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ABSTRACT 

Biometrics are widely accepted as the most reliable proof of identity, entitlement to 

services, and for crime-related forensics. Using biometrics for remote authentication is 

becoming an essential requirement for the development of knowledge-based economy 

in the digital age. Ensuring security and integrity of the biometric data or templates is 

critical to the success of deployment especially because once the data compromised the 

whole authentication system is compromised with serious consequences for identity 

theft, fraud as well as loss of privacy. Protecting biometric data whether stored in 

databases or transmitted over an open network channel is a serious challenge and 

cryptography may not be the answer. The main premise of this thesis is that Digital 

Steganography can provide an alternative security solutions that can be exploited to 

deal with the biometric transmission problem.  

The main objective of the thesis is to design, develop and test steganographic tools to 

support remote biometric authentication. We focus on investigating the selection of 

biometrics feature representations suitable for hiding in natural cover images and 

designing steganography systems that are specific for hiding such biometric data rather 

than being suitable for general purpose. The embedding schemes are expected to have 

high security characteristics resistant to several types of steganalysis tools and maintain 

accuracy of recognition post embedding. We shall limit our investigations to 

embedding face biometrics, but the same challenges and approaches should help in 

developing similar embedding schemes for other biometrics. To achieve this our 

investigations and proposals are done in different directions which explain in the rest 

of this section.  

Reviewing the literature on the state-of-art in steganography has revealed a rich source 

of theoretical work and creative approaches that have helped generate a variety of 

embedding schemes as well as steganalysis tools but almost all focused on embedding 

random looking secrets. The review greatly helped in identifying the main challenges 

in the field and the main criteria for success in terms of difficult to reconcile 

requirements on embedding capacity, efficiency of embedding, robustness against 

steganalysis attacks, and stego image quality. On the biometrics front the review 

revealed another rich source of different face biometric feature vectors. The review 

helped shaping our primary objectives as (1) identifying a binarised face feature factor 
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with high discriminating power that is susceptible to embedding in images, (2) develop 

a special purpose content-based steganography schemes that can benefit from the well-

defined structure of the face biometric data in the embedding procedure while 

preserving accuracy without leaking information about the source biometric data, and 

(3) conduct sufficient sets of experiments to test the performance of the developed 

schemes, highlight the advantages as well as limitations, if any, of the developed 

system with regards to the above mentioned criteria.      

We argue that the well-known LBP histogram face biometric scheme satisfies the 

desired properties and we demonstrate that our new more efficient wavelet based 

versions called LBPH patterns is much more compact and has improved accuracy. In 

fact the wavelet version schemes reduce the number of features by 22% to 72% of the 

original version of LBP scheme guaranteeing better invisibility post embedding.   

We shall then develop 2 steganographic schemes. The first is the LSB-witness is a 

general purpose scheme that avoids changing the LSB-plane guaranteeing robustness 

against targeted steganalysis tools, but establish the viability of using steganography 

for remote biometric-based recognition. However, it may modify the 2nd LSB of cover 

pixels as a witness for the presence of the secret bits in the 1st LSB and thereby has 

some disadvantages with regards to the stego image quality.  

Our search for a new scheme that exploits the structure of the secret face LBPH patterns 

for improved stego image quality has led to the development of the first content-based 

steganography scheme. Embedding is guided by searching for similarities between the 

LBPH patterns and the structure of the cover image LSB bit-planes partitioned into 8-

bit or 4-bit patterns.  We shall demonstrate the excellent benefits of using content-based 

embedding scheme in terms of improved stego image quality, greatly reduced payload, 

reduced lower bound on optimal embedding efficiency, robustness against all targeted 

steganalysis tools. Unfortunately our scheme was not robust against the blind or 

universal SRM steganalysis tool. However we demonstrated robustness against SRM 

at low payload when our scheme was modified by restricting embedding to edge and 

textured pixels. The low payload in this case is sufficient to embed a secret full face 

LBPH patterns.  

Our work opens new exciting opportunities to build successful real applications of 

content-based steganography and presents plenty of research challenges. 
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Chapter 1  

Introduction 

Ever since the emergence of global online transmission as a tool for commercial, 

banking, and crime-fighting activities that involve exchange of financial transactions 

or sensitive and private information the question of authentication of authorised users 

or authorised actions have become a major challenging problem.  Various remote 

authentication solutions have been developed but due to frequent changes in the nature 

of threats to the exchanged data and to the vulnerability of the authentication process 

this problem remains an active research area. In this thesis we shall focus on securing 

the exchange of biometric data as a proof of identification for mobile remote 

authentication for commercial purposes or for use by law enforcing agencies in crime 

fighting and Forensics.  

Two main data protection mechanisms have been developed over the years that are 

designed to prevent unauthorised access and misuse of sensitive data: Cryptography 

and Steganography.  Each of these two mechanisms has its own requirements, 

challenges, strengths and weaknesses. In this thesis we will be investigating the use of 

Digital Steganography to deal with the biometric transmission problem. In section 1.1 

we shall give an overview of the research problem. 

1.1 Overview of the Research Problem 

Biometric-based verification has long been used to secure physical access to sensitive 

sites and assets. Indeed biometrics has been used for decades to limit access to certain 

sensitive areas in nuclear power stations and safes. In these applications the list of 

authorised persons was relatively small and their biometric data were stored in 

physically secured databases. Whenever a person arrives at the entry point of the 

sensitive site a fresh biometric recording is made and extracted for matching with the 

stored biometric templates of the registered authorised persons. Biometrics-based 

techniques utilize certain physiological or behavioural characteristics of persons such 

as fingerprints, facial features, iris, hand geometry, voice, signature, etc (Jain, et al., 

2005). The popularity gained by this biometrics technology is mainly attributed to its 
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ability to distinguish between an authorized person and a pretender who deceptively 

acquires the access privilege of an authorized person (Agrawal & Savvides, 2009; Jain 

& Uludag, 2003).  

In recent years, advances in communication technology and the emergence of the 

Internet as the most popular mean of communication anytime and anywhere together 

with the availability of inexpensive biometric recording devices have led to the 

emergence of increasing interest in biometrics-based personal identification or 

authentication techniques due to their proven substantial superiority over token-based 

or knowledge based techniques such as identification cards (ID), passwords, etc.  

While biometric authentications have inherent advantages over traditional personal 

identification techniques the problem of ensuring the security and integrity of the 

biometric data or templates is critical because once the biometric data are 

compromised, the whole authentication system is compromised. Given the uniqueness 

of a person’s biometric data it is vital to ensure the security and integrity of these data 

against a variety of attacks or misuses. For example if a person’s biometric data (e.g. 

a fingerprint image) is stolen and then attackers may be able to impersonate him or her 

and gain access to his financial as well as other personal information assets. Moreover, 

in this case it is not possible to replace the person’s biometric data, while replacing a 

stolen credit card, ID, or password is an easy though inconvenient task. Moreover, the 

security of biometric data transmitted on open network communication channels is a 

major obstacle for remote biometric-based authentication needed for m-commerce and 

m-banking.   

Protecting  biometric data stored in databases and secure biometric transmission over 

open network channels have attracted huge interest from the biometric research 

community especially in relation to facilitating remote biometric-based authentication 

to enable secure e-commerce, m-banking and cloud transactions. Possible biometric 

protection mechanisms include encryption, watermarking, and steganography 

(Agrawal & Savvides, 2009). The emergence of cancellable or revocable biometrics 

over the last decade provides another alternative protection mechanism (Al-Assam, 

2013). 

Encryption works by converting the biometric information into data that are 

meaningless to attackers. The security effect of encryption fades away once the data 

are decrypted. Both Steganography and watermarking are related to data hiding, i.e. 
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protecting private information through hiding vital information in seemingly ordinary 

carrier signal. Steganography involves embedding secret biometric data into host 

signal in a way that does not raise any suspicion while transmitting the information. 

This way, the biometric data are being protected. Watermarking helps to identify 

biometric data that have been tampered with for integrity verification (Na, et al., 2010). 

Steganographic techniques, on the other hand, diminish the likelihood of biometric 

data being intercepted by intruders and thus the chances of unauthorized alteration of 

the biometric data are reduced (Jain & Uludag, 2003). To increase the security profile 

when transferring biometric data in unsecure media, the biometric data can be 

encrypted first then embedded inside a cover, it means combining the principles of 

cryptography with steganography (Sonsare & Sapkal, 2011; Umamaheswari, et al., 

2010).  

Cancelable biometrics is the mechanism used for biometric template protection 

purpose.  The concept of cancellable biometrics was introduced to denote biometric 

templates that can be cancelled and replaced as well as being unique for every 

application. Cancellable biometrics requires storage of the transformed (not actual) 

version of the biometric template and hence provides higher privacy levels by allowing 

multiple templates to be associated with the same biometric data. (Ratha, et al., 2001) 

The use of homomorphic ciphers (Gentry, 2009) have been promoted for privacy 

preserving solution in case that users encrypt the data and then send it to the cloud, the 

cloud can still perform computations on the data even though it is encrypted.  In recent 

years number of such scheme (Stehlé & Steinfeld, 2010; Gentry & Halevi, 2011; 

Gentry & Halevi, 2011; Smart & Vercauteren, 2014) are proposed, but efficiency to be 

practical seem that require more research.  

The main premise of this thesis is that Digital Steganography is a security mechanism 

solution that has been used as an alternative or complementary to encryption can be 

exploited to deal with the biometric transmission problem. Steganography is derived 

from the Greek language and meaning secret communication involves hiding critical 

information in unsuspected carrier data in such a way that is imperceptible to attackers. 

A common application scenario that highlights the importance of steganography in 

sensitive governmental communication setting and law enforcing agencies in 

particular is at border control points. For example if the identity of a person who may 

be a suspect is to be checked against a law enforcing agency or immigration agency 
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database that is located on a remote server, then  face or fingerprint biometric 

information can be embedded within another medium (cover) to ensure secure and un-

tampered arrival at the final destination. This way, the transmission of the biometric 

information is protected from being attacked or tampered with if the appropriate 

steganography procedure is implemented.  

The aim of this introductory chapter is to explain the challenges in biometric systems 

and steganography in general. Regarding biometric systems we focus more especially 

on those biometric systems challenges that related to remote authentication and on 

biometric protection solutions via steganography while for steganography challenges 

we focus on the main requirements that need satisfied in any embedding system. 

Explaining these challenges is the key to understanding the motivation of the thesis. 

This chapter is ended with given the outline overall structure of the thesis. 

1.2 Challenges in Biometrics based Remote authentication 

Biometrics are digital representations of physiological or behavioral characteristics of 

human used for automatic proof of identity in a growing list of applications including 

crime fighting, forensics, border control, for securing electronic transactions, and 

checking  service entitlements. Biometrics have emerged initially as a results of the 

need for identification or authentication of employee and vetted person who are granted 

access to restricted areas of sensitive sites such as military sites, nuclear power plants 

or Banks safes. At that stage, the main challenge is the accuracy of matching a fresh 

biometric data to one of the locally stored biometric templates of the approved set of 

persons. However, the emergence of the Internet has provided new opportunities for 

deployments of biometric-based authentications and changed or widened the goal post 

to include other than accuracy of matching.   

Recently, biometrics-based person identification systems are increasingly used for 

access to applications or devices over non-secure channels of the Internet. These 

changes in use of biometrics together with mobility of users as well as the globalised 

commerce have led to the need for developing secure remote authentication protocols.  

The privacy and security issues during the collection, processing, storage and 

transmission of biometric data are of great concern for most biometric systems. Ratha 

et al. (Ratha, et al., 2001), categorise attacks on any biometric system to eight basic 

categories, listed below. Figure 1.1 illustrates the typical block diagram of an 
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authentication system together with indicators of the weak points that could be 

exploited by each of the eight types of attacks: 

- First attack, a fake biometric is presented to the sensor.  

- Second attack, by passing sensors and resubmit digitally stored biometric data. 

- Third attack, the feature detector is fed attacker prepared features instead of the 

actual features which are extracted from the original data obtained from the sensor.  

- Fourth attack, features extracted from the data obtained in the sensor is replaced 

with a fake feature set during transmission.  

- Fifth attack, matcher component could be attacked to produce attacker’s preferred 

matching score.  

- Sixth attack, templates stored in databases could be attacked by replacing with 

attackers template.  

- Seventh attack, the channel between the database and matcher could be attacked to 

alter transferred template information.  

- Eighth attack, altering the matching result itself by overriding the final decision by 

attacker.  

 

Figure 1.1: Possible attack points in a generic biometrics-based system 
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Some attacks occur during transmission from one step to another such as attacks 

number 2, 4, 7, and 8. These four attacks type in biometric system can be named as 

replay or man-in-the-middle attacks. Solutions such as encryption are not preventing 

this kind of attacks. All of these attacks lead to reduced credibility of a biometric 

system. Therefore, there is a need for other kind of solutions to prevent the above 

attacks. Watermarking and steganography are possible techniques to achieve this. Here 

in this thesis we focused on steganography techniques and more especially we focus 

on preventing or reducing chance of attacks that happen between feature extractor and 

matcher (i.e. attack number four). This kind of attacks mostly happen in remote 

authentication biometric systems, in another word this kind of attacks happen when the 

feature extractor is located in the location while the matcher is located in another 

location (remote matcher) and the result of matcher used to access the application or 

devices remotely.  

The use of steganography to protect biometric data in storage or in transit poses a 

number of challenges due to the fact that there are two implicit requirements that both 

to need to be met. To start with the security of the biometric data needs to be maintained 

to the highest standard while accuracy level should not be impaired by the embedding 

or extraction of the biometric data in the carrier. Moreover, it is very important to 

realise that it is not enough to guarantee that the biometric data could not recovered by 

attackers, but it is more important that any third party cannot even guess the presence 

of a secret in the communication. Otherwise a denial of service undermines the overall 

authentication process.  

In general, embedding a secret message in a cover image creates what is called a stego-

cover which is expected to be free from any detectable artefacts that resulted from 

message embedding. Otherwise, the presence of artefacts may become a hint to a third 

party (Attacker) that a secret message is present; an event that would bring the whole 

steganographic tool into failure (Shaozhang, et al., 2009; Fridrich, et al., 2000;  

Fridrich, et al., 2001). Hence the choice of biometric traits or features becomes a 

challenging task. Note that for some biometric traits there are many different choices 

for biometric features as well as classifier used for matching. In this thesis we shall be 

mainly investigating the secure transmission of face biometrics as the mean of remote 

authentication. This choice is influenced by the nature of our intended use of remote 

exchanges of biometrics by law enforcing forces in fighting crimes and forensics. 
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However, the same issues and approaches need to be investigated for remote 

authentication by any other biometric trait.       

1.3 Challenges in Steganography  

Modern steganography and steganalysis can be defined as a communication strategy 

between two steganographers, Alice and Bob to exchange secret information without 

being raising suspicion of a warden, Wendy, who observes all communication between 

the two and would put them to solitary confinement if she finds or suspects them 

communicating secrets. Thus, Alice and Bob must communicate in such a manner that 

Wendy does not get to perceive their secret communication. So they need to hide secret 

messages inside innocuous objects so that Wendy cannot perceive its very existence. 

In this context, steganalysis is a set of techniques, visual or statistical, by which it is 

possible to detect the existence of steganographic content in a cover object. In this 

scenario the steganographic system is broken when Wendy finds out that Alice and 

Bob are communicating a secret message. In particular, the warden does not have to 

decode the message which makes steganalysis fundamentally different from 

cryptanalysis.  

Recently, digital images have become a very popular choice to be used as a cover 

medium primarily because of its capacity as well as redundancy in representation and 

pervasiveness in applications in daily life. Known challenges in image steganography 

techniques relate to dealing with a variety of competing requirements. The following 

is the most commonly relevant researched steganography techniques to deal with the 

overall challenge of protecting the secrecy of the transactions: 

1- Security vs. Capacity: trade-off between Security and Capacity is an important 

issue in steganography. It has been observed that increase in the payload capacity 

leads to sacrificing the security to some extent. Developing algorithms which 

provide both high security and capacity is one of the main important remaining 

challenges in image steganography.  

2-  Secret message & Cover content: looking for relation between secret message and 

cover content is an issue in steganography. The security of embedding techniques 

can be improved by finding similarity between secret message and cover contents in 

order to cause less change to cover pixel values in order to cause least alteration to 

the statistical properties of the cover images. 
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3- Best positions for embedding: developing adaptive embedding algorithm is 

another open problem area.  The main concept of this kind of embedding is to select 

areas in the cover image where the embedding will cause minimum distortion of the 

cover such as embedding in noisy and high frequency areas. 

4- Cover structure: the texture and statistical structure of the cover images highly 

affect the security of embedding techniques. Therefore selecting suitable images for 

specific embedding techniques and specific secret messages is an open challenge in 

image steganography field.  

Over the years many approaches have been developed to deal with one or more of these 

challenging issues. For example, embedding in more than the first Least Significant Bit 

(LSB) or even using extended binary representation of greyscale pixel values by 

Fibonacci and similar sequences may have been used to increase embedding capacity. 

However, these approaches are of limited effect and may result in reduced cover image 

quality in terms of visibility of artefacts as well as increased chance of detectability. 

On the other hand, attempts to reduce artefact visibility have focused on selecting edge-

related pixel areas for hiding secrets. However this results in reduced embedding 

capacity. Selecting images that include richer texture may help in this case but in a 

rather marginal way and may raise undesired suspicions. These approaches will be 

reviewed in the next chapter which highlights benefits and shortcomings. One clear 

observation is that most existing steganography solutions deal with a general purpose 

information hiding problem with little or no consideration for the specific 

characteristics of the secret message. In this thesis, we shall develop a holistic approach 

to deal with the above problems. Moreover, we shall always keep in mind that we are 

her interested in hiding biometric data that usually have specific structure and format 

that could influence the various parameters of concern raised above.  In other words, 

we are investigating a context-aware secret hiding system where knowledge of the 

secret content may require an optimal special representation of the secret and 

developing appropriate embedding schemes that meet the main purpose of 

communicating it. In our case where the secret is a biometric representation of a person, 

there are often many different feature vector representations of the same biometric trait 

and the fact that matching is meant to tolerate an acceptable level of variation from 

stored template reduces the stringent requirement of exact recovery of the secret by the 

legitimate recipient that could help improved chances for meeting the other 
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requirements. In general, context-aware steganography need to process and analyse the 

secret representation as well as the cover image characteristics and representation.   

The success of any information hiding techniques have been evaluated against a 

number of steganalysis tools that have been developed over the years for these 

purposes. Unlike crypto-analysis tools these tools do not reveal the embedded secrets 

but rather report an estimate of the probability of the cover image being embedded with 

a secret and often these values are dependent on the percentage of the size of the secret 

to that of the cover. In chapter 2, we should also review these tools and in subsequent 

chapters we shall discuss the strength of robustness of our proposed context-aware 

schemes against these tools. 

1.4 Motivations and Objectives  

The main focus of this thesis is to develop secure and reliable steganographic tools 

suitable for biometric feature exchange system between two nodes using 

steganography. The developed context-aware system should withstand some of the 

biometric transmission attacks as well as meet some or all challenges in steganography 

field; mentioned attacks and challenges regarding biometric system and steganography 

as explained in previous sections.  Objectives of this thesis can be summarised as 

follows: 

 Investigate biometric-based systems to determine challenges and limitation of such 

systems and looking for possible and efficient steganography solutions for 

exchanging sensitive biometric data used for remote authentication.  

 Develop a biometric recognition system that involves the smallest number of 

features that achieves recognition accuracy at the same level compared with original 

features or even higher.  

 Showing and discussing how reducing the number of biometric features affects the 

security of steganography embedding systems. 

 Based on the work of existing steganalysis tools the aim is to developing 

steganography that are robust and avoid detection while providing practical and 

secure solutions for the remote biometric authentication problem. 

 Develop an optimal embedding system that guarantee less change rates of image 

pixel values during embedding process which make the embedding system more 

invisible and robust against steganalysis techniques. 
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 Prove and analysis how structure of the cover images affect security of embedding 

system and develop embedding techniques that exploit similarity between secret 

message (biometric feature) and cover object (image).  

1.5 Main Contributions 

This study investigates the possibility of the above objectives by conducting many 

experiments on two different publicly available face databases (Yale and ORL) used 

as a secret message and images from BOSSbase database used as a cover images. 

Moreover, experiments are testes against different statistical targeted and universal 

steganalysis tools. These investigations have revealed promising results in terms of 

steganography requirements as well as face biometric recognition requirements when 

compared with the well-known schemes in the corresponding fields.   

The main contributions of this thesis can be stated as follows: 

 Instead of traditional methods using cryptography concept, steganography concepts 

based schemes need to develop for transferring biometric features securely for the 

purpose of remote authentication.   

 Develop higher invisible embedding schemes based on developing different face 

feature extraction schemes that aims to reduce number of features represent a secret 

face image without affecting the recognition accuracy.  

  Analyse the work of target steganalysis tools to develop new embedding schemes 

that more robust against such kind of steganalysis tools.  

  Develop novel embedding schemes that differentiate between embedding face 

biometric data and any other secret messages (text, image… etc.) based on finding 

similar patterns between face secret message patterns and cover cover image 

patterns.   

 Develop robust embedding scheme based on fusing the idea of matching patterns 

and selection the best locations for embedding.   

 Move the steganography aspect from being used in laboratories to the real world 

applications such as using as secure solutions for the remote biometric 

authentication problems in real applications such as law enforcement, forensics, and 

counter terrorism. 
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1.6 Thesis Outline 

The rest of the thesis is organised as follows;  

 Chapter Two: this chapter provides theoretical background about the main focused 

two branches (biometric recognition system and steganography); given in detail the 

requirements and components to design secure biometric embedding system. Also 

in this chapter literature survey about the biometric feature extraction, biometric 

embedding techniques, embedding based on positions selection as well as different 

types of steganalysis tools are given.  

 Chapter Three: in this chapter used feature extraction methods are described in 

details, the structure of the statistical steganalysis tools are analyzed to propose new 

robust face biometric data embedding scheme. The proposed embedding scheme 

tested and evaluated based on the requirements of the steganography and the 

recognition system.   

 Chapter Four is aimed to discuss biometric feature extraction methods; different 

schemes to reduce number of features that represent any face images are proposed. 

Moreover this chapter aimed to discuss the relation between number of face feature 

and the invisibility of the steganography system as well as the relation between 

number of face feature and the face recognition accuracy.   

 Chapter Five is aimed at studying the optimality concept of steganographic 

schemes which is linked to minimizing distortion of the cover image. This chapter 

also aimed to differentiate between embedding biometric features and embedding 

any other data, explore the concept of content-based steganographic scheme. A very 

powerful and novel face biometric embedding technique proposed based on 

reducing the change rate while maintain the required payload. 

 Chapter Six: the performance of the proposed schemes in previous chapter is tested. 

The test is primarily concerned with robustness against steganalysis tools by targeted 

as well as universal tools. Moreover modified version of the content-based scheme 

is proposed. 

 Chapter Seven: include the general conclusions and potential directions for future 

research work. 
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Chapter 2  

Background and Literature Survey 

This chapter is primarily designed to explain and discuss the problem of biometric data 

hiding and highlight the state of the art works in the field. Since our aim is to embed 

biometric data in a cover object, then this problem differs from general steganography 

tasks in that it is concerned with embedding domain-dependent secret messages and 

requires context-aware steganography solutions. Consequently, the sought after 

solutions depend on the structure of the chosen biometric feature extraction scheme. 

Section 2.1 includes brief background description of biometric systems to include a 

review of the literature on biometric feature extraction methods and more specifically 

on face feature vectors. In section 2.2, we discuss background materials of 

Steganography and Steganalysis and we review the literature on most commonly used 

image steganography as well as steganalysis techniques based on Least Significant Bit 

(LSB).  In section 2.3, we review the literature on recent works on hiding biometric 

data inside cover objects highlighting related applications.  

2.1 Biometric Recognition Systems 

Biometric recognition is the science of identification of individuals based on their 

biological or behavioural traits, such kinds of biometrics shown in figure 2.1 (Chan, 

2008). It involves verification of certain body characteristics of an individual and thus 

is inherently more reliable secure authentication technology than existing traditional 

authentications that are either knowledge based (e.g. remembering password or 

Personal Identification Number (PIN)) or token based such as Identification Cards (ID 

card). Unlike the input to traditional authentication schemes, Biometrics cannot be 

stolen, lost or forgotten (Jain, et al., 2008). At the same time biometric systems free the 

user from the inconvenience of carrying sensitive tokens or remembering complex and 

multiple passwords.  

Generally there are two main stages in any biometric recognition system: (i) Enrolment 

and (ii) Recognition. In the enrolment stage sample(s) of the specific biometric trait 

data are captured from a user and a set of discriminating digital values are extracted 
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from the captured samples to be used as attributes of feature vector representation of 

the person. These feature vectors are then stored in a database to be used later as 

labelled templates for comparison at the recognition stage. In the recognition stage, a 

fresh biometric sample is presented to the system and feature vector extracted using the 

same scheme used at the enrolment stage. The new feature vector is then compared 

with those templates in the database that was constructed during the enrolment stage 

using a specified similarity or distance function to identify or verify the identity of a 

person. 

In the next sub-section details of the physiological face biometric trait is discussed to 

cover the various steps of the process of face recognition system. 

 

Figure 2.1: Biometric Types 

2.1.1 Face Recognition System  

The human face is one of the most common examples of biometric traits which 

represent the public identity of the person. Automatic face image analysis has received 

much attention by the research community for years and has wide-ranging applications 

in information security, law enforcement, surveillance, and access control systems. 

Several face biometric recognition systems together with a variety of feature extraction 

and matching schemes have been investigated over the past decades. Face recognition 

has the advantage of ubiquity and of being universal in comparison to other major 

biometrics, in that everyone has a face, everyone readily displays the face, and humans 

use it to recognize each other. Face recognition usually involves multi-step processes 

that include face detection, face normalization, face feature extraction, and finally 
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classification, which could be a one-to-one matching or a one-to-many matching 

scenario.   

In the first step, a face is automatically located and segmented from a freshly captured 

image. In the second stage, a normalization procedure is applied to the captured image 

which includes normalising face size, face pose, and illumination. Third stage is 

extracting features from normalized images to represent the final face image in digital 

form. Finally the classification process is done to determine the final outcome of a 

tested face image. In the literature number of different techniques are available that 

cover each one of the above stages and the accuracy of the final outcome (classification 

accuracy) depends on the robustness of each individual different stages. 

The main focus of this thesis regarding face recognition system is on the feature 

extraction process due to the fact that this process has an impact of the structure of the 

output feature vector representation which in turn influences the structure and format 

of the secret message that we are interested in hiding it in the cover object.  Here, we 

assume that the images presented to our proposed feature extraction processes contain 

only a segmented face image, but the faces are not necessarily normalized (in terms of 

illumination or pose). More about feature extraction process can be found in the next 

sub-section and briefly describe state of the art on the most commonly used face 

recognition schemes with focus on the schemes that are used throughout this thesis 

such as wavelet-based schemes and the Local Binary Patterns (LBP) based schemes in 

the spatial and wavelet domains. 

2.1.2 Face Feature Extraction 

The strategy of extracting discriminating features of a face image that are robust to 

varying conditions is crucial to the reliability of face recognition technologies. Feature 

extraction may include the acquirement of a variety of feature attributes from the image 

such as visual features, statistical pixel features; transform coefficient features, and 

algebraic features. In the remaining part of this sub-section we briefly describe the most 

commonly used face feature extraction methods with focus on the methods suitable for 

use in this thesis such as the spatial domain LBP and the wavelet-based multi-scale 

LBP methods.  

The most common approaches to extract features from face images consider the whole 

face image are Principal Components Analysis (PCA) proposed by Turk and Pentland 
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(Turk & Pentland, 1991) and the Linear Discriminate Analysis (LDA) proposed by 

Belhumeur et al (Belhumeur, et al., 1997). These are based on dimension reduction 

projections which are obtained from a sufficiently large representative training set of 

face images using a sufficiently small set of the eigenvectors of the covariance matrix 

of the training images after subtracting their average image that correspond to the most 

significant eigenvalues. Although these representations of face images are very 

compact, they are not suitable for our application because the eigenvectors need to be 

available on every device used which is not practical. Moreover, the recognition 

accuracy of these approaches is affected in uncontrolled conditions such as variable 

lighting conditions (Abboud, 2011; Al-Assam, 2013).  

While the above approaches are based on spatial domain, there are a number of direct 

feature extraction schemes proposed and developed in frequency domain such as using 

Discrete Wavelet Transform (DWT) (Mallat, 1989; Chien & Wu, 2002; Sellahewa, 

2006). Wavelet transforms is one of the example of frequency domain that have been 

used successfully in image processing and image analysis tasks including face 

recognition. These kinds of transforms have ability to reduce the original feature 

dimension size with small or no loss of information. Further feature size reductions can 

be achieved by applying the principles of PCA over Wavelet subbands such as in 

(Sellahewa, 2006), in the proposed not only feature vector size are reduced but also in 

some cases proposed significantly outperformed the traditional approach (without 

applying PCA) in terms of both verification accuracy and efficiency. In this thesis, 

discrete wavelet transform (DWT) is our chosen domain for feature extraction from the 

face images after the coefficient values are binaries. In the next chapter we shall give a 

brief description of DWTs as a multi resolution feature extractor. But at this stage we 

only point out that DWTs decomposes any image into a multiple of frequency subbands 

each representing the image at different scales and frequency ranges, and unlike Fourier 

transforms it also provide spatial information on the location of these frequencies. This 

means that we can consider each subbands as an image like data.    

Local feature based approaches (Penev & Atick, 1996) aim to extract discriminative 

features from regions or patches surrounding facial features such as eyes, nose and 

mouth. These approaches are known to be robust to global changes and lead to better 

recognition accuracy under varying conditions compared to features extracted from 

entire face image approaches.  These methods rely on the accurate localization of the 
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specified facial feature. Moreover, recently more attention has been given to local 

window based approaches to extract features (Abboud, 2011; Al-Assam, 2013). In such 

an approaches the face image is first partitioned into a set of overlapping or non-

overlapping regions, second features are extracted from each local region, and finally 

features are combined into a single feature representation (Ahonen, et al., 2006). 

Regarding local feature detection, Scale Invariant Feature Transform (SIFT) is a 

general computer vision scheme to detect local features (Geng & Jiang, 2009). The 

detection process in this algorithm may affect by illumination conditions and may 

remove some important facial features (Križaj, et al., 2010). Again these are not 

suitable for our applications due to the need for storage of large sets of features as well 

as computational cost. 

Interesting types of features in face recognition field are texture features that are usually 

specified by the statistical distribution of spatial dependencies of grey level 

information. A more suitable for our purpose and efficient texture feature was 

introduced by Ojala et al. (Ojala, et al., 1996) named Local binary pattern (LBP) 

operator that helps to extract texture pattern in an image. LBP operators replace each 

pixel value by a binary pattern that is dependent on the order relation between the pixel 

value and that of certain neighbouring pixels. As shown in figure 2.2, if the neighbour 

value is greater than or equal to the centre pixel value, value 1 assigned to the neighbour 

position, otherwise 0 assigned for that position.     

 

Figure 2.2: LBP Operator Example 

It has shown in the literature that LBP operator to be a powerful texture descriptor 

yielding excellent results in terms of accuracy in a number of applications such as 

texture analysis, motion detection, image retrieval, remote sensing, biomedical image 

analysis, and face recognition. Among these applications, LBP method has shown its 

potential in recognizing faces (Guo, et al., 2010) under different illumination conditions 

and it is one of the most popular local feature-based methods. The application of LBP 

in face recognition was proposed by Ahonen et al. (Ahonen, et al., 2004). For face 

recognition an equivalence relation is defined on these binary patterns and the 
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equivalence class histogram is used as a texture feature vector representation of the 

face image.  These feature vectors are easy to compute, and are suitable for real time 

applications.  

LBPs of different resolutions can be obtained through changing the sampling radius R 

(Ojala, et al., 2002) or by down-sampling the original image prior to adopting the LBP 

operator with a fixed radius (Wang, et al., 2011). Wang et al. (Wang, et al., 2011), 

proposed a pyramid-based multi-scale LBP approach. To begin with, multi-scale 

analysis is used to construct the face image pyramid using Gaussian filter into several 

levels then the LBP operator is applied to each level of the image pyramid to extract 

facial features under various scales. As a final step, all the extracted features are 

concatenated into an enhanced feature vector which is used as the face descriptor. A 

similar face feature extraction method was proposed by Liu et al. (Liu, et al., 2010) 

using a wavelet multi-resolution analysis.  Here, low-frequency wavelet subbands (i.e. 

LL subbands) of several different scales are extracted as several sub-images of a 

subject. Then each sub-image is divided into nine non-overlapping blocks from which 

LBP operator extract the characteristic spectrum and statistic histogram. The methods 

proposed in (Wang, et al., 2011) and (Liu, et al., 2010) are both use multi-scale 

approach of only the approximations subband(s) coefficients of the face image and 

ignore high-frequency wavelet subband(s) coefficients that are known to encapsulate 

useful information that represent  significant face features (e.g. edges and boundaries 

of mouth, eyes), see (Sellahewa & Jassim, 2010).  

To include high frequency subbands to the process of feature extraction, face 

Recognition based on Haar LBP Histogram was proposed by Hengliang et al. (Tang, 

et al., 2010), the approach is based on decomposing the face image into four-channel 

subbands in frequency domain using Haar wavelet transform and applying the LBP 

operator on each subband to extract the face features. Related to the multi-scale LBP 

based, Wang et al. (Wang, et al., 2011) proposed a hand vein recognition scheme. First, 

a hand vein image decomposed into two levels to obtain 8 coefficient matrices: A1, H1, 

V1, D1, A2, H2, V2 and D2. Proposed excluded the two diagonal high-frequency 

components D1 and D2 from the feature extraction process. Meanwhile, A1, H1, V1, A2, 

H2, V2 and the original image are chosen as multi-scale components from which LBP 

features are extracted. Finally, LBPH features of all components are concatenated to 

obtain a final single feature vector representation. 
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In the two approaches proposed in (Wang, et al., 2011) and (Tang, et al., 2010), the 

LBP operator was applied on LL subbands and non LL subbands with no consideration 

for the differences in the frequency or feature ranges in these subbands for image 

features and texture. For example, applying a 2D wavelet transform (WT) on an image 

produces high-frequency subbands that include horizontal, vertical and diagonal 

features of the decomposed image respectively. Therefore, using the traditional LBP 

with radius 1 and 8 neighbours samples on non-LL subbands may capture useful as 

well as redundant information, while increasing the size of the overall face feature 

vector when compared to using LBP on the original image. This could be a problem 

for real-time identification and limit their usefulness for applications that require small 

feature representations. Our intended use of steganographic techniques by law 

enforcement agencies to communicate face biometric data hidden in innocuous cover 

images, is one such example. Note that increased size of secret feature vector has 

adverse impact on security and on the stego-image quality. However, based on the 

above mentioned discussions we shall investigate various versions of LBP features 

extracted in the wavelet domain for secure communication of face biometrics using 

steganography. In fact, our proposed scheme in (Rashid, et al., 2013)  is a first version 

scheme to extract face features based on wavelets and local binary patterns (LBPs). 

The proposed method first decomposes a face image into multiple subbands of 

frequencies using Haar wavelet transform. Each subband in the wavelet domain is 

divided into non-overlapping sub-regions. LBP codes based on the 4-neighbour 

sampling points are extracted then LBPH features are extracted from each sub-blocks 

inside selected wavelet subband(s). Finally, all LBPHs are concatenated into a single 

face feature vector to effectively represent the face image. Using proposed we reduce 

number of features that represent face image with some degradation of the face 

recognition accuracy especially in cases of using wavelet LL subbands. The modified 

version of scheme proposed in (Rashid, et al., 2013) is shown in (Rashid, et al., 2013), 

in the proposed, in case of using multiple subbands to represent face image, instead of 

calculating LBP codes from all wavelet subbands using 4-neighbours, LBP codes based 

on the traditional 8-neighbour sampling points are calculated from the approximation 

(LL) subband(s) then uniform LBPH features are extracted, whilst 4-neighbour 

sampling points are used to find LBP codes from other wavelet subband(s) then LBPH 

features are extracted.  By doing so we not just reduce number of features that represent 
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face images compared with using original 8 neighbour methods, but also we guarantee 

higher recognition accuracy in most cases. More details will give in chapter 4. 

2.1.3 Classification 

As a final step of any face recognition systems or any biometric recognition systems in 

general is classification which is the process of differentiating two or more classes by 

labelling each similar set of data with one class. The level of randomness of biometric 

features is an important factor in determining the uniqueness of sample’s biometric 

identity. In general, biometric systems deal with two types of randomness: random 

variations among individuals’ (inter-class) and random variations within biometric 

samples of an individual (intra-class). Typical biometric systems obtain a set of 

biometric features from biometric data through features extraction techniques. A good 

features extraction techniques seeks to capture a maximum random variation of the first 

type and a minimum of the other. For this step there are number of classifiers such as 

nearest neighbour (NN), Support Vector Machines (SVM), and Artificial Neural 

Networks (ANN) classifiers. There are two phases in the construction of the classifier. 

The training phase, where the training set is used to decide how the features should be 

weighted and combined, in order to separate the different classes, and the testing phase, 

where the weights determined in the training stage are applied to a set of data that does 

not have known classes, in order to determine the class. In this thesis we shall use the 

simplest method to classify images which is the nearest-neighbour approach (Gonzales 

& Woods, 2002; Guo, et al., 2003). The NN classification measures are normally based 

on a similarity or distance function defined on pairs (u,v) of feature vectors. Below we 

present a number of measures that are commonly used for NN classifier.  

- CityBlock : 

 𝐷𝐶𝑖𝑡𝑦𝐵𝑙𝑜𝑐𝑘(𝑢, 𝑣) =∑|𝑢𝑖 − 𝑣𝑖|

𝑖

   (2.1) 

 

- Euclidean : 

 𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑢, 𝑣) = √∑(𝑢𝑖 − 𝑣𝑖)2

𝑖

     (2.2) 
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- Correlation: 

 
𝑆𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑣) =

∑ (𝑢𝑖 − �̅�)(𝑣𝑖 − �̅�)𝑖

(𝑁 − 1)√
∑ (𝑢 − �̅�)2𝑖

𝑁 − 1
√∑ (𝑣 − �̅�)

2
𝑖

𝑁 − 1

     
(2.3) 

 

 𝐷𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑣) = 1 − 𝑆𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑢, 𝑣)   (2.4) 

 

- Normalized Correlation (NC): 

 𝑆𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(u, v) =
∑ 𝑢𝑖𝑣𝑖𝑖

√𝑢𝑖
2√𝑣𝑖

2
    (2.5) 

 DNormalizedCorrelation(𝑢, 𝑣) = 1 − SNormalizedCorrelation(𝑢, 𝑣)   (2.6) 

 

In this thesis we will only use the Euclidean distance with the NN classifier. 

2.1.4 Face Biometric databases 

To test the performance of any face recognition scheme we need to use a database of 

multiple face images for a reasonable size population. These tests are conducted 

according to certain protocols for which a gallery of identity-labelled feature vectors 

representing all members are used as templates against which the rest of the feature 

vectors are matched and identification is decided according to the one of the mentioned 

classifiers in previous sub-section.   There are number of benchmark face databases 

that have been recorded for the purpose of experiments, each meet certain criteria 

reflecting the application objectives that the database is recorded for. In this thesis we 

use the two most commonly used face databases that are publicly available for research 

purposes. The choice of these databases is based on the fact that in our application face 

images may not be captured under controlled conditions and these databases include 

sufficient variation in terms of expression, pose and lighting condition. 

The Yale Database, (Georghiades, et al., 2001), consists of 15 individuals, and for 

each individual there are 11 face images that originally with size of 320x240 pixels of 

greyscale images, incorporating variations in illumination (centre-light, left-light and 

right-light), facial expression (normal, happy, sad, sleepy, surprised and wink), and 

face details (with glasses and without glasses) all images cropped to 96×80 pixel 
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resolution and then used in the next chapters. Figure 2.3 shows some random selected 

samples from Yale face database.  

The ORL Database, (Samaria & Harter, 1994), contains 40 distinct subjects, each with 

10 different images captured in up-right frontal position with tolerance for some tilting 

and rotation of up to 20 degrees with 112×92 pixel resolution. Figure 2.4 shows 

different samples from ORL face database.  

     

     

Figure 2.3: Samples of Yale Database images 

     

     

Figure 2.4: Samples of ORL Database images 

 

2.2 Steganography and Steganalysis 

The term steganography comes from Greek words Steganos meaning roof or covered 

and graphia which means writing (Shiva Kumar, et al., 2011). It is the art and science 

of hiding the fact that communication is taking place. Using steganography, you can 
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hide a secret message inside a piece of unsuspicious information and send it without 

anyone knowing of the existence of the secret message. On the other hand, Steganalysis 

is the art of identifying stegogrammes that contain a secret message. Steganalysis does 

not however consider the successful extraction of the message but rather report an 

estimate of the probability of the cover object being embedded.  In this section we shall 

discuss and review the Steganography and steganalysis concept in details with giving 

a review of the state of the art techniques in the related fields.   

2.2.1 Steganography Terminology  

Secret communication between two entities can be achieved through steganography. In 

general, in the steganography world including our works in this thesis some 

terminologies are required to be introduced:  

 Cover-object or cover-medium:  Is the carrier of the message. This could be an 

image, video, audio, text, or some other digital media. In this thesis, images are used 

as a cover-object. Therefore steganography techniques when images used as cove 

can be named as ‘Image steganography’. 

 Secret message or embedded message: This is the message need to be hidden in the 

cover-medium. The message could be text, image, or biometric data. In this thesis, 

the focus is placed on hiding the face biometric data.  

 Stego-key: To make the hiding scheme more robust, a secret key can be used during 

embedding and extraction process. The key need to be share between sender and 

receiver before communication begin. Using this key is optional; therefore in some 

of our proposed hiding techniques we used the key while in some other keys not 

used.   

 Stego-object or stego-medium: The object which is obtained after the secret 

message is hidden in the cover-medium successfully (Lin & Delp, 2001) and it is 

ready to send named as stego-object. 

 Embedding process: Refers to the process (algorithm) of hiding secret messages in 

a cover object.  

 Extraction process: Refers to the process of retrieving a secret message from a 

stego-object by the recipient (authorized person).   
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2.2.2 Basic Steganography Schemes  

In general, any secret communication system that uses steganography concept is 

consists of an embedding scheme, an extraction scheme, and decision criteria. Figure 

2.5 shows the general scheme of any steganography system (Fridrich & Goljan, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: General Steganography Scheme 

2.2.2.1 Embedding Schemes  

As we mention before the steganography concept require the secret communication 

between two entities that located in different sides (sender and receiver) of the 

communication. In the sender side of the communication system, the secret message is 

converted to the bit stream and this bit stream is embedded in cover object using 

specific embedding algorithm. The secret message embedding technique is strongly 

based on the structure of the cover-object that used for embedding, in this thesis digital 

image used as a cover-object. The output of this scheme is the stego-object with secretly 

embedded message. In addition, stego-key may use during embedding process which 

ensures that only recipients who know the corresponding extraction key will be able to 

extract the secret message from a stego-object successfully (Lin & Delp, 2001). 
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2.2.2.2   Extraction Scheme  

When the receiver side receives the stego-object that was sent by sender, recovering 

the message from a stego-object needs to be done. Receiver side requires the stego-

image itself and a corresponding stego-key if a stego-key was used during the 

embedding process. The original cover image may or may not require (Lin & Delp, 

2001) during extraction process (see section 2.2.4). In all our works and proposed 

schemes in this thesis, original cover image not used during extraction process (i.e. our 

work is blind steganographic techniques), this based on the fact that in real 

communication scenarios, the original cover-image may not available for the receiver 

side. 

2.2.2.3   Decision Criteria 

Stego-object when transmitted via unsecure channel may be subjected to attacks by 

third party (unauthorized person) which often includes some image processing 

operations such as adding noise, filtering, geometric distortion, JPEG compression. In 

this case some of the embedded secret message bits may destroy or missed when 

extracted in the receiver side. We can decide if the message extracted completely or 

with some distortions using BER (Bit Error Rate) which measures ratio of error bits 

extracted in the extraction progress. In the ideal secure hiding schemes the value of 

BER equal to 0 (i.e. none of the secret bits are missed)  

 𝐵𝐸𝑅 =
𝐸𝑟𝑟𝑜𝑟 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑏𝑖𝑡

𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝐵𝑖𝑡𝑠
 (2.7) 

2.2.3 Fundamental Requirements of Steganographic Systems  

In general, there are three main requirements for effective steganographic systems: 

invisibility, capacity, and robustness but we can add another one which is the number 

of pixels that change during the embedding process. The most important challenge in 

steganography is that designing a steganographic system that satisfies all these 

mentioned requirements together. Therefore, the balance among these requirements 

must be dictated by the application (Rashid, et al., 2013; Xu, et al., 2004). For example 

some applications may need more emphasis on high degree of invisibility, while others 

may require the higher capacity to hide a larger secret message (Unnikrishnan, 2011). 

In our proposed hiding face biometric data schemes we aim to gain high invisibility of 
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the system with as much as possible high capacity for secret message embedding rate. 

We also aim to achieve robustness against steganalysis techniques. In this respect, 

ideally if steganalysis attacks succeed in detecting the presences of a secret message, it 

may or may not be possible to extract the secret message itself or even may not possible 

to extract the correct percentage of embedded payloads. Note that extracting hidden 

LBPH face feature that represent a person cannot reveal the identity of the person 

unless the attacker has access to the biometric database which we exclude for obvious 

reasons.  

2.2.3.1 Invisibility or Perceptual Transparency (Security)  

It is important that the embedding occurs without significant degradation or loss of 

perceptual quality of the cover-object. In a secret communications application, if an 

attacker detects some distortion then raises suspicion of the presence of hidden data in 

a stego-cover, the steganographic encoding has failed even if the attacker is unable to 

extract the message exactly (Lin & Delp, 2001). 

One of the measurements used widely to calculate the visibility of the image 

steganography is Peak Signal to Noise Ratio (PSNR) and is computed using the 

following formula: (Kathuria, 2010; Chen, et al., 2010) 

 𝑃𝑆𝑁𝑅𝑖𝑛𝑑𝑏 = 10 × log(
max (𝑃′(𝑖, 𝑗))2

𝑀𝑆𝐸
) (2.8) 

 

and 

 𝑀𝑆𝐸 =  
1

𝑀 × 𝑁
∑∑[𝑃(𝑖, 𝑗) − 𝑃′(𝑖, 𝑗)]2

𝑀

𝑗=1

𝑁

𝑖=1

 (2.9) 

 

Where 𝑀, 𝑁 is the width and length of the image, 𝑃(𝑖, 𝑗) and  𝑃′(𝑖, 𝑗)  represents the 

pixel with row number 𝑖  and column number 𝑗  in the original and stego-image 

respectively. PSNR is measured in decibels (db) therefore higher PSNR value means 

higher invisibility of the steganographic system obtained.      
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2.2.3.2 Capacity or Data Payload  

It is the amount of the secret message that can be embedded in a cover-object securely 

without deteriorating the integrity of the cover-object. In image steganography schemes 

the capacity is represented by bits per pixel (bpp) (Shiva Kumar, et al., 2011). 

Obviously, when less information in the cover-object embeds, the probability of 

introducing detectable artefacts by the embedding process is smaller than embedding 

higher amount (Fridrich, et al., 2001). Each steganographic system seems to have an 

upper bound on the maximal safe secret message length (or the bit-rate expressed in 

bits per pixel or sample) that tells us how many bits can be safely embedded in a given 

cover without introducing any statistically detectable artefacts (Fridrich & Goljan, 

2002; Fridrich, et al., 2003). 

2.2.3.3 Robustness (Detectability)  

Here in this section we need clearly define the word robustness and differentiate 

between image steganography robustness and image watermarking robustness. 

Therefore, robustness in image watermarking schemes means that watermarking 

method should resist any kind of distortion introduced by standard or malicious data 

processing operations. Examples of common operations on images include spatial 

filtering, lossy compression, printing and scanning, and geometric distortions (rotation, 

translation, scaling, and so on). While in steganography schemes, robustness refers to 

how much effort is required by a steganalyst to decide (detect) whether the stego-object 

contains a hidden message or not. A perfect implementation of a robust steganographic 

scheme withstands all known attacks in the sense such attacks on the stego-object 

would prove to be inconclusive every time. In another word it makes no sense to 

perform steganography if someone can figure out how or where the secret is hidden. If 

someone can easily detect where you hide your secret, it defeats the purpose of using 

steganography. The way that steganography is usually performed to make it hard to 

find the hidden data is to do it in such a way that there is little change to the properties 

of host file. Therefore, the algorithm that is used must be robust enough that, even if 

someone knows how the technique works, he or she cannot easily find out that you 

have hidden data in a given file. In some applications steganography robustness also 

refers to the ability of secret embedded data to remain the same if the stego-cover 

undergoes transformations such as linear and non-linear filtering, addition of random 
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noise, sharpening or blurring, scaling and rotations, cropping or lossy compression (Lin 

& Delp, 2001). 

2.2.3.4 Number of Changed Cover Data 

In image steganography, a small upper bound on the number of pixels that need to be 

change during embedding process is a very desirable property. Fewer changes will 

produce higher invisible embedding system because it is less likely to disrupt statistic 

properties of the cover-object (Fridrich & Soukal, 2006; Sur, et al., 2008; Wang, et al., 

2010).  

Reducing the amount of change may be possible to achieve by careful selecting the 

embedding technique positions for embedding or type of the secret message. For 

example in the case of traditional LSB embedding, the LSB bit of the cover image is 

be replaced with that of the secret message and the probability of changing the pixel 

values in this case is estimated to be 50%. In chapter 5, we shall investigate or propose 

strategies to select embedding schemes that result in much smaller number of changes 

in the cover image pixel values with remaining steganographic scheme at the same 

level of payload capacity. The proposed should also differentiate embedding biometric 

data with embedding any other types of secret message.  

2.2.3.5 Trade-off between Conflicting Requirements  

Trade-off among all above mentioned requirements are necessary, and the main 

challenge is to achieve a robust embedding scheme that has increased steganographic 

capacity while enhancing the imperceptibility or un-detectability of the secret 

communication. However, in general image steganographic systems capacity and 

imperceptibility are at odds with each other (i.e. hiding more data in cover images 

introduces more artefacts into cover images and then increases the perceptibility of 

hidden data) (Rashid, et al., 2013). Our solution regarding this challenge will be based 

on the investigations referred to the end of last section, i.e. controlling the number of 

the cover pixel value changes during embedding process with remaining the hiding 

system at the same level of embedding capacity compared with the traditional 

embedding systems (See chapter 5).  

On the other hand there is odds relation between invisibility and the robustness of the 

hiding system; we need to find a trade-off between them. In (Rashid, et al., 2013) we 

proposed an embedding scheme that achieves high robustness at the expense of small 
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amount of degraded invisibility but with optimal capacity payload. It is based on 

manipulating the 2nd LSB as a witness for the similarity between the secret and the 

LSB. More details will be given in the next chapter (chapter 3). Moreover our solution 

based on differentiating embedding biometric data and other kinds of secret messages 

proposed in chapter 5, shows that by changing less number of pixels values during 

embedding process we can guarantee very high invisible hiding system as well as high 

robustness against steganalysis schemes with remain the hiding system in the full 

percentage level of payload capacity.   

2.2.4 Steganographic Techniques 

Generally, the large number of existing steganographic techniques (Katzenbeisser & 

Petitcolas, 2000) can be classified in different categories. In this section, we attempt to 

explain and show different steganographic techniques classifications.   

 Based on Cover Type 

Based on the type of the cover-object that used for embedding, the steganography 

techniques can be classified as text, audio, image, and video steganography (see figure 

2.6). Most of the recent embedding techniques including our works presented in this 

thesis used image as a cover object, images are used as cover because it have a very 

common use in computer environment and shared easily on Internet. There are several 

reasons for using images in steganography: 

- Images contain data may be not significant, changing value of those data has 

no effects on images functionality, while in other types of data may have effect 

like in text in which changing any bit will change a letter to another. 

- Human visual system and its inability to distinguish minor changes in images 

colour. 

- Images normally contain some noise, hiding information acts like adding noise; 

therefore it's normal when attacker (steganalyzer) notice that an image contain 

noise. 
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Figure 2.6: Categorized steganography based on cover type 

 

 Based on Domain Used 

Steganographic techniques can be classified based on the domain that embedding 

technique used in. In general there are two main domains; spatial or image domain and 

frequency or transform domain. In spatial domain pixels values are modified directly 

to embed secret message such as LSB technique. Examples of frequency domain 

techniques are Discrete Cosine Transform (DCT), Discrete Wavelet Transform 

(DWT), and Discrete Fourier Transform (DFT). While all our works proposed in this 

thesis are based/implemented in spatial domain, we shall give a detail literature survey 

on the spatial domain hiding schemes in the next section. 

 

Figure 2.7: Categorized steganography based on used domain 

 Based on Using Original Cover in Extraction Process 

Original cover object may use in extraction process. A steganographic scheme that 

allows extracting the embedded data without reference to the original (cover) is called 

blind steganographic scheme, otherwise it is called non blind (i.e. the receiver must 

have the original cover-object during extraction process). All proposed hiding schemes 

in this thesis are in type of blind steganography techniques, by taking in account the 

fact that in real world applications of secret communication the receiver side may not 

have the original object (cover) to use it for extraction process.  
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Figure 2.8: Categorized steganography based on using cover in extraction 

2.2.5 The Least Significant Bit (LSB) Embedding Schemes  

The most common and simplest blind steganographic method of embedding a secret 

message in the spatial domain of images is the Least Significant Bit (LSB) substitution. 

In this method LSB of a pixel is directly replaced with secret bit that need to be 

embedded (Yang, et al., 2008). Changing the least significant bit does not result in a 

human-perceptible difference because the effect of the change is very small (Lin & 

Delp, 2001). In the LSB technique, the information is hidden in sequential fashion. 

Hence the attacker can easily repeat the same technique to get the hidden information. 

To overcome this problem, the message that needs to be hidden is randomly spread 

over the cover instead of using sequential locations. Random locations are selected by 

using pseudo random number generator (PRNG). In this technique, a stego-key is used. 

The stego-key provides a seed value which is an integer that helps to generate a 

repeated sequence of unique pseudorandom numbers ranging from 0 to number of 

locations needed for embedding. At the extraction process, the same stego-key is used 

to extract the data (Venkatraman, et al., 2004; Singh, et al., 2007). In the same manner 

a new version of LSB embedding technique proposed by (Sharp, 2001), later in (Ker, 

2004) the proposed named as LSB Matching (LSBM) embedding technique or ± 

embedding technique. In case if the secret message bit does not match the image 

cover’s pixel value, the proposed increase or decrease randomly the pixel value by one 

instead of just substituting the LSB with the secret bit such as in normal LSB 

embedding techniques. When the process of embedding the secret message is done, 

LSB of the stego pixel represents a secret bit and by extracting it at the receiver side, 

the secret message obtained. Mielikainen (Mielikainen, 2006) propose another version 

of the LSB matching named as LSB Matching Revisited (LSBMR). In the method, pair 

of secret message embed using a pair of pixels at the same time, where the first secret 

message bit embed in the first pixel least significant bit, and designed binary function 

of the two pixel values carries the second bit of secret message. The proposed method 

Using Cover in 
Extraction Process

Blind Non Blind
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allows embedding the same payload as LSB matching but with fewer changes to the 

cover image.  

There is nothing that stops us to use more than one bit plane for embedding such as in 

(Ker, 2007), first two LSBs are used to embed two secret bits, and by doing so the 

payload capacity is doubled. However, embedding two bits per pixel increases the 

changes introduced to the cover image adversely affecting stego quality and making 

the stego image easier to detect. To improve robustness of the system authors in 

(Abdulla, et al., 2013) use first two LSBs for embedding but by embedding only one 

secret message bit in one of the two LSBs, by doing so authors guarantee robustness 

against some statistical steganalysis techniques with respect to stego image quality and 

payload capacity.  

In the simple substitution technique we can replace n LSBs with n secret bits. However 

not every cover location can take the same amount of secret message. As a result, many 

new sophisticated LSB approaches have been proposed to improve this drawback 

(Yang, et al., 2008). Such as in (Dc & Tsai, 2003) pixel value differencing (PVD) based 

steganography is presented which let to embed less number of bits in the smooth area 

and higher number of bits in the edge areas by calculating the differences between each 

two consecutive pixels in row representation, the algorithm classify the differences in 

to different regions then depend on the region that the pixels are in the decision of how 

many bits need to be embedded will made. Using the proposed the embedding capacity 

increases.  

In (Wu, et al., 2005) a modification of proposed technique in (Dc & Tsai, 2003) is 

proposed which embed in the low differences (𝑑) level (𝑑 < 15) rate area (smooth 

area) for each two consecutive pixel, 3 bits using LSB replacement, while using the 

same method used in (Dc & Tsai, 2003) for number of embed bits in the edge area 

which is (𝑑 > 15), results shows that this new proposed technique increased the 

capacity of embedding while remain the same level of invisibility when they compared 

with the PVD based steganography proposed in (Dc & Tsai, 2003).  

In (Yang, et al., 2008) a novel method is proposed by using LSB combined with PVD 

method that proposed in (Dc & Tsai, 2003) , in the proposed the number of embedded 

bits (𝑘) are selected depending on difference level between two consecutive pixels , the 

difference levels are divided to three levels; low, medium and high. When the 

differences is low then selected 𝑘 is small, when difference is in the high range then 
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selected 𝑘 will be large , and when the differences in the middle range then the 𝑘 will 

be in the middle, results show that the proposed method is successful to achieve both 

large embed capacity and higher invisibility requirement.  

In (Dc & Tsai, 2003), (Wu, et al., 2005), and (Yang, et al., 2008) which they are all 

used the PVD approach, the two consecutive pixels are used in the raster scanning 

order, this mean that in the images only the vertical edges are used to embed high 

number of bits while the horizontal edges used as a smooth area. For this reason authors 

in (Luo, et al., 2011) proposed a new method that covers the limitations of PVD by 

partition the original image to non-overlapping square then rotate each square by a 

specific degree 90,180,270. Then the new image is divided to non-overlapping group 

with three consecutive pixels and the second pixel of each group is used to embed. For 

experimental result the proposed method compared with the results obtained from (Dc 

& Tsai, 2003), (Wu, et al., 2005), and (Yang, et al., 2008), the results shows that the 

proposed method is more secure than the others. 

By applying the concepts which saying that hiding secret message in the pixels that 

they are least like their neighbours is better than other locations, authors in (Singh, et 

al., 2007) proposed hiding secret message in edge pixels using Least Significant Bit 

algorithm and random pixel location selected among all edge locations. Authors 

compare the two proposed techniques with other two techniques which they are 

Sequential and Random Least Significant Bit algorithm embedding, for comparison 

purpose 20 gray images are used as a test, the experiments shows that the secret text 

length that embedded using new algorithm cannot estimated by blind LSB detection 

technique. 

In embedding techniques based on edge positions we will reach the problem that some 

pixels that detected as an edge before embedding may not be remain as an edge after 

embedding, therefore this issue needed to be solved. Regarding this issue, two 

embedding strategy are proposed in (Chen, et al., 2010), and (Hempstalk, 2006). In 

(Chen, et al., 2010) a new algorithm proposed using hybrid edge detector combined 

with the LSB, the main aim of using hybrid edge is to increase the number of edges by 

using two edge detectors then combined the two edges images. The algorithm is done 

by blocking the image into non-overlapping raster block which the first pixel in each 

block contain the information about the rest pixels in the block, explain that the next 

pixels are edge or not. The proposed algorithm is also embed less bits of secret message 
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in the non-edge pixels while embed large number of bits in the edge pixels. In the 

extraction process the same information that saved in the first pixel in each block are 

used to tell the receiver which pixel is edge.  Experimental shows that the proposed 

method achieved high capacity. To guarantee the same number and positions of edges 

in an image, authors in (Hempstalk, 2006) proposed two new algorithms depend on 

using image filtering to select the embedding location (Edges) named proposed 

algorithms as FilterFirst and BattleSteg.In FilterFirst edges are found in 𝑟 most 

significant bits of the pixel and embedding done in 𝑡 least significant bits where 𝑟 =

8 − 𝑡. By doing so, the algorithm guaranteed the same numbers and locations of the 

edges before and after embedding.  While BattleSteg is combination between Filter 

First with hide Seek algorithm (i.e. first find the edge positions then randomly selecting 

the positions among edge positions for embedding). Result shows that embedding in 

the image feature like edge is better than using sequential and randomly choosing 

positions for embedding. Authors in (Islam, et al., 2014)  proposed an extension version 

of proposed method in (Hempstalk, 2006), instead of using one LSB of the pixel for 

embedding and the rest 7 bits for detecting edges, here two LSB used for embedding 

and the other remain 6 bits are used for detecting edge positions. By doing so 

embedding capacity increased. Also in proposed algorithm the edges are dynamically 

selected based on the length of the secret message.  

2.2.6 Steganalysis Tools 

Steganalysis is the science of detecting the use of steganography by a third party 

(unauthorized entity). The main goal of any steganalysis is to collect evidences about 

the presence of embedded message and to break the security of its carrier. Analysis on 

hidden information could be described under several forms: detecting, extracting, and 

disabling or destroying hidden information (Johnson & Jajodia, 1998). With the 

growing researches in the field of steganography, the researches on steganalysis grow 

as well. Therefore, nowadays there are number of different and accurate steganalysis 

techniques have been proposed in the literature. Regarding the amount of information 

that is known about the embedding schemes, steganalysis schemes are pretty similar to 

traditional cryptanalysis methods. The steganalysis attack schemes can be divided into 

six types: 

- Steganography-only attack: Only the data-embedded file is available for 

analysis. 
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- Known-carrier attack: Both the original carrier file and the final (hidden 

message embedded) files are available for analysis. 

- Known-message attack: The original message before being embedded in the 

carrier is known. 

- Chosen-steganography attack: Both the algorithm used to embed the data and 

the final (hidden message embedded) file are known and available for analysis. 

- Chosen-message attack: The original message and the algorithm used to embed 

the message are available, but neither the carrier nor the final (hidden message 

embedded) file are. This attack is used by the analyst for comparison to future 

coming files. 

- Known-steganography attack: All components of the system (the original 

message, the carrier message, and the algorithm) are available for analysis 

(Dickman, 2007). 

As a very early stage in the field, presence of the secret message is detected visually, 

therefore named as visual steganalysis (attack). Visual steganalysis is defined as the 

process of detecting hidden messages in stego files through inspection by naked eye or 

by assistance of a computer. This kind of attacks may detect sequential LSB 

steganography techniques but not true for other techniques (Westfeld & Pfitzmann, 

1999). Visual attacks examine the entire stego file (i.e. image) by remove all parts of 

the image covering the message that embedded in LSB plane. Figure 2.9 below shows 

an example of the visual steganalysis techniques which aimed to detect the four black 

and white images embedded in the LSB-plane.  

The statistics of an image undergo alterations after embedding secret message in it 

using steganography. Therefore, number of steganalysis schemes proposed to detect 

the statistical changes in the images and named these schemes as statistical steganalysis 

schemes. Based on the embedding schemes that steganalysis designed for, statistical 

steganalysis can be divided into two types: Specific (Target) statistical steganalysis 

and Universal statistical steganalysis. 
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Figure 2.9: Result of visual attack 

 

 Specific statistical steganalysis 

This kind of steganalysis includes the statistical steganalysis techniques that target a 

specific steganography embedding technique or its variations. A steganalysis technique 

that designed to specific steganographic algorithm would give interest results when 

tested only on that embedding algorithm and might fail on all other steganographic 

algorithms (Bera & Sharma, 2010). The design of such techniques needs a detailed 

knowledge of embedding process. 

While the most popular and frequently used steganographic techniques including 

proposed/investigated techniques in this thesis are based on LSB, therefore more 

attention of steganalyzers go for breaking such kind of embedding techniques. The first 

statistical steganalysis tool is proposed by Westfield and Pfitzman (Westfeld & 

Pfitzmann, 1999) named as Pairs of Value (POV). This approach is preliminary 

designed to detect the sequential LSB embedding in greyscale cover images also the 

proposed shows its ability to detect randomly spread LSB in case that the number of 

embedded message comparable to the cover size. In (Fridrich, et al., 2000) the Raw 

Quick Pair (RQP) detection method is proposed when LSB method used for embedding 

in the 24 bit true colour images. The proposed method is based on analyzing close pairs 

of colours inside a colour image. The method works reliably well in case that the 

numbers of unique colours are not exceed 30% of the total number of pixels. A more 
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accurate technique Regular and Singular (RS steganalysis) proposed by Fridrich et al. 

(Fridrich, et al., 2001) that used to detect the embedding in greyscale as well as the 

colour images. The technique is based on dividing images into disjoint groups and 

classifying groups to “regular” or “singular” based on whether the pixel noise within 

the group increased or decreased after flipping LSB plane. The ratio of each group is 

used as a base for decision whether the tested image is cover or stego.  Andrew D. Ker 

(Ker, 2004; Ker, 2004), have evaluated POV and RS steganalysis tools and shows that 

the RS steganalysis performs slightly better than POV for greyscale images. Therefore, 

some improvements of both steganalysis are proposed that work well when greyscale 

images used. The improvement of RS steganalysis reliability was further increased by 

using different kind of flipping strategies, while POV steganalysis was improved by 

excluding non-adjacent pixels from the homogeneity calculation. In (Zhi, et al., 2003), 

the relation between the length of the embedded message and the gradient energy is 

used as a base for detecting presence of the embedding, therefore the method named as 

Gradient Energy Flipping Rate Detection (GEFR). The technique calculates gradient 

energy of the test image as well as the images after flipping LSB with different rates. 

Then the gradient energy curve is used to estimate the embedded message length. Tao 

Zhang and Xijian Ping (Zhang & Ping, 2003), proposed the steganalysis tool that uses 

the difference image histogram (DIH) method as a classifier for distinguishing between 

stego-images and cover images. The translation coefficients between difference image 

histograms used as the measure of weak correlation between the LSB plane and other 

bit-planes of the image as a result of randomness of the LSB in natural images. One of 

the best structural steganalysis tools and most sensitive targeted steganalysis of LSB 

based steganography currently available is revisited weighted stego-image steganalysis 

(RWS) proposed by Andrew D. Ker (Ker & Böhme, 2008) . The RWS steganalysis 

tool, is an enhanced version of the scheme that originally proposed by Fridrich and 

Goljan’s (Fridrich & Goljan, 2004). The technique considers that a given test image 𝑆 

can be used to obtain the predicted cover �̂� image by adaptive filtering 𝑆 that minimize 

difference between 𝑆 and �̂�. And based on this idea the estimated change rate will be 

calculated. To detect the presence of secret message embedded using LSBM scheme 

Harmsen and Pearlman (Harmsen & Pearlman, 2003), proposed a steganalysis tool by 

exploiting that the embedding technique works as a low-pass filter on the histogram of 

the cover image. The method is then introduced a detector using the centre of mass 

(COM) of the histogram characteristic function (HCF) and they named HCF-COM. 
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That work was tested on colour images. In (Ker, 2005) by showing and proving that 

the original HCF-COM method does not work well on grayscale images. Therefore, 

Ker proposed a new version of HCF-COM based on the calibration (down-sampling) 

technique. Therefore the relation between HCF-COM obtained from original size and 

down-sampled one used as criteria for deciding the tested image is cover or not.  

 Universal statistical steganalysis 

Universal statistical steganalysis tools can be defined as a tool that aims to detect 

different embedding schemes (i.e. not used for only specific steganography embedding 

technique). This kind of steganalysis need a training phase of statistical features on 

clean and stego images obtained from different embedding schemes. The trick of such 

kind of steganalysis is to find out appropriate statistical parameters with 

‘distinguishing’ capabilities.  

The very early universal statistical steganalysis tool is proposed by Ismail Avcıbas et 

al. (Avcibas, et al., 2001), in the proposed the detection is based on the exploiting the 

statistical evidence that the steganographic techniques leaves with the aid of analyzing 

image quality metrics and multivariate regression. In (Farid, 2002) wavelet-like 

decomposition is used to construct higher order statistical models of natural images. 

Then a Fisher Linear Discriminant Analysis (FLDA) used to discriminate between 

untouched and adulterated images. In (Lyu & Farid, 2002) modified version of (Farid, 

2002) is proposed, instead of using FLDA they used support vector machine (SVM) to 

obtain better classification accuracy. The statistics of first and higher order colour 

wavelet decomposition and a one-class support vector machine (OC-SVM) proposed 

in (Lyu & Farid, 2004). As a continues work, in  (Lyu & Farid, 2006), Lyu and Farid 

include phase statistics to the statistical model for colour images in addition to the first 

and higher order magnitude statistics. Therefore the feature vector size obtained is 432-

D feature vector of magnitude and phase statistics. The steganalysis proposed in (Xuan, 

et al., 2005) based on the statistical moment in the wavelet decomposition. 39-D feature 

vectors are proposed for steganalysis which include first three moments of 

characteristic function of wavelet subbands with the 3-level Haar wavelet 

decomposition. The proposed shows that the extracted features after embedding will 

cause the changes of wavelet subbands histogram. Bayes classifier is used to classify 

the incoming images. Texture based steganalysis proposed in (Lafferty & Ahmed, 

2004) , the tool used the Local Binary Pattern (LBP) texture operator to calculate the 
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amount of texture present in an image followed by calculating some statistics 

parameters extracted from the LBP. The outputs of LBP algorithm are provided to the 

artificial neural network which already trained with the same statistics parameters 

extracted from clean and stego images. Recent powerful universal steganalysis tool is 

proposed by Jessica Fridrich et al. (Fridrich & Kodovský, 2012). The method named 

as spatial rich models (SRM) and based on calculating a very large number of different 

types of dependencies among neighbouring pixels to enable the detection of a wide 

range of embedding algorithms on the bases of the fact that any embedding scheme 

will create few local distortions at different scales.  

As a conclusions of this section we can say some general comments;  

- It is difficult to find out an effective steganalysis tool that can detect all 

steganographic methods.  

- Most targeted steganalysis tools try to estimate the secret message embedded after 

the stego-image detected, while the universal steganalysis schemes are binary 

classification without estimating embedded secret. 

- Targeted steganalysis tools not need training phase, while universal steganalysis 

tools are need training the system for classification purpose. 

More details of individual used steganalysis tools in this thesis will be given in the next 

chapters especially in chapters 3 and 6, when we attempt to use them as a tool to 

measure the robustness of our proposed embedding techniques. 

2.3 Biometric Hiding  

In recent years using biometrics data for user authentication and verification increased 

because of its advantages over the traditional security schemes. A biometric system is 

vulnerable to a variety of attacks aimed at undermining the integrity of the 

authentication process. These attacks are intended to either circumvent the security 

afforded by the system or to deter the normal functioning of the system. 

In (Jain, et al., 2005) an overview of the several types of attacks that affected the 

biometric system are described with giving some interest solutions that prevent or 

eliminates some of those attacks like using encryption , steganography and 

watermarking when the biometric needed to be transferred via unsecure 

communication channel. Literature survey about some used methods to secure the 

biometric templates is also presented. In (Dong & Tan, 2009) the overview on the 
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methods that used in the field of security enhancement of biometric data, cryptography 

and data hiding are presented. Some techniques that combined the cryptography 

concept with biometric and other methods that combined the data hiding concept with 

biometric are explained also. Then problems of cryptographic key management and 

protection of biometric templates is presented.  

Concept of steganography can be used for securely transferring biometric data, the way 

of using this concept are different from one application to another or from one type of 

biometric data to another. For example in the following proposed secure systems, each 

of them use different technique for hiding and also each of them used for specific 

application, in (Jain & Uludag, 2003) two type of scenarios are presented, the first one 

is hide the biometric data (fingerprint minutiae) in an image which is not related to the 

biometric data and transferred via unsecure communication channel to increase the 

security of transferring biometric data. In the second scenarios the facial information 

(eigen-face coefficient) is embedded in fingerprint image to increase the security of the 

fingerprint image. The size of the hidden data used in first scenario is only 85 byte 

while in the second scenario is only 56 bytes. In (Kapczynski & Banasik, 2011) an 

approach proposed to enhance biometric access control by utilizing steganography. 

Proposed method hides keyboard dynamic templates in fingerprint templates using 

LSB Method.  

Wavelet-based watermarking method proposed in (Zebbiche, et al., 2006) , proposed 

hide the fingerprint minutiae data in fingerprint images. The application provides a 

security to both hidden data (i.e. fingerprint minutiae) and the host image (i.e. 

fingerprint). The method is essentially introduced to increase the security of fingerprint 

minutiae transmission and can also be used to protect the original fingerprint image. 

While authors in (Ntalianis, et al., 2011) propose a method that hides the biometric 

signal in the video object used for biometric authentication over error prone networks. 

The method apply 2 level of wavelet transform and choose two subbands for 

embedding with the idea of redundancy which is the same biometric signal embedded 

in the two subbands. 

Discrete Cosine Transform (DCT) used for embedding biometric features such as in 

(Agrawal & Savvides, 2009) a modified DCT embedding technique is proposed by 

hiding the secret message which is either iris codes or fingerprint depend on the sign 

of the DCT coefficients. In proposed method every 3by3 DCT block used to embed 
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single bit, to increase the capacity proposed also tried to hide more than one bit in the 

single 3by3 block. The proposed shows that the method more robust under the JPEG 

compression attack. The robustness calculated by finding hamming distance between 

recovered and original embed logo and the results shows that it is good for 

reconstruction the iris code after attacks. While in (Na, et al., 2010) two keys used one 

for encryption the iris code and the other is to select randomly the blocks of the 

coefficients in DCT domain. In each selected block middle high frequency is used to 

embed which they are more robust to various types of image processing attacks. For 

experimental, proposed method used 756 iris images from 108 eyes images, and feature 

of iris are extracted using 2D-Gabor filter to create a 512 bits code, this 512 bits are 

embedded in the cover image. 

To enhance the security of transferring biometric features, different kind of 

combination of cryptography, steganography, and watermarking can be establish, such 

as in (Kathuria, 2010) a method proposed to enhance the performance of identification 

system using vein Biometric. Proposed method combines the principle of 

steganography and cryptography to ensure the security of transferring biometric data 

over insecure channel. And also proposed used the Run Length Encoding (RLE) as a 

compression technique that compresses the vein image before embedding stage. Also   

to achieve more secure transferring biometric data in unsecure channel authors in 

(Sonsare & Sapkal, 2011) combined the principles of cryptography with 

steganography. Proposed algorithm encrypt the biometric code by using RSA public 

key encryption algorithm then the encrypted data is embedded in cover image by using 

DCT technique which replaces the least significant bit of DCT coefficient by secret 

message bit. Related to the subject in (AL-Assam, et al., 2013) we proposes an 

approach that combines steganography with biometric cryptosystems effectively to 

establish robust remote mutual authentication between two parties as well as key 

exchange that facilitates one-time stego-keys.  

Combination of asymmetric digital watermarking and steganography proposed in 

(Whitelam, et al., 2013), the algorithm presents a multilayer framework that first 

encodes eigen-features extracted from raw face images, into a fingerprint image. 

Secondly, each watermarked fingerprint image is encoded within an arbitrary host 

image unrelated to biometrics or forensics. The contributions of the work are as 

follows: developed an application of biometric watermarking face eigen features into 



41 

 

fingerprint images that are usable to provide authentication; developed the process of 

encoding the fingerprint images into an arbitrary host image, which provides an 

increased level of security and authentication. Also in (Lu, et al., 2008), and (Li, et al., 

2009) combination between watermarking and steganography used to improve the 

security and secrecy of biometric verification using lossless and content-based hidden 

transmission method of biometric images. Proposed hide digital watermark losslessly 

in the region of interest (ROI) of palm print. The watermarked ROI is hidden in the 

general public image using content-based steganography technology and transmitted 

secretly. For embedding, greyscale images are segment into different regions using 

watershed algorithm. The entropy of each region is calculated and the stego palm print 

image is embedded into cover image according to the entropy values. More information 

embeds in highly textured regions than in uniform regions. 

Recently, one of the applications that biometric hiding used for is the transaction 

system and online shopping such as in (Hussam, et al., 2006) fingerprint verification 

technique to verify the customer (cardholder) uses in secure online shopping system 

that gives the Internet users the confidence to use their online shopping cards or their 

credit cards. The proposed system encrypts the sensitive card's information and hides 

it in an image using a steganography algorithm, while in (Murugesh, 2012) system 

proposed to establish a highly secured money transaction system. In system, protection 

to user integrity is given the highest priority. Proposed method as follows, a fingerprint 

scanner is used to get the fingerprint of the user, after which the system requests for the 

PIN (Personal Identification Number). Once the user enters the PIN, the user is 

prompted to enter the OTP (One Time Password) which is a 4-digit random password 

sent by the server to the user’s registered mobile number. On cross verification with 

the data stored in the system database, the user is allowed to make a transaction. The 

underlying mechanism involves combining the concepts of Cryptography and 

Steganography. The PIN and OTP are encrypted using AES 256. Then the encrypted 

data is steganographed with the fingerprint image which acts as the BASE image. The 

Steganographed image is sent to the server, where it is de-steganographed and verified 

with the data available in the system database. 

In this section we explained and presented some different information hiding 

algorithms that used for biometric hiding. Every algorithm has its advantages and 

disadvantages  and there is no algorithm that successfully achieves all the hiding 
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requirements for example some of them hide more data but they are not mention to the 

other two requirements which they are invisibility and robustness, others achieves 

invisibility requirement but with low level of robustness. On the other hand, there are 

little number of papers that deal with hiding biometric data and mentioning the 

accuracy of the biometric system. For the above reasons we aimed to design and create 

a secure biometric hiding system that achieve the acceptable level of the requirements 

(Rashid, et al., 2013), more details about proposed will give in chapter 3. Also to 

increase invisibility of hiding system in (Rashid, et al., 2013) we proposed a very high 

invisibility face biometric data hidding technique by reducing number of face features 

need to embed with remain the face recognition accuracy rate as it is or even higher 

accuracy in some cases. The proposed method decomposes a face image into multiple 

frequency subbands using wavelet transform. Each subband in the wavelet domain is 

divided into non-overlapping blocks. After that local binary pattern histograms 

(LBPHs) are extracted from each block in each subband using only 4 neighbours to 

extract LBP code. Then, all of the LBPHs are concatenated into a single feature 

histogram to effectively represent the face image. Finally, the extracted face features 

are embedded in an image using one of the robust steganography techniques that 

proposed in (Rashid, et al., 2013) in order for them to be ready for transmission. More 

details will give in chapter 4.  

All above mentioned methods including our own proposed schemes embed the 

biometric features like embedding any other secret types, by first convert the features 

after extracted from the biometric data to the bit stream and then embed inside the cover 

image bit by bit. None of them mentions that how the biometric features embedding 

can be differentiated from other kind of secret message embedding. We propose an 

algorithm that focuses on differentiate embedding biometric features from embedding 

other messages by benefits from characteristics of texture features such as LBPH. 

Proposed method try to find the match patterns between the bits of the secret message 

in each segment and the LSBs of pixels in the cover-image. By doing so, we can 

decrease the number of LSB of the pixels that are changed during embedding process. 

As a result of that, the distortion or noise that appear in the pixels of the stego-image 

will be decrease and the immunity of the stego-image against the steganalysis becomes 

strong. More details about such proposed schemes will give in chapters 5 and 6.  
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Chapter 3  

Face Biometric Hiding Techniques 

So far we have identified steganography as offering a suitable alternative to encryption 

as a mean of securing transmission or storage of biometric data, and enabling secure 

remote biometric based authentication.  The need for such techniques can arise in law 

enforcement, forensics, counter terrorism, internet or mobile banking and border 

control. In the last two chapters we described the research problem dealt with in this 

thesis, reviewed and described basic steganographic concepts, challenges, and 

techniques of hiding secret messages (expressed in binary) inside digital images. We 

have also reviewed basic concepts of biometrics together with the main challenges of 

biometric based authentication. In this chapter we initiate our investigations and 

development of robust schemes to hide face biometrics in digital images. We will first 

describe in section 3.1 the two most efficient face feature extraction techniques (LBP 

and wavelet-bases). In section 3.2, we analyse the main approaches to spatial domain 

secret embedding techniques (including various versions of LSB), and conclude with 

the development of our first proposed hiding technique whereby we do not change the 

LSB but modify the 2nd LSB as a witness to the presence of the secret message in the 

1st LSB. In section 3.3, we analyse the witness-based hiding scheme for general 

steganography use in terms of invisibility, payload capacity and robustness against 

specific statistical steganalysis techniques. In section 3.4, we shall test the suitability 

of the two chosen face feature vectors for embedding using the witness scheme with 

particular interest in payload capacity and maintenance or loss of recognition accuracy 

as a result of the embedding procedure.  

3.1 Extracting Face Feature 

One of the effective steps in any biometric recognition system is feature extraction 

process (Shan, et al., 2009; Sellahewa, 2006). The extracted feature represents the 

biometric data which is our aim to transmit it securely based on steganography 

techniques. In steganography field the extracted feature named as a secret message. In 
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this thesis, face feature will be used as secret information after being converted to 

binary stream.  

Following the discussion we had on the various biometrics and suitability for use as a 

secret message that can be hidden in an image we summarise the basic requirements 

that a face feature extraction and recognition scheme must satisfy as well as related 

factors. 

1. Face biometric trait samples must be easy to map and represent by binary strings. 

2. Capacity and invisibility requirements require the secret to be sufficiently short.  

3. For security and privacy reasons the process of obtaining the binary secret string 

cannot be reversed to obtain the original biometric trait sample 

4. The act of embedding the secret should preserve the accuracy of matching. 

Unfortunately except for the LBP face recognition scheme, all schemes discussed in 

Chapter 2 are not suitable but for different reasons. Sure, most schemes can be binarised 

but into rather very long strings and may result in loss of recognition accuracy on top 

of having serious implications for payload capacity. Moreover, except for the LBP 

scheme, from the binarised feature vector the recorded sample can be approximated. In 

what follows we shall describe different block-wise based LBP face feature vector as 

well as wavelet-based face feature vectors. The suitability of these face feature vectors 

for embedding using the proposed witness hiding scheme in terms of the above 

requirements will be tested at the last part of this chapter. 

3.1.1 Wavelet-based Features  

Discrete wavelet transform (DWT) can be used as a face feature extraction scheme 

which after one level of 2D decomposition, a face image is divided into four subbands: 

LL (Low-Low), which is generated by the approximation coefficients; LH (Low-High), 

HL (High-Low), and HH (High-High), which are generated by the detail coefficients. 

After applying Haar wavelet transform, the given image is decomposed into 3𝑘 + 1 

frequency subbands where 𝑘 is the level of the decomposition (Sellahewa, 2006). 

Figure 3.1 shows two level of DWT decomposition. To extract face features we applied 

Haar DWT to 3 decomposition levels on face image and we select one subband to 

represent face feature vector. 

 Our scheme is based on hiding binary string into images; therefore we need to binaries 

the extracted face feature vector. There are a number of ways of binarising face images 
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or the coefficients in their wavelet subbands, but here we will use simple and easy 

method to represent wavelet subbands of face coefficients which preserve the most 

important features. This binarization is based on thresholding the coefficients in terms 

of their mean and standard deviation of the wavelet subband.  

 Coefficient = {
0    if abs(coeficient − mean)  <  α ∗ std

1    if abs(coeficient − mean) ≥  α ∗ std
 (3.1) 

 

Here, mean is the mean of the coefficients of a given subband, std is the standard 

deviation of the same subband, and 𝞪=0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5. Where 

experimentally we chose value of 𝞪=0.5. 

 

Figure 3.1: Two level wavelet decomposition of an image 

3.1.2 LBP-based Features 

The original LBP operator was introduced by Ojala et al. (Ojala, et al., 1996). LBP 

normally refers to replacing image pixels with an 8-bit binary code that is derived from 

the pixel’s neighbourhood. For a 3×3 block, the value of the centre pixel is subtracted 

from that of each of its 8 neighbouring pixels and depending on the sign of the 

subtraction result 1 or 0 assigned to a bit. The generated bits for all the neighbouring 

pixels are then concatenated and encoded into binary strings in clockwise direction. 

The derived binary strings are called Local Binary Patterns or LBP codes. The decimal 

value of the LBP code for the centre pixel (xc, yc) is calculated as follows: 

 𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐) = ∑𝑠(𝑖𝑛 − 𝑖𝑐)2
𝑛

𝑛=7

𝑛=0

 (3.2) 
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Where n runs over the 8 neighbours of the central pixel, 𝑖𝑐 and 𝑖𝑛 are grey level values 

of the central pixel and the surrounding pixels respectively, and the function 𝑠(𝑥) is 

defined as: 

 𝑠(𝑥) =  {
1  𝑖𝑓 𝑥 ≥ 0
0  𝑖𝑓 𝑥 < 0

 (3.3) 

   

Figure 3.2 shows an example of obtaining the binary code and then converting to 

decimal value. After the centre pixel value 31 checked with the 8 neighbours, the binary 

values are assigned to the corresponding positions. Then obtained binary values are 

sorted in clockwise order to obtain binary code 10001011. Finally the binary code is 

converted to decimal value which is will be 139.    

 

73 68 25 Threshold 1 1 0 Binary: 10001011 

31 31 47  1  1 Decimal: 139 

29 19 21   0 0 0  

 

Figure 3.2: Basic LBP operator 

After an image is labelled with the LBP operator, a histogram of the labelled image is 

calculated. This LBP histogram contains information about the distribution of the local 

micro-patterns such as edges, spots and flat areas, over the whole image. The LBP 

operator LBPP,R produces  2𝑝 different output values, corresponding to 2𝑝different 

binary patterns formed by the 𝑝 pixels in the neighbourhood of radius 𝑅. It has been 

demonstrated that certain patterns contain more information than others. To describe 

the texture of the images, it is possible to use only a subset of the 2𝑝 binary patterns. 

Ojala et al. named these patterns as uniform patterns denoted by LBPP,R
u2 . A local binary 

pattern is called uniform if it contains maximum two bitwise transitions from 0 to 1 or 

from 1 to 0 when the corresponding bit string is considered circular. For instance, 

00000000 (0 transitions) and 01111110 (2 transitions) are uniform whereas 11101101 

(4 transitions) and 01011011 (6 transitions) are not uniform patterns. Experimentally 

showed that uniform patterns constitute about 90% of all patterns in the (8,1) 

neighbourhood in texture images. It is easy to show that within the (8,1) neighbourhood 

there are only 58 uniform LBP-patterns, and the traditional uniform LBP histogram 
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consists of 59 bins accounting for the 58 uniform patterns and one bin that corresponds 

to the sum of the set of non-uniform patterns (Shan, et al., 2009; Meng & Gao, 2010).  

The histogram of LBP computed over the whole face image encodes only the 

occurrences of the micro-patterns without giving any hint regarding their locations. In 

order to consider the aspect of ‘shape information’ of faces, Ahonen et al. (Ahonen, et 

al., 2004; Ahonen, et al., 2006) proposed the division of face images into 𝑚 local 

regions to extract LBP histograms (LBPHs), and concatenating them into a single 

feature histogram to represent hole image. Figure 3.3 illustrates the concept. The 

histogram encodes both local texture and global shape of the face images (Shan, et al., 

2009). The majority of existing works including ours adopt the above scheme to extract 

LBP features for facial representation. 

 

Figure 3.3: Sub block histogram concatenating (Ahonen, et al., 2004) 

Therefore, for represent face features we subdivided face image into a number of blocks 

to represent local face features. Histogram of uniform feature set is then calculated 

from each block. After that, we concatenated all histogram feature sets to generate one 

larger feature set to be used as a final face feature representation set. Because of some 

bins may have larger number of 255 and we wanted to represent each bin histogram by 

only 8-bits, therefore final face features are normalized to integer values between 0 and 

255. Normalized face features are converted to binary stream to be ready for embedding 

and extraction process in the hiding system. 

3.2 Hiding Techniques 

In order to design and implement our hiding technique which is meant to be more robust 

than traditional ones against different steganalysis techniques we shall first analyze and 
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discuss traditional hiding techniques that widely used in spatial domain, discussion 

include the strength and weakness of each of them.  

3.2.1 Traditional LSB-based Steganography 

 In digital image terminology, the Least Significant Bit (LSB) plane in any colour 

channel refers to the smallest (right-most) bit of a binary sequence therefore for images 

this bit is refers to the smallest bit value of every pixels after the pixels converted to 

binary bit string. The simplest and easiest way to embedding data in an image is 

substitution technique. The substitution is done by replacing Least Significant Bit of 

image pixel with the secret bit (Johnson & Jajodia, 1998; Chan & Cheng, 2004). For 

this reason the embedding technique named as LSB steganography. 

LSB steganography techniques will either change the value of the pixel by 1 or the 

pixel value remains unchanged. In case of change, the pixel value either increase by 1 

or decrease by 1. This is depending on the value of the secret message bit as well as the 

first LSB of the corresponding pixel value. For example if three pixels of an 8-bit image 

values are 172, 93, and 220, then grid for 3 pixels is as follows  (10101100 01011101 

11011100). When the binary string representation is “100” and need to embed in the 

pixels, embedding them into the least significant bits of this part of the image will 

results in a grid as follows: (10101101 01011100 11011100) and pixel values become 

173, 92, and 220. Since there are 256 possible intensities of each grey pixel values, 

changing the LSB of a pixel results in small changes in the intensity of the colours. 

These changes cannot be perceived by the human eyes as shown in figure 3.4 thus the 

message is successfully hidden (Morkel, et al., 2005). 

                                                     
                   (a)  Cover Image                                                  (b) Stego Image  

                    Figure 3.4: Image before and after embedding using LSB 

Embedding in all or part of the image pixels sequentially (pixel by pixel) named as 

Sequential LSB (SLSB). Changing the LSB of each pixel typically achieves high 
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capacity. This is not secure as an attacker can simply repeat the process to quickly 

recover the hidden information (Hempstalk, 2006). Such as in (Westfeld & Pfitzmann, 

1999), visual and statistical attacks proposed. For example the idea of visual attacks is 

to remove all parts of the image covering the message. The human eye can now 

distinguish whether there is a potential message or still image content. Figure 3.5 shows 

the bit planes of stego-image after sequentially embedding the logo in the LSB plane. 

We can increase the capacity of embedding in one bit plane steganography twice or 

three times by using more than one bit plane for embedding; for example using second 

and third LSBs planes. In this case, the quality of the image may be affected and the 

technique may lose its main requirement which is invisibility (Chen, et al., 2010;  

Bailey & Curran, 2006). Generally noticeable distortion is appearing when the number 

of embedded bits for each pixel exceeds three (Amirtharajan, et al., 2010). As it is 

illustrated in figure 3.6: 

 

Figure 3.5: Stego-Image bit planes 

 

Figure 3.6: Effect of using more than one bit plane for embedding. 
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To increase the robustness of embedding, the pixels that are used for embedding can 

be selected randomly over the hole or part of the image instead of sequentially selecting 

pixels, these technique named as random LSB (RLSB). Random embedding positions 

selected based on generating random sequence using pseudo random number generator 

(PRNG). To generate this sequence, a seed is used. This seed used as a stego-key shared 

between sender and receiver to generate the same random sequence numbers ranging 

from 1 𝑡𝑜 𝑁; where 𝑁 is the number of pixels available in the image (Venkatraman, et 

al., 2004). The noise introduced by RLSB is randomly placed and often causes the 

resulting stego-image to look speckled (Singh, et al., 2007). Again RLSB is not robust 

to the statistical steganalysis that proposed in (Fridrich, et al., 2000) and (Fridrich, et 

al., 2001), RLSB is not robust to the proposed method in (Westfeld & Pfitzmann, 1999) 

especially when message length become comparable with the number of pixels. 

3.2.2 The Proposed LSB-Witness Hiding Technique  

As we explained in previous section, in traditional LSB image steganography, a grey 

value of pixels are not altered if its first LSB is the same as the bit of the secret message 

that needs to be embedded. Otherwise, if the first LSB is not equal to the bit of the 

secret message that needs to be embedded, then pixel value will change. The change is 

as follows: the even pixel values will increase by 1 when embedding a 1; and the odd 

pixel values will decrease by 1 when embedding a 0. Therefore most of the image 

steganalysis techniques that designed to detect LSB based steganographic techniques 

including the two steganalysis (Fridrich, et al., 2001; Westfeld & Pfitzmann, 1999) 

approaches, discussed later in section 3.3.3 exploit the above property in detecting the 

presence of secret data without looking to other bit-planes of the cover image. Our 

proposed scheme will benefit from the above properties to guarantee that the 

embedding does not change the LSB plane and thus robust against existing statistical 

steganalysis techniques. 

Instead of changing LSB plane of the cover image we propose to change the second 

LSB plane, so that the 2nd LSB plane becomes as informer to tell the other side 

(receiver) how to use the 1st LSB plane relates to the next secret message bit. This uses 

the idea that if the secret message bit, which needs to be embedded, is equal to the 1st 

LSB bit of the cover image, then we make the 2nd LSB equal to 0, otherwise make it 

equal to 1. With this idea we can guarantee that LSB plane is not changed during the 

embedding process. For the extraction process, receiver only need to check the 2nd LSB 
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plane, if the value of the 2nd LSB plane of the stego-image is equal to 0 then the secret 

bit is equal to 1st LSB bit, otherwise the secret bit is the inverse of 1st LSB bit. In other 

words, it can be said that the 2nd LSB plane is used as a witness to the first LSB plane 

for the extraction of the secret message in the extraction process which will be done in 

receiver side. For this reason, we have named our proposed method as ‘LSB-Witness’. 

To clarify we present the following example, if 𝑀 is a secret message and 𝐶 is the cover 

image then 𝑚𝑘 is 𝑘𝑡ℎ bit in 𝑀 and 𝐶(𝑖, 𝑗) is an image pixel at the position (𝑖, 𝑗), after 

we convert the pixel value to 8-bit representation we get 8-bit plane  𝑐8𝑐7𝑐6𝑐5𝑐4𝑐3𝑐2𝑐1, 

which 𝑐8 is Most Significant Bit (MSB), 𝑐1 is 1st LSB, and 𝑐2 is 2nd LSB of the pixel. 

Table 3.1 shows the process of embedding and extracting 𝑚𝑘 bit in 𝐶. From the table 

we can conclude that the embedding process simply is based on logical XORing 

between secret bit and 1st LSB plane, the result of the process is saved in the 2nd LSB 

plane, while for extraction process, the secret message will obtained based on XORing 

between 1st and 2nd LSB planes.   

Table 3.1: LSB-Witness embedding and extraction   

a- Embedding truth table                   b- Extraction truth table 

Secret bit 

(mk) 

1st LSB 

(c1) 

2nd LSB 

(c2) 
 

2nd LSB 

(c2) 

1st LSB 

(c1) 

Extracted 

bit (mk) 

0 0 0  0 0 0 

0 1 1  0 1 1 

1 0 1  1 0 1 

1 1 0  1 1 0 

 

3.3 Analysis of the Proposed Hiding Technique 

Before we analysis and discuss the experimental results obtained in real application 

based on proposed hiding technique which is in our case the aim is to hiding face 

biometric features in cover image, in this section we will discuss and analysis our 

proposed hiding technique in general. As any steganography technique, we should 

analyse and evaluate the proposed hiding technique by checking how the method 

achieves the main steganography requirements which they are explained and discussed 

in section 2.2.3. While our proposed hiding technique is based on the LSB embedding, 

therefore in our analysis of the method we need to compare the proposed with 

techniques based on traditional LSB embedding. Here the proposed method was 
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analyzed and compared with simple LSB replacement using sequential and random 

spread of the secret message in the cover in terms of the main requirements described 

in 2.2.3. 

3.3.1 Capacity 

Capacity means how much information can be carried inside cover image using 

embedding techniques. While we change only one bit in the cover image pixel, 

therefore our technique can carry 1 bit per pixel (bpp) such as in normal LSB 

embedding (i.e. Both, our method and normal LSB are in the same level of capacity 

which is 1 bpp). 

3.3.2 Invisibility 

Since we have changed the second LSB plane in our proposed, some image quality 

would be lost when compared with simple LSB, still remains in an acceptable range 

however. To measure the invisibility of our proposed we applied the proposed on 20 

grey cover images with size 512×512 shown in figure 3.7, five different payload size 

with two embedding strategy, sequentially and randomly.  

All results are compared with simple LSB in case of sequentially and randomly 

respectively. Table 3.2 shows Peak Signal to Noise Ratio (PSNR) between original and 

stego images after embedding different sizes of secret messages, the results are average 

of 20 cover images that used, the results demonstrates that by increasing payload size, 

quality of the images will lost. In other hand we can notice that using our methods we 

lose some degree of the PSNR when compared with the original LSB techniques that 

is because we changed the 2nd LSB plane during embedding process. 

Table 3.2: PSNR between cover and stego image in different payload size 

Payload  Sequential LSB Sequential 

LSB-Witness 

Random LSB Random LSB-

Witness 

0.2 58.1184 52.1235 58.1391 52.0989 

0.4 55.1152 49.1036 55.1241 49.0935 

0.6 53.3524 47.343 53.3634 47.3358 

0.8 52.1036 46.086 52.1113 46.0879 

1 51.1327 45.1163 51.1434 45.1236 
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Figure 3.7: Cover images used 
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3.3.3 Robustness  

In general, the steganalysis techniques are used to test the robustness (detectability) of 

any embedding scheme. Steganalysis has long been recognised as a classification 

techniques which aims to decide whether the tested image is clear (Cover) or not clear 

(Stego) image. Depending on the applications, steganalysis methods are divided into 

specific methods and universal methods.  Specific steganalysis methods are designed 

to test the performance of certain steganography techniques by exploiting known 

implications of their embedding schemes. These specific steganlysis may not be 

applicable on the other techniques. Universal steganalysis methods, on the other hand, 

attempts to detect hidden secrets embedded by several kinds of steganography without 

having knowledge about the embedding technique(s). Normally this kind of 

steganalysis methods are based on extracting large number of different features in 

images that may result from embedding (Fridrich & Kodovský, 2012; Kodovský & 

Fridrich, 2013). 

In this chapter we are only interested in test the robustness of the proposed scheme by 

applying some specific steganalysis techniques that are designed specifically for 

detecting LSB embedding. More specifically to test the robustness of the proposed 

scheme(s), Pair of Value (PoV) (Westfeld & Pfitzmann, 1999) steganalysis and the 

Regular and Singular (RS) (Fridrich, et al., 2001) are used. The PoV is to suitable and 

more accurate to detect sequential embedding, while the RS scheme targets random 

embedding strategies (Fridrich & Goljan, 2002; Li, et al., April, 2011). 

3.3.3.1 Pairs of Value (PoV) steganalysis  

In LSB embedding techniques, LSB’s of some pixels of the original cover image are 

flipped if they are not equal to the secret bits. The LSB flipping causes pairs of pixel 

values that differ in their LSB’s, (i.e. the pixel value pair patterns 0↔1, 2↔3, …, 

254↔255) to be mapped to each other. The above pairs of values (2𝑖 ,2𝑖+1) are known 

as the PoVs. If the bits of the secret bit stream are equally distributed, then the 

frequencies of both components of any PoV become equal. Therefore, the idea of the 

so called Chi-square (χ2) attack proposed in (Westfeld & Pfitzmann, 1999), is used to 

compare the theoretically expected frequency distribution of each component of a PoV 

with some sample distribution in the suspect image. The theoretical expected frequency 

distribution is, in general, estimated as the average of the two PoV components. 
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If n2i denotes the number of pixels with a gray value 2𝑖, then the theoretical expected 

frequency distribution is (𝑛2𝑖 + 𝑛2𝑖+1) 2⁄ . For greyscale images there are 128 

categories of PoVs.  The χ2 test calculated between the theoretical expected frequency 

distribution and distribution of 𝑛2𝑖’s in the observed image is:  

 𝑥2 =∑
[𝑛2𝑖 −

𝑛2𝑖 + 𝑛2𝑖+1
2 ]2

(𝑛2𝑖 + 𝑛2𝑖+1)/2

𝑘

𝑖=1

 (3.4) 

And the probability that the presences of n2i and n2i+1 are equal is given by: 

 𝑝 = 1 −
1

2
𝑘−1
2
𝛤[(𝑘−1)/2

 ∫ exp (−
𝑡

2

𝑥2

0

)𝑡
𝑘−1
2
−1𝑑𝑡 (3.5) 

This 𝑝 value determines the probability of embedding in the tested image.  

For a sequentially embedded message, one can scan the image in the same order in 

which the message has been embedded and evaluate the p value for the set of all already 

visited pixels. The 𝑝 value will at first be close to 1 and then it suddenly drops to 0 

when we arrive at the end of the message. It will stay at zero until we get to the lower 

right corner. Thus, this test enables us not only to determine with a very high probability 

that a message has been embedded, but also determine the size of the secret message 

and this method provides very reliable results when we know the message placement 

such as sequential embedding. 

With simple LSB replacement the number of modified pixel is about 50% of the stego-

bits and the number of pixels with a grey value 2𝑖 becomes roughly the same as that 

of 2𝑖+1. By using LSB-Witness sequential embedding the LSB plane histogram is 

preserved so that the signature that is detectable to the χ2 test is removed. Figures 3.8 

and 3.9 show the robustness of the simple sequential LSB and sequential LSB-Witness 

of the same image respectively with different load of secret messages (See Appendix 

A for more examples). The demonstrated curves represent the p value as a function of 

the pixel numbers that were embedded in the test image. It can be noticed that the 

technique detects the stego image in simple LSB after embedding small capacity length 

of the image size; while it fails in our embedding algorithm when we use any size of 

embedding even with embedding 100% of the capacity.  
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(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure 3.8: SLSB detection using PoV steganalysis for different payload for Woman blonde image  

   

(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure 3.9: SLSB-Witness detection using PoV steganalysis for different payload for Woman blonde image 
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3.3.3.2 RS steganalysis  

This tool, introduced by Fridrich et al. (Fridrich, et al., 2001), is based on grouping 

non-overlapping blocks of consecutive pixel of an image into three groups: Regular, 

Singular and Unchanged. This grouping is based on the order relation between the sum 

of differences between all pairs of neighbouring pixels in the original block and the 

same sum when the LSB values in the group pixels are flipped. If the sum of the 

differences increases (decreases) after flipping then the block is said to be singular 

(regular) and the block is said to be unchanged if sum of the differences do not change 

after flipping.  The relation between the relative number of regular groups and singular 

groups in the image will determine whether the image is clean (cover) or not clean 

(stego). The RS scheme can also be defined using a different flipping scheme to the 

traditional one (see below).   

The RS algorithm works as follows. Given an M×N greyscale image (i.e. pixel values 

between 0 and 255 represented as an 8-bit unsigned byte). The image is subdivided into 

small disjoint groups 𝐺 of 𝑛 consecutive pixels x.  For each block we calculate the 

following discrimination function before and after applying a specific flipping map 

 

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ |𝑥𝑖+1 − 𝑥𝑖|

𝑛−1

𝑖=1

 (3.6) 

This method adopt two flipping 𝐹 maps: 𝐹1 for 0↔1, 2↔3, …, 254↔255 and shifted 

𝐹−1 for −1↔0, 1↔2, …, 255↔256. Each block 𝐺 is labelled as regular (R), singular 

(S), or unchanged (U) as follows: 

 

 

  

 

When f(G) is a discrimination value of received image, while f(F(G)) is a 

discrimination value of received image after applying flipping strategy. When using 

the 𝐹  flipping map the groups are labelled as 𝑅, 𝑆, and 𝑈. While, when using the 𝐹−1 

flipping map the groups are labelled as 𝑅−1, 𝑆−1, and 𝑈−1. 

If f(F(G)) > f(G), G is labelled as an R block  

Elseif f(F(G)) < f(G), G is labelled as an S block 

Else G is called an unchanged U block.  
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𝑅𝑀 is defined as the ratio of blocks of regular 𝑅 groups, and 𝑆𝑀 as the ratio of blocks 

of singular 𝑆 groups. Similarly, another two parameters 𝑅−𝑀 and 𝑆−𝑀 defined when 

𝐹−1 is applied.  

For ‘clear’ image (i.e. images with no hidden secret), the expected values of the ratios 

satisfy the inequality: 

 𝑅𝑀 ≈ 𝑅−𝑀 > 𝑆𝑀 ≈ 𝑆−𝑀 (3.7) 

However, for images that contained secret bits the difference between 𝑅𝑀 and 𝑆𝑀 is 

decreases to zero as the length of the secret message increases. Embedding has the 

opposite effect on relation between 𝑅−𝑀 and 𝑆−𝑀 in which the difference between them 

will increase.  

After applying simple LSB replacement techniques, the number of regular and singular 

groups become closer to each other when 𝐹1 and 𝐹−1 are applied to part or all of the 

pixels in a stego-image so that 𝑅𝑀 ≈ 𝑆𝑀.  

We subjected stego images obtained with our witness embedding algorithm with 

different payload, using both  𝐹1 and 𝐹−1 mappings, we found that in all cases the RS 

steganalyser did not distinguish them from clean images, i.e.  𝑅𝑀 ≈ 𝑅−𝑀 > 𝑆𝑀 ≈ 𝑆−𝑀. 

This conclusion is based on applying our algorithm as well as the random LSB on 20 

images.  Figure 3.10 shows the results obtained for Lena image while figure 3.11 shows 

the output average charts for the regular Vs singular group for different embedding 

payloads using the simple random LSB embedding technique and our algorithm where 

used (See Appendix B for more examples). From the figures, it can be noticed that 

when using the random LSB after using 20% of the cover image for embedding, the 

difference between values of 𝑅𝑀 and 𝑆𝑀 decreases, the difference between them 

continues to decrease further until a point is reached where the value of 𝑅𝑀 and 

𝑆𝑀becomes nearly the same. This occurs when 100% of the cover image is used for 

embedding. This does not occur when we use our method for embedding and the 

difference between  𝑅𝑀 and 𝑆𝑀remains as a clean image. In other words, unlike the 

LSBR scheme, our scheme is robust against RS at all payload proportions. 
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(a) Random LSB 

 

(b) Random LSB-Witness 

Figure 3.10: RS-diagram for different payload, Lena image used 
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(a) Random LSB 

 

(b) Random LSB-Witness 

Figure 3.11: Average RS-diagram of using 20 images 

3.4 Embedding Face biometrics using LSB-Witness Scheme 

In this section we shall investigate the embedding of the two chosen face biometric 

feature vectors, namely the wavelet features and LBPH features. We shall test and 

compare the performance of the LSB-witness scheme for those two types of secrets in 

terms of the steganography requirements as well as preservation of recognition rates. 

For that we shall use a benchmark face database for which we already know the 

performance of the two chosen biometric schemes. For cover images we also need to 

select a number of different images that have different properties in terms of texture as 

well as the statistical properties of the bit-planes.   
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In real steganography application scenarios, one may not use all pixels of the cover 

images for the purpose of embedding. For this reason in the following experiments we 

embed the exact extracted binarised face feature vectors as explained in the beginning 

of this chapter in section 3.1. The general framework of face biometric embedding 

system explained in figure 3.12 below.    

 

Figure 3.12: General framework of proposed face feature hiding system 

For the purpose of the experiments, the same 20 images that shown in figure 3.7 were 

used as cover images with size of 512 x 512 pixel resolution, selected images are 

commonly used in the field of image processing which they are different in properties 

regarding containing smooth and textures areas. While our main aim at this stage is to 

test the performance of the proposed LSB-Witness embedding scheme we just select 

and use the well-known Yale Face Database as a secret message as well as for the 

purpose of testing biometric recognition performance. The extracted face features are 
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used as secret messages for embedding as well as testing the recognition rate after 

extraction. The database consists of 15 individual subjects and there are 11 different 

greyscale images per subject more detail about database can be founded in section 

2.1.4. 

In the case of DWT face biometric, we select the 3rd level of wavelet subbands to 

represent face images from which the secret feature vectors is extracted.  Accordingly 

we would have 4 different wavelet schemes. After the entire subband binaries, then the 

binarised features will be ready for embedding process. While in the case of LBPH face 

feature vectors, we shall use 4 different spatial domain schemes using different 

blocking number. Again here we binaries the extracted LBPH features to be ready for 

embedding. These various face recognition scheme are by no mean the most 

performing schemes in terms of recognition, but here our interest is testing the impact 

of the LSB-witness embedding scheme on the face recognition accuracy rate of each 

scheme. In what follows we shall analyse our experimental results in terms of each 

steganography and face recognition requirement separately. 

3.4.1 Payload 

Payload requirements can be checked by the number of bits needed to be embedded as 

well as the suitable locations. We summarize payload need using each type of feature 

with different sub-blocking and different sub-bands in table 3.3. Recall that in the case 

of LBPH, we represent each histogram bin by 8-bits under the assumption that there 

would be no uniform or non-uniform LBP code that has a frequency greater than 255.  

This assumption is based on the fact that the face image (or the block) size is modest 

and the likely hood of having LBP codes repeated by more than 255 is fairly small. 

However we could remedy this by using k-bit representation of bins where k is the 

maximum size of any of the bins. Instead of this approach, we opted to final face 

features are normalized to integer values between 0 and 255, and we accept that the 

consequences of that is a slight loss of accuracy of recognition at the other end (see 

section 3.4.4). Accordingly, the payload values given in this table for the LBPH 

schemes are only estimates of the actual values, due to the possibility of having some 

of the bins having more than 255, and this seem to be only probable when we do not 

divide the image or the case of 2x2 subdivisions. Note that in the case of wavelet face 

features; each coefficient is binarised using the mean and standard deviation in the 

subband, to 0 or 1. Consequently the length of the secret is fixed.   
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Table 3.3:  Payload for each extracted feature  

Extracted Feature No. of block  /  Subband No. of feature Payload in bits 

LBP Histogram 

1×1 59 472 

2×2 236 1888 

3×3 531 4248 

5×5 1475 11800 

Binariesed Wavelet 

coefficients 

LL3 120 120 

HL3 120 120 

LH3 120 120 

HH3 120 120 

For the choice of the cover image we assume that payload cannot be larger than the 

number of available locations for embedding, i.e. dependent on image size. The 

payload values above are all modest and image sizes in the range 100x120 should be 

sufficient. In our experiments we opted for images of size 512x512, and hence our 

LSB-witness scheme comfortably meets the requirement even for 5% payload. 

3.4.2 Invisibility  

PSNR is calculated between original cover and stego image after embedding secret 

message (face features) in each case and is compared with simple LSB embedding. 

Results (average of 20 images) are shown in table 3.4 in which it is clear that we lose 

some degree of PSNR in our method when compared with simple LSB but still in 

acceptable ranges of quality. Also it can be noticed that we will get higher value of 

invisibility in case of using wavelet subband coefficients compared with using LBPH 

features; this is because the number of features that was used as a secret message is 

low. How using a fewer number of features may affect face recognition rate is 

investigated and explained in section 3.4.4. 
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Table 3.4: PSNR between original and stego images 

Extracted 

Feature 

No. of block / 

Subband 

Sequential 

LSB 

Sequential 

LSB-Witness 

Random 

LSB 

Random      

LSB-Witness 

LBP Histogram 

1×1 78.5865 72.9423 78.6009 72.5176 

2×2 72.5527 66.5625 72.5409 66.5272 

3×3 69.0165 63.0357 69.034 62.9388 

5×5 64.579 58.5864 64.5962 58.5904 

Binariesed 

Wavelet 

coefficients 

LL3 84.383 78.4019 84.6797 78.3312 

HL3 84.3885 78.4542 84.6637 78.4209 

LH3 84.3873 78.4162 84.6466 78.2221 

HH3 84.4208 78.443 84.6435 78.3066 

3.4.3 Robustness  

Robustness of our LSB-witness algorithm against the two main LSB-related PoV and 

RS steganalysers were established in section 3.3.3 for all payload proportions including 

100% embedding. Using the above calculations of the payload requirements for the 

two face feature vectors, one can conclude that both features require less than the full 

capacity if we to use reasonable size cover image, and hence our biometric features are 

secure when transmitted, hidden in an innocuous image, over an open channel.   

3.4.4 Recognition Accuracy 

As we describe earlier in chapter 2 that the process of differentiating two or more 

classes by labelling each similar set of data with one class called recognition accuracy. 

To test the goodness of features extracted in this chapter we calculate the recognition 

accuracy post embedding a biometric template by adopting the Leave-One-Out strategy 

or protocol. This means we present each of the images of each person in the database 

for recognition, while all other images are as belonging to the gallery.  The 

classification is based on the nearest neighbour (NN) with Euclidean distance. We 

normalizes LBPH features to the range of integer values between 0 and 255. For the 

wavelet-based recognition we binaries the wavelet subband coefficients before 

embedding, therefore the face recognition accuracy may be affect compared with the 
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original face feature vectors used. Table 3.5, shows the average recognition accuracy 

rate for all cases before and after normalization or binarisation process. We notice from 

the results in case of using LBPH features; the recognition rate will degrade but 

fortunately by a small amount as compared with the original LBPH features (i.e. 

without normalization) before embedding. The effects are higher when the numbers of 

blocks are smaller such as in case 1x1 and 2x2 blocking, due to the fact that in those 

cases there are more full bins, i.e. have greater than 255 LBPH values. The degradation 

in accuracy was worse in the case of 1x1 blocks. This could easily be explained by the 

fact that, in this case, 1375 bins out of a total of 9735 bins had bin values > 255. 

However, when the face feature vectors were the binarised wavelet subbands 

coefficients then except in case of using LL subband, in all other subbands we obtain 

better recognition rate if compared with not binarised coefficients. The large drop in 

accuracy for the case of the LL3 subband, compared with the significant improvements 

for the other high frequency subbands, can be attributed to the fact that the adopted 

binarisation for the non-LL subbands is based on the fact that the coefficients in each 

of these subbands have Laplacian distributions where the significant coefficients (in 

terms of face recognition) are the furthest away from the mean of the subband (Al-

Jawed, 2009; Al-Assam, 2013). This is not true for the LL subband.  

Table 3.5: Face biometric recognition accuracy 

Extracted Feature 
No. of block / 

Subband 

Recognition 

Accuracy after 

Embedding 

Recognition 

Accuracy  before 

Embedding 

LBP Histogram 

1×1 73.93 77.57 

2×2 85.45 86.66 

3×3 91.51 92.12 

5×5 95.75 96.36 

Binaries Wavelet 

coefficients 

LL3 76.36 83.03 

HL3 75.75 74.54 

LH3 87.87 77.57 

HH3 69.09 55.15 



66 

 

In summary, we note that the embedding requirement (normalization/binarisation) does 

have some mixed effects on the face recognition accuracy, but the pattern of accuracy 

rate before and after embedding is different for the two schemes. Taking accuracy rates 

only as the bases of selecting the desirable face feature vectors would certainly favours 

the use of the LBPH with 5x5 block partitioning. However, the price for this would in 

significantly higher payload capacity than that needed for embedding any of the 

wavelet subband feature vectors. While each of the wavelet subband schemes requires 

only 120 bits, the 5x5 LBPH scheme requires 11800 bits. The implication of these 

different capacity payloads in terms of invisibility would certainly be a factor that needs 

to be taken into account when deciding the choice of face feature vector. Table 3.4 that 

with witness-embedding scheme the 5x5 LBPH scheme achieve a PSNR of 58.5904, 

while the best performing LH3 wavelet scheme achieves a much higher PSNR of 

78.222. The outcome from these results raises the possibility of investigating a new 

solution to be based on combining these two approaches (wavelet-based and LBPH-

based) to extract one final face feature vector rather than using one of them alone. 

Extracting LBPH features from wavelet subbands reduces the block sizes and may 

reduce, if not element, the need for normalising the corresponding LBPH bins. These 

investigations will be conducted in the next chapter. 

3.5 Conclusions 

In this chapter we proposed a robust steganographic scheme which was primarily 

developed for hiding two different face biometric feature vectors. The proposed LSB-

witness embedding scheme, is based on modifying the 2nd LSB as a witness for the 

presence of the secret bits in the 1st LSB, and was motivated by the requirement for 

robustness against steganalysis schemes that target LSB-only hiding schemes. We 

analysed and evaluated the proposed scheme for robustness and invisibility for 

different payload capacity. We have shown that for general secret messages the 

proposed scheme is robust against PoV and RS steganalysis tools for all and up to 100% 

payload without introducing additional visual distortion to the cover image. We have 

also investigated two types of face biometric schemes (blockwise LBPH and Wavelet 

subbands) that could be binarised and hidden in natural image for remote 

authentication. We tested the performance of the various schemes belonging to these 

two types, before and after embedding in a number of natural images in terms of 

recognition accuracy. We also tested the effect of embedding these various feature 
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vectors on robustness of the LSB-witness steganographic scheme, invisibility and 

payload capacity. These experiments had shown beyond any doubt the viability of 

using steganography for remote biometric-based recognition provided that the 

biometric feature vectors can be binarised, without leaking information on the freshly 

recorded biometric sample, with reasonable length. The various test results have 

demonstrated that each of the two types of face feature vectors have advantages and 

disadvantaged, when hidden in natural images, but to different degrees in relation to 

the various success parameters. This has provided strong motivation to combine the 

two schemes for optimal benefits. In the next chapter, we investigate an innovative 

solution that extracts a variety of LBPH features from wavelet-subbands of face image 

to be embedded in natural images for remote biometric authentication.  
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Chapter 4  

DWT-based LBPH Face Feature for 

Secure LSB-Witness Hiding 

From the discussion and reviews conducted in the earlier chapters we noted that 

embedding smaller size secret messages results in higher invisibility of the hiding 

system achieved. In the last chapter we initiated our investigation into our hypothesis 

that steganography can provide reliable tools for remote biometric based authentication 

developed our new LSB witness hiding scheme to meet robustness against known 

steganalysis tools that target LSB-only hiding schemes and tested viability of our  

hypothesis using two types of binarised face feature vectors. The various experiments 

in the last chapter have demonstrated the validity of our hypothesis but also raised the 

need to combine more than one face scheme for improved and optimal face recognition 

accuracy.  In this chapter we propose various wavelet-based LBPH face feature 

schemes generate lower payload while achieving the same level of face recognition rate 

or even higher when compared with the spatial domain LBPH scheme discussed in the 

last chapter. We test the performance of these schemes in relation to the embedding 

success criteria defined earlier.  

4.1 Multi-scale LBP and Wavelet Decomposition 

Discrete Wavelet Transform (DWT) decomposition of a face image yields a low-

frequency subband and number of high-frequency subbands in a multi-resolution 

manner at multiple scales (Sellahewa & Jassim, 2010). From chapter 3, one can deduce 

that each subband provides a representation of the face with its person discriminative 

contribution or capability that is suitable for steganographic embedding.  

The 3x3 neighbourhood of the spatial domain LBP operator, discussed in sub-section 

3.1.2,  is of limited texture representation when the dominant features are part of large 

scale structures. The LBP operator in the spatial domain can be extended to deal with 

such cases using neighbourhoods of different sizes. For this it is customary to use the 

notation (𝑃, 𝑅) to denote a neighbourhood of 𝑃 sampled points on a circle of radius of 
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𝑅 (Ojala, et al., 2002). Such an extension can be achieved in two ways; either by 

applying LBP operator in the spatial domain neighbourhood (P,R) with increased 

radius R as shown in figure 4.1 or by down-sampling the original image prior to 

applying the LBP operator with a fixed radius.  

 

Figure 4.1: The extended LBP operator: the circular (8, 1), (16, 2), and (8, 2) neighbourhoods 

However, DWT image decomposition is the natural alternative, to the above approach, 

for simultaneously extracting textures at different scales. In chapter 3 we concluded 

that combining the advantages of DWT and the LBP operator could lead to a more 

suitable face biometrics for steganographic embedding. Here we shall describe 

different ways of applying an LBP operator on the wavelet subbands to represent face 

features (Wang, et al., 2011; Wang, et al., 2011; Liu, et al., 2010; Tang, et al., 2010), 

and represent each subband by the corresponding LBPH histograms as a face descriptor 

feature vector. In order to avoid the need for the normalisation of the LBPH bins, as 

described in chapter 3, we shall subdivide the subbands into blocks as before. Figure 

4.2 show the usual (8,1) LBP code image of a face image in the spatial domain as well 

as in the LL-subbands at 2 different decomposition levels.  

   

            (a) Original Image         (b) LL1 subband          (c) LL2 subband 

Figure 4.2: LBP code images  
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4.2 LBPH Schemes in the DWT Domain 

There are various ways of defining DWT-based LBP with reduced number of features 

(bins) for a face image while maintaining the face recognition accuracy at the same 

level, or even increase, when compared to using the original spatial or wavelet domain 

LBPH features. Given any wavelet subband of a face image, we define a new LBP 

operator using only 4 neighbours instead of the normal 8 neighbours. For any wavelet 

coefficient its 8-neighbours can be separated into two parts, the four main neighbours 

N4 and the four diagonal neighbours ND. In this way, the LBP code at any wavelet 

coefficient can be represented by only 4-bits obtained as before by checking the order 

relation between the central coefficients and its 4 designated neighbours. There are two 

obvious complementary ways of designating 4 neighbour coefficients: the main N4 and 

the diagonal ND forms as illustrated in figure 4.3.   

                 

                 

                 

           (a) 4 main neighbours (N4)                    (b) 4 diagonal neighbour (ND) 

Figure 4.3: 4-Neighbours positions   

In figure 4.4, we give examples of both LBP codes extracted from an imagined 3x3 

block of DWT subband. Examples shows the process of assigning LBP codes by first 

checking the centre value with the selected 4 neighbours; if the centre value is less than 

checked neighbour value then we will assign 1 at the neighbor position, otherwise we 

will assign 0. Secondly we will assign decimal weights to the neighbour positions in 

clockwise orders. Then we will multiply the assigned binary code with the 

corresponding decimal weight value. Finally all obtained decimal values from previous 

step added together to obtain final decimal value (Result).  

    Threshold    Weights    Result 

       1      1        

      0  1    8  2     3  

99.0 63.5 71.5     0      4        

49.5 55.0 81.0                   

55.0 39.5 25.0    1  1    1  2       

                   11  

      1  0    8  4       

             

Figure 4.4: An example of the 4 neighbours LBP operator 
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One or both of 4-neighbour parts can be used for extracting face features. The 4 

neighbour LBP extract texture patterns of the face image that are very similar to the 

textures extracted using the 8 neighbours LBP especially when used with non LL 

subbands in the wavelet domain.  
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Figure 4.5:  4-Neighbours Local Binary Patterns 
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Figure 4.5 shows 16 textures patterns can be extract using our proposed N4 LBP. It can 

be noticed that textures can be extracted using our proposed 4 neighbours scheme 

include spot, flat, horizontal line, horizontal line ends, vertical line, vertical line ends, 

and corners. Extracted textures are look like extracted 59 codes of uniform N8 LBP 

proposed by Ojala (i.e. binary pattern contains maximum two bitwise transitions from 

0 to 1 or from 1 to 0 when the corresponding bit string is considered circular). Out of 

these 16 LBP codes only two codes are non-uniform (0101 and 1010) which they have 

4 transitions. Figure 4.6 shows the results of applying LBP with 8 sampling points and 

4 sampling points on a face image in the wavelet subbands. 

 

 LL HL LH HH 

Original 

    

LBP using 

N8 
    

LBP using 

N4 
    

Figure 4.6:  LBP image in different subbands using 8 and 4 neighbours 

Based on the above new representation of LBPH using 4-neighbours we propose a new 

multi-scale wavelet based LBPH: a given image is decomposed into two level of 

wavelet subbands using Haar filter. Selected subband is divided into non-overlapping 

blocks of size 𝑛𝑥𝑛. Then LBPHs extract from each of the blocks of a given subband 

using the main N4, diagonal ND, or both of them. The final face feature vector is 

obtained by concatenating LBPHs extracted from all blocks that subband divided for.  

From the literature, it has been shown that face features based on high-frequency 

wavelet subbands are invariant to illumination changes, whilst features based on 

approximation subbands are robust against facial expressions (Sellahewa & Jassim, 

2008). The fusion of features from the different wavelet subbands has resulted in an 

improvement in face recognition accuracy (Sellahewa & Jassim, 2010). Therefore, it is 



73 

 

reasonable to propose another new scheme by combine the LBPHs of more than one 

wavelet subbands to represent a final face image. For each wavelet subbands that 

selected for the purpose of combination, the same process of the proposed extracting 

LBPH from single subband done and the final face feature vector is obtained by 

concatenating LBPHs extracted from selected subbands. The general frame work of the 

above proposed scheme is shown in figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Wavelet-based LBPH face recognition system 

4.3 Experimental Setup 

This section include the discussion of the experimental setup to tests the performance 

of the different proposed wavelet-based LBPH schemes such as the selection of the 

experimental databases and different protocols that govern the partitioning of the data 

samples into training and testing sets.   

4.3.1 Databases  

We have used two publically available face biometric databases to evaluate the 

accuracy of all proposes face recognition schemes that will give in the next section of 

this chapter. The two databases are Yale face database and ORL face database; both 

databases are described in details in section 2.1.4. 
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4.3.2 Evaluation Protocols  

We conducted our experiments with 3 different protocols:  

One training image (P1): In this case only one face image per subject will select as 

training and the rest remain face images are used as testing images. Experiments were 

repeated (𝑛) times, where (𝑛) is the number of individual images in each subject. For 

example when Yale face database is used we repeat the experiments 11 times since the 

database include 11 different individuals for each subject, while in case of using ORL 

face database, the experiment is repeated 10 times. All the results shows in the next 

sections are the average of repeated times. 

50% Training and 50% Testing (P2): Here, half images per subject were used as 

training and the rest used as testing. For ORL database, 5 images per subject were used 

as “training” and the remaining 5 were used as “testing”; while for Yale database, 5 

images per subject were used as “training” and the remaining 6 images were used as 

‘testing”. Experiments were repeated 10 times and samples for training were selected 

randomly. Again, results were averaged. 

Leave-One-Out strategy (P3): In this strategy, each time only one image was taken 

off the database for test and all the remaining images were used as training. 

Experiments were repeated (𝑚) times, where (𝑚) is the total number of images in the 

database, for Yale database 𝑚 is equal 165 while for ORL database 𝑚 equal to 400, 

recognition rate is averaged. 

4.4 The Performance of DWT-based LBPH Schemes  

For clarity of discussion and comparisons we present the experimental results, in 5 

separate subsections, for the different LBP codes (N4, and ND), followed by the results 

of fusing these two schemes together as well as fusing with N8 scheme. In each of these 

subsections, we compare the performance of the corresponding scheme with that of the 

usual wavelet-based LBPH using N8 scheme. All the experiments will be based on the 

nearest neighbour classifier using the Euclidean distance function. Moreover, we shall 

consider Haar wavelet subbands at levels 1 and 2 decomposition level together with 

combination of these.  In all cases, performances of the different single-subband 

schemes as well as the multi-stream fusion of a combination of subbands are presented 

in tables each showing results for all the evaluation protocols for ease of comparison. 

For each of the two testing databases (Yale and ORL), we display two tables one for 

each subband blocking strategy (3x3 blocks and 5x5 blocks).   
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4.4.1 LBP with 4 Main Neighbours (N4) 

In these experiments we extracted the LBP code using the 4 main neighbours (i.e. the 

N4 selection of the two horizontal and two vertical neighbours). In this case the LBP 

histogram consists of only 16 bins for each sub-block instead of representing LBP 

histogram by 256 bins in case of using LBP8,1 or 59 bins usingLBP8,1
u2. The results for 

the 2 databases and the 2 blocking strategies are presented in Tables 4.1 to 4.4.  

Table 4.1: N4 Recognition rate, Yale database used, each subband divided to 3x3 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 N8 N4 N8 N4 

LL1 76.36 68.18 90.33 84.22 89.69 86.06 

HL1 49.27 60.66 71.11 81.88 79.39 85.45 

LH1 53.15 63.87 75.44 83.66 79.39 85.45 

HH1 18.66 22.36 28 33.33 30.3 36.96 

LL2 70.36 63.75 86.22 83.44 87.88 87.27 

HL2 37.15 46.78 58.88 72.55 69.69 80.6 

LH2 43.87 46.72 66.44 65.22 75.15 72.12 

HH2 14.54 15.27 26.66 20 28.48 22.42 

LL1,HL1 77.69 72.72 93.11 87.33 93.33 90.3 

LL1,LH1 78.08 72.02 91.55 87.22 91.55 89.09 

LL1,HL1,LH1 79.21 75.27 92.66 89.77 93.93 92.12 

ALL Level 1 78.08 75.21 92.66 90.11 93.33 90.3 

LL2,HL2 71.81 68.36 88.88 87.33 89.69 91.51 

LL2,LH2 73.75 69.51 87.44 85.44 90.09 89.09 

LL2,HL2,LH2 75.93 74 90.88 90.22 93.93 93.33 

ALL Level 2 75.93 75.57 90.88 90.77 93.93 93.33 

LL1,HL1,LH1, LL2,HL2,LH2 80.66 75.81 93.55 90.55 93.93 91.51 

 

Table 4.2: N4 Recognition rate, Yale database used, each sub-block divided to 5x5 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 N8 N4 N8 N4 

LL1 82.84 76.36 94.33 91.88 94.54 93.33 

HL1 59.09 68.48 80.55 91.22 88.48 95.75 

LH1 59.51 73.63 81.66 89.66 87.27 90.3 

HH1 22 28.9 29.88 44.55 29.69 51.51 

LL2 78.18 76.06 93.55 90.77 96.96 93.33 
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Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 N8 N4 N8 N4 

HL2 46.3 57.39 71.33 81.55 76.96 87.87 

LH2 52.6 60.3 77.77 84.22 84.24 85.45 

HH2 18 19.93 28.22 31.44 32.72 37.57 

LL1,HL1 84.36 78.78 96.11 94 96.36 96.36 

LL1,LH1 83.63 79.51 95.11 94.11 96.36 96.36 

LL1,HL1,LH1 84.04 82 95.88 96 96.96 98.18 

ALL Level 1 83.81 82 95.77 95.33 96.36 96.96 

LL2,HL2 80.3 80.54 95 95.11 96.36 96.96 

LL2,LH2 82.66 81.33 93.66 94.33 96.36 95.15 

LL2,HL2,LH2 83.09 83.21 96 95.44 98.18 96.96 

ALL Level 2 83.09 83.45 96 96 98.18 97.57 

LL1,HL1,LH1, LL2,HL2,LH2 85.03 82.42 96.22 95.55 98.18 97.57 

Table 4.3: N4 Recognition rate, ORL database used, each sub-block divided to 3x3 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N4 N8 N4 N8 N4 

LL1 68.02 69.36 96.40 96.55 99.50 99.50 

HL1 36.05 43.61 61.50 69.70 67.50 78.00 

LH1 20.66 25.83 35.70 41.10 43.00 48.50 

HH1 7.55 7.69 9.75 9.95 10.00 12.25 

LL2 68.94 62.66 95.20 93.22 98.50 98.00 

HL2 29.97 34.83 52.65 60.25 60.50 68.75 

LH2 20.36 24.94 38.95 41.80 49.25 53.00 

HH2 5.22 5.41 6.60 7.20 6.25 8.25 

LL1,HL1 69.77 71.61 95.80 96.75 99.75 99.5 

LL1,LH1 68.83 70 96.10 96.45 99.50 99 

LL1,HL1,LH1 70.36 71.69 96.30 96.7 99.75 99.5 

ALL Level 1 70.30 71.83 96.05 97 99.75 99.5 

LL2,HL2 67.83 64.83 95.15 95 99.00 98.75 

LL2,LH2 67.27 64.75 94.65 94.1 98.75 98.75 

LL2,HL2,LH2 67.77 66.3 94.60 95.45 98.25 99 

ALL Level 2 67.05 65.69 94.95 94.6 98.00 98.5 

LL1,HL1,LH1, LL2,HL2,LH2 71.63 72.63 96.35 96.65 99.75 99.5 
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Table 4.4: N4 Recognition rate, ORL database used, each sub-block divided to 5x5 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N4 N8 N4 N8 N4 

LL1 67.91 66.86 95.35 95.40 99.00 98.75 

HL1 41.27 50.52 72.45 83.10 83.50 89.50 

LH1 27.75 35.94 49.35 64.35 57.00 73.00 

HH1 7.44 8.50 10.10 11.70 9.75 12.75 

LL2 65.25 60.75 94.35 93.15 99.00 98.00 

HL2 33.80 42.69 63.65 76.33 75.50 85.50 

LH2 26.33 36.27 51.90 64.95 62.50 75.50 

HH2 6.11 8.13 10.15 14.65 12.25 15.50 

LL1,HL1 68.44 68.38 96.15 96.15 98.25 98.75 

LL1,LH1 68.52 67.77 95.45 96.3 98.75 99 

LL1,HL1,LH1 69.11 69.27 96.15 96.2 98.50 99 

ALL Level 1 69.16 69.36 95.70 96.4 98.75 98.75 

LL2,HL2 64.13 62.22 94.50 92.7 98.75 97.5 

LL2,LH2 65.02 61.52 94.90 93.9 98.75 98.25 

LL2,HL2,LH2 64.25 63.02 93.55 93.05 98.75 98 

ALL Level 2 63.61 62.91 94.05 94.2 98.00 98 

LL1,HL1,LH1, LL2,HL2,LH2 69.52 69.41 96.25 96.9 98.75 99 

Analyses of these results lead to a complex pattern that can be summarised by the 

following observations and conclusions: 

1. For Yale database, using 5x5 blocking strategy outperform the 3x3 blocking 

strategy for all protocols. However, for the ORL database, the results are in the 

opposite direction except for the single non-LL subbnad schemes.   

2. In terms of the effect of using N4 or N8 LBP neighbourhood selection: 

o For Yale database, if single non LL subband is used, then N4 outperforms N8, 

but for the LL-subband N8 is the better option. This is true for both wavelet 

levels. For ORL database, this pattern remains valid except for the LL-

subband at level 1 where the N4 ALSO outperforms N8. 

o For Yale database when more than one wavelet subband is used the picture is 

mixed. While the N8 outperforms N4 in most cases, for the 5x5 blocks the 

differences in accuracy is negligible and few cases the N4 outperforms N8.  
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o For ORL database when more than one subbands used, with N4 we got same 

or higher recognition rate than N8 in most cases except when combining 

subbands from second level of wavelet decomposition. 

3. Generally in all cases, schemes that use level 1 subbands yield better performance 

than those using level 2 subbands.   

4. The best accuracy rates achieved for the different protocols are as following: 

o Yale: P1: 85.03% (N8 , 6 subbands and 5x5); P2: 96.22% (N8 , 6 subbands and 

5x5); and P3: 98.18% (N4 , LL1,HL1,LH1 and 5x5); 

o ORL: P1: 72.63% (N4, 6 subbands and 3x3); P2: 97% (N4 , All level 1, and 

3x3); and P3: 99.75% (N8 , LL1,HL1 and 3x3); 

When evaluating the performance of these various schemes, one takes into account that 

N4 require much lower embedding capacity compared to N8.  

4.4.2 LBP with 4 Diagonal Neighbours (ND) 

As we mention and explained earlier in this chapter that we can separate the 8 

neighbours of a given wavelet subband coefficient in to two kinds of 4-neighbors(N4 

and ND), here in these experiments we use the diagonal 4-neighbours (ND) for 

extracting face features using LBP code after decomposing face image into two wavelet 

decomposition levels. Tables 4.5 to 4.8 shows face recognition rate of different 

databases with using three different scenarios of separating images, and different 

number of blocks that each subband divided to. 

Table 4.5: ND Recognition rate, Yale database used, each subband divided to 3x3 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

LL1 76.36 66.54 90.33 82.22 89.69 83.03 

HL1 49.27 50.72 71.11 74.44 79.39 81.81 

LH1 53.15 61.63 75.44 83.11 79.39 84.84 

HH1 18.66 19.33 28 31.33 30.3 36.36 

LL2 70.36 60.84 86.22 80 87.88 83.03 

HL2 37.15 43.15 58.88 66.55 69.69 74.54 

LH2 43.87 53.54 66.44 76.66 75.15 84.24 

HH2 14.54 15.75 26.66 20.66 28.48 23.63 

LL1,HL1 77.69 70.84 93.11 87.22 93.33 86.66 

LL1,LH1 78.08 72.42 91.55 86.44 91.55 86.66 

LL1,HL1,LH1 79.21 74.6 92.66 89 93.93 89.09 
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Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

ALL Level 1 78.08 75.39 92.66 89.33 93.33 89.09 

LL2,HL2 71.81 66.24 88.88 83.22 89.69 84.84 

LL2,LH2 73.75 67.63 87.44 86.11 90.09 86.06 

LL2,HL2,LH2 75.93 71.27 90.88 86.88 93.93 88.48 

ALL Level 2 75.93 71.81 90.88 88 93.93 90.3 

LL1,HL1,LH1, LL2,HL2,LH2 80.66 74.78 93.55 89.77 93.93 90.3 

Table 4.6: ND Recognition rate, Yale database used, each sub-block divided to 5x5 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

LL1 82.84 74.06 94.33 87.44 94.54 89.09 

HL1 59.09 65.03 80.55 89.22 88.48 91.51 

LH1 59.51 71.31 81.66 90.88 87.27 92.72 

HH1 22 24.84 29.88 36.22 29.69 44.24 

LL2 78.18 67.57 93.55 85.33 96.96 90.3 

HL2 46.3 53.69 71.33 78.22 76.96 87.27 

LH2 52.6 62.12 77.77 85.44 84.24 87.87 

HH2 18 25.21 28.22 38.77 32.72 41.21 

LL1,HL1 84.36 77.27 96.11 91.77 96.36 93.93 

LL1,LH1 83.63 77.57 95.11 90.33 96.36 91.51 

LL1,HL1,LH1 84.04 80.36 95.88 93.55 96.96 95.15 

ALL Level 1 83.81 80.96 95.77 93.88 96.36 95.15 

LL2,HL2 80.3 72.72 95 88.87 96.36 92.12 

LL2,LH2 82.66 73.45 93.66 90.22 96.36 91.51 

LL2,HL2,LH2 83.09 76.36 96 91.66 98.18 95.15 

ALL Level 2 83.09 77.21 96 92.88 98.18 95.15 

LL1,HL1,LH1, LL2,HL2,LH2 85.03 80.96 96.22 94.33 98.18 95.75 

Table 4.7: ND Recognition rate, ORL database used, each sub-block divided to 3x3 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

LL1 68.02 64.22 96.40 93.15 99.50 98.5 

HL1 36.05 47.86 61.50 74.25 67.50 81.75 

LH1 20.66 22.52 35.70 36.15 43.00 40.5 
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Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

HH1 7.55 5.69 9.75 7.6 10.00 8.5 

LL2 68.94 64.97 95.20 93.4 98.50 97.25 

HL2 29.97 41.63 52.65 68.35 60.50 78 

LH2 20.36 25.83 38.95 49.7 49.25 59.25 

HH2 5.22 4.47 6.60 5.4 6.25 6 

LL1,HL1 69.77 67.91 95.80 96.4 99.75 99.5 

LL1,LH1 68.83 65.5 96.10 94.65 99.50 98.75 

LL1,HL1,LH1 70.36 68.3 96.30 95.1 99.75 99.25 

ALL Level 1 70.30 68.75 96.05 94.95 99.75 99.25 

LL2,HL2 67.83 69.47 95.15 94.35 99.00 98 

LL2,LH2 67.27 66.16 94.65 94.25 98.75 97.5 

LL2,HL2,LH2 67.77 69.75 94.60 94.45 98.25 98 

ALL Level 2 67.05 68.94 94.95 96 98.00 98 

LL1,HL1,LH1, LL2,HL2,LH2 71.63 69.75 96.35 95.65 99.75 99 

Table 4.8: ND Recognition rate, ORL database used, each sub-block divided to 5x5 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

LL1 67.91 64.77 95.35 94.75 99.00 98 

HL1 41.27 54.72 72.45 83.85 83.50 91 

LH1 27.75 32.69 49.35 59.45 57.00 68.75 

HH1 7.44 5.63 10.10 7.3 9.75 7.75 

LL2 65.25 61.33 94.35 91.4 99.00 96.5 

HL2 33.80 50.13 63.65 81.3 75.50 89.25 

LH2 26.33 36.52 51.90 67.5 62.50 80.5 

HH2 6.11 6.8 10.15 12.3 12.25 13.5 

LL1,HL1 68.44 66.69 96.15 95.55 98.25 98.5 

LL1,LH1 68.52 65 95.45 94.5 98.75 98.25 

LL1,HL1,LH1 69.11 67.05 96.15 94.9 98.50 98.5 

ALL Level 1 69.16 67.11 95.70 95.55 98.75 98.5 

LL2,HL2 64.13 64.66 94.50 93.5 98.75 97.25 

LL2,LH2 65.02 61.33 94.90 92.65 98.75 97 

LL2,HL2,LH2 64.25 64.36 93.55 93 98.75 97.5 

ALL Level 2 63.61 63.91 94.05 93.45 98.00 97.75 
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Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 ND N8 ND N8 ND 

LL1,HL1,LH1, LL2,HL2,LH2 69.52 67.58 96.25 95.95 98.75 98.5 

From results showed in tables 4.5 to 4.8, most the discussion done on the results 

obtained from previous section when N4 scheme used and compared with using N8 

scheme is true here. Here we summarised results obtained by the following 

observations and conclusions: 

1. For Yale database, using 5x5 blocking strategy outperform the 3x3 blocking 

strategy for all protocols. However, for the ORL database, the results are in the 

opposite direction except for the single non-LL subbnad schemes.   

2. In terms of the effect of using ND or N8 LBP neighbourhood selection: 

o For Yale database, if single non LL subband is used, then ND outperforms N8, 

but for the LL-subband N8 is the better option. This is true for both levels. For 

ORL database, this pattern remains valid. 

o For Yale database when more than one wavelet subband is used the N8 

outperforms ND in all cases,  

o For ORL database when more than one subbands used the picture is mixed, 

with ND we got same or higher recognition rate than N8 in some cases and 

other way around in others.  

3. The best accuracy rates achieved for the different protocols are as following: 

o Yale:  P1: 85.03% (N8 , 6 subbands and 5x5); P2: 96.22% (N8 , 6 subbands 

and 5x5); and P3: 98.18% (N8 , LL2,HL2,LH2 and 5x5); 

o ORL: P1: 71.63% (N8, 6 subbands and 3x3); P2: 96.4% (ND , LL1,HL1, and 

3x3); and P3: 99.75% (N8 , LL1+HL1 and 3x3); 

In addition to the discussion of the results obtained here in this section, when we 

compare N4 and ND schemes that explained in sections 4.4.1.and 4.4.2, we can conclude 

that using N4 scheme obtain higher face recognition rate than using ND scheme in most 

cases. The best accuracy rates achieved for the different blocking and different 

protocols, and different databases for the two schemes are as following: 

1. Yale Database:   

o 3x3 blocking:  

- P1: 75.81% (N4 and 6 subbands) , 75.39% (ND and All level 1) 
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- P2: 90.77% (N4 and All level 2) , 89.77% (ND and 6 subbands) 

- P3: 93.33% (N4 and LL1,HL1,LH1) , 90.3% (ND and All level 2) 

o 5x5 blocking:  

- P1: 83.45% (N4 and All level 2) , 80.96% (ND and All Level 1) 

- P2: 96.0% (N4 and LL1,HL1,LH1) , 94.33% (ND and 6 subbands) 

- P3: 98.18% (N4 and LL1,HL1,LH1) , 95.75% (ND and 6 subbands) 

2. ORL Database:   

o 3x3 blocking:  

- P1: 72.63% (N4 and 6 subbands) , 69.75% (ND and LL2,HL2,LH2) 

- P2: 97.0% (N4 and All Level 1) , 96.4% (ND and LL1,HL1) 

- P3: 99.5% (N4 and LL1) , 99.5% (ND and LL1,HL1) 

o 5x5 blocking:  

- P1: 69.41% (N4 and 6 subbands) , 67.58% (ND and 6 subbands) 

- P2: 96.9% (N4 and 6 subbands) , 95.95% (ND and 6 subbands) 

- P3: 99.0% (N4 and LL1+LH1) , 98.5% (ND and LL1+HL1) 

As a conclusion of the comparison between N4 and ND schemes recognition accuracy, 

we can say that most textures features such as (edges, lines) are in HL and LH wavelet 

subbands. Therefore, extracting texture features from horizontal and vertical 

neighbours of the wavelet subband coefficients leads to obtain better representation of 

the texture features than using diagonal neighbours.  As a result, using N4 scheme to 

extract texture features can guarantee higher face recognition rate if compared with 

using ND scheme.  

4.4.3 Combining LBP with 4 Main (N4) and 4 Diagonal (ND) Neighbours 

Extracting LBP code using only 4-neighbours and excluding the other 4-neighbours as 

explained and proposed in previous sub-sections 4.4.1 and 4.4.2 may lose some 

important texture features that any wavelet subband may have. To overcome this issue 

we propose here a new extraction method that gathers information from all 8-

neighbours of the pixel but not using all of them together as a traditional LBP8,1 . First, 

we separate the 8 neighbours of a coefficient into two parts, the four main neighbours 

(N4) and the four diagonal neighbours (ND). Second, we calculate two separate LBP 

codes, LBP4 and LBPD (i.e., one based on N4 neighbours and the other based on ND 

neighbours) at radius of 1. Then finally, the histogram of each LBP set is calculated 

and the two histograms, LBP4H and LBPDH, are concatenated to represent the final 



83 

 

sub-block of the subband of the given face. Using the proposed approach, we are able 

to represent LBP histograms using only 32 bins (16 bins for each of the two 4 

neighbours).  

Tables 4.9 to 4.12 shows face recognition rates of different databases with using 

different scenarios of separating images, and for different number of blocks that each 

subband was divided into. Results of the proposed are compared with those achieved 

with features based onLBP8
u2.  

  Table 4.9: N4&ND Recognition rates, Yale database used, each wavelet subband is divided to 3×3 blocks 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

LL1 76.36 72.72 90.33 85.33 89.69 87.27 

HL1 49.27 63.69 71.11 84.88 79.39 91.51 

LH1 53.15 70.3 75.44 87.33 79.39 89.69 

HH1 18.66 25.33 28 41.44 30.3 41.21 

LL2 70.36 67.09 86.22 84.77 87.88 86.06 

HL2 37.15 53.45 58.88 79.88 69.69 85.45 

LH2 43.87 60.9 66.44 81.33 75.15 85.45 

HH2 14.54 19.39 26.66 30.66 28.48 34.54 

LL1,HL1 77.69 76.42 93.11 89.66 93.33 90.3 

LL1,LH1 78.08 76.12 91.55 90.77 91.55 91.51 

LL1,HL1,LH1 79.21 79.57 92.66 93.0 93.93 94.54 

ALL Level 1 78.08 79.51 92.66 94.22 93.33 93.93 

LL2,HL2 71.81 71.87 88.88 89.55 89.69 91.51 

LL2,LH2 73.75 72.6 87.44 87.33 90.09 90.3 

LL2,HL2,LH2 75.93 77.57 90.88 91.33 93.93 94.54 

ALL Level 2 75.93 78.72 90.88 91.77 93.93 96.36 

LL1,HL1,LH1, LL2,HL2,LH2 80.66 80.0 93.55 93.22 93.93 94.54 

Table 4.10: N4&ND Recognition rates, Yale database used, each wavelet subband is divided to 5×5 blocks 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

LL1 82.84 79.15 94.33 90.88 94.54 90.3 

HL1 59.09 72.78 80.55 94.11 88.48 96.36 

LH1 59.51 78.24 81.66 94.66 87.27 96.96 
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Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

HH1 22 34.78 29.88 54.44 29.69 66.06 

LL2 78.18 77.93 93.55 91.77 96.96 93.93 

HL2 46.3 62.54 71.33 86.33 76.96 91.51 

LH2 52.6 71.45 77.77 92.55 84.24 95.15 

HH2 18 31.57 28.22 49.44 32.72 59.39 

LL1,HL1 84.36 82.12 96.11 95.44 96.36 95.15 

LL1,LH1 83.63 82.72 95.11 94.55 96.36 94.54 

LL1,HL1,LH1 84.04 84.24 95.88 96.77 96.96 96.96 

ALL Level 1 83.81 84.24 95.77 96.88 96.36 96.96 

LL2,HL2 80.3 81.93 95 95.55 96.36 97.57 

LL2,LH2 82.66 82.48 93.66 94.44 96.36 96.36 

LL2,HL2,LH2 83.09 84.66 96 95.77 98.18 97.57 

ALL Level 2 83.09 85.51 96 95.88 98.18 96.96 

LL1,HL1,LH1, LL2,HL2,LH2 85.03 84.48 96.22 96.77 98.18 97.57 

 

Table 4.11: N4&ND Recognition rates, ORL database used, each wavelet subband is divided to 3×3 blocks 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

LL1 68.02 69.0 96.40 96.55 99.50 99.0 

HL1 36.05 56.97 61.50 85.55 67.50 92.0 

LH1 20.66 33.77 35.70 57.2 43.00 66.25 

HH1 7.55 8.33 9.75 11.8 10.00 12.25 

LL2 68.94 69.66 95.20 95.95 98.50 98.25 

HL2 29.97 50.08 52.65 81.35 60.50 87.75 

LH2 20.36 35.02 38.95 63.5 49.25 73.5 

HH2 5.22 7.05 6.60 10.25 6.25 12.75 

LL1,HL1 69.77 71.94 95.80 97.35 99.75 99.5 

LL1,LH1 68.83 70.16 96.10 96.45 99.50 99.5 

LL1,HL1,LH1 70.36 72.55 96.30 97.6 99.75 99.75 

ALL Level 1 70.30 72.8 96.05 97.65 99.75 99.5 

LL2,HL2 67.83 71.88 95.15 96.1 99.00 98.5 

LL2,LH2 67.27 69.5 94.65 96.2 98.75 99.25 

LL2,HL2,LH2 67.77 71.83 94.60 96.95 98.25 99.0 
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Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

ALL Level 2 67.05 71.94 94.95 96.6 98.00 99.25 

LL1,HL1,LH1, LL2,HL2,LH2 71.63 73.58 96.35 97.05 99.75 99.75 

Table 4.12: N4&ND Recognition rates, ORL database used, each wavelet subband is divided to 5×5 blocks 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N4 & ND N8 N4 & ND N8 N4 & ND 

LL1 67.91 67.94 95.35 96.3 99.00 98.75 

HL1 41.27 60.22 72.45 88.6 83.50 94.75 

LH1 27.75 42.77 49.35 75.15 57.00 84.5 

HH1 7.44 9.22 10.10 13.1 9.75 15.0 

LL2 65.25 64.11 94.35 94.6 99.00 98.25 

HL2 33.80 55.69 63.65 88.05 75.50 93.75 

LH2 26.33 43.02 51.90 77.6 62.50 88.75 

HH2 6.11 10.91 10.15 18.5 12.25 24.0 

LL1,HL1 68.44 69.3 96.15 96.65 98.25 99.0 

LL1,LH1 68.52 68.41 95.45 95.85 98.75 98.75 

LL1,HL1,LH1 69.11 69.86 96.15 96.3 98.50 99.0 

ALL Level 1 69.16 69.94 95.70 97.0 98.75 99.0 

LL2,HL2 64.13 66.66 94.50 95.1 98.75 98.75 

LL2,LH2 65.02 64.33 94.90 94.9 98.75 98.5 

LL2,HL2,LH2 64.25 66.36 93.55 93.75 98.75 98.75 

ALL Level 2 63.61 66.3 94.05 94.45 98.00 98.5 

LL1,HL1,LH1, LL2,HL2,LH2 69.52 70.25 96.25 95.45 98.75 99.0 

The results obtained in tables from 4.9 to 4.12 can be analysis and summarised by the 

following observations and conclusions: 

1. For Yale database, using 5x5 blocking strategy outperform the 3x3 blocking 

strategy for all protocols. However, for the ORL database, the results are in the 

opposite direction except for the single non-LL subbnad schemes.   

2. In terms of the effect of using (N4 and ND) or N8 LBP neighbourhood selection: 

o For Yale database, if single non LL subband is used, then (N4 and ND) 

outperforms N8, but for the LL-subband N8 is the better option. For ORL 

database, (N4 and ND) outperforms N8 if single non LL subband is used but for 
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the LL-subband, the recognition accuracy obtained using both (N4 and ND) or 

N8 are very close to each other with very little differences. 

o For both (Yale and ORL) databases, when more than one wavelet subband is 

used the recognition accuracy that obtained from both used schemes are very 

close and the differences of the obtained recognition accuracy in most cases are 

very small. However, in some cases N8 outperforms (ND and N4) while in 

others (ND and N4) outperforms N8.  

3. The best accuracy rates achieved for the different protocols are as following: 

o Yale:  P1: 85.51% (N4 and ND , All level 2 and 5x5); P2: 96.88% (N4 and ND , 

All level 1  and 5x5); and P3: 98.18% (N8 , LL2,HL2,LH2 and 5x5); 

o ORL: P1: 73.58% (N4 and ND, 6 subbands and 3x3); P2: 97.65% (N4 and ND , 

All level 1, and 3x3); and P3: 99.75% (N4 and ND, LL1,HL1,LH1 and 3x3); 

On the other side, if we compare the results obtained here in this scheme (N4 and ND) 

with the results obtained using two other schemes (N4) or (ND) discussed in previous 

sub sections (4.4.1 and 4.4.2), we can notice that, (N4 and ND) outperform both schemes 

regarding the recognition accuracy, this true for all cases (i.e. using different protocols 

and different blocking strategies for both databases). Only one drawback with previous 

schemes is that; number of bins that represent each block of the wavelet subbands in 

this case is 32 bin while in previous schemes are only 16 bins, but still if we compare 

with 256 bins in case of using traditional LBP8,1 or 59 bins in LBP8,1
u2 this scheme can 

be represented with less number of features. 

4.4.4 Fusion of LBP8 with LBP4  

From sub-sections 4.4.1 and 4.4.2, generally we can conclude that: 

1- Using 8 neighbours for extracting features from LL subband(s) is superior to using 

4 neighbours; while for non LL subbands, using 4 neighbours give higher face 

recognition rate than using 8 neighbours.  

2- In most cases using more than one wavelet subbands outperform of using single 

wavelet subband.  

Based on the above conclusions, in this scheme, when more than one wavelet subbands 

used to represent final face feature vector, 8 neighbours scheme were used for LL 

subband(s) and 4 neighbours for non LL subband(s). And based on previous conclusion 

that using N4 strategy is better than using ND strategy, therefore in this case we use N4 
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strategy to extract features from non-LL subband(s). Tables from 4.13 to 4.16 shows 

face recognition rate when different combination with different number of wavelet 

subbands used.  

Table 4.13: N8&N4 Recognition rate, Yale database used, each wavelet subband divided to 3x3 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N8&N4 N8 N8&N4 N8 N8&N4 

LL1,HL1 77.69 81.03 93.11 94.55 93.33 95.75 

LL1,LH1 78.08 80.6 91.55 93 91.55 94.54 

LL1,HL1,LH1 79.21 83.21 92.66 95.22 93.93 95.15 

ALL Level 1 78.08 82.78 92.66 95.44 93.33 96.36 

LL2,HL2 71.81 75.69 88.88 90.44 89.69 92.12 

LL2,LH2 73.75 75.09 87.44 88.88 90.09 91.51 

LL2,HL2,LH2 75.93 79.45 90.88 92.88 93.93 94.54 

ALL Level 2 75.93 79.45 90.88 92.88 93.93 94.54 

LL1,HL1,LH1, LL2,HL2,LH2 80.66 84.3 93.55 95.88 93.93 96.96 

Table 4.14: N8&N4 Recognition rate, Yale database used, each wavelet subband divided to 5x5 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N8&N4 N8 N8&N4 N8 N8&N4 

LL1,HL1 84.36 85.63 96.11 96.55 96.36 96.96 

LL1,LH1 83.63 85.21 95.11 97.11 96.36 98.18 

LL1,HL1,LH1 84.04 86.48 95.88 97.77 96.96 98.18 

ALL Level 1 83.81 86.3 95.77 97.44 96.36 96.96 

LL2,HL2 80.3 82.54 95 95.55 96.36 98.18 

LL2,LH2 82.66 84.12 93.66 95.88 96.36 98.78 

LL2,HL2,LH2 83.09 85.27 96 96.22 98.18 100 

ALL Level 2 83.09 85.27 96 96.22 98.18 100 

LL1,HL1,LH1, LL2,HL2,LH2 85.03 87.39 96.22 98.22 98.18 98.18 

 

Table 4.15: N8&N4 Recognition rate, ORL database used, each wavelet subband divided to 3x3 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N8&N4 N8 N8&N4 N8 N8&N4 

LL1,HL1 69.77 71.00 95.80 97.00 99.75 99.50 

LL1,LH1 68.83 69.55 96.10 96.55 99.50 99.75 

LL1,HL1,LH1 70.36 71.94 96.30 96.80 99.75 99.50 
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Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N8&N4 N8 N8&N4 N8 N8&N4 

ALL Level 1 70.30 72.00 96.05 96.05 99.75 99.50 

LL2,HL2 67.83 68.38 95.15 95.10 99.00 98.50 

LL2,LH2 67.27 69.11 94.65 96.20 98.75 99.00 

LL2,HL2,LH2 67.77 68.33 94.60 94.65 98.25 98.25 

ALL Level 2 67.05 68.19 94.95 95,75 98.00 99.00 

LL1,HL1,LH1, LL2,HL2,LH2 71.63 73.58 96.35 97.20 99.75 100.00 

Table 4.16: N8&N4 Recognition rate, ORL database used, each wavelet subband divided to 5x5 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N8&N4 N8 N8&N4 N8 N8&N4 

LL1,HL1 68.44 69.05 96.15 96.80 98.25 99.00 

LL1,LH1 68.52 69.22 95.45 96.30 98.75 99.25 

LL1,HL1,LH1 69.11 70.25 96.15 96.45 98.50 98.75 

ALL Level 1 69.16 70.52 95.70 97.35 98.75 99.25 

LL2,HL2 64.13 66.22 94.50 94.20 98.75 98.00 

LL2,LH2 65.02 65.19 94.90 95.00 98.75 98.50 

LL2,HL2,LH2 64.25 65.77 93.55 94.60 98.75 98.75 

ALL Level 2 63.61 65.33 94.05 94.35 98.00 98.50 

LL1,HL1,LH1, LL2,HL2,LH2 69.52 70.86 96.25 96.50 98.75 99.00 

The results can be analysis and summarised by the following observations and 

conclusions: 

1. For Yale database, using 5x5 blocking strategy outperform the 3x3 blocking 

strategy for all protocols. While for the ORL database, the results are in the opposite 

direction.   

2. In terms of the effect of using (N8 and N4) or N8 LBP neighbourhood selection: 

For Yale database, (N8 and N4) outperforms N8 for all cases with different protocols 

and different blocking numbers. For ORL database, again (N8 and N4) outperforms 

N8 for most cases, in few cases N8 outperform (N8 and N4) but with very small 

amount. 

3. The best accuracy rates achieved for the different protocols are as following: 

Yale:  P1: 87.39% (N8 and N4, 6 subbands and 5x5); P2: 98.22% (N8 and N4, 6 

subbands and 5x5); and P3: 100% (N8 and N4, LL2,HL2,LH2 and 5x5); 
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ORL: P1: 73.58% (N8 and N4, 6 subbands and 3x3); P2: 97.35% (N8 and N4,All 

level 1 and 5x5); and P3: 100% (N8 and N4, 6 subbands and 3x3); 

Comparing the results obtained using this scheme and all other 3 previous schemes, we 

can say that the face recognition accuracy with this scheme have higher rate in all cases.  

4.4.5 Fusion of LBP8 with Combined LBP4 and LPBD  

Again by looking to the results obtained from the experiments reported in section 4.4.3, 

where a single subband was used to represent a face image, we notice that the 

combination of LPB4 and LBPD features achieve higher recognition accuracy for non-

LL subbands.  On the other hand, LBP8,1
u2 performs better for LL subbands. Therefore, 

in this scheme in case of using more than one subbands to represent face feature vector, 

N8 scheme used for LL wavelet subband and combined N4 and ND used for non-LL 

wavelet subband(s).  Tables from 4.17 to 4.20 shows face recognition accuracy with 

using different number of subbands, different protocols, and different blocking 

strategies. 

Table 4.17: N8,N4&ND Recognition rates, Yale database used, each wavelet subband is divided to 3×3 blocks 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N8,N4&ND N8 N8,N4&ND N8 N8,N4&ND 

LL1,HL1 77.69 82.00 93.11 95.88 93.33 97.57 

LL1,LH1 78.08 82.42 91.55 95.88 91.55 96.96 

LL1,HL1,LH1 79.21 85.21 92.66 97.66 93.93 98.78 

ALL Level 1 78.08 83.93 92.66 97.55 93.33 98.78 

LL2,HL2 71.81 74.48 88.88 90.66 89.69 93.93 

LL2,LH2 73.75 76.72 87.44 91.58 90.09 92.12 

LL2,HL2,LH2 75.93 82.00 90.88 94.55 93.93 96.36 

ALL Level 2 75.93 81.51 90.88 94.88 93.93 96.96 

LL1,HL1,LH1, LL2,HL2,LH2 80.66 86.36 93.55 98.11 93.93 99.39 

Table 4.18: N8,N4&ND Recognition rates, Yale database used, each wavelet subband is divided to 5×5 blocks 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N8,N4&ND N8 N8,N4&ND N8 N8,N4&ND 

LL1,HL1 84.36 85.63 96.11 96.88 96.36 98.18 

LL1,LH1 83.63 87.03 95.11 97.55 96.36 98.78 

LL1,HL1,LH1 84.04 87.21 95.88 97.88 96.96 98.18 

ALL Level 1 83.81 86.48 95.77 97.33 96.36 98.18 



90 

 

Subband(s) 
One training(P1) 5training & 6testing(P2) Leave one out(P3) 

N8 N8,N4&ND N8 N8,N4&ND N8 N8,N4&ND 

LL2,HL2 80.3 81.51 95 94.00 96.36 95.75 

LL2,LH2 82.66 85.81 93.66 97.33 96.36 97.57 

LL2,HL2,LH2 83.09 85.81 96 95.66 98.18 98.78 

ALL Level 2 83.09 87.03 96 96.66 98.18 99.39 

LL1,HL1,LH1, LL2,HL2,LH2 85.03 88.36 96.22 98.22 98.18 98.18 

Table 4.19: N8,N4&ND Recognition rates, ORL database used, each wavelet subband is divided to 3×3 blocks 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N8,N4&ND N8 N8,N4&ND N8 N8,N4&ND 

LL1,HL1 69.77 73.22 95.80 96.55 99.75 99.50 

LL1,LH1 68.83 69.50 96.10 96.05 99.50 99.50 

LL1,HL1,LH1 70.36 73.30 96.30 96.70 99.75 99.75 

ALL Level 1 70.30 73.33 96.05 96.40 99.75 99.50 

LL2,HL2 67.83 70.22 95.15 95.95 99.00 98.25 

LL2,LH2 67.27 66.63 94.65 95.60 98.75 99.00 

LL2,HL2,LH2 67.77 71.13 94.60 96.65 98.25 99.25 

ALL Level 2 67.05 70.13 94.95 96.10 98.00 99.25 

LL1,HL1,LH1, LL2,HL2,LH2 71.63 74.97 96.35 97.95 99.75 99.75 

Table 4.20: N8,N4&ND Recognition rates, ORL database used, each wavelet subband is divided to 5×5 blocks 

Subband(s) 
One training(P1) 5training & 5testing(P2) Leave one out(P3) 

N8 N8,N4&ND N8 N8,N4&ND N8 N8,N4&ND 

LL1,HL1 68.44 70.86 96.15 96.90 98.25 99.00 

LL1,LH1 68.52 68.66 95.45 95.55 98.75 99.00 

LL1,HL1,LH1 69.11 71.11 96.15 96.55 98.50 98.75 

ALL Level 1 69.16 71.05 95.70 96.70 98.75 98.75 

LL2,HL2 64.13 67.13 94.50 94.55 98.75 98.25 

LL2,LH2 65.02 63.02 94.90 94.25 98.75 98.75 

LL2,HL2,LH2 64.25 66.13 93.55 95.55 98.75 98.50 

ALL Level 2 63.61 65.77 94.05 94.55 98.00 98.25 

LL1,HL1,LH1, LL2,HL2,LH2 69.52 71.66 96.25 95.95 98.75 98.75 
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The results obtained in this scheme summarised as following: 

1. For Yale database, using 5x5 blocking strategy outperform the 3x3 blocking 

strategy for all protocols. While for the ORL database, the results are in the opposite 

direction.   

2. In terms of the effect of using (N8 and (N4 and ND) or N8 LBP neighbourhood 

selection: 

For both (Yale and ORL) database, (N8 and (N4 and ND)) outperforms N8 for most 

cases with different protocols and different blocking numbers.  

3. The best accuracy rates achieved for the different protocols are as following: 

Yale:  P1: 88.36% (N8 and (N4 and ND), 6 subbands and 5x5); P2: 98.22% (N8 and 

(N4 and ND), 6 subbands and 5x5); and P3: 99.39% (N8 and (N4 and ND), All level 

2 and 5x5); 

ORL: P1: 74.97% (N8 and (N4 and ND), 6 subbands and 3x3); P2: 97.95% (N8 and 

(N4 and ND), 6 subbands and 3x3); and P3: 99.75% (N8 and (N4 and ND), 

LL1,HL1,LH1 and 3x3); 

On the other hand, comparing results obtained using this scheme and all other 4 

schemes discussed before, we can conclude that results obtained in this scheme 

outperform the 4 schemes in all cases for both databases except in some cases of using 

leave one out strategy with 4th scheme (i.e. fusion of N8 and N4).  

Finally, we need to determine the effect of each of the 3 different experimental 

protocols on the performance of all 5 LBPH schemes together in comparison to the 

traditional N8 scheme. Figures 4.8 to 4.10 below are results of experiments conducted, 

according to these various protocols, for this purpose on the Yale database using 3x3 

sub-blocking strategies. More comparison figures can be found in the appendix C.  
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Figure 4.8: Recognition rates of Yale database for one training protocol and 3×3 blocking strategy 

 
Figure 4.9: Recognition rates of Yale database for 50% training protocol and 3×3 blocking strategy 
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Figure 4.10: Recognition rates of Yale database for leave one out protocol and 3×3 blocking strategy 

From these figures it is clear that the performance of each of feature vector schemes 

(single and multiple wavelet subbands) follow a very similar pattern when comparing 

the various LBPH representation codes (i.e. the N4, ND, N4&ND, N8&N4, and N8with 

N4&ND) across all the 3 protocols. In other words, their relative performances in terms 

of the different LBPH coding do not depend on the protocol. However, for any 

combination of a feature subband(s) and LBPH coding the leave-one-out yields an 

average improvement of about 2% on the 50-50 protocol which in turn result in 

significant improvement of as much as 20% (for single subbands) and as little as 12% 

(for multiple subbands).  These improvements are not surprising because the larger the 

gallery the better chance for accurate matches.  

4.5 Trade-off between Recognition Rate and Number of Features 

The above results need to be considered in relation to their effect on the adopted 

steganographic embedding scheme, in terms of invisibility, capacity and robustness. 

High number of features representation of biometric data should be avoided, if at all 

possible, for real-time identification and limit their usefulness for applications which 

require less number of feature representations. In this section we shall consider the 

impact of capacity on accuracy and discuss the trade-off between these two competing 

requirements for the schemes tested in section 4.4.  
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Recall that the number of bins for the 4-neighbours DWT-based LBPH schemes is 16 

per block, while the traditional LBP8,1 histogram needs 256 bins per block and the 

LBP8,1
u2  needs 59 bins per block. Tables 4.21, 4.22 and Figures 4.11, 4.12 below show 

number of total face features for the different schemes. In all cases we compared 

different schemes withLBP8,1
u2.   

Table 4.21: Total number of features (LBPH bins); each wavelet subband is divided to 3×3 blocks 

Used Subband(s) N8  N4 Or ND  N4 & ND  N8 with N4  N8 with N4 & ND 

One  531 144 288 --- --- 

Two  1062 288 576 675 819 

Three  1593 432 864 819 1107 

Four  2124 576 1152 963 1395 

Six  3186 864 1728 1638 2214 

 

 

Figure 4.11: Total number of features; each wavelet subband is divided to 3×3 blocks 

 

Table 4.22: Total number of features (LBPH bins); each wavelet subband is divided to 5×5 blocks 

Used Subband(s) N8  N4 Or ND  N4 & ND  N8 with N4  N8 with N4 & ND 

One  1475 400 800   

Two  2950 800 1600 1875 2275 

Three  4425 1200 2400 2275 3075 

Four  5900 1600 3200 2675 3875 

Six  8850 2400 4800 4550 6150 

 

0

500

1000

1500

2000

2500

3000

3500

One Two Three Four Six

N
u

m
b

e
r 

o
f 

LB
P

H
 b

in
s

Used Subband(s)

N8

 N4 Or ND

 N4 & ND

 N8 with N4

 N8 with N4 & ND



95 

 

 

Figure 4.12: Total number of features; each wavelet subband is divided to 5×5 blocks 

The above charts show that our 4-neigborhoods LBP histograms, including their 

combined schemes, have much reduces payload requirement compared to the uniform 

N8 LBPH scheme.  The reduction rates can be summarized as follows:  

- N4 or ND: The overall number of face features (LBPH bins) used in each scheme 

represent a 72.8 % reduction of the number of features used by the   LBP8,1
u2 .  

For each block they require 16 bins as compared to 59 bins. 

- N4 and ND: The overall number of face features used in the combined scheme 

represent a 45.7 % reduction of the number of face features used by the LBP8,1
u2.  

For each block they require 32 bins (16 for each N4 and ND) as compared to 59 

bins. 

- Fusion of N8 with N4: Reduction in the number of face features used in this 

fused scheme is in the range 36.4% to 54.6 % (depending on the number of 

subbands used) compared to the LBP8,1
u2 .  

- Fusion N8 with (N4 and ND):  Reduction in the number of face features used in 

this case is in the range 22.8 % to 34.3 % (depend on the number of subbands 

used) compared to the LBP8,1
u2 . 

However, this pattern of reduction of space requirements is offset by a reduction in 

accuracy rates, i.e. accuracy of the singular schemes N4 or ND are reduced compared to 

the other 3 schemes. This may suggest that we need to make a trade-off between face 

feature requirements and face recognition accuracy rate. However, which the 

differences in the reduction rates of feature requirement is significant the improvement 
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in accuracy in most cases are relatively marginal.  Moreover, we need to remember that 

hiding secrets of lower payload sizes have a positive impact on stego-image quality, 

i.e. when we look for trade-offs we should also take into account impact on invisibility. 

This will be demonstrated in the next section.    

4.6 Invisibility Vs Number of LBPH Features       

We conducted experiment to test the invisibility achieved by our LSB-witness 

steganography scheme when we hide the various wavelet based LBPH face feature 

vectors, discussed above, in images. In these experiments, we followed the same 

approach adopted in the last chapter by embedding into 20 different images of size 

512x512. The results shown in tables 4.23 and 4.24 are the average PSNR values when 

we embedded the various LBPH face features using all the face images in the Yale 

database, figures 4.13 and 4.14 represents corresponding tables content. It is clear that 

hiding face features using our N4 or ND LBPH features has higher level of invisibility 

compared to all other schemes.  

Table 4.23: PSNR between cover and stego-image (3×3 blocking) 

Subband(s) N8  N4 Or ND  N4 & ND  N8 with N4  N8 with N4 & ND 

One  63.02 68.65 65.68   

Two  60.01 65.68 62.65 61.98 61.15 

Three  58.24 63.9 60.92 61.15 59.83 

Four  56.99 62.65 59.66 60.44 58.83 

Six  55.23 60.92 57.89 58.12 56.81 

 

:  

Figure 4.13: PSNR between cover and stego-image (3×3 blocking) 
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Table 4.24: PSNR between cover and stego-image (5×5 blocking) 

Subband(s) N8  N4 Or ND  N4 & ND  N8 with N4  N8 with N4 & ND 

One  58.59 64.25 61.25   

Two  55.57 61.25 58.22 57.52 56.69 

Three  53.81 59.49 56.46 56.69 55.39 

Four  52.56 58.22 55.21 55.99 54.39 

Six  50.79 56.46 53.45 53.68 52.37 

 

 

Figure 4.14: PSNR between cover and stego-image ( 5×5 blocking) 

4.7 Conclusions  

In this chapter we developed and investigated various properties of a mutli-scale 

wavelet based local binary pattern, that generalise existing spatial domain versions of 

these scheme, for use in face recognition. The main approach was to generalise LBPH 

coding schemes into the wavelet domain the objective being to obtain an optimally 

compact representation of face feature vectors that form a suitable payload for hiding 

in an image without loss of accuracy or degradation of stego-image quality.  

In the proposed face extraction schemes we define a new LBP operator using only 4 

neighbours instead of the normal 8 neighbours for any given wavelet subband. For any 

wavelet coefficient its 8-neighbours can be separated into two parts, the four main 

neighbours (N4) and the four diagonal neighbours (ND). Totally we propose 5 deferent 

face feature extraction schemes, in the first 2 schemes, the LBPH obtained from the 

LBP codes extracted using (N4 or ND). While in the 3rd scheme we concatenate the 

LBPH obtained from using N4 and ND separately to represent final face feature vector. 
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In the 4th scheme, in case of using multiple wavelet subbands to represent face image 

we calculate LBPH using N8 for LL subband(s) and N4 for other subband(s). While in 

the 5th scheme again we used N8 for LL subband and LBPH extracted from N4 

concatenated with LBPH extracted from ND used for non LL subbands. All 5 schemes 

tested and evaluated using 2 different face database (Yale and ORL), 2 different 

blocking (3x3 and 5x5) strategies, and 3 different protocols regarding partitioning face 

images as training and testing sets.   

The experimental results demonstrate that new proposed schemes reduced the number 

of face features by 22% to 72% of the original features size. In term of face recognition 

our schemes 3 to 5 obtain better accuracy if compared with using original N8 scheme, 

while for other first 2 schemes we obtain better accuracy in some cases while in others 

using N8 outperform our schemes. Moreover, the experiments revealed that the relative 

performances of the various LBPH codes were following the same pattern for almost 

all feature vector schemes (single and multiple wavelet subbands) across all the 3 

protocols, and when more templates used in the gallery, the accuracy rates increases by 

a similar proportion for all schemes. We consider this as an indicator of the stability of 

all combinations of single or multiple wavelet subbands and LBPH schemes.  

Finally, for the rest of the thesis we introduce a new secret embedding content based 

steganography technique that is compatible with the structure of the wavelet based 4 or 

8 neighbours LBP codes for further improvement of capacity, stego-image quality and 

more importantly robustness against different targeted and universal steganalysis tools.   
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Chapter 5  

Content-Based Steganography 

Most digital steganography schemes are designed for embedding any types of secret 

and therefore most performance testing work assumes that the secret is a random binary 

string which may represent a cryptographic key, an encrypted image, normal text, or 

audio file. These embedding schemes do not pay any attention to the characteristics of 

the secret bit-stream. Content-based steganographic scheme on the other hand refers to 

schemes for which the embedding benefits from the knowledge of the specific structure 

or nature of the content to be embedded. In this chapter we shall investigate possible 

approaches to benefit from secret content structure in designing efficient steganography 

scheme which is suitable for the hiding secrets with similar characteristics in images 

that minimizes the necessary changes in the cover image and maintain high quality and 

robustness. We shall design a content based hiding scheme specifically for hiding 

secrets that constructed from LBP codes extracted from the spatial or wavelet domains 

of face image as special cases. The experimental work will be designed to demonstrate 

the above claims about the designed content based scheme for LBP codes from a large 

database of face images, each embedded in 1000 images.  In section 5.1, we shall 

investigate different embedding schemes in term of the probability of changing pixel 

values. Section 5.2 is devoted to the design of the special content-based hiding scheme. 

In section 5.3 we test the performance of the content-based hiding scheme with 

different scenarios. In section 5.4 we shall demonstrate that our scheme significantly 

lower pixels change ratios for embedding face biometric feature vector compared to 

existing lower bounds achieved by the state of the art embedding schemes. We shall 

also show that embedding face LBPH patterns into existing schemes that are incapable 

of achieving the optimal change ratio achieved by our scheme.   

5.1 Perfect Vs Optimal Steganography  

Andrew Ker et al. (Ker, et al., 2013), define perfect steganography technique as it 

requires that the distribution of the stego-object be identical to that of cover-object, and 

in optimal steganography techniques the aim is to keep distributions near each other 
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(i.e. not identical but the sender hides the secret message while minimizing the 

distortion of the cover-object).  

In the traditional LSB schemes, when a match is not found between the next secret bit 

and the LSB of the next pixel, even pixel values are increased by one, while odd pixel 

values are decreased by one. It is well known that the probability of non-match 

(equivalently the probability of changing pixel values) in this technique is 0.5 (i.e. 50 

% of LSBs of the pixels may change during embedding process). This method changes 

the distribution of the cover-image pixel values, and makes the technique detectable 

using statistical steganalysis techniques such as (Fridrich, et al., 2001; Westfeld & 

Pfitzmann, 1999; Fridrich & Goljan, 2004; Zhang & Ping, 2003).  For the LSBM 

scheme the embedding of an unmatched secret bit will cause random change of +1, or 

-1 of the pixel value. This makes LSBM harder to detect, but again there are some new 

proposed steganalysis techniques can detect the LSBM schemes such as (Ker, 2005; 

Zhang, et al., 2007). Again in this scheme, the probability of changing pixel values is 

remaining 0.5 as traditional LSB scheme. While in LSBMR (Mielikainen, 2006) 

scheme the probability of changes downgraded to 0.375 with remaining in the same 

level of payload capacity if compared to LSBM.  

Related to the above idea, authors in (Holub, et al., 2014) mentioned and proved that 

the most successful techniques in steganography are those techniques that embed secret 

payload while minimizing the distortion of the pixel values. Recently a number of 

embedding schemes is proposed by group of researchers in both domains, spatial and 

frequency, but because we are deal with spatial domain embedding then we will focus 

on proposed embedding techniques in spatial domain.  

Authors in (Pevný, et al., 2010; Filler & Fridrich, 2010; Holub & Fridrich, 2012;  

Holub, et al., 2014) proposed four steganographic schemes based on LSBM 

fundamental, they named the embedding schemes as Highly Undetectable SteGO 

(HUGO), HUGO with Bounding Distortion (HUGO BD), Wavelet Obtained Weights 

(WOW), and Universal Wavelet Relative Distortion (UNIWARD) respectively. Their 

contributions in the papers are, designing the distortion function aimed to find the best 

locations for embedding which make less change in cover pixels values during 

embedding, to make the steganographic techniques more robust against steganalysis 

techniques. Proposed schemes are related to each other with some modification in term 

of improving in designing the distortion function. Overall the probabilities of 
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modification pixel values approximately are 0.26, 0.26, 0.25, and 0.24 per pixel for 

HUGO, HUGO BD, WOW, and UNIWARD respectively. 

Although our LSB-witness does not change the LSB but it cannot be categorised as 

perfect or optimal hiding scheme. This due to the fact that our scheme makes changes 

in the 2nd bit-plane. The following table shows the average amount of changes in the 

2nd bit plane after using the LSB-witness scheme with 5 different payloads embedded 

in the same 1000 images used in this chapter.   

Table 5.1: Change Rate using LSB-Witness 

Payload 0.2 0.4 0.6 0.8 1 

Change rate 0.099 0.2 0.3 0.4 0.5 

These results indicate the amount of change in the 2nd bit-plane is remaining nearly 0.5 

(i.e. 50% of pixel values are change) of the payload as normal LSB embedding scheme.   

In the rest of the thesis we shall develop a new hiding scheme that retains the same 

steganographic capabilities of the witness scheme but aiming to achieve higher 

invisibility and minimal amount of change to LSB plane. The new scheme will have 

the same capability in relation to hiding biometrics features without affecting the 

accuracy rates, before and after embedding.  In fact, the new scheme will be shown to 

improve the lower bound on optimality achieved by UNIWARD scheme and reduce 

overall probability of pixel values changes to range between 0.13 and 0.15 for fully 

payload capacity. This will lead to decrease the distortion (noise) that is occurred in the 

pixels of the cover image, increase the quality of the stego-image, and as a result 

increase the immunity of the stego-image against the visual attack and steganalysis 

methods in general, more especially statistical steganalysis techniques. It is important 

to note that the amount of changes will be dependent on the structure of the secret 

message, and hence one may define optimality lower bound for content-based 

steganography in the sense that the achieved lower bound may not remain if it is applied 

to secrets from different type of content. In fact, in our scheme the nature of the secret 

message means that the embedding has a great deal of freedom in the order of selected 

embedding positions.    
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5.2  A Content-based Steganography Scheme for Face Biometric 

In most LSB based schemes, the LSB bits are modified without looking to the structure 

of the secret message (i.e. the secret message is converted to bit stream and replaced 

with the LSB of the selected pixels of the cover image bit by bit). The change is 

invisible to human vision system but it might be visible to some steganalysis tools. 

Although, the review in chapter 2 has revealed a number of research publications 

proposing the hiding of biometric data in cover images, but none of them, including 

our LSB-witness, differentiate between hiding biometric features and hiding any other 

kinds of secret data (text, image, etc.).  To the best to our knowledge, there is no critical 

discussion in the literature about exploiting knowledge of secret content in guiding the 

hiding scheme. In addition most proposed steganographic schemes before are apply in 

the laboratory conditions, therefore there is need to move the steganography aspect 

from the laboratory into the real world (Ker, et al., 2013). In the rest of this chapter, we 

introduce a content-based hiding scheme for the purpose of hiding face biometric 

feature vectors, as an example which can be extended to many other types of secrets. 

Our approach will emphasise an important guiding principle for content-based 

steganography that “knowledge of the secret content structure must guide the selection 

of an appropriate cover images embedding positions to reduce changes”.  

The proposed scheme is concerned with embedding the face biometric LBP code 

pattern features defined in the wavelet. Since it is the secrets is related to the values of 

the various bins obtained from the blocks of the wavelet subbands, then the developed 

scheme apply equally to any secret data that are based on frequency calculations. Note 

that embedding the values associated with the LBPH bins; give us the freedom to 

choose positions for embedding without having to worry about the sequence 

appearance of the extracted features by the receiver or an attacker.  The following 

image (Figure 5.1) illustrates the exact matching procedure between secret message 4-

bit LBPH patterns and the cover block LSB bit strings. It is clear that there are similar 

patterns between secret message bits and patterns in image LSBs, but in different 

sequence positions.  

5.2.1 Embedding Process 

In order to reduce the amount of changes in the LSB plane, the proposed steganography 

scheme try to find the match pattern between the 4 or 8 bits of the secret message (face 

LBP code features) and the LSBs extracted from 4 or 8 pixels of the cover-image. The 
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main idea is to divide the cover image into blocks, the size of which is dependent on 

the blocking strategy of the face LBP code features and on the number of neighbours 

used to construct the LBP code (i.e. 4-neighbours or 8-neigbours), so that each block 

in the cover image must contain 4 or 8 pixels as many as the size of the face LBP code 

block. Each face LBP code block is embedded in one cover image block. The LSB-

plane of the cover block will be partitioned into 4-bit or 8-bit strings according to 

whether we use LBP code of size 4 or 8. The algorithm is based on first matching as 

many LBP codes with LSB bit-strings to be skipped and then embedding the rest of 

unmatched LBP codes of the secret block in the remain cover block LSB bit strings. 

For the unmatched codes we can follow two different strategies for embedding them: 

either use the usual LSB scheme to embed the remaining LBP code bits in the remain 

cover block LSB bit strings OR calculate the Hamming distances between the remain 

cover block LSB bit strings and the un-matched LBP codes and then sequentially 

replace the cover strings with the LBP codes that have hamming distance 1, 2, and so 

on until all is embedded. Hamming distance between two binary streams of equal 

length is the number of positions at which the corresponding bits are different. For 

example if we have two binary streams, a=01011010 and b=01110010, then the 

hamming distance between this two binary streams is 2, while for a=11011011 and 

b=01101111 the hamming distance is 4.  

 

Figure 5.1: 4-bits pattern matching 

Cover Image LSB Plane 
 

LBP Code Image  Face Image 

https://en.wikipedia.org/wiki/String_%28computer_science%29
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The embedding process shown in figure 5.2 (pseudo code) and figure 5.3 (flow chart) 

can be summarized as the following steps:  

1- Read face image (secret message) and divide it to N blocks. Here, N selected 

based on the sub-blocking process that used for face recognition purpose.  

2- Extract LBP code from each block using 4 or 8 neighbours (as explained in 

chapter 4) and save them to be ready for embedding.  

3- Read greyscale cover image and convert it to bit planes. 

4- Separate LSB bit-plane from other 7 bit planes. 

5- Convert each 4 or 8 bits from LSB bit-plane to one sub-region pattern. 

6- Select N blocks from LSB bit-plane. Size of each block based on face block 

size (i.e. each block of cover image must carry one block of face LBP code).  

7- For each block of the cover image LSB bit-plane do the following: 

a- Find exact match pattern between extracted LBP codes from step 2 with the 

sub-region patterns from step 5. 

b- Kept matched sub-region patterns in cover LSB bit-plane as it’s and exclude 

them from the next process. 

c- Repeat steps 7-a and 7-b until all face LBP codes inside selected block are 

checked.  

d- For remaining unmatched LBP code one of the two methods below applied: 

 M1: Search the remained sub-region patterns in the cover LSB bit-plane 

and make it as a remained face LBP codes using normal LSB embedding 

scheme.  

 M2: Search the remained sub-region patterns in the cover LSB bit-plane 

and make it as a remained face LBP codes first by selecting sub-region 

patterns that have minimum difference with the remained face LBP 

codes, second minimum differences selected and so on. (This step done 

by calculating hamming distance between remained sub-region patterns 

in the cover LSB bit-plane and remained face LBP codes).  

8- Return back the modified blocks to obtain modified LSB bit-plane. 

9- Concatenate modified LSB bit-plane with the other 7 bit planes to obtain final 

stego-image. 
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Figure 5.2: Embedding process Pseudo code 

Input: Cover Image (C), Face Image (F), Number of block (N), Pattern size (P=4 or P=8),  

             no.of bins=16 or 59 

Output: Stego-Image (S) 

     START 

READ Face Image (F) 

Divide Face Image (F) into N blocks. 

CALCULATE LBP code of the N blocks using P scheme neighbouring and save the 

histogram results in LBPH.   

READ Cover Image (C) 

Separate LSB plane from other bit-planes of C 

Divide LSB plane into M blocks (size of each block = P*size of Face block) 

              Convert each P bits from LSB bit-plane block into K sub-region pattern (CB) 

              Choose N blocks from M blocks  

              SET b=1                           // block counter 

WHILE b < N                 // for each block do the following 

SET R=0                  // counter for remain un-matched patterns 

FOR i=1 to K          // looking for exact matches 

     FOR j=1 to no.of bins 

         IF  LBPH(j) <> 0 THEN 

              IF CB(i) = LBP code of LBPH(j) THEN 

                   LBPH(j)= LBPH(j)-1 GOTO 10 

              ENDIF  

          ENDIF 

        ENDFOR  

      R=R+1                       // if exact match not found increment counter 

      Remain(R)=i             // to save index of remain un-matched patterns 

                     10 ENDFOR  

FOR i=1 to R                 // embed remain un-matched patterns  

      FOR j=1 to no.of bins 

            IF  LBPH(j) <> 0 THEN 

                                   CB(Remain(i)) = LBP code of LBPH(j) 

              LBPH(j)= LBPH(j)-1 GOTO 20 

                                 ENDIF  

                           ENDFOR    

                      20 ENDFOR  

                      b=b+1 

                     ENDWHILE 

      Return back the modified cover blocks (CB) to the LSB plane 

      Concatenate LSB plane with the other bit planes to obtain final stego-image (S) 

          END 
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Figure 5.3: Embedding Process flow chart 

Read Face Image 

Read Cover Image 

Convert it to bit planes 

Separate LSB bit-plane from other bit-

planes 

Convert each 4/8 bits of LSB bit-plane to 

one pattern 
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size) 

Divide it to n blocks 

Extract LBP code from each block 

using 4/8 neighbours scheme 

Kept matched patterns as it is 

Map same patterns 

For remaining unmatched patterns, search the 

remaining patterns in the cover image LSB bit-

plane and make it as face LBP patterns 

Stego-Image 

Return back n sub-blocks to obtain modified 
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5.2.2 Extraction Process  

Recovering the secret message (Face LBPH features) from the stego-image is required 

on the receiver side to be used for the recognition purpose.  Before the extraction 

process starts, the sender and receiver must agree on some parameters which are needed 

for the purpose of extraction. For example in our case sender and receiver must agree 

on the number of blocks, the size of each block, and the pattern size (4 or 8) to be used 

for extracting the LBP codes of the face image. These parameters would either be sent 

or embedded within the cover by the sender, and can be used as shared key between 

sender and receiver as a second layer of the security that guarantees exact extraction 

by authorized entities only. Figure 5.4 (pseudo code) and figure 5.5 (flow chart) shows 

the extraction process which will be held at the receiver side.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Extraction Process Pseudo code 

 

 

 

 

Input: Stego Image (S), Number of Blocks Used (N), Pattern size (P=4 or P=8), size of Face block  

Output: Face Feature vector (V) 

     START 

READ Stego Image (S) 

Separate LSB plane from other bit-planes of S 

Divide LSB plane into M blocks (size of each block = P*size of Face block) 

              Convert each P bits from LSB bit-plane block into K sub-region pattern (SB) 

              Choose N blocks from M blocks  

SET b=1 

WHILE b < N  

                      Convert each K into one gray value 

                      Calculate the histogram of the extracted gray values and save it as H (b) 

                      b=b+1 

  ENDWHILE 

Concatenate all the histograms (H) to obtain final face feature vector V  

Obtained V is used for the recognition purpose 

     END 
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Figure 5.5: Extraction Process Flow chart 

One can summarize the extraction process shown in figure 5.4 (pseudo code) and figure 

5.5 (flow chart) as following steps:  

1- Read received stego-image and convert it to bit planes. 

2- Separate LSB bit-plane from other 7 bit-planes. 

3- Partition each 4 or 8 bits from LSB bit-plane to one sub-region pattern. 

(pattern size 4 or 8 agreed/communicated between sender and receiver) 

4- Select n blocks from LSB bit-plane. Size of each block based on face block 

size (number of blocks (n) agreed/communicated between sender and 

receiver ) 

5- For each block of the stego-image LSB bit-plane do the following: 

Read stego-image 

Convert it to bit planes 

Separate LSB bit-plane from 

other 7 bit-planes 

Partition each 4 or 8 bits from 

LSB bit-plane to one sub - region  

Select n blocks 

For each block: Convert each 

sub-region pattern to one gray 

value then calculate the 

histogram of extracted gray 

values from each sub-blocks 

Concatenate all histograms that 

extracted from blocks to obtain 

final face feature vector 

Extracted face feature vector used 

for recognition purpose 
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a- Convert each sub-region pattern to one gray value. 

b- Calculate the histogram of the extracted gray values. 

6- Concatenate all the histograms that extracted from all blocks to obtain final 

face feature vector.  

7- The extracted face feature vector used for recognition purpose. 

5.2.3 Block Mapping  

Due to differences between cover image size and the size of the original face image, 

there may be a need to have a policy on mapping the secret blocks to the cover blocks.  

The selected mapping must be communicated to the receiver. For simplicity, let n = 

number of Face feature blocks and m = number of cover blocks.   Given any LBPH 

feature block S, we shall that a block C from the LSB-plane of is optimally matched 

with S, if number of matches between the LBP codes and the LSB-plane strings is 

maximal among all cover blocks. In terms of the proposed steganographic schemes, 

block mapping need to be considered in two different scenarios;  

1- First scenario  (n < m) In this case not all cover image blocks are needed for 

embedding purpose, and there are (
𝑚
𝑛
)  different block mapping that could be used. 

So, the selected mapping could be agreed in advance or done in the order of optimal 

pairing between the two sets of block. Figure 5.6 shows an example of selecting 9 

blocks out of 30 block in cover image. 

2- Second scenario (n=m) Here the mapping could be the trivial sequential mapping, 

or for more security we can select the blocks in the order of optimal pairing between 

the two sets of block.   

 

Figure 5.6: Block Selection Process (n<m) 
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5.3 Experimental Setup and Discussion 

To test the proposed embedding scheme we extract LBP code using 8-neighbours or 4-

neighbours separately, see Chapter 4. Each LBP code is represented by 8-bits or 4-bits, 

and matched or embedded to/in 8-bit or 4-bit strings from a block of the LSB-plane of 

the cover image. For simplicity, we name theses matching as 8 or 4 pattern matching.  

To evaluate the performance of the proposed steganography scheme, we extracted the 

4 or 8 LBP patterns for all the face images in the Yale face database each representing 

a secret message, details of the face database can be found in section (2.1.4). For each 

face image we embedded the corresponding secret in 1000 greyscale cover images 

gathered from the BOSSbase database ver. 1.01 (Bas, et al., 2011). Images of the 

BOSSbase are taken by eight different cameras, resized and uncompressed. These 

images are all of size 512 × 512 pixel resolution, but have different properties regarding 

textures and smooth areas. Figure 5.7 shows some of used image samples.  

    

    

    

Figure 5.7: Samples of Cover Images Used from BOSSbase Database 
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Before we discuss results, we need to alert the reader to the fact that for the original 

purpose of embedding a face LBP code feature vector cannot provide a secret of 

sufficient size for full capacity embedding unless we choose very small cover images.   

For example, for face images in the Yale database even if we embed all LBP codes 

extracted in the spatial domain we need only around 11% or 22% of the used cover size 

for N4 or N8 scheme respectively. Therefore, for the purpose of evaluating performance 

of our proposed embedding schemes we embed multiple LBP code feature vectors 

obtained from different face images of the same person but with different expressions. 

Therefore, the results of the experiments reflect the use of the 5 different payload 

percentages (0.2285, 0.45, 0.6855, 0.9141, and 0.9902) by embedding single or 

multiple face feature vectors into the 512x512 cover images. For simplicity we refer to 

these percentages using A, B, C, D, and E, respectively. Numbers of patterns are 

different based on the payload capacity as well as the LBP pattern size (4 or 8). Table 

5.2 below shows exact number of patterns that are to be embedded for each payload 

using different pattern size.  

Table 5.2: Pattern numbers for each payload 

Payload 8-bit pattern 4-bit pattern 

A 7488 14976 

B 14976 29952 

C 22464 44928 

D 29952 59904 

E 32448 64896 

In what follows, we test the performance of 3 versions of the scheme. These versions 

differ in the way we embed the non-matching 4 or 8 unmatched (UM) patterns. Also in 

the first two versions, the block mapping is not considered but the last version uses the 

special mapping (section 5.2.3).   Therefore, in all cases we skip the first set of LSBs 

extracted from 4 or 8 pixels of the cover-image that matched the 4 or 8 bits of the LBP 

code secret features in each block. Thus we only need to discuss the way the set UM 

of unmatched 4 or 8 LBP code secret patterns are embedded in the rest of the block. 
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5.3.1 Method 1 

In each block, for the set UM of unmatched patterns, directly normal LSB embedding 

applied without looking at the Hamming distances between the individual LSB- pattern 

and the LBP code pattern. Table 5.3 and 5.4 (or figures 5.8 and 5.9) below, shows the 

number of exact matched patterns as well as the number of unmatched patterns for all 

five different payload capacities. The unmatched patterns are arranged in columns 

according to the Hamming distances, post embedding, between secret patterns and 

cover LSB patterns in case of length of each pattern is 8-bits and 4-bit patterns, 

respectively. In both cases we calculate ratio of match and ratio of change after 

embedding.  All results are presented here is the average results obtained by using 1000 

greyscale images as cover. 

Table 5.3: M1_8-bits, Number of matched and unmatched patterns  

Payload 
Exact 
match 

1-bit 
diff 

2-bits 
diff 

3-bits 
diff 

4-bits 
diff 

5-bits 
diff 

6-bits 
diff 

7-bits 
diff 

8-bits 
diff 

R. of 
match 

R. of 
change 

A 2510.5 144.8 509.8 1107.0 1486.8 1111.5 502.2 112.3 3.2 0.669 0.331 

B 4378.2 301.2 1090.1 2318.4 3065.3 2308.9 1047.8 225.1 7.0 0.651 0.349 

C 6485.8 447.1 1661.9 3592.0 4735.4 3592.0 1608.5 334.8 6.4 0.647 0.353 

D 8734.6 587.5 2205.9 4769.0 6290.9 4775.2 2139.9 441.5 7.4 0.648 0.352 

E 9368.3 643.7 2400.4 5186.6 6823.8 5192.7 2338.5 485.8 8.3 0.647 0.353 
 

 

Figure 5.8: M1_8-bits, Number of matched and unmatched patterns 
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Table 5.4: M1_4-bits, Number of matched and unmatched patterns  

Payload 
Exact 
match 

1-bit 
diff 

2-bit 
 diff 

3-bit 
diff 

4-bit 
diff 

R. of 
match 

R. of 
change 

A 9692.64 1419.21 2964.96 869.16 30.03 0.832 0.168 

B 19188.69 2888.91 5799.77 2004.56 70.08 0.827 0.173 

C 28410.39 4606.89 8605.28 3198.69 106.76 0.823 0.177 

D 38481.65 5854.16 11019.31 4409.46 139.42 0.826 0.174 

E 41958.81 6240.48 11792.38 4756.42 147.91 0.828 0.172 

 

 

 

Figure 5.9: M1_4-bits, Number of matched and unmatched patterns 
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have exact matches with the cover patterns and after applying the normal LSB 
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matches of short length patterns is higher than for long length patterns. Hence we 

recommend to using the LBP N4 code.  

5.3.2 Method 2  

This method is based on a different approach to embedding than the usual LSB for the 

UM set, with the aim of reducing the amount of changes beyond what was achieved by 

method 1. In each block, for the set UM of unmatched patterns we search for unused 

LSB patterns that have Hamming distances of 1 with the LBP patterns, and for each 

such pattern we simply replace the 8 or 4 LSB pattern with that of the LBP patterns, 

and when all such LBP patterns are embedded we repeat the process by searching and 

replacing those remaining LSB patterns with the LBP patterns at hamming distance 2, 

and so on. Table 5.5 and 5.6 (or figures 5.10 and 5.11) below, shows the number of 

matched patterns as well as the number of unmatched patterns for all five different 

payloads. The unmatched patterns are arranged according to the how many bits are 

different between secret patterns and cover LSB patterns in case of length of each 

pattern is 8-bits and 4-bit patterns, respectively. In both cases we calculate ratio of 

match and ratio of change after embedding.  All results are average results from using 

1000 greyscale cover images. Again, the N4 patterns yields a better matching ratio than 

the N8 patterns. 

Table 5.5: M2_8-bits, Number of matched and unmatched patterns                                                                            

Payload 
Exact 
match 

1-bit 
diff 

2-bits 
diff 

3-bits 
diff 

4-bits 
diff 

5-bits 
diff 

6-bits 
diff 

7-bits 
diff 

8-bits 
diff 

R. of 
match 

R. of 
change 

A 2510.5 2292.0 1592.0 794.9 269.5 24.0 4.0 1.4 0.5 0.848 0.152 

B 4378.2 4479.9 3314.7 1731.0 707.9 122.2 5.6 1.9 0.6 0.832 0.168 

C 6485.8 7078.5 5145.5 2525.9 986.6 229.2 10.2 1.6 0.5 0.832 0.168 

D 8734.6 9538.4 6696.9 3367.8 1304.0 295.5 12.5 1.6 0.5 0.834 0.166 

E 9368.3 10230.6 7299.1 3672.2 1472.5 388.8 14.2 1.7 0.6 0.831 0.169 
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Figure 5.10: M2_8-bits, Number of matched and unmatched patterns 

 

Table 5.6: M2_4-bits, Number of matched and unmatched patterns                                                                                    

Payload 
Exact 
match 

1-bit 
 diff 

2-bit  
diff 
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diff 
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diff 

R. of 
match 

R. of 
change 

A 9692.64 2427.57 2625.53 209.48 20.79 0.860 0.140 

B 19188.69 4927.61 5073.36 644.16 118.18 0.854 0.146 

C 28410.39 7882.02 7504.68 1002.49 128.43 0.853 0.147 

D 38481.65 10351.06 9535.04 1360.99 175.26 0.857 0.143 

E 41958.81 11037.73 10245.10 1473.18 181.19 0.859 0.141 

 

 

Figure 5.11: M2_4-bits, Number of matched and unmatched patterns 
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If we compare results obtained using method 1 and method 2 we notice a big 

enhancement regarding ratio of matching bits especially for using 8-bits patterns. 

Compared to results of method 1, the change ratio is reduced for the N8 patterns to 

between 15.2% and 16.9%, and for the N4 patterns to 14% to 14.7%. This success in 

improving the ratio of change in LSB plane, can be seen as a result of the change in 

embedding strategy between the two methods for embedding the UM set of patterns. 

Moreover, the distribution of  the percentage of the UM set of unmatched secret 

patterns have changed into a negative exponential distribution  over the hamming 

distances between them and the remaining patterns of the LSB-plane which is why we 

get the overall ratio of change decreases.  

5.3.3 Method 3  

Although the last method led to significant improvement regarding decreasing the ratio 

of change which contributes to smaller change and higher security, the choice of the 

blocks mapping was not given any serious consideration and the results are based on 

going for mapping sequentially according to their spatial positions. Noting that using a 

random mapping certainly improves the security of embedding significantly. In this 

method, the same procedure of method 2 is used, but we adopt a special block mapping 

that could possibly improve the change ratios as well as security. Instead of random 

mapping, we pair each face LBPH patterns block with the LSB-planes block that 

produces the best matching ratio. Admittedly this would increase the time complexity 

of the embedding in comparison to the sequential or the random (but unguided) 

mapping. Assume that we have 𝑚 LSB cover block and 𝑛 secret LBPH patterns blocks. 

Figure (5.12) shows the pseudo code of the mapping block algorithm. In this method 

the sender needs to inform the receiver the block sequence numbers to be used for 

extraction process (i.e. to guarantee extracting secret message in the right blocks).  

Table 5.7 and figure 5.13 shows the number of matched patterns and unmatched 

patterns for all five different payloads. The unmatched patterns are arranged according 

to the hamming distances between LBPH patterns and their corresponding cover LSB 

patterns in case of using N8 pattern, while table 5.8 and figure 5.14 shows the same 

analysis but for N4 patterns. In both cases we calculate ratio of match and ratio of 

change after embedding.  Again all results are the average results of using 1000 

greyscale images as cover.  
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Figure 5.12: Mapping best blocks pseudocode 

Table 5.7: M3_8-bits, Number of matched and unmatched patterns                                                                          

Payload 
Exact 
match 

1-bit 
 diff 

2-bits 
diff 

3-bits 
diff 

4-bits 
diff 

5-bits 
diff 

6-bits 
diff 

7-bits 
diff 

8-bits 
diff 

R. of 
match 

R. of 
change 

A 2523.8 2317.5 1599.3 772.8 250.7 19.7 2.4 1.4 0.4 0.850 0.150 

B 4703.2 4684.0 3349.0 1548.7 544.5 134.7 7.7 3.1 1.1 0.842 0.158 

C 6557.2 7181.0 5157.8 2462.7 904.7 190.6 6.5 2.7 1.0 0.836 0.164 

D 8856.1 9705.9 6739.9 3247.6 1161.9 228.0 8.1 3.2 1.2 0.838 0.162 

E 9503.1 10433.3 7333.5 3526.4 1333.1 304.7 8.8 3.9 1.3 0.836 0.164 

 

 

Figure 5.13: M3_8-bits, Number of matched and unmatched patterns 
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LET Match_Ratio be an nxm matrix of 0’s 

FOR i=1 to n 

     FOR j=1 to m 

          Embed the ith LBPH block, in the jth LSB cover image block, 

                   Match_Ratio(i,j)=(No of match pixels after embedding)/block size  

     ENDFOR 

ENDFOR 

FOR k=1 to n 

     Let r and p be the index (i,j) of maximum value in Match_Ratio matrix 

     Embed the rth LBPH block in the pth LSB cover image block, 

     FOR d=1 to m 

            Match_Ratio(r,d) = 0 

     ENDFOR  

     FOR c=1 to n 

           Match_Ratio(c,p) = 0 

     ENDFOR 

ENDFOR 
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   Table 5.8: M3_4-bits, Number of matched and unmatched patterns   

Payload 
Exact 
match 

1-bit 
 diff 

2-bit  
diff 

3-bit 
diff 

4-bit 
diff 

R. of 
match 

R. of 
change 

A 9751.44 2449.81 2612.83 153.69 8.24 0.864 0.136 

B 19433.71 5004.54 5053.80 430.15 29.79 0.862 0.138 

C 28726.27 7923.78 7574.53 670.34 33.08 0.860 0.140 

D 38917.39 10588.50 9453.93 907.08 37.10 0.865 0.135 

E 42497.90 11326.73 10081.44 955.24 34.70 0.867 0.133 

 

 

Figure 5.14: M3_4-bits, Number of matched and unmatched patterns     

Like method 2, in this method the distribution of the percentage of the UM set of 

unmatched secret patterns remain in a negative exponential distribution over the 

hamming distances between secret face LBP blocks and the cover LSB blocks. 

Moreover, comparing results obtained using method 3 and method 2 we notice that 

overall a marginal around 0.005 for N8 and 0.007 for N4 enhancement was achieved in 

terms of matching ratio. However, the blocks mapping add an extra layer of the 

security. The increase in the level of security will be even more significant when the 

number of cover blocks is greater than the number of secret blocks. 

5.4 Why Not Use Other Hiding Scheme for LBPH Patterns?  

Reducing the probability of changes during embedding process at a given embedding 

payload leads to enhanced security. Designers of existing steganographic schemes have 

endeavoured to improve security and invisibility of their schemes but tested for general 

random secrets.   For example, in Mielikainen (Mielikainen, 2006) modified the well-
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known least significant bit matching (LSBM) and demonstrated improved security by 

reducing change rate from 0.5 to 0.375. The question arises as to whether, hiding face 

LBPH patterns can lead to further improvement and outperform our content-based 

scheme. This section is an attempt to answer this question by comparing the 

performance of our content-based scheme in terms of change rate with various other 

relevant general schemes to hide face LBPH patterns. The comparisons here will be 

made between the ratios of change when the face LBPH are embedded in cover images 

using the traditional LSB (TLSB), LSBMR, and S-UNIWARD (see   

http://dde.binghamton.edu/download/stego_algorithms for the S-UNIWARD code).  

We setup a set of new experiments, by (1) extracting LBPH patterns (both N4 or N8) 

from each face image in the Yale face database to be used as a secret message, (2) 

embedding each secret, using our scheme as well as the above schemes, in the same 

1000 cover images obtained from the BOSSbase database that we used above, and (3) 

calculating change rate between obtained stego-image and cover image. In these 

experiments we use the same five different payloads that were used in section 5.3.  

Table 5.9 and figure 5.15, displays the change rates achieved by each version of 3 

implementation methods of our schemes with the 2 different pattern length (8-bits and 

4-bits) followed by the rates for each of the 3 other schemes. All results showed here 

are average values of using 1000 greyscale cover images.  

These results demonstrate that none of the existing schemes benefited from the 

structure of the face LBPH secrets in reducing the pixel change ratio below their known 

achieved rates for general secrets. Moreover all our schemes outperformed the TLSB 

and LSBMR schemes. The S-UNIWARD, which outperforms the existing TLSB and 

the LSBMR, only outperformed our M1 8-bits scheme which we attribute to the fact 

that M1 8-bits uses traditional LSB for embedding the unmatched patterns which total 

about 2/3 of the LSB bit-plane patterns and more than 60% of these patterns had 

hamming distances of 4 or more. In fact, the M1 8-bits scheme only marginally 

improves the ratio change in comparison to the LSBMR, perhaps for the same reason 

in the last statement. We notice that our two proposed schemes with 4-bit length 

patterns (M2 4-bits, and M3 4-bits) out perform all other schemes, the differences 

between methods with others become clearer with high payloads, while our other three 

proposed (M1 4-bits, M2 8-bits, and M3 8-bits) are comparable.  
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Table 5.9: Change rate with different payloads 

Payload 
M1 

 8-bit 
M1 

 4-bit 
M2 

 8-bit 
M2  

4-bit 
M3  

8-bit 
M3  

4-bit TLSB 

LSBMR 
(Mielikainen, 

2006) 

S-UNIWARD 
(Holub, et al., 

2014) 

A 0.0756 0.0384 0.0347 0.0320 0.0342 0.0312 0.1143 0.0857 0.0386 

B 0.1570 0.0793 0.0755 0.0667 0.0723 0.0630 0.2250 0.1687 0.0887 

C 0.2422 0.1215 0.1149 0.1008 0.1126 0.0962 0.3428 0.2557 0.1483 

D 0.3217 0.1590 0.1519 0.1305 0.1480 0.1235 0.4571 0.3363 0.2191 

E 0.3500 0.1705 0.1670 0.1399 0.1626 0.1316 0.4951 0.3596 0.2458 

 

 

Figure 5.15: Change rate with different payloads 

5.5 Conclusions 

In this chapter we focused our investigations on the more recent recommendations by 

leading researcher in the steganography community on the need to moving the 

steganography aspect from the laboratory condition (theory) into the real world 

applications. Accordingly we investigated the optimality concept of steganographic 

schemes which is linked to minimizing distortion of the cover image (consequently 

maximizing invisibility of embedded secrets) by reducing the change rate while 

maintain the required payload. Taking into account our specific aim of embedding 

biometric feature vectors in images for secure remote authentication, we considered the 

optimality concept in the specific context of content-based steganography by exploiting 

the knowledge of the structure of the secret message as well as the application 

objectives in designing optimally efficient hiding schemes. More specifically we 
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designed and tested the optimality of a content-based hiding scheme that aims to embed 

a human face LBPH patterns into the LSB bit-plane of a natural image. The proposed 

block based scheme attempts to minimize changes in each image block by aligning the 

4 or 8 bits face LBPH patterns with the LSB patterns extracted from 4 or 8 pixels of 

the cover-image according to ascending order of search hamming distances between 

the pairs patterns. This “best match” alignment strategy ensures that the changes are 

minimal for each pair of face and cover images. The embedding first skips all 4 or 8 

pixel patterns whose LSBs exactly match the LBPH patterns, then embed the LBPH 

codes of the set remaining codes (UM) sequentially into the remaining cover block 

LSB bit strings by embedding the subsets of UM codes that have hamming distance 1 

with their aligned LSB patterns followed by those of Hamming distance 2, and so on 

until all is embedded. The fact that face recognition is based on histogram dissimilarity 

removes the need for remembering order of pixels into which the secret was embedded.  

We analysed and evaluated the proposed schemes for calculating change rate for 

different payloads by embedding LBPH codes for each of the face images in a 

sufficiently large benchmark face images database into a 1000 cover images of 

different texture and captured with 8 different cameras.  The computed change ratios 

for this experiment have demonstrated the optimality of the proposed scheme in terms 

of change ratios. These experiments revealed that significant percentage of matched 

patterns have been found between the various cover images and the secret messages 

but in different positions. In fact, on average 83% to 85% of LSB bits match the N8 

patterns (i.e. the probability of changing the cover LSB is 15% to 17%), while 85% to 

87 % of LSB bits matched the N4 patterns (i.e. the probability of changing the cover 

LSB is 13% to 15% only). Moreover, in terms of pixel value change rate after hiding, 

this example of a content-based steganography scheme improves the lower bound on 

optimality ratio of 24% achieved by the state of the art scheme named S-UNIWARD.   

Furthermore, we have demonstrated that using existing embedding schemes in hiding 

LBPH patterns are all outperformed significantly by most of our scheme in terms of 

change ratios.  This is another incentive to recommend the use of content-based 

steganography.   

The proposed content-based steganography scheme differentiates between hiding 

biometric features and hiding any other secret message (text, image, etc). Therefore, 

we do not make any claim on the optimality of our scheme except as a content-based 
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embedding. In fact we cannot guarantee the achievement of such excellent lower 

bounds of change ratio for other types of content-based hiding schemes.   

In the next chapter, we shall complement this chapter’s work by investigating the 

robustness of our content-based scheme against existing targeted as well as Universal 

steganalysis tools.  
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Chapter 6  

Robustness of the Content-Based 

Steganography 

This chapter continue the investigations into the performance testing of the Content-

Based Steganography scheme proposed, in the previous chapter, for embedding face 

LBPH patterns. Here we are primarily concerned with robustness against steganalysis 

attacks by targeted as well as universal tools. In particular we shall demonstrate in 

section 6.1 that our schemes are robust against the 3 most commonly used targeted 

steganalysers (DIH, RWS, and the calibrated HCF-COM). Expectedly, the SRM does 

detect the present of our schemes payloads. We shall demonstrate the strength of our 

scheme by comparing the robustness with 3 existing steganographic schemes when the 

face LBP features are embedded.  In section 6.2 we shall modify our scheme by 

embedding in selected position but not exactly as done by S-UNIWARD scheme. This 

modification will be shown to improve performance against the SRM. In section 6.3 

we will discuss the stego-image quality of our content-based embedding.  

6.1 Strength of Proposed Content-based Steganographic Scheme  

We already established that our content-based embedding scheme achieves optimal 

lower bound of image pixel value change ratio compared to the state of art schemes. 

Here, we will further discuss the strength of the scheme in terms of robustness against 

various steganalysers.   

The statistical changes that occur in the structure of the cover image after embedding 

certain amount of secret message may become detectable by steganalysis tools that 

designed to locate the statistical changes. Our content-based embedding scheme is an 

LSB-based, therefore we first test its robustness against two well-known targeted 

steganalysis: the different image histogram (DIH) (Zhang & Ping, 2003) and the 

revisited weighted stego-image steganalysis (RWS) (Ker & Böhme, 2008). Although 

our content-based embedding scheme is not based on the LSBM idea but for the 

purpose of comparison we test its robustness against the calibrated HCF-COM (Ker, 
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2005) tool that designed specifically for this purpose. Moreover, we shall also test the 

robustness of our scheme against the universal steganalysis tool named spatial rich 

models (SRM) that was developed by Jessica Fridrich et al. (Fridrich & Kodovský, 

2012), to detect hiding secrets in the spatial or JPEG domain. 

The robustness testing of our scheme against above mentioned steganalysis tools will 

be conducted after embedding the two LBPH pattern versions (i.e. N4 and N8). For the 

experimental testing we extract both LBPH patterns from each face image in the Yale 

face database, and embed separately in the same 1000 cover images obtained from the 

BOSSbase database used in previous chapter. In these experiments we use four 

different payload capacities 0.1, 0.3, 0.5 and 1. In all cases we use the content-based 

method 2 scheme and we compare its performance with three different embedding 

schemes TLSB, LSBM, and S-UNIWARD. In the case of theses 3 benchmark schemes 

we also embed the same LBPH patterns separately. In fact we are not include the two 

embedding schemes (LSBM and S-UNIWARD) in the first two steganalysis schemes 

(DIH and RWS), the reason is that mentioned embedding schemes are based on LSBM 

embedding strategy, while DIH and RWS steganalysis tools are just designed to detect 

embedding schemes based on traditional LSB embedding. Therefore robustness of the 

two embedding schemes (LSBM and S-UNIWARD) compared with our proposed 

embedding scheme are tested against other two steganalysis tools HCF-COM and 

SRM. The following subsections show the results obtained after applying 

corresponding steganalysis tool. In each case we shall briefly review the steganalysis 

tool.   

6.1.1 Robustness against Difference Image Histogram (DIH)  

Tao Zhang and Xijian Ping (Zhang & Ping, 2003), proposed the use of the difference 

image histogram (DIH) method as a classifier for distinguishing between stego-images 

and cover images. The DIH is designed to detect stego-images obtained by LSB 

embedding schemes. It uses the measure of weak correlation between the LSB plane 

and other bit-planes of the image as a result of randomness of the LSB in natural 

images. The difference image is defined as:  

 𝐷(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) −  𝐼(𝑖, 𝑗 + 1) (6.1) 

Where 𝐼(𝑖, 𝑗) denotes the value of the image 𝐼 at the position(𝑖, 𝑗). In general the 

coefficient 𝐷(𝑖, 𝑗) of the difference image 𝐷 follows a generalized Gaussian 

distribution. T.Zhang and X.Ping found that there exists differences between the 
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difference image histograms (DIH) for normal cover image and images obtained after 

flipping some of the bits of LSB-plane as a result of embedding a secret in a natural 

image LSB. This fact is utilized to realize the steganalysis technique. Moreover, the 

scheme models a function to estimate the ratio of embedding as well, i.e. DIH technique 

not only decides whether the images are stego or not but also obtain embedded message 

ratio. The DIH tool can be summarized as follows: 

Given a test image 𝐼, the difference image histogram of 𝐼 is represented by ℎ𝑖. After 

flipping all bits of the LSB bits of 𝐼, it re-calculate the difference image histogram 𝑓𝑖, 

and create another image by setting all the LSB bits of 𝐼 to zero and let 𝑔𝑖 be the DIH 

of the new image. Based on the relationship between these three differences images 

histograms, to decide whether the tested image is cover or it is stego. The relationships 

are defined by a translation scheme between the 3 histograms (ℎ𝑖, 𝑓𝑖 , and 𝑔𝑖 ) as 

follows:  

 ℎ2𝑖 = 𝑎2𝑖,2𝑖𝑔2𝑖, (6.2) 

 ℎ2𝑖+1 = 𝑎2𝑖,2𝑖+1𝑔2𝑖 + 𝑎2(𝑖+1),2𝑖+1𝑔2(𝑖+1), (6.3) 

 𝑓2𝑖+1 = 𝑎2𝑖,2𝑖−1𝑔2𝑖 + 𝑎2(𝑖+1),2(𝑖+1)+1𝑔2(𝑖+1). (6.4) 

   

Where, 𝑎2𝑖,2𝑖+𝑗 defined as translation coefficient from the histogram  𝑔𝑖 to  ℎ𝑖 , and 0 <

𝑎2𝑖,2𝑖+𝑗 < 1, for = 0, 1, −1 , otherwise 𝑎2𝑖,2𝑖+𝑗 = 0 , the translation coefficients are 

assumed to satisfy:  

 𝑎2𝑖,2𝑖−1 + 𝑎2𝑖,2𝑖 +𝑎2𝑖,2𝑖+1) = 1 (6.5) 

From the symmetry about i=0 of the difference histogram, we get 

𝑎0,1 ≅ 𝑎0,−1 . Combining with equations from 6.2 to 6.5, we obtain iterative formula 

for calculating translation coefficients for all positive i as follows:  

 𝑎0,1 = 𝑎0,−1 = 
𝑔0 − ℎ0
2𝑔0

 , (6.6) 

 𝑎2𝑖,2𝑖 =  
ℎ2𝑖
𝑔2𝑖
 , (6.7) 

 𝑎2𝑖,2𝑖−1 =  
ℎ2𝑖−1 − 𝑎2(𝑖−1),2𝑖−1𝑔2(𝑖−1)

𝑔2𝑖
 , (6.8) 

 𝑎2𝑖,2𝑖+1 = 1 − 𝑎2𝑖,2𝑖 − 𝑎2𝑖,2𝑖−1  . (6.9) 
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The tool then calculates: 

𝛼𝑖 = (𝑎2(𝑖+1),2𝑖+1)/(𝑎2𝑖,2𝑖+1), 𝛽𝑖 = (𝑎2(𝑖+1),2(𝑖+1)+1)/(𝑎2𝑖,2𝑖−1), 𝛾𝑖 = 𝑔2𝑖/𝑔2(𝑖+1. 

It has been shown experimentally that for a given 𝑖 the value of 𝛼𝑖 decreases with the 

increased secret length, and when the embedding ratio 𝑝 increases to 100%, 𝛼𝑖 

approaches 1. The statistical hypothesis of the DIH tool is that for a natural image 𝛼𝑖 =

𝛾𝑖.  

Otherwise, the embedding ratio 𝑝 is determined by the root of smallest absolute value 

of a quadratic equation in 𝑝 whose coefficients are dependent on 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖. For 

more details see (Zhang & Ping, 2003).  

Figure 6.1 shows the results of applying DIH steganalysis tool on our embedding 

schemes as well as LSB embedding scheme. The experiments conducted as follows: 

after LBPH patterns (N4 or N8) are extracted from all faces in the Yale database, the 

extracted LBPH patterns then embedded using our two proposed embedding (N4 or 

N8) matching scheme into the 1000 images from the BOSSbase database used in 

previous chapter. For LSB embedding, we extracted features from the Yale database 

using N8 LBP scheme and embed the extracted features bit by bit using LSB 

embedding scheme. Furthermore, to see the robustness of the proposed embedding 

schemes against DIH steganalysis tool in different payload capacities, we use four 

different payload capacities 0.1, 0.3, 0.5 and 1. The figure displays on the y-axis the 

estimates of embedding ratio against different payload capacities (x-axis), proposed 

schemes compared with TLSB embedding scheme. Comparison with other schemes 

(LSBM and S-UNIWARD) is not relevant because DIH only detects LSB based 

schemes.  We also tested the original cover image with the steganalysis to see how our 

embedding scheme far from original covers images.  
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Figure 6.1: Estimation of embedding ratio using DIH 

The results demonstrate the robustness of both LBPH pattern lengths (4 and 8) against 

the DIH steganalysis, because the estimated embedding ratio (especially for the N8) is 

not much different than that of natural images until reaching full capacity embedding. 

Even at the 100% embedding ratio, for our proposed steganographic schemes, the DIH 

estimate the embedding ratio to be 0.25 and 0.31 for 8-bits and 4-bits patterns, 

respectively. Note that for natural cover images DIH wrongly estimates the ratio to 

0.15. While for TLSB embedding the DIH steganalysis very accurate estimate 

embedding ratio even for a very small payloads.  From the results we also conclude 

that using 8-bits pattern have better robustness against DIH steganalysis tool.  

6.1.2 Robustness against the Revisiting Weighted Steganalysis (RWS)  

The RWS steganalysis tool, proposed by Andrew Ker (Ker & Böhme, 2008), is an 

enhanced version of the scheme that originally proposed by Fridrich and Goljan’s 

(Fridrich & Goljan, 2004). Currently RWS is reported to be one of the best structural 

steganalysis and most sensitive targeted steganalysis of LSB based steganography since 

it does not require any training phase and keeps the detection accuracy high (Kodovský 

& Fridrich, 2013). Like the DIH, RWS not only decides whether the image is cover or 

stego but also estimate the length of the embedded message by giving the percentage 

of pixels which may hold data. For the above up mentioned points we choose RWS to 

see the robustness of our content-based scheme. The technique considers that a 
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proportion of M/2N of the cover pixels are flipped when embedding a payload of 

length M bits, and N is the cover image size. The technique work as follows:  

1- Given a test image 𝐼 = (𝑖1, 𝑖2, 𝑖3, … . . , 𝑖𝑁), and let   𝐼 = ( 𝑖1, 𝑖2, 𝑖3, … . . , 𝑖𝑁) be the 

image obtained from 𝐼 after flipping the LSB bits 

2- In steganalysis we do not have access to the original cover image, in RWS method 

the original cover �̂� will be predicted by filtering test image 𝐼. Filtering 𝐼 done 

using a filter that minimize difference between 𝐼 and �̂�. The filters are Gaussian-

like weighted linear such as:  
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The weight values that minimize distance between stego and cover image will 

improves the detector accuracy. In the proposed scheme the weights assigned 

experimentally as: 

 𝑤𝑗 =
1

5 + 𝜎𝑗
2 (6.10) 

Where, 𝜎𝑗
2 is the local variance of the stego pixels neighboring in 𝑖𝑗. 

To quantify flat pixel bias correction, authors imagine that it is the stego image is 

fixed and the cover which was generated by randomly flipping proportion p/2 of 

LSBs. Then the expected flat pixel bias correction is computed using following 

formula: 

 𝑟 = −𝑝 ∑𝑤𝑗(𝑖𝑗 − 𝑖𝑗)

𝑗=𝑁

𝑗=1

(𝐹 ∗ (𝑖 − 𝑖))𝑗 (6.11) 

 

Finally the proportionate payload length 𝑝 = M/N is estimated by calculating the 

following formula:  
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 �̂� = 𝑟 + 2𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑤𝑗(𝑖𝑗
𝛼 − �̂�𝑗)

2 = 𝑟 +
2

𝑁
 ∑𝑤𝑗

𝑗=𝑁

𝑗=1

(𝑖𝑗 − �̂�𝑗)(𝑖𝑗 − 𝑖𝑗)

𝑗=𝑁

𝑗=1

 (6.12) 

To test robustness of our embedding schemes for the different LBPH patterns (N4 or 

N8) against RWS steganalysis tool, we repeat the same experiment conducted to test 

DIH steganalysis tool by first extracting LBPH patterns from all faces in the Yale 

database, then the extracted LBPH patterns are embedded using our two proposed 

embedding (N4 or N8) matching scheme into the 1000 images from the BOSSbase 

database. Again for LSB embedding, we extracted features from the Yale database 

using N8 LBP scheme and embed the extracted features bit by bit using LSB 

embedding scheme. Moreover, we use four different payload capacities 0.1, 0.3, 0.5 

and 1 to test the robustness. Figure 6.2 show estimation of change rate (y-axis) using 

RWS steganalysis of our schemes compared with TLSB as well as the natural cover 

images in four different payload capacities (x-axis). Again comparison with other 

schemes (LSBM and S-UNIWARD) is not relevant because RWS only detects LSB 

based schemes.   

 

Figure 6.2: Estimation of change rate using RWS steganalysis 

The results demonstrate the robustness of both LBPH pattern lengths (4 and 8) against 

the RWS steganalysis, because the estimated change ratio (especially for the N8) is very 

near to that of natural images until reaching full capacity embedding. In fact the pattern 

of the results is similar to those obtained from the DIH testing. Table 6.1 below, shows 
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the mean and standard deviations of obtained estimated change ratio for our content-

based scheme with 8-bits pattern as well as the original cover images.   

Table 6.1: Mean and standard deviation of content-based with N8 

Payload 0 (cover) 0.1 0.3 0.5 1 

Mean 0.002 0.007 0.017 0.021 0.027 

Std. 0.007 0.009 0.013 0.013 0.010 

Consideration of the standard deviation of the estimated ratios for each payload, reveal 

that the RWS response for large number of images could be missed by RWS as being 

a natural image. Note that in all cases the standard deviation values are relative high 

compared to the corresponding means. In fact, these statistics indicate that there 

noticeable number of stego images with 0.3 payload that are would return values within 

½ standard deviation of the mean of the natural images. Even for the 100% embedding 

ratio, for our proposed steganographic schemes, the RWS estimate the change ratio to 

be 0.027 (i.e. estimated embedding payload is about 5.4%) and 0.107 (i.e. estimated 

embedding payload is about 21.4%) for 8-bits and 4-bits patterns, respectively. On the 

other hand, for TLSB embedding the RWS steganalysis estimate correctly the change 

ratio even for a very small payload.     

6.1.3 Robustness against the LSBM Steganalysis  

Harmsen and Pearlman (Harmsen & Pearlman, 2003) showed that embedding 

technique works as a low-pass filter on the histogram of the cover image; this means 

that the histogram of the stego-image contains fewer number of high-frequency 

components compared with the histogram of its cover version. By exploiting this 

property, the authors introduced a detector using the centre of mass (COM) of the 

histogram characteristic function (HCF) and they named HCF-COM. That work was 

tested on colour images, but is not applicable to greyscale images. In (Ker, 2005) 

Andrew Ker showed and proved that the original HCF-COM method does not work 

well on grayscale images. Therefore, Ker proposed a new version of HCF-COM based 

on the calibration (down-sampling) technique which applicable on greyscale images. 

The proposed work as follows: 
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1- Let 𝐼 be a greyscale image that need to be tested, and ℎ be the histogram of 𝐼. 

The histogram characteristic function (HCF) of 𝐼 is defined as the Discrete 

Fourier Transform (DFT) ℎ ̂of ℎ.  

2- The Centre of mass of the HCF (HCF-COM) is defined as :  

 𝐶(𝐼) =
∑ 𝑘 |ℎ̂(𝑘)|
𝑁/2
𝑘=0

∑ |ℎ̂(𝑘)|
𝑁/2
𝑘=0

         (𝑁 = 256) (6.13) 

 

3- Let 𝐼  be a down-sampled version image of  𝐼 by factor 2 in both dimensions:  

 𝐼(𝑖, 𝑗) = ⌊∑∑
𝐼(2𝑖 + 𝑢, 2𝑗 + 𝑣)

4

1

𝑣=0

1

𝑢=0

⌋ (6.14) 

 

4- Compute the HCF-COM for 𝐼 and noted it by 𝐶(𝐼)̂. 

The proposed steganalysis tool is based on the fact that for natural images the 2 

calculated HCF-COMs (before and after down-sampling) are approximately equal 

(i.e. 𝐶(𝐼) ≈ 𝐶(𝐼)). On the other hand, although the embedding process does introduce 

the noise into the down-sampled image, nevertheless it reduce the value of HCF-COM, 

but to a lesser extent than in full-sized image (i.e. 𝐶(𝐼) < 𝐶(𝐼) in most stego images).   

Although our embedding scheme is not based on LSBM idea, but to see how our 

content-based scheme robust against specific LSBM steganalysis tools, we repeated 

the same experiment above on our embedding scheme for the different LBPH patterns.  

Results obtained are compared with other embedding schemes such as TLSB, LSBM 

and S-UNIWARD. Figure 6.3 shows the probability of detection for different payload 

capacities for tested schemes as well as for original cover images. In the latest two 

embedding schemes (LSBM and S-UNIWARD), the strategies of embedding are based 

on the least significant bit matching idea and the mentioned steganalysis is designed to 

catch such kind of embedding strategies. 
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Figure 6.3: Probability of detection using steganalysis proposed in (Ker, 2005) 

From these results it is clear that the LSBM is defeated by this tool especially when 

payload is high, for example the probability of detection is about 92% (i.e. the error 

rate is only around 8%) in case of full payload capacity while this error rate is around 

22% of using TLSB. On the other hand, the S-UNIWARD is robust against this 

steganalysis technique at low payload, but for fully embedding payload the reported 

error rate is only 38% (i.e. 62% of cases are correctly classified as stego-images). As 

we mention before although our embedding schemes is not based on LSBM idea but at 

full payload the N8 scheme is more robust against this tool than the S-UNIWARD with 

an error rate of 43.8% (i.e. 56.2% of cases are correctly classified as stego-images) . 

For our N4 scheme, the error rate remains around 33% for all payloads >= 0.3.  

6.1.4 Robustness against the SRM Steganalysis  

This is the most powerful universal steganalysis tool that is designed to detect the 

presence of hidden secrets in spatial domain as well as JPEG images. It is called the 

spatial rich models (SRM) and was proposed by Jessica Fridrich et al. (Fridrich & 

Kodovský, 2012). It is primarily used by steganographers to test robustness of their 

embedding scheme and have to provide their algorithms. This tool is based on 

computing a very large number of different types of dependencies among neighbouring 

pixels (also referred to as distortion features) to enable the detection of a wide range of 

embedding algorithms on the bases of the fact that any embedding scheme will create 

few local distortions at different scales. The dependencies are modelled as noise 

residuals.  
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1- Let 𝐼𝑖𝑗 be the pixel located at position (𝑖, 𝑗) of the test image 𝐼, 𝑁𝑖𝑗 be a local 

neighborhood of pixel 𝐼𝑖𝑗 , 𝜃(𝑁𝑖𝑗) be a predictor of 𝐼𝑖𝑗 defined on 𝑁𝑖𝑗, the noise 

residuals 𝑅 computed using the following form:  

 𝑅𝑖𝑗 =  𝜃(𝑁𝑖𝑗) − 𝐼𝑖𝑗 (6.15) 

Different pixel predictors are implemented as locally supported linear filters and 

can be expressed as the convolutions of 𝐼 and a kernel matrix. A total of 39 kernels 

are used. For example, the two kernels: 

𝐾3 =
1

4
(
−1 2 −1
2 0 2
−1 2 −1

) 

𝐾5 =
1

12

(

 
 

−1 2 −2 2 1
2 −6 8 −6 2
−2
2
−1

8
−6
2

0 8 −2
8 −6 2
−2 2 −1)

 
 

 

Other kernels involve pixels arranged only in horizontal or vertical direction and 

derived from constant, linear and quadratic models of local image block. 

2- Different quantized and truncated versions of each residual are calculated: 

 𝑅𝑖𝑗 ← 𝑡𝑟𝑢𝑛𝑐𝑇 (𝑟𝑜𝑢𝑛𝑑 (
𝑅𝑖𝑗

𝑞
)) (6.16) 

Where, 𝑇 is a truncation threshold and 𝑞 is a quantization step. 

3- After the quantized residuals are obtained, the SRM submodels will be constructed 

from their horizontal and vertical 4th order co-occurrences. The 4th order horizontal 

and vertical co-occurrence matrix of residual 𝑅𝑖𝑗 is defined as the normalized 

number of the groups of four neighboring residual samples (d1, d2, d3, d4). Some 

post procedures are followed by leveraging symmetries of natural images. When 

all the resulting submodels are put together, their combined dimensionality is 

34671 features. (for detail see in (Fridrich & Kodovský, 2012)) 

4- Due to very large dimensionality of the features, its classification process is done 

using an ensemble classifier machine learning tool which consists of number of 

base learners. Each base learner is trained on a set of cover images together with 

stego images obtained by embedding different payload with a variety of hiding 

schemes. The ensemble reaches its decision by fusing all individual decisions 

obtained from each base learners using majority voting. The accuracy of the system 

is evaluated using the ensemble’s estimate of the testing error known as the ‘out-
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of-bag’ error (EOOB). (for detail see in (Kodovský, et al., 2012)) Matlab codes for 

SRM steganalysis feature extractor as well as the ensemble classifier are 

downloaded from the (http://dde.binghamton.edu/download/) website.  

To test the robustness of our embedding scheme for the different LBPH patterns (4-bits 

and 8-bits) compared with TLSB, MLSB, and S-UNIWARD we conduct experiments 

as follows: we embedding the LBPH patterns in the 1000 images from BOSSbase 

database, then train the SRM with 500 of the obtained stego-images together with their 

cover versions while remain 500 images are used for testing. Figure 6.4 shows obtained 

EOOB of tested schemes over different payload capacities. 

 

Figure 6.4: Detection error of Out-of-Bag (EOOB) using SRM steganalysis. 

From the results we notice that our proposed embedding schemes as well as TLSB and 

MLSB are not robust against this kind of steganalysis if compared with the S-

UNIWARD embedding scheme. However, the S-UNIWARD will lose its robustness 

after a specific (0.4) payloads embedded (Holub, et al., 2014).  

Further analysis of these results require an understanding of the way the S-UNIWARD 

embedding technique works to enable it avoiding detection at low embedding rates.  

The S-UNIWARD embedding technique was specially designed to find the best 

locations for embedding in terms of a special distortion function and then embed only 

in those positions for which less distortion can be detected. Our proposed method, on 

the other hand, embeds the secret everywhere without consideration of impact on local 

features. In the next section, we shall modify our content-based scheme by embedding 

in selected locations and test robustness against SRM.  
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6.2 Enhanced Content-based Steganography Scheme 

The S-UNIWARD embedding technique was specifically designed to withstand SRM 

steganalysis and to some extent it is successful at low embedding rates only. Our 

intended application of embedding LBPH pattern of face images for remote 

authentication, the embedding rate is particularly low due to the small size of the LBPH 

secret. In the above experiments we were embedding multiple copies for the same or 

different faces to enable comparison of robustness with other embedding schemes at 

different payloads. Therefore, in practice there is no need to embed the LBPH secret 

everywhere in the cover image. 

To attempt improving the robustness of our content-based hiding scheme in general but 

more importantly against SRM at low embedding rate, we use a similar strategy to that 

used by S-UNIWARD and incorporate a position selection process into our content-

based schemes. From the literature review, we learnt that hiding in the “noisy areas” of 

cover images such as edges and textures are less detectible than embedding in smooth 

areas. However, we also learnt that when secret bits are embedded in edge positions, 

these edge pixels may not remain as such, i.e. the act of embedding changes the list of 

edge pixels. If this is to happen then we cannot guarantee the exact extraction of the 

secret message in the receiver side. To guarantee the availability for embedding of the 

same number and positions of edges in a cover image, Kathryn Hempstalk (Hempstalk, 

2006) proposed a method which calculates and determines the edge pixels positions 

using the 𝑟 most significant bit of the pixel, while embedding is advised to be made in 

the 𝑡 least significant bits where 𝑟 = 8 − 𝑡, (here we are assuming that cover images 

are 256 greyscale images). Doing so enables the retrieval of the secret bits from the 

same pixels that used for embedding because the bits used in finding edges are not 

changed during embedding process. Authors of (Hempstalk, 2006) called this process 

of excluding 𝑡 bit-plane from edge detection process as the FilterFirst process.  

Here we use a modified version of the FilterFirst idea in order that the LSB plane is 

used for the embedding purpose and other bit-planes for edge detection. The number 

of pixels labelled as edge positions is different from one image to another, and it 

depends on the structure of the image content or texture. Hence, we employ adaptive 

labelling of edges pixels, by using a threshold for finding edge positions that depends 

on the length of the secret. This adaptive approach assigns greater values for the 

threshold parameter to get less number of edges while smaller threshold values results 
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higher number of edges. Figure 6.5 shows the relation between number of edge pixels 

and threshold values. Threshold values are real numbers between 0 and 1, and the 

results are the average calculated when we tested the same 1000 cover images that we 

used before in all experiments. 

 

Figure 6.5: Relation between edge numbers and threshold value 

By doing so we choose for each image a different threshold (i.e. will be selected 

adaptively depending on how textured the cover image is), this threshold value can be 

used as a key shared between sender and receiver. 

To achieve higher number of edges we used “canny” edge detector. Edge are defined 

to be clean are edges in less densely textured regions, which are not suitable for 

embedding. Edge cleanness can be determined by the “sigma” parameter of the “canny” 

edge detector. Assigning small values to “sigma” helps avoid clean edges, but increase 

the number of selected pixel positions in dense regions. See figure 6.6 as an example 

to differentiate between using low and high value of sigma parameter for detecting edge 

positions using canny edge detector with the same threshold value. Again this sigma 

value can be used as a key shared between sender and receiver before any session of 

communication.  
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Original Image 

  

can = edge(Cover,'canny',0.1,0.8); can = edge(Cover,'canny',0.1,0.2); 

Figure 6.6: Effect of the sigma value to detect edge positions 

Furthermore, assigning small value to ‘sigma’ parameter for the same threshold value, 

will gave larger number of edges especially when small value of threshold used for 

detecting edge areas. See figure 6.7 which explain number of edges detected using 

different value of threshold with using two different ‘sigma’ values 0.2 and 0.8. From 

the figure we can conclude that assigning low value to ‘sigma’ parameter not only mark 

pixels as an edge position in dense area but also will increase number of pixels that 

marked as edge positions. 
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 Figure 6.7: Edge numbers vs. ‘Sigma’ value 

To evaluate the new proposed content-based we use three low payload capacities which 

they are 0.05, 0.1, and 0.2. These payloads are sufficient for embedding both LBPH 

patterns extracted from a single face image.  For larger than these payload we need to 

exclude significant number of images in the experimental BossBase image set   because 

we cannot guarantee enough number of edges even when we assign smallest value to 

the threshold parameter during finding edge positions, e.g. payload 0.3 cannot be 

achieved by 135 images out of the 1000 used (i.e. not having enough number of edges). 

For an image to pass this test, it is not necessary to have the image edges distributed 

uniformly over different blocks or regions. Therefore, in these experiments we must 

use the cover image as one block and this would mean that the secret LBP code are also 

extracted from the secret image without dividing into blocks.  

Figure 6.8 shows EOOB  of our new proposed position selection based technique fused 

with previously proposed content-based scheme M2 with different pattern sizes (4-bit 

and 8-bits), for simplicity we named FF_4 and FF_8 respectively, results are compared 

with S-UNIWARD.  
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 Figure 6.8: Detection error of Out-of-Bag (EOOB) using SRM steganalysis 

It is very clear from results shown in figure 6.8 that our proposed schemes have 

significantly improved robustness against SRM steganalysis if compared with the 

results shown in figure 6.4. We also notice that using 4-bits pattern have significant 

improvement over using 8-bits patterns. These results demonstrate that selecting 

positions for embedding will highly affect the robustness of the embedding system. 

The choice of the above position selection is by no means the only possible way of 

improving robustness against SRM. In fact, our content-based steganography schemes 

can be used with any position selection procedure to improve its robustness.   

Finally, these robustness results and consideration of ratio of change, all point that our 

content based scheme, as well as any other steganographic schemes, can greatly benefit 

from selecting suitable cover images to meet certain criteria.  Much work in 

steganography has focused on how to improve the performance of embedding 

techniques by modifying the manner of embedding but little is done on choosing the 

cover image as the signal carrier. Such work can now benefit from improved chance to 

easily generate digital media with almost any desired property. 
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6.3 Invisibility (Image Quality) 

Finally, we complement the results of robustness and security of our content-based 

embedding schemes by demonstrating the invisibility of the embedded secret LBPH 

patterns using the commonly used image quality measure of peak-signal-to-noise ratio 

(PSNR) calculated between cover and stego-image. Though the literature in image 

processing offer many sophisticated quality measures, but the PSNR provide a measure 

of the amount of distortion or noise presence in an image post processing or 

manipulation. Table 6.2 and figure 6.9 shows the average value of PSNR (dB) obtained 

from using the same 1000 greyscale cover images used in previous experiments. The 

table or figure also include results obtained for using all our 3 different content-based 

methods, explained in previous chapter, for embedding the different LBPH patterns 

size (4 or 8) at 5 different payload percentages (0.2285, 0.45, 0.6855, 0.9141, and 

0.9902). For comparison, the table or figure also include PSNR values obtained when 

we used the 3 other embedding schemes TLSB, LSBMR, and S-UNIWARD for 

embedding the same set of LBPH patterns. 

The results of comparison demonstrate that the stego-images created by all our 

steganographic methods have better quality if compared with TLSB and LSBMR. All 

our proposed methods except proposed M1 with 8-bits have higher invisibility and 

quality if compared with S-UNIWARD embedding scheme, the differences become 

clearer when high payloads embedded. In summary these experiments add more 

evidences to support the already demonstrated security and efficiency in terms of 

amount of change in cover pixel values. 

Table 6.2: PSNR between cover and stego-images 

Payload 
M1  

8-bit 
M1  

4-bit 
M2  

8-bit 
M2  

4-bit 
M3  

8-bit 
M3  

4-bit TLSB 

LSBMR 
(Mielikainen, 

2006) 

S-UNIWARD 
(Holub, et al., 

2014) 

A 59.357 62.336 62.788 63.164 62.849 63.289 57.551 58.800 62.282 

B 56.176 59.163 59.372 59.928 59.575 60.180 54.610 55.858 58.664 

C 54.292 57.299 57.540 58.118 57.630 58.326 52.780 54.059 56.427 

D 53.058 56.125 56.323 56.989 56.436 57.234 51.531 52.875 54.730 

E 52.691 55.822 55.910 56.686 56.027 56.952 51.184 52.592 54.230 
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Figure 6.9: PSNR between cover and stego-images 

6.4 Conclusions 

In this chapter, we investigated the robustness of our content-based steganographic 

scheme, designed for hiding face biometric LBPH patterns, against targeted and 

universal steganalysis tools. We conducted several experiments for this purpose using 

all faces in the Yale database for embedding into 1000 greyscale images from 

BOSSbase database at different embedding ratios. The experiments also included 

comparisons of robustness of 3 existing steganographic schemes.  

The results of the experiments demonstrated that the content-based scheme is robust 

against all the 3 targeted steganalysis tools. This remained true for all payloads; 

although at the full payload the steganalyis tools were reporting a very low ratio which 

may reflect the margin of error in the report of these tools.  

Unfortunately, the scheme was not as successful in avoiding detection by the universal 

SRM tool. In this set of experiments we also checked the robustness of the S-

UNIWARD scheme and found that it has much better robustness than our scheme at 

low embedding ratios.  By analysing the way the S-UNIWARD to achieve this kind of 

performance, we found that this due to the fact it is designed specifically to withstand 

SRM attack by embedding in certain locations that cannot generate certain types of 

distortions that are related to the training features or filters in the SRM. Since, face 

LBPH pattern generate a small payload, we modified our scheme by embedding in edge 
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regions. The retesting of the modified content-based scheme we achieved robustness 

against SRM at low payload that is comparable to that of S-UNIWARD.    

Finally, measuring the invisibility of the secrets that are embedded by our content-

based scheme, in terms of PSNR, has shown that our schemes outperforms all other 

tested schemes but only marginally when compared with S-UNIWARD. 
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Chapter 7  

Conclusions and Future Works 

7.1 Conclusions 

This thesis was devoted to investigate the problem related to the secure transfer of 

biometric data between entities, for remote authentication or identification, while 

protecting privacy. These investigations were motivated by the widely accepted 

knowledge that encrypting the biometric data can only protect the data during 

transmission. Although in recent years the use of homomorphic ciphers have been 

promoted for privacy preserving solution, but efficiency seem to be a major obstacle 

that require more research. Steganography, being the obvious other alternative security 

mechanism that may provide an appropriate solution, has become the focus of this 

thesis investigations. Initial investigations revealed that for this solution to be practical, 

secure and privacy preserving certain properties must be satisfied by the biometric data 

as well as the hiding scheme. Consequently, our first task was to determine these 

properties before developing specific schemes. The main challenging requirements in 

the steganography field that are not restricted to their use for transmitting biometrics 

data include capacity, invisibility, and robustness against targeted as well as universal 

steganalysis tools.   

Due to the fact that the face is the most acceptable public identity of a person, and could 

be easily recorded using cameras embedded on personal mobile devices that most 

people possess, face biometrics was our obvious choice. The main aims of this thesis 

was then to study and understand the properties of steganography as well as face 

biometric features that could be exploited and integrated within an innovative robust 

embedding techniques to transfer face biometric data securely within a privacy 

preserving environment. The most important criterion for selecting the suitable face 

biometric scheme is that the embedding process does not adversely impact the 

recognition accuracy. The first part of the thesis focused on investigating the variety of 

face feature extraction schemes, for their suitability to be binarised and hidden in 

natural image to be used for remote authentication without losing accuracy. Another 
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steganography-related condition to be imposed on the choice of face feature vector 

relates to the secret data size for its impact on payload and stego image quality. The 

privacy preserving requirement adds another restriction on the choice of the binarised 

face feature vector. Here we link this to the infeasibility of recovering the originally 

capture face image from the feature vector.  

Having reviewed a variety of face recognition schemes, we have come to realise that 

the LBP based scheme provides many of the requirements. In its simplest spatial 

domain form it works like a filter that replaces each pixel value with an 8-bit code that 

reflect the order relation between each pixel and that of its 8 neighbours. Face 

recognition is based on testing similarity of a special type of histograms of 59 bins for 

the frequency of the LBP codes, known as LBPH features. LBP codes provide image-

dependent binarization, face LBPH features are known to yield excellent recognition 

rate, and more importantly it is privacy preserving in that it is not feasible to retrieve 

the original image from the LBPH.  For embedding purpose, we only need to embed 

the size of the 59 bins in a certain order. However, due to size of the face image the 

bins have different unknown sizes which for recovery needs to be sent as side 

information. Dividing the secret face image into block may reduce, but not eliminate, 

the chance of this happening. Normalising the size of the bins have been shown to solve 

the problem but with some loss in accuracy. Using LBPH in the wavelet domain, 

extracted from blocks of each of the wavelet sub-bands has led to the elimination of 

the problem while preserving accuracy. This success together with the interest in 

reducing payload for embedding, has motivated the modification of the LBP codes by 

computing them using only 4 neighbours. This led to 2 different types of 4-bit patterns 

depending on whether we take Horizontal-Vertical or Diagonal neighbours. These 

investigations generated a variety of face recognition schemes that use each of these 3 

different LBPH patterns or a combination of them, and led to improved accuracy. As a 

result using only 4 neighbours the number of LBPH bins was reduced to 16 leading to 

significant reduction in embedding payload capacity. The experimental results have 

demonstrated that the proposed methods can reduce the number of features by 22% to 

72% of the original features (see Chapter 4). By testing the performance of the various 

schemes that require less number of LBPH features, we find that there is a trade-off 

between numbers of reduced features and recognition accuracy. One important benefit 

from using LBPH representations of face images is the fact that all these representations 

generate very small payload relative to most cover image sizes. In fact, the above 
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schemes generate payloads in the range 0.08% to 22% of cover image size 512x512. 

However, for comparison reason the experiments will cover full capacity by embedding 

multiple face LBPH features.  

Our investigation into suitable steganographic schemes started with reviewing existing 

embedding scheme with focus on their known properties of invisibility, capacity and 

robustness against known steganalysis tool. The trend in the more recently proposed 

spatial domain hiding schemes is based on sophisticated ways of manipulating or 

replacing one or more bit-planes (LSB or 2LSB) of the cover image with the aim of 

achieving high invisibility, high capacity and robustness against some    LSB targeted 

steganalysis tools. There were various levels of success but what was clear that 

achieving success for all the 3 criteria remains a challenge.   

Our first attempt was aimed at developing a scheme that could achieve robustness 

against all LSB-targeted steganalysis tools with a good compromise on the other 2 

criteria. The developed LSB-witness scheme modifies the 2nd LSB as a witness for the 

presence of the secret bits in the 1st LSB.  This approach guarantees no change in 1st 

LSB plane, and thereby robustness against all the LSB-targeted steganalysis tools for 

all and up to 100% payload without introducing significant visual distortion to the cover 

image obtained. However, due to the fact that the LSB-witness scheme was change the 

2nd LSB which seem to have resulted in cover image quality which was lower than that 

achieved by RLSB, especially at high embedding payloads. Nevertheless, the 

experiments has demonstrated beyond any doubts the viability of using steganography 

for remote biometric-based recognition and the biometric feature vectors can be 

binarised, without leaking information on the freshly recorded biometric sample.  

Although, the fact that in the specific application we know that we do not generally 

need high capacity embedding, we recognised that more work is needed to be done to 

achieve adequately high invisibility. Noting that almost all existing schemes including 

the LSB-witness are general-purpose in that the secret message is a random bit-stream. 

Recognising the fact that unencrypted biometric data are far from being represented by 

a random secret bit-stream, has motivated the work in the 2nd part of the thesis to 

investigate, develop and test performance of a new scheme that could achieve a good 

compromise for embedding face LBP code features. In such a scheme, the embedding 

must exploit the structure or content of the secret to improve quality, which we called 

content-based steganography. This is a rather different type of steganography from the 
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traditional schemes, could also benefit many steganography applications which deal 

with structured secrets.  Developing such general schemes, require an understanding of 

the structure of the secrets, but this is outside the scope of this thesis. 

Our developed content-based hiding scheme differs from that of the LSB-witness 

scheme in that instead of embedding the LBPH frequencies, we embed the LBPH 

patterns themselves.  It exploits similarities between these LBPH patterns and the 

structure of the cover image bit-planes by first organise these as 8-bit or 4-bit patterns.  

We investigated various block-based embedding where our secret image (or its wavelet 

subband) is divided into blocks and the cover image into blocks whose LSB bit plane 

is the same size of the LBPH block bit-stream. The embedding of the LBPH patterns 

is done in the ascending order of 1’s in the pattern, by searching through the LSB-cover 

image block for the next unused pattern that matches it or has the smallest hamming 

distance from it. We tested the performance of several versions of this scheme, 

depending on blocking strategy and pairing blocks of the LBPH patterns to a block of 

the partitioned cover image blocks. The block pairing strategy can be used as a key 

shared between sender and receiver as a second layer of security. 

Our tests covered the optimality concept which is aimed to minimize distortion of the 

cover image and maximize the invisibility of the secret message by reducing the pixel 

value change rate during embedding the required payload. In terms of pixel change rate 

after hiding, our scheme achieved the ratio of change of 13% which is a significant 

improvement of the lower bound on optimality ratio of 24% that was achieved by the 

state of the art S-UNIWARD scheme.   

The performance of the content-based schemes was also tested by checking the 

robustness of the scheme against the targeted steganalysers (DIH, RWS, and the 

calibrated HCF-COM) and the universal steganalysis tool (SRM). Results 

demonstrated that none of the 3 targeted steganalysis tools can detect and estimate the 

embedding ratio of embedding correctly for our schemes. Unfortunately, the SRM 

detect the present of our schemes as we expected. However, when we incorporates a 

position selection (edges and noisy regions) process into our schemes, robustness 

against SRM improved significantly at low embedding rate.   
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7.2 Future works 

The works reported in this thesis was aimed to enhance the security of embedding 

schemes for a specific type of secrets. In particular, we were interested in the security 

of embedding face biometric features for remote authentication. To our knowledge our 

developed content-based embedding scheme is the first embedding scheme that 

differentiate between embedding face biometric data and other secret or sensitive data 

such as (text, image, etc.). In order to promote this exciting direction in steganography, 

the following is a list of potential research projects that extend our work in the future.  

Extending Content-based steganography for other biometric traits. The success of 

our work in developing a specific embedding scheme that exploit certain carefully 

selected face feature vector for use in privacy preserving remote biometric 

authentication, is a strong motivation to extend our investigations by testing the 

viability of embedding other biometrics (fingerprint, Iris) for remote authentication. 

Such investigations will depend on understanding the non-random patterns of feature 

vectors for such biometrics that could be exploited appropriately for other content 

based steganographic schemes.  

Natural cover image selection. In the literature, much works in the steganography has 

focused on how to improve the performance of embedding schemes, and although 

cover selection is recognised as an important factor little is done on choosing the 

suitable cover image as the secrete carrier. For content-based steganography, this 

becomes an essential component in the success of such schemes and the selection 

would also need to be compatible with the structure and organisation of the embedded 

secret.  This will apart of our future plans.  

Robustness of content-based schemes against universal Steganalysis tools. In this 

thesis we investigate several types of steganalysis tools (targeted and universal), while 

our main content-based scheme was robust against all known targeted steganalysis 

tools, for robustness against the universal SRM scheme could have only been improved 

for low embedding ratios by selecting best positions for embedding.  More 

investigations need to be done to improve robustness of general content-based schemes 

at high embedding ratios against SRM and other steganalysis tools. In particular, we 

need to investigate positions where certain known local dependencies (i.e. feature 

distortion models) where embedding related changes to pixel values lead to less 
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distortion of the cover image and more robust against this kind of steganalysis for 

higher payload capacities. This will also be closely related to cover selection question.  

Moreover, our work in the future must address recovery post active attacks. We shall 

investigate the solutions in case of loss or bits are missed by active attacks. One obvious 

solution will be the incorporation of error correction code (ECC).   
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APPENDIX  

A: Robustness against Pairs of Value (PoV) Steganalysis Tool 

   

(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.1: SLSB detection using PoV steganalysis for different payload for Living room image 

   

(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.2: SLSB-Witness detection using PoV steganalysis for different payload for Living room image 
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(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.3: SLSB detection using PoV steganalysis for different payload for Lena image 

   

(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.4: SLSB-Witness detection using PoV steganalysis for different payload for Lena image 
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(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.5: SLSB detection using PoV steganalysis for different payload for Camera man image 

  
 

(a) Cover           (b) 20% embedded          (c) 40% embedded 

   

        (d) 60% embedded        (e) 80% embedded           (f) 100% embedded 

Figure A.6: SLSB-Witness detection using PoV steganalysis for different payload for Camera man image 
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B: Robustness against Regular and Singular (RS) Steganalysis Tool 

 

 

(a) Random LSB 

 

(b) Random LSB-Witness 

Figure B.1: RS-diagram for different payload, Camera man image used 
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(a) Random LSB 

 

(b) Random LSB-Witness 

Figure B.2: RS-diagram for different payload, Baboon image used 
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(a) Random LSB 

 

(b) Random LSB-Witness 

Figure B.3: RS-diagram for different payload, Living room image used 
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C: Face Recognition accuracy of 5 LBPH schemes compared with N8 

scheme using 3 different protocols, 2 different databases (Yale and 

ORL), and 2 different wavelet subband blocking (3x3 and 5x5).  

 

 

Figure C.1: Recognition rates (%) of Yale database for one training protocol and 5×5 blocking strategy 

 

 

Figure C.2: Recognition rates (%) of Yale database for 50% training protocol and 5×5 blocking strategy 
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Figure C.3: Recognition rates (%) of Yale database for leave one out protocol and 5×5 blocking strategy 

 

 

Figure C.4: Recognition rates (%) of ORL database for one training protocol and 3×3 blocking strategy 
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Figure C.5: Recognition rates (%) of ORL database for 50% training protocol and 3×3 blocking strategy 

 

 

Figure C.6: Recognition rates (%) of ORL database for leave one out protocol and 3×3 blocking strategy 
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Figure C.7: Recognition rates (%) of ORL database for one training protocol and 5×5 blocking strategy 

 

 

Figure C.8:  Recognition rates (%) of ORL database for 50% training protocol and 5×5 blocking strategy 
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Figure C.9: Recognition rates (%) of ORL database for leave one out protocol and 5×5 blocking strategy 
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