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ABSTRACT 

Brown adipose tissue (BAT) was identified as a thermogenic organ in 1961, and in 1978 shown 

to be the major site of thermoregulatory non-shivering thermogenesis in rats acclimated to the 

cold. Investigations in the mid-late 1970s established the uncoupling of oxidative 

phosphorylation through a proton conductance pathway across the mitochondrial inner 

membrane as the mechanism for heat production in BAT, this being regulated by UCP1 which 

was first discovered as a 32,000 Mr cold-inducible protein. These developments came when those 

concerned with nutritional energetics were proposing that thermogenesis is a significant factor in 

energy balance and the aetiology of obesity. A link with BAT was first demonstrated in obese 

ob/ob mice, which were shown to have decreased thermogenic activity in the tissue, and in rats 

exhibiting diet-induced thermogenesis (DIT) during overfeeding on a cafeteria diet where an 

activation of brown fat was evident. These pioneering observations led to extensive studies on 

BAT in different animal models of obesity, both genetic (particularly ob/ob and db/db mice, fa/fa 

rats) and experimentally-induced. In each case, indices of BAT activity and capacity 

(mitochondrial content, GDP binding, amount of UCP1) indicated that the tissue plays a role in 

DIT and that obesity is characterised by reduced thermogenesis. Links between BAT and whole-

body energetics were also made in physiological situations such as lactation and fasting. Studies 

in the 1980s also provided clear evidence for the presence of BAT in adult humans, particularly 

through the detection of UCP1, and its activation in patients with phaeochromocytoma. Interest 

in BAT in energetics and obesity waned by the 1990s; the current major renewal of interest has 

undoubtedly been contingent on the pioneering developments that emerged some 40 years ago. 
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1. Introduction 

Brown adipose tissue, or brown fat, was first formally described in 1551 by the Swiss naturalist 

Conrad Gessner. It was originally termed the ‘hibernating gland’ and over the following 400 

years multiple different functions were attributed to the tissue – as part of the thymus, as an 

endocrine gland (active in the formation of blood), as a modified form of fat serving as a 

reservoir of food substances, and again as an endocrine gland [1]. It was only in 1961 that brown 

adipose tissue (BAT) was firmly identified as a thermogenic organ – the key site of 

thermoregulatory non-shivering thermogenesis [2]. A decade later there was considerable 

interest, particularly centred on Lindberg’s group in Stockholm, in the mechanisms by which 

heat is generated in the tissue. Heat is, of course, a by-product of metabolic processes in general, 

but in brown fat it is the required product.  

The search for the primary thermogenic mechanism in BAT resulted in the identification, 

following the application of Mitchell’s chemiosmotic theory by Nicholls and colleagues, of the 

uncoupling of oxidative phosphorylation through a regulated proton leakage across the inner 

mitochondrial membrane; this is the central means by which heat is produced in the tissue [3]. 

The discovery of the proton conductance pathway was accompanied by the observation from 

Ricquier’s group that the amount of a 32,000 Mr protein band on sodium dodecyl sulphate-

polyacrylamide electrophoresis (SDS-PAGE) gels was markedly increased in rats acclimated to 

the cold [4]. This protein band was subsequently identified as the mitochondrial uncoupling 

protein (UCP) - the key factor in regulating the proton conductance of brown fat mitochondria. 

With the identification of further UCPs in the late 1990’s [5-7], UCP was renamed UCP1.  

In addition to the focus on unravelling the molecular mechanisms of heat production in 

BAT mitochondria, a key question in the mid 1970’s was the quantitative contribution of brown 

fat to the total capacity for non-shivering thermogenesis (NST). At the time, there was 

continuing interest in skeletal muscle as a site of NST, reflecting in part the large size of this 

organ [8]. A pivotal development came from blood flow studies showing that brown fat accounts 

for approximately two-thirds of the capacity for NST in rats acclimated to the cold [9-10]. The 

technique used in these studies, which at the time had only recently been introduced, measured 

the distribution of the cardiac output by injecting radioactively-labelled microspheres of a 

defined size (~15 µM diameter) which lodge in the microcirculation thereby becoming entrapped 

in tissues. This followed a report by the same authors demonstrating that the previously 

employed approach to measure blood flow based on the fractional distribution of 86Rb gave 

erroneous results, seriously underestimating in particular the proportion of the cardiac output 

channelled to BAT [11].  
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The demonstration that BAT is the main site of NST in rats acclimated to the cold had 

immediate impact not only on thermal physiology, but also on a quite different area – nutritional 

energetics and the aetiology of obesity. The origin of this link to energetics and obesity, and its 

subsequent initial development in the early-mid 1980s are described in the present article.  

 

2. Energetics of obesity 

The fundamental law of the energetics of obesity is that the condition can only develop when 

energy intake is greater than energy expenditure, i.e. following a period of positive energy 

balance. Energy intake means, of course, metabolisable intake and not simply the gross energy in 

the food consumed, there being caloric losses in both faeces and urine. Energy expenditure is the 

totality of several different components – customarily divided into basal metabolic rate, physical 

activity and thermogenesis (Fig. 1). The prevailing attitude to obesity in the 1970s was that it is a 

consequence of ‘gluttony and sloth’ – over-eating and under-exercising.  This essentially puritan 

perspective was evident despite the concept of ‘luxuskonsumption’ having been introduced at 

the beginning of the last century, this proposing essentially that excess dietary energy can be 

dissipated as heat. Several studies in the 1960s and 70s on rats, pigs and humans provided 

distinct support for this proposition [12-14]. 

The concept of dissipating excess energy intake as heat is complicated by the varying 

terminology that has been used to describe the phenomenon. Apart from ‘luxuskonsumption’ - 

which is not widely used – the expression ‘specific dynamic action’ which refers to an apparent 

specific stimulatory effect of protein on heat production, and the generic terms ‘thermic effect of 

food’, ‘post-prandial thermogenesis’ and ‘diet-induced thermogenesis’ have each been employed. 

Diet-induced thermogenesis (DIT) is now the most commonly used expression, and it is divided 

into two components – obligatory and facultative. Obligatory DIT reflects the basic energy costs 

of digesting, processing and metabolising food. Around 5% of the energy contained in dietary fat 

is expended to digest, absorb and directly deposit that lipid in the white adipose tissue depots, 

while in the case of dietary carbohydrate approximately 25% of the energy potential is used to 

process and deposit this macronutrient as lipid. 

It is the facultative, or adaptive, component of DIT that is directly implicated in the 

regulation of energy balance; this is the component that is genuinely energy dissipative. One 

particular animal model emerged in the late 1970s which stimulated widespread interest in 

facultative DIT – the so-called ‘cafeteria-fed’ rat. In this model, rats given a mixed, palatable 

human-type diet voluntary overfeed, exhibiting substantial hyperphagia. Much of the additional 

energy intake is dissipated as heat, however, rather than being deposited as lipid, as energy 
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balance and metabolic rate measurements demonstrated, i.e. there is a marked stimulation of 

DIT  [15-16]. This is illustrated in Fig. 2. 

At the same time, energy balance studies on ob/ob (Lepob/Lepob) obese mice demonstrated 

that young mutants pair-fed to the ad libitum intake of their lean (+/+, ob/+) siblings deposit 

energy at more than twice the rate of the normal mice with a corresponding increase in gross 

efficiency (kJ gain/kJ energy intake; Fig. 3) [17]. Such an outcome can only result from a 

reduction in energy expenditure and subsequent studies linked this to decreased expenditure on 

NST [17]. This was based in part on the cold-sensitivity of ob/ob mice and the decreased capacity 

for NST as assessed from the increase in metabolic rate following the administration of 

noradrenaline [18]. Similar observations were made on the db/db (Leprdb/Leprdb) mouse [19].  

 

3. A link between brown adipose tissue, diet-induced thermogenesis and obesity 

Several mechanisms were proposed, or were under active consideration, as the source of DIT 

and of the reduced thermogenesis of obese mice. These included protein turnover [20], the 

pumping of Na+ pump across the plasma membrane through the Na+-K+-ATPase [21], and so-

called futile cycles such as that between fructose-6-phosphate and fructose-1,6,-bisphosphate 

[22-23]. Despite observations which included reduced Na+-K+-ATPase activity in several tissues 

(liver, kidney and skeletal muscle) of ob/ob mice [24-25], these mechanisms were considered to 

have two key disadvantages. First, there was little evidence that they would make more than a 

minor contribution to thermogenesis, and in the case of protein turnover, could be rapidly 

switched on and off without wider implications for metabolic regulation. Secondly, the tissue 

localisation of these putative mechanisms was non-specific with processes such as Na+ transport 

and protein turnover being essentially universal.  

The search for the mechanisms involved in adaptive DIT and the reduced expenditure on 

thermogenesis in ob/ob mice was taking place at the same time as the developments in brown fat 

physiology described above. The blood flow studies demonstrating the quantitative importance 

of BAT in NST [9-10] had considerable resonance with those working on nutritional energetics 

and obesity. Two key observations resulted in brown fat rapidly becoming a central focus for 

those working in these areas. In the first, measurement of mitochondrial GDP binding, a key 

index of thermogenic activity (see below), demonstrated that BAT thermogenic activity is 

reduced in ob/ob mice and that there is an attenuated response to cold relative to lean siblings 

[26]. In the second pivotal observation, increases in the mass, temperature and lipolytic response 

to noradrenaline of BAT were evident in cafeteria-fed rats and it was proposed that the tissue is 

directly involved in DIT [15].  
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3.1 Tools for assessing brown adipose tissue thermogenesis 

Before describing in detail the development of the initial proposals that brown fat is implicated 

in energy balance and obesity, it is appropriate to comment on the measures of BAT 

thermogenic activity and capacity that were employed at that period. Oxygen utilisation from 

blood flow measurements and the arterial-venous difference in oxygen tension is the most direct 

approach to assessing the thermogenic activity of BAT. However, this necessitates highly 

demanding in vivo physiological procedures that are not appropriate as a routine, or general, tool. 

Consequently, proxies of BAT activity of a biochemical or molecular nature conducted on tissue 

and its isolated mitochondria were widely employed from the beginning, both in studies relating 

to thermoregulation and to energetics and obesity [27]; see Table 1.  

Tissue weight is commonly assessed, but in the case of obesity it primarily reflects the 

deposition of additional lipid in a manner that parallels the overall expansion of the white fat 

depots. While tissue mass is rarely a useful indicator of BAT activity or thermogenic state, the 

total protein content was frequently taken in early studies to provide a simple, albeit crude, index. 

More clearly linked to thermogenesis is the mitochondrial content of a BAT depot, the 

recruitment of mitochondria resulting in the augmentation of oxidative and thermogenic 

capacity. Mitochondrial content was widely assessed through measurement of tissue cytochrome 

c oxidase activity [27].  

The most potent index of thermogenic activity, which was the method of choice in many 

early studies on BAT thermogenesis in energy metabolism and obesity, is the mitochondrial 

GDP binding assay. This measures the extent to which freshly isolated BAT mitochondria bind 

[3H]GDP, and provides an index of the activity of the proton conductance pathway – the greater 

the level of binding, binding being to UCP1, the greater the proton conductance and the 

thermogenic activity of the mitochondria. Mitochondrial GDP binding can differ between 

treatments, such as cold and warm-acclimation, by up to 10-fold; thus, the assay provides a high 

level of discrimination [27]. Direct measurements of proton conductance or GDP-sensitive 

respiration in BAT mitochondria were conducted in a small number of studies, but GDP binding 

was customarily the technique of choice. 

A further key tool is, and was, the measurement of the amount of UCP1 per unit of 

mitochondrial protein. From the total mitochondrial content, the amount of UCP1 per BAT 

depot can be obtained and this defines the thermogenic capacity of the tissue. 

Radioimmunoassays and ELISAs with high specificity and good species cross-reactivity were 

developed in the early part of the 1980s and were extensively exploited thereafter [28-30]. The 
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cloning of the UCP1 gene in the mid 1980s provided the ability to measure mRNA levels, 

enabling the factors that regulate the expression of the gene to be investigated [31-32]. One of 

the first observations was that cold exposure induces a rapid stimulation of UCP1 gene 

expression [33]. 

 

3.2 BAT and diet-induced thermogenesis 

Following the initial proposition - based on tissue mass, temperature, and lipolytic sensitivity - 

that BAT is involved in DIT, in a follow-up study molecular indices of thermogenesis were 

assessed in cafeteria-fed and normal rats. The BAT of animals exhibiting facultative DIT had 

increased total protein, mitochondrial content and oxidative capacity (cytochrome c oxidase and 

α-glycerophosphate dehydrogenase activities); critically, they also had increased mitochondrial 

GDP binding and exhibited an increase in GDP-sensitive respiration [34]. Later studies, 

employing either an ELISA for UCP1 or densitometric analysis of SDS-PAGE gels, 

demonstrated a marked recruitment of UCP1 in BAT of cafeteria-fed rats [35-36]. The levels of 

the protein increased both ‘per mg of mitochondrial protein’ and ‘per depot’, confirming that the 

capacity for BAT thermogenesis is increased in DIT. UCP1 gene expression, from 

measurements of the mRNA level, was also soon shown to be elevated in cafeteria-fed rats [36].  

Collectively, these changes indicate extensive activation of BAT and substantial increases in 

thermogenic capacity in animals exhibiting high levels of DIT; such changes parallel those that 

take place following adaptation, or acclimation, to the cold [37]. Further early studies 

documented additional changes in the metabolic activity of BAT in cafeteria-diet rats, including 

reduced lipogenesis which is likely to reflect the high fat content that characterises such diets 

[38]. It should be noted that in practise not all studies in the 1980’s supported a role for BAT in 

DIT [39]; however, in the past decade reports involving the genetic ablation of UCP1 have 

provided unequivocal evidence for a central role for the tissue in this form of thermogenesis 

[40]. 

 

3.3 BAT in obese animals 

The initial observations of a reduction in the thermogenic activity of BAT in ob/ob mice were 

followed by further studies on these leptin-deficient obese mutants as well as on several other 

animal models of obesity. A blood flow study employing radioactively labelled microspheres to 

map regional blood flow in young (5 week-old) mice found that BAT was a major site of 

noradrenaline-stimulated NST in normal, lean mice consistent with the observations on cold-

acclimated rats [41]. Importantly, it also demonstrated that the reduced thermogenic capacity of 
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ob/ob mice in response to noradrenaline was almost entirely due to decreased heat production by 

BAT. Blood flow studies on Zucker fa/fa (Leprfa/Leprfa) rats resulted in a similar conclusion, the 

effect being attenuated by adrenalectomy [42]. 

Among the reported changes in BAT of mature ob/ob mice was a reduced concentration of 

UCP1 in the mitochondria relative to lean siblings [43]. However, the UCP1 concentration was 

found to be normal in ob/ob mice during the suckling period and shortly after weaning, indicating 

that the reduced thermogenic capacity of the older mutant animals is not an intrinsic defect [43]. 

Since GDP binding is reduced even in suckling ob/ob mice, activity is nevertheless reduced. 

Again, similar results were evident in fa/fa rats [43] with a decrease in GDP binding being 

evident from the early days (day 2) of postnatal life [44]. Reduced GDP binding under basal 

conditions and a lack of activation by diet, but a normal activation by cold, was additionally 

reported for fa/fa rats [45]. Decreased GDP binding was also shown in both adult and suckling 

db/db mice which, like the fa/fa rat, are characterised by a mutation in the leptin receptor [46]. 

Further studies on obese mutants demonstrated lower sympathetic activity in BAT, based on 

noradrenaline turnover studies, when the animals are housed under normal environmental 

conditions, but both acute cold-exposure and cold-acclimation induce a similar activation in 

obese mice as in their lean siblings [47-48].  

In addition to extensive studies on the single gene obese mutants, the properties of BAT 

were widely explored in several non-genetic models of obesity. The attractions of the obese 

mutants are, of course, the combination of the extreme obesity together with its early onset. In 

general, the obesity exhibited by non-genetic models is less dramatic, and unlike the main obese 

mutants does not relate specifically to abnormalities in the leptin system – whether of the 

hormone itself (Lepob/Lepob) or of the receptor (Leprdb/Leprdb, Leprfa/Leprfa). Among the 

experimentally-derived obesities that were initially investigated are those in which obesity is 

induced by surgical lesioning of the ventromedial hypothalamus (VMH) – at the time a classical 

model of obesity – or by the administration gold thioglucose (which also results in a lesion of the 

VMH). In both these models, increased BAT mass, reflecting the deposition of excess lipid, and 

reduced GDP binding were evident, together with a normal response to cold in terms of the 

acute activation of thermogenesis [49-50]. Decreased mitochondrial content was observed in the 

VMH-lesioned rats [51], though not in gold thioglucose-induced obese mice [52].  

A role for glucocorticoids in the impaired thermogenic activity of obesity was a common 

focus in several early studies and this followed particularly from the notable effects of 

adrenalectomy on energy balance in both ob/ob mice and fa/fa rats; adrenalectomy leads to the 

attenuation of hyperphagia and obesity itself, as well as of insulin resistance and other metabolic 
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abnormalities [53-54]. The effect of adrenalectomy on BAT in the obese mutants is to normalise 

the reduced GDP binding and the mitochondrial content, responses that are rapid and which are 

reversed by the administration of corticosterone [55-56]. It was noted that adrenalectomy had no 

effect on lean animals [56]. Two other key observations were part of the early reports; 

adrenalectomy was shown to lead to a normalisation of sympathetic activity in BAT of fa/fat rats 

[57], and both the response to overfeeding and the immediate thermic effect of a single meal 

were restored in brown fat of the obese animals [58]. 

A second approach to examining the role of glucocorticoids came from studies in which 

corticosterone was directly administered to lean mice. Administration of the hormone leads to a 

moderate obesity, with a reduction in mitochondrial content in BAT and a fall in GDP binding 

[59]. This inhibition of BAT activity by corticosterone was consistent with the studies on 

adrenalectomy in obese rodents.   

 

3.4 Further models of altered energetics 

In addition to investigations on overt obese models, one of the alternative strands in early studies 

on the role of BAT in nutritional energetics came from the exploration of changes in the tissue 

in physiological situations where there are substantial alterations in energy flux and/or energy 

balance. These included pregnancy and lactation, photoperiod, seasonally-induced changes in 

body fat, and marked alterations in the quantity or composition of the diet (Fig. 4). In each case, 

changes in BAT consistent with the concept that the tissue is an important component in energy 

balance and its regulation were observed (see [60-61]). Two specific examples will be summarised 

here which were of particular interest to the present author: lactation and fasting.  

Lactation in small animals is characterised by a very substantial increase in food intake in 

order to fuel the high energy costs of milk production, intake in mice being at least twice that of 

the pre-pregnant state [62]. The amount of lipid stored in rodents in pregnancy is small and its 

subsequent mobilisation during lactation makes only a very limited contribution to the energy 

costs of milk production – in contrast to larger mammals. Lactation in mice was shown to lead 

to a major atrophy of BAT, the total protein and mitochondrial contents being markedly 

decreased, as is GDP binding and GDP-sensitive respiration [63]. Later studies demonstrated 

that there is a marked fall in UCP1 concentration in lactation [64] and the decrease in 

thermogenic activity and capacity in BAT reflects a fall in the sympathetic drive to the tissue [65]. 

The functional atrophy of BAT in lactating rodents begins in late pregnancy, peaks in mid-late 

lactation, and is reversed following weaning [63-64].  
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The scale of the atrophy of BAT in lactation is such that the thermogenic activity and 

capacity of the tissue is similar to that in mice acclimated to thermoneutrality [62]. The energetic 

implications of the near total suppression of BAT thermogenesis during lactation are 

considerable; it has been estimated that at an environmental temperature of 21oC some 40% of 

the maintenance energy expenditure of non-pregnant animals is ‘saved’ in lactating mice, this 

reflecting the energy costs of thermoregulatory NST. In effect, the additional heat generated by 

the obligatory DIT associated with the increased food intake in lactation, together with that 

consequent to the synthesis of milk, negates the requirement for NST through BAT; heat from 

rapid foetal growth would have a similar effect in late pregnancy [66]. It is also noteworthy that 

the hyperphagia of lactating rodents does not lead to the stimulation of facultative DIT in BAT. 

Fasting represents the most extreme of nutritional manipulations and several early studies 

examined the effects of total food deprivation in rats and mice. Although some differences were 

observed which are likely to be due to variations in the length of the period of food deprivation, 

the caging conditions (number of animals per cage) and whether the animals were able to 

undergo coprophagy, a reduction in mass (due to loss of lipid) and GDP binding was widely 

observed which is reversible on re-feeding [67-71]. Fasting was also found to lead to a reduction 

in mitochondrial content and in UCP1 (per unit of mitochondrial protein and per depot), and 

thus of thermogenic capacity – effects that were again reversed on re-feeding [70-71].  

Despite these observations, with prolonged starvation thermoregulatory needs begin to 

predominant. While fasting rats for 24-48 h was shown to lead to a fall in UCP1 mRNA level, 

which was reversed on refeeding, longer fasting resulted in increases in UCP1 mRNA [72]. This 

rise in UCP1 mRNA on prolonged fasting was not observed, however, if the rats were at 

thermoneutrality (28oC) rather than room temperature (23oC), suggesting that in starved animals 

the drive to maintain body temperature through NST ultimately counteracts the short-term loss 

of BAT resulting from food-deprivation [72].  

Overall, the changes in BAT in the specific situations illustrated, as well as in a number of 

other physiological conditions, were consistent with the core concept of a central role of the 

tissue in nutritional energetics and in the aetiology of obesity in experimental animals (Fig. 4). In 

the early 1990s the link between decreased BAT thermogenesis and obesity was further 

established through genetic ablation studies in which the knockdown of UCP1 in transgenuc 

mice was shown to result in obesity [40, 73]. 
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4. Early evidence for active BAT in humans 

A critical question was - and in part still is - the extent to which the animal data on BAT is 

applicable to human energy metabolism, and to obesity in man in particular. This has 

encompassed two distinct issues: (i) whether facultative thermogenesis is more than a very minor 

component of energy expenditure in adults, and (ii) whether active BAT is present in humans 

beyond the early years of life. The first question has been a matter of continuing debate, indeed 

controversy, as has the extent to which reduced facultative thermogenesis may play a role in the 

aetiology of obesity. The energy expenditure of mice at room temperature (21oC) is up to twice 

that thermoneutrality (32oC), while at 4oC it is some 3 times higher, these differences reflecting 

the energy costs of thermoregulation (primarily NST) [18]. There is no doubt that the energy 

expenditure of adult humans on thermogenesis is proportionately considerably less, even on 

exposure to low environmental temperatures. 

Studies by Hull and colleagues, in particular, in the 1960s identified plentiful amounts of 

BAT in newborn infants, the earliest unequivocal description of BAT in humans being at the 

beginning of the last century [74-76]. The general consensus at the time was that BAT disappears 

from humans over the first few years of postnatal life, though there was some evidence for the 

persistence of the tissue in adults [77] and that when present it can be activated by stimuli such 

as cold. However, these investigations were anatomical and histological in nature, largely centring 

on the visualisation of multilocular fat cells. Given that they were made prior to the discovery of 

UCP1, the identification of BAT was not based on the presence of the critical diagnostic feature 

of a thermogenic adipocyte – whether brown or brite (beige).  

UCP1 was soon identified and isolated from human adipose tissue and antibodies raised 

against it to provide a tool for the subsequent exploration of the extent to which BAT is present 

in adult humans [78-79]. A radioimmunoassay based on these antibodies demonstrated that 

immunoreactive UCP1 is present in specific adipose tissue depots (perirenal and axillary) of 

many adults, albeit at lower amounts than in children [80]. Patients with phaeochromocytoma, in 

which there are high circulating levels of noradrenaline, have much higher UCP1 concentrations 

in perirenal adipose tissue as well as a high mitochondrial content and GDP-sensitive respiration 

[81]. These observations followed an earlier study on phaeochromocytoma patients in which 

adipose tissue from around the adrenals and the kidneys was found to be rich in mitochondria 

with a well-developed cristae structure and which exhibited GDP-sensitive respiration [82]. The 

human UCP1 gene was subsequently cloned and found to be expressed in perirenal adipose 

tissue of phaeochromocytoma patients [83]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

Despite this clear evidence for BAT in adult humans and its capacity for activation 

following an appropriate stimulus, there was little recognition that the tissue is present and a 

potential component of energy expenditure in adults. As a consequence, a decade after a link 

between brown fat and obesity was unequivocally established in rodents, interest in the idea that 

impaired BAT thermogenesis plays a role in the aetiology of human obesity faded sharply. 

Indeed, interest in brown fat at all levels waned during the 1990s.  

 

5. The past decade: 2007 to 2016 

In the late 2000s there was a major renaissance of interest in brown fat. This was partly because 

of two key discoveries relating to the fundamental biology of the tissue – that brown adipocytes, 

in contrast to white fat cells, are derived from myogenic precursors in skeletal muscle [84-85], 

and that there is a third type of adipocyte, the brite (or beige) fat cell, which expresses UCP1 

together with other, though not all, of the molecular markers of brown adipocytes [86-87]. 

However, the critical factor underlying the renewed focus on BAT has come from the 

application of a procedure - fluorodeoxyglucose positron emission tomography (FDG-PET) - 

which is employed in cancer investigations to track the metastasis of tumours by localising areas 

that exhibit a high rate of glucose uptake. FDG-PET studies found high levels of glucose uptake 

in fat tissue sites which had a distribution pattern similar to the presumptive pattern of BAT in 

adult humans based on earlier anatomical observations [77].  

Firm evidence that the fat tissue identified as having high glucose uptake is indeed BAT 

was presented in 2009; the tissue exhibited clear immunostaining for UCP1 [88-89]. These 

studies thus confirmed what the pioneering work in the 1980s had indicated – that BAT is clearly 

present and functional in adult humans. The continuing application of FDG-PET has 

demonstrated that not only is BAT in adults stimulated by cold and by insulin [89-92], but that it 

is less active in older subjects - and importantly, the activity is lower in obese than in lean 

individuals, being inversely proportional to BMI (body mass index) [88, 90, 93-94]. Thus, some 

forty years after the initial proposal that BAT thermogenesis is impaired in the obese, the tissue 

has again become a focus of research into the causes of obesity. There is correspondingly a 

renewed interest in the activation and/or recruitment of BAT as a therapeutic route for the 

treatment of obesity [95-97].   

Important metabolic roles for BAT have also been recently suggested, specifically in 

triglyceride clearance, insulin sensitivity, and in glucose homeostasis where the tissue has been 

proposed as a major organ in glucose disposal [98-100]. As a consequence, reduced activity in 

BAT has now been linked to the development of the metabolic syndrome [99, 101]. An 
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important role for brown fat in glucose removal was in practise first suggested in the early 1980s 

- on the basis of the high activity of key glycolytic enzymes [102], together with high rates of 2-

deoxyglucose uptake in the tissue, uptake being stimulated by both insulin and noradrenaline 

[103]. It is noteworthy that in the late 1970s very high rates of lipogenesis were also documented 

in rodent BAT, particularly following cold-acclimation where the tissue is the major site of fatty 

acid synthesis in whole-body terms  [104-106]. 

The importance of insulin sensitivity in BAT thermogenesis was also noted at that time, 

with the development of insulin resistance in the tissue in ob/ob mice being associated with a loss 

in the ability to stimulate thermogenic activity on exposure to cold [107]. The reversal of insulin 

resistance through administration of ciglitazone, the prototype thiazolidinedione, was further 

shown to restore the normal cold-induced increase in GDP binding in the obese mutants [108] 

 

6. Conclusions 

The studies that were initiated on BAT thermogenesis towards the end of the 1970s resulted in a 

paradigm shift in the understanding of nutritional energetics and the development of obesity. 

They also resulted in a substantial shift in our comprehension of the physiological functions of 

brown fat itself. Although the involvement of BAT in energy balance and obesity was incidental 

to the exploration of the fundamental cellular and molecular mechanisms by which heat is 

generated in brown adipocytes, considerable attention was drawn to the tissue because of this 

link and interest in the more basic aspects of how these particular adipocytes function was 

heightened. Certainly, the later discovery of a family of UCPs based on UCP1 would in all 

probability have taken rather longer. 

 The demonstration in the 1980s that UCP1 is present in adipose tissue depots of adult 

humans and that human BAT can be activated, at least in the present of the hypersecretion of 

noradrenaline in phaeochromocytoma, was an important backdrop to the studies on human 

BAT that emerged in the late 2000s following the application of the technique of FDG-PET. In 

the case of human BAT, there is still uncertainty as to whether the tissue can make more than a 

minor contribution to overall energy expenditure in adults. There is, nonetheless, renewed 

interest in BAT as a therapeutic target for the treatment of obesity – whether by activating 

existing brown adipocytes, recruiting new brown fat cells, or by the ‘beiging’ of specific adipose 

tissue depots [97]. Some of the proposed routes by which these options might be achieved are 

extremely challenging, and are in all probablility unrealistic.  

 Adult humans are not the only species where there has been uncertainty as to the 

quantitative importance of BAT to energy expenditure. Despite the early demonstration that 
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BAT is activated in rats exhibiting DIT, the extent to which the tissue accounts for the 

expenditure associated with this facultative process even in rodents is debated. Indeed, it has 

been argued that this is not a function of the tissue [109]; nevertheless, genetic ablation studies 

would seem to provide unequivocal evidence that BAT is central to DIT in rodents [40].  

  

7. Coda – A Personal Note 

Between 29 July and 3 August 1979, the Fourth International Symposium on the Pharmacology 

of Thermoregulation was held at St Catherine’s College, Oxford. One of the organisers, Dr 

Eduard Schönbaum, had become aware of the emerging interest in brown fat as a factor in the 

regulation of energy balance and the development of obesity. He then suggested that some of us 

involved should attend the conference and present our work. When the meeting finished on the 

Friday afternoon, four of us – Jean Himms-Hagen, Nancy Rothwell, Michael (Mike) Stock and I 

- adjourned to the ‘Turf Tavern’, an iconic Oxford pub, for beer and talk. I remember vividly the 

intensity and excitement of that afternoon as we shared thoughts and speculations on the 

possible relationship between brown fat and obesity. For me, there has been nothing quite like 

that afternoon throughout my scientific career, neither before nor since.  

One of the immediate outcomes of our discussions was that Mike Stock, Nancy Rothwell 

and I agreed to collaborate on examining whether the mitochondrial proton conductance 

pathway was activated in rats exhibiting DIT when fed a cafeteria diet. Their iconic paper 

proposing a role for brown fat in DIT was to appear in Nature just a month later (6 September 

1979) [15], and my PhD student Anne Goodbody and I had recently set-up at the MRC Dunn 

Nutrition Laboratory in Cambridge the GDP binding assay to assess thermogenic activity. Mike 

and Nancy subsequently transported rats in the boot of a car (something that would not now be 

permitted) from London to Cambridge where we undertook the GDP binding measurements 

and showed that DIT was indeed associated with an activation of the proton conductance 

pathway in BAT mitochondria. On 20 February 1980 we submitted the findings as a ‘Letter to 

Nature’, and this was published just 4 months later on 17 July [34].  

This collaboration featured in the BBC Horizon science documentary on brown fat - ‘The 

Fat in the Fire’ - which was broadcast in the UK on 10 December 1979. 
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Table 1.  

In vitro measures of the thermogenic activity and capacity of brown adipose tissue 

 

Measure Significance Utility 

   

Tissue mass primarily reflects lipid content minimal 

Tissue total protein crude index of active tissue mass limited 

Cytochrome c oxidase activity index of tissue mitochondrial content high 

Mitochondrial GDP binding index of activity of proton conductance pathway  high 

UCP1 provides measure of thermogenic capacity high 

GDP-sensitive mitochondrial 

respiration 

index of uncoupled respiration high 

Mitochondrial swelling (GDP 

sensitive)* 

indirect measure of proton permeability medium 

Proton conductance* direct measure of proton conductance pathway high  

   

UCP1 mRNA gene expression high 

   

 

These specific measures were employed to varying extents in the decade from 1978. Modified 

from [27]. *little used. 
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Legends to Figures 

 

Fig. 1. A schematic representation of energy flux and energy expenditure in mammals, with the 

buffering role of white adipose tissue. BMR, basal metabolic rate; NEAT, non-exercise activity 

thermogenesis (which has been considered a component of expenditure.  

 

Fig. 2.  Illustration of the stimulation of facultative diet-induced thermogenesis in rats during 

voluntary overfeeding on a cafeteria diet. The metabolisable energy intake, energy deposited and 

energy expenditure of the control (Con) animals fed a standard laboratory diet and the cafeteria-

fed (Cafe) rats is shown. Data adapted from Rothwell and Stock [15]. 

 

Fig. 3. Development of obesity in young ob/ob mice pair-fed to the ad libitum food intake of 

lean (+/+, ob/+) siblings. (a) energy gain, (b) gross efficiency (kJ energy gain/kJ energy intake). 

The difference between lean and ob/ob in energy gain on precisely the same intake is due to the 

reduced energy expenditure of the obese mutants. Data taken from [17].  

 

Fig. 4. Schematic representation of how different physiological and pathological conditions in 

which energy flux and balance alter are characterised by increased or decreased brown adipose 

tissue thermogenesis in experimental animals. The diagram summarises the major situations in 

which BAT thermogenesis changes, which in most cases reflect long-term adaptations. 

 

 

 

 

 

Highlights: 

1. BAT was shown in the late 1970s to be linked to energetics and obesity as well as 

thermoregulation 

2. Studies in the 1980s demonstrated reduced BAT thermogenesis in a range of animal 

obesities 

3. Active BAT was found in adult humans in the 1980s, underpinning the current interest in 

the tissue  
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Highlights: 

1. BAT was shown in the late 1970s to be linked to energetics and obesity as well as 

thermoregulation 

2. Studies in the 1980s demonstrated reduced BAT thermogenesis in a range of animal 

obesities 

3. Active BAT was found in adult humans in the 1980s, underpinning the current interest in 

the tissue  

 



Annex:  Acceptance Information 

  

 
Subject:  Your Submission 

Resent-Date:  Tue, 6 Sep 2016 13:08:37 +0100 

Resent-From:  paul.trayhurn@buckingham.ac.uk  

Date:  Tue, 6 Sep 2016 12:07:31 +0000 

From:  Biochimie <redaction@bioch.fr> 

To:  Paul Trayhurn <paul.trayhurn@buckingham.ac.uk> 

CC:  claude.forest@parisdescartes.fr <claude.forest@parisdescartes.fr>, frederic.bouillaud@inserm.fr 

<frederic.bouillaud@inserm.fr> 
 

 

Ref.:  Ms. No. BIOCHI-D-16-00292R1 

Origins and early development of the concept that brown adipose tissue 

thermogenesis is linked to energy balance and obesity 

Biochimie 

 

Dear Professor Trayhurn, 

 

I am happy to inform you that your manuscript is now accepted for 

publication in Biochimie. 

 

Thank you again for submitting your work to our Journal. 

 

With kind regards, 

 

Claude Forest, Ph.D. 

Editor of Biochimie 

 

 

For further assistance, please visit our customer support site at 

http://help.elsevier.com/app/answers/list/p/7923. Here you can search for 

solutions on a range of topics, find answers to frequently asked questions 

and learn more about EES via interactive tutorials. You will also find our 

24/7 support contact details should you need any further assistance from 

one of our customer support representatives. 

 

When your paper is published on ScienceDirect, you want to make sure it 

gets the attention it deserves. To help you get your message across, 

Elsevier has developed a new, free service called AudioSlides: brief, 

webcast-style presentations that are shown (publicly available) next to 

your published article. This format gives you the opportunity to explain 

your research in your own words and attract interest. You will receive an 

invitation email to create an AudioSlides presentation shortly. For more 

information and examples, please visit http://www.elsevier.com/audioslides. 

 

mailto:paul.trayhurn@buckingham.ac.uk
mailto:redaction@bioch.fr
mailto:paul.trayhurn@buckingham.ac.uk
mailto:claude.forest@parisdescartes.fr
mailto:claude.forest@parisdescartes.fr
mailto:frederic.bouillaud@inserm.fr
mailto:frederic.bouillaud@inserm.fr
http://help.elsevier.com/app/answers/list/p/7923
http://www.elsevier.com/audioslides

	Biochimie
	Biochimie Accept

