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ABSTRACT 

Mammography is one of the most common and effective techniques used by 

radiologists for the early detection of breast cancer. Recently, computer-aided 

detection/diagnosis (CAD) has become a major research topic in medical imaging and 

has been widely applied in clinical situations. According to statics, early detection of 

cancer can reduce the mortality rates by 30% to 70%, therefore detection and diagnosis 

in the early stage are very important. CAD systems are designed primarily to assist 

radiologists in detecting and classifying abnormalities in medical scan images, but the 

main challenges hindering their wider deployment is the difficulty in achieving 

accuracy rates that help improve radiologists’ performance. 

The detection and diagnosis of breast cancer face two main issues: the accuracy of the 

CAD system, and the radiologists’ performance in reading and diagnosing 

mammograms. This thesis focused on the accuracy of CAD systems. In particular, we 

investigated two main steps of CAD systems; pre-processing (enhancement and 

segmentation), feature extraction and classification. Through this investigation, we 

make five main contributions to the field of automatic mammogram analysis. 

In automated mammogram analysis, image segmentation techniques are employed in 

breast boundary or region-of-interest (ROI) extraction. In most Medio-Lateral Oblique 

(MLO) views of mammograms, the pectoral muscle represents a predominant density 

region and it is important to detect and segment out this muscle region during pre-

processing because it could be bias to the detection of breast cancer. An important 

reason for the breast border extraction is that it will limit the search-zone for 

abnormalities in the region of the breast without undue influence from the background 

of the mammogram. Therefore, we propose a new scheme for breast border extraction, 

artifact removal and removal of annotations, which are found in the background of 

mammograms. This was achieved using an local adaptive threshold that creates a 

binary mask for the images, followed by the use of morphological operations. 

Furthermore, an adaptive algorithm is proposed to detect and remove the pectoral 

muscle automatically.  

Feature extraction is another important step of any image-based pattern classification 

system. The performance of the corresponding classification depends very much on 
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how well the extracted features represent the object of interest. We investigated a range 

of different texture feature sets such as Local Binary Pattern Histogram (LBPH), 

Histogram of Oriented Gradients (HOG) descriptor, and Gray Level Co-occurrence 

Matrix (GLCM). We propose the use of multi-scale features based on wavelet and local 

binary patterns for mammogram classification. We extract histograms of LBP codes 

from the original image as well as the wavelet sub-bands. Extracted features are 

combined into a single feature set. Experimental results show that our proposed method 

of combining LBPH features obtained from the original image and with LBPH features 

obtained from the wavelet domain increase the classification accuracy (sensitivity and 

specificity) when compared with LBPH extracted from the original image.  

The feature vector size could be large for some types of feature extraction schemes and 

they may contain redundant features that could have a negative effect on the 

performance of classification accuracy.  Therefore, feature vector size reduction is 

needed to achieve higher accuracy as well as efficiency (processing and storage). We 

reduced the size of the features by applying principle component analysis (PCA) on the 

feature set and only chose a small number of eigen components to represent the 

features. Experimental results showed enhancement in the mammogram classification 

accuracy with a small set of features when compared with using original feature vector.  

Then we investigated and propose the use of the feature and decision fusion in 

mammogram classification. In feature-level fusion, two or more extracted feature sets 

of the same mammogram are concatenated into a single larger fused feature vector to 

represent the mammogram. Whereas in decision-level fusion, the results of individual 

classifiers based on distinct features extracted from the same mammogram are 

combined into a single decision. In this case the final decision is made by majority 

voting among the results of individual classifiers.  

Finally, we investigated the use of super resolution as a pre-processing step to enhance 

the mammograms prior to extracting features. From the preliminary experimental 

results we conclude that using enhanced mammograms have a positive effect on the 

performance of the system. Overall, our combination of proposals outperforms several 

existing schemes published in the literature. 
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Chapter 1  

Introduction 

Breast cancer is a major global health problem in the world. It is the main cause of 

mortality amongst women. Excluding skin cancers, breast cancer is the most commonly 

diagnosed cancer amongst women in the USA. Also, it comes as the second leading 

cause of cancer-related death (Kwan1, et al., 2009). It affects women over the age of 

15 (usually between 35-55 years) as well as men over the age of 40 (Senthilkumar & 

Umamaheswari, 2011). Reports from 2007 have shown an estimated 178,480 newly-

diagnosed cases of breast cancer and 40,460 deaths from the disease amongst women 

(Tang, et al., 2009). Moreover, reports from the World Health Organization’s (WHO) 

International Agency for Research on Cancer in Lyon-France, shows that more than 

150,000 women around the world die from breast cancer each year (Yu & Guan, 2000). 

Given the high mortality rates associated with breast cancer, early detection remains 

the key to ameliorating its prognosis (Xue, et al., 2010) (Deserno, et al., 2011) (Khuzi, 

et al., 2009). The death rate in the UK shows that for every 100000 females there are 

around 36 death cases caused by breast cancer, while the rate is less than 1 for every 

100000 males (Cancer Research, UK, 2014). 

Mammography is known as one of the effective tools for earlier breast cancer detection. 

It is a screening tool used to examine the human breast by using low-dose amplitude 

X-rays. Here, asymptomatic women with no clinical suspicion for breast cancer are 

screened using screening mammography and this has reduced the mortality rate by 30-

70% (Linguraru, et al., 2006). Two imaging projections of each breast are routinely 

obtained as part of the human test, Cranio-Caudal (CC) and Medio-Lateral-Oblique 

(MLO) views, as shown in Figure 1.1. 

When reading a mammogram, in the majority of cases, a specialist radiologist would 

identify a radiographic abnormality; however, there is a chance of missing the same 

abnormality under different circumstances. So, the probability of false negatives is 

high. Retrospective studies (Christoyianni, et al., 2002) (Winsberg, et al., 1967) (Marx, 

et al., 2004) have shown that 10 to 30% of the cancers are undetected due to radiologist 

fatigue, the complex structure of the breast tissue, and the subtlety of the cancer. It was 
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hoped that with the aid of Computer Aided Detection (CAD) schemes, this lack of 

consistency of the human observer may be overcome when used as a reminder or 

“second opinion” (Masala, 2006) (Sampat, et al., 2008). Results have shown that the 

performance of radiologists can be improved by providing them with the results of a 

CAD system. Radiologist's performance can be improved by providing them with the 

results of a CAD system.  

 

 

 

Figure 1.1 : Cranial-Caudal (CC) view and Medio-Lateral-Oblique View (MLO) (Molloy, 1997) 

Nowadays, Computer-aided detection/diagnosis (CAD) is an integral part of the 

process adopted by radiologists and Oncology specialists in detecting breast cancer 

from mammograms produced at most screening centres and hospitals. In fact, over the 

last few years CAD has been developed and incorporated in the detection and 

differential diagnosis of a variety of abnormalities in medical images obtained from 

different scanning schemes (Doi, 2007).  

Therefore, it was felt that a high performance CAD system is needed to be designed in 

order to help radiologists to detect cases of breast cancer early, hence, reducing, or even 

eliminating, the rate of mortality amongst women with the disease. 

In this thesis we will investigate a method to breast border extraction and pectoral 

muscle removal. Also we classify the mammogram to normal and abnormal by 



3 

 

extracting textural feature and fuse the features in two different level (feature level 

fusion and classification level fusion). Finally, we will investigate the use of super-

resolution methods to enhance the mammogram classification.  

1.1 Challenges in a CAD System 

The large set of images produced by screening mammogram tests constitutes a huge 

workload for the relatively few radiologists that need to interpret these mammogram 

images. Thus, the computerized mammographic analysis will have a great impact in 

terms of easing the workload and assisting in the detection of the breast cancer.  

In CAD systems, detecting an abnormality is difficult because of the characteristics and 

structure of breast abnormalities. Sometimes mass and micro-calcifications are 

superimposed and hidden in the dense tissue, therefore this makes the segmentation of 

a correct region of interest (ROI) difficult. A wide range of features of the abnormality 

(e.g. shape, margin and density) and their low visibility within the surrounding tissue 

makes the computer aided detection and diagnosis of breast abnormalities a challenge.   

A typical CAD system includes a number of steps: pre-processing and segmentation, 

feature extraction, feature reduction (selection), and classification. Each step has its 

challenges and the outcome of one affecting the result of the next. Before a digitized 

mammogram is analyzed by a computer, it must be segmented into its representative 

anatomical regions. Accurate segmentation of the breast region in mammograms is a 

key pre-processing step in the analysis of mammograms. This step is essential for 

confining the relevant search regions that may contain the suspect abnormalities and 

reduce excessive influence from the irrelevant background regions of the mammogram. 

 Examples of background information that must be segmented and excluded from the 

mammogram region are types of noise observed in mammograms that include high 

intensity rectangular label, low intensity label and tape artifacts (Tzikopoulos, et al., 

2011).  

The pectoral muscle should always appear as a high-intensity, triangular region across 

the upper posterior margin of the image on a proper MLO view. We deal with this kind 

of challenge in details in chapter four of this thesis by proposing breast border 

extraction and pectoral muscle suppression as a part of the pre-processing step. 

Automatically extracting and selecting appropriate features that will give the best 

classification accuracy results is a difficult task. Furthermore, the choice of a classifier 
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has a great influence on the final result. Again we deal with these kinds of challenges 

in detail by investigating several features extraction techniques, feature fusion, feature 

reduction (selection), and classification in chapters five and six of this thesis. Finally, 

in chapter seven we will investigate the use of super-resolution to enhance the 

mammogram prior to feature extraction. 

1.2 Thesis Motivation  

Since the cause of breast cancer is still not certain, prevention against breast cancer 

remains a challenge. However, there is a chance of complete recovery if the efficient 

diagnosis of breast cancer was made at an early stage. In other words, early detection 

of breast cancer can play a key role in reducing the associated morbidity and mortality 

rates. Advances have been made in the diagnosis of breast cancer at earlier stages of 

development using radiographic breast imaging and screening programs; however, 

figures show that 10-30% of biopsy-proven malignant cases are missed due to various 

factors and reasons such as technical problems in the imaging procedure, abnormalities 

that are not apparent, and abnormalities that are misread (Shinde, 2003). 

As mentioned above, a high percentage of breast cancer cases can be missed by 

conventional screening mammography. Therefore, this fact motivates us to create and 

design Computer-aided detection/diagnosis (CAD) systems, which use advanced 

image analysis techniques to detect abnormalities in mammograms. Separating 

mammogram images to the normal and abnormal case is defined as the first step 

towards detecting abnormality or to help radiologists in making a diagnosis.       

1.3 Thesis Aims and Contributions 

A high performance CAD system is needed to be designed in order to help radiologists 

to detect cases of breast cancer in an early stage, thereby, reducing, or even eliminating, 

the rate of mortality amongst women with the disease. 

Our primary objective is to investigate and develop reliable algorithms designed to 

automate the computer- based aspects of the process of detecting and classifying 

abnormalities in digital mammograms. In particular we aim to eventually provide a 

Computer-Aided Detection/Diagnosis (CAD) system to improve existing tools and 

help facilitate comprehensive screening systems.  

In order to satisfy our aims expressed above, the main contributions of this thesis can 

be stated as follows: 
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 Developed and proposed a scheme to remove irrelevant parts of the mammograms 

to prepare the image for feature extraction. This resulted in obtaining a higher 

mammogram classification accuracy when compared to using all mammograms 

parts. Irrelevant parts are breast region background and muscles of the breast, 

especially in MLO view images which causes a negative effect on the classification 

accuracy of the CAD system.  

 Different types of texture feature extraction schemes such as Local Binary Pattern 

(LBP), wavelet based multiscale LBP, Gray Level Co-occurrence Matrix (GLCM), 

and Histogram Oriented Gradient (HOG), have been investigated. We propose 

multi-scale features based on wavelet and local binary patterns for mammogram 

classification. Furthermore, two different classifiers, namely K-Nearest Neighbour 

(KNN) and Support Vector Machine (SVM) are discussed and investigated.  

 Propose to use PCA to reduce the dimension of very large feature sets (e.g. HOG 

features, multiscale LBPH) and demonstrated that a very small feature vector could 

be used without compromising classification accuracy. The small feature sets 

improve efficiency (processing and storage) of the system.  

 Propose the use of the feature and decision fusion to obtain better mammogram 

classification accuracy and overcome the limitation of using single feature type 

mentioned above. We show that decision level fusion can lead to significant 

improvement in classification accuracy, similar to a number of radiologists 

examining the same mammogram to arrive at a diagnosis.   

 Propose the use of super resolution to enhance mammograms prior to feature 

extraction. Experimental results show an improvement in classification 

accuracy. However, further research is required to establish a deeper 

understanding of the effects of super-resoling mammograms on the final 

classification.  

1.4 Thesis Outline 

The rest of the thesis is organised as follows: 

 Chapter two: A theoretical background about the main focuses subjects are given 

in details. Focused subjects are breast cancer, mammography, and CAD system. 

For each subject, important terminology and concepts are explained such as in the 

breast cancer field, the risk factors are given, in mammography field, 

mammography projection and challenges of reading mammogram images 
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explained, while in the CAD system field, the architecture of any CAD system 

given as well as evaluation measurements of any CAD system are discussed. At the 

end of the chapter properties of used databases are given. 

 Chapter three: provides literature survey about the CAD system, pre-processing 

step, and feature extraction methods to classify mammogram images.  

 Chapter four: proposes a method for mammogram border extraction and pectoral 

muscle removal. The experimental results show that using segmented mammogram 

images by our proposed method has better classification accuracy than using 

original mammograms. 

 Chapter five: a number of texture-based features are investigated for mammogram 

classification. We propose the use of multiscale LBPH features in combination with 

existing features to represent mammograms. Results of experiments on two 

databases are discussed here. Also we present the use of PCA to reduce the number 

of features while keeping the classification accuracy at the same level or even 

increase it when compared with using original feature sets. 

 Chapter six: proposes the use of the feature and decision fusion to increase 

mammogram classification accuracy.    

 Chapter seven: proposes the use of super resolution to enhance mammograms 

prior to feature extraction. Several experiments will be conducted to evaluate the 

effects of super resolution on mammogram classification.  

 Chapter eight: ends the thesis by presenting our overall conclusions and direction 

of future research work.  

1.5 List of Publications 

 

Peer Reviewed Paper: 

1. Taban F. Majeed, Naseer Al-Jawad and Harin Sellahewa, “Breast Border Extraction 

and Pectoral Muscle Removal in MLO Mammogram Images”, Fifth Computer 

Science and Electronic Engineering Conference (CEEC 2013), September 17-18, 

2013, University of Essex, Colchester, United Kingdom. 
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Posters: 

1. Taban F. Majeed, Naseer Al-Jawad and Harin Sellahewa, “Breast Border 

Extraction and Pectoral Muscle Removal in MLO Mammogram Images”, in 

BioTrinity 2013 - European Biopartnering and Investment Conference - May 14-

16, 2013, Newbury Berkshire, United Kingdom. 

2. Taban F. Majeed, Naseer Al-Jawad and Harin Sellahewa, “Breast Border Extraction 

and Pectoral Muscle Removal in MLO Mammogram Images”, in 9th London 

Hopper poster competition, 23 May 2013, London, United Kingdom. 

 

 

 

 

 

 

http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2018910&Name=Harin+Sellahewa
http://profiles.spiedigitallibrary.org/summary.aspx?DOI=10.1117%2f12.2018910&Name=Harin+Sellahewa
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Chapter 2  

Background  

This chapter gives a general background to cancer and includes definitions of cancer 

especially breast cancer, types of cancer appears in the breast, and risk factors of the 

breast cancer. Mammography and its use in detecting the breast abnormality are 

explained in Section 2.2. A brief description of CAD systems, their advantages for 

detecting breast abnormality, system architecture, and system evaluation are presented 

in Section 2.3. Finally, the mammogram databases used in this thesis will be described 

in Section 2.4. Readers familiar with the general background on breast cancer and 

mammography may skip Sections 2.1 and 2.2. 

2.1  Breast Cancer  

This section presents important background information on breast cancer. 

2.1.1 What is Cancer?  

The human body is composed of millions of cells. Normally, body cells grow, multiply 

and then die in a programmed and controlled way. The rate at which body cells divide 

and grow varies with age. In infancy and childhood, normal cells divide faster to allow 

for growth. In adult life, some cells differentiate and specialize and hence stop dividing, 

while others divide only to replace cells lost either through injury or after cell death. 

The whole processes of cell growth and division is under close monitoring by different 

mechanisms in the body to keep the processes well controlled. 

A group of conditions where the human body's cells begin to grow and divide in an 

uncontrolled fashion is called cancer. When cancer arises from epithelial cells it is 

called ‘carcinoma’. Six biological capabilities characterise cancer cells and they 

constitute what is called ‘hallmarks of cancer’. These biological capabilities are 

obtained during the multistep development of human tumours and include self-

sufficiency in growth signals, evading growth suppressors, evasion of apoptosis 

(programmed cell death), limitless, replicative potential, the induction of angiogenesis, 

and tissue invasion and metastasis, cancer cells seize nutrients from normal cells, and 
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then encroach on the surrounding tissues. Cancer cells can even detach from tumour 

and metastasis to other parts of the human body via the lymphatic or vascular systems 

(i.e. spreading of cancer from one part of the body to another). Genome instability is 

pivotal in the development and maintenance of these hallmarks (Samulski, 2006) 

(Sample, 2003) (Hanahan & Weinberg, 2011) (Che Kuo, et al., 2014).  

2.1.2 What is Breast Cancer?  

Breast cancer is the most common cancers in the UK. Each year, approximately 50,000 

women are affected by breast cancer in the UK. Amongst these, 80% are over 50; 

however, younger women, and in rare cases men, can also get the disease (UK.GOV, 

2010). In the United States the breast cancer has become the second leading cause of 

cancer death in women. The World Health Organization's statistics show that around 

519,000 women worldwide will die of breast cancer (Elshinawy, 2010). 

The female breast is composed of lobules (glands that produce milk), ducts (the milk 

carrier from the lobules to the nipple), and stroma (adipose and connective tissue 

surrounding the ducts and lobules with blood and lymphatic vessels). Figure 2.1 show 

the anatomy of female breast (da Fonseca, February 2013) (NIH, September, 2009). 

  

 

 

Figure 2.1: The part of female breast: image from www.breastcancer.org 
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Many cases of breast cancer arise from cells that line the breast ducts (ductal cancers), 

but cells that line the lobules are also the source other cancers (lobular cancers). Breast 

cancer has adverse effects on mammary gland and cancer cells can metastasize (i.e. 

break away from the breast tumour and disperse to other parts of the body via the 

lymphatic system. Therefore, the lymphatic drainage of the breasts is very relevant to 

oncology(Society, 2009). 

2.1.3 Breast Tumours  

Breasts tumours can be classified into three types: benign breast tumours, in situ breast 

cancers, and invasive breast cancers (Samulski, 2006) (Sample, 2003).   

2.1.3.1 Benign Breast Tumours  

This type of breast neoplasm forms the majority of breast tumours detected by 

mammography.  As the name implies, these are noncancerous growths and lack the 

capability to invade surrounding tissues or spread to other organs. Most benign tumour 

cases can be left alone if they show no symptoms and create no complications. The 

examinations or imaging scans needs to ensure that the tumour is not growing. In some 

cases it is difficult to distinguish certain benign masses cases from malignant lesions 

cases with mammography scans. 

2.1.3.2  In Situ Cancer 

In situ breast cancer (non-invasive breast cancer) is where the cancer cells have not 

invaded the basal membrane and are fully contained in the lobule or the duct. It is at a 

stage where it has not spread to the surrounding tissues in the breast or other parts of 

the body. However, it has the potential to develop into a more serious invasive cancer.  

Depending on whether the carcinomatous cells arise from the ducts or the lobules, two 

types of non-invasive breast cancer available: (i) ductal carcinoma in situ (DCIS) which 

is named as stage 0 cancer that has not spread beyond the ductal system (i.e. to the 

lymph nodes or other parts of the human body). The chance of overcoming this kind of 

cancers can be increased by taking the proper treatment, (ii) lobular carcinoma in situ 

(LCIS), the LCIS type of cancer is more difficult to detect using the mammography 

compared with DCIS cases. LCIS cases are usually discovered when the patient is 

being investigated and biopsied for another kind of abnormality. Therefore for early 

detection of breast cancer, the recommendation by American Cancer Society includes 
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a clinical examination every three years for women aged between 20 to 39 years, and 

at the age 40, the annual mammography screening should start. Another optional 

recommendation of monthly breast self-examination starts from 20 years old is made 

to the American Cancer Society. 

2.1.3.3  Invasive Cancer 

Cancer is said to be invasive when cancer cells have broken through the basal 

membrane and spread into the surrounding tissue. Here the chance of metastasis 

increases considerably. The American Cancer Society shows that age is an important 

factor in developing breast cancer among women, so women under age 45 have more 

chance of contracting invasive breast cancer diseases. Unfortunately, two thirds of 

invasive breast cancer cases are only diagnosed at the age of 55 or more (Samulski, 

2006). 

Other risk factors include race, geography, socioeconomic status, family history, 

genetics, exposure to radiation, obesity, and alcohol intake (see Section 2.1.4 for risk 

factors). The most common form of breast cancer is invasive ductal breast cancer. 

There are other types of breast cancer which are classed as special types such as 

invasive lobular breast cancer and some rare types of breast cancer.  Invasive ductal 

breast cancer accounts for about 80% of all cases of breast cancer. The invasive ductal 

breast cancer has a number of possible symptoms, for example change of the breast 

size and shape, lump or thickening of the breast tissue or skin puckering or dimpling 

of the skin, swelling under the arm, discharge from the nipple, and constant pain in the 

breast or armpit. Less commonly, a type of rash involving the nipple. 

It is worth mentioning that the stage of breast cancer at the time of detection dictates 

the success of any subsequent treatment. The stage of a tumour often takes into account 

its size, depth of penetration whether there is any invasion to adjacent organs, whether 

there is metastasis to regional lymph nodes, and if so how many lymph nodes, and 

whether it has spread to distant organs .  

2.1.4 Risk Factors 

The exact causes of breast cancer are still not known; however, there are some factors 

that increase the risk of developing the disease. These include early menarche or late 

menopause, family history of breast cancer, taking combined hormone replacement 

therapy (HRT) containing oestrogen and progesterone, the risk of breast cancer is 
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strongly related to age, certain dietary factors and some lifestyle factors including 

excessive consumption of alcohol over many years, excessive smoking over many 

years, physical inactivity and being overweight (increased levels of fat tissue-derived 

oestrogen). Women with dense breast tissue (when the breast is mostly composed of 

glandular and connective tissue with scanty amount of fatty tissue) manifested in 

mammograms as a larger area of dense tissue for the breast if it compares with the 

mammogram of the women of the same age are at higher risk of breast cancer (Society, 

2009). 

2.2 Mammography 

Many different techniques for imaging have been produced such as (X-ray, Magnetic 

Resonance Image (MRI), and ultrasound). However, mammography is the technique 

that is used most widely to detect breast cancer at early stages. Digital mammography 

represents an advanced form of x-ray mammography. Here, a special electronic x-ray 

detector is used to capture the breast image and the image is converted into a digital 

picture which is then stored on a computer. The magnification, orientation, brightness 

and contrast of the mammogram image may be changed after the exam is finished to 

enhance the clarity of the digital mammogram images and to help the radiologist to see 

certain zones clearly. The advantages of digital mammography over traditional film 

mammography are (i) faster image acquisition, (ii) examination time is shorter, (iii) 

easier processes of image storage, (iv) low cost when compared to other techniques 

such MRI, and (v) transmission to other health professionals. In addition, it facilitates 

computer processing analysis of breast images which results in greater accuracy in 

breast cancer detection (Hashimoto, 2008) (The Independent UK Panel on Breast 

Cancer, October 2012). 

2.2.1 Objects (Lesions) in Mammogram Image  

There are certain characteristic lesions that characterize breast cancer; these include 

microcalcifications, masses, and architectural distortions. Bilateral asymmetry may 

also hint towards breast cancer. 

Microcalcifications are tiny lesions (typically 0.05 - 1 mm) on mammograms. Their 

minute sizes make them relatively difficult to detect. Beside their minute and variable 

sizes, they are bright, of different shapes and distribution, and in some cases of low 

contrast making them even harder to spot. Furthermore, their proximity to the 

http://www.macmillan.org.uk/Cancerinformation/Cancertypes/Breast/Aboutbreastcancer/Thebreasts.aspx
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surrounding dense tissues adds to the difficulty in detection because of considerable 

overlapping between normal and suspicious tissues. To further complicate the picture, 

some anatomic structures such as fibrous strands, breast margins or hypertrophied 

lobules mimic microcalcifications in their mammographic appearance. Accurate 

identification of microcalcifications is paramount for an early detection of the majority 

of breast cancer cases, because their presence is strongly correlated with breast cancer, 

particularly when they appear in clusters (Bozek, et al., september, 2008) (de Cruz, 

July, 2011). 

The morphology of the microcalcifications is an important indicator of the nature of 

the underlying pathology. Generally larger, round and oval shaped calcifications with 

uniform size are in favour of a benign lesion; whereas, calcifications that are smaller, 

irregular, heterogeneous in size and morphology and of arborizing nature are in favour 

of being malignant (de Cruz, July, 2011). 

On mammograms, masses appear as dense regions in the breast that are of different 

sizes and properties. The categorization of masses is based on their shape, density, and 

margins. Regarding the shape, masses could be round, oval, lobular, or irregular as 

shown in Figure 2.2. The margins can be described as circumscribed (well-defined with 

clearly demarcated borders), or obscured (margins are not clear because of overlapping 

by adjacent tissue). With regard to density, masses could be either of high density, low 

density, equal density, or fat containing. This categorization helps radiologists in the 

precise description of masses found in mammograms and in commenting on masses as 

either benign or potentially malignant (Sample, 2003) (Rangayyan, 2005). 

 

Figure 2.2 Shapes of mass (adapted from (Yacoub, et al., 2006)) 
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Architectural distortions on a mammogram basically refer to a disruption in the normal 

radiating or arbitrary pattern of the parenchyma. With no visible centre or mass, they 

are very variable and hence very difficult to detect (de Cruz, July, 2011). 

2.2.2 Mammograms Projection  

The mammograms have two important projections of the breast:  

a)  Medio-Lateral Oblique side view: this facilitates making almost the whole breast 

visible commonly including lymph nodes which taken at an angle. In this view, the 

pectoral muscle will appear in the upper part of the mammogram images. 

b)  Cranio-Caudal view: CC view is one of the two standard projections in a screening 

mammography. The CC view is taken from top to bottom. It must show the medial 

part as well the external lateral portion of the breast as much as possible (Varjonen, 

et al., 2007). Figure 2.3 illustrates the two most common types of breast projections. 

  

a- Medio-Lateral Oblique b- Cranio-Caudal 

 

Figure 2.3:  Mammogram Projections                     

2.2.3 Breast Image Reporting  

BI-RADS are an acronym for Breast Imaging- Reporting and Data System. It was 

developed by the American College of Radiology (ACR). The system is designed to 

standardize reporting. Each category provides the overall assessment related to the 

findings and the necessary follow up. The radiologist assigns a BI-RADS category 0 to 

6 as the final imaging result (Eberl, et al., 2005) (Hashimoto, 2008) 

 Category 0 Incomplete Assessment: this type needs more imaging evaluation or 

prior mammogram images for comparison. 

 Category 1 Negative: Nothing appears to comment on. 



15 

 

 Category 2 (Benign Finding): this type is negative mammogram images. Although 

in some cases, the radiologist may find something and describe it as calcified fibro 

adenomas, or fat-containing lesions such as (oil cysts)…etc. The mammogram did 

not show any evidence of malignancy. 

 Category 3 (Probably Benign): Initial follow-up suggested. 

 Category 4 (Suspicious abnormality): Biopsy should be considered. 

 Category 5 (Highly suggestive of malignancy): Appropriate action should be the 

probability of being cancer. 

 Category 6: The biopsy-proven malignancy mammogram. 

2.2.4 Challenges in Reading Mammogram   

The difficulties faced by radiologists when detecting breast abnormality on 

mammograms images is based on some factors such as the resolution of the 

mammogram and the location of the abnormality within the breast tissue. Generally, 

the smaller the size of the lesion and the more deeply situated within a dense breast 

tissue the more difficult is its detection by the radiologist. As a result, it might be 

necessary to take several other images from different views to help the radiologist in 

making a diagnosis. It is worth mentioning that the younger the patient, the more 

difficult it is to detect a lesion on a mammogram; this is because younger patients have 

denser breast tissues, and this will hinder the process of detecting lesions on 

mammograms. In most of these cases, it would be very important a biopsy taken in 

order to arrive at the final diagnosis since diagnosis by the mammogram is difficult.  

Many statistics show that 30% of breast cancers are undetected (Elshinawy, 2010). 

Double reading is needed to reduce the rate of missing cancers among radiologists. 

Double reading means that two radiologists will read the same mammogram. This 

method has been proven to overcome or reduce the missing rate of cancer but with a 

major drawback which is the high cost and work load on radiologists. 

Because of the aforementioned difficulties, radiologists hold regular meetings to assess 

their performance in interpreting mammograms. This is conducted via asking a number 

of radiologists to interpret a set of mammograms, and each radiologist is asked to write 

his/her report. Reports from all the radiologists are then compared and plotted on a 

curve to rate the individual performance of each of them. This procedure sheds light on 

the fact that two different radiologists might comment differently on the same 
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mammogram especially if the target lesion is small or obscured by dense breast  tissue 

(Elshinawy, 2010) (Bozek, et al., september, 2008). 

2.3 CAD Systems  

In the following section, we explain the general idea about the Computer Aided-

Detection and Diagnosis systems (CAD), followed by CAD architecture of the 

mammogram system. Finally, we present statistical measurements such as Sensitivity, 

Specificity, and Accuracy that are used to evaluate the performance of CAD 

algorithms.   

2.3.1 What is a CAD System? 

Double reading of mammograms has been applied to reduce the proportion of the 

misclassified cancers; this is performed by two radiologists read the same mammogram 

images. However, the workload and cost associated with double reading are relatively 

high. Instead of double reading, a Computer Aided Detection and Diagnosis system 

(CAD) is used as a second reader and the final decision is made by the radiologist, 

which is referred to as the “second pair of eyes of the radiologists”.  

The CAD system employs digital image processing procedures to detect a variety of 

abnormalities in mammogram images including calcifications, masses, and 

architectural distortion. Expert radiologists can benefit from such procedures that can 

be of great benefits to early detection of breast cancer which can consequently lower 

mortality rate among women with breast cancer (Tang, et al., 2009) (Brown, et al., 

1996). 

The Food and Drug Administration of United states (FDA of U.S) has approved 

commercially available computer aided detection and diagnosis systems to aid 

radiologists. Examples of commercial CAD system are iCAD and R2 Technology 

ImageChecker®. The iCAD is designed to help radiologists and other health care 

providers detect cancer early.R2 Technology ImageChecker®, is a software 

application used by radiologists for analyzing two dimensional digital mammography 

images. This system is designed to search for features that may be associated with 

breast cancer and mark them (Senthilkumar & Umamaheswari, 2011). Here, an asterisk 

is used to mark masses while microcalcification clusters are marked with a triangle.  
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2.3.2 CAD Architecture  

Computer-Aided Detection and Diagnosis is designed to provide the radiologist with 

visual prompts on series of mammograms. When the detection algorithm identifies a 

suspicious lesion that necessitates further assessment, the system marks those areas on 

the mammogram to highlight them. This way, the radiologists' interpretations will be 

complemented. A typical CAD scheme includes the following main stages: Pre-

processing, Segmentation, Feature extraction (analysis), and Classification. Figure 2.4 

shows the typical processes of CAD system (Masala, 2006) (Costaridou, 2005). 

 

Figure 2.4: CAD architecture 

 

 In the pre-processing step, the subtle features of interest are enhanced and the 

unwanted characteristics of the image are de-emphasized. The better description of 

the objects of interest as a result of the enhancement improves the sensitivity of the 

detection system. In the pre-processing step, the contrast of the region of interest is 

enhanced, the margins of abnormalities are sharpened, and noise suppression is 

performed (Costaridou, 2005). 

 In the segmentation step, segmentation algorithms have two important principal 

purposes. The first one is the segmentation methods used to separate the abnormality 

in the mammogram images from the normal tissue. The second one is the 

segmentation methods used to split the mammogram image to different components 

Pre-processing 
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(background, breast tissue, and pectoral region). The breast tissue is segmented from 

the image to reduce the amount of image to be analysed by follow-on steps in 

screening (Sample, 2003). 

 Feature extraction is one of the most important parts of the system that effect the 

CAD performance. Researchers in this field investigate two feature types: (i) those 

traditionally used by radiologists (gradient-based, intensity-based and geometric 

features). (ii) high order features that may not be as intuitive to radiologists such as 

(texture features). An important issue in any CAD system is selecting the best type 

of features to classify the mammogram images. Taking the single type of feature 

might not be significant for the classification accuracy but when combined with 

another type of features might be very significant. The success of classification tasks 

depends on the use of the most discriminating features. The availability of a large 

set of features that can be extracted from mammograms necessitates the use of 

carefully designed feature selection schemes that aim to select an appropriate 

smaller feature subset of the available set of features, that leads to improved 

classifier performance (Masala, 2006).  

 The classification represents the last step and involves classifying suspicious areas 

of mammograms into their types such as normal, benign, or malignant tissue. The 

same classification techniques used in another field of image processing and pattern 

recognition used for mammograms as well such as Neural networks, Bayesian belief 

network, Supported vector machine, and K-nearest neighbour. One problem in this 

manner is how to select the extracted features suitable for various classifiers (Zhang, 

et al., 2008). 

2.3.3 Evaluation of CAD System 

The statistical measures of the performance of detection algorithms generally use three 

indices: sensitivity, specificity and accuracy: 

Sensitivity: is the proportion of women positively diagnosed by CAD system as having 

breast cancer out of those truly diagnosed as having breast cancer by the gold standard 

test. 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 (2.1) 
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Where: True positive (TP) means results obtained by CAD system identifying cancer 

cases are compatible with the gold standard diagnostic test results, and false negative 

(FN) means  the pathological cases missed by CAD system. 

Specificity: is the proportion of women truly diagnosed as not having breast cancer 

and left alone by CAD system. 

 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁) +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
 (2.2) 

 

Where: True negative (TN) means the CAD system results were compatible with the 

conventional results as not having the disease, and false positive (FP) means cancer 

cases been identified by CAD system despite the fact that they are not cancer by the 

gold standard test. Since sensitivity and specificity are proportions, their value will 

range between 0 and 1; when the value of sensitivity is equal to 1, it means that all 

cases detected as abnormal are actually abnormal in reality. Similarly, when the value 

of specificity equals to 1, this means that all cases diagnosed as normal are in fact 

normal in reality (Shinde, 2003) (Lee, December, 2006) (Yacoub, et al., 2006). We can 

represent the above terminologies by Table 2.1. 

Table 2.1: CAD system evaluation terminology 

  Gold Standard 

  
Positive (Biopsy demonstrated 

malignancy) 
Negative (Biopsy demonstrated 

Benign) 

CAD 
Positive TP FP 

Negative FN TN 

To further explain sensitivity and specificity in the context of CAD system, an example 

is assumed where we have 1000 women to be tested by CAD system. The result of 

biopsy shows that 800 of the cases are positive (malignant), and 200 of the cases are 

negative (benign). The result of CAD system is as shown in Table2.2. 
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Table2.2: CAD measure example 

  Gold Standard 

  
Positive (Biopsy demonstrated 

malignancy) 
Negative (Biopsy demonstrated 

Benign) 

CAD 
Positive 700 50 

Negative 100 150 

Therefore: Sensitivity= (700/800) = 0.875, i.e. out of 100 women screened by CAD, 

87.5% will be truly positive, and 12.5% will be falsely negative i.e. will receive false 

reassurance and the disease progress to advance stages before being diagnosed later 

which adversely affect prognosis. 

Specificity= (150/200) =0.75, i.e. out of 100 women screened by CAD, 75% will be 

truly negative while 25% will be falsely positive. Those false positive cases might 

receive unnecessary investigation and treatment wasting avoidable resources. 

Moreover, the diagnosis will put unnecessary stress on the patients and their families 

(Akobeng, 2007).  

Accuracy: is the proportion of true results to the total number of cases (normal and 

abnormal). It is a testing parameter defined as follows: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (2.3) 

2.4 Mammogram Image Databases  

We need to use a database of mammogram images for a reasonable size population in 

order to test the performance of any mammogram classification scheme. These tests 

are conducted according to certain protocols of separating mammograms to testing and 

training sets for classification purpose that is decided according to one of the 

mammogram classifiers. There are a number of benchmark mammogram databases that 

have been recorded for the purpose of experiments; each meets certain criteria 

regarding structure/kind of the mammograms (Dense, Fatty, or glandular) and (normal, 

benign, or malignant).  

In this thesis, we used the two most commonly used mammogram databases that are 

publicly available for research purposes; the Mini Mammographic Image Analysis 

Society (Mini-MIAS) and the Digital Database for Screening Mammography (DDSM). 

The choice of these databases is based on the fact that, in our application, we face 

difficulty to collect real cases. On the other hand, we aimed to use mammograms that 
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are not captured in controlled conditions, and these databases include sufficient noise 

and low resolution problem, to investigate challenges in such kind of databases for the 

researchers.   

2.4.1 Mini-MIAS Database 

The MIAS database is freely available for scientific research purposes (Suckling, et al., 

1994). The database consists of 322 mammograms gathered from 161 pairs of Medio-

lateral oblique (MLO) views (right and left view). Mammograms originate from a film-

screen imaging process in the United Kingdom, National Breast Screening Program 

(Suckling, et al., 1994). Originally, the MIAS Database images were digitised at 50 

micron pixel edge, but were reduced to 200 micron pixel edge and clipped/padded for 

of research purposes so that every mammogram is of size 1024 × 1024 pixels resolution 

with 8-bits per pixel. The new reduced mammogram database called is Mini-MIAS. 

Depending on the intensity of the mammograms, the database is partitioned into three 

classes: fatty, glandular and dense. There are 106 fatty mammograms (67 normal and 

39 abnormal), 104 glandular mammograms (67 normal and 37 abnormal) and 112 

dense mammograms (76 normal and 36 abnormal). Two example mammograms of 

each class are shown in Figure 2.5.  

    

Figure 2.5: Examples of different tissue types available in the Mini-MIAS database 

   

   

(a) Fatty (b) Glandular (c) Dense 
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The database includes different types of abnormalities, including calcifications, well-

defined Spiculated or ill-defined masses, architectural distortion or asymmetry. The 

severity of each abnormality is also descried, i.e. benignancy or malignancy.  

2.4.2 DDSM Database 

 The commonly used Digital Database for Screening Mammography (DDSM) is a 

benchmark for testing new proposals dealing with processing and analysis of 

mammograms for breast cancer detection (Heath, et al., 2001). It contains 2620 cases, 

each with mammograms captured from four views (Medio-Latral Oblique and Cranio 

Caudal) for each case. The mammograms were obtained from Massachusetts General 

Hospital, Wake Forest University School of Medicine, Sacred Heart Hospital and 

Washington University of St. Louis School of Medicine. The database was completed 

in the fall of 1999. Original images were digitised with three different sampling rates 

(i.e. 42, 43.5, and 50 micron pixel edges) with different resolutions and two different 

grey levels (12 or 16 bits per pixel). For experimental purposes, most researches fixed 

the size of images cropping and converting the grey levels to only 8-bits grey values. 

Images containing suspicious areas have associated pixel level "ground truth" 

information about the locations and types of suspicious regions. Some samples of the 

ROIs are shown in Figure 2.6. 

   

   

 

Figure 2.6: Sample mass ROIs first row and normal ROIs second row 
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Chapter 3  

Literature review 

Several types of research in the area of computer aided detection and diagnosis systems 

are available, each of the researches discuss the area depend on their view of the 

subject. Clearly, it is impossible to include all existing approaches in this chapter. We 

here focus on publications and works related to our research and provide a brief 

description of the main points of the approaches. We separated our literature into three 

main parts. Firstly in Section 3.1 we review CAD breast systems, in general, how CAD 

systems work and the different problems or limitations they have. Section 3.2 reviews 

the literature on pre-processing techniques used in automatic mammography systems. 

This is followed by a review of feature extraction and classification techniques used 

for mammogram analysis. Finally, the chapter concludes with a brief summary of the 

overall literature review.    

3.1 General CAD System 

Computer-aided detection and diagnosis systems play a key role in the early detection 

of breast cancer and help to reduce the mortality rate and increase the survival rate 

(Tang, et al., 2009). Subramaniam et al. (Subramaniam, et al., 2006), presented and 

described a multi-components (referred to as categories) system that they developed 

for breast cancer diagnosis. The data extraction category discusses methods to improve 

the process of obtaining breast tissue and record mammogram and MRI (Magnetic 

Resonance Imaging) in order to aid the medical personal to interpret the images 

obtained from the breast. They also describe adequate ways of data interpretation that 

help improving diagnosis. Miscellaneous components are focused on implementing 

telemedicine in breast diagnosis systems. 

Digital image processing techniques play an important role in helping to perform breast 

biopsies. The role is more for abnormal regions that cannot be felt but can be seen or 

detected using a conventional mammogram or with using ultrasound. Therefore, before 

we design a CAD system we need to have knowledge about the differences between 
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normal breast and abnormal breast tissues. In (Das, et al., 2009) comparison between 

normal breast tissue and malignant invasive breast tissue was conducted using a series 

of image processing steps. The comparison also included normal ductal epithelial cells 

versus ductal / lobular invasive carcinogenic cells. Rangayyan et al. (Rangayyan, et al., 

2007) presented an overview of digital image processing and pattern analysis 

techniques which aimed to address several areas in a CAD system used to detect breast 

cancer such as: contrast enhancement, detection and analysis of calcifications, 

detection and analysis of masses and tumours, analysis of bilateral asymmetry, and 

detection of architectural distortion.  In (Bozek, et al., september, 2008) a description 

of the lesions that could be detected and diagnosed utilizing developed computer-aided 

detection and diagnosis methods were made. This paper point out further developments 

is required in CAD algorithms to improve the detection and diagnosis of breast 

abnormalities using computers.   

Masala (Masala, 2006) presents a broad outline of Computer Aided Detection and 

highlights how CAD systems are correctly used. It also outlines the typical situation 

where CAD systems can be utilized in the most helpful way. The design of the CAD 

software for mammography falls within the framework of the MAGIC-5 collaboration. 

A comparison is made between the newly designed CAD software and the commercial 

CAD.  But (Tang, et al., 2009) is aimed at providing an overview of CAD systems and 

related techniques developed in recent years, the latest progress that have been achieved 

in the development of CAD systems and related techniques.  Thereafter, the focus will 

be on the chief CAD techniques developed lately for breast cancer, including detection 

of calcifications, detection of masses, detection of architectural distortion, detection of 

bilateral asymmetry, image enhancement, and image retrieval.  

In the review paper (Senthilkumar & Umamaheswari, 2011), Computer aided detection 

and diagnosis are discussed given the mammography-based approach. Here, every 

technique utilized in each stage of Computer aided detection and diagnosis is 

explained. This to include the collected information about mammogram databases, 

CAD systems and also the techniques that have been used to gauge the performance of 

the systems. In this paper (Zhang, et al., 2008) the author has investigated the most 

advanced computer aided detection systems for digital mammograms. 

The authors in (Sampat, et al., 2008) highlighted the need to improve the previous 

studies and presented two studies on how to improve the performance of existing 
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Computer aided detection and diagnosis algorithms. The first study proposed a new 

evidence-based algorithm for the detection of spiculated masses (SM) and architectural 

distortions (AD), using the statistics of the physical characteristics of these 

abnormalities to establish the appropriate parameters. The combination of information 

and features extracted from multiple views was the principle input into the second study 

while aiming at improving the performance of current diagnosis systems. 

It is designed to look at the correspondence of features from multiple views. It attempts 

to tackle the key issue of whether recruiting data from multiple views can really help 

to provide further insight to the diagnosis problem. A CBIR system was presented in 

(Deserno, et al., 2011). In this system, the pattern for image retrieval encompasses the 

use of breast density along with the existence of a breast lesion. A comprehensive 

system evaluation was continued based on a considerably enlarged database to include 

3,375 mammograms of totally 12 classes. This work contributes to (i) CBIR-CAD of 

mammography, (ii) producing a system that can assist radiologists in their diagnosis, 

or (iii) useful as a pre-processing step for CAD systems for breast lesions classification. 

From above overview, we had seen that until now there is not any general CAD system 

that works perfectly without any errors. Therefore, we provided a brief review here of 

the published reviews of different CAD techniques for breast cancer detection and 

diagnosis specifically.   

In summary, a variety of different algorithms and techniques have been used to improve 

the performance of CAD systems, and no specific techniques have proved to work 

better than other. 

3.2 Pre-processing (Segmentation) 

As a pre-processing step for any automatic mammography image analysis, the 

mammogram is segmented in order to reduce the search zone for abnormalities without 

undue influence from a background of the mammogram image. As we mentioned in 

chapter two, the advantages of using the segmentation processes include reduction of 

noise and edge-shadowing effect, accurate detection of ROI for pectoral muscle, and 

suppress the pectoral muscle successfully. This way, the processed mammogram can 

be used for the automated detection of human breast abnormalities such as calcification, 

masses (circumscribed, spiculated, ill-defined), asymmetry analysis… etc. 
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The pectoral muscle is a high-intensity that must be removed. Other image pre-

processing procedures include the removal of different types of noise, high intensity 

rectangular label, together with low intensity label and tape artefacts (Tzikopoulos, et 

al., 2011).  Pectoral muscle appears at approximately the same density as the dense 

tissues of interest within the breast border in the mammogram image. Therefore, 

segmentation of pectoral muscle is important to limit the search for the relevant breast 

abnormalities. Evaluating the success of segmentation and classification techniques, 

are dependent on using available mammography image databases, especially Mini-

MIAS (Suckling, et al., 1994). Traditional segmentation method for breast border 

contour detection was done manually or semiautomatic (Chandrasekhar & Attikiouzel, 

1996) using devices such as a computer mouse.  These methods are tedious and 

undesirable in today’s practices. 

 Earlier methods for automatic identification of the pectoral muscle were based on the 

use Hough transform proposed by Karssemeijer (Karssemeijer, 1998). The Sobel 

operator was used to calculate the gradient image within a triangular ROI extracted. 

Then the Hough transform was performed on the gradient image to detect the pectoral 

boundary. The Hough space can be viewed as an accumulator array of parameter values 

representing all possible straight lines, with peaks (i.e. local maxima in the region) 

corresponding to straight lines in the image. A threshold is used to eliminate all 

elements of the accumulator array that are not a local maximum in this window. From 

the remaining candidate points in the area of the pectoral muscle, segmented by the 

corresponding line in the image, only one peak was selected to be was inversely 

transformed into the image space and all pixels above the line in the ROI were marked 

as the pectoral muscle. When tested for 615 digitized mammograms, exact agreement 

with the manual process was obtained in 65% of the cases. 

 Kwok (Kwok, et al., 2004)  proposed a new method consisting of two major 

components. First, the pectoral muscle boundary was approximated with a straight line, 

which was then refined to a curve using an iterative cliff detection. The straight line 

was estimated within the ROI based on iterative threshold selection and straight line 

fitting incorporating a gradient test. The resulting line was validated to adjust the ROI 

and perform the second estimation. The new straight line was then used to initialise the 

cliff detection, where the intensity profiles along a set of search paths perpendicular to 

the straight line were analysed, and the cliff locations were detected by fitting the 
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smoothed profile to a sigmoid function. This procedure was performed iteratively to 

obtain a more accurate curve. Finally, a closed region was generated to segment the 

pectoral muscle. This method was adaptive to large variations in edge strength and 

texture of the pectoral boundary. In addition, it remained effective when the pectoral 

boundary was partially obscured by overlaid glandular tissue or artifacts. Two 

radiologists assess the result of the segmentation method, radiologist 1 rated 75.5% 

images as acceptable for the straight line segmentation and 87.0% images for curve 

segmentation, while radiologist 2 rated 52.8% images for straight line segmentation 

and 67.1% for curve segmentation. In the same year, Ferrari (Ferrari, et al., 2004) 

presented two method, the first method depends on Hough transform to detect the 

pectoral muscle and the second method based on the Gabor wavelet filter bank. For 

enhancing the pectoral muscle edge with the region of interest containing the pectoral 

muscle, the scheme starts by convolving a group of Gabor filters which are specially 

designed for this purpose. The technique tested on the set of 84 MLO mammograms 

from the Mini-MIAS database, the accuracy of the method evaluated by using 

Hausdorff Distance Measure HDM for the first method HDM is equal to 7.08±5.26 and 

for the second method, HDM is equal to 3.84±1.73. We must note that the second 

method proposed to overcome the limitation of the hypothesis of a straight-line 

representation of the pectoral muscle for the first method (Ferrari, et al., 2000), which 

was a modification of the method proposed by Karssemeijer (Karssemeijer, 1998). 

In contrast to the edge based methods, Raba (Raba, et al., 2005) present a region 

growing technique for segmenting a digital mammogram into breast region and 

background with pectoral muscle suppression. An intensity threshold estimation was 

used to locate the pectoral muscles in the mammogram. Firstly, the breast orientation 

was identified by detecting the curvature on each side of the breast. Secondly, a seed 

point was placed at the first pixel of the non-curved side. Finally, the region growing 

started from this seed point to fill the pectoral muscle based on an intensity criterion. 

A constraint on the size of the grown region was applied to avoid an overgrown region. 

The technique tested on the set of 320 mammogram images from the Mini-MIAS 

database; the results are obtained from a visual inspection by experienced radiologist 

they obtained 86% of good extractions for the muscle subtraction. We should note that 

for the dense tissues which appear near the pectoral muscle, the region-growing 

algorithm may produce segmentation leakage in which dense tissues are included in 

pectoral muscle region, for this reason, we should notice that some of the results are a 
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little bit over or under segmented. Also in (Mirzaalian, et al., 2007) a new method was 

proposed for detecting the pectoral muscle in MLO mammograms using nonlinear 

diffusion algorithm. The algorithm was tested on only 90 mammogram images selected 

from Mini-MIAS database. The result shows that this method outperforms the method 

in (Kwok, et al., 2004). A hybrid method for the pectoral muscle detection using bit 

depth reduction and wavelet decomposition was proposed by Mustra (Mustra, et al., 

2009). Only 40 mammograms are used to test the method. The results of pectoral 

muscle segmentation are divided into three groups Good 47.5%, acceptable 37.5% and 

unacceptable 15%. The work in (Nagi, et al., 2010) uses morphological operations as 

a pre-processing and seeded region growing (SRG) method used to detect and delete 

noises, suppress artifacts, separate background region from the breast region, and 

remove the pectoral muscle. 

Recently, detection of pectoral muscle boundary based on a graph-cut-based image 

segmentation technique and Bezier curve are presented by Camilus (Camilus, et al., 

2010), the method evaluated by using 84 images from mammographic image analysis 

society database. The mean false positive and false negative rates are respectively as 

0.64% and 5.58%. Authors in (Chen & Zwiggelaar, 2010) proposed a method based on 

histogram thresholding, edge detection in scale space, contour growing, polynomial 

fitting and region growing. The method tested 240 mammograms from EPIC database; 

the result were visually rated as four categories: accurate, nearly accurate, acceptable 

and unacceptable.  For the breast background segmentation, 66.5% are accurate, 25% 

are nearly accurate, 6.9% are acceptable, and 1.6% are unacceptable. For the pectoral 

muscle removal, we have obtained 62.5% accurate, 25.4% nearly accurate, 5.6% 

acceptable, and 6.5% unacceptable segmentations. Also in (Vaidehi & Subashini, 

2013) authors proposed a method to remove the pectoral muscle depend on drawing a 

straight line then using a threshold to detect the pectoral muscles, the method evaluated 

by using 120 images from the Mini-MIAS database, the accuracy was 85% were 

compared with manually drawn by the radiologist. The work by (Vikhe & Thool, 2016) 

proposed an intensity based approach for pectoral muscle boundary detection in 

mammograms, the simple filter mask of 3×2 has been applied with few coefficients to 

enhance the pectoral region. The significance of the designed filter is, it considers the 

direction along with transition gray level intensity changes across the pectoral region 

compares to conventional enhancement filter. After pectoral enhancement, row and 

column wise search approach has been applied to the candidates to obtain the pectoral 
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boundary points, based on threshold technique (black dots). The boundary points are 

finally connected to detect the pectoral muscle. The method was tested on 320 digitized 

mammograms form Mini-MIAS database. The result was visually rated as three 

categories: accurate 87.19%, acceptable 9.37%, and inaccurate 3.44%. 

All the aforementioned papers focused on obtaining the image of the breast tissue 

without the pectoral muscle using different techniques to remove the pectoral muscle. 

Not only they have used various techniques to remove the pectorals, but they also have 

used different databases and chosen a different number of images as their random 

sample. It can be noted that there is a common diagnostic problem that is encountered 

in these studies, that is, the problem of a dense breast tissue. This is because a dense 

breast tissue has a radiological intensity that is similar to the intensity of the muscle 

making the process of distinguishing between the two troublesome. 

The rather modest accuracy rate for the above methods, coupled with the complexity 

of their implementation,  was the motivatestion to propose and design new methods to 

remove the pectoral muscle, extract the breast border, and remove labels and artefacts. 

The new methodology we adopted in (Majeed, et al., 2013) has the advantage of 

recruiting all the images available on Mini-MIAS database, thus accounting for the 

higher accuracy rate, without excluding any images for the purposes of breast border 

extraction and pectoral muscle removal for more details see Chapter 4 of this thesis. 

Table 3.1 shows the summary of the pre-processing (segmentation) techniques 

available in the field. 

 

 

 

 

 

 

 

 



30 

 

 

Table 3.1: Pre-processing (segmentation) techniques summary  

Author & Year Approach Database Performance 

(Karssemeijer, 1998) Sobel operator and Hough 

transform 

615 571 a pectoral muscle was 

segmented 

(Ferrari, et al., 2000) The Hough transform and 

edge detection 

84 Mini-MIAS FP= 1.98±6.09%, 

FN=25.19±19.14% 

(Ferrari, et al., 2004) The Hough transform and 

Gabor filters 

84 Mini-MIAS HDM= 7.08±5.26 and 

3.84±1.73 

(Kwok, et al., 2004) Edge detection using cliff 

detection 

322 MIAS 83.9%  adequate 

(Raba, et al., 2005) Region growing 320 Mini-MIAS 86% good 

(Camilus, et al., 2010) Curve fitting and graph 

theory 

84 MIAS FP=0.64%, FN=5.58% 

(Chen & Zwiggelaar, 2010) Histogram thresholding, 

edge detection, contour 

growing, polynomial 

fitting and region grawing 

240 EPIC 66.5% accurate, 25% nearly 

accurate, 6.9% acceptable, 

and 1.6% unacceptable for 

background segmentation, 

and 62.5%, 25.4%,5.6%, and 

6.5% for segmentation 

respectively 

(Vaidehi & Subashini, 2013) Straight line and threshold 120 Mini-MIAS 85% 

(Vikhe & Thool, 2016) intensity based approach 

and threshold 

320 Mini-MIAS 87.19% accurate, 9.37% 

acceptable and 3.44% 

inaccurate 

 

3.3  Feature Extraction and Classification 

Feature extraction is an important part of the final classification step. Classification is 

a process of discriminating between two or more different classes by labeling each 

similar set of data in order to differentiate it from other classes. It is one major task in 

machine learning. 

There is a relation between feature extraction and the classification process, therefore, 

the higher accuracy of the classifier can be achieved by selecting the optimum feature 

set. During our study, we found that there are several types of research in the area, and 

several types of classifier used to classify the mammogram also the type of the database 

that used is different from study to another. So we will explain and discuss the recent 

state of the art of the feature extraction and classification which is related to our wok. 

There is no specific single set of features known to produce optimum results for 
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classifying mammograms. The reason behind this is the irregularity and randomness of 

the abnormal mammogram patterns. The main challenge in feature extraction is the 

ability to find the set of features that best suits each type of tissue for mammograms. 

Textural features are widely used to extract features from the mammogram and then 

classify the mammogram. Different approaches based on co-occurrences matrix as a 

feature descriptors extraction were developed. Bovis and Singh (Bovis & Singh, 2000) 

used five statistical features obtained from co-occurrence matrices  extracted from four 

different spatial orientations, horizontal, left diagonal, vertical and right diagonal 

corresponding to (0, 45, 90 and 135) degree and four pixel distance (d=1, 3, 6, 9). The 

method was applied on 144 mammograms from MIAS database and the classification 

accuracy obtained using Artificial Neural Network classifier.  

In 2003, Youssry (Youssry, et al., 2003)  used a neuro-fuzzy model to detect the 

circumscribed masses in mammogram images. The texture feature was estimated using 

co-occurrence matrices, and feature selection on the correlation coefficient between 

features was performed. The selected features were used to train a neuro-fuzzy model. 

The method was applied to small set of mammograms (twenty two mammograms) from 

the MIAS database (i.e. eleven fatty, eight glandular, and three dense). On the other 

hand, Marti (Marti, et al., 2003) presented a supervised method to segment the mass in 

the mammogram image. Texture features were used to present a homogeneous 

behaviour inside the selected region. Karahaliou (Karahaliou, et al., 2008) presented a 

study to explore texture properties of the tissue surrounding microcalcification (MC) 

clusters on mammograms for breast cancer diagnosis. The analysed mammograms 

include 100 MC clusters (46 benign and 54 malignant). Using redundant discrete 

wavelet transform, tissue surrounding MCs is defined on wavelet decomposed images. 

Gray-level texture and wavelet coefficient texture features at three decomposition 

levels are extracted from Surrounding Tissue Regions of Interest (ST-ROIs). The 

ability of the method in differentiating malignant from the benign tissue is investigated 

using a probabilistic neural network. Also, Elshinawy (Elshinawy, 2010) used Gray 

level co-occurrence matrix as texture features to developed a pre-normal CAD 

algorithm that will identify the characterization of normal mammograms in each tissue 

type (dense and fatty). She concludes that GLCM is a good feature for fatty-tissue 

mammograms. For the purpose of differentiating the mammogram to malignant and 

benign Mohanty (Mohanty, et al., 2011)  extract nineteen features from grey level run-
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length matrix and grey level co-occurrence matrix to distinguish between malignant 

masses from the benign mass. The work of Fatima Eddaoudi (Eddaoudi, et al., 2011) 

focused on the detection of masses in the mammogram image by using SVM 

classification and textures analysis. The identification of tumours is generally made in 

three stages: (i) pectoral muscle segmentation, (ii) hard density zone detection and (iii) 

texture analysis of regions of interest. The region of interesting segmented is classified 

using Haralick features calculated from the co-occurrence matrix.  

The discrete wavelet transform (DWT) is a multi-resolution image analysis tool used 

in many image processing and computer vision applications, including automatic 

mammogram analysis. For example, Dong and Wang (Dong & Wang, 2009) used 

Gabor filters of different frequencies and orientations to extract textural patterns.  The 

scheme begins by producing N filtered outputs from N Gabor filters with different 

orientations and frequencies. Then for each individually filtered output, the mean and 

the standard deviation of the coefficient magnitude are calculated and used as image 

features. Thirdly, a statistical feature selection t-test is applied to each feature and tests 

the p-value. If the p-value is less than 0.05, then the feature is kept, otherwise, it is 

discarded. Finally, K nearest neighbours used to classify the mammograms into normal 

or abnormal. MIAS database used for the evaluation process. 

In the same year, Eltoukhy (Eltoukhy, et al., 2009) proposed a method depend on 

extracting an amount of the biggest coefficients in each level of a multilevel 

decomposition.  Three different wavelets are tested Daubechies-8 (db8), (sym8), and 

(bior3.7) wavelets, a set of coefficient from each level of decomposition is extracted to 

used it to classify the mammogram to normal or cancer and also classify the abnormal 

class to benign or malignant. In each level of decomposition, the biggest 100 

coefficients are used to represent the feature vector. Also, 100 coefficients are extracted 

from each level of decompositions of the three functions, then Euclidean distance 

method used to the classification process. Diagnosing the breast cancer from 

mammogram images was developed by Naveed (Naveed, et al., 2011). The author 

presented the diagnosis system in different phases: (i) pre-processing on mammogram 

image is done by using fuzzy filter to remove the noise, background removal, and 

pectoral muscle separation (ii) discrete wavelet transform is used for feature extraction 

(iii) different classifiers are used to classify the mammogram to malignant and benign 

(iv) the malignant images are again classified using one against all technique to find 
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abnormalities present in the mammograms. The Mammographic Institute Society 

Analysis (MIAS) database was used for the experiment, and another real-time dataset 

is taken from Shaukat Khanum Memorial Cancer Hospital and Research Centre 

(SKMCH and RC) which only contains records of 80 cases (37  benign and 43 

malignant). On the other hand, a classification approach of mammographic 

microcalcifications was presented based on texture by Dhawan (Dhawan, et al., 1997). 

They extract the global texture based feature from Gray level co-occurrence matrix, 

and the local texture feature is extracted from wavelet packets gained by decomposing 

the region at the first level of decomposition. The radial-basis-function neural network 

classifier was found to be satisfactory especially for cases where the diagnosis was 

difficult. The results revealed that the neural network is a robust classifier of a 

combination of local and global texture features into benign and malignant groups. 

Kramer and Aghdasi (Kramer & Aghdasi, 1998) classify the microcalcifications in 

mammogram images by using a multiscale statistical texture classification system. The 

system utilizes the multiresolution analytical tools provided by the wavelet transform 

in conjunction with the statistical textural information extracted from the co-occurrence 

matrix. These co-occurrence texture signatures are used alongside other wavelet texture 

signatures to classify the microcalcifications as benign or malignant. In the study, a 

comparison was made between the two feature sets, and it was found that the two 

features perform equally well when the two types of texture signatures are extracted 

from a decomposition based on the biorthogonal wavelet. The co-occurrence texture 

signatures outweighed the wavelet texture signatures when using the Daubechies 

wavelets for the decomposition. A limited number of cases in the database were used 

for experiments. 

Fathima et al. (Fathima, et al., 2013) proposed a method based on extracting first order 

textural features, GLCM features, DWT features, run length features and higher order 

gradient features from the ROI. SVM was used as a classifier to separate benign and 

malignant cases. Local binary patterns (LBPs) have been successfully used as an image 

texture analysis tool (Ojala, et al., 1996) (Ojala, et al., 2002). The LBP operator was 

proposed by Ojala (Ojala, et al., 1996) and soon gained popularity as a powerful texture 

descriptor for application in texture analysis, motion detection, image retrieval, remote 

sensing, biomedical image analysis and face recognition. Among all above mentioned 

applications, LBP scheme has shown its potential in face recognition (Guo, et al., 2010) 
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under different illumination and expression conditions and it is one of the most popular 

local feature-based methods. The application of LBP in face recognition was first 

proposed by Ahonen (Ahonen, et al., 2004).   

More recently, multiresolution LBPs have been shown to provide highly discriminative 

texture information in a number of image processing and pattern recognition 

applications. A recent survey of LBPs and its variants is presented by Huang (Huang, 

et al., 2011). Advantages of LBPs are said to be its invariance against monotonic gray 

level changes and its computational simplicity, which makes it possible to use LBPs to 

analyse images in challenging real-time applications. For example, Oliver et al. (Oliver, 

et al., 2007) used LBPs to separate truly recognised masses and the ones which actually 

are normal parenchyma. The method starts by dividing the ROI images into small 

regions and computes local texture feature using LBPs. Extracted local descriptors are 

combined in a spatially enhanced histogram to produce a final feature vector descriptor. 

Finally, the feature descriptors are used to classify the ROI mammograms into true 

masses and normal parenchyma.  

For the purpose of detecting the normal mammogram based on the density (fatty and 

dense) of the breast, Elshinawy et al. (Elshinawy, et al., 2010) used three types of LBP-

based features (simple LBP, multi-resolution gray-scale with rotation invariant texture 

classification in LBP, and LBP histogram on Fourier features). SVM classifier was 

used for the classification purpose. Also, Berbar et al. (Berbar, et al., 2012) proposed a 

method based on two different types of features which are statistical features and LBP 

features for classification of abnormality in digital mammograms. Yanfeng et al.  

(Yanfeng, et al., 2015) used k-nearest neighbour (KNN) classifier to classify mass 

region to benign or malignant cases. The authors proposed a method by combining 

texton analysis with multiple sub sampling strategies to classify 144 mass regions from 

Digital Database for Screening Mammography (DDSM) database, the accuracy rate to 

benign or malignant. The classification accuracy rate is 85.96%.   

The main challenge in feature extraction is the ability to find the set of features that 

best suits each type of tissue for mammograms and all types of abnormality. A primary 

difference in our work with the above mentioned techniques is that we focus on 

separating the mammogram to normal and abnormal in different tissue type (Fatty, 

Glandular, and Dense) and different types of abnormality (Mass, Microcalcification, 

..., etc). Details of our proposed feature extraction methods will be described in Chapter 
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5.  Based on the performance of our proposed features and our review of existing work 

here, we will show that there is no specific feature representation that is suitable for all 

kind of mammogram cases. Therefore, we propose the use of fusion as a means to 

improve mammogram classification accuracy.  The fusion will be performed in two 

ways: (i) feature fusion (i.e. fusing different feature sets extracted from the same 

mammogram image into one larger feature vector), then the new feature set will be 

presented to a single classifier to obtain final classification result; (ii) decision level 

fusion (i.e. different sets of features extracted from the same mammogram are 

presented to a classifier, one set at a time. Then the results of each classification result 

will be fused to obtain final classification result). The proposed use of fusion is 

presented in Chapter 7. Our automatic models aim to classify the images to normal and 

abnormal, and by doing so, aims to improve the radiologist's performance by screen-

out the normal mammograms as a first-look and therefore leave the radiologists with 

the suspicious cases for more analysis. The summary of available mammogram feature 

extraction and classifications are shown in Table 3.2. 

Table 3.2: Feature extraction and classification summary  

Author & Year Approach Database Classifier 

(Bovis & Singh, 2000) Statistical feature, co-occurrence 

matrix 

144-MIAS ANN 

(Youssry, et al., 2003) Texture feature, co-occurrence matrix 22-MIAS Neuro-fuzzy 

model 

(Karahaliou, et al., 2008) Gray-level texture and wavelet texture 

feature 

100 mammogram Neural network 

(Elshinawy, 2010) GLCM matrix, ,LBP DDSM SVM 

(Mohanty, et al., 2011) Gray level run-length matrix and 

GLCM 

88 mammogram Association 

rules mining 

(Eddaoudi, et al., 2011) Texture feature from GLCM matrix MIAS SVM 

(Dong & Wang, 2009) Gabor filter, mean and standard 

deviation of the coefficient magnitude 

MIAS KNN 

(Eltoukhy, et al., 2009) Wavelet transform (db8), (sym8) and 

(bior3.7) 

MIAS KNN 
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Author & Year Approach Database Classifier 

(Naveed, et al., 2011) Discrete wavelet transform MIAS, (SKMOLT 

and RC) 

Ensemble 

classifier 

(Dhawan, et al., 1997) GLCM, wavelet 191 mammogram NN 

(Kramer & Aghdasi, 

1998) 

Multiscale statistical texture, wavelet 

transform, GLCM 

104- Nijmegen K-NN 

(Fathima, et al., 2013) GLCM feature, DWT feature, run 

length feature, higher order gradient 

feature 

MIAS SVM 

(Oliver, et al., 2007) LBP DDSM SVM 

(Elshinawy, et al., 2010) Simple LBP, multi-resolution gray-

scale with rotation in LBP, and LBP on 

Fourier feature 

DDSM SVM 

(Berbar, et al., 2012) Statistical feature and LBP feature 512- DDSM KNN, SVM 

(Yanfeng, et al., 2015) Texton analysis with multiple sub 

sampling 

144-DDSM KNN 

 

3.4 Summary  

In this chapter, we reviewed and presented a number of existing mammogram image 

analysis approaches. We started by reviewing general CAD systems, how CAD 

systems are work and what their problems are. Then we reviewed the literature on pre-

processing and mammogram segmentation.  

The aim of pre-processing and segmentation is to obtain the breast tissue of 

mammogram image without the pectoral muscle, labels, and artifacts.  The next chapter 

is dedicated to our work on pre-processing and segmentation. We aim to design an 

accurate method of breast border extraction, artifacts removal and removal of 

annotations typically found in the background of the mammogram images. Our method 

will be tested on all images available in the Mini-MIAS database. This work has been 

published here (Majeed, et al., 2013).  

In addition to pre-processing and segmentation, in this chapter, we reviewed existing 

literature on feature extraction and classification. As a conclusion of the review, we 
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can say that; till now there is no specific single set of features known to produce 

optimum results for classifying mammograms. The reason behind this is the irregularity 

and randomness of the abnormal mammogram patterns. The main challenge and open 

problem for the researchers are to find the set of features that best suits each type of 

tissue for mammograms. Our aim is to classify the images to be either normal or 

abnormal. Therefore, we will investigate the performance of several texture features 

and propose the multiscale texture features for mammogram classification. This work 

will be presented in Chapter 5. Moreover, to realise an efficient classification system, 

we apply the idea of dimension reduction on the original mammogram feature vectors 

(more details can be found at the end of Chapter 5).  

Based on our findings in Chapter 5, we propose the use of fusion to enhance 

mammogram classification accuracy further. This is analogues to more than one 

radiologist inspecting the same mammogram to arrive at a decision. The fusion will be 

done in two ways; feature level fusion and decision level fusion. Chapter 6 is devoted 

to the use of fusion in mammogram classification.  

Finally, we consider the use of image super-resolution to enhance mammogram images 

prior to extracting texture features. This work will be presented in Chapter 7.  
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Chapter 4  

Breast Border Extraction and 

Pectoral Muscle Removal in MLO 

Mammogram 

The previous chapter presented various exiting techniques for mammographic pre-

processing and segmentation that aim to obtain the breast tissue of a mammogram 

without the pectoral muscle, labels, and artifacts. In this chapter, we initiate our 

investigations and development of accurate schemes to breast border extraction, label 

removal, and pectoral muscles removal. We will first describe, in Section 4.1, the need 

for breast region segmentation. In Section 4.2 we propose a new scheme to extract the 

border of the breast and remove noise and artifacts. In Section 4.3 we describe in details 

the proposed pectoral muscle removal scheme. The experimental setup including the 

database (Mini-MIAS database) used, experiment strategy (Leave-one-out strategy), 

the feature vector, and classification types are described in Section 4.4. Section 4.5 

includes the discussion of the results obtained using mammogram classifiers as well as 

the expert radiologists. The chapter will end with concluding remarks in Section 4.6.  

4.1  Breast Region Segmentation 

In order to automatically analyse a digitised mammogram by a computer, the 

mammogram should be segmented into its representative anatomical regions. The 

segmentation is very important for a number of reasons but mainly because it reduces 

the search zone for abnormalities and makes it limited to the relevant region of the 

breast without undue influence from the background of the mammogram, which 

typically includes annotations and artifacts that could have an adverse effect on the 

analysis (Bandyopadhyay, 2010) (Raba, et al., 2005).  

In the Medio-Lateral Oblique view, the pectoral muscle always appears as a high 

intensity, triangular region across the upper posterior margin of the mammogram.  

Types of noise observed in mammograms include high intensity rectangular label, low 
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intensity label and tape artifacts (Tzikopoulos, et al., 2011). A typical mammographic 

image shown in Figure 4.1 illustrate the different types of high level of noise and the 

artifacts that have to be removed. 

 

 
Figure 4.1: Types of noises example observed at a mammogram mdb002 in Mini-MIAS database (Suckling, 

et al., 1994) 

   

   

(a) High intensity noise           (b) Low intensity label               (c) Scanning artifact 

Figure 4.2: Example images of the Mini-MIAS database with different types of noises and background 

artifacts 
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Figure 4.2 shows extra example images from Mini-MIAS Database to justify the need 

for the pre-processing step before extracting features for classification. We can observe 

three of the main types of noise that need to be removed from the mammograms: (a) 

high intensity noise regions including the bright rectangular labels, (b) low intensity 

labels and (c) high intensity scanning artifacts. These examples highlight the pectoral 

muscle as well. 

4.2  Breast Border Extraction 

There are two major problems in the accurate identification of the breast boundary of 

the mammogram image. (i) The region near the breast boundary has decreasing 

contrast, caused by a lack of uniform compression of breast tissue during the 

acquisition process. For digitized mammographic images, the digitisation process may 

even further decrease the visibility of the breast boundary due to additional noise. The 

low visibility of the breast skin line, makes the identification of the breast boundary so 

difficult. (ii) The other problem is the non-uniform background that may contain high-

intensity regions, such as annotations, labels, frames, and unexposed regions, which 

interferes with the segmentation of the breast region (Wirth & Stapinski, 2003). 

To deal with the aforementioned problems, and to develop more accurate border 

extraction techniques compared to the techniques discussed in the previous chapter, we 

propose a new method to extract the breast border and remove noise and artifacts. The 

overall process of the proposed scheme summarized as follows: in the first step we 

binarise the input image using adaptive thresholding scheme (i.e. the threshold value is 

selected based on the intensity of the input image) where the Threshold = Mean of the 

image intensity - (Mean of the image intensity/3).The output of this step is the binarised 

mammogram image that consists of several objects including artifacts and the breast 

region. Binarised objects are then disconnected by applying morphological erosion 

with structure element = [1 1 1; 1 1 1; 1 1 1], to obtain a number of independent 

binarised objects. Then we retain the largest object (which is the breast region) inside 

the image and delete all other small objects. Subsequently, we isolate the spiky 

boundary (near the edges of the image) and smooth the remaining region by applying 

morphological dilation process with structure element of 15 by 15 matrix which all 

elements are ones. By now, a binary mask is obtained consisting of the breast image 

and the background. Finally, the binary mask is used as an index indicator to extract 
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the original pixel value of the image. The output of this process will consist of the 

breast region including the pectoral muscle. The overall process is shown in Figure 4.3.  

 

Figure 4.3: Breast border extraction process 

 

 

 

 

Original Image Read 

Binarise the image 

Disconnect objects

Calculate objects' size

Retain only the largest object

Smooth the border

Obtain the original 
intensity by matching 

the mask with the 
original image

Using adaptive thresholding. The 

output is a number of binaries 

objects 

Applying erosion operation  

Depends on the object area  

Delete all small objects 

Applying dilation operation  
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Figure 4.4: (a) Original image, (b) Binarised image, (c) Removed artifacts, (d) Extracted breast region 

Figure 4.4 shows the output images obtained from each step of the proposed breast 

border extraction scheme explained above. 

4.3 Pectoral Muscle Removal 

The pectoral muscle represents a predominant density region in most Medio-lateral 

oblique (MLO) views of mammograms. Automatic identification of the pectoral 

muscle is useful in many aspects of mammographic image analysis. The exclusion of 

the pectoral muscle is necessary to avoid bias in the detection of breast cancer. As we 

described in Chapter 3 Section 3.2, many methods for breast region segmentation have 

been developed based on various image processing techniques. 

However, it is still a difficult task to achieve accurate segmentation of the breast region 

in particular for digitised mammograms, due to the presence of severe noise and the 

non-uniform background. We propose a new method for pectoral muscle removal to 

achieve an improvement in overall classification performance. 

The pectoral muscle that remained in the image after the previous segmentation steps 

(Section 4.2) appears at the upper-left corner (all images are mirrored to the left) of the 

image with high intensity when compared with the other breast regions. This image 

  

(a) (b) 

  

(c) (d) 
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will be used as an input to the proposed algorithm to remove the pectoral muscles. The 

overall process is shown in Figure 4.5 and the output of each step shown in Figure 4.6.  

The rather modest accuracy rate for the above methods, coupled with the complexity 

of their implementation,  was the motivatestion to propose and design new simple 

methods to remove the pectoral muscle, extract the breast border, and remove labels 

and artefacts. Our  proposed method is a snake-like method that traces the visible thin 

line separating the breast tissue from the partoral muscle. This thin line detection is 

based on an adaptive throshlod choosen in terms of the differences between pixel 

intensities on both sides of the line. For removing lables, artefact, and breast border 

extraction this is done in one go using the morphological operations and size based 

objects detection explained in section 4.2 above. The detail of each individual steps of 

the proposed algorithm can be explained in steps as below: 

Step 1: Crop the black left part from the image. This step is done by checking the 

intensity value of the obtained image from the previous scheme. If the intensity value 

is zero, then we will ignore the checked column and look to the next column. This 

process will continue until the algorithm reaches a pixel with an intensity value greater 

than 0. 

Step 2: Starting from the top row, move downwards by performing the following: 

a. Select row (x) position and scan columns(y). When the pixel value is less than 

a given suitable (chosen) intensity value, then save the column (y) index. 

Chosen threshold = maximum intensity value - 1/3 of the maximum intensity 

value). 

b.  If column index is less than a given threshold (i.e. the column is very near to 

the left edge of the image; experimentally we choose 5 as a threshold) then go 

to step 3, otherwise, increase row position by a specific amount and repeat step 

2.  

Step 3: After Step 2 is completed we will obtain a number of (x,y) coordinates 

representing points on the muscles boundary. 

Step 4: Draw a line between neighbouring points that were found from Step 2 to get a 

longer line that will identify the muscle boundary. 

Step 5: Assign 0 to all pixel values on the left of the muscle boundary.   

The output of this algorithm is the breast region after the pectoral muscle is removed. 

sbbh653
Highlight
threshold

sbbh653
Highlight
labels
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Figure 4.5: Pectoral muscle removal process 
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(a) (b) (c) 

Original image with muscle 
Removed black part on the left 

of the mammogram 

After deleting muscle using our 

method 

 

Figure 4.6: Output of the Pectoral muscle removal algorithm  

We will now evaluate the effectiveness of the proposed segmentation on mammogram 

classification accuracy. First, Section 4.4 will describe the image features used for 

classification, i.e. grey level co-occurrence matrix features (GLCM), the database used 

for the evaluation and the experimental protocol. Results will be discussed in Section 

4.5. 

4.4 Experiment Setup 

To evaluate our proposed techniques based on breast border identification and pectoral 

muscle removal, we used GLCM features to see how the classification of the normal 

and abnormal is affected by our proposed segmentation. We will demonstrate our 

proposed pectoral muscle removal has a positive effect on the classification accuracy 

of the system. 

In the following section, we present the GLCM features that are extracted from the 

mammograms to classify them as normal or abnormal (Fatty, Glandular, and Dense). 

Also explained is the Mini-MIAS dataset that was used to evaluate the result and the 

experimental strategy. 
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4.4.1 Dataset and Strategy 

The proposed method was applied on the complete Mini-MIAS database (Suckling, et 

al., 1994). In our work, we separate the mammograms into three distinct categories and 

apply feature extraction and classification on each group individually to separate 

normal and abnormal mammogram.  

The leave-one-out strategy was used to evaluate the accuracy of the system. In this 

strategy, each time only one mammogram was taken off the database for testing and all 

the remaining mammograms were used as training. Experiments were repeated (m) 

times, where (m) is the total number of mammograms in the database which is 322 for 

Mini-MIAS database, the accuracy rate is averaged. The classification is executed 

using KNN and SVM as described in Section 4.4.3. 

4.4.2 Gray level Co-occurrence Matrix Features 

A most commonly used statistical description of intensity values is the intensity 

histogram, which is the first-order statistical analysis of the image. Some texture 

features are based on the second-order statistics of image properties, where the 

relationship between a pair of pixels is analysed to describe the spatial configuration of 

texture.  

Gray Level Co-occurrence Matrix (GLCM) is one of the texture features based on pixel 

neighbours, and it is feature are widely used in mammogram analysis (Sharma, et al., 

2012). The GLCM is used to characterize texture patterns; it can be constructed with 

different distances (i.e. for a selected pixel, GLCM matrix can be constructed with the 

first neighbour, d=1, or with second neighbour d=2 and so on). Also, GLCM matrix 

can be obtained in different direction angles such as 0, 45, 90, and 135 degrees (Sabu, 

et al., 2012). Gray level co-occurrence matrix (GLCM) is the basis for the Haralick 

texture features (Haralick, et al., 1973). Haralick proposed to use a co-occurrence 

matrix to describe the two-dimensional spatial dependence of grey levels for a fixed 

distance and/or angular spatial relationship. The GLCM matrix is square with 

dimension Ng, where Ng is the number of gray levels in the image. Example for 

extracting GLCM matrix is shown in Figure 4.7.  
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            0 1 2 3 4 5 6 7 

           0 1 2 0 0 1 0 0 0 

 0 0 4 5 7      1 0 0 1 0 1 0 0 0 

 1 2 4 6 0      0 0 0 0 0 1 0 0 0 

 3 4 6 0 1      3 0 0 0 0 1 0 0 0 

 7 4 0 1 4      4 1 0 0 0 0 1 2 0 

           5 0 0 0 0 0 0 0 1 

 Part of original image 

image 

 

    6 2 0 0 0 0 0 0 0 

           7 0 0 0 0 1 0 0 0 

             GLCM matrix   

Figure 4.7: Example of extracting GLCM matrix from a part of image 

We extracted fourteen texture measures as suggested by Haralick from the GLCM 

based on the first neighbour and at 00 angle to represent a mammogram image. In the 

following equations 𝑝(𝑖, 𝑗) is the (𝑖, 𝑗) th entry in normalized co-occurrence matrix; 𝑁𝑔  

denotes the dimension of co-occurrence matrix (number of gray levels), and 𝑝𝑥(𝑖) and 

𝑝𝑦(𝑗) are the marginal probabilities:  

𝑝𝑥(𝑖) = ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

 , 𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑖=0

   

The fourteen texture measures are:  

1- Angular second moment (ASM) feature: ASM measures the uniformity of an 

image. The smoothness of the image can be extracted by ASM feature. When pixels 

are very similar, the ASM value will be large.  

 

                     𝐴𝑆𝑀 = ∑ ∑ 𝑝(𝑖, 𝑗)2
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

                                                                  (4.1) 

2- Contrast feature: contrast is a measure of intensity or gray-level variations between 

the reference pixel and its neighbours. 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑛2
𝑁𝑔−1

𝑛=0

{ ∑ ∑ 𝑝(𝑖, 𝑗)2
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

} , 𝑤ℎ𝑒𝑟𝑒 𝑛 = |𝑖 − 𝑗| (4.2) 
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3- Entropy Feature:  this measure analyses the randomness. It is high when the 

probability (𝑝) values of the selected block have similar values.  It  is low when the 

𝑝 values are close to either 0 or 1 (i.e. when  the  pixels  in  the  local  block  are 

uniform). 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.3) 

4- Correlation Feature: the correlation feature is a measure of gray-level linear 

dependency of the image. 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  − ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

(𝑖 − µ𝑥)(𝑗 − µ𝑦)

𝜎𝑥𝜎𝑦

𝑁𝑔−1

𝑖=0

 (4.4) 

Where µ and σ are the mean and standard deviation of the co-occurrence matrix 

respectively: 

 

µ𝑥 = ∑ ∑ 𝑖 ∗ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

         ,               µ𝑦 = ∑ ∑ 𝑗 ∗ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.5) 

 

 

𝜎𝑥 = √∑ ∑ (𝑖 − µ𝑥)2 ∗ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 , 𝜎𝑦 = √∑ ∑ (𝑗 − µ𝑦)2 ∗ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.6) 

5- Inverse Difference Moment (IDM) Feature: Inverse difference moment is the 

measure of local homogeneity of an image. 

 

𝐼𝐷𝑀 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.7) 

6- Sum Average Feature: 

 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑖 ∗ 𝑝𝑥+𝑦(𝑖)

2(𝑁𝑔−1)

𝑖=0

 (4.8) 
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Where 𝑝𝑥+𝑦  is the summation of all 𝑝(𝑖, 𝑗) in the row and column of the normalized 

co-occurrence matrix for k=i+j = {0, 1, 2, 3… 2(Ng-1), and calculated as follows: 

 

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.9) 

7- Sum Variance Feature: 

 

𝑆𝑢𝑚 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ (𝑖 − 𝑆𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦)2

2(𝑁𝑔−1)

𝑖=0

𝑝𝑥+𝑦(𝑖) (4.10) 

8- Sum Entropy Feature: 

 

𝑆𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑥+𝑦(𝑖) 𝑙𝑜𝑔 𝑝𝑥+𝑦(𝑖)

2(𝑁𝑔−1)

𝑖=0

 (4.11) 

 

9- Difference Variance Feature: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ (𝑖 − 𝐹)2𝑝𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

 (4.12) 

Where 𝑝𝑥+𝑦  is the summation of all 𝑝(𝑖, 𝑗) in the row and column of the normalized 

co-occurrence matrix for k=i-j = {0, 1, 2, 3… 2(Ng-1)}, and calculated as follows: 

 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

, 𝑘 = |𝑖 − 𝑗| = {0,1,2, … , (𝑁𝑔 − 1)} (4.13) 

 

 

𝐹 = ∑ 𝑖 ∗ 𝑝𝑋−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

 (4.14) 

 

10- Sum of Squares :Variance features: 

 

𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =∑∑(𝑖 − µ)2𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=0

𝑁𝑔

𝑖=0

 (4.15) 
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11- Information Measures of Correlation1: 

 
𝑖𝑛𝑓1 =

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥 (𝐻𝑋,𝐻𝑌)
 (4.16) 

 

Where: HX and HY are entropies of px and py, and 

 

 

 

𝐻𝑋𝑌2 = − ∑ ∑ 𝑝𝑥(𝑖)

𝑁𝑔−1

𝑗=0

𝑝𝑦(𝑗) 𝑙𝑜𝑔{𝑝𝑥(𝑖)𝑝𝑦(𝑗)}

𝑁𝑔−1

𝑖=0

 (4.18) 

 

12-  Information Measures of Correlation2: 

 𝑖𝑛𝑓2 = (1 − 𝑒𝑥𝑝[−2(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])
1
2⁄  (4.19) 

𝐻𝑋𝑌 = − ∑ ∑ 𝑝(𝑖, 𝑗) 𝑙𝑜𝑔(𝑝(𝑖, 𝑗))

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

               

13- Difference Entropy: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑥−𝑦

𝑁𝑔−1

𝑖=0

(𝑖) 𝑙𝑜𝑔{𝑝𝑥−𝑦 (𝑖)} (4.17) 

 

14- Maximal Correlation Coefficient: 

 𝑀 = (𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)
1
2⁄  (4.18) 

 

 

 

𝐻𝑋𝑌1 = − ∑ ∑ 𝑝(𝑖, 𝑗) 𝑙𝑜𝑔{𝑝𝑥(𝑖)𝑝𝑦(𝑖)}

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 (4.17) 
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Where: 

 
𝑄(𝑖, 𝑗) =∑

𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑗)
𝑘

 (4.19) 

 

4.4.3  Classification Methods 

 The process of differentiating two or more classes is called classification. In any CAD 

system, classification is the final and main task which aims to identify cases that are 

truly recognised as exhibiting the sought after abnormality and distinguish them from 

the cases which are not recognized. Examples of classifiers include Support Vector 

Machines (SVM), Artificial Neural Networks (ANN), Decision Trees and K-nearest 

neighbour (KNN) method. A typical classification system work in two phases: the 

training phase and the testing phase. Training is based on using a sample data obtained 

from available records and aim to learn discriminating factors about the extracted 

features and determine digital template representative of the different classes to be 

compared later in order to identify or verify the class of fresh samples. The testing 

phase is where comparison scores between test samples, separate from the training set, 

with the saved templates in order to determine the class that this set of data should 

belong to. The testing phase determines the accuracy of the algorithm with respect to 

the given classifier. In this chapter, we use two different classifiers, namely K-Nearest 

Neighbour (KNN) (Guo, et al., 2003) and Support Vector Machines (SVM) (Gunn, 

1998). 

4.4.3.1 K-Nearest Neighbour (KNN)  

The K-Nearest Neighbour is a kind of lazy classifier, meaning there is no learning or 

training for a model using known data to classify known data. KNN are very expensive 

when it is applied to a large data set. KNN is suitable for multi-modal classes as its 

classification decision is based on a less distance neighbourhood of similar objects, and 

a tie is broken randomly. The details of KNN can be found in (Gonzales & Woods, 

2002) (Guo, et al., 2003). In our work K=1 and a Euclidean distance function is used.  

If you have two feature vectors u and v, the Euclidean distance measurement is:  

 
𝐷𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑢, 𝑣) = √∑(𝑢𝑖 − 𝑣𝑖)2

𝑖

 (4.20) 
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4.4.3.2 Supported Vector Machine (SVM) 

Support vector machines (SVM) is a very good and powerful technique for 

classification purposes. SVM has been applied to different problems such as face 

recognition (Heisele, et al., 2001), cancer diagnosis and text categorization. SVM 

divides the given data into decision surface. Decision surface divides the data into two 

classes like a hyper plane. Training points are the supporting vectors which define the 

hyper plane. In SVM classifier, the basic property is to maximize the margins between 

two classes of the hyper plane (see Figure 4.8). However, the main advantage of SVM 

is reducing dimensionality when the feature vector is very large. In this chapter, we 

trained a binary SVM classifier to classify a given mammogram image to fatty, 

glandular or dense as a normal or abnormal mammogram. SVM classifier is widely 

used in mammogram images (Tzikopoulos, et al., 2010). The details of SVM can be 

found in (Gunn, 1998) (Duda, et al., November 2000). 

 

Figure 4.8: An example of SVM model 

4.5 Results and Discussion   

The proposed breast boundary detection technique, which is based on a simple 

inference, gives satisfactory results. This is clear by a careful observation of the 

detected boundary of the mammogram images. The two proposed methods (breast 

border extraction and pectoral muscle detection) were evaluated with the help of an 

expert radiologist. For the first proposed breast border extraction method, 112 cases 

Normal 

Abnormal 
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chosen randomly from the Mini-MIAS database, were voted by an expert radiologist, 

the decision for the expert was that the borders were extracted successfully for all 112 

cases (i.e. 100% cases accepted), and for the pectoral muscle removal method, 94 cases 

chosen randomly, were voted by the expert radiologist and found 62 cases to be ranked 

as acceptable, 19 cases nearly acceptable, and 13 cases as not acceptable (i.e. 86.17% 

are accepted or nearly accepted). Pectoral muscle removal is considered unacceptable 

by radiologists if part or all the muscle remained after applying the specified technique.  

Comparing the results we btained here with thos results obtained from the previous 

studies that we reviewed in Section 3.2, were similar visual evaluation criteria used, 

we can see that our proposed method achieved better results. For example, Chen and 

Zwiggelaar (Chen & Zwiggelaar, 2010) achieved 98.4% of acceptable segmentation 

(border extraction) on the test set of 240 mammograms from the EPIC database of 

which 66.5% were accurate, 25% nearly accurate and 6.9% acceptably segmented. 

While for the pectoral muscle removal method they achieved 87.9 % nearly accurate. 

Mustra (Mustra & Grgic, 2013) used Mini-MIAS database and proposed schemes 

obtained 99.06 % of acceptable border extraction segmentation and about 89.69 % of 

successful pectoral muscle removal when the proposed tested by an expert radiologist. 

Moreover, the novelty of our segmentation based method, is its simplicity and 

effectiveness in comparison to the different above mentioned approaches. Our  method 

simply traces the visible thin line separating the breast tissue from the partoral muscle. 

This visibility of the thin line is due to noticble differences between pixel intensities on 

both sides of the pectoral muscles border. Samples for border extraction and muscles 

removal with different decisions made by radiologists shown in Figure 4.9 and Figure 

4.10, respectively. 

  

(a) Original mammogram (b) Breast contours and label removal 

Figure 4.9: Label removal and Border extraction sample 
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(a)  Original mammogram (b) Acceptable 

  

(c) Original mammogram (d) Nearly acceptable 

  

(e) Original mammogram (f) Not acceptable 

Figure 4.10: Radiologist Decisions for muscle removal  

Furthermore, we evaluated our proposed segmentation method by calculating the 

sensitivity, specificity and accuracy for each class of mammogram images in the 

database by leave-one-out strategy for the original mammogram images and for the 

segmented mammogram images. Table 4.1 to Table 4.4 shows the result of the 

classification for three categories of mammograms. For each case, sensitivity, 

specificity and accuracy rates of the system are calculated. Note that, no explicit 

consideration were given to sensitivity and specificity in existing schemes.  

 

Table 4.1: Classification result, d=1, angle=0 degree 
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Type Measure 
Original Image Proposed method 

SVM KNN SVM KNN 

Fatty 

Sensitivity 10.25 15.38 82.05 89.74 

Specificity 100 58.20 98.50 97.01 

Accuracy 66.98 42.45 92.45 94.33 

Glandular 

Sensitivity 67.56 48.64 40.54 37.83 

Specificity 82.08 53.73 100 92.53 

Accuracy 76.92 51.92 78.84 73.07 

Dense 

Sensitivity 5.5 16.66 27.77 33.33 

Specificity 100 69.73 97.36 86.84 

Accuracy 69.64 52.67 75 69.64 

 

 

 

Table 4.2: Classification result, d=1, angle=45 degree 

Type Measure 
Original Image Proposed method 

SVM KNN SVM KNN 

Fatty 

Sensitivity 10.25 28.20 82.05 84.61 

Specificity 100 65.67 98.50 98.50 

Accuracy 66.98 51.88 92.45 93.39 

Glandular 

Sensitivity 21.62 37.83 48.64 43.24 

Specificity 85.07 58.20 100 85.07 

Accuracy 62.5 50.96 81.73 70.19 

Dense 

Sensitivity 5.55 22.22 47.22 58.33 

Specificity 98.68 73.68 92.10 82.89 

Accuracy 68.75 57.14 77.67 75 

 

Table 4.3: Classification result, d=1, angle=90 degree 

Type Measure 
Original Image Proposed method 

SVM KNN SVM KNN 

Fatty 

Sensitivity 7.69 28.20 94.87 89.74 

Specificity 98.5 76.11 98.50 92.53 

Accuracy 65.09 58.49 97.16 91.50 

Glandular 
Sensitivity 13.51 27.02 45.94 45.94 

Specificity 91.04 67.16 97.01 89.55 
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Type Measure 
Original Image Proposed method 

SVM KNN SVM KNN 

Accuracy 63.46 52.88 78.84 74.03 

Dense 

Sensitivity 13.88 27.77 8.33 30.55 

Specificity 98.68 78.94 98.68 82.89 

Accuracy 71.42 62.5 69.64 66.07 

 

Table 4.4: Classification result, d=1, angle=135 degree 

 

Type 
Measure 

Original Image Proposed method 

SVM KNN SVM KNN 

Fatty 

Sensitivity 7.69 23.07 82.05 74.35 

Specificity 100 67.16 98.50 95.52 

Accuracy 66.03 50.94 92.45 87.73 

Glandular 

Sensitivity 24.32 27.02 45.94 51.35 

Specificity 79.10 47.76 100 86.56 

Accuracy 59.61 40.38 80.76 74.03 

Dense 

Sensitivity 5.55 33.33 30.55 22.22 

Specificity 100 68.42 98.68 88.15 

Accuracy 69.64 57.14 76.78 66.96 

From the tables, it is clear that deleting the pectoral muscle and artifacts using our 

algorithms have improved the classification accuracy in most cases. Furthermore, if we 

look at the results obtained from using original mammograms for extracting features 

we can see unbalance between results of sensitivity and specificity, obtained specificity 

are much higher than sensitivity (i.e. abnormal cases are recognised wrongly as 

normal). We noticed an important thing, which is that the extracted features are more 

accurate for the fatty mammogram than the other two types (Glandular and dense) 

mammogram. A similar observation was made by (Elshinawy, 2010) where it is 

mentioned that the texture features extracted using GLCM are more sensitive to the 

changes of the intensity values of the fatty mammogram than the other types. If we 

look at the results of glandular and dense images for the original mammogram, we 

notice that there is an imbalance between sensitivity and specificity of the system 

because the label and the muscles affect the results. For specific comparison between 

using KNN and SVM classifier, results show that in most cases using SVM results in 

better accuracy than KNN. Extracting GLCM from different directions also have an 
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effect on the results; we can say that extracting GLCM features using directions 0 

degree and 90 degree have better accuracy than the others. Figure 4.11 and Figure 4.12 

show the diagram of the classification accuracy by using KNN and SVM classifiers 

respectively. For example, if we look to Figure 4.11 (b), the accuracy results for the 

original mammogram using KNN classifier are 66.98%, 62.5%, and 68.75% 

respectively for fatty, Glandular and, dense mammograms. We can see that the 

classification accuracy for the system is increased after deleting the pectoral muscles 

and artifacts in the mammogram images (i.e. applying the proposed method). So, the 

classification accuracy for fatty mammograms is 92.45%, for glandular mammograms, 

it is 81.73% and for dense mammograms, it is 77.67% after segmenting using the 

proposed methods. Also for the same case in Figure 4.12(b), the accuracy for the 

original mammogram using SVM classifier are 51.88%, 50.96% and 57.14% 

respectively for fatty, glandular and, dense mammogram images. The classification 

accuracy increased after removing the pectoral muscle and artifacts (i.e. applying the 

proposed method). After segmenting using the proposed methods, the classification 

accuracy for fatty mammograms is 93.39%, for glandular mammograms, it is 70.19% 

and for dense mammograms, it is 75%. The two evaluations demonstrate the 

effectiveness of the proposed pre-processing techniques to extract breast borders and 

pectoral muscle removal from the mammogram. 

  

(a) (b) 

 
 

(c) (d) 
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Figure 4.11: Classification accuracy by KNN classifier, (a) d=1 and angle=0 degree, (b) d=1 and angle= 45 

degree, (c) d=1 and angle= 90 degree and (d) d=1 and angle=135 degree 

  

(a) (b) 

  

(c) (d) 

 

Figure 4.12:  Classification accuracy by SVM classifier, (a) d=1 and angle=0 degree, (b) d=1 and angle= 45 

degree, (c) d=1 and angle= 90 degree and (d) d=1 and angle=135 degree 

4.6 Conclusions  

Segmentation is a very important step in any CAD system. The extraction of the breast 

contour is useful because it limits the search-zone for abnormalities. Moreover, in most 

Medio-Lateral Oblique (MLO) views the pectoral muscle represents a predominant 

density region in the breast tissue. To avoid the bias of the detection procedure in a 

CAD system we need to identify and segment out the pectoral muscle during pre-

processing stage. Designing an automated algorithm capable of segmenting the breast 

region in mammograms and deleting the pectoral muscles is a difficult task. In this 

chapter, we proposed a new method for breast border extraction, artifact removal and 

removal of annotations. Furthermore, we proposed an adaptive algorithm to detect and 

delete the pectoral muscle automatically; the algorithm is based on the gray-level 

intensity values  
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From the experimental results shown in this chapter, we conclud that using 

mammograms after accurately removing the unwanted parts such as labels, artifacts, 

and pectoral muscle yield better classification accuracy than using the entire 

mammograms. This is because the pectoral musle region as well as labels and artifacts 

in mammograms have pixel intensity values that are similar to the pixel intensity of the 

abnormal parts inside the breast area and thereby detecting abnormalitis become less 

accurate.  

Due to the different size and shapes of the breast regions, the remaining part of the 

mammogram after removing unwanted parts could be different in sizes and shapes. 

These differences may affect the classification accuracy of the system or affect the 

ability to use them for specific kind of features extraction methods that require fixed 

size of images. Therefore, in the remaining chapters, we shall use cropped fixed size 

mammograms for the purpose of evaluation the performance of the proposed schemes. 
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Chapter 5  

Texture-based Features for 

Mammogram Classification 

One of the most important processes in any classification system, including 

mammogram classification, is the feature extraction process. The extracted features 

from individual mammogram images represent that mammogram. The way of 

extracting features from mammograms are very important as they affect the accuracy 

of the mammogram classification system. In this chapter, we shall investigate the use 

of different texture feature extraction schemes to design a new, efficient and accurate 

schemes for mammogram classification. We investigate the use of multi-scale local 

binary patters where local binary pattern histograms (LBPH) are extracted from 

wavelet sub-bands of mammogram images. Different combinations of LBPH over 

wavelet sub-bands will be used to increase mammogram classification accuracy. LBPH 

features extracted in the spatial domain as well in the wavelet domain will be combined 

to make a feature vector to represent mammogram images. We also investigate the use 

of two other texture features, which are GLCM and HOG in mammography field. 

Finally, we investigate the use of PCA as a dimension reduction scheme to reduce the 

feature vectors sizes/dimensions that represent mammogram images (or their ROIs).  

Section 5.1 describes the different texture features (i.e. LBP, DWT, HOG and GLCM) 

considered in this thesis. Our proposed approaches to extract multi-scale texture 

features from mammograms are explained in Section 5.2. Then Section 5.3 describes 

the experiments and the evaluation scheme designed to test the performance of the 

proposed feature extraction schemes. Experimental results will be analysed and 

discussed in Section 5.4. A summary of the results is presented in Section 5.5. Sections 

5.6 and 5.7 will explain the concept of dimension reduction as well as the investigation 

of applying dimension reduction schemes over the feature vectors. Our concluding 

remarks for this chapter are offered in Section 5.8.      
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5.1 Background  

Generally, image features are classified into four main types; statistical features (such 

as mean, standard deviation and smoothness), textural features (such as local binary 

pattern, gray level co-occurrence matrix, and histogram of oriented gradient), model 

based features (such as features based on Markov random field and fractal models), 

and signal processing features (such as Gabor features, wavelets, Fourier transform) 

(Elshinawy, 2010). 

From the literature we can conclude that; there is no specific single set of features 

known to produce optimum results for mammogram classification (i.e. there is no 

ability to find the set of features that best suits each type of tissue for mammograms). 

The main reason behind this is the irregularity and randomness of the abnormal 

mammogram patterns. This issue remains the main challenge in mammogram feature 

extraction process.  

In the field of mammogram classification, much attention has been given to texture 

features based classification (Ponraj, et al., 2011). Therefore, here in this thesis, we 

used different types of texture feature extraction schemes such as Local Binary Patterns 

(LBP), wavelet-based LBP, Histogram of Oriented Gradients (HOG), and Gray Level 

co-occurrence matrix (GLCM). Each of these texture features has their own specific, 

and complementary, characteristics and properties, which we will explain in the 

corresponding subsections below.  

5.1.1 Discrete Wavelet Transform (DWT) 

A Wavelet Transform (WT) can be described as a mathematical tool that produces 

components (coefficients) of different frequencies of a specific signal (i.e. is a process 

of representing the signal in different scales) (Gonzales & Woods, 2002) (Sellahewa, 

2006).  

Coefficients in the WT domain have the properties of localization and correlation to 

the spatial domain (Mallat, 1989). The correlation of the wavelet coefficients means 

that each coefficient can be mapped from the wavelet domain to the spatial domain 

(Gonzales & Woods, 2002) (Al-Jawad, 2009). This property makes WT coefficients 

become a commonly used tool in a very wide range of applications such as image 

compression, biometric feature extraction, object detection and recognition, image and 
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video content based retrieval, information hiding, image de-noising, image 

enhancements and more (Gonzales & Woods, 2002). 

When applied to an image, the DWT produces four different sub-bands (LL, HL, LH, 

HH), with each containing different information of the original image. Each sub-band 

can be decomposed further to achieve a multi-resolution analysis of the original image. 

Two example images and the results of their wavelet decomposition at two levels are 

illustrated in Figure 5.1. 

   

   

(a) (b) (c) 

Original Mammogram wavelet transform for level 1 wavelet transform for level 2 

Figure 5.1: Wavelet Decompositions  

The most common decomposition technique is the pyramid decomposition where only 

the LL sub-band is used for the decomposition.  

For the pyramid decomposition scheme, the LL sub-bands at each resolution level is 

further decomposed to four sub-bands.  Therefore, an image I is decomposed into 3k+1 

sub-bands (LLk, HLk, LHk, HHk, …, HL1, LH1, HH1), with LLk being the lowest-pass 

sub-band. The sub-bands LH1, HL1, and HH1 contain the finest scale wavelet 

coefficients. The LLk sub-band is considered as the kth-level approximation of the 

original image, I; LH and HL sub-bands represents horizontal and vertical features of 
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the image respectively, while HH sub-bands represent the diagonal features of the 

image. 

Results of pyramid wavelet decomposition at three levels of two mammogram images 

are illustrated in Figure 5.2. 

  

Figure 5.2: Three Level Pyramid DWT decomposition of mammograms 

Previous studies reported in the literature have shown that each individual wavelet sub-

band (low frequency LL and high-frequency wavelet sub-bands LH, HL, and HH) 

contain useful, and often complementary, information about the original spatial image 

that can be used as a feature set to represent the image (or the object of interest in the 

image) for the purpose of classification. Therefore, several studies have proposed the 

fusion of features extracted from the different wavelet sub-bands to represent the 

image/object of interest. For example, Sellahewa & Jassim (Sellahewa & Jassim, 2010) 

(Sellahewa & Jassim, 2008) fused multiple sub-bands deal with the problem of varying 

illumination and expressions in face recognition.  We too use the idea of multi wavelet 

sub-band fusion to represent mammogram images to capture texture/features at 

different scales and orientations.  

5.1.2 Local Binary Patterns (LBP) Features 

Proposed by Ojala et al., (Ojala, et al., 1996), the LBP operator is defined as a gray-

scale invariant texture measure, derived from a general definition of texture in a local 

pixel neighbourhood. There are number of advantages of using LBP operator such as: 

(i) extracting LBP features has a very low computational complexity, which makes 

real-time image analysis possible, (ii) LBP features are invariant to monotonic gray 

level changes, and (iii) LBP features have excellent discriminative power which makes 

them suitable for classification problems (Zhao & Pietikainen, 2007).  LBP features are 

widely used in detection and recognition in other fields of image processing such as the 
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face (Ahonen, et al., 2004) and palmprint (Guo, et al., 2010) recognition, LBP also used 

in mammogram field as described and discussed in Chapter 3 Section 3.3 of this thesis. 

The LBP code is obtained by replacing selected pixel value with 8-bit binary code 

which is derived from its 8 neighbour pixel values. The process of obtaining these codes 

starts by subtracting the value of the centre pixel from each of 8 neighbour pixel values 

then depends on the sign of the subtraction result, 1 or 0 assigned to a bit location. The 

generated 8 bits for all the 8 neighbours pixels are concatenated and encoded into 

binary strings in a clockwise direction. The final 8 binary string are called LBPs codes 

see Figure 5.3. The decimal value of the LBP code for the centre pixel (𝑥𝑐, 𝑦𝑐) is 

calculated as follows: 

 

𝐿𝐵𝑃(𝑥𝑐, 𝑦𝑐) = ∑𝑠(𝑖𝑛 − 𝑖𝑐)2
𝑛

𝑛−1

𝑛=0

 (5.1) 

 ic and in are gray level values of the central pixel and the surrounding pixels 

respectively, and the function s(x) is defined as: 

 
𝑠(𝑥) =  {

1  𝑖𝑓 𝑥 ≥ 0
0  𝑖𝑓 𝑥 < 0

 (5.2) 

 

21 77 66 Threshold 0 1 1 Binary: 00110110 

23 50 34  0  0 Decimal: 54 

31 50 56   0 1 1  

 

Figure 5.3: An example of LBP operator 

After an image is labeled with the LBP operator, a histogram of the labeled image is 

calculated. This LBP histogram used as a texture feature that contains information 

about the distribution of the local micro-patterns, such as edges, spots, and flat areas, 

over the whole image. Symbolically, the LBP operator can be represented as LBPP,R 

where ‘P’ represents a number of neighbours used to calculate LBP code and ‘R’ is the 

radius which mentions how neighbours are far from the centre pixel.  LBPP,R  produces 

2p different output values, corresponding to 2p different binary patterns formed by the 

P pixels in the neighbourhood of radius R for example LBP8,1  produce 256 different 

output values formed by 8 first neighbours.  
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Again (Ojala, et al., 1996) demonstrated that certain patterns contain more information 

than others and that it is possible to use only a subset of the 2p binary patterns to 

represent texture. These patterns were named uniform patterns, denoted by LBPP,R
u2 . The 

uniform patterns are those patterns which contain at most two bitwise transitions from 

0 to 1 or from 1 to 0 when the corresponding bit string is considered circular. For 

instance, 00000000 (0 transitions) and 11101111 (2 transitions) are uniform whereas 

11110110 (4 transitions) and 10110110 (6 transitions) are not uniform patterns.  

From experiments, Ojala et al. showed that 90% of all patterns in case of using LBP8,1 

are applying uniform patterns when texture images are used. In case of using LBP8,1, 

from 256 patterns there are only 58 uniform LBP-patterns, and all other 198 are non-

uniform patterns. Therefore, the histogram that represents this kind of features consists 

of 59 bins representing 58 uniform patterns and 1 bin represents the sum of all 198 

remain non-uniform patterns. Using this technique to extract features will greatly 

reduce the number of features that represent any texture images.  

Ahonen et al. (Ahonen, et al., 2004), showed that the histogram of LBP computed over 

the whole face image encodes only the occurrences of the LBP patterns without giving 

any hint regarding their locations. Therefore, to consider the aspect of ‘shape 

information’ of faces, authors proposed the idea of blocking before calculating LBP 

code of the image. They first divided the face image into m local regions to extract LBP 

histograms (LBPHs) from each region and concatenated them into a single feature 

histogram to represent the whole face image. Figure 5.4 illustrates the idea of extracting 

region or block based LBP. Most of the existing works, including our proposed used 

of LBP, adopt the above scheme to extract LBP features for image representation. 

 

Figure 5.4: Sub block histogram concatenating (Ahonen, et al., 2004) 
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5.1.3 Multi-scale LBP 

The basic LBP operator has one limitation which is its small 3×3 neighbourhood 

cannot capture dominant features with large-scale structures. To overcome this 

limitation and calculate texture at different scales, the LBP operator was later extended 

(Ojala, et al., 2002) and generalized to use neighbourhoods of different sizes. A local 

neighbourhood is defined as a set of sampling points spaced on a circle, which is 

centred at the pixel to be labeled, thus allowing for any radius and any number of 

sampling points in the neighbourhood. Figure 5.5 shows some examples of the 

extended LBP operator.  

 

(a) (b) (c) 

8,1 LBP 16,2 LBP 8,2 LBP 

                                                   Figure 5.5: Circular neighbourhoods for LBP (a, (b), and (c) 

There are two ways of calculating multi-scale LBP histograms; by calculating LBP 

code of the centre pixels with different R and then concatenate all histograms into a 

large histogram representation, or by applying the wavelet transform over the original 

image prior to extracting the LBP code with the same radius (R) of different scales, and 

then concatenate all histograms together to represent final feature vector (Y. Wang, 

2011) (Rashid, et al., 2013). Here in this thesis when we use multi-scale LBP features, 

and we use the second approach which is to apply a wavelet transform first followed 

by calculating LBP code on wavelet sub-bands. 

5.1.4 Histogram of Oriented Gradients (HOG) descriptor  

Local object (inside an image including mammograms) appearance, as well as object 

shape, can be characterized by the distribution of local intensity gradients or edge 

direction. The Histogram of Oriented Gradients (HOG) descriptor depends on the 

distribution of a differential intensity histogram of an image. In the HOG descriptor, 
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the image is blocked by non-overlapping uniform cells. For each cell, the intensity 

variation in different directions is calculated (Dalal & Triggs, 2005).  

First described by Dalal & Triggs (Dalal & Triggs, 2005), they focused on the use of 

HOG features in the problem of pedestrian detection in static images. Also, they 

expanded their tests to include human detection in film and video streams, as well as 

to a variety of common animals and vehicles in static imagery.  Subsequently, many 

studies used HOG descriptor for the purpose of human detection such as in (Kobayashi, 

et al., 2008) to classify the given input into pedestrian/non-pedestrian. The HOG 

descriptor has been successfully used in different computer vision areas such as face 

detection and recognition (Déniz, et al., 2011). 

The local shapes of an object that include information about edges in a given cell are 

well represented at the final HOG feature vector. Moreover, the HOG has a flatter 

distribution in the smooth regions of an image (Dalal & Triggs, 2005). For example, 

mammograms without having mass or any abnormality. While on the border between 

an object and the background, one of the elements in the histogram has a large value 

and will indicate the direction of the edge. So researchers in the field of classifying 

mammograms are now starting to use this kind of features.  

Recently, Kirshnaveni et al. (Krishnaveni, et al., 2014) proposed a method to detect 

microcalcifications in mammograms. The ROI was extracted after that pre-processing 

and enhancement is applied to remove noise and artifact. Finally, HOG is applied, and 

GLCM features and intensity features are measured. The mammograms were classified 

using a Naive Bayes Classifier. Our contribution in this direction is to propose and 

investigate the use of HOG descriptor for classifying mammograms to normal and 

abnormal cases rather than detecting microcalsification as in (Krishnaveni, et al., 

2014). We use the HOG descriptor in different ways: (1) as a single feature to represent 

a mammogram; (2) Applying PCA to the HOG feature vector to reduce feature vector 

size (see Chapter 6); and (3) fuse HOG features with other kind of texture features (e.g. 

fuse of LBP and HOG features) to represent final mammogram feature vector (see 

Chapter 6). 

5.1.5 Gray level co-occurrence matrix (GLCM) 

GLCM are created by taking pairs of image cells a distance ‘d’ from each other and 

incrementing the position corresponding to the gray level of both cells inside the 
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matrix. This will lead to four different matrices one for each given distance: P(00; d), 

P(450; d), P(900; d), and P(1350; d). More details were given in Chapter 4 Section 4.4.2. 

In our work we extract GLCM using four angles (0, 45, 90, 135) degree with distance 

d=1 after that we extract statistical features from GLCM table (the same way of 

extracting the feature from the mammogram in Chapter 4) but in this chapter we extract 

GLCM features from the cropped Mini-MIAS and DDSM databases.  

5.2  Proposed Feature Extraction Methods  

When extracting features from mammogram images, there is no specific technique that 

works well with all kinds of mammogram images. In this stage of our work, we used 

and proposed different techniques, and we used each of them separately to extract 

texture features; the aim is to compare and discuss different kind of texture features 

regarding the efficiency of classification, by doing so we can conclude that which set 

of features work better than the other to classify mammogram images. More especially 

the main contribution in this step is to extract texture features and classify mammogram 

images to normal and abnormal images.  

5.2.1 Multi-Scale LBP 

By taking the advantages of using wavelet decomposition to extract multi-scale LBP 

code, recently, LBPH feature are extracted in the wavelet domain to extract multi-

resolution features for face recognition (Tang, et al., 2010) and hand vein recognition 

(Y. Wang, 2011). Inspired by the successful use of LBP in the wavelet domain for 

biometric authentication, we first decompose mammogram images into two level using 

DWT with a Haar filter, secondly we sub-divide the sub-band to number of blocks, 

here we used 3x3 blocking, thirdly we calculate the LBP code on each sub-block of the 

wavelet sub-band separately and calculate the histogram of the extracted LBP code. 

Finally we concatenate all histograms calculated from each sub-block to represent final 

mammogram image. In all cases for extracting LBP code in each sub-block, we used 

the LBP operator with 8-neighbours at a radius of 1. Furthermore, we used the uniform 

LBP (i.e. each histogram represented by only 59 bins) due to its performance advantage 

and feature/histogram size. Here we used different representations of feature sets based 

on sub-band or number of sub-bands used to represent final mammogram image such 

as: 
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- Single Sub-band: In this case, we used only one wavelet sub-band to represent 

mammogram features. We apply the idea for different sub-bands and for two level 

wavelet decompositions to see how using different sub-bands can affect the 

classification accuracy of the system.  

- Multi Sub-bands: Any derived mammogram block regions or sub-bands in 

frequency domain provides different discriminative contribution which each of them 

plays a different role in mammogram classification. Information from a single block 

or sub-band can represent limited discriminative contribution. So mammogram 

classification based on single mammogram information cannot achieve satisfactory 

performance. It is reasonable to fuse more than one type of mammogram information 

to address the classification task. Since different sub-bands contain different features 

of the original image, therefore, in this case, we used more than one wavelet sub-

bands to represent final mammogram. Different combinations are used, and different 

numbers of sub-bands are used to see how a number of sub-bands may affect the 

classification accuracy.  

- Original with sub-band(s): In this case, we fuse mammogram information from the 

spatial domain with mammogram information from the wavelet domain. Here we 

fused the LBPH features obtained from the original mammogram image with LBPH 

features obtained from the wavelet sub-bands. Different combination used with a 

different number of sub-bands to see how the classification accuracy affected after 

combining them with original mammogram features. 

5.2.2 GLCM    

In this work, we obtain the Gray Level Co-occurrence Matrix (GLCM) of the 

mammogram which is the spatial distribution of pixel values in an image in four 

different directions at distance d=1. The four different directions that suggested by 

Haralick 1973 (Haralick, et al., 1973) are 0, 45, 90, and 135. The co-occurrence 

matrices constructed using the four directions are p (i; j; d; 0), p (i; j; d; 45), p (i; j; d; 

90), and p (i; j; d; 135). Then we extract the 14 statistical texture features from the four 

GLCM matrices individually. Details of all 14 statistical features can be found in 

(Section 4.4) of this thesis. Different directions are used to see and analysis how each 

direction can affect the mammogram accuracy. 
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5.2.3 HOG Descriptor 

To extract HOG features from mammogram images we used the same approach to 

feature extraction that used in (Dalal & Triggs, 2005), the aim is to see how this kind 

of features can be used to detect abnormalities in mammogram images and then used 

for classification purpose. In the proposed method, the HOG descriptor extracted by 

using the following steps:  

Step 1: After the mammogram image is read, we find image gradient magnitudes over 

the whole image pixels. The gradient image is calculated by filtering the image using 

[-1, 0, 1] and [-1, 0, 1]T filters for horisontal, and vertical direction respectively see 

equation (5.3) and (5.4). 

 
𝐺𝑥 =

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
=
𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)

(𝑥 + 1) − (𝑥 − 1)
 (5.3) 

 

 
𝐺𝑦 =

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
=
𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)

(𝑦 + 1) − (𝑦 − 1)
 (5.4) 

 

Step 2: Each pixel within the cell casts a weighted vote for an orientation-based 

histogram channel based on the values found in the gradient computation. In the 

following equation (5. 5) and (5. 6) we calculate the weighting (∆𝑓(𝑥, 𝑦)) and the 

orientation (𝜃(𝑥, 𝑦)) for an image pixel: 

 
∆𝑓(𝑥, 𝑦) = √(𝐺𝑥

2 + 𝐺𝑦
2 ) (5.5) 

 

 𝜃(𝑥, 𝑦) =  𝑡𝑎𝑛−1(𝐺𝑥
2 𝐺𝑦

2⁄  ) (5.6) 

  

Step 3: We compute histogram on cells of typically 8x8 pixels (i.e. 16x16 cells in total). 

The histogram size is 9 bins. 

Step 4: The resulting histograms are normalized (often simply to unit length) with 

overlapping blocks (50% overlap) of cells (typically 2x2, i.e. 15x15 blocks in total),  

Step 5: Finally concatenate all obtained histograms into one vector to represent final 

feature vector.  
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The final extracted feature vector size using this scheme is 8100 features which result 

from the following simple calculation: 

           Number of features = No. of Blocks x Block Size x No. of Bins 

                                           = (15x15) x (2x2) x9 

                                          = 8100 

5.3 Experimental Setup  

This section describes the experimental setup used to test the performance of the 

proposed feature extraction schemes. More specifically, we describe the experimental 

databases, classification methods, and the evaluation protocols that govern the 

partitioning of the data samples into training and testing sets.   

5.3.1 Databases 

We used two different databases to evaluate our proposed feature extraction schemes. 

The two databases are commonly used in the researches, and they have different 

properties and structures. Following sub-sections are details of the way that the 

individual databases are used for the classification purpose.   

5.3.1.1 Mini-MIAS database 

The proposed feature extraction schemes were tested on the complete set of 322 

mammograms of the Mini-MIAS database (Suckling, et al., 1994). This database is 

widely used to evaluate automated mammogram analysis techniques, and it is available 

freely for scientific research purposes. The database consists of 161 pairs of Medio-

lateral oblique (MLO) view mammograms (right and left view) and overall includes 

209 normal cases and 113 abnormal cases. The images of the database originate from 

a film-screen mammographic imaging process in the United Kingdom National Breast 

Screening Program. For more details, see (Chapter 2 Sub-Section 2.4.1). The Mini-

MIAS database contains different types of the abnormality. We separate normal 

mammogram and abnormal mammogram with different types of the abnormality. We 

extracted the region-of-interest (ROI) of size 128×128 pixel from the original 

mammogram image based on the given (x, y) image-coordinates that represent the 

centre of abnormality when normal images are used, we selected the (x, y) centre of 

the breast as the image co-ordinate. The features described in previous sections were 

extracted only from the selected ROI. 
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5.3.1.2 DDSM database 

The Digital Database for Screening Mammography (DDSM) is commonly used as a 

benchmark for testing new proposals dealing with processing and analysis of 

mammograms for breast cancer detection (Heath, et al., 2001). Experiments were 

performed on 512 mammogram images selected randomly out of 2620 images. Of these 

512 images, 256 images are normal, and other 256 images are abnormal. All images 

were cropped and selected ROI of size 128 x 128 were used for experiments. See 

(Chapter 2, Sub-Section 2.4.2) for more details. Again features described in previous 

sections were extracted only from the selected ROI. 

5.3.2 Evaluation Protocol   

We conducted experiments in four different scenarios to evaluate our proposed feature 

extraction schemes. The four scenarios are different to each other in the way they 

separate the mammogram database in to training and testing sets (i.e. the number of 

images used for training and testing are different). Testing the proposed schemes under 

different scenarios is important, because in real life CAD system, different number of 

mammogram cases are available (i.e. sometimes fewer number of cases are available 

while in other larger number of cases are available). We assigned a different percentage 

of mammograms to the training set (and testing set) to see effects of the training set 

size on the classification accuracy of the system. The four different scenarios are:   

 Leave-One-Out strategy: in this strategy, one mammogram is kept as a test image 

and all the remaining images were used as training samples. Experiments were 

repeated (n) times, where (n) is the number of images in the database; final 

classification accuracy of the system is the average of all n times. 

 70% Training and 30% Testing: in this strategy, 70% of images (normal and 

abnormal) were used as training and the rest used for testing. For the mini-MIAS 

database, 146 of normal and 79 of abnormal images were used as training, while 63 

of normal and 34 of abnormal images were used for testing. For the DDSM database, 

179 of normal and 179 of abnormal images were used as training while remaining 

77 images from each of normal and abnormal images were used as testing images. 

Images were divided into training and testing sets using random selection and the 

experiments were repeated 20 times. The reported results are the average result of  

20 experiments 
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 50% Training and 50% Testing: One half of the data set used for training and the 

other half used as testing. For the mini-MIAS database, 105 of normal and 57 of 

abnormal images were used as training, while the remaining 104 normal and 56 

abnormal images respectively were used for testing. For the DDSM database, 128 

of normal and 128 of abnormal images were used as training set while remaining 

128 images from normal and abnormal images were used as testing images. Again, 

the experiments were repeated 20 times by random selection of training images. 

Reported results are the averaged results of the 20 experiments. 

 10% Training and 90% Testing: in this scenario, only 10% of images per class 

(normal and abnormal) were used as training and the rest as testing images. For the 

mini-MIAS database, 21 of normal and 11 of abnormal images were used for 

training, while 188 of normal and 102 of abnormal images were used for testing. 

For the DDSM database, 26 of normal and 26 of abnormal images were used as the 

training set while remaining 230 images from each of normal and abnormal images 

were used as testing images. Experiments were repeated 20 times using random 

sampling as before, and the average results are analysed for evaluation.  

5.3.3 Classification Methods 

To date, there is no optimum classifier that can fit every type of data. Therefore, in our 

work, we used one of the most commonly used classifier in the field of machine 

learning, which is the support vector machine (SVM). SVMs have shown to be a useful 

classifier, particularly when classifying data into one of two classes. We trained a 

binary SVM classifier to classify a given mammogram as normal or abnormal based 

on the above features.   

5.4 Experimental results and discussion  

In this section, we will present and discus the results of the various experiments 

conducted to evaluate the performance of the proposed features. In each case, 

performance will be measured in terms of Sensitivity, Specificity, and Accuracy of the 

system. Details of the three measurements were given in Section 2.3.3. 

5.4.1 Multi-Scale LBP 

- Single Sub-band: In this case, only a single wavelet sub-band used to extract 

LBPH from it and represent whole mammogram image after mammogram images 

are decomposed into two levels using discrete wavelet transformations. 
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Experimentally we exclude the HH sub-band from the feature extraction process.  

Table 5.1 to Table 5.4 show the classification results of proposed technique applied 

on two used databases and four different strategies (Leave-One-Out strategy, 

70%/30% training/testing, 50%/50% training/testing, and 10%/90% 

training/testing,) respectively. Each table presents sensitivity, specificity, and 

accuracy of the system.  

Table 5.1: Results of leave-one-out strategy based on LBPH features obtained from single wavelet sub-band 
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LL1 90.27 94.74 93.17 87.89 89.45 88.67 

HL1 89.38 98.57 95.34 64.45 64.06 64.26 

LH1 87.61 97.61 94.10 60.94 64.06 62.50 

LL2 76.11 92.82 86.96 89.45 89.84 89.65 

HL2 61.95 79.43 73.29 69.92 71.88 70.90 

LH2 65.49 88.04 80.12 72.27 74.22 73.24 

 

Table 5.2: Results of 70%/30% training/testing strategy based on LBPH features obtained from single 

wavelet sub-band 
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LL1 86.77 93.41 91.08 88.51 88.90 88.70 

HL1 86.77 97.62 93.81 62.47 60.97 61.72 

LH1 87.35 98.33 94.49 63.90 62.73 63.31 

LL2 76.62 93.10 87.32 89.68 89.03 89.35 

HL2 59.27 83.41 74.95 71.04 70.46 70.75 

LH2 67.21 86.91 80.00 73.64 72.40 73.02 
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Table 5.3: Results of 50%/50% training/testing strategy based on LBPH features obtained from single 

wavelet sub-band 
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LL1 86.07 93.46 90.88 87.81 88.87 88.34 

HL1 85.98 98.70 94.25 62.19 62.42 62.31 

LH1 84.46 97.98 93.25 61.48 62.11 61.80 

LL2 77.86 92.16 87.16 87.97 89.10 88.54 

HL2 58.21 82.74 74.16 69.69 67.50 68.59 

LH2 64.46 85.91 78.41 71.84 72.85 72.34 

 

Table 5.4: Results of 10%/90% training/testing strategy based on LBPH features obtained from single 

wavelet sub-band 
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LL1 78.58 92.95 87.90 83.15 85.78 84.47 

HL1 72.84 98.35 89.38 55.96 58.44 57.20 

LH1 74.66 98.67 90.22 57.35 54.94 56.14 

LL2 68.24 91.38 83.24 87.28 86.11 86.70 

HL2 41.62 85.75 70.22 63.30 65.37 64.34 

LH2 44.41 90.08 74.02 65.80 66.37 66.09 

From the results obtained above we can notice that: 

 Comparing different experimental scenarios for both databases shows that the 

performance of each of feature vector schemes follows a very similar pattern when 

comparing the various wavelet sub-band representations across all the 4 scenarios. 

The leave-one-out yields better classification accuracy than other 3 remaining 

scenarios, 70/30 training/testing scenario yields better classification accuracy than 

50/50 training/testing and 10/90 training/testing scenarios, and 50/50 

training/testing have better classification accuracy than 10/90 training/testing. These 

patterns are not surprising because the larger the gallery, the better chance for 

accurate matches.  
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 The best classification accuracy rates achieved for the different scenarios are as 

following: 

Mini-MIAS:Leave-one-out:95.342%(HL1); 70/30 training/testing:94.485%(LH1); 

50/50 training/testing:94.250%(LH1); 10/90 training/testing:90.224 %(HL1).  

DDSM:Leave-one-out:89.648%(LL2); 70/30 training/testing: 89.351%(LL2); 

50/50 training/testing: 88.535%(LL2); 10/90 training/testing: 86.696%(LL2).  

- Multi Sub-bands: Here in this section we show the results of combining more than 

one wavelet sub-bands. The combination of sub-bands results from the fact that a 

single sub-band may not represent mammogram images in a good manner as 

gathered from the results shown in Table 5.1 to Table 5.4 in the previous section. 

Also, we conclude from the previous section that first level of wavelet 

decomposition has higher accuracy than the second level of the wavelet 

decomposition especially for Mini-MIAS database, therefore, in this case, we only 

combine the first level sub-bands. Table 5.5 to Table 5.8 shows results of different 

sub-bands combination with four different strategies applied on two databases. 

Table 5.5: Results of leave-one-out strategy based on LBPH features obtained from multi wavelet sub- bands 
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LL,HL 94.69 99.04 97.52 87.50 89.06 88.28 

LL,LH 96.46 99.04 98.14 88.67 90.63 89.65 

LL,HL,LH 94.69 99.52 97.83 88.28 89.84 89.06 

ALL 94.69 99.52 97.83 88.67 91.02 89.84 

 

Table 5.6: Results of 70%/30% training/testing strategy based on LBPH features obtained from multi wavelet 

sub-bands 
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LL,HL 92.35 96.91 95.31 88.77 88.70 88.73 

LL,LH 92.65 97.54 95.83 89.29 89.81 89.55 

LL,HL,LH 92.65 98.41 96.39 89.16 89.87 89.51 

ALL 94.12 99.37 97.53 88.57 90.33 89.45 
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Table 5.7: Results of 50%/50% training/testing strategy based on LBPH features obtained from multi wavelet 

sub-bands 
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LL,HL 89.38 96.39 93.94 86.84 88.87 87.85 

LL,LH 90.00 97.02 94.56 87.46 90.12 88.79 

LL,HL,LH 89.82 97.89 95.06 86.56 89.65 88.11 

ALL 92.59 98.80 96.63 86.88 89.65 88.26 

 

Table 5.8: Results of 10%/90% training/testing strategy based on LBPH features obtained from multi wavelet 

sub-bands 
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LL,HL 81.23 94.92 90.10 83.72 86.00 84.86 

LL,LH 81.32 94.97 90.17 85.33 86.17 85.75 

LL,HL,LH 81.91 96.04 91.07 85.24 86.26 85.75 

ALL 84.36 97.34 92.78 85.15 86.52 85.84 

 

From results gathered in this section which shown in Table 5.5 to Table 5.8 and by 

comparing them with obtained results in Table 5.1 to Table 5.4 respectively, it is clear 

that results improved when LBP features of one or more non-LL sub-band(s) were 

combined with LBP features of LL-sub-band. This shows that using single sub-bands 

to represent mammogram images is not sufficient and each sub-band contain useful 

discriminting features and can play its role when more than one sub-bands are 

combined to represent mammogram images. This is due to the multi-resolution 

characteristics of wavelet transforms, which mean that significant texture features that 

hold discrimiating information, appear at diferent wavelet frequency subbands with 

varying weights  (i.e. wavelet coeffocients) By fusing more than subbands, we reduce 

the possibility of lossing discriminating information.  The LL subbands, being an 

approximation representation of the original images, for example are outperformed by 

most of higher frequency subbands. 
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- Original with sub-band(s): Here in this section we propose another combination 

between LBPH features extracted from original mammogram image in the spatial 

domain and LBPH features extracted from one or more wavelet-sub-bands. The idea 

comes out from the fact that LBPH features extracted in the spatial domain had good 

classification results when they used alone see Table 5.9. On the other hand, we 

proved and obtained good classification accuracy when LBPH features are extracted 

from wavelet sub-band(s). Therefore, to obtain higher classification accuracy we 

combine two LBPHs. Table 5.10 to Table 5.13 shows results of combination with 

different sub-band(s) and different strategies.    

Table 5.9: Results of different strategy based on LBPH features obtained from original mammogram images 
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    Leave-one-Out 92.92 96.65 95.34 88.67 92.58 90.63 

70%/30%     

training/ testing 

91.07 95.69 94.08 90.07 91.43 90.75 

50%/50%    

training/ testing 

90.18 95.22 93.46 88.98 90.51 89.75 

10%/90% 

training/testing 

88.24 94.15 92.07 82.72 86.76 84.74 

 

Table 5.10: Results of leave-one-out tests strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 
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O,LL 97.35 99.04 98.45 90.63 92.58 91.60 

O,HL 96.46 99.04 98.14 90.23 91.41 90.82 

O,LH 95.58 99.04 97.83 91.02 92.19 91.60 

O,LL,HL 97.35 99.04 98.45 90.23 92.58 91.41 

O,LL,LH 97.35 99.04 98.45 90.23 93.36 91.80 

O,LL,HL,LH 97.35 99.04 98.45 89.84 93.75 91.80 

O,ALL 97.35 99.52 98.76 89.84 93.75 91.80 
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Table 5.11: Results of 70%/30% training/testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 
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O,LL 96.77 99.21 98.35 89.74 92.53 91.14 

O,HL 95.74 99.13 97.94 89.29 91.17 90.23 

O,LH 95.59 98.97 97.78 89.55 91.69 90.62 

O,LL,HL 96.47 99.21 98.25 89.74 92.66 91.20 

O,LL,LH 96.47 99.21 98.25 90.00 92.86 91.43 

O,LL,HL,LH 96.47 99.21 98.25 90.07 92.53 91.30 

O,ALL 96.32 99.21 98.20 90.33 92.47 91.40 

 

Table 5.12: Results of 50%/50% training/testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 
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O,LL 95.36 98.80 97.59 89.92 90.66 90.29 

O,HL 95.00 98.75 97.44 89.02 90.90 89.96 

O,LH 95.09 98.75 97.47 89.10 91.21 90.16 

O,LL,HL 95.45 98.94 97.72 89.73 90.63 90.18 

O,LL,LH 95.27 98.99 97.69 89.77 90.78 90.27 

O,LL,HL,LH 95.27 98.99 97.69 89.65 90.86 90.25 
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O,ALL 95.27 98.99 97.69 89.45 91.13 90.29 

 

 

 

 

Table 5.13: Results of 10%/90% training/testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 
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O,LL 91.28 98.88 96.21 84.00 87.48 85.74 

O,HL 91.13 98.83 96.12 82.83 87.02 84.92 

O,LH 91.18 98.88 96.17 83.13 86.87 85.00 

O,LL,HL 91.32 98.88 96.22 84.04 87.52 85.78 

O,LL,LH 91.28 98.88 96.21 84.24 87.50 85.87 

O,LL,HL,LH 91.28 98.91 96.22 83.04 87.20 85.12 

O,ALL 91.47 98.99 96.35 84.35 87.65 86.00 

 

Results obtained from Table 5.10 to Table 5.13 can be compared in two ways; first, if 

we compare with results shown in Table 5.9 which is the results of extracting LBPH 

from the original mammogram images only, we can notice a very high improvement 

of the classification accuracy results. Secondly, if we compared with results shown in 

Table 5.1 to Table 5.8 which are results of using single and multi sub-bands, again we 

notice that results are highly improved using the new combination strategy which is 

combining the extracted features from original mammogram image with extracted 

features from wavelet sub-band(s). These results can be explained partly by the 

explanation, we gave earlier, before the current group of tables, regarding the 

appearance of significant discriminating texture feature over multiple subbands. In fact, 

even fusing the original LBPH with that of a single wavelet subband seem to 

compensate for the loss of iformation when using the single subband.   
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5.4.2 GLCM 

To test the performance of the GLCM features, as explained in (Section 5.2.2), 

extracted  from the cropped ROI version of the images in the four different angles (0, 

45, 90, and 135). The testing was conducted with the four different strategies of 

separating test and train sets. Table 5.14 to Table 5.17 show individual results for the 

4 different angles, and the 2 databases. Except for the 10%/90% traning/testing 

protocole, the obtained results show high accuracy especially for the leave-one-out 

strategy. In all case, the performance of the GLCM scheme is particularly high for the 

Mini-Mias images, which can be attributed to the differences between the images in 

the two databases.  These results also confirm that using the ROI mammogram images 

give better classification accuracy when compared with the results of using whole 

images or even compared with our previously proposed method for removing un-

wanted image parts shown in the previous chapter.   

 

Table 5.14: Results of leave-one-out tests strategy based on 14 GLCM features obtained from the original 

mammogram 
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R0 96.46 100.00 98.76 97.27 91.02 94.14 

R45 94.69 100.00 98.14 88.67 85.55 87.11 

R90 96.46 100.00 98.76 97.27 93.36 95.31 

R135 96.46 100.00 98.76 96.48 92.58 94.53 

 

Table 5.15: Results of 70%/30% training/testing strategy based on 14 GLCM features obtained from the 

original mammogram 

 Mini-MIAS DDSM 

 

Angle 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

R0 86.03 98.10 93.87 93.29 90.07 91.68 

R45 87.79 97.54 94.12 95.92 80.07 87.99 

R90 74.85 95.24 88.09 96.97 86.71 91.84 

R135 85.29 98.73 94.02 95.20 88.36 91.78 
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Table 5.16: Results of 50%/50% training/testing strategy based on 14 GLCM features obtained from the 

original mammogram 
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R0 91.70 98.46 96.09 92.27 90.90 91.58 

R45 92.41 98.03 96.06 93.01 76.48 84.75 

R90 92.50 89.76 90.72 95.98 83.95 89.96 

R135 92.05 99.04 96.59 93.75 84.69 89.22 

 

 

Table 5.17: Results of 10%/90% training/ testing strategy based on 14 GLCM features obtained from the 

original mammogram 
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R0 82.26 71.30 75.16 82.50 69.39 75.95 

R45 80.49 83.96 82.74 79.48 62.52 71.00 

R90 71.81 73.22 72.72 82.37 59.09 70.73 

R135 74.17 78.94 77.26 80.85 60.59 70.72 

 

5.4.3 HOG 

Table 5.18 shows the accuracy of the system when using the HOG features as texture 

representation of mammogram images. The results are given for the two different 

databases for the 4 different strategies of evaluation. Compared to the previous 

methods, the HOG-based scheme has a disappointedly low performance.  This can be 

attributed to the very large feature vector size. Therefore it would of great interest to 

test whether this scheme can benefit or not from feature reduction. Details of feature 

reduction methods and experiments will be given in Section 5.6. Again there are 

significant differences between the performance of the scheme for the 2 different 

databases of mammograms. 

Table 5.18: Results of using four strategies based on HOG features obtained from original mammogram 
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    Leave-one-Out 80.53 98.09 91.93 72.66 77.34 75.00 

70%/30%     

training/ testing 

80.00 98.02 91.70 71.56 78.57 75.07 

50%/50%    

training/ testing 

77.95 98.17 91.09 69.49 80.00 74.75 

10%/90% 

training/testing 

56.52 98.59 83.79 60.13 77.85 68.99 

 

5.5 Results Summary  

We chose the best classification accuracy obtained by each individual feature type from 

the results shown in Table 5.8 to Table 5.18 to compare the different feature extraction 

methods proposed in previous sections. Figure 5.6 and Figure 5.7 show best 

classification results for Mini-MIAS and DDSM database respectively:   

 

Figure 5.6 : Results summary of Mini-MIAS database accuracy 
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Figure 5.7 : Results summary of DDSM database accuracy 

Results in Figure 5.6 and Figure 5.7 show that combining LBPH features from the 

original image with LBPH features extracted from wavelet sub-bands produced a 

higher classification accuracy than the respective individual LBPH features and HOG 

features. The reason for this is that LBP codes reflect the order relation between  all the 

neighbouring pixels and the centre pixel in the local neighbourhoods rather than 

variations in pixel values is specific directions. Also, the the LBP  feature would be 

invariant under monotonic grey level changes, i.e. the individual greylevel values holds 

less significant information about the breast tissue models. As explained before, 

extracting LBP from wavelet sub-band(s) benefits from the multi-resolution nature of 

wavelet transforms. One another reason is that in the proposed scheme we combined 

LBPH features extracted from the spatial domain image directly and LBPH features 

extracted from different wavelet sub-bands so that the obtained feature vector will have 

a better representation of the texture at different resolution of the mammogram images. 

The achieved high accuracy of our system using LBPH is due to the sensitivity of the 

method to the mammogram images structure which contain mixture of complex fine 

lines and dense areas compared to other medical images type like ultrasound. 

Although, not as good as LBP features, GLCM features also reflect/highlight variations 

in neigbouring moammogram pixel values in selected directions, This means that 

GLCM also encapsulate image textures which seem to have good discriminating 

representation of mammograms. Comparing GLCM with multi-scale LBP, GLCM 
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provides features in the directions 45, 135 which is not represented in the multi-scale 

LBP, and this made GLCM performed same or slightly better than Multi-scale LBP, 

particularly when a large number of training samples are used (Leave-One-Out 

strategy). This proved that the fourteen well known statistical features obtained from 

co-occurrence matrix have a very good representation of the correlation in the intensity 

of pixels (grey levels) that are next to each other apeared in breast tissue.  

On the other hand, HOG features produced the lowest classification accuracy compared 

with all other used feature vectors. While in our case, we did not consider mass objects 

types and shapes which might be different from one abnormal mammogram to another 

and we took all abnormal cases as one type. Therefore, the results obtained using HOG 

descriptor was expected to be low because the HOG descriptor originally has been 

successfully used in object detection, for instance, in human face detection or 

recognition. Another reason could be the feature vector size that represents the 

mammograms, for the HOG descriptor has 8100 features which are relatively high. 

Also the information of the mammogram image is different from other types of images, 

so this affect the accuracy of the system.   

Therefore, our next focus will be reducing feature vector size (see next section).  One 

other point that needs mentioning is that classification results obtained from the Mini-

MIAS database are higher than the classification results obtained from the DDSM 

database. One reason could be the structure of the database affect the results, for 

example, Mini-MIAS database contain a different type of abnormality that leads to 

classifying the cases to abnormal cases easier than DDSM database which contains 

only one type of abnormality.  

5.6 Dimension Reduction 

High dimensional feature vectors could contain redundant features that can have a 

negative effect on classification accuracy as well as computational efficiency. 

Redundant features can be described as those features that provide no more information 

than the currently selected features, and irrelevant features provide no useful 

information in any context (Tan, et al., 2006) (Hastie, et al., February 2009). Although 

the extracted feature vector is much smaller than the original image size, still the feature 

set can be seen as large and may contain redundancies. This general problem is 
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commonly addressed by process of feature selection, feature weighting, or dimension 

reduction (Oral & Sezg, 2013) (Suhas, et al., 2012).  

There are many algorithms and techniques developed for dimensionality reduction such 

as Singular Value Decomposition (SVD), Independent Component Analysis (ICA), 

Principal Component Analysis (PCA), and Random Projection (RP) (Bingham & 

Mannila, 2001). While all of these methods have a similar goal, their approach to the 

problem is different. Here in this thesis, we use Principal Component Analysis (PCA) 

as a feature reduction method. Principle Component Analysis is a well-known and an 

effective dimension reduction technique used in many different classification 

problems.  

The high dimensional feature vectors as proposed or investigated in the previous 

sections are in different sizes and could contain redundant features. For example, the 

number of features in the GLCM based feature representation is only 14 features; in 

multi-scale LBP, the number of features is 531 features for each original or wavelet 

sub-bands; while for HOG features the feature vector size is 8100 features. Table 5.19 

summarises the number of features using different feature extraction techniques. The 

table also contains the size of using a different number of wavelet sub-bands in the case 

of LBP. We can see that all feature vectors, except GLCM features, are high 

dimensional and therefore, could benefit from dimension reduction. 

Table 5.19: Feature vector size 

Technique used Wavelet sub-band(s) Feature vector size 

GLCM  14 

LBP 

One 531 

Two 1062 

Three 1593 

Four 2124 

Original and One 1062 

Original and Two 1593 

Original and Three 2124 

Original and Four 2655 

HOG  8100 

 

In this section, we investigate and propose the use of dimension reduction to reduce the 

size of feature vectors that represent mammogram images (or their ROIs). 
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Experimental results will demonstrate an enhancement in mammogram classification 

accuracy in most instances when dimension reduction is employed on the features 

proposed in previous sections. Dimension reduction using PCA, which is the method 

we use, will be explained in details here. 

Principal components analysis (PCA) is one of the very popular techniques for 

dimensionality reduction. The main idea of PCA is to find a lower dimensional 

representation of a high dimensional data set that consist a large number of interrelated 

variables (features). Data variables are mostly correlated to each other unless the 

structure of the data is not simple or the dimension is small (Jolliffe, 2002). This 

characteristic means that discarding some of these variables/features might not affect 

characterizing the samples. PCA offers a linear transformation of the data from its 

original space into a de-correlated space. The newly offered space has covariance close 

to zero between each pair of dimensions. Computation of PCA is based on finding a 

matrix, in which its columns are the Eigenvectors of the data covariance. The 

Eigenvalue λ corresponding to the Eigenvector v of the data covariance C is equivalent 

to data variance in the direction of v. For this reason, the direction of k Eigenvectors 

corresponding to the biggest k eigenvalues cover as much data variance as possible by 

k orthogonal components (Mika, et al., 1999). The Eigenvectors that have small 

corresponding Eigenvalues could be discarded because the projected data on those 

components are close to zero Figure 5.8. The following explains the computation steps 

for data transformation using PCA: 

Step 1: Suppose that the data is denoted by, X = {x1, x2, … , xN}, xi ∈ R
d. 

Step 2: Subtract the mean values from the data such that the mean value of the 

data shifted to a d dimension point 0. 

Step 3:  Compute the covariance matrix ∑ of X. 

Step 4: Compute the Eigenvectors of ∑, and arrange them as columns in 

transformation matrix T, such that as small as the index of the Eigenvector 

column; it has the highest correspondence Eigenvalues. 

Step 5: Transform the data X into X’ using the following formula: 

X′ = X T                     
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Where, X′ is the transformed data in the principal component space, note that 

the last columns of T could be discarded, because that it represent the directions 

with lowest sample variance. 

PCA is used for dimension reduction of high dimensional data for producing a 

compressed version of the data through transforming them into some of the highest 

Eigenvectors of the data covariance. In other words, only the first k number of column 

in PCA components will be selected to represent high dimensional data. In this study, 

we used different k values to see how selecting different number of PCA components 

will affect the accuracy of the system. PCA serves as a general-purpose tool with 

applications ranging from information extraction over dimension reduction to data 

visualization. Here, we propose to use PCA to reduce the dimension of LBP and HOG 

features. GLCM features are already small in number. 

 

Figure 5.8: Largest and smallest Principle components 

5.7 Dimension Reduction on Proposed Schemes  

5.7.1 PCA over HOG 

The HOG features, as extracted from the previous sections, include 8100 features. 

These features are probably too many and are redundant. Therefore, the PCA can be 

used to reduce the dimensionality of the feature vector and improve the classification 

accuracy. An additional benefit of dimension reduction is the reduction in the systems’ 

computation cost, which could be useful in real-life situations when an automated 

system has to classify thousands of mammograms as quickly as possible. 
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Figure 5.9 illustrates the process of obtaining the low-dimensional HOG features by 

apply PCA on the set of HOG features obtained from a given mammogram or its ROI. 

We select the first k components that correspond the highest k eigenvalues. We call the 

new feature vectors PCA-HOG feature vectors. 

 

 

 

 

 

Figure 5.9: General frame work of PCA-HOG 

5.7.2 PCA over LBP 

We use PCA on LBP features in the same manner to the way PCA was used on HOG 

features to reduce the dimensionality of the feature space. The first k components that 

correspond to the largest k eigenvalues are selected as the reduced dimension features 

which we refer to as PCA-LBP. 

5.7.3 Experimental Setup and Results 

We used the same databases and the four different evaluation strategies (Leave-One-

Out, 70%/30% training/testing, 50%/50% training/testing, and 10%/90% 

training/testing) as before to evaluate our proposed PCA-HOG and PCA-LBP features. 

The binary SVM classifier was used for classification, and the results are reported in 

terms of sensitivity, specificity, and accuracy.  

5.7.3.1  PCA over HOG 

Table 5.20 to Table 5.23 show the classification sensitivity, specificity, and accuracy 

of the proposed PCA-HOG using four different evaluation strategies on the two 

different databases. In each case, the experiment is done using a different number of 

PCA components, and the results are compared with the full set of HOG feature (i.e. 

before applying PCA).  

Table 5.20: Results of leave-one-out strategy based on applying PCA over HOG features with selecting 

various PCA components 

 Mini-MIAS DDSM 

Extracting      

HOG features 

Feature 

Reduction 

Linear 

SVM 

Input 

Image 

Results 
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All (8100) 80.53 98.09 91.93 72.66 77.34 75.00 

1000 80.53 98.09 91.93 72.66 77.34 75.00 

500 80.53 98.09 91.93 70.70 75.78 73.24 

400 80.53 98.09 91.93 69.53 71.88 70.70 

300 82.30 98.09 92.55 71.48 73.05 72.27 

200 80.53 95.69 90.37 69.92 71.88 70.90 

100 82.30 94.26 90.06 74.22 77.73 75.98 

50 80.53 91.87 87.89 75.78 82.42 79.10 

40 86.73 95.69 92.55 78.52 85.16 81.84 

30 88.50 94.26 92.24 77.34 85.94 81.64 

20 85.84 96.17 92.55 75.00 83.20 79.10 

10 88.50 97.13 94.10 70.31 83.20 76.76 

 

Table 5.21: Results of 70%/30% training/testing strategy based on applying PCA over HOG features with 

selecting various PCA components 
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All (8100) 80.00 98.02 91.70 71.56 78.57 75.07 

1000 80.00 98.02 91.70 71.49 78.31 74.90 

500 80.00 98.02 91.70 71.56 76.69 74.12 

400 80.00 98.02 91.70 69.74 71.82 70.78 

300 79.56 97.94 91.50 68.83 72.92 70.88 

200 79.56 96.83 90.77 70.52 71.88 71.20 

100 80.29 95.56 90.21 72.53 77.08 74.81 

50 82.06 94.92 90.41 76.62 82.99 79.81 

40 85.44 95.40 91.91 75.58 84.22 79.90 

30 83.97 95.71 91.60 75.33 84.48 79.90 

20 86.18 95.87 92.47 72.99 83.51 78.25 

10 88.38 96.83 93.87 70.00 84.68 77.34 

 

Table 5.22: Results of 50%/50% training/testing strategy based on applying PCA over HOG features with 

selecting various PCA components 
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All (8100) 77.95 98.17 91.09 69.49 80.00 74.75 
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1000 77.95 98.17 91.09 69.77 79.92 74.84 

500 77.95 98.17 91.09 69.53 79.53 74.53 

400 77.95 98.17 91.09 68.52 75.74 72.13 

300 77.77 98.27 91.09 67.77 75.47 71.62 

200 76.88 97.31 90.16 68.71 72.38 70.55 

100 78.30 96.15 89.91 70.16 74.69 72.42 

50 81.25 94.57 89.91 73.40 82.11 77.75 

40 82.14 93.65 89.63 71.64 83.24 77.44 

30 84.11 93.17 90.00 72.62 83.67 78.15 

20 85.36 93.94 90.94 70.31 83.83 77.07 

10 87.68 95.24 92.59 69.22 83.32 76.27 

 

 

 

 

 

Table 5.23: Results of 10%/90% training/testing strategy based on applying PCA over HOG features with 

selecting various PCA components 

 Mini-MIAS DDSM 

 

Number of PCA 

Components 
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All (8100) 56.52 98.59 83.79 60.13 77.85 68.99 

1000 56.52 98.59 83.79 60.22 77.76 68.99 

500 56.52 98.59 83.79 60.02 77.80 68.91 

400 56.52 98.59 83.79 59.91 76.28 68.10 

300 56.08 98.56 83.62 58.67 75.00 66.84 

200 53.87 98.56 82.85 59.44 75.33 67.38 

100 59.07 97.98 84.29 59.76 74.22 66.99 

50 64.56 96.52 85.28 61.26 74.83 68.04 

40 66.52 95.96 85.60 63.09 74.46 68.77 

30 66.47 94.79 84.83 63.78 76.15 69.97 

20 70.78 94.81 86.36 65.09 76.20 70.64 

10 73.53 95.27 87.62 66.87 78.74 72.80 

 

It is clear from the above results that using PCA to reduce the HOG feature space had 

a positive effect on mammogram classification accuracy. A closer look at the tables 

Table 5.20 to Table 5.23 show that  the best results on the Mini-MIAS database are 

obtained when the feature size is reduced to only 10 PCA component. Meanwhile, on 

the DDSM database, PCA-HOG features with 10 to 40 PCA components achieved a 

higher accuracy than using all 8100 HOG features.  
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The increase in accuracy due to feature space reduction varied slightly across the two 

databases and the four different evaluation strategies. For example, on Mini-MIAS 

database, the increase is around 1 to 4 degrees, whilst it is 4 to 6 degrees on the DDSM 

database. A noticeable difference between the two databases is that whereas both 

sensitivity and specificity increased on the DDSM database if compared with using 

original feature vector, while only the sensitivity is increased on the Mini-MIAS 

database. One reason for this could be the balance between number of normal and 

abnormal cases in the DDSM database, while for Mini MIAS are not.   

5.7.3.2  PCA over LBP 

Table 5.24 to Table 5.27 show the classification sensitivity, specificity, and accuracy 

of the proposed PCA-LBP using four different evaluation strategies on the two different 

databases. In each case, the experiment is done using a different number of PCA 

components, and the results are compared with the full set of LBP feature (i.e. before 

applying PCA).  

Table 5.24: Results of leave-one-out strategy based on applying PCA over LBPH features with selecting 

various PCA components 

 Mini-MIAS DDSM 
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Components 
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All (531) 92.92 96.65 95.34 88.67 92.58 90.63 

500 90.27 99.52 96.27 71.09 94.92 83.01 

400 90.27 99.52 96.27 71.09 94.92 83.01 

300 90.27 99.52 96.27 71.09 94.92 83.01 

200 90.27 99.52 96.27 71.09 94.92 83.01 

100 90.27 99.52 96.27 70.70 94.92 82.81 

50 90.27 99.52 96.27 70.70 94.92 82.81 

40 90.27 99.52 96.27 70.70 94.92 82.81 

30 90.27 99.52 96.27 69.92 94.53 82.23 

20 89.38 99.52 95.96 71.09 94.14 82.62 

10 89.38 99.52 95.96 73.83 92.97 83.40 

 

Table 5.25: Results of 70%/30% training/testing strategy based on applying PCA over LBP features with 

selecting various PCA components 

 Mini-MIAS DDSM 
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All (531) 91.07 95.69 94.08 90.07 91.43 90.75 

500 88.82 99.52 95.77 67.92 93.44 80.68 

400 88.82 99.52 95.77 67.92 93.44 80.68 

300 88.82 99.52 95.77 67.92 93.44 80.68 

200 88.82 99.52 95.77 68.05 93.44 80.75 

100 88.82 99.52 95.77 67.86 93.44 80.65 

50 88.68 99.52 95.72 67.79 93.64 80.71 

40 88.82 99.52 95.77 68.05 93.44 80.75 

30 88.82 99.52 95.77 67.79 93.57 80.68 

20 88.68 99.44 95.67 67.66 92.92 80.29 

10 88.24 99.44 95.52 68.51 91.95 80.23 

 

 

 

Table 5.26: Results of 50%/50% training/testing strategy based on applying PCA over LBP features with 

selecting various PCA components 

 Mini-MIAS DDSM 

 

Number of PCA 

Components 
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All (531) 90.18 95.22 93.46 88.98 90.51 89.75 

500 88.48 99.52 95.66 64.14 93.28 78.71 

400 88.48 99.52 95.66 64.14 93.28 78.71 

300 88.48 99.52 95.66 64.18 93.28 78.73 

200 88.48 99.52 95.66 64.14 93.32 78.73 

100 88.48 99.52 95.66 64.14 93.24 78.69 

50 88.48 99.52 95.66 64.02 93.28 78.65 

40 88.48 99.52 95.66 63.98 93.24 78.61 

30 88.48 99.47 95.63 63.67 93.20 78.44 

20 88.39 99.52 95.63 63.98 92.27 78.13 

10 88.13 99.33 95.41 63.83 92.31 78.07 

 

Table 5.27: Results of 10%/90% training/testing strategy based on applying PCA over LBP features with 

selecting various PCA components 

 Mini-MIAS DDSM 
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Components 
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All (531) 88.24 94.15 92.07 82.72 86.76 84.74 

500 68.43 100.0

0 

88.90 41.00 92.78 66.89 

400 68.38 100.0

0 

88.88 41.00 92.78 66.89 

300 68.43 100.0

0 

88.90 41.00 92.78 66.89 

200 68.38 100.0

0 

88.88 40.98 92.78 66.88 

100 68.38 100.0

0 

88.88 40.98 92.83 66.90 

50 68.24 100.0

0 

88.83 41.11 92.76 66.94 

40 68.19 100.0

0 

88.81 40.85 92.78 66.82 

30 68.09 100.0

0 

88.78 40.94 92.72 66.83 

20 68.09 100.0

0 

88.78 41.96 92.33 67.14 

10 67.50 100.0

0 

88.57 41.67 92.20 66.94 

Unlike the similar results PCA-HOG features produced on the two databases, PCA-

LBP features produced contrasting results on the same databases. Therefore, we will 

discuss results for each database separately. 

Looking at the results obtained from the Mini-MIAS database, we noticed that the 

overall classification accuracy is enhanced in the cases of leave-one-out, 70% training, 

and 50% training strategies. The enhancement is by one or two degrees when compared 

to using the original LBP feature set. The accuracy reduced by about 3 degrees for 10% 

training strategy. A closer inspection of the results shows that the reduction of LBP 

feature space by PCA led to a significant reduction in system sensitivity, but achieved 

a significant increase in system specificity, which leads to the overall increase in 

classification accuracy. Again the reason could be the imbalance between normal and 

abnormal cases in the database (i.e. the number of normal cases are about twice of the 

number of abnormal cases).      

In terms of sensitivity and specificity, the effect of using PCA on LBP features is 

similar when using the DDSM database. However, the reduction in sensitivity was so 

high that it reduced the overall classification accuracy. Here the number of normal and 

abnormal cases are similar therefore the effect is also similar. 

5.8 Conclusions  

In this chapter, we explained and proposed the use of different texture features 

extraction methods such as the mutli-scale LBP, GLCM, and HOG to classify 

mammograms as normal or abnormal.  

After evaluating the proposed techniques using two different databases and different 

evaluation strategies we can conclude the following:   
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1. Interestingly, the overall performance of the proposed approach that fused the 

LBPH feature extracted from the original image and LBPH features extracted from 

wavelet sub-bands is similar for the four evaluation strategies (i.e. leave-one-out, 

70%/30% training/testing, 50%/50% training/testing, and 10% /90% 

training/testing).  

2. Overall, the classification accuracies on the Mini-MIAS database are higher than 

the DDSM database. The following differences between the two databases could 

be contributing to the differences in their classification accuracy.  

 We used all 322 images of the Mini-MIAS database, whilst we used only 512 

randomly chosen images for DDSM database. Ratios of images for the two 

different classes, i.e. normal and abnormal, are different in the two databases. 

There are 209 normal and 113 abnormal images with different types of 

abnormalities in the Mini-MIAS database. The number of normal cases is near 

twice the number of abnormal cases. This imbalance of the class cases affects 

overall the accuracy of the system by making the system less sensitive. For this 

reason, if we look at the results we can notice that the specificity of the system 

is much higher than the sensitivity. While for DDSM database the number of 

cases is equal i.e. there are 256 normal mammogram images and 256 abnormal 

images and abnormal cases are all in one type which they are the true mass type.  

3. Mammogram classification accuracy can be improved by combining the traditional 

LBP features obtained from original mammograms with LBP features obtained 

from its wavelet transformed images/sub-bands. 

4. Using statistical features from GLCM to represent mammogram images resulted in 

a better specificity of the system, which in turn had a positive effect on overall the 

accuracy rate of the system. 

5. Initial results obtained from using HOG features are interesting when used for 

mammogram classification problems, therefore more analysis and investigations 

are needed to improve results obtained here in this chapter.  

We have shown that multi-scale LBP is a good representation of mammogram images 

for the purpose of classifying mammograms as normal or abnormal cases. However, 

combining LBP features obtained at several scales and frequencies results in a very 

large feature set that is very likely to include redundancies. This could have a negative 

effect on the classification accuracy. Therefore, the work was continued in this chapter 
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on the use of feature selection/reduction to obtain the most discriminate features from 

a large feature set to represent mammogram images. Moreover, we proposed the use of 

PCA to reduce the HOG, and LBP feature space sizes/dimensions that represent 

mammogram images (or their ROIs). Experiments were carried out on two different 

databases using four different evaluation strategies.  

Results demonstrated an overall enhancement in mammogram classification accuracy 

when PCA was used to reduce the HOG feature space. It was possible to achieve a 

similar if not better results with only 10 features based on PCA-HOG compared to 

using 8100 HOG features. Similarly, PCA helped reduce the LBP feature space by a 

significant amount without affecting the overall classification accuracy of the Mini-

MIAS database. However, the outcome on the DDSM database was different in that 

the system sensitivity was greatly reduced even with a relatively large number of PCA-

LBP features were used. This resulted in an overall lower classification accuracy with 

PCA-LBP features on the DDSM database.  

The results in this chapter show that the different features we investigated represent 

mammograms or their ROIs in different ways; capturing different, and potentially 

complementary, information which results in different classification accuracies. This 

motivated the use of feature fusion to enhance the mammogram classification further. 

Feature and decision fusion have been successfully used in many classification 

problems. Hence, we devote the next chapter to investigate the use of fusion strategies 

as a mean of enhancing mammogram classification.
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Chapter 6  

Fusion for Mammogram 

Classification  

Recent researches have shown that a combination of different feature representations 

could lead to an improvement in classification accuracy over the use of any single 

feature representation. The features that do not achieve a high accuracy themselves 

have shown to be valuable when fused with other features. Fusion techniques have been 

used successfully in a variety of classification problems. Examples include: biometric 

recognition (Ross & Govindarajan, 2005), (Chai, et al., 2006), (Sellahewa & Jassim, 

2008), (Kong, et al., 2013), (Sabir, et al., 2014), (Chai, et al., 2015); multimedia (Atrey, 

et al., 2010); content-based image retrieval (Vieux, et al., 2012), (Al-Jubouri, 2015), 

image segmentation (Taher, 2014) (Taher, et al., 2014)  and remote sensing (Yu, et al., 

2006) . 

Fusion can be performed at two levels: feature level fusion and decision-level fusion 

(Atrey, et al., 2010). In feature-level fusion, two or more extracted feature sets from 

the same data source are combined into a single larger size fused feature vector. In 

decision-level fusion, the result of several different individual classifiers is combined 

to arrive at a final classification. A typical approach to decision-level fusion is the 

majority voting scheme. 

This chapter focuses on the fusion of the features we used earlier (i.e. HOG, GLCM, 

LBP) to enhance the mammogram classification accuracy. We will also explore 

decision-level fusion where we treat each feature on its own to arrive at an initial 

classification. The rest of this chapter is organized as follows. Section 6.1 explains the 

two fusion schemes in detail. The proposed feature and decision level fusion schemes 

are presented in Section 6.2. An analysis of experimental results obtained after feature 

and decision level is given in Section 6.3. A further analysis of the significance of these 

experimental results using a chi-square test is presented in Section 6.4. Finally, Section 

6.5 offers a brief conclusion to the work presented in this chapter. 
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6.1 Fusion Techniques 

6.1.1 Feature-Level Fusion 

The aim of feature fusion is to introduce additional discriminative information for 

classification. Here, the word fusion means to concatenate two or more feature sets to 

create one ‘fused’ feature set that represents the data in question (e.g. mammogram 

images or their ROI).  The idea stems from the observation that each type of feature(s) 

may represent a specific set of discriminatory information about the original data, 

although one or few on their own could be far better than others in being able to 

represent the data. However, if performed correctly, combining different types of 

features into one feature set could enhance the discriminative power of the ‘best’ 

individual feature type since different feature types often capture complementary 

information about the original data. Therefore, feature-level fusion is expected to 

provide better classification results. Figure 6.1 illustrates the general process of feature-

level fusion. 

However, when we think about fusion at this level we need to consider: (i) the feature 

set size of multiple feature types may be incompatible resulting in one feature type 

dominating over the other (e.g., number of extracted features using HOG transform is 

8100 features while using GLCM is only fourteen features); (ii) the data type of each 

feature set could be different from the others, in which case we have to normalize  the 

features; and (iii) concatenating two or more feature vectors may result in a feature 

vector with very large dimensionality leading to the curse of dimensionality problem. 

This could degrade the system’s classification accuracy. Furthermore, large feature 

vectors increase the storage cost and require more computation time to process them, 

which is not ideal for a high-throughput system. However, the problem of high 

dimensionality can be overcome by performing feature transformation or feature 

selection. 

6.1.2 Decision-Level Fusion 

In a decision-based fusion of multiple classifiers, individual contributing classifiers are 

assumed to be competitive (i.e. their decisions tend to agree more than disagree) rather 

than being complementary. For this reason, each component classifier contributes to 

the final decision of classifying an input test sample often through a majority weighted 

rule.  
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Majority voting is a popular technique to combine outputs of multiple classifiers. 

Assume that n classifiers are deployed, and that for each input sample, each classifier 

produces a unique decision regarding the classification of the sample. In our work, this 

unique decision could be normal or abnormal. In combining the decisions of the 

classifiers, the sample is assigned to the class (normal or abnormal) when at least k 

classifiers agree on the class, where 

 

𝑘 = {

𝑛

2
+ 1           𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛 + 1

2
           𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 (6.1) 

For this kind of fusion, there are two different scenarios. In the first scenario, the 

outputs of different classifiers of the same feature set are fused to generate a final 

classification result. The aim of this scenario is to see how using different classifiers 

on the same feature set can affect the result. While the second scenario fuses 

classification results of the same classifier, but with different feature sets. This latter 

scenario highlights the effect of using different feature sets on the overall classification 

accuracy. Figure 6.2 illustrates a general framework for decision fusion. 

 

 

 

 

 

 

 

 

Figure 6.1: General frame work of feature level fusion strategy 
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Figure 6.2: General frame work of the decision level fusion strategy 

6.2 Feature and Decision Fusion for Mammogram Classification  

Results in Chapter 5 showed that the different features we investigated represent 

mammograms or their ROIs in different ways; the features captured different, and 

potentially complementary, information which resulted in different classification 

accuracies. This motivated us to consider the use of features as well as decision fusion 

to enhance the mammogram classification further. This section explains our proposals 

for feature-level fusion and decision-level fusion to classify mammogram images as 

normal or abnormal images. Different fusion strategies are considered and evaluated 

using the same criteria and the databases use in Chapters 5.  

6.2.1 Feature-Level Fusion for Mammogram Classification 

The feature-level fusion is simply a concatenation of two or more of extracted feature 

vectors from the same mammogram image. Different ways of fusion and different 

feature types have been adopted to understand the effect of feature fusion compared 

with using single feature representation.  

6.2.1.1 Fusion of HOG and LBPH features 

In this scenario, we fuse HOG features with the LBPH features by concatenating them 

into a single feature representation. LBPH features are extracted from the original 

mammogram image as well as from the wavelet sub-bands (see Figure 6.3). Since the 

values of the two feature sets are in different ranges, we normalised LBPH features by 

dividing vector elements over the norm of the vectors to be real numbers between 0 

and 1 before concatenating them with HOG features, which are between 0 and 1.  

     
. 

     
.   

     
. 

Feature 

Extraction 

method 1 

Decision 

Fusion 

Feature 

Extraction 

method n 

Decision Classifier 

1 

Decision Classifier 

n 



101 

 

 

 

 

 

 

 

 

 

 Figure 6.3 : Proposed HOG and LBPH features fusion diagram 

Table 6.1 Table 6.1: Results of leave-one-out tests strategy based on fusing HOG and 

LBPH featuresto Table 6.4 below show the classification results of the two databases 

using four different experiment strategies. Different fusion strategies and the number 

of features after fusion are given in the tables. 

Table 6.1: Results of leave-one-out tests strategy based on fusing HOG and LBPH features  

   Mini-MIAS DDSM 
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HOG Spatial domain 8100 80.53 98.09 91.93 72.66 77.34 75.00 

 

 

 

 

 

 

 

HOG+LBP 

 

 

 

 

 

O 8631 83.19 98.57 93.17 73.83 77.34 75.59 

LL 8631 80.53 98.09 91.93 75.00 79.69 77.34 

HL 8631 80.53 98.09 91.93 72.66 77.34 75.00 

LH 8631 80.53 98.09 91.93 72.66 77.34 75.00 

LL, HL 9162 80.53 98.09 91.93 73.44 77.34 75.39 

LL, LH 9162 80.53 98.09 91.93 73.44 77.34 75.39 

LL, HL, LH 9693 80.53 98.09 91.93 73.83 77.34 75.59 

ALL Sub-bands 10224 80.53 98.09 91.93 73.05 77.34 75.20 

O, LL 9162 84.07 98.57 93.48 75.00 80.47 77.73 

O, HL 9162 83.19 98.57 93.17 73.83 77.34 75.59 

O, LH 9162 83.19 98.57 93.17 73.83 77.34 75.59 

O, LL, HL 9693 84.07 98.57 93.48 73.83 78.52 76.17 

O, LL, LH 9693 84.07 98.57 93.48 73.83 78.52 76.17 

O, LL, HL, LH 10224 84.07 98.57 93.48 73.83 78.13 75.98 

O, ALL Sub-bands  10755 83.19 98.57 93.17 73.83 77.34 75.59 

HOG 

Features  

HOG+LBP 

LBP Features 

from Original 

and Wavelet  

Decision SVM 

Classifier 
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Table 6.2 : Results of 70%/30% training/ testing strategy based on fusing HOG and LBPH features 

   Mini-MIAS DDSM 

 

 

Feature 

 

Spatial domain / 

Wavelet Sub-

band(s) 

 

N
u

m
b

er
 

o
f 

F
ea

tu
re

s 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

HOG Spatial domain 8100 80.00 98.02 91.70 71.56 78.57 75.07 

 

 

 

 

 

 

 

HOG+LBP 

 

 

 

 

 

O 8631 81.77 98.65 92.73 72.40 78.77 75.58 

LL 8631 80.74 97.94 91.91 73.90 80.39 77.14 

HL 8631 80.44 97.94 91.80 71.49 78.31 74.90 

LH 8631 80.44 98.02 91.86 71.49 78.31 74.90 

LL,HL 9162 80.74 97.94 91.91 72.27 78.64 75.45 

LL,LH 9162 80.74 97.94 91.91 72.21 78.57 75.39 

LL,HL,LH 9693 80.74 97.94 91.91 72.01 78.44 75.23 

ALL Sub-bands 10224 80.74 97.94 91.91 71.88 78.44 75.16 

O, LL 9162 82.06 98.57 92.78 74.55 80.65 77.60 

O, HL 9162 81.77 98.57 92.68 72.47 78.83 75.65 

O, LH 9162 81.77 98.57 92.68 72.40 78.77 75.58 

O, LL,HL 9693 81.91 98.65 92.78 73.25 79.35 76.30 

O, LL,LH 9693 81.91 98.65 92.78 73.25 79.42 76.33 

O,LL,HL,LH 10224 81.77 98.65 92.73 72.73 79.16 75.94 

O,ALL Sub-bands 10755 81.77 98.65 92.73 72.60 79.09 75.84 

 

Table 6.3 : Results of 50%/50% training/testing strategy based on fusing HOG and LBPH features 

   Mini-MIAS DDSM 
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HOG Spatial domain 8100 77.95 98.17 91.09 69.49 80.00 74.75 

 

 

 

 

 

HOG+LBP 

 

O 8631 79.82 98.37 91.88 70.31 80.27 75.29 

LL 8631 78.75 98.13 91.34 71.25 81.17 76.21 

HL 8631 77.95 98.17 91.09 69.73 79.81 74.77 

LH 8631 77.95 98.17 91.09 69.73 79.81 74.77 

LL,HL 9162 78.13 98.17 91.16 70.20 80.12 75.16 

LL,LH 9162 78.13 98.17 91.16 70.12 80.20 75.16 

LL,HL,LH 9693 78.04 98.17 91.13 69.92 80.00 74.96 

ALL Sub-bands 10224 77.95 98.17 91.09 69.81 79.96 74.88 

O, LL 9162 80.27 98.37 92.03 71.99 81.88 76.93 

O, HL 9162 79.82 98.37 91.88 70.27 80.43 75.35 

O, LH 9162 79.82 98.37 91.88 70.31 80.31 75.31 

O, LL,HL 9693 80.09 98.37 91.97 70.70 80.74 75.72 

O, LL,LH 9693 80.09 98.37 91.97 70.66 80.74 75.70 
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O,LL,HL,LH 10224 79.91 98.37 91.91 70.63 80.51 75.57 

O,ALL Sub-bands 10755 79.82 98.37 91.88 70.51 80.43 75.47 

Table 6.4 : Results of 10%/90% training/testing strategy based on fusing HOG and LBPH features 

   Mini-MIAS DDSM 
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HOG Spatial domain 8100 56.52 98.59 83.79 60.13 77.89 68.99 

 

 

 

 

 

 

 

HOG+LBP 

 

O 8631 58.58 98.70 84.59 60.44 78.04 69.24 

LL 8631 57.35 98.56 84.07 61.02 78.17 69.60 

HL 8631 56.72 98.56 83.85 60.22 77.74 68.98 

LH 8631 56.77 98.56 83.86 60.22 77.74 68.98 

LL,HL 9162 56.81 98.54 83.86 60.37 77.87 69.12 

LL,LH 9162 56.86 98.54 83.88 60.37 77.87 69.12 

LL,HL,LH 9693 56.86 98.54 83.88 60.26 77.87 69.07 

ALL Sub-bands 10224 56.86 98.54 83.88 60.24 77.83 69.03 

O, LL 9162 57.35 98.56 84.07 61.26 78.52 69.89 

O, HL 9162 59.61 98.62 84.90 60.39 78.02 69.21 

O, LH 9162 58.68 98.72 84.64 60.41 78.02 69.22 

O, LL,HL 9693 58.73 98.72 84.66 60.65 78.17 69.41 

O, LL,LH 9693 58.82 98.72 84.69 60.65 78.17 69.41 

O,LL,HL,LH 10224 58.87 98.72 84.71 60.59 78.13 69.36 

O,ALL Sub-bands 10755 58.78 98.72 84.67 60.52 78.09 69.30 

Combining HOG and LBPH features resulted in a small increase when compared with 

the accuracy rates achieved with HOG features alone (results in Chapter 5, Section 

5.4.3). However, the fusion led to a significant decrease in accuracy when compared 

with the accuracy achieved by LBPH features alone. This could be a result of the large 

size of HOG features (8100 features) overpowering the discriminability of LBPH 

features (531 features). We propose to use PCA to reduce the feature dimensions to 

address the size imbalance between HOG and LBPH features.   

6.2.1.2 Fusion of PCA-HOG and PCA-LBP 

Fusing HOG and LBP features results in a very large feature vector. However, Chapter 

5 showed the size of HOG and LBP features could be reduced to a very small feature 
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vector by applying PCA for each feature type. Here we propose to fuse the PCA-HOG 

and PCA-LBP features by concatenating them to produce a single feature vector see 

Figure 6.4. For each feature, we selected the same number of PCA components. Table 

6.5 and Table 6.6 show the classification results after fusing the two extracted features 

with different feature sizes. The tables show results for Leave one out and 70% training 

30% testing strategies. Results of the other two strategies can be found in appendix D.  

 

 

 

 

 

 

 

Figure 6.4 : Proposed PCA-HOG and PCA-LBPH features fusion diagram 

Table 6.5 : Results of leave-one-out tests strategy based on fusing PCA-HOG and PCA-LBPH features 

  Mini-MIAS DDSM 
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Components 
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500 1000 83.19 98.57 93.17 72.27 76.17 74.22 

400 800 83.19 98.57 93.17 69.53 71.88 70.70 

300 600 82.30 98.57 92.86 75.00 74.61 74.81 

200 400 82.30 95.69 90.99 71.48 75.39 73.44 

100 200 85.84 94.74 91.62 80.86 83.98 82.42 

50 100 87.61 94.74 92.24 82.03 85.55 83.79 

40 80 88.50 96.65 93.79 81.25 88.28 84.77 

30 60 89.38 96.17 93.79 82.42 89.45 85.94 

20 40 92.04 97.61 95.65 81.64 90.23 85.94 

10 20 92.04 97.61 95.65 80.08 90.63 85.35 

 

Table 6.6 : Results of 70%/30% training/testing strategy based on fusing PCA-HOG and PCA-LBPH features 

HOG 

Features  

PCA-HOG+ 

PCA-LBP 

LBP 

Features 

Decision SVM 

Classifier 

 

PCA 

PCA 
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  Mini-MIAS DDSM 

 

Selected 

Components 
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size S
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500 1000 81.77 98.57 92.68 72.47 77.47 74.97 

400 800 81.77 98.57 92.68 70.20 72.47 71.33 

300 600 82.21 98.49 92.78 69.42 73.25 71.33 

200 400 80.88 97.22 91.50 71.30 71.36 71.33 

100 200 82.35 96.43 91.50 75.00 78.70 76.85 

50 100 85.59 95.64 92.11 80.13 85.84 82.99 

40 80 87.94 96.43 93.45 78.57 87.08 82.83 

30 60 86.47 96.91 93.25 80.84 87.47 84.16 

20 40 89.85 97.70 94.95 80.13 89.22 84.68 

10 20 90.44 98.41 95.62 76.69 89.87 83.28 

The proposed feature fusion after dimension reduction led to a marginal improvement 

in classification accuracy when compared with the results of high-dimensional features 

stated in the previous set of experiments. Furthermore, the results achieved with fused 

features are slightly better than the results of individual features (after dimension 

reduction) as shown in the previous chapter. Nevertheless, the LBPH features taken 

from multiple wavelet sub-bands produced the best results. This led us to investigate 

fusion at decision level analogous to multiple experts examining a mammogram to 

arrive at a diagnosis.   

6.2.2 Proposed Decision-Level Fusion methods 

To overcome the problems of fusing large feature sets of different types, we propose 

to use decision-level fusion for mammogram classification. The proposed technique is 

as follows: for a given mammogram, we first find the classification result using 

different feature extraction methods. The classification is performed using an SVM 

classifier as explained before. We then use majority voting to arrive at the final decision 

to classify the mammogram as normal or abnormal. In all cases, we use three different 

feature sets to classify a given mammogram. Thus, for a given normal mammogram, if 

the classification result of two or more feature set is normal, the final decision is 

normal. Otherwise, the mammogram image will be classified as an abnormal case. On 

the other hand, for a given abnormal mammogram, if the classification result of two or 

more feature sets is abnormal, the final decision is then abnormal. Otherwise, the 

mammogram image will be classified as a normal case. 
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Table 6.7 and Table 6.8 show the classification results of fusing classification results 

of different feature sets for leave one out and 70%/30% strategy, respectively (see 

appendix D for other strategies). Experiments were conducted on the two mammogram 

databases using the four strategies of separating training and testing sets that we applied 

in previous sections. Table 6.7 and Table 6.8 shows the classification results of seven 

different decision fusing scenarios. For simplicity, we used f1 to f7 to represent 

different fusions as follows:  

f1: fusion of LBP, HOG, and GLCM. 

f2:  fusion of LBP, HOG, and PCA-LBP+PCA-HOG 

f3: fusion of LBP over O+LBP over W_ALL, PCA-HOG, and GLCM 

f4: fusion of LBP over O+LBP over W_ALL, PCA-LBP+PCA-HOG, and GLCM 

f5: fusion of LBP over O+LBP over W_ALL, PCA-HOG, and PCA-LBP+PCA-HOG 

f6: fusion of PCA-HOG, PCA-LBP, and PCA-LBP+PCA-HOG 

f7: fusion of PCA-HOG, PCA-LBP, and GLCM 

Table 6.7 : Results of leave-one-out tests strategy based on decision level fusion of using a different kind of f 

features 
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f1 96.46 99.52 98.45 94.14 94.92 94.53 

f2 92.04 98.57 96.27 83.59 91.41 87.50 

f3 98.23 99.52 99.07 94.53 96.48 95.51 

f4 97.35 99.52 98.76 94.14 96.48 95.31 

f5 92.92 98.09 96.27 80.08 91.41 85.74 

f6 92.04 98.09 95.96 78.13 90.63 84.38 

f7 96.46 99.52 98.45 87.89 95.31 91.60 

 

Table 6.8 : Results of 70%/30% training/testing strategy based on decision level fusion of using a different 

kind of features 

 Mini-MIAS DDSM 
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f1 93.97 99.37 97.47 94.48 97.08 95.78 

f2 91.18 98.81 96.13 82.40 91.30 86.85 



107 

 

 Mini-MIAS DDSM 

Fusions 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

f3 95.15 99.29 97.84 94.55 97.53 96.04 

f4 95.59 99.29 97.99 95.00 97.40 96.20 

f5 92.65 98.73 96.60 76.30 90.33 83.31 

f6 91.62 98.89 96.34 75.65 90.33 82.99 

f7 92.79 99.52 97.17 85.71 97.27 91.49 

Gathered from the results above we can say that most of the decision fusion schemes 

work well and obtain high classification accuracy but  f3 and f4 have higher 

classification results compared with other fusing schemes or using single feature sets. 

Moreover, results proved and showed the effects of our proposed combined features 

(LBP over original image + LBP over wavelet sub-bands) as well as our proposed 

feature reduction schemes applied on HOG and LBP. Obtained conclusion is true for 

both used databases and all four used strategies of separating data to training and testing 

sets. 

6.3 Statistical evaluation of Experiment Results   

We used statistical measurements test to analyse the significance of mammogram 

classification accuracy improvements obtained by the proposed methods in this and the 

previous chapter. First, we used the chi-square (x2) test to evaluate the classification 

results. Then we analysed the score value that shows how far individual mammogram 

cases are from the hyper-plane in the SVM classifier. Details of the measurements are 

described below, which is followed by our analysis.    

6.3.1 Significance between the observed and expected model 

The chi-square (x2) test is suitable for categorical data and it has been used to evaluate 

the significance of differences between the observed and the expected model (see 

equation 6.2) based on the contingency table (Field, 2006) (Al-Jubouri, 2015).   

 
𝑥2 =∑

(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖𝑗 −𝑀𝑜𝑑𝑒𝑙𝑖𝑗)
2

𝑀𝑜𝑑𝑒𝑙𝑖𝑗
 

(6.2) 
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𝑀𝑜𝑑𝑒𝑙𝑖𝑗 =

𝑇𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑖𝑋 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑙𝑢𝑚𝑛𝑗

𝑛
 

(6.3) 

 Where n is the total number of observations.  

We used the chi-square (x2) test between two different approaches to mammogram 

classification at a time to decide if the improvement of the mammogram classification 

accuracy between them is significant or not.    

Table 6.9 shows the general example of two mammogram classification systems 

obtained using different feature extraction methods (Method1 and Method2) with two 

different categories.   

Table 6.9: Contingency table shows the frequencies of 1s and 0s for Method1 and Method2   

 Category1 (1s) Category2 (0s) Total row 

Method1 M1 N1 T1 

Method2 M2 N2 T2 

Totalcolumn TM1+M2 TN1+N2 T 

M1 and M2 represent the number (frequencies) of mammograms that are correctly 

classified using Method1 and Method2 respectively. While N1 and N2 represent the 

number (frequencies) of mammograms that are incorrectly classified using Method1 

and Method2 respectively. T1 and T2 represent the total number of correct and 

incorrectly classified mammograms using Method1 and Method2 respectively. 

In our case, we use the chi-square (x2) test to determine the significance between 

selected proposed schemes with other basic methods or with each other at (p-value < 

0.05) significance level and degree of freedom equal to 1.  

Table 6.10 presents the significant differences between mammogram classification 

results obtained from using different sets of features using the Mini-MIAS database 

with Leave- one-out strategy and SVM classifier. Significant means the two feature 

extraction schemes been compared give different recognition accuracies, and the 

difference between them is large (i.e. the mammogram classification accuracy 

improved by one of them). Results are not significant means the classification accuracy 

between the two features are very close to each other (i.e. there is no difference or little 

difference between accuracies obtained).  
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From the Table 6.10, we conclude that mammogram classification result is significant 

at P˂0.05 between some of the proposed methods, but not all. For example, the results 

between the following methods are significantly different:  

- f4 and (Fusion of PCA-HOG and PCA-LBP), or  

- (LBP over O+LBP over W_ALL) and LBP, or 

- f3 and HOG, or 

- f4 and LBP, or 

- f7 and LBP, or  

- f7 and HOG  

This demonstrates that the proposed use of decision fusion, in particular, outperforms 

the existing single feature based approaches. However, the results between the 

following methods are not significant: 

-  (PCA-HOG) and HOG, or 

- (Fusion of PCA-HOG and PCA-LBP) and LBP, or 

- (Fusion of PCA-HOG and PCA-LBP) and HOG, or 

- f3 and GLCM. 

We then conducted the same analysis on the results obtained for the DDSM database. 

Table 6.11 below present the results these chi-square (x2) tests. 
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Table 6.10: Chi-square (𝐱𝟐) test for mammogram image classification on Mini-MIAS database 

 PCA-HOG 

Fusion of 

PCA-HOG 

and PCA-LBP 

f3 f4 f7 LBP HOG GLCM 

LBP over 

O+LBP over 

W_ALL 

𝑥2 10.1449 5.7153 0.1444 0 0.1127 6.562 16.9216 0 

p-value 0.001447 0.016818 0.703919 1 0.737107 0.010418 0.000039 1 

Result Significant Significant Not significant Not significant Not significant Significant Significant Not significant 

PCA-HOG 

𝑥2 - 0.7985 12.0479 10.1449 8.4828 0.4968 1.1707 10.1449 

p-value - 0.371545 0.000518 0.001447 0.003585 0.480902 0.279256 0.001447 

Result - Not significant Significant Significant Significant Not significant Not significant Significant 

Fusion of PCA-

HOG and PCA-

LBP 

𝑥2 - - 7.3106 5.7153 4.3928 0.0361 3.8384 5.7153 

p-value - - 0.006855 0.016818 0.036092 0.849291 0.050091 0.016818 

Result - - Significant Significant Significant Not significant Not significant Significant 

f3 

𝑥2 - - - 0.14444 0.5063 8.23 19.1015 0.1444 

p-value - - - 0.703919 0.47675 0.00412 0.000012 0.703919 

Result - - - Not significant Not significant Significant Significant Not significant 

f4 

𝑥2 - - - - 0.1127 6.562 16.9216 0 

p-value - - - - 0.737107 0.010418 0.000039 1 

Result 
- - - - Not significant Significant Significant Not significant 

f7 

𝑥2 - - - - - 5.1603 14.9452 0.1127 

p-value - - - - - 0.023109 0.000111 0.737107 

Result - - - - - Significant Significant Not significant 
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 Table 6.11: Chi-square (𝐱𝟐) test for mammogram image classification on DDSM database 

 PCA-HOG 

Fusion of 

PCA-HOG 

and PCA-LBP 

f3 f4 f7 LBP HOG GLCM 

LBP over 

O+LBP over 

W_ALL 

𝑥2 43.6963 10.5084 5.9303 3.0055 0.0128 0.4385 52.1663 2.1513 

p-value 0 0.001188 0.014883 0.082985 0.909818 0.507826 0 0 

Result Significant Significant Significant Not significant Not significant Not significant Significant Not significant 

PCA-HOG 

𝑥2 - 12.3119 75.3504 65.7758 102.0012 36.0678 0.4322 62.2136 

p-value - 0.00045 0 0 0 0 0.51092 0 

Result - Significant Significant Significant Significant Significant Not significant Significant 

Fusion of PCA-

HOG and PCA-

LBP 

𝑥2 - - 30.5119 23.8451 9.8082 6.7359 17.2589 21.4892 

p-value - - 0 0.000001 0.001737 0.009449 0.000033 0.000004 

Result - - Significant Significant Significant Significant Significant Significant 

f3 

𝑥2 - - - 0.5159 6.4781 9.4586 85.6421 0.975 

p-value - - - 0.4726 0.010921 0.002102 0 0.323438 

Result - - - Not significant Significant Significant Significant Not significant 

f4 

𝑥2 - - - - 3.4051 3.5665 75.6233 0.0731 

p-value - - - - 0.064995 0.058956 0 0.786867 

Result 
- - - - Not significant Not significant Significant Not significant 

f7 

𝑥2 - - - - - 0.3015 50.7216 2.4928 

p-value - - - - - 0.582931 0 0.11437 

Result - - - - - Not significant Significant Not significant 
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From Table 6.11 we conclude that mammogram classification results between some of the 

proposed schemes are significant at P˂0.05, but not all.  For example, the difference is 

significant when we calculate the significance value between the following two feature 

sets: 

- (LBP over O+LBP over W_ALL) and (PCA-HOG), or 

- (LBP over O+LBP over W_ALL) and (Fusion of PCA-HOG and PCA-LBP), or 

- (LBP over O+LBP over W_ALL) and f3, or 

- (PCA-HOG) and (Fusion of PCA-HOG and PCA-LBP), or 

- (PCA-HOG) and f3, or 

- (PCA-HOG) and f4, or 

- (PCA-HOG) and f7, or 

- (Fusion of PCA-HOG and PCA-LBP) and f3, or 

- (Fusion of PCA-HOG and PCA-LBP) and f7, or 

- f3 and LBP. 

On the other hand, the results between the following used feature sets are not significantly 

different:  

- (PCA-HOG) and HOG, or 

- (LBP over O+LBP over W_ALL) and LBP,  or 

- f7 and LBP.  

As a result of the above evaluation of the significances of classification accuracy, we can 

conclude that only some of the proposed schemes led to performance increase that is 

significant. Nevertheless, considering the potential ramifications of misclassification or 

misdiagnosis, even minor improvements could be important.  

6.3.2 SVM Score Analysis 

To understand our results further, we analysed the ‘score’ values of SVM classifier. In the 

SVM classifier, the score value shows if the individual mammogram case is classified as 

normal or abnormal by calculating the signed distance between observation x and the 

decision boundary (Hyperplane) which ranges from -∞ to +∞. A positive score for a class 

indicates that x is within that class, a negative score indicates otherwise.  From the score 
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values, we calculated mean (µ), variance (σ2), and standard deviation (σ) of the two classes 

to see how mammograms of the two classes are near/far from each other.  

Table 6.12 below shows the results obtained from a randomly selected experiment on the 

Mini-MIAS database, with our proposed fusion strategy that combines PCA-LBP with 

PCA-HOG. 

Table 6.12: SVM score analysis for Mini-MIAS database 

 Leave One Out 70%/30% Train/ Test 50%/50% Train/Test 10%/ 90%Train/ Test 

 Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal 

µ 1.974 3.574 1.681 2.584 1.931 3.203 0.960 0.936 

σ2
 0.772 2.950 0.614 2.349 0.955 3.414 0.573 1.982 

σ 0.597 8.702 0.377 5.516 0.912 11.655 0.328 3.929 

The result in Table 6.12 shown above indicates that normal mammogram cases in relatively 

close the hyper-plane than the abnormal cases. However, the normal cases are clustered in 

close proximity to each other and are separated from the abnormal cases by the hyper-

plane. Whilst some abnormal cases are far away from the hyper-plane, they are scattered 

away from each other and are likely to be misclassified as a normal case. This could be due 

to the fact that abnormal mammogram cases include a wide range of abnormalities inside 

the database (e.g. calcifications; well-defined, spiculated or ill-defined masses; 

architectural distortion or asymmetry). Also, the severity of each abnormality is different 

(benign or malignant). However, we have included all different abnormalities as one class 

(Abnormal) to be compared against the Normal class. Therefore, what should be done is to 

separate the abnormal class into several different classes and train a multi-class SVM or 

set of binary SVMs to tackle a multi-class problem. 

The evaluation was performed on the “score” values for the DDSM database. Table 6.13 

below shows the results obtained from a randomly selected experiment.  
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Table 6.13: SVM score analysis for DDSM database 

 Leave One Out 70%/30%Train/ Test 50%/50%Train/Test 10%/ 90%Train/ Test 

 Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal 

µ 0.973 1.563 0.978 1.314 1.129 1.299 0.742 1.177 

σ2
 0.765 1.825 0.698 1.784 0.877 2.133 1.082 2.008 

σ 0.586 3.332 0.487 3.182 0.769 4.549 1.172 4.033 

Our analysis of SVM score values of the DDSM database leads us to the same conclusions 

we drew for the Mini-MIAS database earlier. The standard deviation of score values for 

Normal mammogram cases are relatively small, while for abnormal mammogram cases, 

the standard deviation of score values are relatively high. This indicates that the 

mammogram images of the abnormal class are spread over a wider range compared to 

normal class. Hence in most experiments, the normal mammogram cases can be classified 

more accurately compared with abnormal mammogram cases.  

6.4 Comparison with Existing Works 

We now present a comparison of our proposed methods with several existing methods. 

Table 6.14 and Table 6.15 presents a summary of a comparison between our proposed 

schemes and various existing works on classifying mammograms as normal or abnormal 

cases.  
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Table 6.14: Comparison between proposed method and some related work (Mini-MIAS database)  

Methods Database Cases Features Classificati

on 

Protocol Results 

(Eltoukhy, et al., 2012) MIAS 322 Multiresolution Statistical Based Features SVM 70%/ 30% training/testing 94.79% 

(Deepa & Bharathi, 2013) Mini-MIAS 200 Contourlet transform, co-occurrence matrices PNN 60%/ 40% training/testing 92.5% 

(Beura, et al., 2015) 
MIAS 322 

2D-DWT and GLCM matrix BPNN 
70%/15%/15% 

training/testing/validation 
98.0% 

(Caroline & Vaijayanthi, 2016) Mini-MIAS 317 
Multidimensional Complete Ensemble 

Empirical Mode Decomposition with Adaptive 

Noise (MCEEMDAN) 

ANN 52%/48% training/testing 96.7% 

Our methods 

 

Mini-MIAS 

 

322 LBP over O+LBP over W-ALL Linear SVM 

Leave-one-out 98.76% 

70%/30% training/testing 98.20% 

50%/50% training/testing 97.69% 

10%/90%training/testing 96.35% 

Our methods 

 

Mini-MIAS 

 

322 f1 SVM 

Leave-one-out 98.45% 

70%/30% training/testing 97.47% 

50%/50% training/testing 97.53% 

10%/90%training/testing 94.17% 

Our methods 

 

Mini-MIAS 

 

322 f2 SVM 

Leave-one-out 96.27% 

70%/30% training/testing 96.13% 

50%/50% training/testing 95.96% 

10%/90%training/testing 91.26% 

Leave-one-out 99.07% 
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Methods Database Cases Features Classificati

on 

Protocol Results 

Our methods 

 

Mini-MIAS 

 

322 f3 SVM 

70%/30% training/testing 97.84% 

50%/50% training/testing 97.99% 

10%/90%training/testing 94.83% 

Our methods 

 

Mini-MIAS 

 

322 f4 SVM 

Leave-one-out 98.76% 

70%/30% training/testing 97.99% 

50%/50% training/testing 98.21% 

10%/90%training/testing 96.02% 

Our methods 

 

Mini-MIAS 

 

322 f5 SVM 

Leave-one-out 96.27% 

70%/30% training/testing 96.60% 

50%/50% training/testing 96.14% 

10%/90%training/testing 91.60% 

Our methods 

 

Mini-MIAS 

 

322 f6 SVM 

Leave-one-out 95.96% 

70%/30% training/testing 96.34% 

50%/50% training/testing 95.74% 

10%/90%training/testing 89.55% 

Our methods 

 

Mini-MIAS 

 

322 f7 SVM 

Leave-one-out 98.45% 

70%/30% training/testing 97.17% 

50%/50% training/testing 97.16% 

10%/90%training/testing 90.97% 
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Table 6.15: Comparison between proposed method and some related work (DDSM database) 

Methods Databas

e 

Case Feature Classification Protocol Results 

(Lahmiri & Boukadoum, 

2011) 

DDSM 100 DWT and Gabor filter 

bank 

SVM polynomial 

kernel 

10-fold cross-validation 98% 

(Hussain, et al., 2014) DDSM 1024 Gabor filter bank SVM Gaussian kernel 10-fold cross-validation 94.92±23 

(Beura, et al., 2015) DDSM 550 2D-DWT and GLCM matrix BPNN 
70%/15%/15% 

training/testing/validation 
98.8% 

Our methods DDSM 512 
LBP over O+LBP over 

W-ALL 
SVM 

Leave-one-out 91.80% 

70%/30% training/testing 91.40% 

50%/50% training/testing 90.29% 

10%/90%training/testing 86.00% 

Our methods DDSM 512 f1 SVM 

Leave-one-out 94.53% 

70%/30% training/testing 95.78% 

50%/50% training/testing 95.10% 

10%/90%training/testing 84.02% 

Our methods DDSM 512 f2 SVM 

Leave-one-out 87.50% 

70%/30% training/testing 86.85% 

50%/50% training/testing 85.41% 

10%/90%training/testing 78.11% 

Leave-one-out 95.51% 
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Methods Databas

e 

Case Feature Classification Protocol Results 

Our methods DDSM 512 f3 SVM 

70%/30% training/testing 96.04% 

50%/50% training/testing 95.33% 

10%/90%training/testing 85.82% 

Our methods DDSM 512 f4 SVM 

Leave-one-out 95.31% 

70%/30% training/testing 96.20% 

50%/50% training/testing 95.18% 

10%/90%training/testing 86.24% 

Our methods DDSM 512 f5 SVM 

Leave-one-out 85.74% 

70%/30% training/testing 83.31% 

50%/50% training/testing 80.96% 

10%/90%training/testing 75.75% 

Our methods DDSM 512 f6 SVM 

Leave-one-out 84.38% 

70%/30% training/testing 82.99% 

50%/50% training/testing 80.29% 

10%/90%training/testing 74.62% 

Our methods DDSM 512 f7 SVM 

Leave-one-out 91.60% 

70%/30% training/testing 91.49% 

50%/50% training/testing 89.98% 

10%/90%training/testing 77.89% 
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Before comparing our results with those published, it is important to highlight some 

differences between the various studies: 

- Sample images selected from the Mammogram databases for evaluation might not 

be the same across all studies.  

- Experiment setup differs in different studies. For example, the number of training 

and testing samples used for experiments are different. 

- The number of samples used for the two different classes is not always from the 

different studies.  

- A number of different classes in the database are not equal.  

In (Lahmiri & Boukadoum, 2011), authors used Gabor filters and discrete wavelet 

transform (DWT) for mass detection in the mammogram. They applied Gabor filter 

banks at different frequencies and spatial orientations of high frequency sub-and 

images obtained using DWT, then statistical features such as mean and standard 

deviation are extracted from the Gabor images. SVM with a polynomial kernel was 

used to classify mammograms as normal or cancer. Their method was tested on just 

100 mammograms selected randomly from DDSM database. The accuracy of the 

system is 98% which is good, but they used only a small sample of the mammograms. 

In the next chapter, we will introduce the use of super resolution to enhance the 

mammograms prior to feature extraction. With super-resolved mammograms, we are 

able to make a small improvement over work of (Lahmiri & Boukadoum, 2011). 

Eltoukhy et al. (Eltoukhy, et al., 2012) presented two different functions, (i) distinguish 

between normal and abnormal tissues, and (ii) determine whether the abnormal tissue 

is benign or malignant. Firstly, each of the mammograms is decomposed using wavelet 

transform. Secondly, a set of the coefficients of each mammogram is extracted based 

on the weight of the feature in discriminating between the different classes. Finally, 

SVM is used to distinguish between normal and abnormal cases. The accuracy of the 

system is 94.79% by using Mammographic Image Analysis Society (MIAS) dataset.  

In (Deepa & Bharathi, 2013), the authors decompose the ROI using contourlet 

transform and the co-occurrence matrices in four different directions θ = (0°, 45°, 90° 

and 135°) and at distance of 1 pixel. A variety of second order statistical texture features 

(e.g. autocorrelation, Contrast, correlation, cluster prominence, cluster shade, 
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dissimilarity, energy) are extracted from each co-occurrence matrix. The 

dimensionality of the features is reduced using Sequential Floating Forward Selection 

(SFFS) algorithm.  A Probabilistic Neural Network (PNN) is used for the classification. 

A set of 200 mammograms from Mini-MIAS database is used for the evaluation. The 

accuracy of their system is 92.5%.   

In (Hussain, et al., 2014) the authors aimed to classify mammograms into normal and 

mass regions, and then classify the mass region as benign or malignant. They used 

Gabor filter banks to extract the textural properties of mammograms at different 

orientations (3, 5, 6, and 8) and scales (2, 3, 4, and 5). Testing was performed four ROI 

resolutions (64×64, 128×128, 256×256, and 512×512). They used SVM classifier with 

Gaussian kernel for the classification. Experiments were conducted using 1024 (512 

masses and 512 normal) ROIs extracted from DDSM database. The accuracy of 

classifying mammograms into normal and mass is 94.92±2.30.  

In (Beura, et al., 2015), the authors aimed to classify the mammogram images to 

normal, benign and malignant breast tissue. They used GLCM to all the detailed 

coefficients from 2D-DWT of the region of interest (ROI) of a mammogram and used 

both t-test and f-test to select the relevant feature from the feature matrix. They used 

Back Propagation Neural Networks (BPNN) to classify (normal vs. abnormal) and 

(benign vs. malignant). Experiments were conducted using 322 mammograms from 

MIAS database 550 mammograms from DDSM database. The accuracy of classifying 

mammograms to normal or abnormal was 98.0%, and to benign or malignant was 

94.2% for MIAS database, and the accuracy of classifying mammograms to normal 

and abnormal was  98.8%  and to benign or malignant was 97.4% for DDSM database.  

In (Caroline & Vaijayanthi, 2016), the authors proposed a method to classify the 

mammogram images to normal, benign and malignant mass. The features were 

extracted based on Multidimensional Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (MCEEMDAN) which decomposes a given 

image into frequency components. The ROI was manually cropped to 128x128 pixels 

for 317 mammograms from Mini-MIAS database. An ANN was used for the 

classification process. Three experiments were conducted (i) the accuracy of 

classifying normal and abnormal ROI is 96.7% (ii) classification accuracy of benign 

and malignant class in abnormal ROI is 96.2% (iii) the accuracy of classifying normal, 

benign and malignant classes is 96.7%. Our work has shown that fusion of multiple 
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feature types yield much improverd performance, and the highest accuracy was 

achieved with decision level fusion of three future types (f3) based schemes.  For the 

Mini-MIAS database, our system had a sensitivity of 98.230%, specificity of 99.522%, 

and overall accuracy of 99.068%. The sensitivity, specificity and overall accuracy of 

the DDSM database are 94.531%, 96.484%, and 95.508% respectively.  

As can be seen, our proposed methods have improved the classification accuracy over 

a number of existing methods despite the fact that the performance of all existing works 

depends not only on the various extracted features but also on sophisticated and 

expensive learning-based classification such as PNN, BPNN, and ANN. This obvious 

reason for these results comes from using fusion, and in particular decision level of 

fusion. For example, the (f3) scheme is based on the decision level fusion of the LBP 

over O+LBP over W_ALL, PCA-HOG, and GLCM each of which singularly have 

good discriminating characteristics and performance. Another important factor in 

achieving such excellent performance is that of combining  the decion based fusion of 

the three different feature schemes (LBP, GLCM, and HOG) with dimensionality 

reduction. The added benefits from reducing (balancing) feature vector size before 

fusing (at decision or feature level) was shown in Chapter 5. In fact, the PCA dimension 

reduction was necessary for large feature vector size such as HOG descriptor. 

Moreover, the results obtained from using decision level fusion strategy of balanced 

feature vector sizes has better classification accuracy when compared to using a single 

or to a feature level fusion, specially for high performing features.   

6.5 Conclusions  

This chapter proposed feature and decision fusion to improve mammogram 

classification accuracy.  In feature fusion, two or more feature vectors from the same 

mammogram were concatenated into a single vector and entered to a single classifier. 

In decision level fusion, majority voting was used to arrive at a final classification based 

on the classification results of three individual feature sets obtained from the same 

mammogram. From the statistical evaluation, we conclude that the normal cases are 

more correctly classified than the abnormal cases because the abnormal mammogram 

cases include a wide range of abnormalities inside the database (e.g. calcifications; 

well-defined, spiculated or ill-defined masses; architectural distortion or asymmetry). 

Also, the severity of each abnormality is different (benign or malignant).  

sbbh653
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After we evaluated proposed techniques using two databases with different evaluation 

protocols, we conclude that fusing feature sets of vastly different sizes has negative 

effects on the classification accuracy when compared to fusing feature sets of similar 

or small sizes. In other words, fusing of balanced feature set sizes will produce better 

classification accuracy because of this reason we use a method to reduce the size of the 

features.  

In the decision level fusion strategy better classification accuracy has been obtained 

when compared with using single or fused features especially when we fuse different 

feature with near feature vector size. 

Finally, we conclude that using decision level fusion of our proposed multi-scale LBP, 

applying PCA over LBP or HOG, and GLCM features will result in higher 

classification accuracy compared other single or feature fusing strategies. The 

classification accuracy for Mini-MIAS database are 99.068%, 97.990%, 98.210%, and 

96.017% for Leave-one-out, 70%/30% training/testing, 50%/50% training/testing, and 

10%/90% training/testing strategies, respectively. While for DDSM database, the 

classification accuracies are 95.507%, 96.201%, 95.332%, and 86.239% for Leave-

one-out, 70%/30% training/testing, 50%/50% training/testing, and 10%/90% 

training/testing strategies, respectively. Figure 6.5 shows examples of correctly and 

incorrectly classified mammograms when of PCA-HOG and PCA-LBP features were 

used as fused features.  

Correctly classified normal Incorrectly classified normal 

    

    

Correctly classified abnormal Incorrectly classified abnormal 
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Figure 6.5: Examples of Correctly and Incorrectly classified mammograms 

 

In the next chapter, we shall investigate the use of super resolution to enhance the 

original mammograms of the two databases prior to feature extraction and classification.  
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Chapter 7   

Mammogram Enhancement using 

Super resolution 

The quality and the resolution of the input images are important factors that affect the 

overall classification accuracy of automatic image classification systems, including 

mammogram classification. Image resolution is related to the amount of details 

available in the specific image area which is measured by the number of sampled pixels 

and its representation in the computer memory. Low resolution images could affect the 

appearance of the abnormality regions in mammograms. Image quality is degraded by 

two different factors: external and internal. Examples of the external factors are lighting 

conditions and environmental conditions that may lead to loss of contrast, the addition 

of noise and blurriness, while the internal factors that degrade the quality of the images 

include the quality of the various camera components, focus, and motion.  

To obtain high resolution mammograms from the mammography device, we need large 

doses of radiation, which may have harmful effects on patients (Zheng, et al., 2010 ). 

To overcome this problem we need to obtain high resolution mammograms from low 

resolution mammograms without increasing in radiation. Resent research in computer 

vision proposed methods for obtaining higher resolution images from their low 

resolution version. Super resolution is a method that reproduces high resolution images 

from there low resolution versions. Recent studies have shown the successful use of 

image super resolution in applications such as medical imaging (e.g. computed 

tomography and magnetic resonance imaging) (El Hakimi & Wesarg, 2013), 

surveillance systems with CCTV (Ahmad & Li, 2012), and satellite-imaging 

applications (Zhang, et al., 2014).  

In (Pak, et al., 2016), authors presented a new method for breast cancer detection and 

classification in digital mammogram depends on Non-subsampled Contourlet 

Transform (NSCT) and super resolution algorithm based on fuzzy learning as a pre-

processing step. Several features are extracted such as (compactness, fractal, central 
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moment, area, eccentricity, spread, and average gray level (AGL), and skewness of 

each feature is calculated. The AdaBoost algorithm was used for classification. They 

used MIAS database for the experiments, and the mean accuracy is 91.43% and 6.42% 

as FPR. 

Motivated by the studies on image super resolution, we propose to use image super-

resolution to enhance the low resolution mammograms prior to extracting texture 

features. More specifically, we shall use the recently developed super-resolution 

technique by (Al-Hassan, et al., 2013) (Al-Hassan, et al., 2013) (Al-Hassan, 2014) 

which they used to enhance low resolution face images for the purposed of face 

recognition from a distance. We chose this particular super resolution technique as it 

does not rely on domain specific training data to super-resolve images. We will 

demonstrate that computed performance parameters (sensitivity, specificity, and 

accuracy) from obtained SR mammograms compared to its LR mammogram versions 

for most cases have better classification accuracy.  

A brief description of technique we used to super-resolve low resolution mammogram 

images is given in Section 7.1. Experimental results to evaluate the effectiveness of the 

proposed use of super-resolution are presented in Section 7.2.   

7.1 Super Resolution Technique 

The super resolution technique refers to a process of obtaining higher resolution images 

for lower resolution ones. The super resolution scheme development by Nadia et al. 

(Al-Hassan, et al., 2013) aims to construct over-complete dictionaries to use in 

reconstructing a super resolved image from a single input low resolution image for face 

recognition at a distance. The scheme has two main stages; the first stage prepares the 

two compressive sensing (CS) dictionaries (low DL and high DH) of different sizes and 

the second stage super resolves a single input LR image to produce an HR image using 

the two dictionaries.  

In the first stage, the class of over-complete dictionaries of size 𝑚𝑥𝑛, where 𝑚 < 𝑛  are 

generated. The algorithm starts to construct such matrices by starting with an invertible 

matrix 𝑚𝑥𝑚 as an initial dictionary matrix and iteratively concatenation of selected sets of 

linearly independent m-column vectors. While maintaining the full spark property after 

every addition. The dictionary is initialized by the identity matrix,  
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Where 𝑝𝑖
′ are the distinct real numbers >1. Then, the 𝑚𝑥𝑛 dictionary is obtained from the 

following matrix after normalising its columns using the 𝑙2 -norm: 

𝐷 = [ 𝐼𝑑, 𝐴𝑝1, 𝐴𝑝2, 𝐴𝑝3, … , 𝐴𝑝𝑘] 

First high-dictionary 𝐷𝐻 has been generated by using the integer’s numbers 𝑝𝑖 ∈ [2,20] pi  

where 𝑖 = 1,2,3, … , 19, and the low-dictionary 𝐷𝐿 created from a Standard Gaussian 

Random Matrix (SGRM) with zero mean and variance of one and uses 𝑙2-norm to 

normalize each column in the dictionaries. 

In the second stage, to reconstruct the HR output image, the SR scheme works as follows: 

The HR image patches recovered by first computing sparse representation of the input 

low resolution image patch by using a low dictionary and second estimate high 

resolution image patch by using a high dictionary and sparse representation. Finally, 

iterative back project method is used to remove possible artifacts from the sparse 

representation stage and to eliminate the reconstruction errors in the estimated high 

resolution image (Al-Hassan, et al., 2013), (Al-Hassan, et al., 2013)). (For more details 

see Chapter 4 of thesis (Al-Hassan, 2014). Figure 7.1  shows some mammogram 

examples before and after applying the scheme. More examples can be found in 

Appendix A. We shall demonstrate that this scheme applicable to our mammogram 

images and also we shall demonstrate the suitability of previous feature extraction 

schemes when applied on HR mammograms in the next section. 
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(a) (b) 

  

 

 
(c) (d) 

 

Figure 7.1: An example of Mini-MIAS mammogram: (a) Normal LR-Mini-MIAS mammogram, (b) Normal 

SR-Mini-MIAS mammogram, (c) Abnormal LR-Mini-MIAS mammogram, and (d) Abnormal SR-Mini-

MIAS mammogram 

7.2 Experimental Result 

We repeated the previous experiments, this time with super-resolved images to evaluate 

the effectiveness of using SR to enhance the low resolution images in two mammogram 

databases (Mini-MIAS and DDSM) using the same four strategies for testing and 

training set sizes (Leave-one-out, 70%/30% training/ testing, 50%/50% training/ 

testing, and 10%/90% training/testing). Here we used SR mammograms of sizes 256 x 

256 with the 8-bit grey value obtained from original LR mammograms of size 128 x 

128 using up-mentioned super resolution scheme. As before, the classification was 

performed using an SVM classifier. The results will be compared with those obtained 

using the low resolution images for different feature representations, including our 
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proposed representation, and decision level fusion. In each case, we will measure 

sensitivity, specificity and accuracy of the system.   

7.2.1 Original LBP  

Experiments in Chapter 5 showed LBPH features extracted from the original 

mammogram images resulted in good classification accuracy. Here we repeat the same 

experiments to evaluate if mammogram enhancement by super resolution yields better 

classification accuracy. Figure 7.2 and Figure 7.3 show comparative results (sensitivity, 

specificity, and accuracy) for the original mammograms in Mini-MIAS and DDSM 

databases and their super-resolved mammograms, respectively based on the four 

experimental strategies.   

 

Figure 7.2: Results of Mini-MIAS Database based on LBPH scheme obtained from original mammogram 

 

Figure 7.3: Results of DDSM Database based on LBPH scheme obtained from original mammogram 
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Results show that super resolving the original images of the two databases has led to a 

significant increase in all three performance indicators. On the Mini-MIAS database, 

sensitivity improved by  2 to 5 degree; specificity by about 1 to 2 degree; and the overall 

accuracy by 2 to 3 degree. Meanwhile on the DDMS database, the improvements are 

about 5 to 10, 1 to 2, and 3 to 5 degree for sensitivity, specificity, and accuracy, 

respectively. From the classification accuracy we conclude that the LBP feature is good 

representation of the mammogram image in low resolution and also in super resolution.  

7.2.2  Multi Sub-bands LBP 

In Chapter 5 we demonstrated that combining LBPH features extracted from multiple 

wavelet sub-bands provides a better representation of mammogram images than LPBH 

extracted from an individual sub-bands.  Here we repeat the same experiments to 

evaluate if mammogram enhancement by super resolution yields better classification 

accuracy.  Figure 7.4 to Figure 7.7 shows comparative results for Mini-MIAS and 

DDSM databases, respectively based on the four experiment strategies.   

Results show that super resolving the original images of the two databases has led to a 

significant increase in all three performance indicators. The performance enhancements 

follow a very similar pattern when comparing the various databases across all the four 

experimental strategies.  

Because the structre of the breast tissue is very complex and contain mixture of fine 

lines and dense areas compared to other medical image types, therefore  one important 

advantage of converting the mammogram image to super resolved mammogram is that 

the detail of the breast is enhanced in a way that make the structure of the breast tissues 

more clear for classification purpose. 
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(a) 

 

 (b) 

Figure 7.4: Multi sub-bands results of leave-one-out strategy, (a) Mini-MIAS, (b) DDSM 

 

(a) 

 

(b) 

Figure 7.5: Multi sub-bands results of 70% training and 30% testing strategy, (a) Mini-MIAS, (b) DDSM 
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(a) 

 

(b) 

Figure 7.6: Multi sub-bands results of 50% training and 50% testing strategy, (a) Mini-MIAS, (b) DDSM 

 

(a) 

 

  (b) 

Figure 7.7: Multi sub-bands results of 10% training and 90% testing strategy, (a) Mini-MIAS, (b) DDSM 

70

80

90

100

LR
Sensitivity

SR
Sensitivity

LR
Specificity

SR
Specificity

LR
Accuracy

SR
Accuracy

LL,HL LL,LH LL,HL,LH ALL

70

80

90

100

LR
Sensitivity

SR
Sensitivity

LR
Specificity

SR
Specificity

LR
Accuracy

SR
Accuracy

LL,HL LL,LH LL,HL,LH ALL

70

80

90

100

LR
Sensitivity

SR
Sensitivity

LR
Specificity

SR
Specificity

LR
Accuracy

SR
Accuracy

LL,HL LL,LH LL,HL,LH ALL

70

80

90

100

LR
Sensitivity

SR
Sensitivity

LR
Specificity

SR
Specificity

LR
Accuracy

SR
Accuracy

LL,HL LL,LH LL,HL,LH ALL



132 

 

7.2.3 Original LBP with Multi Sub-bands LBP 

In Chapter 5 we proposed to combine LBPH features extracted from the original spatial 

domain mammograms and wavelet sub-bands and demonstrated that proposed scheme 

achieved higher classification accuracy than using only LBPH features extracted from 

the original mammogram image alone or LBPH features extracted from wavelet sub-

bands. This is due to the fact that extracted features from mammogram images are 

generally thin line features whereby one can contemplate and highlight them in the high 

frequency wavelet sub-bands. It is worth to mention that using  individual wavelet sub-

bands did not result in high performance . As mentioned in chapter 5, to overcome this 

issue, we fused each one of the previousely mentioned sub-bands with the original one 

and this resulted in increasing the performance because adding up more than one sub-

band to the original will include features in all directions together with conclusive 

performance.  

Here we repeat the same experiments to evaluate if enhancing mammograms using 

super resolution yields better classification accuracy. Figure 7.8 to Figure 7.11 shows 

comparative results for Mini-MIAS and DDSM databases, respectively based on the 

four experiment strategies.  
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(b) 

Figure 7.8: Original LBP and multi sub-bands LBP results of leave-one-out strategy, (a) Mini-MIAS, (b) 

DDSM 

 

(a) 

 

(b) 

Figure 7.9: Original LBP and multi sub-bands LBP results of 70% / 30% strategy, (a) Mini-MIAS, (b) 

DDSM 
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Figure 7.10: Original LBP and multi sub-bands LBP results of 50% / 50% strategy, (a) Mini-MIAS, (b) 

DDSM 

 

(a) 

 

(b) 

Figure 7.11: Original LBP and multi sub-bands LBP results of 10% / 90% strategy, (a) Mini-MIAS, (b) 

DDSM 

Analysis of the results shows a complex pattern that can be summarised by the 

following observations: 

- For the Mini-MIAS database, SR led to a decrease in overall accuracy. Furthermore, 

if we look at the individual performance parameters, we can say that decrements 

occurred more in specificity than in sensitivity.  

- For the DDSM database, the patterns are quite the opposite, i.e. in most cases, the 

overall classification accuracy increased with SR. The increments in accuracy were 

due mainly to increased sensitivity of the system. This means using SR 

mammograms made the classification more sensitive than using LR mammograms. 

- The above observations apply to all four different experiments strategies we used. 

- The type of the mammogram in each database affected the accuracy of the system 

after convert it to super resolved mammogram, because the structre of the 

mammogram is different. For example Mini-MIAS database contan more than one 
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type of abnormal but the DDSM database are just one type (mass) and also they are 

different in the type of benig and milagnant.  

7.2.4 HOG Descriptor  

We repeated the experiments in Chapter 5 Section 5.2.3 where HOG descriptors were 

used as mammogram features. Figure 7.12 and Figure 7.13 show comparative results 

based on SR and LR mammograms for Mini-MIAS and DDSM databases, respectively. 

From the results we can say that enhancing mammograms using SR had a positive 

effect on both databases. Once again, the improvements are prominent for sensitivity 

than the specificity of the system. 

 

Figure 7.12: Results of HOG features obtained from Mini-MIAS Database 

 

Figure 7.13: Results of HOG features obtained from DDSM Database 

Here also HOG features produced the lowest classification accuracy if we compared 

with all other used feature vectors.  A big reason for that could be the feature vector 

size that represents the mammograms, the information of the mammogram image is 

different from other types of images, so this affect the accuracy of the system.  also we 

did not consider mass objects types and shapes which might be different from one 

abnormal mammogram to another and we took all abnormal cases as one type in the 

experement.  
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7.2.5 PCA-HOG and PCA-LBP 

Experiments in Chapter 5 showed that the large feature sets we proposed for 

mammogram classification could be reduced to a very small set of PCA based features 

without compromising classification accuracy. We repeated the same experiments 

(PCA over original feature vector extracted from LBP and HOG descriptor) to evaluate 

if mammogram enhancement by super resolution yields better classification accuracy. 

Feature size was selected based on the highest results achieved with low resolution 

mammograms; for PCA-LBP we selected PCA feature vector of size 40 and 200 for 

Mini-MIAS and DDSM respectively, while for PCA-HOG, we used 10 PCA 

components for Mini-MIAS and 20 PCA components for DDSM. Figure 7.14 and 

Figure 7.15 shows comparative results for two databases, respectively based on the four 

experiment strategies.  

As we concluded in Chapter 5 reducing number of features affected the classification 

accuracy in positive way, here we conclude the same thing. 

 

(a) 

 

(b) 

Figure 7.14: Results based on PCA-LBP features obtained from (a) Mini-MIAS, (b) DDSM Database 
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(a) 

 

(b) 

Figure 7.15: Results based on PCA-HOG features obtained from (a) Mini-MIAS, (b) DDSM Database 

A close analysis of the results show that super resolving the original images of the two 

databases has led to: 

- A reasonable increase in sensitivity, but a small decrease in specificity 

- A small increase in overall classification accuracy, especially when a small number 

of mammograms are used for training purposes. 

- The accuracy is increased by 1 to 4 degrees for Mini-MIAS database, while for 

DDSM database, the accuracy increased by around 1 to 6 degrees.  

7.2.6 GLCM 

We repeated the same experiments with GLCM features explained in Chapter 4 and 5 

Section 5.2.2. Figure 7.16 and Figure 7.17 shows comparative results for two databases.  

Super-resolving mammograms in Mini-MIAS database resulted in a decrease in 

sensitivity, which had a negative effect on the overall classification accuracy.  On the 

other hand super-resolving had a positive effect on the mammograms for DDSM 

database increased performance in all three measurements. This due to the fact of the 
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difference between the two databases. From the classification accuracy we conclude 

that the GLCM feature is not good for all types of mammogram because the Mini-

MIAS database conatin different abnormal type.  

 

Figure 7.16: Results of GLCM features obtained from Mini-MIAS database 

 

Figure 7.17: Results of using four strategies based on GLCM features obtained from DDSM database 

7.2.7 Decision level fusion  

We investigated feature fusion and decision fusion in Chapter 6 and proposed decision 

fusion to enhance classification accuracy. For simplicity we assign letters f1 to f7 for 

the 7 different schemes as follows (more details can be found in Chapter 6 Section 

6.2.2): 

f1: fusion of LBP, HOG, and GLCM. 

f2:  fusion of LBP, HOG, and PCA-LBP+PCA-HOG 

f3: fusion of LBP over O+LBP over W_ALL, PCA-HOG, and GLCM 

f4: fusion of LBP over O+LBP over W_ALL, PCA-LBP+PCA-HOG, and GLCM 

f5: fusion of LBP over O+LBP over W_ALL, PCA-HOG, and PCA-LBP+PCA-HOG 

f6: fusion of PCA-HOG, PCA-LBP, and PCA-LBP+PCA-HOG 

f7: fusion of PCA-HOG, PCA-LBP, and GLCM 
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We repeated the experiments in Chapter 6 with super-resolved mammograms. Figure 

7.18Figure 7.18 to Figure 7.21 shows comparative results for Mini-MIAS and DDSM 

databases, respectively based on the four experiment strategies.  

 

(a) 

 

(b) 
Figure 7.18: Decision fusion results of Leave-one-out strategy, (a) Mini-MIAS, (b) DDSM 

 

(a) 

 

(b) 

Figure 7.19: Decision fusion results of 70% training and 30% testing strategy, (a) Mini-MIAS, (b) DDSM 
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(a) 

 

(b) 

Figure 7.20: Decision fusion results of 50% training and 50% testing strategy, (a) Mini-MIAS, (b) DDSM 

 

(a) 

 

(b) 

Figure 7.21: Decision fusion results of 10% training and 90% testing strategy, (a) Mini-MIAS, (b) DDSM 
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Results show that super resolving the original images of the two databases led to an 

overall increase in performance. Enhancing mammograms using SR led to an increase 

in sensitivity and the overall accuracy. The specificity also increased in some situations, 

but decreased on others. Detailed information for individual features can be found in 

Appendices B and C. 

7.3  Conclusions 

Recent research in image processing and pattern recognition has demonstrated the 

effectiveness of image super-resolution in enhancing images resulting in improved 

classification accuracy in many different applications. Motivated by recent works, we 

investigated the use of super resolution to enhance mammograms prior to their 

classification as normal or abnormal. More specifically, we proposed to use a recently 

developed super resolution scheme originally designed to enhance face images 

captured at a distance for person identification to enhance mammogram images of the 

two commonly available mammogram databases (i.e. Mini-MIAS and DDSM).  

We repeated experiments conducted in Chapters 5, and 6 to evaluate if super resolving 

mammogram images could improve system performance in terms of sensitivity, 

specificity and accuracy. The performance of the system (sensitivity, specificity, and 

accuracy) was used to compare the performance of original data/images with super-

resolved mammogram images or their region of interest.  

Analysis of several experimental results showed super-resolving mammograms could 

achieve a better classification accuracy. More specifically, results show a clear 

enhancement in terms of sensitivity of the various systems (i.e. reduced False Positives 

meaning a reduction mammograms wrongly classified as cancer cases). This 

enhancement was quite prominent on the DDSM database. This due to the facts that 

using super resolution scheme helps highlighting more textures inside mammograms. 

In fact, the SR seem to yield improved the discriminating power of all the texture-based 

features. Moreover, textures are available more in abnormal cases than normal cases, 

therefore the texture structure of the mammograms are affected (enhanced) by super 

resolution which leads to recognizing the abnormal cases more accurately.      

Although the use of SR led to improved performance in general, it is worth noting that 

there were instances where SR had a negative effect on performance, particularly on 

system specificity. The results were not consistent across the two databases. Some 
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normal cases are wrongly classified as abnormal cases because the super resolution 

scheme is adding more details to what maybe noise pixels in normal mammograms 

which can be confused with abnormal cases especially in dense tissue type. 

Also it is very important to demonstrate that our proposed method works well with 

different types of images. From the experiment we noticed that the type of the feature 

affected the result when the database was converted to super-resolved mammograms. 

This is likely the case because we have different types of abnormalities in the databases. 

We acknowledge that a deeper analysis is required to fully understand and appreciate 

the effects of super-resolving mammograms on their classification accuracy. This 

paves the way for further investigation on the use of SR to enhance mammograms. 

Such future work might require an appropriate dataset. Moreover, one could consider 

the use of SR to enhance mammograms with microcalcification.  

Notwithstanding the limitations highlighted above, this study is, to best of our 

knowledge, is the first to consider the use of super resolution to enhance mammograms 

and analysis its effect on classification accuracy.  
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Chapter 8  

Conclusions and Future Work  

Breast cancer is one of the major causes of death among women. This thesis was 

devoted to the problem of automatic detection and diagnosis of breast cancer using 

mammograms. These investigations were motivated by the widely accepted knowledge 

that digital mammography screening programs will help to early detection and 

diagnose of breast cancer and reduces the mortality with increasing the chances of 

complete recovery. Such screening programs produce a large number of 

mammographic images that have to be interpreted by radiologists. High-throughput 

computer aided detection and diagnosis (CAD) systems can help radiologists diagnose 

accurately and efficiently.  

Generally, CAD systems consist of the following main stages:  Pre-processing 

(Segmentation and Enhancement); Feature extraction (analysis); and Classification. 

Initial investigations revealed that for an automatic mammography screening solution 

to be practical, the mammograms need to be segmented and enhanced. Consequently, 

our first task was to determine and extract the breast region of the mammogram, which 

is defined as the first step in any CAD system which is a pre-processing step.  For any 

CAD system this process is very important for a number of reasons but mainly because 

it reduces the search zone for detecting the abnormalities or the region of interest of the 

breast without excessive influence from the background content of the mammograms, 

which typically includes annotations and artifacts that could have an adverse effect on 

the analysing results. Moreover, in most Medio-Lateral Oblique (MLO) views of the 

mammogram the pectoral muscle represents a high density region, therefore, it is 

important to segment out the muscle during the pre-processing stage of an automated 

mammogram analysis system because the muscle could bias the detection procedures.  

These requirements together with the interest in reducing search zone to the only region 

of interest (ROI) has motivated us to propose a technique to detect the breast region 

and delete the pectoral muscle.  

In the border extraction scheme, adaptive thresholding is used to binaries the 

mammogram. Then the binarised objects are disconnected using morphological erosion 

and only the largest object (which is the breast region) inside the image will be kept for 
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further processing. Then we isolated the spiky boundary and smoothened the remaining 

region by applying morphological dilation. Finally, the binary mask is mapped with the 

original mammogram to obtain new ROI mammogram including muscles.  

We then removed the pectoral muscle by starting from the top row, moving downwards 

checking individual pixels to see if they are on the border of  muscle with breast region 

or not and save those on the border. The method we proposed is a snake like technique 

that tracks the visible thin lines which separate the pectoral muscle from the breast 

tissue. To detect those thin lines automatically, adaptive thresholding have been used 

relying on the pixel value intensities and then morphological operations used to remove 

the labels and artefacts. Finally piecewise linear border oif the pectoral border are 

drawn between the obtained points from the previous steps to delete the pectoral 

muscle.  

The proposed segmentation was evaluated with the help of an expert radiologist as well 

as using automatic classification (before and after segmentation) demonstrated that the 

proposed segmentation works well and have better results compared with results 

obtained from mammograms without segmentation (see Chapter 4). Moreover, the 

general conclusion is that segmenting the mammogram and using the relevant ROI 

helps the classification process.   

Our investigation into selecting suitable feature extraction techniques started with 

reviewing existing schemes. We investigated and proposed a different kind of texture 

feature extraction methods. The main aim of all proposed schemes is to classify 

mammograms as normal or abnormal. The proposed features were applied on two 

publicly available databases; Mini-MIAS and DDSM databases, and with four different 

testing scenarios with respect to a number of images for training and testing images. 

The four scenarios are; leave-one-out, 70%/30% training/testing, 50%/ 50% 

training/testing, and 10%/90% training/testing strategy. The classification was done 

using a linear SVM classifier. After we evaluated proposed features we can conclude 

the following:   

1. Overall accuracy is higher on the Mini-MIAS database than on the DDSM 

database. There are differences between the two databases, which we summarise as 

follows: (i) the total number of cases are different: Mini-MIAS database include 

322 ROI and we use all images while for DDSM database we use 512 ROI 

randomly chosen images. (ii) the number of cases in each class is different: the ratio 
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between normal and abnormal classes are different as we described in Chapter 2 

the number of normal cases is near twice the abnormal cases. This imbalance 

number of cases might have affected the classification accuracy of the system. 

2. A higher classification accuracy was achieved when LBPH features from original 

mammograms are combined with LBPH features from wavelet sub-bands. This is 

because the obtained feature vectors from this combination will not miss out on any 

texture features that could be lost in the multi-resolution wavelet decomposition of 

the mammogram images. This combination result in better representation of the 

mammogram images, particularly because of the sensitivity of the method that will 

highlight mammogram image structure (due to the fact that mammogram images 

have complex fine lines and dense areas if compared with other medical images). 

3. With GLCM statistical features produced better results in terms of the specificity 

of the system compared to the sensitivity of the system, and as a result, produced 

better accuracy results. GLCM reflects the mammogram directional features, and 

features in the direction of 45 and 135 degrees which may not be detectable by the 

multi-scale LBP, In other words GLCM provides added discriminating 

mammogram representation. 

4. Using HOG features to represent mammogram images produced a very large 

feature set size. This may have negatively influenced the computation efficiency as 

well as the classification accuracy of the CAD system despite the fact that we 

considered all abnormal cases as one type. Another reason for the low classification 

accuracy by HOG feature is probably due to the fact combining all the 14 different 

measures may result in high redundancy. One may need to apply some feature 

selection techniques to reduce the redundancy.   

5. Overall, we can conclude that different kind of features will give different 

classification accuracy result.  

Based on the above conclusions, we focused on two aspects; feature set size and fusion.  

We proposed to use PCA to reduce the high dimensional features to much smaller 

feature representations. We showed how reduction affects the classification accuracy 

(see Chapter 5). While in fusion, we use the ideas of feature level fusion and decision 

level fusion (see Chapter 6). After we evaluated the proposed techniques with different 

databases and different evaluation protocols we conclude the following:   
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1. PCA can be used to reduce the number of features that represent mammogram 

images without sacrificing classification accuracy, or in some cases it led to higher 

classification accuracy (e.g. applying PCA over HOG feature vector). Moreover, 

the reduction has a positive affect on the efficiency of the classification system, 

which is desirable for a high throughput system. 

2. Fusing balanced feature set sizes produced better classification accuracy. However, 

fusing features of different sizes have negative effects on the classification 

accuracy.   

3. Results obtained from using decision level fusion strategy has better classification 

accuracy when compared to using a single or feature level fusion.  

4. We conclude that fusing decisions based on our proposed multi-scale LBP, PCA-

LBP or PCA-HOG, and GLCM features can obtain higher classification accuracy 

than using other single or feature fusing strategies.  

The classification accuracy for Mini-MIAS database are 99.068%, 97.990%, 

98.210%, and 96.017% for Leave-one-out, 70%/30% training/testing, 50%/50% 

training/testing, and 10%/90% training/testing strategies, respectively.  For the 

DDSM database, the classification accuracies are 95.507%, 96.201%, 95.332%, 

and 86.239% for Leave-one-out, 70%/30% training/testing, 50%/50% 

training/testing, and 10%/90% training/testing strategies, respectively. As 

explained at the end of  Chapter 6, the improved accuracy can be attributed to a 

combination of decision level fusion of a number of high discriminating features 

with dimension reduction for the higher dimensional features.  

Based on recent works on image super resolution and they impact on classification 

accuracy of different application domains, we focused our attention on enhancing 

mammograms using super resolution prior to extracting features. More specifically, we 

applied a recently developed super resolution technique for face recognition to enhance 

our mammograms. In the majority of cases, super-resolving the mammograms had 

positive effects on classification accuracy. This is mainly because the super resolution 

technique results more textures inside mammogram images can be highlighted, 

especially in abnormal cases whereby it helped to more accurately classify the 

abnormal cases from normal cases. More highlighted textures means more 

discrimanting characteristics for texture based features, although some noise may 

become confused with real texture. Removing noise can help in the latter case.  More 

specifically, results show a very clear enhancement in terms of sensitivity of the system, 
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meaning there were less number of wrongly classified mammograms as cancer cases 

(see Chapter 7). An advantage of the particular super-resolution technique we used is 

that it does not depend on any training data, hence it should be applicable on other 

mammogram datasets. However, further investigation is necessary to have an in depth 

understanding of the impact of super resolution on mammogram classification.  

8.1 Limitations and Future Works 

Any study could include some limitations and ours is no exception. We acknowledge 

that there are a number of limitations in this study, which could be addressed through 

further investigations. The main limitations and there solutions in the future can be 

summarized as following: 

1. All work done in this thesis were evaluated on two commonly used databases, i.e. 

Mini-MIAS which include only 322 mammogram cases in total and DDSM database 

with 512 mammogram cases. This is relatively a small number of tests cases and 

ideally we would like to have evaluated our proposed schemes on much larger 

datasets. This also highlights the need to evaluate the developed methods using a 

larger number of digital mammograms databases. 

2. An automated system should be able to segment the ROI within the breast area. We 

segmented out the breast area from the mammogram by proposed a simple and easy 

method to implement, but we did not continue with the segmentation to isolate ROIs 

within the breast area. Since our primary focus was on texture features and fusion, 

we did not pursue the segmentation further. However, our results show that it is far 

better to extract features from only the ROI as opposed to the entire breast region. 

3. Regarding the previous point (no.2), when the system needs to be practical and 

needs to be used in a hospital for new cases, we need to find a way for extracting 

the ROI automatically and applicable for the captured mammograms. Because in 

our case for extracting ROI we used information available in the databases (ground 

truth as explained in Chapter 5) such as the size of the mammograms, centre of the 

mammogram, and the row(x) and column (y) positions of the abnormal centre.  

4. The main aim of this thesis was to classify mammogram cases to normal or abnormal 

cases without looking to the abnormal cases for their specific type. We were driven 

by the conventional wisdom that first step is to classify mammograms as normal or 

abnormal and then to classify abnormal cases into different classes (e.g. micro-
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calcification, bilateral distortion, mass). However, the statistical analysis presented 

in Chapter 6 showed that it was more likely that an abnormal case is misclassified 

as a normal than vice versa. This could be because the abnormal class has so many 

different types, which should not be presented as one class. Our future work will 

consider mammogram classification as a multiclass problem from the onset as 

opposed to the two class problem we dealt with normal or abnormal.  

5. We applied PCA to reduce feature vector size. In future, we would like to consider 

feature selection as an alternative approach to dimension reduction. Feature 

selection aims to select a subset of relevant features that maximize the classification 

result.  

6. We used two different classifiers (i.e. KNN and SVM). A possible extension could 

be to employ other types of classifiers ((e.g. SVM with the kernel, ANN, and random 

forest) for the purpose of classifying the mammogram. 

7. We used feature fusion and the decision fusion method and from the results we saw 

that the accuracy of the system improved in the decision fusion ones. In future we 

would like to use different classifiers in the same system to classify mammograms 

based on majority voting (i.e. classifier decision). 

8. The use of super resolution led to improved performance in general, but there were 

instances where it had a negative effect on performance, particularly on system 

specificity. Moreover, the results were not consistent across the two databases. 

Therefore, further research is required to fully understand and appreciate the effects 

of super-resolving mammograms on their classification accuracy. Such future work 

might require an appropriate dataset. Moreover, one could consider the use of SR to 

enhance mammograms with micro calcification.   
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APPENDIX A: Some examples of SR-Mini-MIAS database 

 

 

 

Figure A.1: Example1 for Mini-MIAS mammogram: (a) Normal LR-Mini-MIAS mammogram 128x128, (b) 

Normal SR-Mini-MIAS mammogram 256x256, (c) Abnormal LR-Mini-MIAS mammogram 128x128, and 

(d) Abnormal SR-Mini-MIAS mammogram 256x256 
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(c) (d) 
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Figure A.2: Example2 for Mini-MIAS mammogram: (a) Normal LR-Mini-MIAS mammogram 128x128, (b) 

Normal SR-Mini-MIAS mammogram 256x256, (c) Abnormal LR-Mini-MIAS mammogram 128x128, and 

(d) Abnormal SR-Mini-MIAS mammogram 256x256 
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APPENDIX B: Super resolution Mini-MIAS database 

Table B.1: Results of leave-one-out strategy based on LBPH features obtained from multi wavelet sub- 

bands 

 LR-Mini-MIAS SR-Mini-MIAS 

LBP in Wavelet 

Sub-bands 
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LL,HL 94.69 99.04 97.52 93.81 98.56 96.89 

LL,LH 96.46 99.04 98.14 94.69 99.52 97.83 

LL,HL,LH 94.69 99.52 97.83 95.58 99.52 98.14 

ALL 94.69 99.52 97.83 95.58 99.52 98.14 

 

Table B.2: Results of 70% training and 30% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 
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LBP in Wavelet  
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LL,HL 92.35 96.91 95.31 93.53 98.33 96.65 

LL,LH 92.65 97.54 95.83 95.44 98.89 97.68 

LL,HL,LH 92.65 98.41 96.39 95.00 99.05 97.63 

ALL 94.12 99.37 97.53 94.12 99.13 97.37 

 

Table B.3: Results of 50% training and 50% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 
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ALL 92.59 98.80 96.63 94.38 98.75 97.22 
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Table B.4: Results of 10% training and 90% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 
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LL,HL 81.23 94.92 90.10 89.90 97.37 94.74 

LL,LH 81.32 94.97 90.17 90.74 96.91 94.74 

LL,HL,LH 81.91 96.04 91.07 91.18 98.01 95.60 

ALL 84.36 97.34 92.78 90.83 97.87 95.40 

 

Table B.5: Results of different strategy based on LBPH features obtained from original mammogram 

mammograms 
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92.92 96.65 95.34 96.46 97.61 97.20 

70%/30% 

training/testing 
91.07 95.69 94.08 93.97 97.38 96.19 

50%/50% 

training/testing 
90.18 95.22 93.46 95.96 96.14 96.08 

10%/90% 

training/testing 
88.24 94.15 92.07 91.23 95.98 94.31 

 

Table B.6: Results of using four strategies based on HOG features obtained from original mammograms 

 LR-Mini-MIAS SR-Mini-MIAS 
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Leave-one-Out 
80.53 98.09 91.93 87.61 97.61 94.10 

    70%/30% 

training/testing 
80.00 98.02 91.70 86.62 97.62 93.76 

50%/50% 

training/testing 
77.95 98.17 91.09 84.91 97.76 93.24 

10%/90% 

training/testing 
56.52 98.59 83.79 68.53 98.59 88.02 



166 

 

Table B.7:  Results of using four strategies based on PCA-HOG and PCA-LBP features obtained from 

original mammogram 

  LR-Mini-MIAS SR-Mini-MIAS 
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P
C

A
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O
G

  

 

Leave-one-Out 

 

88.50 97.13 94.10 94.69 97.13 96.27 

70%/30% 

training/testing 
88.38 96.83 93.87 94.41 96.03 95.46 

50%/ 50% 

training/testing 
87.68 95.24 92.59 93.07 94.86 94.23 

10%/90% 

training/testing 
73.53 95.27 87.62 81.18 91.73 88.02 

P
C

A
-L

B
P

 

 

Leave-one-Out 

 

90.27 99.52 96.27 95.58 97.13 96.58 

70%/30% 

training/testing 
88.82 99.52 95.77 94.85 97.46 96.55 

50%/50% 

training/testing 
88.48 99.52 95.66 93.86 97.43 96.17 

10%/90% 

training/testing 
68.19 100.00 88.81 85.88 96.01 92.45 

 

Table B.8: Results of leave-one-out tests strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 

 LR-Mini-MIAS SR-Mini-MIAS 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 97.35 99.04 98.45 97.35 97.61 97.52 

O,HL 96.46 99.04 98.14 95.58 97.61 96.89 

O,LH 95.58 99.04 97.83 97.35 95.69 96.27 

O,LL,HL 97.35 99.04 98.45 97.35 98.09 97.83 

O,LL,LH 97.35 99.04 98.45 96.46 97.61 97.20 

O,LL,HL,LH 97.35 99.04 98.45 97.35 97.13 97.20 

O,ALL 97.35 99.52 98.76 96.46 97.61 97.20 
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Table B.9: Results of 70% training and 30% testing strategy based on LBPH features obtained from 

original mammogram and wavelet sub-bands 

 LR-Mini-MIAS SR-Mini-MIAS 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 96.77 99.21 98.35 94.56 98.41 97.06 

O,HL 95.74 99.13 97.94 95.44 98.73 97.58 

O,LH 95.59 98.97 97.78 94.26 98.33 96.91 

O,LL,HL 96.47 99.21 98.25 94.26 98.25 96.86 

O,LL,LH 96.47 99.21 98.25 95.00 98.49 97.27 

O,LL,HL,LH 96.47 99.21 98.25 94.71 97.70 96.65 

O,ALL 96.32 99.21 98.20 93.09 97.38 95.88 

 

Table B.10: Results of 50% training and 50% testing strategy based on LBPH features obtained from 

original mammogram and wavelet sub-bands 

 LR-Mini-MIAS SR-Mini-MIAS 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 95.36 98.80 97.59 94.73 96.68 96.00 

O,HL 95.00 98.75 97.44 95.36 97.93 97.03 

O,LH 95.09 98.75 97.47 94.38 97.36 96.31 

O,LL,HL 95.45 98.94 97.72 95.71 97.93 97.16 

O,LL,LH 95.27 98.99 97.69 94.20 96.01 95.38 

O,LL,HL,LH 95.27 98.99 97.69 92.05 96.59 95.00 

O,ALL 95.27 98.99 97.69 94.47 93.86 94.07 
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Table B.11: Results of 10% training and 90% testing strategy based on LBPH features obtained from 

original mammogram and wavelet sub-bands 

 LR-Mini-MIAS SR-Mini-MIAS 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 91.28 98.88 96.21 90.93 96.22 94.36 

O,HL 91.13 98.83 96.12 91.47 95.74 94.24 

O,LH 91.18 98.88 96.17 90.34 96.25 94.17 

O,LL,HL 91.32 98.88 96.22 91.23 95.29 93.86 

O,LL,LH 91.28 98.88 96.21 90.29 96.01 94.00 

O,LL,HL,LH 91.28 98.91 96.22 90.69 95.88 94.05 

O,ALL 91.47 98.99 96.35 89.90 96.20 93.98 

 

Table B.12: Results of using four strategies based on 14 GLCM features obtained from original 

mammogram 

 LR-Mini-MIAS SR-Mini-MIAS 
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Leave-one-Out 
96.46 100.00 98.76 86.73 95.22 92.24 

70%/30% 

training/testing 
86.03 98.10 93.87 85.59 92.06 89.79 

50%/50% 

training/testing 
91.70 98.46 96.09 91.25 89.95 90.41 

10%/90% 

training/testing 
82.26 71.30 75.16 57.30 66.62 63.34 
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Table B.13: Results of leave-one-out tests strategy based on decision fusing of using different kind of 

features 

 LR-Mini-MIAS SR-Mini-MIAS 

Fusions  
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f1 96.46 99.52 98.45 97.35 99.52 98.76 

f2 92.04 98.57 96.27 94.69 98.56 97.20 

f3 98.23 99.52 99.07 97.35 99.52 98.76 

f4 97.35 99.52 98.76 97.35 99.52 98.76 

f5 92.92 98.09 96.27 94.69 97.13 96.27 

f6 92.04 98.09 95.96 94.69 97.13 96.27 

f7 96.46 99.52 98.45 96.46 99.04 98.14 

 

Table B.14: Results of 70% training and 30% testing strategy based on decision fusing of using different kind 

of features 

 LR-Mini-MIAS SR-Mini-MIAS 

Fusions  
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f1 93.97 99.37 97.47 96.91 98.73 98.09 

f2 91.18 98.81 96.13 94.26 98.17 96.80 

f3 95.15 99.29 97.84 97.94 99.05 98.66 

f4 95.59 99.29 97.99 97.94 99.13 98.71 

f5 92.65 98.73 96.60 95.00 96.19 95.77 

f6 91.62 98.89 96.34 95.00 96.11 95.72 

f7 92.79 99.52 97.17 97.06 98.73 98.14 
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Table B.15: Results of 50% training and 50% testing strategy based on decision fusing of using different 

kind of features 

 LR-Mini-MIAS SR-Mini-MIAS 

Fusions  
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f1 94.12 99.38 97.53 97.37 98.33 97.99 

f2 90.79 98.76 95.96 92.72 97.95 96.11 

f3 95.53 99.33 97.99 98.60 97.19 97.69 

f4 95.88 99.48 98.21 98.60 97.10 97.62 

f5 92.37 98.19 96.14 93.33 95.10 94.48 

f6 90.97 98.33 95.74 93.33 95.10 94.48 

f7 92.63 99.62 97.16 93.26 95.96 95.01 

 

Table B.16: Results of 10% training and 90% testing strategy based on decision fusing of using different 

kind of features 

 LR-Mini-MIAS SR-Mini-MIAS 

Fusions  
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f1 84.27 99.55 94.17 81.67 98.09 92.31 

f2 77.70 98.62 91.26 82.60 97.66 92.36 

f3 86.28 99.47 94.83 86.76 94.81 91.98 

f4 89.61 99.50 96.02 86.81 94.84 92.02 

f5 80.15 97.82 91.60 81.27 91.78 88.09 

f6 74.02 97.98 89.55 81.27 91.78 88.09 

f7 74.61 99.84 90.97 86.47 94.73 91.83 
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APPENDIX C:  Super resolution DDSM database 

Table C.1: leave-one-out strategy based on LBPH features obtained from multi wavelet sub- bands 

 LR-DDSM SR-DDSM 

LBP in 

Wavelet 

Sub-bands 
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LL,HL 87.50 89.06 88.28 95.31 96.88 96.09 

LL,LH 88.67 90.63 89.65 95.31 98.05 96.68 

LL,HL,LH 88.28 89.84 89.06 96.48 98.05 97.27 

ALL 88.67 91.02 89.84 97.66 96.48 97.07 

 

Table C.2: Results of 70% training and 30% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in 

Wavelet 

Sub-bands 
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LL,HL 88.77 88.70 88.73 93.18 94.22 93.70 

LL,LH 89.29 89.81 89.55 94.48 94.94 94.71 

LL,HL,LH 89.16 89.87 89.51 97.01 95.58 96.30 

ALL 88.57 90.33 89.45 95.39 95.58 95.49 

 

Table C.3: Results of 50% training and 50% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in 

Wavelet 

Sub-bands 
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LL,HL 86.84 88.87 87.85 91.52 92.30 91.91 

LL,LH 87.46 90.12 88.79 92.93 93.79 93.36 

LL,HL,LH 86.56 89.65 88.11 94.53 94.96 94.75 

ALL 86.88 89.65 88.26 95.43 93.98 94.71 
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Table C.4: Results of 10% training and 90% testing strategy based on LBPH features obtained from multi 

wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in 

Wavelet 

Sub-bands 
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LL,HL 83.72 86.00 84.86 84.91 87.78 86.35 

LL,LH 85.33 86.17 85.75 85.50 88.59 87.04 

LL,HL,LH 85.24 86.26 85.75 86.83 89.22 88.02 

ALL 85.15 86.52 85.84 87.30 89.93 88.62 

 

Table C.5: Results of different strategy based on LBPH features obtained from original mammogram 

 LR-DDSM SR-DDSM 
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Leave-one-Out 

 

88.67 92.58 90.63 98.44 93.36 95.90 

70%/30% 

Training/testing 
90.07 91.43 90.75 97.01 91.69 94.35 

50%/50% 

training/testing 
88.98 90.51 89.75 94.65 92.50 93.57 

10%/90% 

training/testing 
82.72 86.76 84.74 87.00 87.30 87.15 
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Table C.6: Results of using four strategies based on HOG features obtained from original mammogram 

 LR-DDSM SR-DDSM 
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Leave-one-Out 
72.66 77.34 75.00 77.73 81.25 79.49 

70%/30% 

training/testing 
71.56 78.57 75.07 73.57 80.97 77.27 

50%/50% 

training/testing 
69.49 80.00 74.75 70.90 82.03 76.46 

10%/90% 

training/testing 
60.13 77.85 68.99 59.61 71.41 65.51 

 

Table C.7:  Results of using four strategies based on PCA-HOG and PCA-LBP features obtained from 

original mammogram 

  LR-DDSM SR-DDSM 
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P
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Leave-one-Out 
78.52 85.16 81.84 78.91 85.16 82.03 

70%/30% 

training/testing 
75.58 84.22 79.90 77.60 83.51 80.55 

50%/ 50% 

training/testing 
71.64 83.24 77.44 75.08 83.28 79.18 

10%/90% 

training/testing 
63.09 74.46 68.77 67.57 73.96 70.76 

P
C

A
-L

B
P

 

 

Leave-one-Out 

 

71.09 94.92 83.01 80.47 94.53 87.50 

70%/30% 

training/testing 
68.05 93.44 80.75 80.00 92.60 86.30 

50%/50% 

training/testing 
64.14 93.32 78.73 76.91 91.91 84.41 

10%/90% 

training/testing 
40.98 92.78 66.88 56.59 89.65 73.12 
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Table C.8: Results of leave-one-out tests strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 90.63 92.58 91.60 98.44 94.14 96.29 

O,HL 90.23 91.41 90.82 99.22 92.97 96.09 

O,LH 91.02 92.19 91.60 98.44 91.02 94.73 

O,LL,HL 90.23 92.58 91.41 98.44 92.97 95.70 

O,LL,LH 90.23 93.36 91.80 97.27 94.53 95.90 

O,LL,HL,LH 89.84 93.75 91.80 96.09 93.75 94.92 

O,ALL 89.84 93.75 91.80 95.70 94.53 95.12 

 

Table C.9: Results of 70% training and 30% testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands  

 LR-DDSM SR-DDSM 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 89.74 92.53 91.14 96.43 93.77 95.10 

O,HL 89.29 91.17 90.23 97.14 92.86 95.00 

O,LH 89.55 91.69 90.62 96.49 89.94 93.21 

O,LL,HL 89.74 92.66 91.20 97.21 90.71 93.96 

O,LL,LH 90.00 92.86 91.43 98.12 88.31 93.21 

O,LL,HL,LH 90.07 92.53 91.30 97.92 79.42 88.67 

O,ALL 90.33 92.47 91.40 98.77 71.23 85.00 
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Table C.10: Results of 50% training and 50% testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 89.92 90.66 90.29 94.69 94.41 94.55 

O,HL 89.02 90.90 89.96 95.16 92.34 93.75 

O,LH 89.10 91.21 90.16 94.84 91.84 93.34 

O,LL,HL 89.73 90.63 90.18 96.72 89.49 93.11 

O,LL,LH 89.77 90.78 90.27 94.88 93.05 93.96 

O,LL,HL,LH 89.65 90.86 90.25 97.27 91.09 94.18 

O,ALL 89.45 91.13 90.29 96.91 79.18 88.05 

  

Table C.11: Results of 10% training and 90% testing strategy based on LBPH features obtained from original 

mammogram and wavelet sub-bands 

 LR-DDSM SR-DDSM 

LBP in Original 

and  Wavelet 

Sub-bands 
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O,LL 84.00 87.48 85.74 88.57 85.17 86.87 

O,HL 82.83 87.02 84.92 88.54 85.20 86.87 

O,LH 83.13 86.87 85.00 88.07 85.80 86.93 

O,LL,HL 84.04 87.52 85.78 87.48 86.24 86.86 

O,LL,LH 84.24 87.50 85.87 88.09 86.61 87.35 

O,LL,HL,LH 83.04 87.20 85.12 86.74 88.28 87.51 

O,ALL 84.35 87.65 86.00 87.83 85.09 86.46 
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Table C.12: Results of using four strategies based on GLCM features obtained from original mammogram 

 LR-DDSM SR-DDSM 
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Leave-one-Out 

 

97.27 91.02 94.14 98.83 92.97 95.90 

70%/30% 

training/testing 
93.29 90.07 91.68 99.87 97.79 98.83 

50%/50% 

training/testing 
92.27 90.90 91.58 98.48 93.09 95.78 

10%/90% 

training/testing 
82.50 69.39 75.95 83.52 61.70 72.61 

 
Table C.16: Results of leave-one-out tests strategy based on decision fusing of using different kind of features 

 LR-DDSM SR-DDSM 

Fusions 
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f1 94.14 94.92 94.53 99.22 96.48 97.85 

f2 83.59 91.41 87.50 89.06 93.36 91.21 

f3 94.53 96.48 95.51 98.44 97.27 97.85 

f4 94.14 96.48 95.31 98.05 98.83 98.44 

f5 80.08 91.41 85.74 87.11 92.58 89.84 

f6 78.13 90.63 84.38 84.38 92.97 88.67 

f7 87.89 95.31 91.60 92.58 97.66 95.12 
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Table C.17: Results of 70% training and 30% testing strategy based on decision fusing of using different kind 

of features 

 LR-DDSM SR-DDSM 

Fusions 
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f1 94.48 97.08 95.78 98.83 97.47 98.15 

f2 82.40 91.30 86.85 87.14 92.34 89.74 

f3 94.55 97.53 96.04 99.48 94.68 97.08 

f4 95.00 97.40 96.20 99.16 95.45 97.31 

f5 76.30 90.33 83.31 86.30 89.94 88.12 

f6 75.65 90.33 82.99 83.70 91.43 87.56 

f7 85.71 97.27 91.49 93.18 98.57 95.88 

  

Table C.18: Results of 50% training and 50% testing strategy based on decision fusing of using different kind 

of features 

 LR-DDSM SR-DDSM 

Fusions 
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f1 93.87 96.33 95.10 96.68 96.41 96.54 

f2 79.45 91.37 85.41 84.61 92.34 88.48 

f3 94.14 96.52 95.33 98.36 93.83 96.09 

f4 93.95 96.41 95.18 97.93 94.45 96.19 

f5 73.95 87.97 80.96 83.71 89.34 86.52 

f6 72.85 87.73 80.29 80.74 90.51 85.63 

f7 83.28 96.68 89.98 90.86 97.15 94.00 
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Table C.19: Results of 10% training and 90% testing strategy based on decision fusing of using different kind 

of features 

 LR-DDSM SR-DDSM 

Fusions 
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f1 81.87 86.17 84.02 84.80 81.59 83.20 

f2 70.63 85.59 78.11 75.22 83.20 79.21 

f3 85.26 86.37 85.82 87.89 82.74 85.32 

f4 85.65 86.83 86.24 89.00 83.80 86.40 

f5 69.76 81.74 75.75 76.02 82.85 79.43 

f6 67.09 82.15 74.62 70.20 83.83 77.01 

f7 66.59 89.20 77.89 73.63 84.72 79.17 
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APPENDIX D: Feature Fusion 

 

Table D.1: Results of 50% training and 50% testing strategy based on decision fusing of using different kind 

of features 

 Mini-MIAS DDSM 

Fusions 
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f1 94.12 99.38 97.53 93.87 96.33 95.10 

f2 90.79 98.76 95.96 79.45 91.37 85.41 

f3 95.53 99.33 97.99 94.14 96.52 95.33 

f4 95.88 99.48 98.21 93.95 96.41 95.18 

f5 92.37 98.19 96.14 73.95 87.97 80.96 

f6 90.97 98.33 95.74 72.85 87.73 80.29 

f7 92.63 99.62 97.16 83.28 96.68 89.98 

 

Table D.2: Results of 10% training and 90% testing strategy based on decision fusing of using different kind 

of features 

 Mini-MIAS DDSM 

Fusions 
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f1 84.27 99.55 94.17 81.87 86.17 84.02 

f2 77.70 98.62 91.26 70.63 85.59 78.11 

f3 86.28 99.47 94.83 85.26 86.37 85.82 

f4 89.61 99.50 96.02 85.65 86.83 86.24 

f5 80.15 97.82 91.60 69.76 81.74 75.75 

f6 74.02 97.98 89.55 67.09 82.15 74.62 

f7 74.61 99.84 90.97 66.59 89.20 77.89 

 

 

 

 


