouse j to the retailer i, 

kjD delivery time of shipping one unit from the plant k to the warehouse j, 

kiD delivery time of shipping one unit from the plant k to the retailer i, 

jiD delivery time of shipping one unit from the warehouse j to the  retailer i. 

Decision variables 

lkW quantity shipped from the supply source l to the plant k, 

kjX quantity shipped from the plant k to the warehouse j, 
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kiY quantity shipped from the plant k to the retailer i, 

jiZ quantity shipped from the warehouse j to the retailer i. 

Using the above-defined notations, the mathematical model of MOSCN in case of a deterministic parameter is 

given as: 

The first objective function that minimizes the transportation cost of the SCN is given by: 

,
1 1 1 1 1 1 1 1

1 ji

L

l

K

k

K

k

J

j

K
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I

i

J

j

I

i

jikikikjkjlklk ZCYCXCWCZMin    
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  

The second objective function that minimizes the delivery time of the SCN is given by: 

,
1 1 1 1 1 1

2   
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subject to the following constraints: 

Constraint I is the total quantity shipped from the supplier to the plant. 

,
1





K

k

llk BW  

Constraint II is the quantity produced in the factory, which cannot exceed its capacity. 

,
1 1

 
 


I

i

J

j

kkjki AXY  

Constraint III isthe quantity shipped through the warehouse, which cannot exceed its capacity. 





I

i

jji EZ
1

,  

Constraint IV is the quantity shipped to the retailers, which must cover the customer demand. 

,
1 1

 
 


J

j

K

k

ikiji DYZ  

Constraint V is the total quantity shipped from the plant to the warehouse and retailers, which cannot exceed the 

quantity of the raw material received. 

,
1 1 1

  
  


L

l

J

j

I
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Constraint VI isthe quantity shipped out of the warehouse to the retailers, which cannot exceed its capacity. 

,
1 1

 
 


K

k

I

i

jikj ZX  

with non-negative constraints: 
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 In the above discussed MOSCN model, the parameters are assumed to take deterministic values, but in 

most of the practical situations, these may take imprecise values due to some possible reasons, as listed below:  

 Price of the item might depend upon the interest of the DM. Sometimes, he might decide to spend more or 

less for the quantity ordered.  

 Cost of shipping one unit from the source to the plant, from the plant to the retailer, from the plant to the 

warehouse, and from the warehouse to the retailer is not known precisely to the DM. 

 Similarly, the delivery time of shipping one unit from the plant to the retailer, from the plant to the warehouse 

and, from the warehouse to the retailer may vary during the transportation period. 

 Such vagueness in the critical information cannot be captured in a deterministic problem. Thus,the 

optimal results obtained from these deterministic formulations may not serve the real purpose of modelling 

the problem. Due to this, we have considered the model with imprecise information. In light of the above 

discussed possible situations in the MOSCN model, the fuzzy formulation of the problem by replacing all of 

the deterministic parameters of cost jikikjlk CCCC &,, and delivery time jikikj DDD &, with fuzzy 

numbers is conventionally expressed as: 
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Problem (1) 
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where all of the fuzzy parameters in Problem (1) are considered to be trapezoidal fuzzy numbers, i.e., 

),,,( nm are trapezoidal fuzzy numbers with two defuzzifiers nm, , left fuzziness ,0  and right 

fuzziness ,0  and they can be converted into their crisp form by using the ranking function defined in section 

(2.3). After discussing the model formulation of the MOSCN, we now proceed to the fuzzy goal programming 

and probabilistic fuzzy goal programming formulation of the MOSCN with Pareto distribution. 

 

4. A fuzzy goal programming model for multi-objective supply chain network 

Goal Programming (GP) is considered to be the most powerful and flexible technique that can be applied to a 

variety of decision-making problems involving multiple objectives. The GP model tries to optimize multiple goals 

simultaneously by minimizing the deviation from the objective function. GP requires the DMs to set an aspiration 

level for each goal, which can be an arduous task as several uncertainties in nature must also be considered. The 

GP technique, developed by Charnes and Cooper42, emerged as the most powerful technique to solve such multi-

criteria decision-making problems. Ever since the development of the GP technique, it has been studied by many 

authors such as Lee43, Ignizio44 and many others, who are continuously working on the advancement of GP. On 

the other hand, Zadeh5 suggested the concept of fuzzy sets theory for solving the problem consisting of vague 

parameters. Zimmermann45 developed a fuzzy programming approach for solving ill-conditioned multi-criteria 
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optimization problems. The problems consisting of imprecise and vague parameters are considered to be typical 

mathematical problems – in such cases, the ranking function is used to get the crisp form of the problem.  Thus, 

the classical methods of mathematical programming fail to optimize such problems. Zadeh and Bellman6 

introduced a concept according to which the constraints and goals in such situations may be viewed as fuzzy. 

Using Zimmermann’s approach45, a typical fuzzy goal MOSCN model is expressed as follows: 

 

Problem (2) 
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The symbol '' (fuzzy-min) referring to )(&)( 21 XZXZ  should be approximately less than or equal 

to the aspiration level 
21 & gg respectively, which means that the DM is satisfied even if it is greater than the 

aspiration level up to a certain tolerance limit. 
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4.1 A probabilistic fuzzy goal programming model for multi-objective supply chain network 

In most of the practical situations, we may face the problem of not knowing the values of some or all the 

parameters of the mathematical programming models; such a problem comes under stochastic programming (SP). 

The SP problem was first formulated by Dantizg, and Mandansky46, who suggested a two-stage programming 

technique to determine the solutions. Later, Charnes and Cooper47 developed the chance-constrained programming 

(CCP) technique in which the chance constraints were converted into equivalent deterministic non-linear 

constraints. CCP is treated as a kind of SP in which some or all of the constraints of the problem involved are 

random variables, which need to be satisfied with a certain probability. CCP has been applied to different real-life 

problems having multiple and conflicting objectives. This kind of CCP problems is termed as MOCCP problems. 

Contini48 was the first to introduce a GP approach for solving MOCCP, which was further studied by Stancu-

Minasian49. A MOSCN model of the PFGP can be stated as: 

 

Problem (3) 

 

Find X to optimize the following fuzzy goals: 
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where 10  i and 10  i are the given constants. It is assumed that jikjkilk ZandXYW ,,,  are 

deterministic and 
il DandB , are considered as random variables with a known probability distribution. 
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4.2A probabilistic linearly-constrained approach for FGP-MOSCN with a Pareto distribution 

 

The Pareto distribution was named after Vilfredo Pareto, a great economist and sociologist. The Pareto distribution 

is a power law probability distribution that is used in the description of social, scientific, geophysical, actuarial, 

and many other types of observable phenomena. In this paper, we have assumed both the demand and supply as 

Pareto random variables. Let us assume that the demand LlBl ,...,2,1,  are independent random variables 

following a Pareto distribution13. The probability density function (pdf) of the lth random variable lB  is given by: 
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Where 
lq is the scale parameter, i.e., the minimum possible value of 

lB and lp is the shape parameters, i.e., a 

positive parameter which determines the concentration of data towards the mode. Using the shape and scale 

parameters, the mean E )( lB and variance Var )( lB is calculated as: 
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Now, using equation (1) and the ith probability constraint from the problem (3), we get: 
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Now, equation (4) can be written as: 
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For the case when ,ll qy  the above integration model can be calculated as: 
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For the case where ,ll qy  the above integration becomes zero. 
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The maximum likelihood estimator for the shape parameter 
lp  is given by: 

 
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p ,   where 

l
l

l Bq minˆ   

Similarly, for the other supply constraint, we get: 
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The maximum likelihood estimator for the shape parameter 
ip  is given by: 

 


)ˆ(
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i
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I
p ,   where i

i
i Dq minˆ   

Thus, the equivalent FGP problem of the PFGP problem (3) can be stated as: 
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After discussing the fuzzy goal programming and probabilistic fuzzy goal programming formulation of the 

MOSCN with Pareto distribution, we now proceed to different solution approaches for solving the PFGP-

MOSCN. 

 

5. Solution approaches to the PFGP-MOSCN problem with a Pareto distribution 

In this paper, we consider three types of GP, namely, the simple additive goal programming approach, the 

weighted goal programming approach, and the pre-emptive goal programming approach for solving the 

deterministic model of the MOSCN. 

5.1 Simple additive approach to the PFGP-MOSCN problem with a Pareto distribution 

Consider the PFGP problem (3), where we assume that the right-hand side variables 
il DandB , are Pareto 

random variables, with known mean and variance. The parameters, i.e., the shape p   and scale q parameters, are 

calculated using equations (2) and (3), respectively. 

Now, the linear membership functions ))(( 11 XZ and ))(( 22 XZ for the goals are defined according to 

Zimmemann45. For the fuzzy goal type 
11 )( gXZ  , i.e., the fuzzy-min, the linear membership function is 

defined as: 
























,)(,0

,)(,
)(

,)(,1

))((

11

111

11

11

11

11

UXZif

UXZgif
gU

XZU

gXZif

XZ  

Where 
1U is the upper tolerance limit. Similarly, for the fuzzy goal type 

22 )( gXZ  , i.e., the fuzzy-min, the 

linear membership function is defined as: 
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where
2U is the upper tolerance limit. 

 

The simple additive model of the PFGP problem (3) is formulated using the linear membership function, as 

follows: 
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where )(D is called a fuzzy achievement function or a fuzzy decision function. This is a single objective 

optimization problem which can be solved using a suitable classical technique. 

 

5.2 The weighted additive approach to the PFGP-MOSCN problem with a Pareto distribution 

If the DM is more interested in direct comparisons of the objectives, then the weighted goal programming (WGP) 

should be used. In the weighted additive approach, weights are attached to each of the objectives to measure the 

relative importance of the deviations from their target. WGP handles several objectives simultaneously by 

establishing a specific numeric goal for each of the objectives and then finding a solution that comes close to each 

of these goals. Popular choices for normalization constants are the range of the corresponding objective (between 

the best and the worst possible values, hence, mapping all deviations onto a zero-one range). The relative weights 

may be any real number, where the greater the weight, the greater the assigned importance to minimize the 

objective function. 
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For the fuzzy goal type of fuzzy-min, the equivalent linear model of the PFGP (3) can be written as: 

Problem (6) 
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 are the relative weights attached to each objective. 

5.3 The pre-emptive goal programming approach to the PFGP-MOSCN problem with a Pareto distribution 

In many situations, a DM may not be able to determine precisely the relative importance of the goals, i.e., to 

minimize the deviations from the set target values. The basic approach for GP is to set up a specific numeric goal,

,kg  for each objective function, 2,1),( kXZ k . Then, the total deviation from the specified goals 


2

1

||
k

kd

is minimized, where kd is the deviation from the goal kg for the kth objective function. To formulate the absolute 

values, kd can be split into positive and negative parts, such that 
  kkk ddd , with 0

kd and 
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.0, 

kk dd Hence, 
  kkk ddd || . These negative deviation 



kd and positive deviation 


kd  are known as 

under-achievement and over-achievement, respectively, wherein achievement implies that the goal has been 

achieved.50  A pre-emptive GP model of the PFGP problem (3) is formulated as follows: 
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After discussing the different solution approaches for solving the PFGP-MOSCN, we now consider the 

hypothetical data for illustrating the solution approaches. 

 

6. Hypothetical Numerical Example 

In view of illustrating the developed method, we have considered the hypothetical numerical example for 

modelling and optimization of a Supply Chain Network problem, with some imprecise information considered on 

it, which is represented by trapezoidal fuzzy numbers. An SCN consists of the manufacturing company with 

multiple plants, warehouses, retailers, and customers, in different geographical regions or locations. It is assumed 

that five suppliers supply raw material to four manufacturing plants. The distribution system consists of six 
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warehouses, where products are temporarily placed and stored before being sold out to eight retailers, and finally, 

products are then sold out to several customers.  The imprecise data has been summarized in Tables 2-8 below: 

 

Table 2. Fuzzy Transportation Cost from the Supplier to the Plant. 

Supplier 

Plant 

G1 G2 G3 G4 

A (195,200,20,15) (90,100,2,5) (145,155,2,3) (120,130,3,6) 

B (295,305,5,7) (145,155,2,3) (195,200,20,15) (195,200,20,15) 

C (490,500,8,12) (120,130,3,6) (203,230,4,5.5) (203,230,4,5.5) 

D (390,405,6.5,7) (295,305,5,7) (240,260,2,3) (27.,280,3,5) 

E (590,600,5,4) (690,705,8,6) (295,305,5,7) (340,350,5,7) 

 

Table 3. Fuzzy Transportation and Production Cost from the Plant to the Retailer. 

Plant 

Retailers 

M1 M2 M3 M4 M5 M6 M7 M8 

G1 (295,305,5,7) (430,450,3,7) (340,350,5,7) (430,450,3,7) (240,260,2,3) (340,350,5,7) (390,405,6.5,7) (470,480,4,6) 

G2 (340,350,5,7) (490,500,8,12) (295,305,5,7) (370,380,2,5) (270,280,3,5) (370,380,2,5) (470,480,4,6) (430,450,3,7) 

G3 (430,450,3,7) (470,480,4,6) (340,350,5,7) (340,350,5,7) (295,305,5,7) (370,385,5,7) (430,450,3,7) 470,480,4,6) 

G4 (490,500,8,12) (430,450,3,7) (320,330,7,8) (390,405,6.5,7) ((320,330,7,8) (385,395,4,6) (420,430,5,6) (430,450,3,7) 

 

Table 4. Fuzzy Transportation and Production Cost from the Plant to the Warehouse. 

Plant 

Warehouses 

N1 N2 N3 N4 N5 N6 

G1 (295,305,5,7) (145,155,2,3) (195,200,20,15) (195,200,20,15) (120,130,3,6) (295,305,5,7) 

G2 (390,405,6.5,7) (120,130,3,6) (220,230,4,5.5) (240,260,2,3) (270,280,3,5) (310,320,9,6) 

G3 (540,550,10,11.5) (145,155,2,3) (195,200,20,15) (295,305,5,7) (240,260,2,3) (295,305,5,7) 

G4 (640,650,9,13) (340,350,5,7) (295,305,5,7) (170,180,4,6) (295,305,5,7) (300,310,3,6) 

 

Table 5. Fuzzy Transportation Cost from the Warehouses to the Retailer. 

Warehouse 

Retailers 

M1 M2 M3 M4 M5 M6 M7 M8 

N1 (145,155,2,3) (180,190,5,7) (160,164,8,9) (170,180,4,6) (165,175,3,5) (198,200,6,7) (183,185,2,5) (165,175,5,6) 

N2 (110,120,0,3) (190,210,7,6) (165,167,3,2) (165,175,3,5) (180,190,8,6) (180,190,8,6) (184,186,3,4) (171,173,7,9.5) 

N3 (120,130,3,6) (90,100,2,5) (130,132,3.5,4) (178,179,0,2.5) (180,190,5,7) (180,190,5,7) (183,185,3,3.5) (170,172,1.5,1) 

N4 (128,130,4,3) (160,170,6,8) (135,137,2.5,5) (180,190,8,6) (190,210,7,6) (170,180,4,6) (180,190,5,7) (170,173,4,5) 

N5 (135,140,0,2) (165,175,3,5) (145,147,4,3) (180,190,5,7) (190,200,5,3) (160,170,6,8) (190,210,7,6) (170,180,4,6) 

N6 (170,180,4,6) (150,160,3,6) (145,155,2,3) (90,100,2,5) (195,200,6,7)) (180,190,8,6) (190,200,5,3) (165,175,5,6) 

 
Table 6. Fuzzy Delivery Time of Item from the Plant to the Retailer. 

Plant 

Retailers 

M1 M2 M3 M4 M5 M6 M7 M8 

G1 (45,50,0,1) (65,75,2,4) (50,60,0,2) (60,70,3,4) (35,45,0,1) (48,50,1,2) (70,80,2.5,3) (75,85,3,4) 

G2 (30,40,0,1) (55,653,2) (40,50,5.5,8) (35,45,0,1) (20,30,0,1.5) (48,50,1,2) (65,75,2,4) (75,85,3,4) 

G3 (70,80,2.5,3) (65,75,2,4) ( 70,75,5,3) (75,85,3,4) (55,653,2) (65,75,2,4) (70,80,2,3) (90,95,3,4) 

G4 (90,95,3,4) (90,100,3,7) (75,85,3,4) (80,90,4,6) (55,653,2) (65,75,2,4) (75,80,1.5,2) (65,70,2,4) 

 

 

Table 7. Fuzzy Delivery Time of Item from the Plant to the Warehouse. 

Plant 

Warehouses 

N1 N2 N3 N4 N5 N6 

G1 (25,35,0,2) (15,25,0,1) (15,25,0,1) (10,15,0,2) (25,30,2,3) (25,28,2,4) 

G2 (35,45,0,1) (15,25,0,1) (20,30,0,1.5) (25,30,2,3) (25,28,2,4) (35,40,3.2) 

G3 (50,60,0,2) (55,653,2) (50,60,5,3) (55,60,5,3) (55,653,2) (35,45,0,1) 

G4 (80,90,4,6) (55,653,2) (40,50,5.5,8) (40,50,5.5,8) (65,75,2,4) (70,80,2.5,3) 
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Table 8. Fuzzy Delivery Time of Item from the Warehouse to the Retailer. 
 

Warehouses 

Retailers 

M1 M2 M3 M4 M5 M6 M7 M8 

N1 (15,25,0,1) (15,19,0,1) (20,30,0,1.5) (25,35,0,2) (20,30,0,1.5) (20,30,0,1.5) (30,40,0,1) (30,32,5,0) 

N2 (20,21,0,2) (15,25,0,2) (20,30,0,1.5) (20,20,0,3) (27,29,2,4) (27,29,2,4) (30,40,0,1) (25,28,2,4) 

N3 (20,30,0,1.5) (15,25,0,1) (20,21,0,2) (30,40,0,1) (30,33,2,0) (35,45,0,1) (40,42,2,4) (35,40,3,2) 

N4 (15,25,0,1) (20,22,0,3) (20,22,0,3) (25,28,2,4) (27,29,2,4) (26,28,4,3) (22,24,0.5,3) (20,22,0,3) 

N5 (15,25,0,1) (16,18,0,1) (15,17,2,0) (14,16,3,2) (35,40,3,2) (34,36,2,4) (36,38,5,6) (40,42,2,4) 

N6 (14,16,3,2) (10,15,0,2) (15,17,2,0) (16,18,0,1) (30,32,5,0) (29,31,4,5) (40,42,2,4) (68,72,0,4) 

 

Assume that the potential capacities of these 4 plants are 471,296,327, and 318 units, respectively. 

Similarly, the potential capacities of these 6 warehouses are 154,177,160,202,178, and 218 units, respectively. 

The overall cost for transporting the product from the supplier to the plant is (195,200,20,15), i.e., the 

transportation cost is more likely to increase from 195 to 200 but less likely to increase from 200 to 215 or decrease 

from 195 to 175.Similarly, the overall time for transporting the product from the plant to the retailer is  (65,75,2,4), 

i.e., the delivery time is more likely to increase from 65 to 75, but less likely to increase from 75 to 79 or decrease 

from 65 to 63. 

By using the above information, the problem can be formulated as a multi-objective probabilistic linearly-

constrained programming problem, as follows: 

 

Problem (8) 
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where sands ''  are the specified probability levels decided by DM. Also, the DM assumes that 

jikjkilk ZandXYW ,,, are deterministic in the model, and the right-hand side variables 
il DandB ,  are 

Pareto random variables, respectively. Using Wolfram Mathematica 9.0, the maximum likelihood parameter 

estimates, assuming a Pareto distribution for different datasets are given below in Table (8).Using the maximum 

likelihood estimation on data set B1, the Pareto probability density function for the shape parameterp1=90.247 and 

scale parameterq1=179. The mean and variance of the respective data set B1 is calculated using equations (2) and 

(3).The deterministic value of the right-hand side variable is calculated using equation (5). Other assumed random 

variables with their shape and scale parameters are illustrated in Table 9. 

 

Table 9. Pareto Distribution Parameters. 

 

RHS 

Variable 
Data Sets Probability Shape Scale Mean Variance 

RHS 

Value 

1B  179,180,181,182,183 90.01   90.247 179 181.01 4.1139 184 

2B  475,476,477,478,479 91.02   238.25 475 477.0 4.0424 480 

3B
 

195,196,197,198,199 92.03   98.247 195 197.01 4.1044 200 

4B  197,198,199,200,201 89.04   99.247 197 199.01 4.1033 201 

5B
 

292,293,294,295,296 88.05   146.75 292 294.0 4.0693 296 

1D  90,91,92,93,94 75.01   45.744 90 92.011 4.2309 93 

2D  50,51,52,53,54 76.02   25.74 50 52.021 4.4288 53 

3D
 

86,87,88,89,90 77.03   43.744 86 88.012 4.2420 89 

4D  62,63,64,65,66 78.04   31.742 62 64.017 4.3411 65 

5D
 

60,61,62,63,64 79.05   30.741 60 62.0 4.3531 63 

6D
 

107,108,109,110,111,112 74.06   54.245 107 109.01 4.1930 110 

7D
 

108,109,110,111,112 73.07   54.745 108 110.0 4.1912 111 

8D
 

78,79,80,81,82 72.08   39.743 78 80.013 4.2680 81 
Note. RHS= Right-hand side.  

By using the above information, the problem can be formulated as a multi-objective probabilistic 

linearly-constrained GP problem, as follows: 

 

Problem (9) 
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Suppose that the upper tolerance limit for the transportation cost and delivery time are determined by the 

DM as 12,64,694 and 1,29,890.1Indian rupees, respectively, while the lower tolerance limits for the transportation 

cost and delivery time are 2,78,983.5 and 25,325.72 Indian rupees, respectively. Under these circumstances, the 

fuzzy-min type of the linear membership functions ))(( 11 XZ and ))(( 22 XZ is defined forthe 

transportation cost and delivery time, respectively, as follows:  
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Using a simple additive approach, the deterministic equivalent linear mathematical model of the PFGP can be 

formulated as: 
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and the set of constraints of Problem (9). 

 

In this case, we have considered a situation where in specific parameters of the MOSCN problem are not fixed or 

known. In such cases, the quantities are considered to be random variables. To overcome this uncertainty, we have 

considered that the supply and demand parameters of the constraints follow a Pareto distribution. After converting 

the probabilistic constraints into deterministic ones, the above-formulated problem is solved by using the 

optimization software LINGO16.0, and we get the following compromise solution for the quantity shipped from 

the supply source to the plant, quantity shipped from the plant to the warehouse, quantity shipped from the plant 

to the retailer, and quantity shipped from the warehouse to the retailer: 
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The DM accepts this solution and considers it as the preferred compromise solution with achieved goal value of 

.3.27479and,3.282788 21  ZZ The value of the membership function related to the goalis found to be 

and,9961401.0))(( 11 XZ ,9794068.0))(( 22 XZ which implies that the DM has reached the 

satisfaction level of 99% and 97% for the respective objective functions. 

Similarly, the relative weights of the two objective functions considered by the DM are 40.000001011 w

and 30.000009562 w .Then, using a weighted additive approach, the deterministic equivalent linear 

mathematical model of the PFGP can be obtained as: 
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and the set of constraints of Problem (9). 

 

After converting the probabilistic constraints into deterministic ones, the above-formulated problem is solved by 

using the optimization software LINGO16.0, and we get the following compromise solution for the quantity 

shipped from the supply source to the plant, quantity shipped from the plant to the warehouse, quantity shipped 

from the plant to the retailer, and quantity shipped from the warehouse to the retailer: 

65,60,53,40,38,77,111,110,29

,63,55,178,42,201,200,80,46,138
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The DM accepts this solution and considers it as the preferred compromise solution with achieved goal value of 

.27.81853and,50.368301 21  ZZ  The value of the membership function related to the goalis found 

to be  and,0.9093872))(( 11 XZ 0.8770178,))(( 22 XZ which implies that the DM has reached 

the satisfaction level of 91% and 88% for the respective objective functions. 

Using the pre-emptive GP approach, the deterministic equivalent linear mathematical model of the PFGP can be 

formulated as: 
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and the set of constraints of Problem (9) 

 
After converting the probabilistic constraints into deterministic ones, the above-formulated problem is solved by 

using the optimization software LINGO16.0, and we get the following compromise solution for the quantity 

shipped from the supply source to the plant, quantity shipped from the plant to the warehouse, quantity shipped 

from the plant to the retailer, quantity shipped from the warehouse to the retailer: 

81,111,53,110,65,20,63

,89,91,192,54,177,200,80,273,184

48473226242125

232144232232242214
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The DM accepts this solution and considers it as the preferred compromise solution with achieved goal value of

.04.27479and,30.282788 21  ZZ The value of the deviation related to the goalis found to be  

and,0.00385993111   ddd 0.02059322222   ddd .Fig. 2 provides a graphical 

representation of Methods 1, 2, and 3. Furthermore, the sensitivity analysis of all decision variables of the MOSCN 

model are shown in Table 10. 
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Fig 2.Graphical Representation of Method1, Method 2, and Method 3. 

 

 

Table 10. Sensitivity Analysis of the Decision Variables. 

 

11W  

(197.08, 197.08+ ) 
12W  

(95, 95+ ) 

13W  

(150.08, 347.16) 

14W  

(103.34, 322.33) 

21W  

(300.17, 300.17+ ) 
22W  

(150.08, 150.08+ ) 

23W  

(47, 197.08+ ) 

24W  

(71.83, 197.08+ ) 

31W  

(495.33, 495.33+ ) 

32W  

(125.25, 125.25+ ) 

33W  

(75.05, 225.13+ ) 

34W  

(99.88, 225.13+ ) 

41W  

(397.04, 397.04+ ) 
42W  

(300.17, 300.17+ ) 

43W  

(100, 250.08+ ) 

44W  

(149.92, 275.17+ ) 

51W  

(595.92, 595.92+ ) 

52W  

(696.83, 696.83+ ) 

53W  

(150.09, 300.17+ ) 

54W  

(219.92, 345.17+ ) 

11X  

(191.08, 697.21) 
12X  

(44.83, 150.08+ ) 

13X  

(56.95, 397.25) 

14X  

(62.12, 447.16) 

15X  

(30.17, 270.50) 

16X  

(120, 614.92) 

21X  

(96.87, 397.04+ ) 
22X  

(20.00, 125.25+ ) 

23X  

(28.05, 225.13+ ) 

24X  

(53, 250.08+ ) 
25X  

(149.92, 275.17+ ) 

26X  

(14.52, 314.75+ ) 

31X  

(395.04, 545.13+ ) 

32X  

(194.91, 150.08+ ) 

33X  

(150.08, 197.08+ ) 

34X  

(253.17, 300.17+ ) 

35X  

(274.91, 250.08+ ) 

36X  

(150.08, 300.17+ ) 

41X  

(465.41, 640.33+ ) 
42X  

(365.17, 345.17+ ) 

43X  

(228.34, 300.17+ ) 

44X  

(103.34, 175.17+ ) 

45X  

(300.17, 300.17+ ) 

46X  

(130.33, 305.25+ ) 

11Y  

(79.67, 300.17+ ) 
12Y  

(148.09, 440.34+ ) 

13Y  

(74, 345.17+ ) 

14Y  

(164.91, 440.33+ ) 

15Y  

(0, 525.25) 

16Y  

(55.09, 345.17+ ) 

17Y  

(106.71, 397.04+ ) 

18Y  

(197.71, 475.17+ ) 

1 2 3

282788.3

368301.5

282788.3

27479.03 38185.27 27479.04

Z1 Z2
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21Y  

(124.67, 345.17+ ) 
22Y  

(203.08, 495.33+ ) 

23Y  

(29, 300.17+ ) 

24Y  

(99.83, 375.25+ ) 

25Y  

(25.09, 275.17+ ) 

26Y  

(85.17, 375.25+ ) 

27Y  

(184.84, 475.17+ ) 

28Y  

(590.41, 440.33+ ) 

31Y  

(369.91, 440.33+ ) 

32Y  

(333, 475.17+ ) 

33Y  

(224.08, 345.17+ ) 

34Y  

(219.83, 345.17+ ) 

35Y  

(200.17, 300.17+ ) 

36Y  

(237.17, 377.17+ ) 

37Y  

(300.08, 440.33+ ) 

38Y  

(530, 475.17+ ) 

41Y  

(620.58, 495.33+ ) 
42Y  

(273.33, 440.33+ ) 

43Y  

(179.16, 325.08+ ) 

44Y  

(246.87, 397.04+ ) 

45Y  

(200.25, 325.08+ ) 

46Y  

(225.30, 390.13+ ) 

47Y  

(260, 425.08+ ) 

48Y  

(292.12, 150.08+ ) 

11Z  

(229.75, 150.08+ ) 
12Z  

(193.09, 185.17+ ) 

13Z  

(191.08, 162.08+ ) 

14Z  

(199.92, 175.17+ ) 

15Z  

(220.26, 170.17+ ) 

16Z  

(209.92, 199.83+ ) 

17Z  

(194.10, 184.26+ ) 

18Z  

(192.79, 170.08+ ) 

21Z  

(220.50, 272.92+ ) 
22Z  

(12.20, 199.20+ ) 

23Z  

(0, 344.04) 

24Z  

(275.42, 375.79) 

25Z  

(40, 184.83+ ) 

26Z  

(290.33, 370.00) 

27Z  

(290.33,405.00) 

28Z  

(27746, 3967.38) 

31Z  

(101.83, 125.25+ ) 

32Z  

(193.51, 292.25) 

33Z  

(56.95, 131.04+ ) 

34Z  

(100.37, 178.71+ ) 

35Z  

(132.17, 185.17+ ) 

36Z  

(92.17, 185.17+ ) 

37Z  

(90.79, 184.04+ ) 

38Z  

(90.58, 170.96+ ) 

41Z  

(105.50, 128.92+ ) 
42Z  

(70, 165.17+ ) 

43Z  

(62.12, 136.21+ ) 

44Z  

(106.49, 184.83+ ) 

45Z  

(146.92, 199.92+ ) 

46Z  

(82.17, 175.17+ ) 

47Z  

(91.92, 185.17+ ) 

48Z  

(91.20, 171.58+ ) 

51Z  

(42.42, 137.67+ ) 

52Z  

(30.17, 170.17+ ) 

53Z  

(12.20, 292.18+ ) 

54Z  

(35.45, 185.62+ ) 

55Z  

(70.00, 194.83+ ) 

56Z  

(40.00, 165.17+ ) 

57Z  

(34.84, 199.92+ ) 

58Z  

(22.96, 175.17+ ) 

61Z  

(254.84, 175.17+ ) 

62Z  

(164.17, 158.25+ ) 

63Z  

(179.08, 95.25+ ) 

64Z  

(120.00, 197.58+ ) 

65Z  

(247.67, 197.58+ ) 

66Z  

(194.92, 184.83+ ) 

67Z  

(204.67, 194.83.+ ) 

68Z  

(192.88, 170.17+ ) 

 

7. Managerial Insights and Contribution, Limitations, and Future Scope 

The proposed MOSCN model considersproduct demand-and supply-rooted uncertainty and, hence, provides 

flexibility to optimise the cost related to SCN under ambiguity. Furthermore, the model is built considering 

fuzziness and probabilistic situations, which may be of help to managers in tackling the different situations of 

ambiguity and randomness. 

The proposed MOSCN model makes the following contributions: (1) a new mathematical model for SCN 

is formulated, with the primary objective of minimizing the transportation cost and delivery time; (2) the proposed 

work links fuzziness in transportation cost and delivery time with randomness in demand and supply parameters; 
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(c) the developed parameters follow a Paretodistribution, whichis consideredto be the best distribution in risk 

analysis; and (d) three different additive approaches, namely simple, weighted, and pre-emptive, are used to solve 

the probabilistic fuzzy goal programming model. 

As for the limitations of the current study, these mainly have to do with the fact that the case study 

formulated here is a hypothetical one. It would be interesting, thus, to extend this research with a study that 

assesses the robustness of the results found by means of supporting the proposed model with real data. The results, 

nonetheless, although theoretically obtained, may prove to be important for operational managers in 

manufacturing units, interested in optimizing transportation costs and delivery time, and implicitly, in optimizing 

profits. Furthermore, the proposed model is limited to vagueness and randomness only, whereas in real-world 

problems, the DM may be facing multi-choices situations. By multi-choice we mean a situation wherein the DM 

has more than one choice, i.e., the demand is not fixed by a crisp number and the DM has more than one demand 

point. Future research studies could also consider expanding the proposed model to explore production costs and 

inventory costs. From a methodological point of view, it is to be noted that the fuzzy goal programming model is 

limited to the linear membership function only; hence, future studies could also explore the role of other 

membership functions in this model. 

 

8. Conclusion 

The efficiency and effectiveness of the supply chain are continuallybeing threatened by various sources of 

uncertainty, which may originate from the demand side, supply side, manufacturing process, and planning and 

control systems. Uncertainty may lead to delays and bottlenecks and may also hinder the overall performance of 

the supply chain. It is thus, necessary to find ways to control it. This paper addresses the demand- and supply-

rooted uncertainty. In order to cope with uncertainty within the constrained multi-objective supply chain network, 

this paper aims to develop a fuzzy goal programming methodology with solution procedures. 

It is not always possible to find efficient solutions for the multi-objective supply chain network problems 

which integrate procurement, production, and distribution planning activities together. Hence, by using a fuzzy 

set theory approach, we can find a compromise solution which is acceptable to the decision-maker. In this paper, 

the parameters are represented by fuzzy numbers and are transformed into their deterministic form through a 

ranking function approach. Also, in formulating the real-world problems, there may be situations when we do not 

precisely know the right-hand side of the constraints; to overcome this situation, we have considered these 

parameters as random variables, which follow a Pareto distribution, with known mean and variance. The 

uncertainty of the fuzzy type is modelled using a probabilistic linearly-constrained approach with membership 

goal function. The simple additive GP approach solves the crisp deterministic model, the weighted GP approach, 

and the pre-emptive GP approach. It is believed that by adopting the developed approaches, the company’s profits 

will soar and allow to achieve sufficient savings in the SCN. Furthermore, it is hoped that the developed 

probabilistic fuzzy goal decision-making methodology will open up new possibilities in the study of multi-criteria 

decision-making problems and can be used in many practical field problems, such as assignment problems, 

transportation problems, plant management, planning of resource allocation, travelling salesman problems,and so 

on, when the right-hand side of the constraints is not known exactly. 
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Appendix 

Before formulating the problem of interest, we introduce the basic definitions of fuzzy sets, fuzzy numbers, and 

so forth, which are reproduced here from Abbasbandy and Hajjari51 as follows:  

Definition 1: A fuzzy number is a fuzzy set like ]1,0[:  Iu , which satisfies: 

1. u is upper semi-continuous, 

2. 0)( xu outside some interval ],,[ da  

3. There are real numbers a; b such that dcba  and 

a. )(xu is monotonic increasing on ],,[ ba  

b. )(xu is monotonic decreasing on ],,[ dc  

c. 1)( xu , .cxb   

The membership function u can be expressed as: 
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otherwise
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where ]1,0[],[: bauL
and ]1,0[],[: dcuR

 are the left and right membership functions of the fuzzy 

number u. 

Definition 2:A fuzzy number u in parametric form is a pair ),( uu of functions ,10),(),(  rruru  which 

satisfy the following requirements: 

1. )(ru  is a bounded monotonic increasing left continuous function, 

2. )(ru  is a bounded monotonic decreasing left continuous function, 

3. .10),()(  rruru  

The trapezoidal fuzzy number ),,,,( nmu  with two defuzzifierm,nand left fuzziness 0 and right 

fuzziness 0 is a fuzzy set where the membership function is as: 
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and its parametric form is:  

rnrurmru   )(,)(  

 

 

Fig. 3. Trapezoidal LR-Fuzzy number 

 

Definition 3: Magnitude of the Trapezoidal Fuzzy Number: 

If 𝐴̃  =  (𝑚, 𝑛, 𝛼, 𝛽) is a trapezoidal fuzzy number with two defuzzifiers m, n, and left fuzziness 𝛼 > 0 and right 

fuzziness 𝛽 > 0 with parametric form 𝐴̃  =  (𝐴(𝑟 ), 𝐴̅(𝑟 )), the magnitude of the trapezoidal fuzzy number 𝐴̃ is 

defined as: 

 

ℜ(𝐴̃) =
1

2
(∫(𝐴(𝑟) , 𝐴(𝑟) + 𝑚 + 𝑛 ) 𝑓(𝑟) 𝑑𝑟

1

0

) (2) 

where 𝑟 ∈ [0,1], 𝐴(𝑟) = 𝑚 − 𝛼 + 𝛼𝑟, and 𝐴(𝑟) = 𝑚 + 𝛽 − 𝛽𝑟. By taking 𝑓(𝑟) = 𝑟in Equation (2), the rank of 

an arbitrary trapezoidal fuzzy number 𝐴̃ =  (𝑚, 𝑛, 𝛼, 𝛽) is given by:  

ℜ(𝐴̃) =
𝑚 + 𝑛

2
+

𝛽 − 𝛼

12
                                                                                           (3) 

Equation (3) is the desired ranking function to get the crisp value of the fuzzy number. 
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