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Abstract

This article examines the potential benefits of solving a stochastic DEA model over
solving a deterministic DEA model. It demonstrates that wrong decisions could be
made whenever a possible stochastic DEA problem is solved when the stochastic
information is either unobserved or limited to a measure of central tendency. We
propose two linear models: a semi-stochastic model where the inputs of the DMU
of interest are treated as random while the inputs of the other DMUs are frozen at
their expected values, and a stochastic model where the inputs of all of the DMUs are
treated as random. These two models can be used with any empirical distribution
in a Monte Carlo sampling approach. We also define the value of the stochastic
efficiency (or semi-stochastic efficiency) and the expected value of the efficiency.

Keywords: Data Envelopment Analysis, Stochastic, Input-Output Analysis,
Performance/Productivity

1. Introduction

Data envelopment analysis (DEA) is a technique that fundamentally measures the
efficiency of homogenous entities of interest, which eventually allows identifying the
best performers in the use of resources, pointing out where the potential gains may
be made from possible improvements in efficiency, and helping the non-performers to
achieve their potential. The DEA approach to technical efficiency measurement has
its roots in the works of Koopmans (1951) and Farrell (1957). Later on, this approach
was generalized to situations of multiple inputs and outputs and was reformulated as
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a mathematical programming problem by Charnes et al. (1978, 1979, 1981). Since
then, many approaches have been developed to fulfill the requirement of real-life
modeling, for instance, the additive models (Charnes and Cooper, 1984; Charnes
et al., 1985), the multiplicative models (Charnes et al., 1982, 1983), the assurance
region models (Thompson et al., 1986), and the cone ratio models (Charnes et al.,
1989, 1990). Furthermore, Fried et al. (2008) edited a book on productive efficiency
and productivity analysis, which encompassed over a decade of research from many
known researchers in the field, such as Thanassoulis et al. (2008) and Fried et al.
(2008). Notable surveys in DEA have been proposed by Charnes and Cooper (1984),
Charnes et al. (1985), Banker et al. (1989), Seiford and Thrall (1990), Banker et al.
(1994), Zhou et al. (2008), and Liu et al. (2013b,a).

Conventional DEA has been criticized for not allowing stochastic information
to be incorporated in input and output data, which may, in turn, lead to the
DEA efficiency measures to be sensitive to such information (Udhayakumar et al.,
2011). In this context, in order to incorporate variations in inputs and outputs in
the DEA analysis, Sengupta (1982), for example, generalized the Charnes-Cooper-
Rhodes (Charnes et al., 1981) ratio model by defining the measure of efficiency of
a DMU as the maximum of the sum of the expected ratio of weighted outputs to
weighted inputs and a reliability function subject to several chance constraints. The
concept of Stochastic Frontier Analysis was first proposed by Aigner et al. (1977)
and Meeusen and van der Broeck (1977). Banker and Maindiratta (1992) proposed a
similar semi-parametric DEA model, which has been recently improved by Kuosma-
nen (2008), Kuosmanen and Johnson (2010), Kuosmanen and Kortelainen (2012),
and Kuosmanen et al. (2015). Based on the theory of chance-constrained program-
ming, chance-constrained formulations of DEA were introduced by Sengupta (1989)
and Desai and Schinnar (1987) in order to approach stochastic DEA. The chance-
constrained programming approach was also adapted in the Land-Lovell-Thore (LLT)
model (Land et al., 1993) and in the Olesen and Peterson (OP) model (Olesen and
Petersen, 1995) to derive efficient frontiers that allow a part of the observed input-
output combinations to be located on the wrong side of the frontiers. Furthermore,
Olesen (2006) developed a merged model between the LLT model and the OP model
that combines attractive features of each. The integration of reliability constraints
in the OP chance-constrained model has been recently proposed by Wei et al. (2014).
Additional aspects and applications of chance-constrained DEA models can be found
in Olesen and Petersen (1995), Sueyoshi (2000), Cooper et al. (2002), Chen (2002),
Cooper et al. (2004), and Talluri et al. (2006). Other contributions to the literature
on stochastic DEA can be found in Banker (1986), Banker et al. (1987), Sengupta and
Sfeir (1988), Banker (1993), Huang and Li (1996), Cooper et al. (1998), Li (1998),
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Sueyoshi (2000), Huang and Li (2001), Hall and Simar (2002), Ruggiero (2004),
Simar (2007), and more recently in Branda and Kopa (2016). Recent applications
on DEA dealing with uncertain data can be found in Udhayakumar et al. (2011),
Charles (2014), Brandouy et al. (2015), Tsolas and Charles (2015) and Charles and
Zavala (2017).

Olesen and Petersen (2015) have provided a review of Stochastic Data Envelop-
ment Analysis in which they categorize the extensions of DEA into three directions:
(i) extensions where deviations from the deterministic frontier are considered as ran-
dom variables, (ii) extensions that integrate the random noise due to measurement
errors, sample noise, or specification errors, and (iii) extensions that consider the
Production Possibility Sets as stochastic. In this review, the Management Science
framework is also opposed to the econometric framework in relation to the conclu-
sions that could be drawn from the results.

It is to be noted that the above approaches suffer from a major drawback: they
call for a continuous probability distribution. In other words, while maintaining
the model size intact, nonlinearities increase the complexity of the problem. In this
article, we propose to overcome this drawback by means of a two-stage stochastic
program in a Monte Carlo sampling approach that can be used with any empiri-
cal distribution. Based on the Management Science framework, two linear models
are proposed: a semi-stochastic model where the inputs of the DMU of interest are
treated as random while the inputs of the other DMUs are frozen at their expected
values, and a stochastic model where the inputs of all of the DMUs are treated as
random. We also define the value of the stochastic efficiency (or semi-stochastic
efficiency) and the expected value of the efficiency. For the sake of simplicity, the
proposed models only consider random inputs, the generalization to random inputs
and outputs being straightforward. To our knowledge, a two-stage stochastic pro-
gramming approach has not been dealt in the DEA literature.

2. Deterministic DEA model

Let J = {DMUj, j = 1, . . . , n} be a set of decision making units (DMUs). We
consider the problem of evaluating the relative efficiency of the DMUs while trans-
forming a set M of inputs and a set P of outputs, where the inputs m ∈ M for
the DMU j ∈ J are denoted by the non-negative matrix X =

(

xmj

)

|M |×|J |
, and

the outputs n ∈ N for the DMU j ∈ J are denoted by the non-negative matrix
Y =

(

ynj
)

|N |×|J |
. The input and output data being known, the objective is to eval-

uate the performance of one of the DMUs, i.e., the DMU of interest designated as
DMU0 and associated with the non-negative input and output vectors x0 = [xm0]
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and y0 = [yn0]. The dual problem to a linear programming reformulation of the
original fractional programming problem, in line with the Banker-Charnes-Cooper
input-oriented DEA model (BCC) (Banker et al., 1984), is as follows:

(P1) min φ (1)

s.t.
∑

j∈J

ypjλj ≥ yp0, ∀p ∈ P (2)

∑

j∈J

xmjλj ≤ φxm0, ∀m ∈ M (3)

∑

j∈J

λj = 1, (4)

λj ≥ 0, ∀j ∈ J (5)

where λj coefficients are called structural variables, and φ is the so-called efficiency
score, which lies in the closed interval [0, 1]. If φ is less than one, a proportional
reduction of all of the inputs is needed in order to reach the efficient frontier. This
reduction is given by (1−φ)x0 which means that the projected unit given by (x0,y0)
is weakly efficient in DEA terminology. No further radial reduction of all of the inputs
is possible given the present amount of outputs. It is possible that, in order to be
DEA-efficient, further individual reductions or increases in some inputs and outputs
are required. To evaluate these mix-inefficiencies one needs to resort to an extra
multifaceted BCC model, in which a non-Archimedean element has to be introduced
in the model. The said non-Archimedean element guarantees that the sum of the
slacks is always maximized without altering the value of the efficiency scores at the
optimum. This condition, introduced by Charnes et al. (1979), is needed in order
to ensure that the projected unit belongs to the efficient frontier. If one wishes to
discriminate between efficient and weakly efficient DMUs, then slack variables are
introduced. In this case, the mathematical formulation of DEA, in line with the
BCC model, is defined as follows:

(P2) min φ− ǫ





∑

m∈M

s−m +
∑

p∈P

s+p



 (6)

s.t.
∑

j∈J

ypjλj − s+p = yp0, ∀p ∈ P (7)
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∑

j∈J

xmjλj + s−m = φxm0, ∀m ∈ M (8)

∑

j∈J

λj = 1, (9)

s−m ≥ 0, ∀m ∈ M (10)

s+p ≥ 0, ∀p ∈ P (11)

λj ≥ 0, ∀j ∈ J (12)

where s−m and s+p are the input and output slack variables, respectively, and ǫ is
a non-Archimedean infinitesimal number. The optimization of the model (P2) is
a two-stage process: the first stage optimizes model (P1), i.e., φ is minimized so
as to obtain the purely technical efficiency, while the sum of the slack variables is
maximized to yield a measure of mix-inefficiency in the second stage. The resulting
objective function lies in the closed interval [0, 1] and the DMU of interest is said to
be efficient when it takes the value one.

Definition 1. The DMU of interest (DMU0) is technically strongly efficient if and
only if φ∗ is equal to one and all of the slack variables are equal to zero.

Definition 2. The DMU of interest (DMU0) is technically weakly efficient if and
only if φ∗ is equal to one and at least one of the slack variables is non-zero.

3. DEA model with stochastic variables

Using the above model we can extend our characterization to stochastic input
variables. Let K be the set of stochastic inputs, Ω be the finite set of all of the real-
izations, and the non-negative matrix X(ω) =

(

xkj(ω)
)

|K|×|J |
where xkj(ω) denotes

the stochastic input k ∈ K for DMUj (here, the functional forms X(ω) and xkj(ω)
are used to show the explicit dependence on ω, not to denote their realizations); we
consider the problem of evaluating the relative efficiency of the n DMUs with |M |
deterministic inputs and |K| stochastic inputs used to produce |P | outputs. Except
for the stochastic inputs, all other inputs and outputs are known. The objective
is to evaluate the performance of DMU0, the DMU of interest, associated with the
non-negative input and output vectors x0, x0(ω) =

[

xk0(ω)
]

, and y0. The math-
ematical formulation of DEA in the presence of stochastic inputs, in line with the
BCC Banker et al. (1984) input-oriented model, is as follows:

(P3) min φ (13)
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s.t.
∑

j∈J

ypjλj ≥ yp0, ∀p ∈ P (14)

∑

j∈J

xmjλj ≤ φxm0, ∀m ∈ M (15)

∑

j∈J

xkj(ω), λj ≤ xk0(ω) ∀k ∈ K (16)

∑

j∈J

λj = 1, (17)

λj ≥ 0, ∀j ∈ J. (18)

This is the first stage program, by which the first stage variables λj, defined for an
estimated value of the stochastic inputs, are determined here and now before their
actual value xkj(ω) becomes known.

If δk(ω) = xk0(ω) −
∑

j∈J

xkj(ω)λj denotes the second stage decision variables

for each stochastic input k ∈ K and πk is a positive penalty associated with the

discrepancy between xkj(ω) and
∑

j∈J

xkj(ω)λj, then we solve the following program:

(P4) min
∑

k∈K

πk|δk| (19)

s.t. δk(ω) = xk0(ω)−
∑

j∈J

xkj(ω)λj, ∀k ∈ K (20)

where xkj(ω), xk0(ω), and λj are known, and so are ypj, xmj, and πk. The problem
of determining a recourse vector δ most economically, once the actual value of the
stochastic inputs xkj(ω) becomes known, is called the second stage program. Three
cases arise:

Expected value of the efficiency (EVE). A natural temptation is to solve a simpler
problem by allowing the random inputs of every DMU to freeze at their respective
expected values, i.e.:

δk = E
[

xk0(ω)
]

−
∑

j∈J

E
[

xkj(ω)
]

λj, k ∈ K (21)

where E [•] denotes the expected value among all of the realizations ω ∈ Ω. The
corresponding problem is known as the expected value problem or the mean value
problem.
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Semi-stochastic efficiency (SSE). Another option would be to allow the random in-
puts of the DMU of interest to vary and to freeze the random inputs of all of the
other DMUs at their mean points, i.e.:

δk(ω) = xk0(ω)(1− λ0)−
∑

j∈J\{0}

E
[

xkj(ω)
]

λj, k ∈ K. (22)

Stochastic efficiency (SE). A third option is to allow the random inputs of all of the
DMUs to vary, i.e.:

δk(ω) = xk0(ω)−
∑

j∈J

xkj(ω)λj, k ∈ K. (23)

Let us derive the semi-stochastic efficiency model; the expected value of the effi-
ciency and the stochastic efficiency models can be derived in line with the following
arguments. Program (P4) is equivalent to finding δ+k (ω) and δ−k (ω) which solves:

(P5) min E





∑

k∈K

πk

(

δ+k (ω) + δ−k (ω)
)



 (24)

s.t. δ+k (ω)− δ−k (ω) = xk0(ω)(1− λ0)−
∑

j∈J

E
[

xkj(ω)
]

λj, ∀k ∈ K, ∀ω ∈ Ω

(25)

δ+k (ω) ≥ 0, ∀k ∈ K (26)

δ−k (ω) ≥ 0, ∀k ∈ K (27)

where xkj(ω), xk0(ω), and λj are known. The slack variable δ−k (ω) represents the
overachievement of the kth stochastic constraint whereas the slack variable δ+k (ω)
represents its underachievement. Combining (P3) and (P4), the two stage stochastic
program is reduced to the following convex program:

(P6) min φ+ E







∑

k∈K

πk

∣

∣

∣

∣

∣

∣

xk0(ω)(1− λ0)−
∑

j∈J\{0}

E
[

xkj(ω)
]

λj

∣

∣

∣

∣

∣

∣






(28)

s.t.
∑

j∈J

ypjλj ≥ yp0, ∀p ∈ P (29)
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∑

j∈J

xmjλj ≤ φxm0, ∀m ∈ M (30)

∑

j∈J

λj = 1, (31)

λj ≥ 0, ∀j ∈ J. (32)

In (P5), the penalties πk are associated with the slack variables δ+k (ω) and δ−k (ω).
It is to be noted that it does not make sense to use the same penalty for positive
and negative violations. Hence, we can associate different penalties π+

k and π−
k with

the slack variables δ+k (ω) and δ−k (ω), respectively. Then, (P6) can be rewritten as
follows:

(P7) min φ+ E





∑

k∈K

(

π+
k δ

+
k (ω) + π−

k δ
−
k (ω)

)



 (33)

s.t.
∑

j∈J

ypjλj ≥ yp0, ∀p ∈ P (34)

∑

j∈J

xmjλj ≤ φxm0, ∀m ∈ M (35)

δ+k (ω)− δ−k (ω) = xk0(ω)(1− λ0)−
∑

j∈J\{0}

E
[

xkj(ω)
]

λj, ∀k ∈ K, ∀ω ∈ Ω (36)

∑

j∈J

λj = 1, (37)

λj ≥ 0, ∀j ∈ J (38)

δ+k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω (39)

δ−k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω. (40)

In view of (P2), the above model can be rewritten as:

(P8) SSE = min φ+E





∑

k∈K

(

π+
k δ

+
k (ω) + π−

k δ
−
k (ω)

)



− ǫ





∑

m∈M

s−m +
∑

p∈P

s+p





(41)

s.t.
∑

j∈J

ypjλj − s+p = yp0, ∀p ∈ P (42)

∑

j∈J

xmjλj + s−m = φxm0, ∀m ∈ M (43)
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δ+k (ω)− δ−k (ω) = xk0(ω)(1− λ0)−
∑

j∈J\{0}

E
[

xkj(ω)
]

λj, ∀k ∈ K, ∀ω ∈ Ω (44)

∑

j∈J

λj = 1, (45)

λj ≥ 0, ∀j ∈ J, (46)

δ+k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω (47)

δ−k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω (48)

s−m ≥ 0, ∀m ∈ M (49)

s+p ≥ 0, ∀p ∈ P. (50)

It is worth noting that the objective function lies in the closed interval [0, 1] and
is equal to one if and only if the DMU of interest is semi-stochastically efficient.

In a similar way, we obtain the following stochastic efficiency model:

(P9) SE = min φ+ E





∑

k∈K

(

π+
k δ

+
k (ω) + π−

k δ
−
k (ω)

)



− ǫ





∑

m∈M

s−m +
∑

p∈P

s+p





(51)

s.t.
∑

j∈J

ypjλj − s+p = yp0, ∀p ∈ P (52)

∑

j∈J

xmjλj + s−m = φxm0, ∀m ∈ M (53)

δ+k (ω)− δ−k (ω) = xk0(ω)−
∑

j∈J

xkj(ω)λj, ∀k ∈ K, ∀ω ∈ Ω (54)

∑

j∈J

λj = 1, (55)

λj ≥ 0, ∀j ∈ J (56)

δ+k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω (57)

δ−k (ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω (58)

s−m ≥ 0, ∀m ∈ M (59)

s+p ≥ 0, ∀p ∈ P (60)

and the expected value of the efficiency model:

(P10) EV E = min φ+
∑

k∈K

(

π+
k δ

+
k + π−

k δ
−
k

)

− ǫ





∑

m∈M

s−m +
∑

p∈P

s+p



 (61)
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s.t.
∑

j∈J

ypjλj − s+p = yp0, ∀p ∈ P (62)

∑

j∈J

xmjλj + s−m = φxm0, ∀m ∈ M (63)

δ+k − δ−k = E
[

xk0(ω)
]

−
∑

j∈J

E
[

xkj(ω)
]

λj, ∀k ∈ K (64)

∑

j∈J

λj = 1, (65)

λj ≥ 0, ∀j ∈ J (66)

δ+k ≥ 0, ∀k ∈ K (67)

δ−k ≥ 0, ∀k ∈ K (68)

s−m ≥ 0, ∀m ∈ M (69)

s+p ≥ 0, ∀p ∈ P. (70)

Definition 3. The DMU of interest, DMU0, is said to be technically strongly stochas-
tic efficient if and only if the following conditions are all satisfied when solving (P9):

i) φ∗ = 1,

ii) δ∗+k (ω) = δ∗−k (ω) = 0, ∀k ∈ K, ∀ω ∈ Ω,

iii) s∗+p = s∗−m = 0, ∀(p,m) ∈ P ×M .

It is said to be technically strongly semi-stochastic efficient when the same con-
ditions are all satisfied when solving (P8), and technically strongly efficient when (i)
and (iii) along with δ∗+k = δ∗−k = 0 are satisfied for any k ∈ K when solving (P10).
The DMU of interest is said to be technically weakly semi-stochastic efficient and
technically weakly efficient, respectively, for problems P(8) and P(10), when (i) is
satisfied and at least one of the conditions (ii) and (iii) is not satisfied when solving
P(8), and when (i) is satisfied and at least one of the conditions δ∗+k = δ∗−k = 0 and
(iii) is not satisfied for any (k, p,m) ∈ K × P ×M when solving P(10).

Proposition. SE ≥ EV E.

Proof. Let X ′ =
{

(

xkj(ω)
)

| k ∈ K, j ∈ J \ {0}, ω ∈ Ω
}

be the set of coefficients in

the constraints (54) corresponding to all of the DMUs except the DMU of interest,

and let X ′′ =
{

[

xk0(ω)
]

| k ∈ K,ω ∈ Ω
}

be the set of coefficients corresponding to

the DMU of interest. If we express SSE as a function Z
(

X ′, X ′′
)

, we can rewrite
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EV E as Z
(

E
[

X ′
]

, E
[

X ′′
]

)

. As Z is convex in X ′ and X ′′ (see Proposition 4.2 in

Birge and Louveaux (2011) for a proof of the convexity of SE), by Jensen’s inequality,
we have:

Z
(

X ′, X ′′
)

≥ Z
(

E
[

X ′
]

, E
[

X ′′
]

)

, (71)

that is:
SE ≥ EV E. (72)

Proposition. SSE ≥ EV E.

Proof. Let X ′ =

{

E
[

(

xkj(ω)
)

]

| k ∈ K, j ∈ J \ {0}

}

be the set of coefficients in

the constraints (44) corresponding to all of the DMUs except the DMU of interest,

and let X ′′ =
{

[

xk0(ω)
]

| k ∈ K,ω ∈ Ω
}

be the set of coefficients corresponding to

the DMU of interest. If we express SSE as a function Z
(

X ′, X ′′
)

, we can rewrite

EV E as Z
(

X ′, E
[

X ′′
]

)

. Since Z is convex in X ′ (see Proposition 4.2 in Birge and

Louveaux (2011) for a proof of the convexity of SSE), by Jensen’s inequality, we
have:

Z
(

X ′, X ′′
)

≥ Z
(

X ′, E
[

X ′′
]

)

, (73)

that is:
SSE ≥ EV E. (74)

4. Value of the stochastic and semi-stochastic efficiency

According to Birge (1982), the value of the stochastic solution (VSS) indicates the
gain from solving the recourse problem rather than its expected value counterpart,
i.e., the problem in which the random parameters are replaced with their expected
values. A large VSS means that uncertainty greatly affects the optimal solution and
that solving the expected value model would not be relevant. In the same manner,
we name the difference between the SE and the EV E as the value of the stochastic
efficiency (VSE), where:

V SE = SE − EV E, (75)

and the difference between the SSE and the EV E as the value of the semi-stochastic
efficiency (VSSE), where:

V SSE = SSE − EV E. (76)
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A numerical illustration

Six experiments (E1, . . . , E6) have been carried out with 10 DMUs (j ∈ {1, . . . , 10})
including one controllable input X, one stochastic uncontrollable input X(ω), and a
constant output Y . The output variable is equal to 100 across all of the DMUs. In
a Monte Carlo sampling approach, two thousand scenarios have been generated for
the uncontrollable input Xj(ω), which follows, for the sake of simplicity, a normal
distribution with the mean 20, and the standard deviation defined as sj = 1 + 0.5j
for the jth DMU. It is to be noted that one can use any empirical distribution instead
of normal distribution. We fixed the value of Xj to 10 + (j − 1)∆, for the first three
experiments, and the value of X11−j to 10 + (j − 1)∆ for the last three experiments,
where ∆ ∈ {1, 2, 3}.

For all of the experiments, we computed SE, SSE, and EV E, and reported in
Figures 1 to 4 the efficiency and the value of the objective function of each model
(P9, P8, and P10). In Figure 1, the mean stochastic efficiency is decreasing with
the ∆, and so does the consistency. For the DMUs 1 to 6, the stochastic efficiency
is decreasing with the ∆. We observe that the phenomenon is reversed from DMU 7
onwards due to a higher variance of the uncontrollable input. As DMUs 9 and 10
have an even higher variance, they retain their positions on the frontier, irrespective
of the ∆. This phenomenon is perfectly observed in experiments 4 to 6 in Figure 2,
where the DMUs 6 to 10 are stochastically efficient. In Figures 1 to 4, we observe
that propositions 1 and 2 hold. In the first three experiments (Figures 1 and 3), the
variance of the stochastic input and the value of the deterministic input are both
increasing from DMU 1 to DMU 10, and this reflects the respective increase in the
value of the stochastic efficiency.

In the last three experiments (Figures 2 and 4), where the variance of the stochas-
tic input increases from DMU 1 to DMU 10, and the value of the deterministic input
is decreasing from DMU 1 to DMU 10, we observe that the V SE and V SSE decrease
with either the lower stochasticity or the lower controllable input among all of the
DMUs.

5. Conclusions

A stochastic and a semi-stochastic DEA models are proposed and compared with
the deterministic DEA model. We show that the difference between the SE or the
SSE and the deterministic efficiency is non-negative, and so we define the V SE and
the V SSE, respectively. It is worth noting that the proposed models do not call for
any specific theoretical statistical distribution: they can be used with any empirical
distribution.
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This paper demonstrates that solving a stochastic DEA problem by using a DEA
model with expected values of the random inputs could lead to wrong decisions.
Indeed, the DMU of interest could be erroneously discarded from the efficient frontier
when the stochastic information is either unobserved or limited to a measure of
central tendency.
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Figure 1: Stochastic efficiencies and Value of the stochastic efficiencies for E1, E2, and E3
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Figure 2: Stochastic efficiencies and Value of the stochastic efficiencies for E4, E5, and E6
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Figure 3: Semi-stochastic efficiencies and Value of the stochastic efficiencies for E1, E2, and E3
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