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Abstract 

Content-Based Image Retrieval (CBIR) is an automatic process of retrieving images 

according to their visual content. Research in this field mainly follows two directions. 

The first is concerned with the effectiveness in describing the visual content of images 

(i.e. features) by a technique that lead to discern similar and dissimilar images, and 

ultimately the retrieval of the most relevant images to the query image. The second 

direction focuses on retrieval efficiency by deploying efficient structures in organising 

images by their features in the database to narrow down the search space. The emphasis 

of this research is mainly on the effectiveness rather than the efficiency. 

There are two types of visual content features. The global feature represents the entire 

image by a single vector, and hence retrieval by using the global feature is more 

efficient but often less accurate. On the other hand, the local feature represents the 

image by a set of vectors, capturing localised visual variations in different parts of an 

image, promising better results particularly for images with complicated scenes. The 

first main purpose of this thesis is to study different types of local features. We explore 

a range of different types of local features from both frequency and spatial domains. 

Because of the large number of local features generated from an image, clustering 

methods are used for quantizing and summarising the feature vectors into segments 

from which a representation of the visual content of the entire image is derived. Since 

each clustering method has a different way of working and requires settings of different 

input parameters (e.g. number of clusters), preparations of input data (i.e. normalized or 

not) and choice of similarity measures, varied performance outcomes by different 

clustering methods in segmenting the local features are anticipated. We therefore also 

intend to study and analyse one commonly used clustering algorithm from each of the 

four main categories of clustering methods, i.e. K-means (partition-based), EM/GMM 

(model-based), Normalized Laplacian Spectral (graph-based), and Mean Shift (density-

based). These algorithms were investigated in two scenarios when the number of 

clusters is either fixed or adaptively determined. Performances of the clustering 

algorithms in terms of image classification and retrieval are evaluated using three 

publically available image databases. The evaluations have revealed that a local DCT 

colour-texture feature was overall the best due to its robust integration of colour and 
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texture information. In addition, our investigation into the behaviour of different 

clustering algorithms has shown that each algorithm had its own strengths and 

limitations in segmenting local features that affect the performance of image retrieval 

due to variations in visual colour and texture of the images. There is no algorithm that 

can outperform the others using either an adaptively determined or big fixed number of 

clusters. 

The second focus of this research is to investigate how to combine the positive effects 

of various local features obtained from different clustering algorithms in a fusion 

scheme aiming to bring about improved retrieval results over those by using a single 

clustering algorithm. The proposed fusion scheme integrates effectively the information 

from different sources, increasing the overall accuracy of retrieval. The proposed multi-

evidence fusion scheme regards scores of image retrieval that are obtained from 

normalizing distances of applying different clustering algorithms to different types of 

local features as evidence and was presented in three forms: 1) evidence fusion using 

fixed weights (MEFS) where the weights were determined empirically and fixed a prior; 

2) evidence fusion based on adaptive weights (AMEFS) where the fusion weights were 

adaptively determined using linear regression; 3) evidence fusion using a linear 

combination (Comb SUM) without weighting the evidences. Overall, all three versions 

of the multi-evidence fusion scheme have proved the ability to enhance the accuracy of 

image retrieval by increasing the number of relevant images in the ranked list. However, 

the improvement varied across different feature-clustering combinations (i.e. image 

representation) and the image databases used for the evaluation.  

This thesis presents an automatic method of image retrieval that can deal with natural 

world scenes by applying different clustering algorithms to different local features. The 

method achieves good accuracies of 85% at Top 5 and 80% at Top 10 over the WANG 

database, which are better when compared to a number of other well-known solutions in 

the literature. At the same time, the knowledge gained from this research, such as the 

effects of different types of local features and clustering methods on the retrieval results, 

enriches the understanding of the field and can be beneficial for the CBIR community. 
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Chapter 1   

Introduction 

Thanks to the availability of high-quality and low-cost compact imaging devices with 

integrated data communication capabilities, digital imaging has become an essential 

element in the way in which we socialise in the modern global community. 

Increasingly, digital imaging is also being used and recognized as an important means 

of supporting scientific research and discovery in many fields such as medicine, 

biology, astronomy, forensics, security and education. This widespread use of digital 

imaging has resulted in large volumes of photographic digital images being acquired 

and stored in databases. There is now a growing and urgent demand for effective and 

efficient image retrieval schemes, and hence a great deal of research interest on this 

subject.  

Early conventional image retrieval systems are based on using text keywords or phrases 

as labels to index and retrieve images from an image database. Yahoo image search 

engine is a typical example of this approach. A user enters a textual annotation of a 

desired image, and the system returns a ranked list of images according to the degree of 

matching to the annotation. However, this approach has some fundamental limitations. 

Text annotations may not be always available at the time of image capture for various 

reasons. Even when a descriptive text for the image can be obtained, subjective 

interpretations of the image content may lead to inconsistencies in annotating the image 

content. Consequently, a new field of research known as Content-Based Image 

Retrieval (CBIR) has emerged, where images are indexed automatically by their visual 

content. This thesis is about developing an algorithm/scheme for CBIR, aiming at 

retrieving a list of highly relevant images. Therefore, effectiveness is more of concern 

than efficiency for this research.  

The rest of the chapter is organized as follows: A typical framework of a Content-Based 

Image Retrieval system will be described in Section 1.1. The main promises and 

challenges in CBIR will be presented in Section 1.2. The motivation for this particular 
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research will be explained in Section 1.3. The goals and intentions of research study 

will be highlighted in Section 1.4. The contributions of this work will be listed in 

Section 1.5. The structure of the thesis will be outlined in Section 1.6.  

1.1 Content-Based Image Retrieval System Architecture 

A typical CBIR system contains the following three core functional components: 

 Image representation (features/signature): a process of converting the visual 

information of an image into discriminate feature vectors. 

 Image comparison: a process of measuring similarity between images within the 

feature space. 

 Image indexing: a process of grouping similar images and constructing efficient 

search structures for locating images efficiently. 

The above components represent the main areas of the research in CBIR. The first two 

are related to each other where the accuracy of similarity measures between two images 

rely on the robustness of image features in reflecting visual image content. The last one, 

which utilises efficient data structures to scale up the search for desired images from 

very large databases of images, is concerned with efficient organizations of images. 

Figure 1.1 illustrates an architectural framework of a typical CBIR system that contains 

the three core functional components. The framework consists of two phases: offline 

phase and online phase. In the offline phase, visual contents of input images, such as 

colour, texture, and shape are extracted and described as feature vectors. Then an 

indexing scheme, such as data structure (e.g. R-trees) is used to organize images in a 

database.  

 

 

 

 

 

 

Figure 1.1: Architectural Framework of a Typical Content-Based Image Retrieval System. 
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In the online phase, a user makes a query by providing an example image or a sketched 

figure. The system then processes the query by extracting feature vectors from the query 

image or the sketch figure and compares them with those of the images stored in the 

database using a suitable similarity measure. Finally, the retrieval results are returned 

and displayed to the user as a ranked list of images based on the calculated similarity 

measurements. A feedback mechanism may be incorporated in the system allowing 

users to interact with the retrieval system to improve the relevance of returned images 

appearing in the ranked list. 

1.2 Existing CBIR Systems, Promises and Challenges 

Content-Based Image Retrieval has attracted the interest of a wide scope of researchers 

from different communities such as computer vision, human-computer interaction, 

image processing, pattern recognition, and database management. Consequently, some 

existing CBIR systems are developed to query images of a specific domain of 

application such as face recognition or medical images, whilst other systems are non-

domain specific and could deal with images of various objects, scenes or items of 

interest from a wide range of sources. Domain specific CBIR systems benefit from the 

use of domain knowledge when searching of appropriate visual content, whereas non-

domain specific CBIR systems face the challenges of using discriminative visual 

features to return only images of relevance. This research is concerned with general 

non-domain specific CBIR systems.  

As a result of extensive research in CBIR (Veltkamp & Tanase, 2000; Smeulders, et al., 

2000; Datta, et al., 2008) in the last two decades, a number of CBIR systems have been 

produced. The QBIC was the first CBIR system developed by (Niblack, et al., 1993) in 

the IBM Almaden Research Centre. This system allows users to take an image, a sketch, 

and/or selected a colour and texture pattern as input to query for similar images (Figure 

1.2(a)). 

Smith and Chang (Smith & Chang, 1997) produced the VisualSEEK system where the 

user sketches a number of regions, positions and dimensions on the grid and selects a 

colour for each region to start a query. The user can also indicate boundaries for 

location and size and/or spatial relationships between regions. After the system returns 

the thumbnail images of the best matches, the user is then able to search by example 

using the returned images (i.e. relevance feedback) (Figure 1.2(b)). 
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The BlobWorld system (Carson, et al., 1999) allowed some flexibility for the user by 

first determining a category of images which helps to limit the search space. Then a 

region (blob) in the image is chosen, followed by the user indication of the importance 

of the chosen blob’s colour, texture, location, and shape (‘not’, ‘somewhat’, and ‘very’). 

It is possible to use more than one region for querying (Figure 1.2(c)). 

 

                          (a)  QBIC                                                                  (b) VisualSEEK  

          

                               (c) BlobWorld                                                                       (d) Google Image Search 

Figure 1.2: CBIR systems. 

More recently, a number of CBIR search engines on the web, which are publically 

available, have been developed. Some are based on the query image and/or metadata. 

For instance, Google Image Search (GoogleInsideSearch, 2009) uses visual content and 
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metadata to retrieve images similar to an uploaded query image. Flexible Image 

Retrieval Engine (FIRE) is another search engine (Deselaers et al., 2008) which used 

different image features such as colour histogram, global texture (e.g. coarseness and 

entropy), Tamura histogram, patch histogram, etc. These features were evaluated on 

different image databases (WANG, UW, IRMA-10000, ZuBuD, and UCID). 

Experiments showed that not all separate features work well for all databases. 

Therefore, they were linearly combined to increase the accuracy of retrieval. Tests using 

the WANG database produced mean average precision of 56% for Top 10 retrieved 

images. This result will be compared to our result in Chapter 7. TinEye 

(IdeeInc.Company, 2009) has been developed to find variations of web images based on 

digital signature or fingerprint of the image and gives exact matches. However, it fails 

to find different images with the same people or things in them because it is designed to 

return exact rather than similar matches. 

Despite their limitations, the existing systems have demonstrated the feasibility and 

huge potential use of CBIR, i.e. retrieving images by their visual content when textual 

annotation of the image semantics is either unavailable or hard to obtain. However, 

although CBIR presents a more intuitive process to describe and index images based on 

their visual content, the main remaining challenge is the so-called “semantic gap”. 

Semantic gap is defined as a shortcoming of coincidence between the information that is 

captured by the visual content and the human interpretation of the same image. In other 

words, it is the gap between low-level features of an image’s visual content and a high-

level semantics that the image depicts. As a result, some irrelevant images appear in the 

resulting ranked list. Numerous approaches and algorithms have been developed over 

the past two decades to address this challenge.  

1.3 Motivation 

Extracted features and similarity measure are the two main factors that play an 

important role in the performance of CBIR systems. The extracted features reflect the 

type and amount of visual information they can capture from an image, and the 

similarity measure determines the closeness of two images based on those features. 

Therefore, researchers tend to explore robust features that can reflect rich visual image 

content and effective similarity measures. In the early days of CBIR research, a global 

feature that represents the content of the whole image was favoured because it is only a 
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single vector and the similarity can be computed efficiently. But, the effectiveness of 

this general representation is limited, especially for complicated scenes. Therefore, 

recent research focuses on local features that capture localised visual information in 

different parts of the image. One such approach is to first divide the image into regions 

(sub-images) and then extract features from each region. Another type of local feature 

utilise interesting key points (or salient points) in the image that are invariant to 

translation, rotation, and scaling. Once local features have been extracted, they need to 

be quantized by a clustering method that groups these features into clusters whose 

centroids are later used to represent the image content. Thus, an image is represented by 

a set feature vectors that are more specific to visual contents of local regions. The 

similarity measure will have to be calculated between two sets of feature vectors, which 

means more computation time.  

We therefore intend to answer the following sets of questions through this research and 

for the rest of this thesis:  

1. What localised colour, texture and shape features are most effective in a 

clustering-based approach for CBIR? Which similarity or dissimilarity measures 

would best suit for comparing two images in this approach? Is there an 

appropriate combination of the features that delivers better retrieval results than 

a single feature? 

2. Do different types of clustering methods have an impact on the retrieval results? 

Would a simple K-means clustering method suffice? Which clustering methods 

best suit in summarising what types of local features? What effects are there 

when the number of clusters is fixed or adaptively determined based on the 

image’s visual content? If the number of clusters is fixed, then what would be 

the optimal number in relation to the image content? 

3. Based on the answers to the previous two sets of questions, is there a need for a 

multiple evidence based fusion solution? If so, how should the fusion scheme be 

properly designed to improve retrieval accuracy?  

To investigate the above questions we divided this research in two phases: the 

evaluation phase and the development phase. The evaluation phase consists of two 

tasks: to evaluate the effects of different types of local features when a simple clustering 

algorithm is used, and to evaluate the effects of different types of clustering algorithms 
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when an appropriate type of local feature is used. The development phase also consists 

of two major tasks: to evaluate existing approaches for fusion, and to develop a multiple 

level evidence based fusion scheme according to the results of the evaluation. 

1.4 Aim and Objectives 

The aim of this research is to enhance the effectiveness rather than efficiency of CBIR 

by clustering localised colour and texture features in frequency and spatial domains and 

employing a multi evidence fusion approach to increase image retrieval accuracy.  

Consequently, the following objectives are set out to achieve this aim: 

 To investigate the effects of K-means, EM/GMM, normalized Laplacian spectral, 

and Mean Shift clustering algorithms in capturing localised colour and texture 

features for CBIR  

 To investigate the effects of different types of local image features on CBIR from 

spatial domain texture features (e.g. Local Binary Patterns) to frequency domain 

colour and texture features (e.g. Discrete Cosine Transform, and Discrete Wavelet 

Transform) when the localised feature vectors are segmented by the above-

mentioned algorithms. 

 To investigate the effects of different dissimilarity measures such as Euclidean, 

City-block, Chi-square, and Kullback-Leibler divergence on the results of CBIR.   

 Based on the results of the investigations above, to develop new fusion solutions to 

reduce the semantic gap in CBIR image retrieval. 

1.5 Contributions of this Thesis 

In response to the objectives of the investigation outlined earlier, this thesis intends to 

make the following contributions:  

 Conducting and presenting a thorough and systematic evaluation of various 

types of local image features and dissimilarity measures in a clustering based 

approach for CBIR. The local features to be evaluated include texture features 

from the spatial domain (e.g. LBPu2, and LBPriu2) as well as colour and texture 

features from the frequency domain (e.g. DCT-CT, DWT-CT, DCT-Zigzag, 

DCT-C, DCT-T). Based on the evaluation results, the thesis will also propose 

two fusion features, DCTu2 and DCTriu2, and evaluate their performances 

against the results of the other features. Based on the evaluation of a number of 
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commonly used dissimilarity measures, this thesis will also propose a simple but 

effective dissimilarity measure for comparing the closeness of two images that is 

based on closeness of individual segments of local features.  

 Conducting and presenting a thorough and systematic evaluation of four types of 

clustering algorithms in segmenting local features for the purpose of CBIR will 

be presented. The thesis will investigate in particular the effect of the number of 

segments (clusters) of local features in the process of CBIR in the scenarios 

when the number is fixed and when the number is adaptive to the content of the 

image itself. For this purpose, the thesis will propose a customised adaptive K-

means algorithm and a customised adaptive Normalized Laplacian Spectral 

algorithm based on the sum of squared errors and minimum description length 

principle proposed by the CLUST algorithm (Bouman, et al., 1997) respectively. 

 Proposing and presenting a new multi evidence fusion scheme to exploit the 

different outcomes (scores/evidence) of local image features and clustering 

techniques to increase the performance of CBIR. 

The overall intention of the thesis is to verify the hypotheses that different local features 

and different ways of clustering the local features will affect the retrieval results, and 

fusing both can improve the results of image retrieval.  

This thesis is not primarily intended to address the issue of efficiency of image retrieval. 

1.6 Thesis Outline  

Chapter Two: this chapter is devoted to a literature review concerning two main 

components of CBIR, which are image representation and similarity functions. 

Chapter Three: this chapter aims to demonstrate four clustering algorithms: K-means, 

EM/GMM, normalized Laplacian, and Mean Shift respectively from partition-based, 

model-based, density-based, and graph-based categories. Basic versions of these 

algorithms are presented.  

Chapter Four: this chapter is intended to provide an overview on the methodology and 

the investigation pathways adopted for this research. 

Chapter Five: this chapter studies an existing object-based image indexing method and 

clarifies the modifications that are made. Evaluation experiments of different local 
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features for image classification and retrieval using K-means clustering algorithm are 

demonstrated. 

Chapter Six: this chapter presents evaluation experiments of three different types of 

clustering algorithm, i.e. EM/GMM, normalized Laplacian spectral, and Mean Shift 

algorithms for image classification and retrieval in the context of the K-means algorithm 

performances for CBIR. 

Chapter Seven: in this chapter, the proposed fusing schemes based on the outcomes 

obtained from the experiments in Chapters 5 and 6 are presented in order to narrow the 

semantic gap for CBIR. The schemes for image retrieval are evaluated on three 

benchmark databases. The results are compared to the existing work in the literature. 

Chapter Eight: this chapter summarises main findings, draws conclusions for this 

research, and outlines future directions and research work.  
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Chapter 2   

Literature Review 

The previous chapter introduced Content-Based Image Retrieval (CBIR) in terms of a 

typical CBIR system architecture and several existing CBIR systems, highlighted a 

challenge that is faced in CBIR, outlined the aim, objectives, motivations and 

contributions of this thesis. This chapter will first summarise the existing approaches 

and algorithms for CBIR in Section 2.1. Since feature extraction and similarity 

measures are essential to all CBIR approaches, the chapter will then present in Section 

2.2 a systematic review of the literature on various features at different levels (low, mid, 

and high) that have been used to capture image content. The chapter will also review a 

number of similarity measures to evaluate the degree of closeness of any two given 

images in Section 2.3. Section 2.4 presents a summary and draws relevance of literature 

to this particular research. 

2.1 Existing Approaches for CBIR 

First of all, it is worth to mention that three major literature surveys in CBIR, i.e. 

(Veltkamp & Tanase, 2000; Smeulders, et al., 2000; Datta, et al., 2008), have already 

been conducted due to extensive research in the past two decades. The first survey 

summarized earlier CBIR systems in terms of query, feature, matching, indexing, and 

result. The second reviewed the technical achievements in CBIR and discussed 

extracted features and image processing techniques for retrieval. In addition, different 

similarity measures for diverse types of features were summarised. This survey also 

outlined and highlighted the main problem of the “semantic gap” in CBIR. The third 

survey made a significant effort in summing up theoretical and practical contributions in 

image retrieval and automatic image annotation, and highlighting the importance of 

machine learning in CBIR. 

Clustering, Region of Interest (ROI), Relevance Feedback (RF), Browsing, and Bag of 

Visual Words (BOVW) are the existing approaches in CBIR, and each is a main 

research area by its own right. These approaches all involve feature extraction and 
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similarity measures to retrieve the most similar images in a ranked list. The main target 

of the approaches is to reduce or narrow the semantic gap. Image classification and 

image retrieval are normally used to evaluate any proposed methods in CBIR. Image 

classification is also known as supervised learning where an image label is predefined. 

Meanwhile, image retrieval is also known as unsupervised learning where any image 

label is absent.  

We first give a brief introduction to each approach as follows. The clustering approach 

is exploited in two ways. The first uses a clustering algorithm at the image feature 

extraction phase of CBIR. This means that features are extracted from an image and 

grouped into clusters, and the centroids of the clusters are then used to index the image 

in a database. A similarity measure is then used to match the centroids of the query 

image to those of a stored image in the database to determine if the stored image should 

be returned. The second uses a clustering algorithm at image retrieving phase where 

stored images are grouped into clusters according to their feature similarities. Thus, the 

centroid of a cluster is in fact the “representative” of those similar images. Therefore, 

the query image is compared against those representatives in the database. When a 

matching is found, the clusters of the representative images are searched further. This 

helps to reduce the search space. However, matching images in other clusters may be 

missed because their centroids may not be sufficiently good matches to the query 

image. The work of this thesis focused on the first way of using clustering algorithms 

where effectiveness was more of interest than efficiency.  

In the Region of Interest (ROI) approach, a user can determine a desired region. For 

instance, Yung-Gi (Yung-Gi, 2006) presented a CBIR system where images in a 

database were sorted according to their entropies. When the system received a query 

image, its entropy was calculated and similarities to entropies of images in the database 

were then measured. The closest similarity value was regarded as a pivot point for 

searching window. For example, window size of 13 images, the pivot point will be in 

the middle and the searching will be up to down from this point to explore the related 

regions within the image database. Thus, a search space was reduced. The system 

provides a facility to the user to locate the ROI for instance (I) of a certain size (n x m) 

in the query image by a mouse. To get a right region (H) from the image size (x x y) in 

the database, n by m block size will shift within the image pixel by pixel. Entropies of 

two regions I and H are then calculated to compute a difference that will be compared to 
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the threshold value. If the difference value was less, then the system will extract features 

from both regions using Discrete Cosine Transform and measure the similarity to 

retrieve a ranked list based on related regions within images of the database. Wang et al. 

(Wang, et al., 2008) proposed a method that extracts local invariant Scale Invariant 

Feature Transform (SIFT) feature (Lowe, 2004) from a defined ROI taking into account 

the user has no information about the edge and focuses on the centre of the region. 

Therefore, the authors used a dynamic probability function to replace unavailable 

features about the edge to compute the similarity distance between ROI and those 

regions within images of the database. Consequently, the need of the user to be involved 

during a retrieval session is one major limitation faced by the ROI methods.  

The Relevance-Feedback (RF) approach presents a facility for interacting between users 

and the CBIR system to refine the retrieved image list. At the beginning, a sample of 

images is displayed for the user and known as training examples. Then the user gives a 

feedback to the system by selecting training examples that are positive or/and negative. 

Consequently, the system refines the search again by learning from these training 

examples next round. The feedback process can be run iteratively until the user is 

satisfied with the desired images (Pinjarkar et al., 2012). Due to the interaction between 

a user and the system in real time, the algorithm is required to be fast by avoiding 

complexity computations. The system may also require more information rather than 

determine positive or negative (relevant/irrelevant) images and this may cause burden to 

the user. The size of the training examples is another issue in the RF methods, where the 

small size cannot give meaningful results such a case with Support Vector Machine 

(SVM) classifier. A comprehensive survey was given in (Zhou & Huang, 2003). 

The Browsing approach is an alternative way to query by example image. Works in 

(Krishnamachari & Abdel-Mottaleb, 1999; Pecenovic, et al., 2000) introduced tools to 

browse through a large number of database images using a hierarchal clustering 

algorithm. The first tool used local colour histogram features and the second used 

colour histograms, moments, texture features from Discrete Wavelet Transform, and 

shape features to build a hierarchal tree. Hence, the user can navigate through the 

database. The focus of research with this kind of method is how the navigation can be 

achieved. This was ultimately demonstrated in (Plant & Schaefer, 2009), where 

browsing was categorized into two dimensions: horizontal such as zooming, scaling, 

and panning, and vertical that permits the user to navigate a different level of a 
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hierarchically organised structure. However, the challenge here is how to visualize the 

whole or part of the image collections in the available screen size and how to provide an 

effective mechanism to navigate through the database images (Pecenovic, et al., 2000). 

Again, similar to the RF approach, constant user interaction is as well required. 

The idea of the Bag of Visual Words approach was borrowed from information 

retrieval, where a document is represented by a vocabulary/bag of words. In the case of 

an image, features are extracted from local patches of the image and then quantized by 

using a clustering algorithm. Resulted clusters correspond to vocabularies and their 

centroids correspond to the words. Detecting the salient image patches, known as 

keypoints, is an important step of the retrieval process. Various keypoints detectors such 

as SIFT feature were surveyed in (Tuytelaars & Mikolajczyk, 2008) and employed in 

(Jiang, et al., 2007) for object categorization and semantic video retrieval in an adopted 

scheme known as Bag of Features (BoF). The BOVW method faces some challenges 

such as detector, kernel, vocabulary size and weighting scheme. Researchers of this area 

tried to deal with these challenges. 

More recently, (Wan, et al., 2014) highlighted a new approach for CBIR using deep 

learning. Deep learning is a class of machine learning techniques using neural networks 

of many layers. The work used the convolution neural networks to learn feature 

representations of images. Experiments of image retrieval were conducted on ImageNet, 

Caltech256, Oxford, Paris, and Pubfig83LFW large scale databases. Results of mean 

average precision values (MAP) showed a good improvement in accuracy of retrieval, 

demonstrating the feasibility of using deep learning in reducing the semantic gap for 

CBIR and opening the door for exploiting this new technique for CBIR tasks. It is 

anticipated that more research results in the subject will soon appear.  

2.2 Features Representing Image Content 

Extracting appropriate features or signatures from images is an important step of the 

CBIR process. In general, a feature vector �⃗� 𝐴 of an image 𝐴 can be thought of as a point 

in ℝ𝑑 space. There are two types of features: 

 Global feature �⃗� 𝐴 = (𝑣1, 𝑣2, … , 𝑣𝑑), where 𝑑 is the dimension of the vector. 
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A global feature, such as colour histogram, represents a whole image by a single 

vector. Therefore, it is efficient and simple to calculate for image retrieval. Such 

feature is effective especially for images that contain one dominant object.   

 Local feature 𝑆𝐴 = {�⃗� 1, �⃗� 2, … , �⃗� 𝑛}, where 𝑆𝐴 is a set of vectors �⃗� 𝑖 =

(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑) (1 ≤ 𝑖 ≤ 𝑛). An image is first divided into small blocks of so-

called windows, tiles, patches, or grids and then a feature vector is extracted from 

each one of them. Consequently, a set of vectors is produced and then different 

methods, such as clustering methods, can be used to group/summarise them. 

Work in CBIR (Smeulders, et al., 2000; Datta, et al., 2008; Grauman, 2010) 

demonstrate that local features are more accurate than global features especially for 

images depicting a scene involving occlusions and clutter representing more than one 

semantic object. Local features capture localised information and better reflect local 

complexity of the image visual content. Local features provide opportunity for isolating 

backgrounds from semantic objects of interest, and hence narrowing the semantic gap. 

Because of the benefits, local features are preferred over the global features in recent 

methods for CBIR despite the added cost for computation. 

There are two domains from where the above mentioned features can be extracted: the 

spatial domain and the frequency domain. For a spatial domain, the features are directly 

extracted from the intensity values of the image pixels. For a frequency domain, the 

image is first transformed into the frequency domain through a transformation process 

before extracting features.  

According to (Marques & Furht, 2002), image features are categorised into low-, mid-, 

and high-levels. The low-level features are obtained when the image is firstly converted 

from raw data into multidimensional feature vectors. Typical low-level features include 

colour and texture features. The mid-level features refer to the feature vectors derived 

from grouping the low-level features. Typical mid-level features include segment-based 

or region-based features such as shape. High-level features refer to features that convey 

semantics of the image content or provide close correspondence to objects of meaning. 

Keywords or phrases annotating the semantics are often (but not always) used.  

Depending on the robustness of the features used, CBIR systems using low-level 

features alone may face the problem that a large proportion of semantically irrelevant 
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images appear in the ranked list due to the absence of any meaningful clues. In contrast, 

the mid-level and particularly high-level features represent more semantics and 

consequently the number of semantically relevant images will be increased in the 

ranked list (Smeulders, et al., 2000; Datta, et al., 2008), but high-level features are not 

easy to extract directly from images. As stated before, manual annotation of high-level 

features is not always easily available. We have noted that there is a recent development 

to automatically annotate images (Li & Wang, 2008; Zhang, et al., 2012), but our 

research effort in this thesis is more focused on utilising mid-level features for 

improving retrieval results. 

2.2.1 Low-Level Features  

2.2.1.1 Colour Features 

Colour is regarded as a significant dimension of human visual sensation that recognizes 

and discriminates visual information. According to the trichromatic theory of colour 

vision, any colour perception can be defined by a combination of three primary spectra. 

More specifically, it is possible to create three different light sources with a particular 

spectrum for each. Thus, a colour system is constituted from the spectra of those three 

light sources (Petrou & Petrou, 2010). Basically, the colour of an image is a function f 

(x, y), where f is the intensity value of the image 𝐴 at the location (x, y) in a 3-

dimension colour space ℝ3.  

Many colour systems/spaces are known in image processing and computer vision, 

including the basic RGB (red, green, blue) space and various forms of its transformation 

such as CMY (cyan, magenta, yellow), HSV (hue, saturation, value) and its variant HSL 

(hue, lightness, saturation), CIE (Commission Internationale de l’Éclairage) (either 

L*a*b* or L*u*v*), and YCbCr (luminance, chrominance-blue, chrominance-red) (Feng, 

et al., 2003; Shih, 2005). Some of these colour spaces are device-dependent and 

perceptually non-uniform, such as RGB and CMY whereas others are device-

independent, such as CIE (either L*a*b* or L*u*v* colour spaces), and considered to be 

perceptually uniform (i.e. the difference between two colours can be measured in a way 

closer to the human perception of colours).  

The YCbCr colour space is a uniform colour space widely used in digital video and 

JPEG compression. Existing research works (Lay, et al., 1999; Schaefer, 2011; Abd-
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Elhafiez & Gharibi, 2012) have consistently demonstrated that DCT based features 

extracted from the YCbCr colour space bring about the best performance for CBIR. 

Further Kekre et al. (Kekre, et al., 2012) showed that the performance is better than the 

DCT based features extracted from RGB, YCgCb, YUV, YIQ, XYZ, and LUV colour 

spaces. The existing research results are one factor that influenced us to use DCT-based 

features from the YCbCr colour space for our own research work. 

The YCbCr colour space is aimed at isolating luminance in the Y channel and chromatic 

in the blue Cb and red Cr channels. A sub-sampling stage in JPEG compression 

optimizes a bit rate by storing more luminance detail than chromatic detail, because 

human visual system is more sensitive to brightness than to colour information. We 

used this colour space because images are used to conduct experiments in JPEG format 

and investigated feature is DCT feature that exploits more texture information from the 

Y component than colour information from the Cb and Cr channels. 

Usually, the colour space specification is a pre-processing step which is followed by 

feature extraction. Colour features including colour moments, colour histogram, colour 

coherence vector, and colour correlograms are widely used. The three colour moments 

are the simplest representation of colour properties of an image. The mean µ, standard 

deviation σ, and skewness s are respectively calculated as follows: 

𝜇𝑖 =
1

𝑁
∑ 𝐴𝑖𝑗

𝑁
𝑗=1                             2.1 

𝜎𝑖 = (
1

𝑁
∑ (𝐴𝑖𝑗 − 𝜇𝑖)

2𝑁
𝑗=1 )

1
2⁄         2.2 

𝑠𝑖 = (
1

𝑁
∑ (𝐴𝑖𝑗 − 𝜇𝑖)

3𝑁
𝑗=1 )

1
3⁄         2.3 

where 𝐴𝑖𝑗 is the value of i-th colour component of the image pixel j, and N is total 

number of pixels in the image. 

The three colour moments have been used in many retrieval systems (Feng, et al., 

2003). In (Stricker & Orengo, 1995), the image indexing method calculated the three 

colour moments for each channels of image in HSV colour space. This means the image 

was indexed by 9-dimensional feature vector. Moments of two images were weighed 

when a similarity function was computed between them. The weights were determined 

by the user according to the lighting conditions. The results of the indexing method 
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were compared to the colour histogram and a cumulative histogram and indicated that 

efficiency and effectiveness of the image retrieval were the best among the three.  

A histogram is a frequency distribution of intensity values of image pixels. The 

histogram is computed for each channel (e.g. RGB space), as shown in Figure 2.1. Each 

histogram consists of bins, which are often quantized to tackle a computational cost 

problem. Swain and Ballard (Swain & Ballard, 1991) presented a colour histogram for 

image indexing and proved that it is more robust than that from a grey scale image in 

image retrieval. The advantages of histograms are that they are insensitive to rotation 

and translation, small changes in camera viewpoint, scale, and occlusion. However, 

missing spatial information in colour histograms may present irrelevant images with 

similar colour histograms to those of a query image. This tends to happen particularly 

with large-scale databases of many images.  

                        

Elephant image                               R-Channel                      G-Channel                      B-Channel 

Figure 2.1: The histograms of R, G, and B channels respectively for the elephant image. 

A colour coherence vector (CCV) was presented in (Pass, et al., 1997) to improve the 

colour histogram by accommodating spatial information into the histogram. Instead of 

recording the total number of pixels for each bin, CCV classifies in each histogram bin 

as coherent if the pixel value dominates a large, uniformly-coloured region, and 

incoherent if it does not. So, CCV for the image is in fact a vector < (a1, b1), (a2, b2)… 

(an, bn)> where ai refer to the number of coherent pixels and bi denote to the number of 

incoherent pixels in the ith colour bin. An experiment for image retrieval was conducted 

on a large scale database of images (14,554). A high percentage of improvement in the 

rank of images was showed using CCV histogram by comparing results with those 

using the colour histogram. 

The colour correlograms method (Huang, et al., 1997) was characterized by colour 

distribution of pixels and the spatial correlation of pairs of colours by creating a table 
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containing colour pairs, where k-th entry for (i, j) is the probability of finding a pixel of 

colour j at a distance k from a pixel of colour i in the image. To reduce a computation 

complexity a colour autocorrelogram was presented that only captures the spatial 

correlation between identical colours. Retrieval experiments were setup on the same 

above 14,554 database images and results indicated improvements in the image ranking 

compared to the colour and CCV histograms. 

Recently, a colour difference histogram (CDH) descriptor was proposed in (Liu & 

Yang, 2013) for image retrieval that carries a distinctive characteristic compared to 

traditional histograms that simply count the frequency of pixels. The CDHs count the 

perceptually uniform colour difference between points on different backgrounds with 

respect to colour and edge orientations in L*a*b* colour space that was quantized into 90 

colours. A colour histogram can reflect perceptually uniform colour difference between 

neighbouring colour values in L*, a*, and b* channels. Meanwhile, edge orientation 

histogram can reflect perceptually uniform colour difference between neighbouring 

colour values with edge orientation information. The edge histogram was quantized into 

18-bin of angles values in intervals of 20. These two histograms were concatenated to 

produce the colour difference histogram CDH descriptor of 108-bin. Retrieval 

experiments were conducted on Corel-5k and Corel-10k databases that include 50 and 

100 categories respectively, where each category contains 100 images. Results in terms 

of precision/recall measures were (57.23/6.87) and (45.24/5.43) respectively. 

A dominant colour (DC) feature was proposed in (Talib, et al., 2013) based on the 

dominant colour descriptor (DCD) that was proposed by Moving Picture Expert Group 

(MPEG-7 standard). DCD was extended to use weights for DCs to reduce the effect of 

the image background on the image matching decision where an object’s colours were 

concentrated. The first type is border weights (BW) that serve when object located in 

the image centre. The second type is salient object weights (SOW) that serve in three 

cases, a large object that may touch the image border, the background and object have 

the same colour (this will cause the object and background to be removed from 

consideration), or there is a thin line surround the image. The third type is DC’s 

percentages weight in the DCD’s resulted image (DCW). The final weights will be 

obtained by regarding two symbols “Large” (L) and “Small” (S) to describe three above 

weights based on threshold values that were determined experimentally. These values 
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are 0.10 for BW and DCW and 0.50 for SOW. Consequently, eight of three weights 

combinations were resulted as shown in Table 2.1. Experiment of retrieval was 

conducted on the WANG database of 10 classes, where each class contains 100 images. 

Accuracy of retrieval using 33 queries achieved 62% at Top 10 retrieved images of a 

ranked list.    

Table 2.1: Final weight of DC feature based SOW, BW, and DCW of original image (Talib, et al., 2013) 

Case No. 1 2 3 4 5 6 7 8 

SOW L L L L S S S S 

BW L L S S L L S S 

DCW L S L S L S L S 

Final DC weight Max(SOW,1-BW,DCW) Max(SOW,1-BW) 1 1 1-BW 1-BW DCW DCW 

 

2.2.1.2 Texture Features 

Since colour is useful in representing patterns in an image, texture is effective in 

measuring structure, orientation, roughness, smoothness, or regularity differences of 

different regions in the image. In (Feng, et al., 2003), texture representation is classified 

into two categories: structural and statistical. The structural methods attempt to identify 

structural primitives and their placements using a morphology operator and adjacency 

graph. Such a method is useful and effective when the texture structure is regular and 

repetitive in an image. The statistical methods use some form of transformation and 

filtering upon colour intensity values and rely on the transform coefficients and/or 

statistical descriptors to represent texture information. Examples include use of co-

occurrence matrices and multi-resolution filtering techniques (e.g. Gabor filter, wavelet 

transform) to be described in more details next. 

Discrete Wavelet Transform (DWT)   

A wavelet transform, also known as wavelet analysis, is a very useful tool for 

hierarchical decomposition of signals into different frequency components. For 

instance, an image can have small and large objects or low and high contrast objects. 

Therefore, it can be useful to analyse such images in several resolutions or 

decomposition levels (Gonzalez & Wood, 2008). There are many different wavelet 

filters such as Haar, Daubechies, and Coiflets used in practical applications to 

decompose images (Gonzalez, et al., 2009). 
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Two dimensional discrete wavelet transform (2D-DWT) is well known in image 

processing and is produced by applying one dimensional wavelet transform (1D-DWT) 

to rows and columns of the image. The wavelet transform is achieved by applying two 

filters: a low-pass filter (L) and a high-pass filter (H). Therefore, the wavelet 

decomposition at level-one forms four sub-bands (LL, HL, LH, and HH) as shown in 

Figure 2.2(b). The LL contains approximation coefficients which represent low 

frequencies of the original image. Meanwhile, the HL, LH, and HH are detail 

coefficients which represent high frequencies. The decomposition can be made 

recursively by applying the transform on the resulting LL sub-band, for example. 

Decomposition up to three levels is shown in Figure 2.2(c).  

 

 

 

 

 

 

 

 

 

Figure 2.2: Wavelet decomposition. 

In (Davis, et al., 2012), a set of global features that were extracted from an image in 

HSV colour space includes a 64-bin colour histogram (F1), 9 colour moments (F2) (i.e. 3 

colour moments for each channel of HSV colour space), an 18-bin edge direction 

histogram (F3), and 9 texture statistics in the form of entropy of 9 sub-bands of a three-

level wavelet decomposition on greyscale image (F4) (i.e. Figure 2.2(c) except LL3). 

Due to the global feature is less accurate than local in describing objects of the image; 

the image was divided into five blocks, as shown in Figure 2.3. The features (F2, F3, and 

F4) were extracted from each block to represent local features. 

A set of weights were empirically determined to each block and features, where 0.44 

was assigned to the block 5 and 0.14 to the other 4 blocks. Also, 0.40 was used for the 

colour feature and 0.30 for the edge and texture features for each block. The 

experiments of retrieval were conducted on two databases: 2000-Filckr and 6000-Corel 

and the results showed that images annotated by local features of the five blocks were 
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better than global features, where the improvement was 2% and 5% in 6000 and 8000 

databases respectively compared to other works. The proposed image retrieval method 

included three steps: search space reduction by finding candidate image clusters, rank 

images in the candidate clusters, and refine the result based on the user’s RF. The 

results indicated better performance when increasing the number of RF iterations up to 

three.  

 

 

 

Figure 2.3: Image division scheme. 

In (Karpagam & Rangarajan, 2012), a colour approximation method was used to 

compute a unique colour histogram of the image in RGB colour space to represent 

colour feature F1 (i.e. the 24 bit in RGB colour image was approximated into a 256 

colour indexed image). A wavelet decomposition of level one was applied to the 

greyscale image and the energy of each sub-band was computed to capture texture 

information F2 according to  𝐸 = (∑ (𝑆𝑘)
2/∑ ∑ (𝑆𝑖𝑘)

2
𝑘𝑖𝑘 ) ∗ 100 , where 𝐸 is the energy, 

𝑆𝑘 is coefficients of sub-band 𝑘 and 1 ≤ 𝑖 ≤ 4. Finally, F1 and F2 features were 

concatenated to vector F as an image index feature and this is known as data-level 

fusion that will be demonstrated in Chapter 7. Euclidean distance was employed to 

compute the similarity between two images. The mean average precision values of 

image retrieval at Top 10 and 100 retrieved images were 0.73 and 0.49 respectively. 

The performance was compared to the SIMPLIcity system in (Li, et al., 2000) and was 

higher by 3% at Top 100 retrieved images. The results will be compared to our work in 

Chapter 7.  

Discrete Cosine Transform (DCT) 

DCT is one of many transformation methods that have been used to extract low level 

image content features in the frequency domain. At the heart of DCT is the following 

operation that is executed iteratively on 8 x 8 blocks of pixel intensity values:  

𝐶(𝑢, 𝑣) =
1

4
𝑘(𝑢)𝑘(𝑣)∑ ∑ 𝑓(𝑖, 𝑗)cos (

(2𝑖+1)𝑢𝜋

16
)cos (

(2𝑗+1)𝑣𝜋

16
)7

𝑗=0
7
𝑖=0     2.4 

𝑘(𝑢), 𝑘(𝑣) = {
1

√2
⁄      𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 = 0

1            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

1                                2 

 

3                                4 

   5 
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where 0  u, v  7 and f (i, j) is the pixel intensity value at location i, j. C(0, 0) is known 

as low frequency coefficient (DC) and the remaining 63 coefficients are known as high 

frequency coefficients (ACs). The DC coefficient tends to capture the colour of the 

block and the AC coefficients the textures of the block.  

In (Huang & Chang, 1999), DCT coefficients were reordered like a multiresolution 

DWT decomposition to capture texture information by corresponding mean and 

standard deviation. The length of the feature vector of block size N x N is 𝐾 = 2 ∗

(3𝑙𝑜𝑔2𝑁 + 1). As a result, the texture feature vector is formed 

as(𝜇0, 𝜎0, 𝜇1, 𝜎1, … , 𝜇𝐾

2
−1

, 𝜎𝐾

2
−1

). For instance, if the size of the block is (8 x 8), then the 

decomposition will be 3 levels and the dimension of the vector will be 20, as shown in 

Figure 2.4(a). The results of texture-based classification with different block sizes (e.g. 

2 x 2, 4 x 4, and 8 x 8) proved better performance using reordered DCT coefficients 

compared to DWT. In the experiments of retrieval, the reordered DCT method with 8 x 

8 blocks outperformed the conventional DCT method (i.e. DCT coefficients in zigzag 

order (Figure 2.4(b)) with many larger feature dimensions. In addition, results of using 

the reordered DCT method were above or very close to DWT. This indicates that the 

reordered DCT coefficients like 3-level decomposition DWT are useful to capture more 

texture information than a traditional method. Both classification and retrieval 

experiments were conducted on Brodatz Album texture images. There are other DCT 

coefficients ordering methods, such as in (Yung-Gi, 2006; Ngo et al., 2001). Both DCT 

and DWT features will be evaluated in our work in Chapter 5. 

 

 

 

 

                (a) Like 3- levels wavelet decomposition                 (b) Zigzag manner 

Figure 2.4: Reordered DCT coefficients of 8 x 8 blocks. 

Gray Level Co-occurrence matrices (GLCM)  

The GLCM is a co-occurrence intensities distribution which provides information about 

relative locations of neighbouring pixels (i.e. distance) of a greyscale image. The matrix 

is built by computing a frequency of greyscale intensity i of pixel that occurs either 
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horizontally, vertically, or diagonally to adjacent pixels with the value j.  The matrix is 

not invariant to rotation, therefore can generate four matrices with directions (0°, 45°, 

90°, and 135°).  Figure 2.5 shows an example of how GLCM is calculated for 4 x 5 

image in a horizontal adjacent pixel direction. Element (1,1) in the GLCM contains the 

value 2 because there are two instances in the image where two, horizontally adjacent 

pixels have the value 1 and 1. Element (2,3) in the GLCM contains the value 1 because 

there is only one instance in the image where two, horizontally adjacent pixels have the 

value 2 and 3 the process continues to fill in all the values in the GLCM. 

 

 

Figure 2.5: GLCM for a (4 x 5) image of 8 intensity values. 

Haralick (Haralick, et al., 1973) was the first who presented fourteen statistical 

measurements based on GLCM such as entropy, energy, contrast, homogeneity, 

variance and correlation to represent texture features. Howarth and Rüger (Howarth & 

Rüger, 2004) calculated global and local GLCM for each direction (i.e. 0°, 45°, 90°, and 

135°) with four distances. Different intensity levels were tested (e.g. 4, 8, 16, 32, and 

64). The energy, entropy, contrast, and homogeneity features were calculated. Results of 

each feature from four distances were concatenated for each direction. The concatenated 

features and the rotationally invariant summed matrices investigations indicated that the 

local concatenated homogeneity feature of GLCMs (7 x 7) blocks using distances 

between 1 and 4 pixels was the best with a mean average precision of 12.2% for image 

retrieval using sample of images from the Corel database.   

Recently, the GLCM was exploited specifically for face recognition in (Eleyan & 

Demirel, 2011). In this work, the co-occurrence matrix was taken directly as a single 

feature vector to represent a face image in the database. The results of face classification 

were better than those from using the fourteen statistical measurements (Haralick, et al., 

1973). However, the length of feature vector with the proposed method is much longer. 

For instance, using 4-bit grey level produces (16 x 16) GLCM matrix means 256-

dimensional feature vector. The face recognition performance on ORL, FERET, 

        GLCM  1 2 3 4 5 6 7 8 

2 3 3 5 8     1 2 0 1 0 0 0 0 0 

2 2 6 7 4     2 0 1 1 0 0 1 0 0 

6 8 1 1 3     3 0 0 1 0 1 0 1 0 

7 4 5 1 1     4 0 0 0 0 1 0 0 0 

         5 1 0 0 0 0 0 0 1 

         6 0 0 0 0 0 0 1 1 

         7 0 0 0 2 0 0 0 0 

         8 1 0 0 0 0 0 0 0 
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FRAV2, and Yale B databases using the direct GLCM at this level was 95.60, 89.42, 

87.55, and 76.17 respectively against to 80.30, 35.40, 60.77, and 27.22 using the 

fourteen Haralick measurements.  

Local Binary Patterns (LBP) 

Recently, LBP has attracted a great deal of attention from the research community as a 

simple method to analyse and measure the local texture. LBP is a pattern of the 

relationships between the intensity of a pixel and those of its neighbourhood pixels. The 

pattern is obtained by thresholding the intensity values of the neighbourhood relative to 

the corresponding value of the central pixel. The mathematical formulation of LBP for a 

pixel is as follows: 

𝐿𝐵𝑃𝑃,𝑅(𝑔𝑐) = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝𝑃−1

𝑝=0     2.5 

𝑠(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

    

where 𝑔𝑐 is intensity value of the centre pixel of the local neighbourhood and 𝑔𝑝(𝑃 =

0,1, … , 𝑃 − 1) are the intensity values of P equally located pixels on a circle of radius R 

with respect to the central pixel. R is greater than zero and forms a circularly symmetric 

neighbour set. The procedure of transformation is illustrated in Figure 2.6. 

For a given N x M image A, the resulting LBPP,R code image can be represented by a 

histogram h of length K, where 0 ≤ 𝑘 ≤ 𝐾 − 1 and 𝐾 = 2𝑝 is the number of all the 

LBP codes. For instance, if 𝑝=8 neighbours, then 𝐾=256. Feature h has good properties 

such as grey-scale invariance, low complexity, few parameters, and satisfactory 

discriminating power (Ojala, et al., 1994). However, the h is a long histogram (2p 

distinct values). The LBP designers concluded that not all of the local patterns are 

necessary to make texture analysis and suggested using just “uniform” patterns 𝐿𝐵𝑃𝑃,𝑅
𝑢2   

as is reported in (Ojala et al., 2002). The uniform patterns contain at most two bitwise 

transitions from 0 to 1 or vice versa when the binary string is considered as circular 

11000011. Uniform patterns consist of useful texture features compared to non-uniform 

binary patterns. Therefore, all occurrences of non-uniform patterns are aggregated to a 

single bin of the histogram. As a result, the number of bins in h is reduced to 59-bins 

(i.e. 58 uniform patterns and 1 for non-uniform patterns). 
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                                        Threshold                  Multiplication                      LBP 

 

 

78 99 50  1    1 0  1 2 0     

54 54 49  1  0  128  0   195  

57 12 13  1 0 0  64 0 0     

                       (a)                                   (b)                                   (c)                                    (d) 

Figure 2.6: Local Binary Patterns for P=8 and R=1. 

In the same work of (Ojala et al., 2002), a rotation invariant version of LBP (i.e. 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 ) was released to tackle the effect of rotation. The idea is to rotate P neighbours 

then choose minimum value of rotation invariant local binary pattern. Figure 2.7 shows 

that there are 36 minimum rotation invariant values for𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 . 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖)| 𝑖 = 0,1,… , 𝑃 − 1}       2.6 

where ROR(x, i) performs a circular bit-wise right shift on the P-bit number x, i times. 

In the case of 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 the number of uniform patterns is 9 and non-uniform patterns are 

grouped under the label (P+1). This means that the length of h histogram is 10-bins 

(Ojala et al., 2002): 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 = {∑ 𝑠(𝑔𝑝 − 𝑔𝑐) 𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2

𝑃−1

𝑃=0

𝑃 + 1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

 

Both local 𝐿𝐵𝑃𝑃,𝑅
𝑢2  and 𝐿𝐵𝑃𝑃,𝑅

𝑟𝑖𝑢2 histograms with 𝑃=8 and 𝑅=1 are investigated in our 

work and employed to improve the effectiveness of image retrieval accuracy (see 

Chapter 5). LBP is well known in facial image analysis (see the survey presented in 

(Huang, et al., 2011) for more details). 

 

 

 

 

 

Figure 2.7: Rotation Invariant Patterns (36). 

00000000    00000001    00000011   00000111   00001111   00011111    00111111    10000000    11111111 
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In (Mäenpää & Pietikainen, 2004), 𝐿𝐵𝑃𝑃,𝑅
𝑢2   feature was extracted from greyscale images 

as well as colour images. Different colour spaces were tested (e.g. RGB, HSV, and CIE 

L*a*b*). For instance, if an image is in the RGB colour space, the LBP operator is 

applied to each channel individually. Different circular neighbourhoods were tested (8, 

16, and 24) with different radii (1, 2, 3, and 5). The experiments of classification used k-

NN classifier on VisTex, Outex 13 (static illumination), and Outex 14 (varying 

illumination) textures databases. The performance of  𝐿𝐵𝑃8,1
𝑢2  for grey scale texture was 

better than Gabor filters with 4/3 scales and 6/4 orientations when the illumination is 

static. Results for using 𝐿𝐵𝑃8,1
𝑢2 on the RGB, HSV, and CIE L*a*b* colour spaces showed 

that regarding the colour with texture improved the classification accuracy when the 

illumination is also static. Combination LBP features were also improved the 

performance with the static illumination. Results of above features are illustrated in 

Table 2.2 to be clear and there is more results details that can be seen in the original 

paper.  

Table 2.2: Classification results (Mäenpää & Pietikainen, 2004) 

Feature  VisTex Outex 13 Outex 14 

Gabor4,6 89.6 77.1 66.0 

Gabor3,4 89.8 78.4 64.2 

LBP8,1 97.7 81.0 59.3 

LBP8,1 RGB 97.9 87.8 53.9 

LBP8,1 HSV 98.8 85.9 44.9 

LBP8,1 L*a*b* 99.3 82.9 60.1 

LBP(8,1+
u2

16,3+
u2

24,5) 98.6 82.4 69.5 

LBP(8,1+
u2

16,3+
u2

24,5) L*a*b* 99.5 87.8 67.8 

 

In (Takala, et al., 2005),  𝐿𝐵𝑃𝑃,𝑅
𝑢2  feature was implemented with 𝑃= 8 neighbours and 

different  𝑅 (1, 2, 4, and 5) radii on the full image size, 128 x 128 blocks, and 96 x 96 

blocks with non-overlap and overlap (64 x 64 and 48 x 48). In addition, different 

combinations of these histograms were tested. Experiments of image retrieval were 

conducted on 5 categories from Corel (Apes, Death Valley, Fireworks, Lighthouses, 

and Tigers). Each category includes 50 images. Retrieval results were showed using 10, 

25, and 50 images sequentially. Here, we show the best results in terms of 

(precision/recall) measures when the image was divided into (96 x 96) blocks with (48 x 

48) overlap and 𝐿𝐵𝑃8,1
𝑢2  feature was then extracted, (46/9) % using 10 images, (32/16) 

% using 25 images, and (24/24) using 50 images. These results were compared to 
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colour correlograms and edge histogram features that achieved (38/8) % and (26/5) % 

using 10 images, (25/13) % and (18/9) % using 25 images, and (19/19) % and (14/14) 

% using 50 images respectively. 

In (Murala & Balasubramanian, 2012), a new Local Tetra Patterns (LTrPs) feature was 

proposed based on the idea of the LBP, LDP, and LTP that were presented respectively 

in (Ojala, et al., 2002; Li, et al., 2010; Tan & Triggs, 2007). The LTrPs feature uses the 

direction of the centre gray pixel 𝑔𝑐 to describe the spatial structure of the local texture. 

The directions were computed using the first order derivatives in vertical and horizontal 

directions. The nth-order LTrPs was calculated using (n-1)th order vertical and horizontal 

directions and combining it with Gabor transform. Retrieval experiments were 

conducted on WANG, Brodatz, and MIT VisTex databases, where mean average 

precision value (MAP) is improved from 70% to 76%, 80% to 85%, and 82% to 90% at 

Top 10 retrieved images respectively compared to the standard LBP. 

Jacob et al. (Jacob, et al., 2014) proposed Local Oppugnant Color Texture Pattern 

(LOCTP) feature to enhance LTrPs feature (Murala & Balasubramanian, 2012). The 

difference of LOCTP is that the relationship in terms of the intensity and directional 

information between 𝑔𝑐 pixel in the first channel and their oppugnant neighbours from 

the second channel was determined. The aim is to use the harmonized link between 

colour and texture that makes the system to incorporate the human perception. 

Experiments of retrieval were setup on WANG and Brodatz databases using different 

colour spaces (YCbCr, HSV, L*a*b*, and RGB). Results of MAP was 98% at Top 10 

retrieved images using LOCTP with RGB with the WANG database while it was 84% 

using LOCTP with YCbCr colour space with the Brodatz database (see the original 

paper for more results and details). 

 

More recently, (Nagaraja & Prabhakar, 2015) proposed a method based on three 

features, Directional Binary Code (DBC), Haar Wavelet transform, and Histogram of 

Oriented Gradients (HOG). The difference between DBC and LBP is that the spatial 

relationship between any pair of neighbourhood pixels in a local region along given 

direction was regarded to capture texture information. DBC was extracted from each 

RGB channel and then combined to capture colour and texture features. Haar Wavelet 

transform was used to decompose the extracted colour and texture features and original 

image. Finally, HOG was computed to capture the shape and local features of wavelet 
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transformed images. Retrieval experiments were setup on WANG and Caltech256 

databases, where average precision was 78% and 43% at Top 20 retrieved images using 

Euclidean distance respectively. 

2.2.2 Mid-Level Features 

Two alternative ways in forming mid-level features based on low-level features have 

been attempted. The first alternative further derives shape features from the low-level 

features whereas the second alternative groups the low-level features into segments or 

regions by using a clustering method.  

2.2.2.1 Shape Feature 

Shape feature is a measurement of geometric attributes of an object. For example, 

invariant moments are derived and used as features for object recognition independent 

of its position, size, and orientation. The invariant moments can be used for grey and 

binary images. A set of seven 2-D invariant moments to translation, rotation, and scale 

are shown in (Gonzalez & Wood, 2008). 

In (Hiremath & Pujari, 2008), a Colour Salient Point (CSP) algorithm was proposed. 

The 30 salient points exploited to capture local features of images in CIE L*a*b* colour 

space. The first two statistical moments from a* and b* channels were calculated around 

every salient point within a block of size 3 x 3 to capture colour feature (i.e. 4D). Gabor 

filter responses (6 orientations and 4 scales) were computed from a 9 x 9 block around 

every salient point in the L* channel to capture texture features by the first two statistical 

moments of the 24 filter responses (i.e. 48D). In total, 52D feature vector was calculated 

for each salient point. A shape feature was computed from edge images of R, G, and B 

channels (12D) that were obtained by applying a procedure in which Gradient vector 

flow (GVF) was applied. Then 4 shape features were calculated as follows: 

𝐹1 =
𝜇2

1
2⁄

𝑚1
,    𝐹2 =

𝜇3

𝜇2
3

2⁄
,    𝐹3 =

𝜇4

𝜇2
2,     𝐹4 = �̅�5  

where 𝑚𝑟 =
1

𝑁
∑ [𝐷𝐿2

(𝑥𝑖 − 𝑐)]
𝑟𝑁

𝑖=1 , 𝜇𝑟 =
1

𝑁
∑ [𝐷𝐿2

(𝑥𝑖 − 𝑐) − 𝑚1]
𝑟𝑁

𝑖=1  , �̅�𝑟 =
𝜇𝑟

(𝜇2)
𝑟

2⁄
, and 

𝐷𝐿2
 is Euclidian distance between 𝑁 boundary pixel 𝑥𝑖 and centroid 𝑐 of the shape. 
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In addition, the first moment from the set of seven invariant moments (Gonzalez & 

Wood, 2008) was calculated for each channel (i.e. 3D). In total, the shape feature vector 

has 15 dimensions. The dissimilarity between two images is measured as the combined 

distance D = D1+D2 where D1 is the distance upon colour and texture features around 

the salient points and D2 is the distance upon the shape features. The Canberra distance 

in formula (2.8) was used to compute both D1 and D2. Experiments of retrieval 

conducted on the WANG database showed the mean average precision of 51% for Top 

100 retrieved images, which was compared to 47% of the SIMPLIcity system (Wang, et 

al., 2001). 

In (Nunes, et al., 2010), Solidity, Axis Ratio, Areas Ratio, Perimeter-Area Ratio, 

Eccentricity, Extent, and invariant moments features were used to describe 2D shapes in 

images and can be calculated using the regionprops function in MATLAB: 

 Areas Ratio: a ratio between the number of pixels in an image foreground and a 

total number of the image’s pixels.  

 Solidity: the proportion of the pixels in the convex hull region (Area/Convex Area). 

 Axis Ratio: the ratio between the length in pixels of a minor axis of an ellipse that 

has the same normalized second central moments as the region and the length in 

pixels of a major axis of the ellipse that has the same normalized second central 

moments as the region.  

 Perimeter-Area Ratio: the ratio between a perimeter and area of the image. 

 Eccentricity: the ratio of the distance between the foci of the ellipse and its major 

axis length.  

 Extent: the ratio of pixels in the foreground of image’s region with the pixels in the 

total bounding box. 

These seven features were combined to be one feature vector to index the image in the 

database. MPEG-7 database was used in retrieval and classification experiments. The 

database contains 1400 binary images categorized into 70 classes, each class contains 

20 images. The performance of this shape features vector was 59% in image retrieval 

and was less than the performance of other features in the literature, but its 

dimensionality is low. In classification experiment, SVM, k-Nearest Neighbours (k=1-

11) leave-one-out strategy, and decision tree classifiers were tested. The best mean 

accuracy was 86% from using SVM classifier. While the mean accuracy using 1-
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Nearest Neighbours classifier was 80%. The poorest performance was from the decision 

tree classifier. 

2.2.2.2 Segmentation  

Image segmentation is a process of decomposing an image into a number of disjointed 

blobs, objects, or regions. Segmentation can be performed in the spatial domain directly 

upon the colour intensity values of pixels. Segmentation can also be performed upon 

local colour and texture features. Many image segmentation methods and algorithms 

have been developed and reported in the literature (see (Ilea & Whelan, 2011) for a 

comprehensive review of segmentation algorithms). Image segmentation and clustering 

overlap significantly and hence many segmentation solutions make use of clustering 

algorithms.  

In (Li, et al., 2000) the image in CIE L*u*v* colour space was divided into 4 x 4 blocks 

and three average colour components were calculated to capture colour information. A 

one-level Haar wavelet transform was applied to each block in the L* channel. Then 

three second order moments of wavelet coefficients in different sub-bands (i.e. HL, LH, 

and HH) were computed to capture texture information. Hence, 6D local features were 

fed to the K-means clustering algorithm to segment the image. Then a classification 

algorithm was proposed by thresholding an average of chi-square statistics for all 

regions in the image. If it is less than 0.32 then the image is labelled as textured; 

otherwise as non-textured. This means the wavelet coefficients in different sub-bands 

which assign variation in different directions are useful to discriminate texture 

information.  

In (Li & Peng, 2010), multi-level image segmentation was proposed. First, an image in 

HSV colour space was divided into 4 x 4 blocks. Then colour, texture, and shape 

features were extracted. A colour histogram 81-dimensional (9h x 3s x 3v) represents 

the colour feature, local binary patterns uniform histogram 59-dimensional 𝐿𝐵𝑃8,2
𝑢2  

represents the texture feature, and Normalized Intertia represents the shape feature 

𝐼(𝑅𝑖, 𝛾) =
∑ ‖𝑥−𝑐𝑖‖

𝛾
𝑥∈𝑅𝑖

𝑉
𝑖

1+
𝛾
2

, where 𝑅𝑖 is a region in the image, 𝑐𝑖 is the centroid of 𝑅𝑖, 𝑉𝑖 is the 

number of pixels in the region 𝑅𝑖, and 𝛾 is order from 1 to 3, therefore the feature vector 

length is 3D. The proposed method used Normalized Cuts clustering algorithm to group 

these features into regions at different levels (i.e. hierarchal structure). Visual 
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vocabularies of 500, 1000, 2000, and 3000 words were constructed and tested. Then the 

SVM classifier was employed to classify the image. The method was conducted on 

1000 and 2000 Corel image database and results were compared to a traditional 

segmentation method. A performance of 1000 images was 85.2 using 3000 words, while 

83.7 with the traditional segmentation method. Our work in Chapter 6 will show the 

same classification result applying (EM/GMM) clustering algorithm with 55 clusters 

only. 

Recently, Vieux et al. (Vieux, et al., 2012) presented Bag of Regions method which 

segments images before extracting visual words instead of using local interest keypoints 

as salient image patches such as SIFT feature. Seven different segmentations per image 

were made and then colour and texture features were computed. The colour feature 

represented by a HSV colour histogram and the texture feature represented by histogram 

of Local Binary Patterns. In addition, SURF feature was tested which has the same 

properties of SIFT feature. Different vocabulary sizes were tested (500, 1000, 2000, 

5000, and 10000). Fusion rule-based combination strategies Comb (MIN, MAX, MED, 

and SUM) were calculated. Experiments of retrieval were carried on WANG, SIVAL, 

and Caltech101 databases. The best performance was at Top 5 retrieved images for 

three databases (56, 60, and 26) % respectively using the Comb SUM combination.  

Since a clustering of local features is a central part of this thesis, the whole of Chapter 3 

is designated to an overview clustering in general and four algorithms are reviewed in 

terms of segmentation for CBIR. 

2.2.3 High-Level Features 

High-level features refer to any form of representation of the semantics of an image. 

The immediate challenges here are the fact that the semantic meaning of the image may 

be subjectively interpreted, and there can be many different representations of the 

semantics. 

Wang (Wang, 2001) categorized the semantic concept of an image into several levels:  

1. Type such as X-ray, landscape, etc. as illustrated in Figure 2.8 (a); 

2. Object composition such as cars parked on a beach and a car parked on road side in 

front of trees, as illustrated in Figure 2.8(b); 

3. Abstract semantics such as happy vs. fighting people as shown in Figure 2.8(c); 
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4. Semantic details through a description such as “a person is leading a dog” as shown 

in Figure 2.8 (d).  

                                                 

                 (a) X-ray and Landscape images                                       (b) A bike and car parked on a beach images 

 

            
                 (c) Happy person Vs. People fighting image                              (d) Man leading a dog images 

Figure 2.8 :  Semantic concept levels. 

The most common forms of feature are keywords, phrases or more extensive text that is 

annotated manually, semi-automatically or automatically. Automatic annotation of 

images is emerging as another branch of CBIR research. Machine learning methods, 

supervised or unsupervised, are also exploited (Datta, et al., 2008). This area is 

currently beyond the scope of this thesis.  

2.3 Similarity Measures 

In a CBIR system, image features represent the image content, whereas a similarity 

measure indicates the degree of closeness or proximity between two images by 

measuring the similarity between their respective features. As explained in subsection 

2.2, a similarity measure is applied to a pair of feature vectors if a single vector is used 

to represent an image or two sets of vectors if a set of feature vectors is used for each 

image. 

Generally, there are two types of proximity measure: similarity and dissimilarity. Most 

of the time, a dissimilarity measure is employed to measure the difference between two 

images. For instance, the Euclidean and City block are two distance functions (or 

metrics). However, not all dissimilarity measures satisfy all metric properties, i.e. non-

negativity, identity of indiscernible, symmetry and triangle inequality. For instance, 
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Kullback-Leibler divergence is a weak dissimilarity measure but may still achieve good 

results for CBIR.  

Let  𝐴 and 𝐵 represent two images, and let 𝑣 as a single or 𝑉 as a set of feature vectors 

with d dimensions describing them. Most known dissimilarity measures used for CBIR 

are summarised as follows. 

a) Dissimilarity measures between two single feature vectors: 

 City block distance (L1) 

𝐷𝐿1
(𝐴, 𝐵) = ∑ |𝑣𝑖

𝐴 − 𝑣𝑖
𝐵|𝑑

𝑖=1                         2.7 

 Canberra distance 

𝐷𝑐(𝐴, 𝐵) = ∑
|𝑣𝑖

𝐴−𝑣𝑖
𝐵|

|𝑣𝑖
𝐴+𝑣𝑖

𝐵|

𝑑
𝑖=1                             2.8 

 Histogram intersection 

𝐷ℎ𝑖𝑠(𝐴, 𝐵) = ∑ min (𝑣𝑖
𝐴, 𝑣𝑖

𝐵)𝑑
𝑖=1              2.9 

 Euclidean distance (L2)  

𝐷𝐿2
(𝐴, 𝐵) = (∑ (𝑣𝑖

𝐴 − 𝑣𝑖
𝐵)

2𝑑
𝑖=1 )

1

2           2.10 

 Chi-Square distance (Chi-Sq)  

𝐷𝐶ℎ𝑖−𝑆𝑞(𝐴, 𝐵) = ∑ (
𝑣𝑖

𝐴−𝑣𝑖
𝐵

𝑣𝑖
𝐴+𝑣𝑖

𝐵)
2

𝑑
𝑖=1              2.11 

 Kullback-Leibler divergence (Myrvoll & Soong, 2003) 

     𝐷𝐾𝐿𝐷(𝐴, 𝐵) =
1

2
𝑡𝑟𝑎𝑐𝑒{(𝛴𝐴

−1 + 𝛴𝐵
−1)(𝜇𝐴 − 𝜇𝐵)(𝜇𝐴 − 𝜇𝐵)𝑇 + 𝛴𝐴 𝛴𝐵

−1 + 𝛴𝐵𝛴𝐴
−1 − 2𝑑}   2.12 

where 𝐴 and 𝐵 are multivariate normal distributions; µ is mean vectors and  is 

a covariance matrix.  

City-block (L1) and Euclidean (L2) distance functions are often used due to simplicity. 

However, L1 is less complex compared to L2 because distances are not squared. While, 

histogram intersection distance that proposed in (Swain & Ballard, 1991) to compute 

the distance between two histograms of d bins has the same properties of L1 (Smeulders, 

et al., 2000). Canberra and Chi-Squared are variants of L2 distance. On the other hand, 

Kullback-Leibler divergence is a similarity measure between two probability density 
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functions. The divergence does not satisfy a triangle inequality and symmetric 

properties. Thus, it is not a metric therefore the above formula (2.12) is closed-form that 

was shown in (Myrvoll & Soong, 2003) and used in our work.  

b) Dissimilarity measure between two sets of feature vectors 

The outcome of clustering local feature vectors is a set of clusters where numbers of a 

cluster are represented by the cluster centroid or the mean vector of the cluster. The 

whole image can then be represented as a set of centroids or mean vectors. Therefore, 

there is a need to find a way of measuring similarity between the cluster centroids of a 

query image and those of a stored image. The distance matrix is mostly created at the 

beginning; each centroid from the query image is compared to every centroid of the 

stored image by using a pair-wise dissimilarity measures depicted in Figure 2.9.  

 

 

 

 

Figure 2.9: The illustration of the dissimilarity between centroids of query and stored images. 

Afterwards, a way of aggregating all the pair-wise dissimilarity measurements into a 

single dissimilarity measurement between the two images must be found. Here, we will 

show some methods proposed in the literature. 

 Integrated Region Matching (IRM) (Li, et al., 2000) 

Given two feature sets  𝑉𝐴 = {〈𝑐𝑖
𝐴, 𝑤𝑖

𝐴〉|𝑖 = 1,… , 𝑛} and 𝑉𝐵 = {〈𝑐𝑗
𝐵, 𝑤𝑗

𝐵〉|𝑗 =

1, … ,𝑚}, and a distance function 𝑓𝑑(𝑐𝑖, 𝑐𝑗), where 𝑐𝑖
𝐴 and 𝑐𝑗

𝐵 are respectively 

centroids of the query and a stored images, and 𝑤𝑖
𝐴 and 𝑤𝑗

𝐵 are corresponding 

weights assigned to them based on areas of regions and will be represented by a 

significant matrix 𝑆. Once the weights are determined, the distance  𝐷𝐼𝑅𝑀 

Integrated Region Matching between two 𝑉𝐴 and 𝑉𝐵 is defined as: 

𝐷𝐼𝑅𝑀(𝑉𝐴, 𝑉𝐵) = ∑ ∑ 𝑆𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝐷𝑓𝑑

(𝑉𝑖
𝐴, 𝑉𝑗

𝐵)          2.13 

where 𝐷𝑓𝑑
∈ 𝑅𝑛×𝑚 is the dissimilarity matrix resulting from applying the  

function 𝑓𝑑 to corresponding centroids, i.e. 𝑑𝑖𝑗 = 𝑓𝑑(𝑐𝑖, 𝑐𝑗). In other words, the 

IRM dissimilarity is the total weighted sum of all pair-wise dissimilarities 
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between the centroids, where weights are determined according to the area of 

regions. For example, if region i of a query image is greater than the region j of a 

database image, then the weight of this distance is significant and is referred to 

by the area of the region in Si,j  significant matrix and the remaining values of 

column j are ignored (i.e. made zeros) because the area of region j is small. The 

procedure is repeated for other regions to fill the significant matrix S. Thus, the 

IRM way is a useful when image segmentation is inaccurate. The meta-

dissimilarity measure allows different variants to be derived, depending on the 

relative weight definitions in the matrix S and the dissimilarity measure adopted 

for measuring pair-wise dissimilarity (Du, et al., 2014). 

   

 Distance for object indexing (Nezamabadi-Pour & Saryazdi, 2005)  

Given two features  𝑉𝐴 = {𝑐𝑖
𝐴|𝑖 = 1,… ,5} and 𝑉𝐵 = {𝑐𝑗

𝐵|𝑗 = 1,… ,5}, and the 

Chi-Square distance function 𝑓𝐶ℎ𝑖−𝑆𝑞(𝑐𝑖, 𝑐𝑗), the distance between 𝑉𝐴 and 𝑉𝐵 is 

defined as: 

𝐷(𝑉𝐴, 𝑉𝐵) = ∑ min (𝐷𝑓𝐶ℎ𝑖−𝑆𝑞

2
𝑖=1 )                              2.14 

where 𝐷𝑓𝐶ℎ𝑖−𝑆𝑞
∈ 𝑅5×5 is the distance matrix resulting from applying the Chi-

Square distance to corresponding centroids, i.e. 𝑑𝑖𝑗 = 𝑓𝐶ℎ𝑖−𝑆𝑞(𝑐𝑖, 𝑐𝑗). This 

function can be considered as a simplified adaptation of the IRM measure. 

Nezamabadi-Pour and Saryazdi regarded five largest clusters only of matched 

images to compute a distance matrix and two smallest values are then summed 

to compute the dissimilarity between these images. However, our study to this 

method indicated that considering five smallest values of the distance matrix 

rows through a proposed AgD measure is more accurate to discriminate between 

two images (see details in Chapter 5).   

 Signature Quadratic Form Distance (SQFD) (Beecks, et al., 2010).  

Quadratic Form Distance is used to compute similarity between two histograms 

with different bins (Smeulders, et al., 2000) that is adapted in (Beecks, et al., 

2010) to be computed between two signatures (i.e. centroid vectors) of images 

as follows. 
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Given two feature sets  𝑉𝐴 = {〈𝑐𝑖
𝐴, 𝑤𝑖

𝐴〉|𝑖 = 1,… , 𝑛} and 𝑉𝐵 = {〈𝑐𝑗
𝐵, 𝑤𝑗

𝐵〉|𝑗 =

1, … ,𝑚}, and a function 𝑑(𝑐𝑖, 𝑐𝑗) → 𝑅 such as Euclidean distance for calculating 

the distance matrix first. Then a similarity function, such as Gaussian 𝑓𝑔(𝑐𝑖, 𝑐𝑗) =

𝑒−𝛼.𝑑(𝑐𝑖,𝑐𝑗) or a heuristic 𝑓ℎ(𝑐𝑖, 𝑐𝑗)
1

𝛼+𝑑(𝑐𝑖,𝑐𝑗)
, is used, to build a similarity matrix. 

The constant 𝛼, according to the authors, mainly depends on the type of 

database, and should be determined in advance. For instance, if signatures of 

query and database images are 2 and 3 centroids respectively, then structure of 

the similarity matrix as in Figure 2.10.  
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Figure 2.10: Structure of the similarity matrix. 

Each centroid has weight therefore the concatenation of two weight vectors as  

(𝑤𝑖
𝑞| − 𝑤𝑗

𝑏) and then Signature Quadratic Form Distance (SQFD) is computed. 

In general, the Signature Quadratic Form Distance  𝐷𝑆𝑄𝐹𝐷 between 𝑉𝐴 and 𝑉𝐵 is 

defined as:  

𝐷𝑆𝑄𝐹𝐷(𝑉𝐴, 𝑉𝐵) = √(𝑤𝐴| − 𝑤𝐵). 𝐷𝑓𝑠 . (𝑤𝐴| − 𝑤𝐵)𝑇    2.15 

where 𝐷𝑓𝑠 ∈ 𝑅(𝑛+𝑚)×(𝑛+𝑚) is the similarity matrix resulting from applying the 

similarity function 𝑓𝑠 to corresponding centroids, i.e. 𝑑𝑖𝑗 = 𝑓𝑠(𝑐𝑖, 𝑐𝑗). In addition, 

𝑤𝐴 = (𝑤1
𝐴, … , 𝑤𝑛

𝐴) and 𝑤𝐵 = (𝑤1
𝐵, … , 𝑤𝑚

𝐵)from weight vectors, and (𝑤𝐴| −

𝑤𝐵) = (𝑤1
𝐴, … , 𝑤𝑛

𝐴, −𝑤1
𝐵, … , −𝑤𝑚

𝐵) refers to concatenating 𝑤𝐴 to −𝑤𝐵. 

2.4 Summary 

Different approaches in CBIR field such as clustering, Region of Interest (ROI), 

Relevance Feedback (RF), Browsing, and Bag-of-Visual-words (BOVW) have been 

developed by researchers in order to reduce a semantic gap between low-level visual 

content features and high-level conceptual features. However, all of the approaches 

have their strengths as well as limitations. In this chapter, we have given not only a brief 
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description of each approach but also highlighted the limitations that still need further 

research to overcome.  

The CBIR literature has reported countless numbers of various features of different 

types, such as colour, texture, colour-texture, or shape, which can represent visual 

content of an image and reflect different types of visual information about the image. 

Many factors, such as a type (i.e. global or local), domain (i.e. frequency or spatial), and 

level (i.e. low, mid, and high), can affect the effectiveness of these features for CBIR. 

Hence, we are interested in conducting a systematic cross-feature and cross-database 

evaluations of the effectiveness on a variety of features of different types (see Chapter 

5). We focus on local features because they are more accurate than the global features. 

Another important point affecting retrieval results of CBIR is similarity measures that 

are closely associated with the extracted features and their types. This chapter presented 

major similarity measures that are currently in use for CBIR. Therefore, it is equally 

within our interest in knowing the effects of different similarity measures for CBIR 

when the effectiveness of the local features is tested (see Chapters 5 and 6). We are 

specifically interested in knowing which similarity measures work well with what types 

of local features in a clustering-based CBIR process. The results of such evaluations 

will determine an optimal way of combining strengths of the features and similarity 

measures. 
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Chapter 3  

Clustering Algorithms 

The previous chapter outlined the existing approaches in CBIR and described various 

existing types of visual content features at different levels (low, mid, and high) and 

different similarity measures that have been deployed and reported in the literature. In 

particular, we mentioned that the image segmentation approach in extracting mid-level 

shape features requires use of clustering methods. As described in the introduction of 

the thesis, the effects of different kinds of clustering algorithms in obtaining the shape 

features are of interest in this research. Therefore, this chapter serves as an overview of 

clustering algorithms. We shall first explain the concept of clustering and highlight the 

factors that affect the performance of clustering methods. We shall then describe and 

explain four main categories of clustering algorithms and present a more detailed 

description of one commonly-used and representative algorithm from each category. 

These explanations will provide a reference point for discussions over performance 

differences of the algorithms in Chapters 5, 6 and 7 later. We shall also review current 

uses of these algorithms for CBIR.  

3.1 Overview of Cluster Detection 

Cluster detection is concerned with grouping data objects of a given data set according 

to their similarities. It is considered as a main branch of data mining and machine 

learning (Du, 2010). The desirable result is a high degree of intra-cluster similarity and 

a high degree of inter-cluster differences. The process of cluster detection, also known 

as clustering, does not relate the groups to the outcomes of a specified class variable, 

and therefore is known as unsupervised learning. 

In general, any clustering solution must consider three principal elements: a similarity 

function capable of measuring the homogeneity between data objects sensibly, an 

effective and efficient algorithm in forming the clusters, and a quality function in 

evaluating the fitness of resulting clusters with respect to close similarity among data 

objects of the same cluster and low similarity among data objects of different clusters. If 
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the similarity function is inappropriate, the measuring result may not reflect the reality 

of the similarity relationship between data objects. This will cause the algorithm to 

group the data objects incorrectly. The clustering algorithm must ensure that similar 

data objects are assigned to the right clusters, and the process must be efficient to scale 

up to very large data sets. The evaluation outcome of the goodness-of-fit function 

determines if another round of clustering is needed. A number of factors may affect the 

results of clustering, some of which may lead to technical challenges to clustering 

algorithms (Witten, et al., 2011). These factors are briefly outlined as follows:  

1) Data Characteristics  

 Data features used. Clustering is performed on a set of data features, which can 

be selected manually or determined automatically according to certain 

measurement of importance and/or relevance. That data features used will 

directly determine the meaningfulness of the resulting clusters.  

 High Dimensionality. Clustering techniques are mostly density-based or 

proximity-based. In terms of density, unless the number of data objects in data 

set increases as the feature dimensionality increases, the density tends to 

approach zero. In terms of proximity, the uniformity increases in high 

dimensional space. A process of reducing the dimensionality is often used to 

tackle this problem.  

 Size. The data set could be of a small, medium, or large size. Clustering 

algorithms should be scalable to deal with data sets of large sizes. 

 Noise and Outliers. Some data objects are noises or outliers which may cause 

the cluster quality to degrade.  

2) Cluster Characteristics 

 Shape. In general, clusters can be of any arbitrary shapes. Figure 3.1(a) 

illustrates example clusters of various shapes. Some clustering algorithms such 

as density-based algorithms are capable of discovering clusters of arbitrary 

shapes whereas other such as prototype-based algorithms can only discover 

clusters of spherical or convex shapes. 

 Different Sizes. The size of clusters can be very different as illustrated in Figure 

3.1(b). Some algorithms such as the K-means method tend to discover clusters 

of similar sizes, causing poor quality results.  
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 Differing Densities. Clusters can be of varied densities as shown in Figure 

3.1(c). Many clustering methods that rely on pair-wise measurement of 

similarity fail to detect the appropriate clusters. 

 Poorly Separated Clusters. Some clustering methods tend to combine different 

clusters that should remain separate when they intersect with each other as 

shown in Figure 3.1(d). 

 

 

 

 

Figure 3.1: Different types of clusters as displayed by sets of two-dimensional points. 

3) Algorithmic Considerations  

 Nondeterministic. Some clustering methods such as the K-means algorithm that 

relies on a random initialization step produce different outcomes for each run. 

 Parameter Selection. For most clustering algorithms, one or more parameters 

are required, but suitable values for the parameters are difficult to select, 

especially when a small change in the parameters dramatically changes the 

clustering outputs. Therefore, users of the algorithm may try many values to find 

the most appropriate ones. Choosing the optimal number of clusters that best fit 

the data object is a parameter selection challenge. 

 Transforming the Clustering Problem to Another Domain. A process of 

mapping the data objects into a different domain is used by some clustering 

algorithms, such as spectral clustering solutions. The transformation reduces the 

degree of difficulty in separating data into groups, easing the clustering process. 

This research is interested in several factors listed above, such as extracted features 

used, high dimensionality, cluster shapes, and the number of clusters that are related to 

data and clusters characteristics. The research will also be interested in the algorithmic 

considerations too. Thus, the combined effects of applying different categories of 

clustering algorithms over different types of local features are investigated by 

considering the number of clusters being fixed and predefined or being adaptive. 

 (a) Regular and arbitrary clusters (b) Different sizes (c) Different densities (d) Poorly separated clusters  
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3.2 Categories of Clustering Algorithms 

There are different ways of categorising clustering algorithms. Broadly, clustering 

algorithms can be hierarchical or non-hierarchical in terms of the clustering results. 

Hierarchical clustering algorithms produce a hierarchy of possible groupings at different 

levels of data granularity. Two hierarchical clustering approaches, i.e. agglomerative 

and divisive, have been developed. The agglomerative approach starts by considering 

each individual object a cluster by itself. The algorithm continuously merges the most 

similar objects or clusters into a bigger cluster until only one cluster remains. In 

contrast, the divisive approach starts from treating the whole data collection as a single 

cluster. The algorithm splits a large cluster into two smaller clusters iteratively until 

each object corresponds to a cluster. A non-hierarchical algorithm is interested in only 

one layer of grouping, i.e. partitioning the data into a number of disjointed groups of 

similar individual objects (Du, 2010; Jain, 2010; Duda, et al., 2001). 

According to the meaning of the clusters produced, clustering algorithms can be 

categorised into prototype-based, model-based, density-based, and graph-based 

solutions, which will be explained in more detail in the next sections. 

3.2.1 A Partition-Based Clustering Algorithm 

The idea of a partition-based clustering method is constructing K partitions of N data 

objects (𝐾 ≤ 𝑁), where each partition represents a cluster. Two requirements must be 

satisfied. First, each group must contain at least one object. Second, each object must 

belong to exactly one group. The basic procedure of this type of algorithms is to first 

create an initial version of the k partitions and then refine the partitions by moving 

objects from one group to another. A simple instance is the K-means method that has 

been widely used over many years (Jain, 2010). 

K-means Algorithm 

The basic K-means algorithm is outlined in Figure 3.2. Initially, K data objects of the 

data set are randomly chosen as the centroids µ1, µ2,…, µK of the K clusters 

respectively. The similarity between each data object and each centroid µk (1 ≤ 𝑘 ≤ 𝐾) 

is then measured, and the object is assigned as a member of the cluster Ck of its most 

similar centroid. All members of each cluster are then used to calculate a mean vector as 

the new centroid. Once the centroids for all clusters are updated, each data object is 
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reassigned to the cluster of its nearest centroid. The process continues until there is no 

change between current and previous mean values. It is also normal to use a value of the 

maximum number of iterations as an additional terminating step, to avoid infinite loop 

case.  

 

 

 

 

 

 

 

Figure 3.2: Basic K-means algorithm. 

The sum of square errors (SSE) is mostly used to measure quality of clusters. For K 

clusters C1, C2, …, CK with their centroid mean vectors 1, 2, …, K, the SSE of the K 

clusters is expressed as: 

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑛 − 𝜇𝑘‖
2

𝑥𝑛∈𝑐𝑘

𝐾
𝑘=1           3.1 

Figure 3.3 shows the relation between the sum of square errors and the number of 

clusters (K). The (SSE) value decreases as the K value increases. When K approaches N, 

i.e. the size of the data set, SSE approaches zero.  

 

Figure 3.3: Cluster quality. 

Strengths and Weaknesses 

The K-means algorithm is simple and efficient. The algorithm works well with convex 

spherical clusters. However, the algorithm has some well-known limitations involving 

non-deterministic results caused by the initial random selection of centroids, sensitivity 

to outliers, and poor quality clusters where clusters of extremely different sizes and 

shapes exist. In addition, the number K of clusters needs to be determined and this 
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Step1: Choose a value K; 

Step2: Initial cluster centres (centroids) randomly (i.e. µ1, µ2,…, µK); 

Step3: For each of remaining data object, use a similarity measure to find the nearest centroid and 

assign the data object to that cluster; 

Step4: Use the data in each cluster to calculate the new centroids (i.e. µ’1, µ’2,…, µ’K). 

Step5: If the new mean values are identical to the mean values of previous iteration the process 

terminates. Otherwise, use the new means as cluster centres and repeat steps 3-5. 

 



Chapter 3: Clustering Algorithms 

______________________________________________________________________ 

43 
 

requires some prior domain knowledge that is often not available (Tan, et al., 2006; Du, 

2010). 

Approaches in (Wang, et al., 2001; Nezamabadi-Pour & Saryazdi, 2005; Lokoč, et al., 

2012) used the K-means method to segment the image feature space and then derive an 

image signature vector using the cluster centroids to index the image content in a 

database. The SIMPLcity system (Wang, et al., 2001) adopted the K-means method for 

clustering local average colour of 4 x 4 image blocks in CIE L*u*v* colour space (i.e. F1, 

F2, and F3) and three second order moments of wavelet coefficients in HL, LH, and HH 

high frequency sub-bands of L* channel as texture features (i.e. F4, F5, and F6). In 

addition, shape feature was calculated using Normalized Intertia mentioned in the 

previous chapter (i.e. F7, F8, and F9). The experiments were conducted on 200,000 

images of the COREL database.  

The K-means algorithm was also adopted by Lokoč et al. to cluster feature vectors of 

images in CIE L*a*b* colour space. Each vector consists of colour (L*, a*, b*), location 

(x, y), contrast X, and entropy 𝜀 information (L, a, b, x, y, X, 𝜀) which is 7-dimensional. 

Hence, the images were indexed in the database by centroids 𝐶𝑖 with weights 𝑤𝑖 =

|𝐶𝑖|

∑ |𝐶𝑖|𝑖
.  This approach will be explained in detail in Chapter 7 because is related to a 

fusion scheme. Meanwhile, the approach of Nezamabadi-Pour and Saryazdi will be 

clarified in Chapter 5.  

3.2.2 A Model-Based Clustering Algorithm 

Model-based methods assume that data objects in a data set are drawn from a statistical 

model. Normally the model takes the form of a mixture of probability distributions, 

such as a mixture of Gaussians known as Gaussian Mixture Model (GMM). The process 

of clustering is to discover such a model that best fits the data objects. 

EM/GMM Algorithm 

Gaussian Mixture Model is a way of expressing K clusters of a data set. Each cluster is 

treated as a multivariate Gaussian distribution with mean vectors µ and covariance 

matrices R as parameters. Each distribution is a component of the mixture model and k 

is known as the order of the mixture model. Given a data set X = {x1, x2… xN} of d 

dimensions, the GMM is represented as Θ = { θ1, θ2, … , θK } where θ𝑘 = (µk, Rk) (1k 
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K). If p(xn|k) represents the probability that data object xn is drawn from the kth 

distribution k, and ak represents the probability that the kth distribution is chosen, then: 

  𝑝(𝑥|𝛩) = ∑ 𝑎𝑘
𝐾
𝑘=1 𝑝(𝑥𝑛|𝜃𝑘), ∑ 𝑎𝑘

𝐾
𝑘=1 = 1                     

For GMM, p(xk|k) is often taken as the probability density function for Gaussian 

distribution: 

𝑝(𝑥𝑛|𝜃𝑘) =
1

(2𝜋)𝑑/2
|𝑅𝑘|

−1/2 exp {−
1

2
(𝑥𝑛 − 𝜇𝑘)

𝑡𝑅𝑘
−1(𝑥𝑛 − 𝜇𝑘)}  3.2 

Assuming that each data object is drawn independently, the probability of obtaining the 

whole data set is therefore 

𝑝(𝑋|𝛩) = ∏ ∑ 𝑎𝑘𝑝(𝑥𝑛|𝜃𝑘)
𝐾
𝑘=1

𝑁
𝑛=1            3.3 

The logarithm of the function above is known as the log likelihood function. The 

objective of GMM clustering is to estimate the parameters in  with respect to X such 

that the function value is maximized, indicating that the data set is the most likely result 

modelled by the GMM.  

The Expectation-Maximization (EM/GMM) algorithm is used to find the most fit GMM 

for a data set (Du, 2010). The basic steps of the algorithm are indicated in Figure 3.4. 

 

 

 

 

 

 

 

 

Figure 3.4: Basic EM/GMM algorithm. 

Strengths and Weaknesses 

The EM algorithm can produce mixture models that can use distributions of various 

types. For instance, mixture models based on Gaussian distributions can explore clusters 

of different sizes and elliptical shapes, without the problem with initialisation as for the 

Step1: Initialization: Estimate parameters for K distributions randomly. 

 

Step2: Expectation: Calculate the probability that each data object belongs to each of the distribution 

based on the estimated parameters which can be obtained from Bayes rule. 

 

𝑝(𝑋 ∈ 𝐶𝑘) = 𝑝(𝐶𝑘|𝑋) =
𝑝(𝐶𝑘)𝑝(𝑋|𝐶𝑘)

𝑝(𝑋)
= 𝑝(𝐶𝑘|𝑋, 𝛩𝑡) =  

𝑎𝑘𝑝(𝑋|𝜃𝑘)

𝑝(𝑋|𝛩𝑡)
  

where t=iteration number, and  𝑝(𝑋|𝛩𝑡) =  ∑ 𝑎𝑘𝑝(𝑋|𝜃𝑘
𝐾
𝑘=1 ) 

 

Step3: Maximization: Use the probabilities computed from Step 2 to find the new estimates for the 

parameters of the distributions. The new estimates must maximize the likelihood of the 

distributions fitting the data objects. The process terminates if the new estimates do not 

change or the difference between the current estimates and the previous estimates is below a 

given threshold. 

 

𝜇𝑘
𝑛𝑒𝑤 =

∑ 𝑝(𝑥𝑛𝜖𝐶𝑘)𝑥𝑛
𝑁
𝑛=1

∑ 𝑝(𝑥𝑛
𝑁
𝑛=1 𝜖𝐶𝑘)

 ,  𝜎𝑘
𝑛𝑒𝑤 = 

∑ 𝑝(𝑥𝑛𝜖𝐶𝑘)(𝑥𝑛−𝜇𝑘)(𝑥𝑛−𝜇𝑘)𝑇𝑁
𝑛=1

∑ 𝑝(𝑥𝑛
𝑁
𝑛=1 ∈𝐶𝑘)

,  𝑎𝑛
𝑛𝑒𝑤 = 

1

𝑁
∑ 𝑝(𝑥𝑛 ∈ 𝐶𝑘

𝑁
𝑛=1 ) 
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K-means method. However, generating large numbers of clusters makes the algorithm 

slow and a few data objects in the clusters affect negatively the work of this algorithm. 

The number of clusters K is required to be specified in advance. Noise and outliers may 

represent difficulties for mixture models (Tan, et al., 2006).  

In (Carson, et al., 1999), Blobworld system used the EM algorithm that adapts the 

Minimum Description Length principle (MDL), (see Chapter 6), to segment an image in 

L* a* b* colour space, where each image pixel was described by 8D feature vector (3 

colour features , 3 texture features (contrast, anisotropy, and polarity), and 2 coordinates 

of pixel (x, y)). Once regions were determined, each region will be stored by using its 

colour histogram and mean texture contrast and anisotropy as (contrast, anisotropy x 

contrast) in a database. As clarified in Chapter 1, a user queries the Blobworld system 

by determining the region/blob. Therefore, matching between bi and bj blobs was made 

by using a quadratic distance of their colour histograms and Euclidean distance of their 

texture feature (contrast, anisotropy x contrast). A score of similarity measure between 

bi and bj blobs was then calculated by 𝜇𝑖𝑗 = 𝑒𝑑𝑖𝑗 , where 𝑑𝑖𝑗 is obtained from above 

colour and texture distances. If 𝜇 score of all blobs was 1 means all of them were 

identical in all relevant features. Then images were ranked according to their highest 

scores.   

One approach in (Sujaritha & Annadurai, 2010) to segment an image in CIE L*u*v* 

colour space was by feeding colour and texture feature vectors to the EM/GMM 

algorithm with regarding spatial information. Each feature vector contains 2-chromatic 

from u* and v* channels and 10 texture values of 3-level wavelet transform 

decompositions from L* channel.  

The aim in (Luszczkiewicz-Piatek & Smolka, 2011) was to show that the loss of colour 

information by lossy coding in image compression affects on the accuracy of image 

retrieval. A GMM model was used to tackle this challenge because of its ability to 

approximate the distorted colour histogram of a compressed colour image. Hence, R-G 

colour histograms feature was modelled by GMM using the EM algorithm for the 

original and compressed images. The GMM parameters were saved with images in the 

database as meta-data for later image retrieval. The City block and Bhattacharyya 

distances were employed to compute the similarity between the query image and 

database images. Experiments showed that the estimation of GMM using 7 clusters with 
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75 iterations was sufficient to reconstruct the original colour histogram with no prior 

information about its construction.  

3.2.3 A Graph-Based Clustering Algorithm 

A graph-based clustering method treats a data set as a weighted graph where vertices 

represent the data objects and edges connecting the vertices represent pair-wise 

similarity. Chameleon (Karypis, et al., 1999) and spectral clustering algorithms are 

instances of this category. Recently, spectral clustering algorithms have been 

successfully deployed in many areas such as computer vision including image 

segmentation, object recognition, and image retrieval, and hence our strong interest in 

the image retrieval performance of this specific algorithm. 

A spectrum of graph G= (X, E) is calculated as eigenvalues of its adjacency/affinity 

matrix, where corresponding eigenvectors are used in the clustering process. For 

instance, the eigenvector corresponding to a second smallest eigenvalue is chosen in 

Normalize cut (Ncut) spectral algorithm (Shi & Malik, 2000) to segment a greyscale 

image based on the intensity value of the pixels and their spatial locations. In (Ng, et al., 

2001), the first K eigenvectors corresponding to the largest magnitude eigenvalues are 

selected in Normalized Laplacian Spectral algorithm for segmentation purpose. A 

review in spectral clustering (Weiss, 1999) is recommended. 

The aim of building a similarity graph (i.e. affinity matrix) is to model the local 

neighbourhood relationships between the data points. Several popular approaches have 

been applied, such as 𝜀-neighbourhood, k-nearest neighbour, and the fully connected 

graphs. 

 In the 𝜀-neighbourhood approach, all points whose pair-wise distances are smaller 

than a threshold 𝜀, are connected.  

 In the k-nearest neighbour approach, vertex xi is connected to vertex xj if xj is among 

the k-nearest neighbours of xi. In the fully connected graphs approach, all points 

with positive similarity with each other as weights of edges are connected. 

 In the fully connected graphs approach, a similarity function such as Gaussian 

distance 𝑆(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ) should model a local neighbourhood where 𝜎 

controls the width of the neighbourhood.  
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Normalized Laplacian Spectral Clustering 

Figure 3.5 presents the steps of a basic Normalized Laplacian Spectral algorithm (Ng, et 

al., 2001) where the affinity matrix 𝐴 is calculated based on the Gaussian distance. 

Then a normalized Laplacian 𝐿 matrix is constructed based on 𝐴 and a degree diagonal 

matrix 𝐷. The spectrum of the matrix is determined. Figure 3.6 shows an example of the 

spectrum according to the number of eigenvectors (K). The first K eigenvectors are 

accordingly selected to be ready for clustering by the K-means algorithm. Finally, the 

original point is assigned to cluster k if and only if, the corresponding row i of the 

matrix assigned to cluster k. 

  

 

 

 

 

 

 

Figure 3.5: Basic Normalized Laplacian spectral algorithm. 

 

 

Figure 3.6: Egeinvalues against number of clusters. 
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Step 1: Suppose a set points X={x1, x2,…, xn} in 𝑅𝑙  then create the affinity matrix 

      𝐴 ∈ 𝑅𝑛×𝑛 by 𝐴𝑖𝑗 = 𝑒𝑥𝑝 (
−𝐷𝐿2(𝑠𝑖,𝑠𝑗)

2𝜎2 ) for 𝑖 ≠ 𝑗 and 𝐴𝑖𝑖 = 0 

Step 2: Calculate 𝐷 to be a diagonal matrix where 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1  and construct the matrix  

            𝐿 = 𝐷−1/2𝐴𝐷−1/2 . 

Step 3: Find k eigenvectors such that 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑘] ∈ 𝑅𝑛×𝑘 with largest magnitude 

            eigenvalues of the matrix  𝐿. 

Step 4: Construct matrix 𝑌 by normalise each of 𝑉’s rows to have unit length.  

                                                    𝑌𝑖𝑗 = 𝑉𝑖𝑗/(∑ 𝑉𝑖𝑗
2

𝑗 )
1

2⁄  

Step 5: Regard each row of 𝑌 as a point in 𝑅𝑘 and cluster using K-means. 

Step 6: Assign the original point xi to cluster k if and only if the corresponding row i of the matrix 𝑌 was 

assigned to cluster k. 
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Strengths and Weaknesses 

The spectral clustering algorithms are simple, efficient, and have the ability to explore 

difficult clusters such as a circle. However, determination of 𝜎, 𝜀-neighbourhood, or k -

nearest neighbour parameters values is not trivial. 

In (Chen, et al., 2005), images were indexed by using the same features as in (Li, et al., 

2000; Wang, et al., 2001) that were mentioned in the previous chapter. Ncut spectral 

clustering algorithm was applied at the last stage of a proposed CBIR system (CLUE). 

In other words, represented images by features were clustered into groups by the Ncut 

algorithm. Thus, each representative image of the group was matched to the query 

image and the images list was then retrieved based on similarity measures. This system 

also provided the facility of relevance feedback to refine the result. Results of 

experiments using WANG database showed that a classification rate was 77% and mean 

average precision was 54% for Top 100 retrieved images.  

In (Tung et al., 2010), the spectral algorithm used the first K eigenvectors which 

correspond to the largest K eigenvalues. The method was implemented on non-

overlapping 32x32 blocks of image to generate over-segmentation. Then a stochastic 

ensemble consensus method was employed at the merging stage. 

3.2.4 A Density-Based Clustering Algorithm 

The density-based methods use the density of data points to determine and discover 

clusters. This means that clusters are regarded as dense regions of objects in the data 

space which are isolated from regions of low density (i.e. representing noise). Then the 

clustering method seeks to find dense regions where similar data objects are 

concentrated. Typical density-based clustering algorithms include DBSCAN and Mean 

Shift algorithms. 

Mean Shift Clustering  

The algorithm considers clusters in the d-dimensional feature space as dense regions of 

underlying distributions. For each data point, a gradient ascent procedure on the local 

estimated density is followed by applying an estimated probability density function until 

convergence. The stationary points of this procedure represent the local maxima or 

modes of the distribution. The data points that eventually ascend to the same stationary 
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point are considered as members of the same cluster. The main procedure of algorithm 

is shown in Figure 3.7. 

 

 

 

 

 

 

Figure 3.7: Mean Shift algorithm. 

Given N data points xi, i=1… n on d-dimensional space Rd, the multivariate density 

estimate obtained with kernel K(x) and a matrix H (symmetric positive d x d bandwidth) 

that increases the complexity of estimation, therefore the only one h>0 bandwidth 

parameter is provided. Hence, the kernel density estimator can be defined as: 

𝑓(𝑥) =
1

𝑛ℎ𝑑
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1                3.4 

The multivariate kernel can be generated from rotating univariate kernel in Rd i.e. 

radically symmetric and can be satisfied by: 

𝐾(𝑥) = 𝑐𝑘,𝑑𝑘(‖𝑥‖2)                          3.5 

where ck,d is a normalization constant which assures K(x) integrated to 1.  

The density estimator in formula (3.5) can be rewritten as: 

𝑓ℎ,𝐾(𝑥) =
𝑐𝑘,𝑑

𝑛ℎ𝑑
∑ 𝑘 (‖

𝑥−𝑥𝑖

ℎ
‖

2

)𝑛
𝑖=1    3.6 

The modes of the density function are located at the zero of the gradient 

function∇𝑓(𝑥) = 0. 

The gradient of the density estimator is: 

∇𝑓ℎ,𝐾
(𝑥) =

2𝐶𝑘,𝑑

𝑛ℎ𝑑+2
∑ (𝑥 − 𝑥𝑖)

𝑛
𝑖=1 𝑘′(‖

𝑥−𝑥𝑛

ℎ
‖

2
)  3.7 

Introducing the function 𝑔(𝑥) into formula (3.7) yields,  

∇𝑓ℎ,𝐾
(𝑥) =

2𝑐𝑘,𝑑

𝑛ℎ𝑑+2
∑(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

𝑔(‖
𝑥 − 𝑥𝑖

ℎ
‖

2

) 

                                        =
𝟐𝑪𝒌,𝒅

𝒏𝒉𝒅+𝟐 [∑ 𝒈(‖
𝒙−𝒙𝒊

𝒉
‖

𝟐
)𝒏

𝒊=𝟏 ] [
∑ 𝒙𝒊𝒈(‖

𝒙−𝒙𝒊
𝒉

‖
𝟐
)𝒏

𝒊=𝟏

∑ 𝒈(‖
𝒙−𝒙𝒊

𝒉
‖

𝟐
)𝒏

𝒊=𝟏

− 𝒙]            

Step1: Choose kernel and bandwidth 

Step2:  Repeat for each point: 

a) Centre the window at that point; 

b) Calculate the mean of the data with the window radius; 

c) Centre the window at the new mean location; 

d) Repeat the steps b and c until convergence. 

 

Step3: Assign points that lead to nearby modes to the same cluster. 
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The first term is proportional to the density estimate at x computed with kernel 𝐺(𝑥) =

𝑐𝑔,𝑑𝑔(‖𝑥‖2) and the second term is the mean shift: 

𝑚ℎ,𝐺(𝑥) =
∑ 𝑥𝑖𝑔(‖

𝑥 − 𝑥𝑖
ℎ

‖
2
)𝑛

𝑖=1

∑ 𝑔(‖
𝑥 − 𝑥𝑖

ℎ
‖

2
)𝑛

𝑖=1

− 𝑥 

The mean shift vector always points towards the direction of the maximum increase in 

the density. The mean shift procedure, obtained by successive: 

 Computation of the mean shift vector 𝑚ℎ,𝐺(𝑥), 

 Translation of the window 𝐺(𝑥) by 𝑚ℎ,𝐺(𝑥) . 

is guaranteed to converge to a point where the gradient of density function is zero. 

Strengths and Weaknesses 

The Mean Shift algorithm can explore clusters with arbitrary shapes and the number of 

K clusters does not need to be predefined. However, the determination of h value (i.e. 

bandwidth) is significant and an inappropriate value may lead to merge clusters. 

Moreover, the density-based algorithms have a limitation in handling high-dimensional 

data where the very concept of density becomes unclear when data objects are further 

spread (Comaniciu & Meer, 2002; Jain, 2010). One solution to tackle such an issue is 

reducing the dimensions. 

In (Tao et al., 2007), a Mean Shift algorithm was used to segment a colour image in 

CIE L*u*v* colour space into regions as a first stage of image segmentation. An 

average colour was calculated for each region in each channel to construct 3-

dimensional colour feature vector. Then an Ncut spectral algorithm applied on these 

vectors of regions as a final stage of segmentation. The aim of the first stage is to reduce 

the complexity front the spectral algorithm and sensitivity to the noise.   

The method in (Bouker & Hervet, 2011) modelled the colour of an image as a set of 2-

dimensional GMM based on weighted colour histograms. Then GMMs were taken as 

input to the Mean Shift algorithm. The Bhattacharyya distance was used to measure the 

similarity of GMMs between a pair of images. The method was tested on the WANG 

database with the average accuracy of 49% for image classification,  

Recently, in (Quast & Kaup, 2013), the Mean Shift and EM algorithms have been 

adapted to track the contour of objects with changing shape. The Mean Shift algorithm 

was used to segment an image in RGB colour space at the first stage. Then two GMMs 
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were learned by the EM algorithm. The first GMM was a colour histogram of the 

background and the second was the colour histogram of the object.  

3.3 Summary 

Four categories of clustering algorithms, K-means from partition-based, EM/GMM 

from model-based, Normalized Laplacian Spectral from graph-based, and Mean Shift 

from density-based were explained. It is clear that different categories of clustering 

algorithms work in different ways, which lead to their own strengths as well as 

weaknesses. We are interested in how the strengths and the weaknesses of the different 

algorithms affect the result of image retrieval. Based on the understanding, we will 

investigate how to combine the strengths of the different clustering algorithms together 

to improve the accuracy of retrieval results. 
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Chapter 4  

Framework of Research 

In Chapter 2, we reviewed different CBIR approaches in terms of extracted features and 

similarity measures used. Due to the promises of local features (i.e. set of local feature 

vectors) and the important use of clustering methods in summarising local features, we 

also broadly reviewed the main categories of clustering methods in Chapter 3. As 

described at the beginning of the thesis, the overall aim of this research is to develop 

effective CBIR solutions based on localised colour, texture and shape features.  

This chapter is therefore intended to outline the framework of the research and 

designate the remaining chapters for the different aspects of the work. The structure of 

this chapter is therefore presented as follows. Section 4.1 outlines the evaluation work 

to be undertaken on different types of local image features and similarity/dissimilarity 

measures. Section 4.2 describes the investigation work that needs to be undertaken to 

evaluate the effects of clustering algorithms of different categories. Section 4.3 outlines 

the tasks to be performed in the development phase of the research. Section 4.4 presents 

a general experimental protocol for all the performance evaluations and specifies the 

performance measures used in the study. For the purpose of evaluation, this research has 

used three benchmark databases that are publicly available for evaluating CBIR 

systems. Section 4.5 therefore presents a general description of these databases. Section 

4.6 gives a summary. 

4.1 Effects of Image Features for CBIR 

A colour image is rich in visual content, and so feature extraction is an important step in 

CBIR that converts colour pixel values in the colour spatial domain into 

multidimensional feature vectors in a vector space as described in the first two chapters. 

Features can be extracted to represent colour, texture, colour and texture together, or 

shape. The robustness of the features depends on how precisely they can reflect the 

visual information conveyed in the image. Since local features have proved their ability 

to discriminate occlusion and cluttered objects in the scene more than global features, 
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we intend to investigate local rather than global features.  

Different types of local features were investigated in the YCbCr colour space where 

luminance was isolated in the Y channel and used to extract texture features while 

chromatics in the blue Cb and red Cr channels were used to extract colour features. 

First, the Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and 

Local Binary Patterns (LBP) were applied respectively on 8 x 8 pixel blocks and then 

different local features were extracted. The reason of choosing this block size is of two 

folds. First, small block size enables capturing colour and texture variations in local 

areas, the smaller the block size is, the more localised the colour and texture features 

will be. Second, smaller block sizes will yield too many local feature vectors where 

many of them represent similar local colour and texture information. In other words, we 

are not capturing additional local information but increasing the computational cost. In 

fact, the block size may be determined by the image content. When the image contains a 

large dominating object in the image foreground against a clear image background, a 

bigger block size may be justified, but when the image contains cluttered small objects 

against a complex background, smaller block size may be more for capturing the local 

variations. This argument needs to be supported by experimental work in the future. The 

following statements justify the reasons why these local features are of our interest: 

a)  Local DCT colour and texture feature vector (Nezamabadi-Pour & Saryazdi, 2005). 

This local feature vector was taken from the DCT transformed image to capture colour 

and texture types of visual content. The AC coefficients that were taken from the Y 

channel, while the DC coefficients were taken from the Y, Cb and Cr channels in the 

way as explained in Chapter 5. And yet, the entire local feature vector has only 12 

dimensions with the first 3 components capturing colour information and the rest 

texture information of the block. All these properties indicate the robustness of this type 

of feature, and hence our strong interest in evaluating its performance in CBIR. To 

make our investigation more thorough, we also separated the colour and the texture 

elements of this DCT-CT feature to see if integrating them into a single feature creates 

any positive or negative effects. 

b)  Local DCT zigzag colour and texture feature vector (Westerveld, et al., 2003). This 

feature exploits the first 10 DCT coefficients in a zigzag order from the luminance Y 

channel, as illustrated in Figure 2.4(b) to capture texture information based on the fact 
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that remaining coefficient values in high frequency are small or zeroes, while two DC 

coefficients were taken from the Cb and Cr channels to capture colour information. The 

zigzag is a traditional order of DCT coefficients in JPEG compression that helps to 

facilitate entropy encoding by locating low-frequency before high-frequency (Abd-

Elhafiez & Gharibi, 2012) and a pattern that represents the frequency increment of a 8 x 

8 DCT block (Lay, et al., 1999). Therefore, this feature is of our interest to be 

investigated further and compared to the DCT colour and texture feature mentioned in 

step (a). 

c)  Local DWT colour and texture feature vector. We have extracted this feature vector 

of 12 dimensions from the 3-level Discrete Wavelet Transform transformation (instead 

of DCT) following a similar strategy like that for the DCT-CT feature extraction. We 

are interested in seeing the effects of different transformations especially in different 

sub-bands for localised variations in different directions for discriminating colour and 

texture. More details of the feature extraction process will be given in Chapter 5.  

d)  Local binary patterns (uniform and rotation invariant uniform histogram features 

(Ojala, et al., 2002)). LBP based features have been used widely in pattern recognition 

and performed well. Our interest in this type of features is its suitability for CBIR. As 

introduced in Chapter 2, LBP features that are directly extracted from the image spatial 

domain and mainly represent the localised texture information in the image, where the 

relationships between a pixel and its neighbourhood pixels are regarded as generating a 

binary code of patterns, where different radii and neighbourhood can be used. Resulted 

texture image will be then used to compute a histogram as texture feature (Chapter 2). 

Unlike GLCM matrices, where the GLCM is computed in (0°, 45°, 90°, and 135°) 

directions to produce four matrices and texture features are then extracted. Another 

method is using Gabor filter with different scales and orientations and texture feature is 

then calculated. Both methods have room to investigate in the future work. Here, the 

LBP uniform we are investigating does not require specific angles to be defined. 

Focusing on LBP uniform and rotation invariant uniform allow us to limit the 

dimensionality of the feature vector to 59 and 10 respectively instead of 256. 

Due to the amount of work, we shall designate the entire Chapter 5 for the systematic 

evaluation of the above mentioned types of features and different ways of measuring 

similarity or dissimilarity between two images based on clustering these features. In 
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addition, the structure of these features will also be defined in details. We intend to 

address the first set of questions (Sec. 1.3) in that chapter.  

4.2 Effects of Clustering Algorithms in CBIR 

As we explained in Chapter 2, our interest in clustering methods is their effects in 

summarising or grouping local feature vectors (i.e. segmenting the image) in order to 

find centroids or representatives of local features. These centroids or representatives 

later form the image signature to be compared to that of another image. While the main 

challenge for local feature extraction is how to find right local features that can 

discriminate important key points in the image, the main challenge for finding the right 

clustering method is to solve the possible under- or over-fitting problem where the 

resulting centroids should stress a right balance.  

Most solutions used the simplest clustering method, the K-means method of the 

partition-based category. However, as we demonstrated in the previous chapter, a large 

number of different clustering methods have been developed for different purposes and 

applications in pattern recognition and computer vision. Besides the partition-based 

category of clustering methods, there are also model-based, graph-based, and density-

based methods that respectively follow different schools of thought on clustering from 

concepts to procedures. We raise the concern over the choice of clustering methods in 

segmenting or grouping local feature vectors. Therefore, one main purpose of this 

research is to study the behaviour of different algorithms with different types of local 

features to represent visual image content. This thesis designates the entire Chapter 6 for 

that purpose. In that chapter, we intend to answer the second set of questions in Sec. 1.3.  

The algorithms to be evaluated include those surveyed in Chapter 3, i.e. the basic K-

means method of the partition-based category, the EM/GMM algorithm of the model-

based category, the Spectral Clustering method of the graph-based category and the 

Mean Shift algorithm of the density-based category. The main reason for the selection 

of these algorithms is because they are representative in their category. We deliberately 

keep the algorithms in their original form, rather than a specific customised version. 

While we are studying the effect of clustering algorithms, we must address one main 

issue in clustering, i.e. how many clusters we should have because many of the 

clustering algorithms require the number to be set as a parameter before clustering is 
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performed. Our initial thought is that the best number of clusters should be adaptively 

determined by the image visual content. For instance, images with more local colour 

and texture variations may require more clusters to capture those variations whereas 

simple images with less local colour and texture variations should require fewer 

clusters. To evaluate this, we developed adaptive versions for the K-means and Spectral 

Clustering algorithms and used the existed version for EM/GMM (i.e. CLUST), while 

the Mean Shift is already adaptive in nature. Chapter 6 will also report on our 

evaluation on this very issue. 

4.3 Scheme of Fusion 

The final target of this study is to develop a fusion scheme for CBIR to increase the 

accuracy of image retrieval. A score-level fusion method has been used recently in 

biometrics and multimedia, where different evidence/scores from different sources are 

combined to increase the accuracy. The idea is to integrate the information from 

different sources. Hence, we regarded different clustering algorithms and different types 

of local features as sources and proposed an evidence-based multi-level fusion scheme 

to increase the accuracy of image retrieval. In addition, two new features based on data-

level fusion are also proposed to combine the expressiveness of features from both the 

frequency and the spatial domains. The aim is to further narrow the semantic gap by 

increasing the number of relevant images in the retrieved list. This is intended to answer 

the third sets of questions in Sec. 1.3. We designate Chapter 7 for the detailed 

development of the fusion scheme and ideas. 

4.4 Evaluation in CBIR 

The effectiveness of a CBIR solution can be evaluated through two types of tests: image 

classification and image retrieval. Image classification tests examine the solution’s 

effectiveness in classifying a query image into one of the predefined class labels 

associated with each image in the database. Image retrieval tests examine the solution’s 

effectiveness in retrieving top T images similar to the query image. Classification 

accuracy, also known as Recall Rate, is normally used for measuring the result for 

image classification, whereas Retrieval accuracy, also known as Precision Rate, is often 

used for measuring the result of image retrieval.  



Chapter 4: Framework of Research 

______________________________________________________________________ 

57 
 

Our general framework for such tests consists of five stages: image pre-processing, 

features extraction and/or data-level fusion, feature clustering, and similarity 

measurement, as shown in Figure 4.1. This framework is a generalization of the existing 

procedure in (Nezamabadi-Pour & Saryazdi, 2005).  

 Pre-processing stage. Images were converted from RGB into YCbCr colour 

spaces to extract texture features in the Y channel and colour features in the Cb 

and Cr channels. 

 Features extraction stage. Images were divided into 8 x 8 blocks and then 

Discrete Cosine Transform, Discrete Wavelet Transform, or Local Binary 

Patterns were applied first and a local feature vector was then extracted from the 

transformation coefficients. 

 Data-Level Fusion stage. This stage is included when two or more extracted 

features are combined into a single feature (see Chapter 7). 

 Clustering stage. A clustering algorithm is applied to the extracted local feature 

vectors to obtain centroids (mean vectors) of the clusters of the local feature 

vectors. Two versions of each algorithm, i.e. the version where the number of 

clusters is fixed and the version where the number of clusters is determined 

adaptively, are both attempted. 

 Similarity measure stage. A chosen similarity/dissimilarity measure is applied 

to two sets of centroids to measure the proximity of two images that the two sets 

of centroids represent. 

 

 

 

 

 

 

 

 

Figure 4.1: Framework of CBIR diagram. 
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4.4.1 Image Classification 

Image classification is performed in two stages. First, a set of training example images 

with known class labels are used to train a classifier such as k-nearest neighbour (k-

NN), Bayesian classifier, and Support Vector Machine (SVM), etc. Once the classifier 

is trained, it is used to predict the class of a query image where the classifier assigns a 

class label to the query image according to its trained knowledge about the class. The 

performance of the classifier can be judged by classifying a test image of known class: 

if the predicted class is the same as the known class, then the classification is accurate; 

otherwise it is not. 

In our work, we used a classification as an evaluation technique of effectiveness of 

features and similarity measure. Therefore, we used the k-Nearest Neighbour classifier 

for its algorithm’s simplicity and it employs a distance function to compute the 

dissimilarity between two feature vectors. Hence, we can evaluate our proposed AgD 

dissimilarity measure by using the k-NN classifier. Other classifiers have different 

strategies to make the classification and our research purpose not concentrates on 

studying different types of classifiers and makes a comparison. Therefore, the k-Nearest 

Neighbour classifier is explained in more details as follows. 

K-Nearest Neighbour Classifier (k-NN) 

A k-Nearest Neighbour is the simplest algorithm among all classification algorithms. It 

works as follows. First, the proximity between a given test example and each training 

example is calculated. Then the test example is classified into a known class based on a 

majority vote of its closest k (k > 1) training examples (or nearest neighbours) (Candan 

& Sapino, 2010).  

Cross-validation is a typical way of measuring the accuracy of a learning technique in a 

particular database. In a typical k-fold cross validation, the database is divided into k 

equal size partitions. The evaluation is performed through k iterations. Each iteration, 

one partition is used as testing examples and the rest as training examples. The classifier 

performance is measured with the testing examples. Once all iterations are complete, the 

average of the accuracy rates of the k rounds is taken as the overall accuracy, and the 

classifier is taken as the simplest classifier that does not make significantly more errors 

than other alternatives obtained from the process. Ten fold cross-validation is a de facto 
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standard, and the leave-one-out cross-validation strategy (i.e. each testing partition only 

has one example) is also widely adopted because the maximal number of examples are 

used for training.  

Image classification is widely used by researchers to evaluate the performance of a 

CBIR solution. In (Pakkanen et al., 2003), a leave-one-out cross-validation strategy was 

used with k-NN classifier, where k=5 to evaluate different colour and texture features 

that were selected from the MPEG-7 standard. The same strategy was also employed in 

(Nezamabadi-Pour & Saryazdi, 2005) with k-NN classifier, where k=5 to evaluate an 

object indexing method in the DCT domain using a K-means clustering algorithm (see 

next chapter for more details). In (Nunes, et al., 2010), the leave-one-out cross 

validation with k-NN classifier was used, where k from 1 to 11 was investigated. 

Experiments proved that the best performance was when k=1 as described in Chapter 2. 

4.4.2 Image Retrieval 

Unlike image classification, image retrieval test does not involve using or training a 

classifier. Instead, top T images from the image database that are most similar to a query 

image by using a similarity measure are returned as a ranked list. The success of a CBIR 

solution is judged according to how many images out of the T images in the ranked list 

are of the same class as the query image (see next sub-section for more details).   

4.4.3 Performance Measures for CBIR Solutions 

A confusion matrix is often used in evaluating the performance of a classifier. Table 4.1 

shows a confusion matrix for two classes and it can be extended into m classes (i.e. m x 

m). True Positive (TP), True Negative (TN), False Negative (FN), and False Positive 

(FP) are the terms given to an image classification test. TP and TN refer to the positive 

and negative images respectively that were correctly labelled by the classifier, whereas 

(FN) and (FP) refer to the positive and negative images that were incorrectly labelled as 

negative and positive (Han & Kamber, 2006). These indicators convey more 

information about the classification results than just the overall accuracy, which is (TP 

+ TN) / (TP + FN + FP + TN).      
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Table 4.1: Confusion matrix 

 Predicted class 

 

Actual class 

 C1 C2 

C1 TP FN 

C2 FP TN 

 

Different performance measures are used in the CBIR. Authors in (Müller, et al., 2001) 

clarified that common measures in information retrieval are precision (P) and recall (R) 

and are usually depicted as (PR-graph). Then several measures for CBIR based on P and 

R performance evaluation measures, Rank1, 𝑅𝑎𝑛�̃�, P(20), P(50), P(NR), RP(0.5) and 

R(100) are proposed and will be clarified as follows.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 
     4.1 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑚𝑎𝑔𝑒𝑠  
          4.2 

 Rank1: rank at which first relevant image is retrieved. 

 𝑅𝑎𝑛�̃�: Normalization of average rank of relevant images. 

𝑅𝑎𝑛�̃� =
1

NNR
(∑ Ri −

NR(NR−1)

2

NR
i=1 )              4.3 

where N is a database size, NR the number of relevant images, and Ri is the rank at 

which the ith relevant image is retrieved. 

 P(20), P(50), and P(NR): precision after 20, 50, and NR images are retrieved. 

 RP(0.5) and R(100): recall at precision 0.5 and recall after 100 images are retrieved. 

 Precision vs. recall (PR)-graph. 

For classification experiments, we used the recall measure as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐶) =
𝑁𝑅𝐼𝐶

𝑇𝐶𝐼𝐷
∗ 100       4.4 

where NRIC= number of correctly classified images of class C by k-NN and TCID = total 

number of images of class C in the database. In fact, the recall is the same as TP/ (TP + 

FN) in the confusion matrix. 

For retrieval experiments, we used the precision measure that is mostly adopted in 

CBIR. The precision measure can be defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶) =
𝑁𝑅𝐼𝐶

𝑅𝐶𝐼𝐷
       4.5 
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where NRIC= number of correct images of class C in the list of RCID = total number of 

images returned from the database. 

4.5 Databases in CBIR 

Many databases have been used for testing solutions in CBIR. Examples include Corel, 

WANG, Caltech6, Catech101, Caltech256, VisTex, Outex, TRECVID2003, IRMA, 

ZuBuD, COIL, etc. The main challenge faced by the research community in the CBIR 

field is the absence of a standard collection of images to be able to compare with other 

methods. However, a group led by Professor Wang at Pennsylvania State University 

collected a standard set from the Corel database as the WANG database, which is 

arguably the most widely used database in CBIR experimental studies. Because our aim 

is to develop a solution for CBIR that deals with application domain independent 

general images, we used the WANG collection to compare our solution with other 

works and selected another two sets of databases (Caltech6 and Caltech101) which are 

described in this section. Samples of images from the databases are shown in Appendix 

A. 

4.5.1 Corel 

The Corel database is a large collection of colour images on more than 800 photo CDs 

by the commercial company Corel. Some facts about this database are mentioned in 

(Muller, et al., 2000). Researchers have chosen different sets of images from the 

collection. For instance, 10,000 images were used in developing the BlobWorld system 

while 200,000 images were used in developing the SIMPLIcity system. Therefore, there 

is a difficulty when a new method needs to be compared to other existing methods 

because the images used for testing are different. Due to copyright restrictions, the 

entire collection is not publicly available. 

4.5.2 WANG 

The WANG database comprises 1000 images of sizes 256x384 or 384x256. The images 

are divided into 10 semantic classes/categories (Elephants, Flowers, Buses, Foods, 

Horses, Mountains, African people, Beach, Buildings, and Dinosaurs). Each class 

includes 100 images (Wang, et al., 2001). This carefully selected collection has 

balanced classes and standardised image sizes. However, as shown in Figure 4.2, there 

is a class ambiguity problem with this database. For instance, many images of the 
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“Beach” category not only have sandy beaches and sea, but also include mountains or 

rocks. This means that when a mountain test image is used, the retrieved result list may 

well contain beach images involving mountains. Another characteristic is that the 

database contains both simple images with large dominating objects in the foreground 

and complex images of many colour and texture variations, making this database 

particularly interesting for CBIR. 

                      
                                                                                          (a) Beach 

                        
                                                                                      (b) Mountains 

                        
                                                                                      (c) Dinasours 

Figure 4.2: Samples of WANG images. 

4.5.3 Caltech6 

Caltech 6 includes six classes: Cars (527 images) (360x240), Motorcycles (828 images) 

(variables size), Airplanes (1076 images) (variables size), Faces (452 images) 

(896x592), Leaves (188 images) (896x592), and Background (550 images) (896x592). 

We excluded the Background class of images because they are greyscale images 

different from images of the other categories. To use the database in a similar fashion as 

the WANG database, we randomly selected 100 images as the authors of (Fergus, et al., 

2003) did. Images of some different classes in this database share some objects as well 

as colour and texture as illustrated in Figure 4.3, which makes it difficult to evaluate a 

developed solution. 

                 
                                                                                          (a) Faces 
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                                                                                      (b) Airplanes 

                      
                                                                                      (c) Leaves 

Figure 4.3: Samples of Caltech6 images. 

4.5.4 Caltech101 

Caltech 101 is a large scale database containing 101 categories of images. The number 

of images in each class varies from about 30 to 800 with variable sizes (n x m). For our 

study, we followed the strategy taken in (Fei-Fei, et al., 2004); we selected Bonsai, 

Chandelier, Face-Easy, Ketch, Leopards, and Watch categories and included 100 

randomly specified images for each category, where minimum value of n=150 and 

maximum value of m=300. This database is more challenging, where images in 

different classes share in some common objects and/or colour and texture as shown in 

Figure 4.4. 

       
                                         (a) Bonsai                                                                      (b) Watch 

 

           
(c) Chandelier 

                  
                                         (d) Face-Easy                                                                         (e) Leopards 

Figure 4.4: Samples of Caltech101 images. 
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4.6 Summary  

This chapter presented three essential parts of research inside this thesis. First, the effect 

of different types of local features representing local colour and texture variations need 

to be evaluated. Second, the effects of clustering methods in summarising local features 

in order to define an image signature also need to be evaluated. These evaluations must 

be conducted in a systematic manner using a number of benchmark image databases in 

CBIR. The evaluations aim to answer a number of interesting questions regarding the 

use of local features in a clustering-based approach for CBIR. Based on the results of 

the evaluations, we propose a new multi-level evidence based fusion scheme for CBIR. 

Detailed work on these three parts will be explained in details in Chapters 5, 6, and 7 

respectively. 

This chapter also explained two evaluation methods used widely in CBIR: image 

classification and image retrieval. In addition, the framework that was used for the 

experimental work of this thesis was also described. Commonly used metrics and image 

databases for evaluating CBIR solutions were also introduced. Chapter 5 will start on 

evaluation of local features. 
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Chapter 5  

 

Evaluating Different Local Features for 

Image Classification and Retrieval 

 

This chapter presents the first of two evaluations of the thesis. The chapter begins with 

Section 5.1 examining an existing method for the object-based image indexing scheme 

proposed in (Nezamabadi-Pour & Saryazdi, 2005) that uses Discrete Cosine Transform 

domain image features and a basic K-means clustering algorithm to obtain a feature set 

to represent an image because this method raises many issues that we are interested to 

investigate in our research such as clustering algorithm, number of clusters, and the way 

of computing the dissimilarity between two images. Consequently, a number of 

questions were raised which forms the basis of our first investigation of this thesis. The 

answer of each question is covered by a section in this chapter. Thus, Section 5.2 will 

propose a measure to assess the similarity between two images which aims to address a 

limitation of the existing method in (Nezamabadi-Pour & Saryazdi, 2005). Section 5.3 

will describe a number of different local features that we will evaluate. Sections 5.4 and 

5.5 will then present their evaluation in terms of image classification and retrieval using 

the basic K-means clustering algorithm with different K cluster values and the proposed 

adaptive version of it.  In addition, chi-square and t-test statistics measures will be used 

to assess the significance of differences between different feature and cluster 

combinations. Sections 5.6 present a summary of the chapter and concluding remarks. 

5.1 Study of Existing Method for Image Indexing 

The method proposed in (Nezamabadi-Pour & Saryazdi, 2005) starts by converting an 

image from RGB into YCbCr colour space. Then the image is divided into 8 x 8 blocks, 

and the DCT operation, as shown by formula (2.7), is performed on each block for Y, 

Cb and Cr channels respectively. Each resulting 8 x 8 block of DCT coefficients is 

further divided into B0, B1, …, B9 sub-blocks, as shown in Figure 5.1. A 12-dimensional 

local feature vector, <CY(0,0)/8, CCb(0,0)/8, CCr(0,0)/8, CY(0,1), CY(1,0),CY(1,1), 

std(BY4),  std(BY5), …, std(BY9)> is then extracted from each 8 x 8 block. 



Chapter 5: Evaluating Different Local Features for Image Classification and Retrieval 

______________________________________________________________________ 

66 
 

Once all local feature vectors are extracted from the DCT coefficients for the image, the 

K-means clustering method is used to group the local feature vectors into 10 clusters. 

The centroids of the 5 largest clusters are used as the feature vector to represent the 

whole image in a database (i.e. the feature vector is the index used for the image). At the 

stage of comparing  query and database images, a distance matrix 5 x 5 is built using 

Chi-Square (DChi-Sq) distance function in formula (2.14) and two minimum values of 

this matrix are summed to produce the dissimilarity score between the query and 

database images. Classification results in following tables are obtained from using this 

way of dissimilarity measure and will be under the label (Min2).  

 

 

 

 

Figure 5.1: DCT feature in YCbCr colour space. 

We evaluated the method in (Nezamabadi-Pour & Saryazdi, 2005) using images from 

the WANG dabase following the leave-one-out experiment protocol and then the k-

Nearest Neighbour classifier with k=5 was used to classify an image. Because of the 

non-deterministic nature of the K-means method, the experiment was repeated 10 times 

with different random seeds for the K-means clustering. To make the evaluation fair, the 

K-means clustering results with the highest overall accuracy of classification across the 

six classes were selected as the final results, which are summarised in Table 5.1. The 

first column, “DChi-Sq”, shows the classification accuracy we were able to achieve whilst 

the second column shows the accuracy quoted in (Nezamabadi-Pour & Saryazdi, 

2005)– we could not achieve exactly the same levels of accuracy. A possible reason for 

this difference is that not all image classes used in (Nezamabadi-Pour & Saryazdi, 

2005) were available to us; only 6 classes from the WANG database were used in our 

initial evaluation. Absence of the Lions and Interior design classes made the confusion 

among other classes are different. Other reason could be the result of the random seed 

used by the K-means method to determine the initial centroids but we believe it may not 

have a big effect.  
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Based on our literature survey, which highlighted that there are many different types of 

local image features, clustering techniques and distance measures, we raise the 

following questions on the method proposed by (Nezamabadi-Pour & Saryazdi, 2005). 

1. What is the effect of different distance functions on image classification accuracy?  

2. Why is it that only the smallest two values from the distance matrix are selected to 

calculate the similarity between pairs of images? 

3. Why is the value of the K cluster fixed at five? Images vary in terms the complexity 

and number of distinct objects, colours, and patterns in the scene.  

4. Are there other local features that are more robust than, or that could complement, 

DCT colour-texture features to represent an image? 

5. Could an adaptive version of K-means clustering select the most suitable number of 

clusters to represent the visual image content of an image as opposed to using the 

fixed version which results in the same number of clusters for any image 

irrespective of their content?  

Table 5.1: Repeat of work in (Nezamabadi-Pour & Saryazdi, 2005) with K-means clustering 

Classes  
Min2 

DChi-Sq (Nezamabadi-Pour & Saryazdi, 2005) 

Elephants 85 85 

Flowers 88 96 

Buses 92 94 

Foods 68 89 

Horses 91 93 

Mountains 42 58 

Average 77.6 85.8 

 

Euclidean (DL2) is the most common metric for measuring the distance between two 

points as a length of the shortest path between them in Euclidean space. Meanwhile, the 

City block (DL1) distance can measure the distance as a length of the longest path 

between the two points, and is computationally faster because it does not perform the 

square root operation. It is interesting to investigate the effects of both distance 

functions at this stage, and the investigation result can then be exploited later. So, we 

used DL1 and DL2 distances as alternatives to Chi-Square (DChi-Sq) distance in the above 

experiment to answer the first question. Thus, DL1 and DL2 are used separately to 

calculate the distance matrix between two sets of clusters centroids and the Min2 

measure summed two smallest distance values to measure dissimilarity between two 
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images. The classification results for 6 classes shown in Table 5.2. It is clear that rates 

of image classification using distance DL1 and DL2 were less than those from using DChi-

Sq distance function. However, we will show that DL1 and DL2 can outperform DChi-Sq 

with our proposed dissimilarity measure in the next section.  

We extended the above experiment by including all classes of WANG database images 

and the classification results are shown in Table 5.3. It is apparent that the presence of 

more classes increased the chance of false negative outcomes; a marginal deterioration 

in accuracy can be observed. We presented this study and modifications that are made 

in terms of clustering algorithm and dissimilarity measure in (Al-Jubouri, et al., 2012). 

Table 5.2: Repeat of work in (Nezamabadi-Pour & Saryazdi, 2005) with K-means clustering and different distances 

Classes  
Min2 

DL1 DL2 DChi-Sq (Nezamabadi-Pour & Saryazdi, 2005) 

Elephants 70 71 85 85 

Flowers 91 83 88 96 

Buses 95 91 92 94 

Foods 45 49 68 89 

Horses 79 75 91 93 

Mountains 41 41 42 58 

Average 70 68 77.6 85.8 

 

Table 5.3: Repeat of work in (Nezamabadi-Pour & Saryazdi, 2005)   for whole WANG database 

Classes 
Min2 

DL1 DL2 DChi-Sq 

Elephants 70 71 85 

Flowers 91 83 87 

Buses 95 91 92 

Foods 45 48 68 

Horses 79 75 91 

Mountains 41 41 40 

People 74 72 90 

Beach 58 57 53 

Buildings 35 28 51 

Dinosaurs 86 83 92 

Average 67 65 75 
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To deal with the second question, a dissimilarity measure, AgD, between two images 

will be proposed in the next section. We investigated different K cluster values from 5 

to 60 to investigate the third question.  

5.2 Proposed Similarity Measure 

In Chapter 2, some proposed similarity measures in the literature are explained when 

images are represented by set of cluster centroids.  For instance, IRM similarity measure 

in (Li, et al., 2000) formula (2.13) is the summation of weighted distance, where 

weights are determined according to the area of regions. For example, if region i of a 

query image greater than the region j of a database image, then the weight of this 

distance is significant and is referred to by the area of region in Si,j  significant matrix 

and the remaining values of column j are ignored (i.e. made zeros) because the area of 

region j is small. The procedure is repeated for other regions to full the significant 

matrix S. Another method is stated in the first section (Nezamabadi-Pour & Saryazdi, 

2005), where the five largest clusters are only regarded to compute the distance matrix 

and two minimum values are summed only to represent the dissimilarity between two 

images formula (2.14) because these clusters correspond to main objects of the two 

images. Meanwhile, the method in (Beecks, et al., 2010) used SQFD in formula (2.15) 

that is explained in Subsection 2.2, the constant value 𝛼 should be determined in 

advance according to the type of database. 

In CBIR, we deal with the natural world images that vary in terms the complexity and 

number of distinct objects, texture, and colour. Therefore, we propose a dissimilarity 

measure referred to as Aggregate Distance (AgD). First, a distance function is computed 

between the query image clusters’ centroids and the database image’s centroids by using 

for instance DL1 to build the distance matrix. Then the AgD measure sums up the 

smallest distance from each row of the distance matrix to represent the overall 

dissimilarity between two images. We have not assigned any weight to each smallest 

distance (such as the proportional sizes of the pair of clusters) before it is accumulated 

into the total sum for two reasons. First, it is not trivial to determine the actual meaning 

of such a weight either by itself, or when the distance is combined into a total sum. 

Second, we are more interested in studying the behaviour and ability of different 

clustering methods and therefore do not want to add any distortion to retrieval results by 

such weights when performances of the methods are evaluated.  
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Suppose that we want to compute the dissimilarity between a query image A and 

database image B. Let 𝑐𝑄 = {𝑐1
𝑄, … , 𝑐𝑛

𝑄
} be the set of query image clusters’ centroids, and 

𝑐𝐵 = {𝑐1
𝐵, … , 𝑐𝑚

𝐵 } be the set of database image clusters’ centroids. The distances 

between cQ and cB span a matrix thus, 

𝐷(𝑄, 𝐵) = {𝑑(𝑐𝑖
𝑄
, 𝑐𝑗

𝐵)}
𝑖,𝑗

∈ 𝑅|𝑐𝑄|×|𝑐𝐵| 

Table 5.4 shows an example of the distance matrix between the query image Q that is 

represented by four centroids and the database image B that is represented by five 

centroids. The minimum distance values from four matrix rows are identified and added 

together (0.176 + 0.1063 + 0.158 + 0.2713 = 0.7116). We can express this by the 

following mathematical formula: 

𝐷(𝑄, 𝐵) = ∑ min (d(ci
Q
, cj

B))𝑛
𝑖=1 𝑓𝑜𝑟 𝑗 = {1,… ,𝑚}      5.1 

Table 5.4: Distance matrix 

Clusters 1 2 3 4 5

1 0.4625 0.5046 0.176 0.5343 0.3982

2 1.3809 0.3432 0.5527 0.1063 0.6106

3 0.4401 0.3304 0.3726 0.6004 0.158

4 0.9637 0.2713 0.3232 0.3294 0.4257

Query 

Image Q

Database Image B

 
 

Table 5.5 and Table 5.6 compare classification accuracy based on Min2 and the 

proposed AgD similarity measure using the 6 and 10 classes of WANG database 

respectively. The results indicate that the performance of the proposed AgD measure is 

better than what we were able to achieve with the Min2 measure using DL1, DL2, and 

DChi-Sq distances on 6 classes and using DL1and DL2 on the 10 classes. This shows that 

considering more than two difference values from the distance matrix increase the 

power of discrimination between two images.  

Table 5.5: Recalls using DL1, DL2, and DChi-Sq distances with Min and AgD measures for 6 classes of WANG database 

Classes  
Min2 AgD 

DL1 DL2 DChi-Sq (Nezamabadi-Pour & Saryazdi, 2005) DL1 DL2 DChi-Sq 

Elephants 70 71 85 85 88 91 87 

Flowers 91 83 88 96 93 92 95 

Buses 95 91 92 94 88 87 92 

Foods 45 49 68 89 79 83 58 

Horses 79 75 91 93 95 95 90 

Mountains 41 41 42 58 66 66 65 

Average 70 68 77.6 85.8 85 86 81 
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Table 5.6: Recalls using DL1, DL2, and DChi-Sq distances with Min and AgD measures for 10 classes of WANG database 

Classes 
Min2 AgD 

DL1 DL2 DChi-Sq DL1 DL2 DChi-Sq 

Elephants 70 71 85 84 84 77 

Flowers 91 83 87 87 90 90 

Buses 95 91 92 89 85 89 

Foods 45 48 68 64 67 43 

Horses 79 75 91 94 95 91 

Mountains 41 41 40 50 51 41 

People 74 72 90 63 69 59 

Beach 58 57 53 45 40 40 

Buildings 35 28 51 56 55 53 

Dinasours 86 83 92 100 100 99 

Average 67 65 75 73 74 68 

5.3 Different Local Image Features in CBIR 

As discussed in the previous chapter, a key contribution of this thesis is the evaluation 

of a number of different local image features in terms of their use in image classification 

and retrieval. This section describes the form of these features: 

a) Local DCT colour (DCT-C) feature vector. This local feature is taken from DC 

coefficients of the Y, Cb, and Cr channels. The vector therefore has 3 components, 

i.e. CY(0,0), CCb(0,0) and CCr(0,0) (see Figure 5.1). 

b) Local DCT texture (DCT-T) feature vector. This local feature vector includes the 

DCT coefficients from Y channel at B0, , B1, B2 and B3, locations, i.e. CY(0,0), 

CY(0,1), CY(1,0), CY(1,1), and std(B4), std(B5), …, std(B9). Thus the local feature 

vector has 10 components (see Figure 5.1). 

c) Local DWT colour and texture (DWT-CT) feature vector. The same strategy of 

DCT-CT feature is followed to create DWT-CT feature. Thus the local feature 

vector is <LL3Y(0,0)/8, LL3Cb(0,0)/8, LL3Cr(0,0)/8,  HL3Y(0,1), LH3Y(1,0), HH3Y(1,1), 

std(HL2Y4),  std(LH2Y5), …, std(HH1Y9)>. Also, this vector has 12 components (see 

Figure 5.2(b)).  

d) Local DCT colour and texture (DCT-Zigzag) feature vector. This is another 

DCT coefficients order in which the first ten DCT coefficients are extracted from 

the Y-channel in a zigzag order and two DC coefficients are extracted from the Cb 

and Cr channels. Thus the local feature vector is <CY(0,0), CY(0,1), CY(1,0), CY(2,0), 

CY(1,1), CY(0,2), CY(0,3), CY(1,2), CY(2,1), CY(3,0), Ccb(0,0), Ccr(0,0) >. This vector 
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has 12 components like DCT-CT feature but exploits few DCT coefficients from Y 

channel for the texture (see Figure 5.2(c)).  

e) Two local binary patterns features, uniform histogram 𝐿𝐵𝑃8,1
𝑢2 feature vector (59-

d) and rotation invariant uniform histogram 𝐿𝐵𝑃8,1
𝑟𝑖𝑢2 feature vector (10-d) features, 

8 neighbours and 1 radius, are extracted from Y channel (see Figure 2.6). 

The above local features will be evaluated for image classification and retrieval by 

following the procedure described in Figure 4.1 for both fixed and adaptive K-means 

algorithms at the clustering stage. The AgD measure will be employed at the similarity 

measurement stage, and then classification and retrieval techniques will be used for 

performance evaluation. We will compare the results of these local features with that of 

DCT-CT local features. 

5.4 Evaluation of Local Features with Fixed Number of Clusters 

In this experiment, images are indexed by clustering DCT-CT, DWT-CT, DCT-Zigzag, 

DCT-C, DCT-T, LBPu2, and LBPriu2 features respectively. Local image features are 

extracted from 8 x 8 blocks of the image in YCbCr colour space and clustered using the 

K-means algorithm (KM) with K cluster values from 5 to 60. 

5.4.1 Classification Experiments 

Table 5.7(a–g) shows average recall results of each local feature using WANG database. 

At the first glance, we can see the averages are increasing as long as a fixed K value is 

rising up until a specific value. For example, the best averages using the AgD measure 

with the DL1, DL2, and DChi-Sq distances respectively for the DCT-CT are achieved with 

K=50, 50, and 30. For DWT-CT they are with K=50, 40, and 50; DCT-Zigzag with 

K=40, 20, and 30; for DCT-C with K=20, 30 and 20; DCT-T with K=60, 30, and 60; for 

LBPriu2 with K=50, 50, and 10. However, increasing number of clusters had a negative 

effect on the classification performance with LBPu2 feature – the best classification 

average was achieved with K=10 using DChi-Sq and K=5 using DL1 and DL2 distances. 

The reason might be the high dimensionality of this feature (i.e. length of each cluster 

centroid is 59D) and the increase of cluster centroids may have resulted in the loss of 

meaning in visual data (i.e. too many objects in the scene). Another indication to 

support this conclusion is that the LBPriu2 histogram feature, which is 10D, is less 

affected by the increase in the number of clusters. 
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Table 5.7: Average Recalls applying KM algorithm to seven local features in WANG database using DL1, DL2, and DChi-Sq 

Distance 
Fixed K  

Distance 
Fixed K 

K5 K10 K20 K30 K40 K50 K60  K5 K10 K20 K30 K40 K50 K60 

DL1 73 75 75 76 77 78 76  DL1 72 75 75 76 75 77 76 

DL2 74 73 75 75 76 77 76  DL2 73 73 75 76 77 77 76 

DChi-Sq 68 73 78 80 80 80 80  DChi-Sq 68 73 78 79 79 81 79 

                    (a) DCT-CT                                                                            (b) DWT-CT 

Distance 
Fixed K  

Distance 
Fixed K 

K5 K10 K20 K30 K40 K50 K60  K5 K10 K20 K30 K40 K50 K60 

DL1 51 51 54 56 58 56 57  DL1 66 68 71 71 71 70 70 

DL2 57 56 61 59 61 60 61  DL2 68 68 71 72 71 71 69 

DChi-Sq 56 51 54 64 62 63 63  DChi-Sq 64 64 66 64 65 63 64 

                                                  (c) DCT-Zigzag                                                                      (d) DCT-C 

Distance 
Fixed K  

Distance 
Fixed K 

K5 K10 K20 K30 K40 K50 K60  K5 K10 K20 K30 K40 K50 K60 

DL1 60 61 61 64 63 64 65  DL1 65 64 64 62 59 57 54 

DL2 61 59 60 63 60 60 61  DL2 60 58 58 57 59 57 57 

DChi-Sq 64 67 70 73 73 75 76  DChi-Sq 40 43 39 30 27 27 24 

                                                   (e) DCT-T                                                                              (f) LBPu2 

Distance 
Fixed K 

K5 K10 K20 K30 K40 K50 K60 

DL1 58 61 61 59 60 63 60 

DL2 56 59 60 58 58 62 58 

DChi-Sq 53 55 53 53 49 48 46 

(g) LBPriu2 

In terms of classification performance between different distances, the DL1 distance 

yields results similar to the DL2 distance. Meanwhile, the DChi-Sq distance is better than 

the DL1 and DL2 distances with DCT-Zigzag and DCT-T features. In terms of the 

classification performance between different features, the DCT-CT feature is the best in 

comparison with other features. In addition, the DWT-CT feature is close to DCT-CT 

feature. We will discuss this further in the next section.  

The above experiment was extended to two other databases, Caltech6 and Caltech101, 

which we described in the previous chapter. We will show average recalls of applying 

K-means algorithm using fixed K clusters from 5 to 50 to the seven local features using 

AgD measure. We used only the DL1 distance because its performance is better or 

similar to the other distances.  

Table 5.8 illustrates average recall results for Caltech6 collection. We can see that 

performances of classification with the DCT-CT are increased as result of combining 
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colour and texture features as in WANG database. However, the DCT-T, LBPu2 and 

LBPriu2 texture features are close to or better than DCT-CT and DWT-DT colour-

texture features. This means that images in the Caltech6 collection are rich in texture 

information. However, the DCT-Zigzag texture feature is the worst because it exploits 

few DCT coefficients in low frequency from the Y channel as mentioned earlier. 

Table 5.9 shows average recall results for Caltech101 collection. It is possible to see 

that integrating the DCT-C and DCT-T into DCT-CT feature is also worth using fix K 

clusters as in above two collections. The performance of DCT-CT and DWT-CT 

features are close to each other. The DCT-Zigzag is the poorest feature. Thus, these 

observations with the different features are the same as they are with the WANG 

collection. 

Table 5.8: Average Recalls applying KM algorithm to seven local features in Caltech6 database using DL1 

 

Features  

Fixed K 

K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

DCT-CT 90 88 92 90 91 91 92 91 91 92 

DWT-CT 87 87 88 88 88 88 86 88 87 88 

DCT-Zigzag 66 67 70 70 71 70 73 72 72 70 

DCT-C 76 75 80 78 80 80 77 77 77 78 

DCT-T 88 91 93 93 92 93 92 91 91 91 

LBPu2 89 91 87 85 86 80 77 79 76 74 

LBPriu2 88 92 90 91 91 91 90 89 91 89 

 

Table 5.9: Average Recalls applying KM algorithm to seven local features in Caltech101 database using DL1 

 

Features  

Fixed K 

K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

DCT-CT 63 69 66 69 69 69 69 69 69 70 

DWT-CT 64 66 70 66 68 69 72 67 71 72 

DCT-Zigzag 43 45 48 48 50 49 49 51 51 50 

DCT-C 58 64 65 66 65 65 65 63 64 64 

DCT-T 58 60 60 60 60 56 57 58 58 58 

LBPu2 46 41 38 34 34 31 30 29 28 25 

LBPriu2 49 47 45 44 45 44 46 45 46 47 

5.4.2 Retrieval Experiments 

Table 5.10(a–g) lists mean average precision (MAP) values of image retrieval using 

WANG database. We can see that combining DCT-C and DCT-T features in to a single 

DCT-CT feature increases MAP of retrieval. This means that visual colour and texture 
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together raise the image recognition. Therefore, the DCT-CT outperforms the DCT-C 

and DCT-T features. The reasons for the better performance of the DCT-CT feature 

over the traditional DCT zigzag feature can be explained as follows. According to 

(Huang & Chang, 1999), the DCT coefficients in a 8x8 block after the transformation 

are similar to DWT coefficients in the sub-bands of a level 3 DWT (see Figure 5.2(a–b)) 

in the sense that B1,B2, and B3 correspond to HL3, LH3, and HH3, the coefficients in the sub-

blocks B4, B5, and B6 correspond to those in HL2, LH2, and HH2, and the coefficients in the sub-

blocks B7, B8, and B9 correspond to those in HL1, LH1, and HH1, representing multi-resolution 

textural information in high frequency bands. The traditional zigzag order of the DCT represents 

a sequence following the frequency increment of the block. In (Huang & Chang, 1999), the 

entire zigzag sequence of the DCT coefficients is used as the local feature vector, but 

such a feature vector lacks of robustness due to its very high dimensionality.  The entire 

sequence of DCT coefficients also makes the vector vulnerable for “over fitting” in the 

context of CBIR, i.e. the local feature vector has too much specific details of the local 

block. The DCT-zigzag feature vector in (Westerveld, et al., 2003) (as shown in Figure 

5.2(c)) improves the robustness by using only the first 10 most significant DCT 

coefficients, but by doing so ignores textural information in high frequency bands. On 

contrast, the DCT-CT feature vector takes the standard deviations of the coefficients in 

B4, B5, B6, B7, B8 and B9 sub-blocks, capturing the multi-resolution textural information 

(i.e. variations) in all high frequency bands, and at the same time maintaining the 

robustness of the feature vector with only 12 dimensions 

    

                                                                           

LL3 HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

  

      (a) Coefficients order in DCT-CT Feature               (b) 3-Levels sub-bands in DWT           (c) Coefficients order in DCT-Zigzag Feature 

Figure 5.2: 8 x 8 block in DCT-CT, DWT-CT, and DCT-Zigzag features. 

The above observations were also made in the classification experiments. However, the 

retrieval accuracies are lower than the classification accuracies. This is most likely 

because we used known class labels in image classification and use a k-NN (k=5) 

classifier, but there is no such training process used in image retrieval.  Instead, the top 
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T images from the image database that are most similar to a query image measured 

using a similarity measure is returned as a ranked list. 

Table 5.10: Comparison of MAP results for Top10-100 retrieved images (RIm) on WANG database based on seven local features, 

KM algorithm and DL1 

 

RIm 

Fixed K   

RIm 

Fixed K 

K10 K20 K25 K30 K40 K50 K60  K10 K20 K25 K30 K40 K50 K60 

T10 0.60 0.62 0.63 0.62 0.63 0.63 0.63  T10 0.59 0.60 0.61 0.61 0.61 0.61 0.61 

T20 0.54 0.56 0.56 0.56 0.56 0.57 0.56  T20 0.53 0.54 0.54 0.54 0.55 0.54 0.54 

T30 0.50 0.52 0.52 0.52 0.52 0.52 0.52  T30 0.48 0.49 0.50 0.50 0.50 0.50 0.49 

T80 0.38 0.39 0.39 0.38 0.38 0.38 0.38  T80 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

T90 0.36 0.37 0.37 0.37 0.37 0.37 0.36  T90 0.35 0.36 0.36 0.36 0.36 0.35 0.35 

T100 0.35 0.35 0.35 0.35 0.35 0.35 0.35  T100 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

                                         (a) DCT-CT                                                                              (b) DWT-CT 

 

RIm 

Fixed K   

RIm 

Fixed K 

K10 K20 K25 K30 K40 K50 K60  K10 K20 K25 K30 K40 K50 K60 

T10 0.35 0.39 0.39 0.39 0.40 0.41 0.40  T10 0.56 0.57 0.57 0.57 0.57 0.58 0.57 

T20 0.31 0.34 0.34 0.35 0.35 0.36 0.36  T20 0.49 0.51 0.51 0.51 0.51 0.51 0.51 

T30 0.28 0.32 0.32 0.32 0.32 0.33 0.33  T30 0.45 0.46 0.47 0.46 0.46 0.47 0.46 

T80 0.23 0.25 0.25 0.25 0.26 0.26 0.26  T80 0.33 0.34 0.34 0.34 0.34 0.34 0.34 

T90 0.22 0.24 0.24 0.24 0.25 0.25 0.25  T90 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

T100 0.22 0.23 0.23 0.24 0.24 0.24 0.24  T100 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

                                         (c) DCT-Zigzag                                                                         (d) DCT-C 

 

RIm 

Fixed K   

RIm 

Fixed K 

K10 K20 K25 K30 K40 K50 K60  K10 K20 K25 K30 K40 K50 K60 

T10 0.46 0.46 0.46 0.47 0.46 0.46 0.45  T10 0.53 0.53 0.53 0.51 0.50 0.48 0.46 

T20 0.41 0.42 0.42 0.42 0.41 0.41 0.40  T20 0.50 0.50 0.49 0.48 0.47 0.45 0.43 

T30 0.38 0.39 0.39 0.39 0.38 0.38 0.37  T30 0.47 0.47 0.47 0.46 0.44 0.42 0.42 

T80 0.30 0.31 0.31 0.31 0.30 0.30 0.30  T80 0.40 0.39 0.39 0.38 0.37 0.36 0.35 

T90 0.29 0.30 0.30 0.30 0.29 0.29 0.29  T90 0.38 0.38 0.38 0.37 0.36 0.35 0.34 

T100 0.28 0.29 0.29 0.29 0.28 0.28 0.28  T100 0.37 0.36 0.36 0.36 0.35 0.34 0.33 

                                         (e) DCT-T                                                                                  (f) LBPu2 

 

RIm 

Fixed K 

K10 K20 K25 K30 K40 K50 K60 

T10 0.48 0.48 0.49 0.48 0.48 0.49 0.48 

T20 0.45 0.45 0.45 0.45 0.45 0.45 0.45 

T30 0.43 0.43 0.43 0.43 0.43 0.42 0.43 

T80 0.36 0.36 0.35 0.35 0.35 0.35 0.35 

T90 0.34 0.34 0.34 0.34 0.34 0.33 0.33 

T100 0.33 0.33 0.33 0.33 0.33 0.32 0.32 

(g) LBPriu2 

In terms of the behaviour of the K-means algorithm with each local feature, it can be 

seen that the performance increases as the number of clusters increases up to a point 

after which the difference between successive values of K becomes small. K=25 can be 
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regarded as the optimal point for most features. This means no additional discriminative 

information is gained by using more than 25 centroids. 

Table 5.11 shows MAP results of different values of K only for the Top 10 retrieved 

images on the Caltech6. The general behaviour of the algorithm for Top 20-100 

retrieved images with different values of K is similar to the behaviour for Top 10 

retrieved images. It is clear that the retrieval accuracies with the DCT-T, LBPu2 and 

LBPriu2 texture features are closer to, or in some instances better than, the DCT-CT 

and DWT-DT colour-texture features. This indicates that images in the Caltech6 

collection are rich in texture information. However, the DCT-Zigzag texture feature is 

the worst because it exploits only few DCT coefficients in low frequency from the Y 

channel. This was confirmed also by classification evaluation. 

Table 5.11: MAP for Top10 retrieved images on Caltech6 database based on seven local features using, KM algorithm and DL1 

 

Features 

Fixed K 

K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

DCT-CT 0.79 0.78 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 

DWT-CT 0.78 0.79 0.79 0.80 0.80 0.80 0.80 0.79 0.80 0.78 

DCT-Zigzag 0.51 0.52 0.54 0.55 0.55 0.56 0.56 0.56 0.57 0.57 

DCT-C 0.62 0.61 0.65 0.66 0.65 0.66 0.66 0.66 0.66 0.67 

DCT-T 0.78 0.81 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.82 

LBPu2 0.81 0.78 0.77 0.75 0.74 0.71 0.70 0.69 0.68 0.66 

LBPriu2 0.78 0.79 0.79 0.80 0.80 0.80 0.80 0.79 0.80 0.78 

 

Table 5.12 illustrates MAP values for Top 10 retrieved images for all investigated local 

features using KM algorithm to represent Caltech101 images. The retrieval accuracy 

with the seven local features shows a similar pattern to the one observed in the 

classification experiments – DCT-CT is the best whereas DCT-Zigzag is the poorest 

feature. Both LBP features performance better with a small number of clusters than a 

large number that affects also the performance of LBPu2 to be less than LBPriu2 due to 

images of different classes in this database are sharing some object and/or visual colour 

and texture variation and the AgD measure aggregates minimum values of distance 

matrix rows that might increase the closeness between two images from different 

classes at the matching stage when the number of clusters value is a big. The next 

section evaluates the use of an adaptive K-means clustering algorithm which determines 

the number of clusters. 
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Table 5.12: MAP for Top10 retrieved images on Caltech101 database based on seven local features using, KM algorithm and DL1 

 

 

5.5 Evaluation of Local Features with Adaptive Number of Clusters 

The previous section showed that the use of only 5 largest clusters from 10 clusters as 

proposed by (Nezamabadi-Pour & Saryazdi, 2005) does not always lead to an optimal 

result. Therefore, we intended to propose an adaptive K-means clustering algorithm. 

The aim here is to investigate the effect of representing visual content by adapted K and 

to evaluate if it is better than fixed K version.  

As mentioned in Chapter 3, the sum of square errors (SSE) is used to measure quality of 

clusters and the relation between SSE and the number of clusters K can be plotted as a 

curve. Thus, we need to find a criterion to determine the optimal value K. On the other 

hand, an entropy measure determines the complexity of an image if it is a simple or 

complicated and the measure could be adopted to determine K. Here, we focused on the 

first measure (SSE) and the second measure (i.e. entropy) will be investigated in the 

future work.  

In mathematics (calculus) (Stewart, 1998), stationary/critical points on the curve can be 

determined when the first derivative is zero. The behaviour of the stationary point is 

determined by the second derivative (Sd) and is one of three cases, if Sd is positive, 

negative, or zero then it is minimum, maximum, or inflexion respectively.  Therefore, 

we exploited Sd to adapt the K-means algorithm. Hence, Sd values are calculated for 

SSE values and we found that the minimum positive value is a suitable point to select 

the optimal value of K clusters corresponding to the SSE value where steady case starts 

to appear. Figure 5.3 explained the procedure of the proposed adaptive K-means 

clustering algorithm (AKM).   

 

Features 

Fixed K 

K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

DCT-CT 0.49 0.53 0.54 0.55 0.55 0.56 0.55 0.55 0.55 0.55 

DWT-CT 0.48 0.52 0.53 0.53 0.53 0.53 0.52 0.53 0.52 0.53 

DCT-Zigzag 0.32 0.35 0.36 0.37 0.37 0.37 0.38 0.38 0.38 0.39 

DCT-C 0.47 0.50 0.52 0.53 0.53 0.53 0.53 0.52 0.53 0.52 

DCT-T 0.45 0.45 0.46 0.45 0.46 0.45 0.45 0.46 0.45 0.45 

LBPu2 0.42 0.37 0.35 0.33 0.31 0.31 0.29 0.28 0.28 0.26 

LBPriu2 0.40 0.40 0.39 0.39 0.40 0.40 0.39 0.39 0.40 0.40 
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Figure 5.3: Adaptive K-means algorithm. 

Figure 5.4(a–b) shows an example of an elephant image and a flower image which are 

segmented by the adaptive K-means algorithm (Figure 5.3) using the DCT-CT feature to 

optimal K values 8 and 6 respectively. The line plot is under each image show the 

quality measure SSE over where the number of clusters. The optimal number of clusters 

corresponding to the SSE value is coloured in red – k=8 and k=6 for elephant and flower 

image respectively. 

    
         Elephant image                           k=8                                    Flower image                               k=6 

               
                                                  (a)                                                                                               (b) 

Figure 5.4: Segmented by AKM algorithm using DCT-CT feature. 

Table 5.13 shows the minimum, maximum, and average number of clusters produced by 

applying the adaptive K-means algorithm (AKM) to local features of the entire WANG 

database images.  

Table 5.13: Min, Max, and average adaptive number of K cluster (WANG) 

   DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Min 4 4 4 5 4 3 5 

Max 8 8 8 8 8 8 8 

Average 8 7 7 8 7 7 7 
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    Step 1: For k=2 to K (e.g. 10) do 

1) Run the basic K-means algorithm to detect K clusters; 

2) Save the clustering result Ck; 

3) Calculate SSE(k); 

    Step 2: For each k, calculate the value of the second order derivative as follows: 

𝑆𝑑(𝑘) = 𝑆𝑆𝐸(𝑘 + 1) − 2𝑆𝑆𝐸(𝑘) + 𝑆𝑆𝐸(𝑘 − 1) 

   Step 3: Select the positive value of 𝑆𝑑 which is close to zero, and take Ck
  as the  final outcome. 
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We repeated the classification and retrieval experiments conducted in Sec. 5.4 using the 

proposed AKM clustering to evaluate the seven local features. The experimental results 

are presented in the following sub-sections. 

5.5.1 Classification Experiments 

Here, we will focus on the comparison between fixed and adaptive K clusters instead of 

repeating the evaluation of different distances and the local features which we did in 

Sec. 5.4. Classification results of the WANG database based on fixed and adaptive KM 

are shown in the Table 5.14(a–g).  The results of the fixed KM for each local feature 

represent the best result achieved and the number of clusters that were used (see details 

in Table 5.7).  

Table 5.14: Comparison of average Recalls on WANG database based on seven local features, KM and AKM algorithms  

Distance 
Fixed 

K50 

Adaptive 

K 

 
Distance 

Fixed 

K50 

Adaptive 

K 

 
Distance 

Fixed 

K40 

Adaptive 

K   

DL1 78 73  DL1 77 72  DL1 58 50 

DL2 77 74  DL2 77 73  DL2 61 56 

DChi-Sq 80 70  DChi-Sq 81 69  DChi-Sq 62 59 

                       (a) DCT-CT                                            (b) DWT-CT                                           (c) DCT-Zigzag 

Distance 
Fixed 

K20 

Adaptive 

K 

 
Distance 

Fixed 

K60 

Adaptive 

K 

 
Distance 

Fixed 

K5 

Adaptive 

K   

DL1 71 68  DL1 65 59  DL1 65 66 

DL2 71 67  DL2 61 58  DL2 60 59 

DChi-Sq 66 65  DChi-Sq 76 65  DChi-Sq 40 46 

                    (c) DCT-C                                         (e) DCT-T                                            (f) LBPu2 

 
Distance 

Fixed 

K50 

Adaptive 

K  

 DL1 63 68 

 DL2 62 67 

 DChi-Sq 48 65 

                                                                                    (g) LBPriu2 

 

It is clear that the classification performance based on using adapted K is lower 

compared to the use of best fixed number of K clusters, except when LBP features (i.e. 

LBPu2 and LBPriu2) are used. It is better to adapt the number of clusters to be between 

3 and 8 (Table 5.13) compared to the best fix K=5 for the LBPu2 feature and between 5 

and 8 compared to the best fix K=50 for the LBPriu2 feature. This indicates that no 

additional information about the image could be gained by increasing the number of 
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clusters with the LBPu2 feature (i.e. a histogram of 59-bins) and LBPriu2 feature (i.e. a 

histogram of 10-bins). 

Table 5.15 shows results of image classifying Caltech6 database images using KM with 

the fixed K and an adaptive K for each local feature. Once again, the results of the fixed 

KM are the best results achieved for each feature (see details in Table 5.8). We can see 

there are differences in averages with all features except DWT-CT and LBPu2. The 

classification performances are achieved using the adaptive number of clusters value 

with these two features par to those using fixed number of clusters value. Thus, it is 

better to use the LBPu2 feature with small K clusters value with this database images 

like the WANG database. 

Table 5.16 compares average recalls for Caltech101 database using the AKM and the 

KM algorithms with the fixed K chosen according to the best performance based on 

Table 5.9. Overall, there are differences in averages among the seven local features as is 

observed in the WANG and Caltech6 databases. We can notice that two features behave 

differently in the Caltech101 database compared to the other two databases. The DCT-T 

texture feature using adaptively determined K clusters performed better than using the 

fixed version; the LBPu2 feature using fixed K=5 achieved 3% higher than using 

adaptive K value. Meanwhile, the remaining features worked better with the fixed K 

version. 

Table 5.15: Comparison of average Recalls on Caltech6 database based on seven local features, KM and AKM algorithms 

Features 
Fixed K Adaptive 

K K10 K15 K35 

DCT-CT - 92 - 89 

DWT-CT - 88 - 88 

DCT-Zigzag - - 73 69 

DCT-C - 80 - 74 

DCT-T - 93 - 88 

LBPu2 91 - - 91 

LBPriu2 92 - - 87 
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Table 5.16: Comparison of average Recalls on Caltech101 database based on seven local features, KM and AKM algorithms 

Features 
Fixed Adaptive 

K K5 K10 K20 K40 K50 

DCT-CT - - - - 70 67 

DWT-CT - - - - 72 66 

DCT-Zigzag - - - 51 - 46 

DCT-C - - 66 - - 64 

DCT-T - 60 - - - 66 

LBPu2 46 - - - - 43 

LBPriu2 49 - - - - 47 

 

Based on the above observations a question that arises is: is the difference in accuracy 

between adapted and fixed number of clusters significant? Therefore, we investigated to 

find a suitable statistical measure to help answer this question. This is will be the focus 

of the experiments in the next section. First, we will describe the statistical measure we 

used to evaluate the significance of the differences in the results. 

5.5.2 Significance of Fixed vs. Adaptive Clustering for Image Classification 

We found the following chi-square (2) test statistic measure that is a suitable for 

categorical data and has been used to determine the significance of the difference 

between the observed and expected/model frequencies based on a contingency table 

(Field, 2006):  

𝑥2 = ∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖𝑗 − 𝑀𝑜𝑑𝑒𝑙𝑖𝑗)

2

𝑀𝑜𝑑𝑒𝑙𝑖𝑗
 

𝑀𝑜𝑑𝑒𝑙𝑖𝑗 =
𝑇𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑖×𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑙𝑢𝑚𝑛𝑗

𝑇
, where T is the total number of observations 

In our case, we used this test to determine the significance between the classification 

performance of fixed and adaptive versions of K-means clustering at (p-value= 0.05) 

significance level.  

Table 5.17 shows the contingency table used to calculate (2) value, where frequencies 

of 1s represent images that are correctly classified and 0s represent images that are 

incorrectly classified, Xi and Yi are the observed frequencies, Ti is total rows, and T1s 

and T0s are total columns. 
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Table 5.17 Contingency table showing frequencies of 1s and 0s for adaptive and fixed K 

 1s 0s Total 

Adaptive k X1 Y1 T1 

Fixed k X2 Y2 T2 

Total T1s T0s T 

 

We have seen results of classification experiments in the previous section and noted a 

difference between averages of using fixed and adaptive number of clusters. The bar 

chart shown in Figure 5.5 illustrates the recall rates of individual image classes based on 

fixed and adaptively determined K cluster values with DCT-CT features. The DCT-CT 

is shown here because it is the best feature whilst the figures for the remaining features 

are given in (Appendix C).  

It can be see that some image classes favour the fixed K more than the adaptively 

determined K. For example, recalls rates of Beach, Mountains, African People, Foods, 

Elephants, and Flowers image classes are higher with a fixed number of clusters than 

the adaptively selected number of clusters. This made us consider the complexity of 

image content; it might be better to represent these images by generating many clusters 

whereas simple images such as Dinosaurs could be represented by an adaptive number 

of clusters.  

 

 

Figure 5.5: Recall measure of Applying AKM and KM algorithms to DCT-CT feature in WANG database. 

Thus, significant differences between classification results from using adaptive K and 

the best classification results from using fixed K for each feature are calculated based on 

2 test and are presented using three labels: Fx, A, and X. ‘Fx’ is used to represent 

results where the difference at (p-value= 0.05) significance level favour is the 
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classification using fixed K, whereas ‘A’ represents results that favour the classification 

using an adaptively determined K. ‘X’ is used to indicate no significant difference at (p-

value=0.05) significance level. Thus, Table 5.18 shows the outcomes of the 2 test. The 

table comprises the seven local features set against abbreviations of image classes of 

WANG database: E: Elephants, F: Flowers, B: Buses, D: Foods, H: Horses, M: 

Mountains, P: People, C: Beach, L: Buildings, and S: Dinosaurs.  

Table 5.18: 2- test for image classification on WANG based on seven features, KM and AKM algorithms  

Features  E F B H M D P C L S 

DCT-CT × × × × × Fx 

p=0.0001 
× × × × 

DWT-CT 
× × × × × Fx 

p=0.0061 

Fx 

p=0.0289 
× × × 

DCT- 

 Zigzag 
× × × × × × Fx 

p=0.0173 
× × A 

p=0.0250 

DCT-C × × × × × × × × × × 

DCT-T 

Fx 

p=0.0249 
× × × × × Fx 

p=0.0070 
× × A 

p=0.0074 

LBPu2 Fx 

p=0.0452 
× × × × Fx 

p=0.0452 
× Fx 

p=0.0066 
× × 

LBPriu2 × × Fx 

p=0.0005 
× × Fx 

p=0.0001 

Fx 

p=0.0020 
× Fx 

p=0.0063 
× 

 

In general, we can observe that the case (X) dominates the table indicating that there is 

no significant difference between the outcomes of fixed and adaptively K-means 

clustering algorithms to cluster local image features of most image classes. However, 

the Foods (D) and People (P) classes tend to favour the use of a fixed number of 

clusters, where the number of clusters (K) tends to be relatively large, over the adaptive 

number of clusters where K tends to be relatively small. This could be because these 

two classes include common objects in their images and they have many similarities in 

colour and texture. Few example images of the Foods and African People classes are 

shown in Figure 5.6(a–b). 

                                      
(a) Foods 

                                                    
(b) African People 

Figure 5.6: Example images of Foods and African People classes in the WANG database. 

A confusion matrix may give us insight into the classification performance of individual 

image classes based on the two versions of K-means clustering. Two confusion matrices 
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are presented in Table 5.19(a–b) to highlight the above issue: (a) applying the AKM 

algorithm to the DCT-CT feature; (b) KM with K=50. For instance, the numbers of food 

images misclassified as bus and people images are decreased from 24 and 11 to 11 and 

2 respectively when fixed K-means is used. This is considered as a very significant 

difference (p=0.0001) in Table 5.18 above. While the number of people images 

incorrectly classified as bus and  food images decreased of from 15 and 16 to 9 and 12 

images respectively, this decrease is not considered significant (p-value= 0.05). Another 

example is with Elephants class, where the conflict with other classes is decreased by 

about 7% when the K-means clustering algorithm is used with fix K=50 but this is also 

recorded as not significant. We can conclude that not all differences are regarded as 

statistically significant. Also, complicated images are discriminated better with large 

number of clusters compared to simple images such as those in the Dinosaurs class 

which can be represented by a smaller number of clusters, which the adaptive approach 

produces.  

Table 5.19: Confusion matrix: applying AKM and KM to DCT-CT for WANG images (Abbreviations: E: 

Elephants, F: Flowers, B: Buses, D: Food, H: Horses, M: Mountains, P: People, C: Beach, L: Buildings, and S: 

Dinosaurs) 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 85 0 1 3 0 1 6 2 2 0  E 92 0 0 2 1 1 2 0 2 0 

F 0 86 4 4 1 0 4 0 1 0  F 0 93 2 3 1 0 1 0 0 0 

B 2 0 97 1 0 0 0 0 0 0  B 0 0 97 3 0 0 0 0 0 0 

D 2 0 24 60 1 0 11 0 2 0  D 1 0 11 85 0 0 2 1 0 0 

H 0 0 0 1 97 0 2 0 0 0  H 2 0 0 1 97 0 0 0 0 0 

M 12 2 13 0 0 50 4 13 5 1  M 11 0 14 2 0 54 0 9 10 0 

P 9 1 15 16 2 0 55 1 1 0  P 8 1 9 12 1 0 65 1 3 0 

C 14 0 16 3 0 13 9 39 6 0  C 8 0 19 6 1 16 6 41 3 0 

L 4 1 15 8 0 0 11 1 60 0  L 10 1 12 7 0 3 8 3 56 0 

S 0 0 0 0 0 0 0 0 0 100  S 2 0 1 1 0 0 0 0 0 96 

                             (a) AKM                                                                          (b) KM (K=50) 

 

The above scenario and steps were followed for Caltech6 images. First, Table 5.20 is 

created based on 2 test with class abbreviations: Cr: Car, Mo: Motorcycle, Ap: 

Airplanes, Fc: Faces, Lv: Leaves.  

Overall, there is no significant difference between classification results from using fixed 

and adaptive K cluster values across all features except leaf and motorcycle images with 

the DCT-C and LBPriu2 features respectively which are expressed in the table as 

statistically significant (p=0.0157 and 0.0105). With the Face class (Fc) using the DCT-

T feature, the difference is recorded as extremely significant p=0.0007. Figure 5.7 

shows a sample of these three image classes. Second, confusion matrices are presented 

in Table 5.21(a–b) using DCT-C feature with the adaptive and fixed K=15 to show that 
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the number of images in leaf (Lv) class that conflict with the motorcycle, airplanes, and 

face images is significantly reduced and the classification accuracy is increased by 18%.   

Table 5.20: 2- test for image classification on Caltech6 based on seven features, KM and AKM algorithms  

Features  Cr Mo Ap Fc Lv 

DCT-CT × × × × × 

DWT-CT × × × × × 

DCT Zigzag × × × × × 

DCT-C 
× × × × Fx 

p=0.0157 

DCT-T 
× × × Fx 

p=0.0007 
× 

LBPu2 × × × × × 

LBPriu2 × Fx 

p=0.0105 
× × × 

              

     

              
                                 (a) Leave                                                (b) Faces                                              (c) Motorcycle 

Figure 5.7: Example images of Leave, Faces, and Motorcycle classes in Caltech6 database. 

 

Table 5.21: Confusion matrix applying AKM and KM on DCT-C for Caltech6 images (Abbreviations: Cr: Cars, 

Mo: Motorcycles, Ap: Airplanes, Fc: Faces, Lv: Leaves) 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 98 0 1 1 0  Cr 98 0 0 2 0 

Mo 9 79 4 5 3  Mo 9 78 3 4 6 

Ap 14 1 63 16 6  Ap 16 0 73 10 1 

Fc 9 1 2 86 2  Fc 5 4 3 87 1 

Lv 8 10 15 21 46  Lv 8 4 8 16 64 
                                                 (a) AKM                                        (b) KM (K=15) 

Above two steps were repeated for Caltech101 images. Table 5.22 is created with class 

abbreviations: Bo: Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, 

and Wt: Watch.  

In general, there is no significant difference between accuracies of using fixed and 

adaptive K except watch, faces, ketch, and chandelier images with the DWT-CT, DCT-

T, DCT-Zigzag, DCT-C, and LBPu2 features respectively, where the significance 

favours the Fx case based on p=0.0102, 0.0221, 0.0361, 0.0194, and 0.0314 

respectively. Meanwhile, the case with the chandelier and ketch images using DCT-T 

feature favours the A case based on p=0.0326 and 0.0149 respectively. Figure 5.8 shows 

examples of these images. The confusion matrices are presented in Table 5.23(a–b) to 

show that the number of images in the watch (Wt) class are misclassified as chandelier 

and ketch images is significantly decreased (from 26 and 10 to 10 and 4 respectively 

and recorded by p-value= 0.0102 in Table 5.22) using DWT-DT feature with fixed 

K=50 clusters. 
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Table 5.22: 2- test for image classification on Caltech101 based on seven features, KM and AKM algorithms  

Features  Bo Ch Fe Kt Lp Wt 

DCT-CT × × × × × × 

DWT-CT 
× × × × × Fx 

p=0.0102 

DCT-Zigzag 
× × Fx 

p=0.0361 
× × × 

DCT-C 
× × × Fx 

p=0.0194 
× × 

DCT-T 
× A 

p=0.0326 
× A 

p=0.0149 
× Fx 

p=0.0221 

LBPu2 × Fx 
p=0.0314 

× × × × 

LBPriu2 × × × Fx 

p=0.0213 
× × 

 

                                                
                                                  (a) Watch                                                         (b) Ketch   

                                    
                                                (c) Face                                                              (d) Chandelier                             

Figure 5.8: Example images of Watch, Ketch, Face-Easy, and Chandelier classes in Caltech101 database. 

Table 5.23: Confusion matrix applying AKM and KM on DWT-CT for Caltech101 images (Abbreviations: Bo: 

Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, and Wt: Watch) 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 57 14 14 5 0 10  Bo 71 4 13 2 1 9 

Ch 22 41 12 14 0 11  Ch 18 44 20 5 1 12 

Fe 1 5 92 2 0 0  Fe 0 0 99 0 0 1 

Kt 2 6 20 63 0 9  Kt 7 1 14 74 0 4 

Lp 3 4 6 4 82 1  Lp 5 0 1 1 93 0 

Wt 17 26 8 10 1 38  Wt 16 10 17 4 0 53 

                                                 (a) AKM                                        (b) KM (K=50) 

5.5.3 Retrieval Experiments 

As with the fixed number of clusters, here we perform image retrieval experiments to 

evaluate local features with K-means clustering based on adaptive number of clusters 

(AKM). Results using MAP values of image retrieval presented in Table 5.24(a–c) 

compares the AKM to KM algorithm based on the Top 10 retrieved images on WANG, 

Caltech6, and Caltech101 databases. Results show that there are differences between the 

two versions of K-means clustering across all features except LBPu2 in the WANG 

database.  
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We used the 2 test in Sec. 5.5.2 to evaluate the importance of the differences between 

categorical results of image classification. Here, the t-test statistical measure is suitable 

to determine the significance of the differences between means of two samples. 

Therefore we used it to evaluate for the significance between two samples of precision 

rates of image retrieval based on the two versions of K-means. 

Table 5.24: Comparison of MAP results for Top10 retrieved images on WANG, Caltech6, and Caltech101 

databases based on seven local features, KM and AKM algorithms 

Features 
Fixed 

K25 

Adaptive 

K 

 
Features 

Fixed K Adaptive 

K 

 Features Fixed K Adaptive 

K  K5 K25  K5 K25 

DCT-CT 0.63 0.59  DCT-CT - 0.81 0.78  DCT-CT - 0.55 0.51 

DWT-CT 0.61 0.58  DWT-CT - 0.80 0.74  DWT-CT - 0.53 0.50 

DCT-

Zigzag 0.39 0.34 
 DCT-

Zigzag 
- 

0.55 0.51 
 DCT-

Zigzag - 0.37 0.34 

DCT-C 0.57 0.54  DCT-C - 0.65 0.62  DCT-C - 0.53 0.48 

DCT-T 0.46 0.43  DCT-T - 0.83 0.79  DCT-T - 0.46 0.44 

LBPu2 0.53 0.53  LBPu2 0.81 - 0.88  LBPu2 0.42 - 0.40 

LBPriu2 0.49 0.48  LBPriu2 - 0.80 0.78  LBPriu2 - 0.40 0.52 

                      (a) WANG                                               (b) Caltech6                                        (c) Caltech101 

5.5.4 Significance of Fixed vs. Adaptive Clustering for Image Retrieval 

The significance of difference between precision rates obtained using adaptive and fixed 

number of clusters can be computed using the t-test:  

𝑡 =
�̅� − �̅�

√𝑠𝑥
2

𝑛
+

𝑠𝑦
2

𝑚

 

where �̅� and �̅� are the sample precision rates, sx and sy are the sample standard 

deviations, and n and m are the sample sizes. 

The hypotheses are stated such that H0: �̅� − �̅� = 0 represents null hypothesis, HA: �̅� ≠ �̅�, 

or �̅� < �̅�, or �̅� > �̅� represents the alternative hypothesis. The t-test was calculated using 

MATLAB, by giving two samples of precision values obtained using adaptive K and a 

fixed K=25 respectively. A 1 return value indicates a rejection of the null hypothesis at 

the 5% significance level. A 0 return value indicates an acceptance of the null 

hypothesis at the 5% significance level.  

The Table 5.25 shows the results of t-tests between the AKM and KM algorithms with 

each of the seven local features used to represent images. There are no significant 

differences between the results of the two versions of K-means clustering for most 
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image classes and image features. However, the fixed number of clusters favoured the 

Elephants (E) class with DCT-CT, DCT-T, and LBPu2 features and Foods (D) class 

with DCT-CT, DWT-CT, and DCT-Zigzag features. Figure 5.9(a–c) shows examples of 

building, elephant, and food query images and their Top 10 retrieved images. For each 

query image, the first row of the figure shows the Top 10 retrieved images using 

adaptively determined K clusters, whereas the second row shows the Top 10 retrieved 

images using the fixed K=25 to cluster the DCT-CT features.  

Table 5.25: t-test for image retrieval on WANG database based on seven features, KM and AKM algorithms  

Features  

E F B H M D P C L S 

DCT-CT Fx 

p=0.006688 
× × × × Fx 

p=2.34E-05 
× × × × 

DWT-

CT 

× × × × × Fx 

p=4.33E-05 

× × × × 

DCT-

Zigzag 

× Fx 

p=0.040882 

Fx 

p=0.014555 
× × Fx 

p=0.046115 

Fx 

p=0.001682 
× × Fx 

p=0.015401 

DCT-C 

× × × × × × × × × × 

DCT-T 

Fx 

p=0.023024 
× × Fx 

p=0.03162 
× × × Fx 

p=0.003747 
× × 

LBPu2 Fx 

p=0.018172 

Fx 

p=0.023384 

A 

p=0.000121 

A 

p=0.025419 
× × × × × × 

LBPriu2 × × × × × × × × × × 

 

For the Building query image, the adaptive clustering version retrieved 9 relevant 

images within the Top 10 retrieved images whilst the fixed clustering version retrieved 

8 relevant images within its Top 10 retrieved images. Hence, there is no significant 

difference between the MAP results of adaptive and fixed number of clusters in 

Building image class. However, a closer observation shows that only three of the 

relevant images appear in both lists for the Building query image. For the Elephant and 

Food query images, the adaptive clustering version retrieved 3 and 4 relevant images 

respectively within their Top 10 retrieved images whilst the fixed clustering version 

retrieved 6 and 8 relevant images respectively within their Top 10 retrieved images. 

Hence, there is a significant difference between the MAP results of adaptive and fixed 

number of clusters in Elephant and Food image classes.  
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(a) 

 
(b) 

 
(c) 

Figure 5.9: Top 10 retrieved images from using K-means algorithm with adaptive and fixed K=25 clusters. 

Table 5.26 is created based on the t-tests for Caltech6 database using adaptive K clusters 

and fixed K clusters with K=25 for all features except K=5 is used for LBPu2 which 

gives the best result. In general, we note that there are significant differences in retrieval 

results of the two approaches. DCT features tend to do well with a fixed number of 

clusters, whereas LBP features tend perform better with an adaptively determined 

number of clusters. Also, images belonging to the Face (Fc) class represented better 

with a fixed number of clusters across all features.  
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Table 5.26: t-test for image retrieval on Caltech6 database based on seven features, KM and AKM algorithms 

Features  Cr Mo Ap Fc Lv 

DCT-CT A 

p=3.10E-177 

A 

p=6.98E-76 

Fx 

p=4.81E-65 

Fx 

p=3.13E-113 

Fx 

p=1.07E-15 

DWT-CT 
× × × Fx 

p=0.010519 
× 

DCT- Zigzag 

Fx 

p=2.64E-64 

Fx 

p=5.70E-59 

Fx 

p=3.53E-41 

Fx 

p=1.90E-54 

Fx 

p=0.000215 

DCT-C 

Fx 

p=3.64E-117 

A 

p=5.14E-41 

Fx 

p=2.57E-48 

Fx 

p=6E-81 

Fx 

p=7.78E-33 

DCT-T 
× × × Fx 

p=2.17E-07 
× 

LBPu2 A 

p=1.82E-104 

A 

p=7.54E-59 

A 

p=3.67E-53 

Fx 

p=8.11E-110 

A 

p=8.13E-107 

LBPriu2 A 

p=1.57E-85 

Fx 

p=5.53E-62 

A 

p=2.26E-58 

Fx 

p=3.11E-115 

Fx 

p=1.65E-109 

 

Table 5.27 is created based on t-test measure for Caltech101 database. Our observations 

on t-test evaluation of Caltech101 results are similar those made on the Caltech6 

database. Images of different classes in this database include similar objects, colour and 

texture. Thus, some images are better represented by a fixed K and others by the 

adaptive K according to image content and the type of local feature used to extract 

image information.  

Table 5.27: t-test for image retrieval on Caltech101 database based on seven features, KM and AKM algorithms 

Features  Bo Ch Fe Kt Lp Wt 

DCT-CT Fx  

p=0.047128 

Fx  

p=0.000143 

Fx  

p=0.000574 
× × × 

DWT-CT 
× × Fx  

p=1.88E-05 
× × × 

DCT- Zigzag 

Fx  

p=8.87E-34 

Fx  

p=3.26E-40 

Fx  

p=1.89E-64 

Fx  

p=3.93E-37 

Fx  

p=7.37E-42 

Fx  

p=1.99E-101 

DCT-C 
× × Fx  

p=0.001661 

Fx  

p=0.006287 
× Fx  

p=0.031913 

DCT-T 

Fx  

p=6.02E-45 

Fx  

p=1.32E-36 

Fx  

p=1.94E-96 

Fx  

p=5.46E-45 

A  

p=3.23E-38 

A  

p=0.004746 

LBPu2 Fx  
p=8.16E-38 

Fx  
p=4.95E-29 

A  
p=3.45E-121 

Fx  
p=1.05E-37 

Fx  
p=7.12E-12 

A  
p=1.01E-28 

LBPriu2 A  

p=1.73E-31 

A  

p=1.97E-37 

A  

p=8.12E-101 

A  

p=9.27E-42 

A  

p=1.09E-38 

A  

p=1.40E-06 

We can conclude that not all differences between performances of fixed and adaptive K-

means clustering algorithms are statistically significant. Seven different local features 

were varied among image classes in three databases. However, complicated images are 

discriminated using fixed K number of clusters value better than using adaptive version. 

5.6 Summary 

This chapter presented the first of two evaluation studies of the thesis. The chapter 

began by posing a number of research questions based on our analysis of existing work 

on the object-based image indexing proposed in (Nezamabadi-Pour & Saryazdi, 2005) 

that used a DCT-based local image feature and a basic K-means clustering algorithm to 
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obtain a feature set (i.e. cluster centroids) to represent an image. The research questions 

were related to the type of local image features, the number of clusters used to represent 

image content and how to determine such a number, and how to compare two images 

where each is represented by cluster centroids which may or may not be of the same in 

number. 

We evaluated seven different colour, texture, and colour-texture features. Moreover, 

three different distance functions were used to measure distances between two cluster 

centroids. Also, a new similarity measure, AgD, was proposed to compare two images 

based on their cluster centroids where the two images could have a different number of 

clusters. We evaluated the effects of using a large number of clusters to represent image 

content as opposed to the 10 clusters used by (Nezamabadi-Pour & Saryazdi, 2005). 

Then we proposed and evaluated the use of an adaptive technique to determine the 

number of clusters required in K-means clustering to represent a given image as 

opposed to fixing the number of clusters for all images irrespective of their content. All 

evaluations were based on image classification and retrieval results on three different 

image databases: WANG, Caltech6 and Caltech101. Finally, we evaluated statistical 

significance of the performances of different feature-cluster combinations.  

On local image features, our study found that: 

1. Combining DCT-C (colour) and DCT-T (texture) features into a single DCT-CT 

(colour and texture) has its benefits, especially with WANG and Caltech101 

databases. This showed that clustering local colour and texture features together 

leads to a better representation of image content compared to clustering only one 

type of feature.    

2. In the frequency domain, the DCT-CT feature was better than DWT-CT and 

DCT-Zigzag features because the DCT-CT feature vector captures local multi-

resolution texture information through standard deviations of high frequency 

coefficients. The feature vector has more discriminate power in texture and at 

the same time maintains its robustness through low dimensionality.  

3. In the spatial domain, the LBPu2 was generally better than LBPriu2 in capturing 

local image features, particularly in the WANG and Caltech6 database. 
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4. Overall, the DCT-CT feature was better than the other features in capturing local 

image features. However, the performance of LBPu2 and LBPriu2 features were 

closer to the DCT-CT feature in Caltech6 database. 

5. The performances of the features varied on different databases especially when 

the images content were quite complex and image classes were ambiguous.  

On evaluating the three distance functions, we found that image classification results 

with City block (DL1) and Euclidean (DL2) distances were lower than those achieved 

with Chi-Square (DChi-Sq) distance when we repeated the work of (Nezamabadi-Pour & 

Saryazdi, 2005). However, the situation was different with our proposed AgD similarity 

measure. Our proposed AgD similarity measure produced better image classification 

than the similarity measure employed by (Nezamabadi-Pour & Saryazdi, 2005). In 

general, DL1 and DL2 distances with the proposed AgD similarity measure outperformed 

DChi-Sq. However, the performance of the AgD similarity measure with the distance DChi-

Sq was better than both DL1 and DL2 distances when DCT-T and DCT-Zigzag features 

were used. 

On the number of clusters required to represent image content, this study found that: 

1. Using a fixed number of clusters, over and above than the 10 proposed in 

(Nezamabadi-Pour & Saryazdi, 2005), increased the discrimination power of 

image content – the best performance with the K-means algorithm was achieved 

with around 25 clusters after which we saw no improvement or a small decrease 

in results. However, only a small number of clusters (K=5) were required to 

represent an image when we used LBPu2 features to capture local image texture. 

This meant that fixing the number of clusters a prior is not necessarily the best 

solution for all different features.  

2. Our proposed adaptive K-means algorithm (AKM), used cluster quality to 

determine the K number of clusters adaptively. Compared to the fixed K 

algorithm (KM), the proposed AKM – generally produced less than 10 clusters – 

performed well with simple images (class of images with a clear/simple 

background and few foreground objects). However, image classes with 

complex/ambiguous content required a large number of clusters, hence the 

fixing the K number of clusters was the better option for such image classes.   
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Finally, we used the chi-square (2) test and the t-test to evaluate the significance of 

classification and retrieval performances respectively between the fixed and adaptive K-

means algorithms. Both tests indicated that not all differences between the performances 

of fixed and adaptive K-means clustering algorithms were statistically significant. 

Although the number of relevant images retrieved by each algorithm to a given query 

image was nearly the same, a closer look at the retrieved images showed that each 

algorithm could retrieve different examples of relevant images. 

In conclusion, the evaluation of different local colour, texture, and colour-texture 

features in frequency or spatial domains found that there is no one feature that 

outperforms all others and for all types of images. The number of clusters required to 

represent image content varies according on the image content and the type of local 

image features that are clustered. Examples of some image classes contain 

simple/unambiguous content whilst others contain complex content with some 

appearing in multiple classes. Different feature-cluster combinations could result in 

retrieving different examples of relevant images for the same query image.  

The K-means algorithm is simple and efficient and therefore is widely employed in 

clustering. However, the algorithm has limitations, such as poor quality clusters with 

different cluster size, and is sensitive to noise and outliers. Hence, we shall investigate 

clustering algorithms from other categories (i.e. model-based, graph-based, and density-

based) such as EM/GMM, Normalized Laplacian Spectral, and Mean Shift respectively. 

The next chapter is devoted to this second evaluation of the thesis. 
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Chapter 6  

 

Applying Different Clustering Algorithms 

for Content-Based Image Retrieval 

 

While Chapter 5 focused on effects of different image features and similarity measures 

for CBIR in the image segmentation based approach using only the K-means (partition-

based) clustering algorithm, this chapter will investigate effects of different clustering 

algorithms in forming mid-level segment features. The chapter expands the work about 

the K-means method presented in Chapter 5 by considering other types of clustering 

algorithms such as EM/GMM (model-based), Normalized Laplacian Spectral (graph-

based), and Mean Shift (density-based).  

The first part of the chapter presents the experimental results on the three benchmark 

databases (WANG, Caltech101, and Caltech6) in both situations when the number of 

clusters is fixed and when the number of clusters is adaptively determined for each 

clustering method. The chapter attempts to reveal how performance is affected by the 

use of a specific method. Both the recall rate for image classification and the precision 

rate for image retrieval are used for performance evaluation. The second part of the 

chapter compares performances of different types of clustering algorithms when fixed 

and optimal numbers of clusters are chosen. 

For ease of comparison and to put our investigation and discussions in a right context, 

we first summarise the performances of the K-means method on WANG, Caltech6, and 

Caltech101 databases presented in Chapter 5. Table 6.1 summarises the best 

performances of the K-means method on the three databases when the optimally fixed 

number of clusters is chosen or it is adaptively determined. The figures in the table 

show marginally better performances across the databases for both image classification 

and image retrieval when the fixed number of clusters is used with the K-means method. 
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Table 6.1: Applying KM and AKM to DCT-CT feature for image classification and retrieval  

Database 
Fixed K Adaptive 

K 

  
Database 

Fixed K Adaptive 

K K15 K50   K25 

WANG - 0.78 0.73   WANG 0.63 0.59 

Caltech6 0.92 - 0.89   Caltech6 0.81 0.78 

Caltech101 - 0.70 0.67   Caltech101 0.55 0.51 

                                                (a) Classification                                               (b) Retrieval 

However, after closer examinations using the chi-square test (2) on the differences of 

classification accuracy on individual image classes, the test has revealed, Table 6.2(a–

c), the performance differences are insignificant (significance threshold: p  0.05) for 

most image classes except for the Food class in the WANG database. For the Food class 

images, the classification accuracy, with the number of clusters fixed to 50, is 

significantly better than that with the number of clusters adaptively determined 

(p=0.0001). 

Table 6.2: 2- test for classification using KM and AKM algorithms 

E F B H M D P C L S 

× × × × × Fx 

p=0.0001 
× × × × 

(a) WANG 

 
Bo Ch Fc Kt Lp Wt  Cr Mo Ap Fc Lv 

× × × × × ×  × × × × × 

                                       (b) Caltech101                                                                       (c) Caltech6 

Table 6.3: t- test for retrieval using KM and AKM algorithms 

E F B H M D P C L S 

Fx 

p=0.006688 
× × × × Fx 

p=2.34E-05 
× × × × 

(a) WANG 

 

Bo Ch Fe Kt Lp Wt  Cr Mo Ap Fc Lv 

Fx  

p=0.047128 

Fx  

p=0.000143 

Fx  

p=0.000574 
× × ×  A 

p=3.10E-

177 

A 

p=6.98E-

76 

Fx 

p=4.81E-

65 

Fx 

p=3.13E-

113 

Fx 

p=1.07E-

15 

                               (b) Caltech101                                                            (c) Caltech6 

For image retrieval, however, a t-test (with the same significance threshold) upon the 

difference precision rates for each image class when the algorithm is used with the fixed 

25 clusters and adaptively determined value of K has revealed a quite mixed picture, as 

shown in Table 6.3 (a–c). For the WANG database, two image classes (Elephants (E) 

and Foods (D)) have significantly better retrieval results when the method used the 

fixed number of clusters. For the Caltech101 database, three out of six image classes 

(Bonsai (Bo), Chandelier (Ch), Face-Easy (Fe)) also have significantly better retrieval 
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results in favour of using the fixed number of clusters. For the Caltech6 database, the 

results show two extremes. For the Airplanes (Ap), Faces (Fc), and Leaves (Lv) classes 

of images, using the K-means method with the fixed 25 clusters yields significantly 

better retrieval precisions, whereas for the Car (Cr) and Motorcycle (Mo) classes of 

images, using the clustering methods with adaptively determined number of clusters 

yields significantly better retrieval results. We shall soon see how such results will 

compare with those produced by the other types of clustering algorithms. 

The K-means algorithm is simple and efficient. However, the algorithm can only 

discover clusters of convex shapes due to the use of pair-wise similarity measurement in 

an iterative process. The non-deterministic results due to pure random initialisation are 

also another major drawback of the method. Although this problem can be avoided by 

prior domain knowledge, such domain knowledge is hard to obtain for general solutions 

for CBIR. In addition, sensitivity to outliers and poor quality clusters where clusters of 

extremely different sizes are also limitations of the algorithm. These limitations may 

have affected the performance. Consequently, other clustering methods should be 

investigated in this chapter, and their performances compared with those of the K-means 

method. 

6.1 Applying EM/GMM Clustering Algorithm for CBIR 

This section focuses on the use of the model-based algorithm EM/GMM with fixed and 

adapted K clusters at the clustering stage of the framework as shown in Figure 4.1. The 

DCT-CT local feature was used as the extracted features, and the AgD measure with the 

DL1 distance function was used at the image matching stage.  

Although the basic EM/GMM algorithm assumes that K is known (see Chapter 3), 

attempts have been made in the past to automatically optimize the order of GMM. The 

CLUST algorithm (Bouman, et al., 1997) is a stable and available EM/GMM algorithm 

that determines the value of K according to the Rissanen’s Minimum Description 

Length (MDL) estimator (Rissanen, 1983) which minimizes the number of bits required 

to code data samples X of the parameters . Hence, the objective is to minimize the 

MDL given by: 

𝑀𝐷𝐿(𝐾, 𝛩) = −∑ log (∑ 𝑝(𝑥𝑛|𝑘, 𝜃)𝐾
𝑘=1  𝑎𝑘

𝑁
𝑛=1 ) +

1

2
𝐿 𝑙𝑜𝑔(𝑁𝑀)       6.1 
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𝐿 = 𝐾 (1 + 𝑀 +
(𝑀 + 1)𝑀

2
) − 1 

where N represents the number of data objects and M the dimensionality. Starting with a 

large value for K and terminating when K = 1, the CLUST algorithm, illustrated Figure 

6.1, iteratively derives the best fit GMM of order K to the data set using the EM 

algorithm and calculates the Rissanen’s MDL measurement. The algorithm then finds 

the optimal value for K that is associated with the MDL measurement.    

 

 

 

 

 

Figure 6.1:  CLUST algorithm. 

Figure 6.2 shows two examples of clustering DCT-CT features by the CLUST 

algorithm. Pixels from which the local DCT-DT feature vectors of the same cluster are 

extracted are colour-coded with the same shade of grey to highlight its cluster 

membership. For a simple image of two horses (Figure 6.2(a)), the resulting 4 clusters 

respectively reflect the foreground and background grasses, the horse bodies, the horse 

body outlines and shadows (Figure 6.2(b)). For a more complex image of a bus (Figure 

6.2(c)), there are more clusters reflecting objects of different colours, textures and 

shapes within the image (Figure 6.2(d)). At the same time, detailed subtle differences 

between the objects, such as passengers on the bus and small mid part of body bus are 

ignored, indicating that the MDL principle used in the CLUST algorithm tends to over-

simplify complex visual composition of certain images. However, if spatial information 

is included in DCT-CT feature, the effect of the MDL will be different. We shall 

therefore compare the performance of the adaptive number of clusters against that of the 

fixed number of clusters in more details within the context of using the EM/GMM 

algorithm in the next subsection.  

       

             (a) Horse image                    (b) k=4                          (c) Bus image                      (d) k=7 

Figure 6.2: Segmentation by CLUST algorithm using DCT-CT feature. 

Step 1: Initialize K with a large number of clusters; 

Step 2: Apply EM algorithm on GMM (): Θ = { θ1, θ2, … , θk }, where 𝜃𝑘 = (𝜇𝑘, 𝜎𝑘
2, 𝑎𝑘); 

Step 3: Calculate Minimum Description Length MDL (); 

Step 4: If k > 1, merge two closest clusters, set k = k – 1 and go to step 2; 

Step 5: Select the optimal K with the minimum MDL (K,).  
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6.1.1 Evaluation of the EM/GMM Clustering Algorithm by Image Classification  

Table 6.4 lists the average recall rates (%) for image classification using clusters 

produced by the EM/GMM algorithm. We list the recall rates when fixed K cluster 

values from 5 to 55 are used. We also list the results from the CLUST algorithm for 

comparison purposes and the adaptive K cluster values were between (3 and 9) for 

WANG, (2 and 8) for Caltech101, (2 and 10) for Caltech6 databases.  

Table 6.4: Average Recalls applying EM/GMM and CLUST algorithms on DCT-CT feature for classification using DL1 

Database 
Fixed K Adaptive 

K K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 K55 

WANG 80 77 76 78 76 80 82 81 83 81 85 82 

Caltech101 66 66 66 67 68 67 71 71 71 71 74 61 

Caltech6 92 94 93 93 93 93 93 94 94 94 94 93 

 

The table shows that with the EM/GMM algorithm, the recall rates for the Caltech6 

database are generally high in 93-94% whereas those for the WANG database are more 

modest in the range between 76% and 85%, but the recall rates are the worst for the 

Caltech101 database. Overall, the results are better than those produced by the K-means 

method except for the Caltech101 database when the number of clusters is adaptively 

determined. Also, for the fixed K, as the K value increases, the recall rates improve for 

all three databases, with the best results when K = 55. Using the adaptively determined 

K has similar performance to that of using the fixed K for the WANG and Caltech6 

databases. Only when K = 45 or K= 55, the accuracies are marginally better than the 

adaptive K for WANG database (maximum 3%). For Caltech6 databases, the 

performance is marginally better than the adaptive K when using K  40. However, for 

the Caltech101 database, use of a fixed number of K seems outperforming the use of an 

adaptive K with a large margin, as high as 13%, when K = 55.  

We need to look into the possible causes of such differences at the image class level. 

Figure 6.3 shows the detailed recall rates for all the image classes in the WANG 

database. The first look of the chart suggests that the performances using the EM/GMM 

algorithm with the fixed number of clusters, especially when K=55 for certain image 

classes, such as Foods, People, Beach, and Buildings, are better than the results that the 

CLUST algorithm with the adaptive K delivers. However, the CLUST algorithm works 
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well for certain classes such as Flowers and Dinasours. The performance difference for 

other classes is less clear. 

 

Figure 6.3: Recall of Applying EM and CLUST algorithms on DCT-CT feature using DL1 on WANG. 

A similar inspection of the recall rates for the 6 classes of the Caltech101 database in 

Figure 6.4 reveals that the EM/GMM with the fixed K number of clusters, particularly 

when K takes a large number such as 55, outperforms that with the adaptive number of 

clusters for all image classes except face and arguably watch images. The results 

presented for images of Caltech6 classes in Figure 6.5 gives a different reading: using 

the CLUST algorithm is sufficient, and the performance differences between EM/GMM 

clustering with the fixed K and the adaptive K are only marginal. 

 

Figure 6.4 : Recall of Applying EM and CLUST algorithms on DCT-CT feature using DL1 on Caltech101. 

 
Figure 6.5: Recall of Applying EM and CLUST algorithms on DCT-CT feature using DL1 on Caltech6. 
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Table 6.5(a–c) shows the outcomes of the 2 test and further clarifies the observations 

made earlier. According to the p values, the most significant differences in performance 

in favour of the large fixed number of clusters K = 55 happen to the Buildings (L) and 

Leopards (Lp) classes, then People (P) class, followed by Bonsai (Bo) and Chandelier 

(Ch) classes, whereas the most significant differences in performance in favour of the 

adaptive K happen to the Flowers (F) class followed by the Dinasours (S) class. It is 

worth noting that for the rest of the classes across the three databases, the performance 

differences are insignificant.  

Table 6.5: 2- test for classification applying EM and CLUST algorithms on DCT-CT feature using DL1 

E F B H M D P C L S 

× A 

p=0.0074 
× × × × Fx 

p=0.0140 
× Fx 

p=0.0001 

A 

p=0.0382 

(b) WANG 

 
Bo Ch Fe Kt Lp Wt  Cr Mo Ap Fc Lv 

Fx 

p=0.0346 

Fx 

p=0.0452 
× × Fx 

p=0.0001 
×  × × × × × 

                                       (b) Caltech101                                                                       (c) Caltech6 

 

To gain more insight about these classes in the three databases, confusion matrices for 

the classifications are presented in Table 6.6, 6.7 and 6.8. The confusion matrices make 

some interesting readings in support of the fixed K. First, for the image classes where 

the fixed K gives significantly better or close recall rates to the adaptive K, the 

improvement comes not only from reducing the number of false negative images, but 

also limit the number of false negative classes, although this seems more obvious in 

WANG and Caltech6 than Caltech101. For instance, the number of People images that 

are falsely classified as others is reduced from 39 in the case of the adaptive K to 22 

with the fixed K = 55. At the same time, the number of false negative classes is also 

reduced from 8 to 4 classes. Second, for the image classes where the fixed K has inferior 

performances, the number of false positive images is generally lower than that by the 

adaptive K, promising a better performance for image retrieval.  

Table 6.6: Confusion matrix: applying CLUST to DCT-CT using DL1 in WANG database (Abbreviations: E: 

Elephants, F: Flowers, B: Buses, D: Food, H: Horses, M: Mountains, P: People, C: Beach, L: Buildings, and S: Dinosaurs) 

 E F B D H M P C L S   E F B D H M P C L S 

E 92 0 0 1 1 2 3 1 0 0  E 94 0 0 0 2 0 1 1 2 0 

F 0 99 0 0 0 0 1 0 0 0  F 0 89 0 0 0 0 11 0 0 0 

B 0 0 95 0 0 0 0 1 4 0  B 0 0 92 0 0 0 0 1 7 0 

D 7 2 3 70 1 1 12 1 2 1  D 7 0 1 80 0 1 7 0 4 0 

H 0 0 0 0 99 0 0 1 0 0  H 1 0 0 0 99 0 0 0 0 0 

M 4 0 4 0 0 84 0 6 2 0  M 3 0 2 0 0 72 2 17 4 0 

P 16 2 2 5 4 5 61 3 2 0  P 15 0 0 2 0 0 78 1 4 0 

C 3 3 9 0 0 11 0 68 6 0  C 8 0 1 0 1 9 1 73 7 0 

L 4 1 13 1 2 10 13 3 53 0  L 5 1 1 0 1 1 6 4 81 0 

S 0 0 0 0 0 0 0 0 0 100  S 1 0 0 1 0 1 2 0 1 94 

                                             (a)  Adapted K                                                                  (b) K=55 
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Table 6.7: Confusion matrices: applying CLUST to DCT-CT using DL1 in Caltech101 database (Abbreviations: Bo: 

Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, and Wt: Watch) 

 Bo Ch Fe Kt Lp Wt   Bo Ch Fe Kt Lp Wt 

Bo 60 13 17 3 0 7  Bo 75 8 7 2 3 5 

Ch 19 35 21 6 0 19  Ch 16 50 15 6 1 12 

Fe 0 0 99 0 0 1  Fe 1 0 99 0 0 0 

Kt 5 1 25 63 0 6  Kt 2 2 18 74 0 4 

Lp 11 6 10 3 70 0  Lp 5 0 1 0 94 0 

Wt 18 13 27 1 0 41  Wt 21 7 18 5 0 49 

                                                           (a)  Adapted K                                         (b) K=55 

Table 6.8: Confusion matrix: applying CLUST on DCT-CT using DL1 in Caltech6 database (Abbreviations: Cr: 

Cars, Mo: Motorcycles, Ap: Airplanes, Fc: Faces, Lv: Leaves) 

 Cr Mo Ap Fc Lv   Cr Mo Ap Fc Lv 

Cr 100 0 0 0 0  Cr 100 0 0 0 0 

Mo 1 82 1 12 4  Mo 11 76 8 0 5 

Ap 2 1 92 2 3  Ap 1 0 92 0 7 

Fc 0 1 0 97 2  Fc 0 0 0 99 1 

Lv 0 0 0 4 96  Lv 0 0 2 0 98 

                                                           (a)  Adapted K                                         (b) K=55 

Further inspections of the images indicate that the CLUST algorithm performs well on 

images with dominating main objects against simple background such as Dinosaurs, 

Flowers and Horses, but for images with complex local colour and texture variations 

such as People, Buildings and Leopards the EM/GMM with a fixed large number of 

clusters works better. Figure 6.6 shows samples of these images. 

              

                      (a) Dinasours                                              (b) Flowers                                          (c) Horses 
 

              

                     (d) African People                                     (e) Buildings                                           (f) Leopards 

Figure 6.6: Sample of databases images. 

This observation is plausible from the algorithm point of view. The EM/GMM 

algorithm produces ellipsoid-shaped clusters and each data point has a likelihood on 

which cluster it belongs to, which is directly related to the number of clusters. For 

simpler images similar to those in Figure 6.6(a–c), the MDL principle in the CLUST 

algorithm optimises the main shapes of similar colours and textures into a small number 

of ellipsoid clusters. However, for complex images, as shown in Figure 6.6(d–e), 

because the extracted DCT-CT local feature vectors do not contain spatial information, 

local small visual objects of similar colour and texture within the complex images may 

be taken as members of the same clusters, which then confuse with objects of images of 
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other classes. The MDL principle minimises the number of clusters, which in turn 

increases the degree of this confusion. The EM/GMM algorithm with a fixed large 

number of clusters can discriminate those local small visual objects in such images and 

consequently improve accuracy of image classification. In conclusion, the EM 

algorithm can produce meaningful clusters in two cases, adaptive and fixed versions. 

This is unlike the K-means algorithm whose performance is not much affected after 

K=25 in retrieval.  

Shape of Clusters 

The AgD measure uses values of a distance matrix that is obtained by DL1 distance 

function between the centroids of the clusters of the two images. In the EM/GMM 

algorithm, this means the distances between the centres of ellipsoid shaped clusters. For 

example, Figure 6.7 shows distribution of two clusters (i.e. two multivariate Gaussian 

distributions) and they are different in shapes. It will be interesting to find out whether 

the shapes of the clusters indicated by the covariance matrices make any differences in 

measuring the dissimilarity and hence the results of image classification.  

 

Figure 6.7: Gaussian Mixture Model with two clusters. 

We conducted an experiment where the resulting mean vectors and covariance matrices 

from the resulting clusters of the CLUST algorithm were used in measuring 

dissimilarity between the two images with the DKLD distance to build the distance 

matrix and then the AgD measure is used. The average recall rates of image 

classification for the three test databases are presented in Table 6.9(a–c), and the more 

detailed confusion matrices are shown in Table 6.10(a–c). 
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Table 6.9: Shape of clusters for image classification 

Distance E F B D H M P C L S Average 

DL1 92 99 95 70 99 84 61 68 53 100 82 

DKLD 85 98 96 76 97 67 88 56 68 100 83 

                                                                                             (a) WANG 

 

Distance Cr Mo Ap Fc Lv Average  Distance Bo Ch Fe Kt Lp Wt Average 

DL1 100 82 92 97 96 93  DL1 60 35 99 63 70 41 61 

DKLD 100 70 46 100 100 83  DKLD 28 12 100 1 10 21 29 

                                        (b)  Caltech6                                                                                 (c) Caltech101 

Table 6.10: Confusion matrices: applying CLUST to DCT-CT using DKLD 

 E F B D H M P C L S 

E 85 1 0 4 1 1 6 1 1 0 

F 0 98 0 0 1 0 1 0 0 0 

B 0 0 96 3 0 0 0 1 0 0 

D 2 7 2 76 0 0 13 0 0 0 

H 2 0 0 0 97 0 0 1 0 0 

M 10 1 4 3 0 67 3 9 3 0 

P 7 0 0 1 1 1 88 1 1 0 

C 10 2 6 3 2 18 2 56 1 0 

L 5 3 10 3 0 2 8 1 68 0 

S 0 0 0 0 0 0 0 0 0 100 

(a) WANG 

DKLD Cr Mo Ap Fc Lv  DKLD Bo Ch Fe Kt Lp Wt 

Cr 100 0 0 0 0  Bo 28 1 69 0 0 2 

Mo 1 70 0 10 19  Ch 10 12 67 4 0 7 

Ap 0 13 46 6 35  Fe 0 0 100 0 0 0 

Fc 0 0 0 100 0  Kt 5 1 92 1 0 1 

Lv 0 0 0 0 100  Lp 22 5 63 0 10 0 

       Wt 27 4 47 1 0 21 

                                                     (b)  Caltech6                                              (c) Caltech101 

 

The test results from the two tables give a very mixed reading. For the WANG database, 

taking the shape of cluster into consideration at image matching stage does improve 

classification recall rates for certain classes of images with more local variations such as 

Foods, People and Buildings. In particular, the recall rate for People class of images has 

increased by 27%, even 10% higher than that by using a large number of clusters (K = 

55). At the same time, the average recall rates have decreased for the Elephants, 

Mountains, and Beach classes because the confusions with other classes have 

respectively increased (Table 6.10(a)). 

For the images from the Caltech6 and Caltech101 databases (Table 6.9(b–c)), when 

DKLD distance is used to build the distance matrix in image matching, the recall rates for 

all classes except face images are significantly inferior comparing to those when the DL1 

distance is used. The confusion matrix in Table 6.10(b) shows that many motorcycle 
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and airplane images are classified as Leaf images. The confusion matrix in Table 

6.10(c) shows that many images of different classes are classified as Face images. The 

results should be due to the similarity in colour and texture among images of different 

classes, especially the background. In addition, image sizes are varied. This led to 

increase the chance of matching adaptively determined ellipsoid shapes produced by the 

CLUST algorithm. This finding for WANG standard database was presented in (Al-

Jubouri, et al., 2013).  

6.1.2 Evaluation of EM/GMM Clustering Algorithm by Image Retrieval  

This section looks into image retrieval when the EM/GMM algorithm with fixed K and 

the CLUST algorithm are used at the clustering stage of the framework shown in Figure 

4.1. Again, the DCT-CT local feature was used at the feature extraction stage, and the 

AgD measure with DL1 is used when comparing two images.  Experiments were 

conducted on the three databases, and the mean average precision (MAP) using fixed 

values for K are shown for the Top 10-100 retrieved images in Appendix D. Here, we 

shall only show the rates for the Top 10 in both situations when the fixed values for K 

and adaptively determined K are respectively used.  

From Table 6.11, it is clear that the best mean average precision is when K=55, higher 

than the adaptively determined K situation across all the three databases, in the context 

of applying the EM/GMM algorithm. From Table 6.12(a–c) shows that across the three 

databases at image class level, except for the Dinosaurs and Flowers classes, if the 

accuracies between fixing K to 55 and adaptively determining K value are significantly 

different (shown by t-test), the differences are in favour of a large fixed number of 

clusters (K = 55). This happens more to the images that are rich in visual content as 

observed earlier in the image classification. Thus, generating more clusters of ellipsoid 

shapes for such an image leads to the increase in images of the same class being 

retrieved.  

Table 6.11: MAP applying EM and CLUST algorithms to DCT-CT feature for Top10 using DL1 

Database 
Fixed K Adaptive 

K K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 K55 

WANG 0.64 0.60 0.59 0.61 0.60 0.65 0.66 0.67 0.68 0.68 0.69 0.67 

Caltech6 0.83 0.84 0.85 0.86 0.87 0.87 0.88 0.88 0.88 0.89 0.89 0.83 

Caltech101 0.54 0.56 0.56 0.55 0.57 0.58 0.59 0.59 0.60 0.60 0.61 0.51 
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Table 6.12: t-test for retrieval using EM and CLUST algorithms to DCT-CT feature using DL1 

E F B H M D P C L S 

Fx 
p=2.51E-64 

A 
p=0.003767 

× × × × Fx 
p=7.84E-05 

× Fx 
p=4.97E-08 

A 
p=4.79E-14 

(a) WANG 

Cr Mo Ap Fc Lv  Bo Ch Fe Kt Lp Wt 

× Fx 

p=0.004561 
× Fx 

p=7.36E-05 
×  × × × Fx  

p=0.049211 

Fx  

p=8.80E-13 
× 

                        (b) Caltech6                                                                              (c) Caltech101 

Figure 6.8(a–d) presents the Top 10 retrieved images for a given query image from 

Buildings, People, Dinasours, and Flowers classes respectively. The 10 images on the 

first row are the outcomes when an adaptive K is used, whereas the 10 images on the 

second row are the outcomes when the fixed K = 55 is used. From this example, the 

adaptively determined K values by the CLUST algorithm have confused and included 2 

mountain images and 3 beach images in the Top10 list for the building query image 

because of the dominating background colour. For the people query image, the method 

has resulted in the inclusion of 1 food image, 2 horse images and 3 elephant images in 

the Top10 list. Using the EM/GMM with a large fixed value for K (K = 55), the local 

variations of colour and texture are taken into consideration when two images are 

compared. Only 1 mountain image is included at the 8th position in the Top10 list for the 

building query image, and only 1 elephant and 1 food image are included in the Top10 

list for the people query image. 

On the other hand, the example also demonstrates that for images with a dominating 

simple object in the foreground, the CLUST algorithm produces better retrieval result 

lists. For the dinosaur query image, the method returns only 1 image of the Elephant 

class at position 10, and for flower query image, 1 image of the People class at position 

4. This is in contrast with the result lists produced by the EM/GMM algorithm with a 

large fixed K. For the dinosaur query image, the result list contains 3 images of the 

People class at 2nd, 8th and 9th position and 1 image of the Foods class at 7th position. 

For the flower query image, 4 images of the People class occupy the 1st, 4th, 6th and 9th 

positions, and 1 image of the Foods class is ranked at the 5th position of the list.  
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                                                                                   (a) 

 
                                                                                  (b) 

(c) 

 
                                                                               (d) 

Figure 6.8: Top 10 retrieved images from using EM/GMM algorithm with adaptive and fixed K clusters. 
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Shape of Clusters 

Similar to image classification, we want to know whether cluster shapes, taken into 

consideration at image matching stage, affect the image retrieval results. Using the same 

setting as explained in the previous section, we conducted a test on the three databases. 

Table 6.13(a–c) presents the precision rates for Top 10 retrieved images for each class 

of the databases using the AgD measure with DKLD comparing to those using the AgD 

with DL1. For images of certain classes such as Flowers, Foods, People, and Buildings 

classes in the WANG database and images of Faces and Leopard classes in the 

Caltech101 database, taking the shapes of the clusters into consideration improves the 

retrieval results, by as high as 24% for the People class and as low as 1% for the Bus 

images. However, considering shapes of clusters has no effect on the image classes in 

the Caltech6 database and marginally worse results for the images of the other classes 

across the databases. 

Table 6.13: Shape of clusters for image retrieval 

Distance E F B D H M P C L S Average 

DL1 0.67 0.88 0.80 0.52 0.88 0.54 0.48 0.55 0.44 0.95 0.67 

DKLD 0.59 0.93 0.81 0.57 0.90 0.48 0.72 0.47 0.59 0.98 0.70 

(a) WANG 

Distance Cr Mo Ap Fc Lv Average 

DL1 0.99 0.67 0.74 0.88 0.91 0.84 

DKLD 0.99 0.67 0.74 0.88 0.91 0.84 

                                                                                            (b)  Caltech6 

Distance Bo Ch Fe Kt Lp Wt Average 

DL1 0.41 0.27 0.91 0.51 0.59 0.38 0.51 

DKLD 0.37 0.24 0.96 0.46 0.68 0.37 0.51 

                                                                                           (c) Caltech101 

Figure 6.9(a) shows an example of using a person query image from People class and 

the Top 10 retrieval results when DL1 (first row) and DKLD (second row) are used 

respectively. The query image shows the face and shoulders of the person in the 

foreground and grass and trees in the background. The first row contains 4 relevant 

images of the People class and 6 irrelevant images of other classes. However, the 

irrelevant images also contain grass and trees which are similar to the background of the 

query image, and some objects of a similar colour and texture to the body of the person 

in the foreground such as elephants. The reason behind this inclusion is that the AgD 

measure used DL1 to calculate dissimilarity between the query and database images 
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which are represented by centroids of clusters only. Meanwhile, the retrieved list in the 

second row contains full 10 relevant images that include the face and/or shoulders of the 

person in the query image, because the AgD measure used DKLD to calculate the 

similarity between these images which are indexed by centroids and covariance 

matrices of clusters. In other words, ellipsoid-shaped clusters are regarded in addition to 

the centroids to represent images; therefore image discrimination is increased when 

matching is calculated. As clarified in Figure 6.7 earlier the clusters can be different in 

shape. Hence, consideration the shapes can distinguish clusters in some images. 

However, the similarity of cluster shapes in images of different classes may result in 

inclusion of images of irrelevant classes too. As shown in Figure 6.9(b), for elephant 

query image, the cluster shapes bring irrelevant images from Beach and Mountains 

classes in ranked positions 5, 7, 8, 9, and 10 in the second row including clouds and 

water. At the same time, using cluster centroids only helps to pick relevant images of 

elephants and images of Mountain class that have segments of colour and texture 

similar to the query image such as sky and mountains in the first row. 

 

 
                                                                                   (a) 

 

 
                                                                                  (b) 

Figure 6.9: Top 10 retrieved images from using CLUST algorithm with DL1 and DKLD distances. 
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From the test results, it seems that the benefits of cluster shape very much relate to the 

image content. We certainly need more investigation about the effects of cluster shapes, 

where spatial information may be included into the extracted features and fixed large 

values of K are used rather than adaptively determined. This will be tested in the future 

work to gain more understanding about the benefit of cluster shape.  

6.2 Applying Normalized Laplacian Spectral Clustering Algorithm for 

CBIR 

This section evaluates the use of the graph-based Normalized Laplacian Spectral 

clustering algorithm with fixed and adapted clusters at the clustering stage of the 

framework in Figure 4.1. The DCT-CT local feature was again used at the stage of 

extracted features, and the AgD measure with DL1 distance function was used at the 

matching of two images stage. 

The Normalized Laplacian algorithm explained in Chapter 3 was applied in our work in 

the following fashion: First, the City block (DL1) distance function was used to build an 

affinity matrix that contains pair-wise distances between the DCT-CT local feature 

vectors. Then, a normalized Laplacian matrix (L) of the affinity matrix is calculated to 

compute the first K orthogonal eigenvectors according to the largest magnitude 

eigenvalues. Rows of resulted matrix 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑘] ∈ ℝ𝑛×𝑘 are renormalized to 

have unit length in (Y) matrix to minimize distortion. The rows of this matrix are 

regarded as points in ℝ𝑘and fed to a conventional clustering algorithm. Then the 

original point (i.e. feature) is assigned to cluster k if and only if the corresponding row i 

of the matrix is assigned to cluster k. 

The number of clusters is an issue with this algorithm like the others, and the interesting 

question is how many eigenvectors should be determined and used for clustering. Von 

Luxburg (Von Luxburg, 2007) used an existing heuristic method that is designed for 

spectral algorithm known as eigengap. The method states that when the difference 

between two successive eigenvalues for instance 4th and 5th is large, hence the number 

of clusters will be 4. However, when noise is present or clusters may be overlapping, 

this method will produce ambiguous clusters. Because of the good performance of the 

CLUST algorithm as shown before, we made a simple decision on what conventional 

clustering algorithm to use for the final step of spectral clustering: we use the basic K-

means algorithm if the spectral clustering algorithm takes the fixed number of K clusters 
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(we call this version of the algorithm SP), or the CLUST algorithm if the spectral 

clustering algorithm produces an adaptively determined number of clusters (we call this 

version of the algorithm ASP). 

To illustrate the effects of different number of clusters, we take an image of an elephant 

as an example (Figure 6.10(a)). 10 eigenvectors from the (Y) matrix are fed into the 

CLUST algorithm step of the ASP algorithm. The MDL measure in the CLUST 

algorithm optimized them to 7 eigenvectors (Figure 6.10(b)). We can see that most of 

the clusters correspond to meaningful objects in the image except the mountain range 

and some parts of elephant ears are merged as one cluster. This indicates that the 

principle of the MDL measure is trying to minimise the number of clusters (7), over-

simplifying complex visual composition of the image. Meanwhile, when the fixed 

number of 15 eigenvectors is fed into the K-means method step of the SP algorithm, 5 

dominant clusters correspond to the main objects in the image, i.e. light sky part, dark 

sky part, the mountain range, elephant’s ears, and elephant’s body. In addition, the 

remaining smaller clusters capture edges, borders between the main objects and details 

of variations in colour and texture in the grass area (Figure 6.10(c)). However, further 

increasing the number of eigenvectors to (when eigenvalues become close to each other 

as indicated in Figure 6.10(e)) does not seem to add more information rather than 

further break-down the dominant clusters into smaller ones (Figure 6.10(d)).  

    
       (a) Original Image                    (b) K=7                            (c) K=15                          (d) K=20 

 
(e) Eigenvalues 

Figure 6.10: Segmentation by ASP and SP algorithms using DCT-CT feature. 

-0.5

0

0.5

1

1.5

0 5 10 15 20

Ei
ge

n
va

lu
e

s

K



Chapter 6: Applying Different Clustering Algorithms for Content-Based Image Retrieval  

______________________________________________________________________ 

112 
 

6.2.1 Evaluation of Normalized Laplacian Spectral Clustering Algorithm by Image 

Classification 

Both the SP and ASP algorithms were tested on WANG, Caltech6, and Caltech101 

databases. Table 6.14 illustrates classification accuracies of using adaptive K clusters 

and using fixed K clusters from 5 to 50. The results with fixed clusters are higher than 

with adaptive clusters, as observed with the EM/GMM and K-means algorithms. The 2 

tests are conducted to judge the significant differences between recall rates for all image 

classes of the three databases. We choose to compare the adaptive K against the fixed 

K=50 for the WANG database, K=40 for the Caltech101 database, and K=15 for the 

Caltech6 database when the different fixed K values give the best overall average 

performances. The test results are presented in Table 6.15(a–c). It is clear that half of 

image classes (WANG), Watch (Caltech101), and Faces (Caltech6) tend to be in favour 

of the fixed numbers of clusters.  

Table 6.14: Average Recall applying SP and ASP algorithms on DCT-CT feature for classification using DL1 

Database 
Fixed K Adaptive 

K K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

WANG 76 80 82 82 83 82 81 84 83 84 71 

Caltech101 65 69 66 69 67 68 68 70 69 67 65 

Caltech6 91 93 95 95 95 95 94 93 95 95 89 

  

Table 6.15: 2- test for classification using SP and ASP algorithms on DCT-CT feature using DL1 

E F B H M D P C L S 

Fx 
p=0.0001 

× Fx 
p=0.0038 

Fx 
p=0.0001 

× × Fx 
p=0.0001 

× Fx 
p=0.0149 

× 

(a) WANG 

Bo Ch Fe Kt Lp Wt  Cr Mo Ap Fc Lv 

× × × × × Fx 

p=0.0152 
 × × × Fx 

p=0.0003 
× 

                                      (b) Caltech101                                               (c) Caltech6 

 

6.2.2 Evaluation of Normalized Laplacian Spectral Clustering Algorithm by Image 

Retrieval  

This section presents the results of image retrieval by using the SP and ASP algorithms 

under the same setting as described in section 6.1.2. Table 6.16 shows MAP of retrieval 

using fixed K cluster values from 5 to 50 and an adapted version for the three databases. 

Also, the t-test was used to determine the significance level between adaptive K and 

fixed K=15, as shown in Table 6.16(a–c).  
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Table 6.16: MAP applying SP and ASP algorithms to DCT-CT feature for Top 10 using DL1 

Database 
Fixed K Adaptive 

K K5 K10 K15 K20 K25 K30 K35 K40 K45 K50 

WANG 0.61 0.66 0.69 0.69 0.68 0.68 0.68 0.69 0.70 0.70 0.56 

Caltech6 0.86 0.88 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.80 

Caltech101 0.55 0.56 0.56 0.55 0.57 0.58 0.59 0.59 0.60 0.60 0.52 

 

Table 6.17: t-test for retrieval using SP and ASP algorithms on DCT-CT feature using DL1 

E F B H M D P C L S 

Fx 
p=2.91E-

18 

× Fx 
p=1.16E-

15 

Fx 
p=5.55E-

09 

Fx 
p=0.011564 

Fx 
p=0.001582 

Fx 
p=5.54E-

10 

× Fx 
p=0.021305 

A 
p=0.002477 

(a) WANG 

Bo Ch Fe Kt Lp Wt  Cr Mo Ap Fc Lv 

× A 

p=0.007069 

Fx  

p=1.60E-
11 

× Fx  

p=0.000143 

Fx  

p=0.002299 

 Fx 

p=0.014158 

Fx 

p=1.57E-
05 

× Fx 

p=2.18E-
10 

× 

                                                   (b) Caltech101                                                     (c) Caltech6 

In the context of spectral clustering, not only overall average retrieval precision rates for 

using a fixed number of clusters are better than those using the adaptively determined 

number of clusters, but also for most image classes across the three databases, the 

retrieval performances are overwhelmingly in favour of using a fixed number of 

clusters. It is worth noting that increasing the number of clusters improves the retrieval 

performances for images from both the WANG and Caltech101 databases while the 

retrieval performances for images from the Caltech6 database plateaued from K = 20 

onwards. 

Figure 6.11(a–c) shows retrieved images lists for a query image from Buildings, Foods, 

and Dinasours classes respectively. In Figure 6.11(a), the adaptive version of algorithm 

(ASP) returns 4 relevant images at 2nd, 3rd, 5th and 9th positions, whereas the SP 

algorithm with the fixed K=15 returns 6 relevant images of the class in the first 6 

positions. Besides, the returned images, relevant or not, are different from those 

returned by the CLUST and EM/GMM algorithms, indicating that the clustering 

algorithms make a difference in the retrieval result lists. Figure 6.11(b) also shows that 

SP with a fixed K=15 returns 9 out of 10 relevant images, 4 images more than those 

returned by the ASP version. It is worth noting that the returned images from ASP are 

completely different from those returned by SP. Those returned by ASP have much 

fewer colour and texture variations than those returned by SP. Figure 6.11(c) further 

confirms a similar finding to the CLUST vs. EM/GMM case: the performance of ASP 

are better than that of SP for such images containing a dominating single visual object 
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in the foreground. Again, it is worth noting that relevant images returned by the two 

types of clustering algorithms are different. 

 

                                                                                  (a) 

 
                                                                                   (b) 

 
                                                                                (c) 

Figure 6.11: Top 10 retrieved images from using ASP and SP (K=15) algorithms. 

Unlike other categories of clustering algorithms such as K-means (partition-based) and 

EM/GMM (model-based), instead of clustering the data points in the original vector 

space, the spectral clustering algorithm attempts to partition the connection similarity 
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graph (i.e. clustering) by first transforming the data connection similarities into 

eigenvector space. The normalisations deployed by the Normalized Laplacian Spectral 

algorithm when matrices (L) and (Y) are calculated further enhance the cluster 

properties for the rows in the Y matrix in forming pronounced clusters on the surface of 

the k-sphere (Ng, et al., 2001). These properties of the algorithm enable the discovery of 

complex shaped clusters in the original DCT-CT vector space (see section 6.4 for 

further discussions). 

6.3 Applying Mean Shift Clustering Algorithm for CBIR 

Mean Shift algorithm (MSH) was applied at the clustering stage in Figure 4.1. As 

explained in Chapter 3, density-based algorithms have limited capability in handling 

data of high dimensionality because the very concept of density diminishes when data 

are diverse in the high dimensional space. Therefore, the algorithm was only applied to 

the DCT-C feature (i.e. colour elements) from the feature extraction stage. The AgD 

measure with DL1 distance function was used at the stage of matching two images.  

Unlike other clustering algorithms, the MSH algorithm does not require a predefined 

value of K as a parameter. In other words, the number of clusters is determined by the 

definition of density: dense regions of objects in the data space are isolated from regions 

of low density. However, a bandwidth parameter needs to be predefined as a definition 

of density. It is not a trivial parameter, and may have to be set according to heuristics or 

automated ways (Chacón & Monfort, 2013).  

In our experiments, we restricted ourselves to a maximum number of 10 clusters, like 

AKM, CLUST, and ASP clustering algorithms we have experienced, and specified the 

value of the h parameter from a set of numbers (10, 20, 30, 40, or 50) accordingly. We 

iteratively apply the MSH for each image with initial h=10. As long as K>10, we 

increment h by 10 and reapply the MSH algorithm until K10. Figure 6.12(a–d) shows 

two examples of food and mountain images with segments on DCT-C features 

generated by the MSH algorithm. The segments do coincide largely with the visual 

objects within the images. However, detailed variations in food items and people in the 

front of the mountain scene are ignored.  
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            (a) Food image                    (b) k=5 and h=30                (c) Mountain image                (d) k=7 and h=40 

Figure 6.12: Segmented by applying MSH algorithm on DCT-C feature. 

6.3.1 Evaluation of Mean Shift Clustering Algorithm by Image Classification 

Table 6.18 shows the recall rates of classification for WANG, Caltech6, and Caltech101 

databases. The best recall rates are for images of the Flowers (F), Horses (H), and 

Dinasours (S) classes in WANG, Faces-Easy (Fe) and Leopards (Lp) classes in 

Caltech101; Car (Cr), Faces (Fc), and Motorcycle (Mo) classes in Caltech6 are like the 

performances of the CLUST, ASP, and AKM clustering algorithms, but at different 

recall rates. Table 6.19(a) illustrates a confusion matrix for WANG database, where a 

big confusion appears with Beach class. 25, 20, and 16 images are misclassified as 

Mountains (M), Buildings (L), and Buses (B) respectively. The second worst class is 

Elephants (E), where 19 images confused with Buildings class because DCT-C colour 

feature is used only with this algorithm, therefore the similarity in colour among images 

from different classes causes the confusion and Figure 6.13 shows samples of these 

images. 

Table 6.18: Recall measure using MSH algorithm on WANG, Caltech6, and Caltech101 Databases 

WANG E F B D H M P C L S Average 

 59 81 76 76 89 63 69 28 74 95 71 

(Bouker & Hervet, 2011) 30 30 67 52 50 52 44 57 34 69 49 

Caltech101 Bo Ch Fe Kt Lp Wt      

 48 40 70 56 81 50     58 

Caltech6 Cr Mo Ap Fc Lv       

 100 83 63 71 50      73 
 

Table 6.19: Confusion matrices: applying MSH to DCT-C using DL1 

 E F B D H M P C L S 

E 59 0 2 2 4 5 7 2 19 0 

F 2 81 6 7 0 0 1 2 1 0 

B 2 0 76 2 0 8 6 0 6 0 

D 0 2 2 76 0 0 12 0 4 4 

H 1 0 0 2 89 0 1 2 2 3 

M 8 0 10 0 0 63 1 8 10 0 

P 6 0 1 8 0 1 69 0 11 4 

C 4 0 16 2 0 25 4 28 20 1 

L 7 0 2 2 0 6 4 1 74 4 

S 0 0 0 0 0 1 3 1 0 95 

(a) WANG 
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 Cr Mo Ap Fc Lv   Bo Ch Fe Kt Lp Wt 

Cr 100 0 0 0 0  Bo 48 16 3 8 9 16 

Mo 8 83 2 6 1  Ch 17 40 6 10 5 22 

Ap 9 15 63 10 3  Fe 7 10 70 2 0 11 

Fc 11 13 5 71 0  Kt 5 14 9 56 0 16 

Lv 22 9 6 13 50  Lp 11 2 4 1 81 1 

       Wt 11 18 5 13 3 50 

                                                     (b)  Caltech6                                              (c) Caltech101 

 

            
                                 (a)  Mountains                                                                           (b) Buses 

                 
                                 (c)  Beach                                                                         (d) Elephants 

                                                                       
(e)  Buildings 

Figure 6.13: Sample of WANG images. 

Figure 6.19(b) shows confusion matrix of Caltech6 database, where numbers of false 

positive airplanes images are 15, 10, and 9 as Motorcycle (Mo), Face (Fc), and Car (Cr) 

classes respectively. Meanwhile, 22 and 13 leaf images (Lv) are misclassified as Car 

and Face classes sequentially. The reason is also existing similarity in colour among 

images of different classes as shown in Figure 6.14(a–d). 

       
                                      (a)  Motorcycle                                                                          (b) Car 

             

                                      (c)  Airplanes                                                                         (d) Leave 

Figure 6.14: Sample of Caltech6 images. 

Table 6.19(c) illustrates the confusion matrix for Caltech101 database. The poorest 

classes are Bonsai and Chandelier: 16 bonsai images (Bo) are misclassified as 

Chandelier (Ch) and other 16 images as Watch (Wt) class. 17 chandelier images are 

classified as Bonsai and 22 as Watch class. Figure 6.15(a–c) displays sample of these 

images and it is clear the similarity in colour between different image classes.  
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                                      (a)  Bonsai                                                                          (b) Watch 

            
(c)  Chandelier 

Figure 6.15: Sample of Caltech101 images. 

In general, the performance of the MSH algorithm was acceptable because only the 

DCT-C feature was used and because there is similarity in visual colour among different 

image classes led degradation of the performance as illustrated. In addition, determining 

the bandwidth parameter value to the algorithm is not trivial and an inappropriate 

parameter may not fit with certain images. However, the algorithm has shown its own 

merits. As shown in Table 6.18, the algorithm outperforms that in (Bouker & Hervet, 

2011) almost on all classes of the WANG database except the beach class. 

6.3.2 Evaluation of Mean Shift Clustering Algorithm by Image Retrieval  

In this experiment, we investigate effects of the Mean Shift Algorithm on the DCT-C 

feature. All the rest of settings are the same as for image classification, but we shall 

evaluate the performance using mean average precision (MAP) of retrieval. 

Table 6.20 shows MAP values of Top 10-100 retrieved images for the WANG, 

Caltech6, and Caltech101 databases. The best performance with the Caltech6 compared 

to WANG and Caltech101 collections. The comparison of algorithms will be featured in 

the next section.  

Table 6.20: MAP of Top 10-100 retrieved images using MSH algorithm on WANG, Caltech6, and Caltech101 

databases 

 Database T10 T20 T30 T40 T50 T60 T70 T80 T90 T100 

 WANG 0.56 0.50 0.47 0.44 0.41 0.39 0.37 0.36 0.34 0.33 

 Caltech101 0.46 0.43 0.41 0.39 0.37 0.36 0.35 0.34 0.33 0.32 

 Caltech6 0.63 0.57 0.52 0.49 0.46 0.44 0.42 0.40 0.38 0.37 

 

Figure 6.16(a) shows the Top 10 retrieved result for, a building query image. Among 

the results, there are 6 images of relevant class, and 4 images of the irrelevant Beach 

class. However, the irrelevant beach images have colour in the sky, sea and sand similar 

to the colours of the building and sky in the query image. As shown in Figure 6.16(b), 
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the result list of retrieval for the Dinasours query image contains only one irrelevant 

image from the Foods class ranked at the 7th position that does have some similarity in 

colour to the query image. Hence, the algorithm worked well with the DCT colour 

feature and returns different relevant images compared to those from the CLUST and 

ASP algorithms. Meanwhile, the relevant image only in rank 3 is different compared to 

the K-means algorithm in Chapter 5 Figure 5.9(a). This means that both algorithms are 

close to bring roughly the same relevant images, although they used different local 

features. 

 
                                                                                 (a) 

 
                                                                               (b) 

Figure 6.16: Top 10 retrieved images from using MSH algorithm. 

In conclusion, the basic MSH clustering algorithm detects a number of clusters 

according to dense regions defined by a specific bandwidth parameter. The performance 

of applying MSH to DCT colour feature with different bandwidths appears worse than 

applying the CLUST for the three databases but in par or close to the performances of 

using the ASP and AKM algorithms with the Caltech101 and Caltech6 databases 

respectively. It is worth noting that the algorithm also returns different relevant images 

in the retrieved ranked lists.  

6.4 Comparisons of Clustering Algorithms  

In the previous sections of this chapter and the previous chapter, we investigated effects 

of each of four clustering algorithms in terms of image classification recall rates and 

image retrieval precision rates. In this section, we intend to compare performances of 



Chapter 6: Applying Different Clustering Algorithms for Content-Based Image Retrieval  

______________________________________________________________________ 

120 
 

clustering algorithms under similar conditions, i.e. using images from the three 

benchmark databases (WANG, Caltech101, and Caltech6), the DCT-CT local features 

except for the MSH algorithm (DCT-C features only), and the AgD measure with DL1 as 

measure of dissimilarity.  

6.4.1 Comparisons of Clustering Algorithms using Adaptive Number of Clusters 

We first look at the results of the clustering algorithms with an adaptive K (i.e. CLUST 

(model-based), AKM (partition-based), ASP (graph-based) and MSH (density-based)). 

We attempt to compare performances in both image classification by deploying a k-NN 

classifier (k=5) and image retrieval by considering the Top 5 ranked lists. Image 

classification and retrieval results of the algorithms for the three databases (WANG, 

Caltech101, and Caltech6) are respectively shown in Table 6.21(a–b), Table 6.22(a–b), 

and Table 6.23(a–b). Normally, the retrieval accuracies are lower than the classification 

accuracies because known class labels are used in image classification and use a k-NN 

(k=5) classifier, but there is no such training process used in image retrieval.  Instead, 

the top T images from the image database that are most similar to a query image 

measured using a similarity measure is returned as a ranked list. 

Table 6.21: Applying CLUST, AKM, ASP, and MSH on WANG database for image Classification (5-NN) and retrieval (Top 5) 

Classes CLUST AKM ASP MSH   Classes CLUST AKM ASP MSH 

Elephants 0.92 0.85 0.76 0.59   Elephants 0.73 0.67 0.52 0.43 

Flowers 0.99 0.86 0.87 0.81   Flowers 0.93 0.75 0.80 0.72 

Buses 0.95 0.97 0.79 0.76   Buses 0.84 0.85 0.59 0.62 

Foods 0.70 0.60 0.65 0.76   Foods 0.56 0.52 0.51 0.63 

Horses 0.99 0.97 0.80 0.89   Horses 0.94 0.92 0.71 0.81 

Mountains 0.84 0.50 0.59 0.63   Mountains 0.62 0.36 0.44 0.49 

People 0.61 0.55 0.48 0.69   People 0.52 0.48 0.39 0.53 

Beach 0.68 0.39 0.60 0.28   Beach 0.58 0.34 0.52 0.28 

Buildings 0.53 0.60 0.60 0.74   Buildings 0.50 0.57 0.56 0.64 

Dinasours 1.00 1.00 0.99 0.95   Dinasours 0.98 0.97 0.96 0.85 

Average 0.82 0.73 0.71 0.71   Average 0.72 0.64 0.60 0.60 

                                                       (a)  Classification                                                                             (b) Retrieval 
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Table 6.22: Applying CLUST, AKM, ASP, and MSH on Caltech101 database for image Classification (5-NN) and retrieval (Top 5) 

Classes  CLUST AKM ASP MSH  Classes  CLUST AKM ASP MSH 

Bonsai 0.60 0.57 0.69 0.48  Bonsai 0.44 0.43 0.53 0.37 

Chandelier 0.35 0.45 0.50 0.40  Chandelier 0.31 0.30 0.40 0.32 

Face-Easy 0.99 0.97 0.93 0.70  Face-Easy 0.94 0.84 0.79 0.57 

Ketch 0.63 0.74 0.57 0.56  Ketch 0.57 0.64 0.50 0.45 

Leopards 0.70 0.85 0.86 0.81  Leopards 0.64 0.76 0.79 0.76 

Watch 0.41 0.41 0.34 0.50  Watch 0.39 0.38 0.33 0.48 

Average 0.61 0.67 0.65 0.58   Average 0.55 0.56 0.56 0.49 

                                                         (a)  Classification                                                         (b) Retrieval     

Table 6.23: Applying CLUST, AKM, ASP, and MSH on Caltech6 database for image Classification (5-NN) and retrieval (Top 5) 

                               

Classes  CLUST AKM ASP MSH 
 

Classes  CLUST AKM ASP MSH 

Car 1.00 1.00 1.00 1.00  Car 1.0 0.99 1.0 0.97 

Motorcycle 0.82 0.90 0.82 0.83  Motorcycle 0.75 0.87 0.74 0.76 

Airplanes 0.92 0.79 0.90 0.63  Airplanes 0.81 0.68 0.82 0.55 

Faces 0.97 0.91 0.86 0.71  Faces 0.92 0.83 0.79 0.59 

Leaves 0.96 0.84 0.85 0.50  Leaves 0.93 0.73 0.82 0.48 

Average 0.93 0.89 0.89 0.73  Average 0.88 0.82 0.83 0.67 

                                                         (a)  Classification                                                                        (b) Retrieval       

Overall, CLUST outperforms AKM, ASP, and MSH algorithms using WANG and 

Caltech6 databases. Meanwhile, AKM produced classification results better than other 

algorithms using Caltech101 database. At the same time, CLUST, AKM, and ASP are 

similarly performance in retrieval with this database. 

In terms of individual classes, all algorithms work well for images with a simple 

dominating visual object such as Dinasours in WANG and Car in Caltech6 database. 

However, the performances of the clustering algorithms are varied for images with more 

variation in colour and texture and for images of different classes with common objects. 

In addition, the way of computing the similarity between two images (i.e. AgD 

measure) is also a contributing factor for the performance differences. For instance, 

CLUST is the best with images of Elephants, Flowers, Buses, Horses, Mountains, and 

Beach classes, whereas MSH is the best with Foods, People, and Buildings classes due 

to these images are rich in colours. Therefore, using the MSH (density-based) algorithm 

with the DCT-C colour feature will increase the discrimination between these images. 

In particular, the algorithm demonstrates its worth with images of the Watch class in 

Caltech101 database that is regarded as difficult by other algorithms.   Besides, the ASP 

algorithm is the best with Bonsai and Chandelier classes in the Caltech101 and the 
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AKM algorithm is the best with Ketch and Motorcycle classes in the Caltech101 and 

Caltech6 databases respectively.  

In conclusion, there is not a single clustering algorithm that outperforms the rest for all 

databases with all image classes because images are varied in distinct objects, colours, 

and patterns in the scene. At the same time, each algorithm produces different ranked 

lists of retrieved images because each clustering algorithm works differently as 

explained in Chapters 3, 5, and 6. Figure 6.17(a–d) shows Top 10 retrieved images for a 

Dinasours query image using the four clustering algorithms. Due to the nature of the 

images, i.e. plain background with a single main object in the foreground, all retrieved 

images are from the same class, but some of them are similar and others are different 

across the different algorithms. Therefore, combining the power of each algorithm may 

consolidate the relevant images in a desirable order for image retrieval. 

 
(a) CLUST 

 
(b) AKM 

 
(c) ASP 

 
(d) MSH 

Figure 6.17: Top 10 retrieved images for Dinasours query using CLUST, AKM, ASP, and MSH algorithms. 
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(a) CLUST 

 
(b) AKM 

 
(c) ASP 

 
(d) MSH 

Figure 6.18: Top 10 retrieved images for Foods query using CLUST, AKM, ASP, and MSH algorithms. 

Another example is shown in Figure 6.18(a–d) for Top10 retrieved images to a food 

query image. Images of this class are particularly complex in visual content. The 

outcomes of the four clustering algorithms vary greatly in terms of relevant and 

irrelevant images in both numbers and classes. As we can see that CLUST, AKM, ASP, 

and MSH respectively retrieved 6, 4, 5, and 8 relevant images at different ranked 

positions. Therefore, combining the retrieval power of the different clustering 

algorithms in this case may increase the number of relevant images of the same class in 

the returned list and reduce the number of irrelevant images of other classes. (Note: the 

same image in the rank 2 and 7 in the list 1 and list 3 respectively is from African 

people class that contains packs of leaves and kind of branches for food). This is a 

problem of sharing different image classes with common objects.  

6.4.2 Comparisons of Clustering Algorithms using Fixed Number of Clusters 

In this section, we want to compare performances of three clustering algorithms when a 

fixed K is used (i.e. EM, SP and KM with a specific K), and how the performances 

compare against the algorithms with an adaptively determined K. We want to know the 

effects of the values of K to the image retrieval results, and whether for each algorithm, 
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there exists an optimal value for K. For this work, we check the performance for Top T 

ranked lists where T = 10, 20, 30, 80, 90, 100 respectively. Figure 6.19 presents only the 

test results for the WANG database due to space limitations. We can see the mean 

average precision values of image retrieval increases as the number of clusters increases 

for all three clustering algorithms, but the increase is not monotonic for EM and SP 

algorithms. For the EM algorithm, the MAP values are optimal for all Top T ranked lists 

when K value is large, i.e. K = 55. For the SP algorithm, the best MAP value is reached 

when K = 15. For the KM algorithm, the MAP values have plateaued after K = 25. The 

same K values for the algorithms are used for Caltech101 and Caltech6 databases as we 

consider the values learnt from one database and applied to clustering algorithms for 

image retrieval over any other databases. 

 

 

Figure 6.19: MAP for Top 10-100 using EM, SP, and KM algorithms on WANG database. 

Table 6.24 presents the comparison of the algorithms with the optimal K and with the 

adaptive K. The table shows a consistent improvement in MAP when using the optimal 

fixed K against using the adaptively determined K. In particular, the SP algorithm with 

K= 15 improves the accuracies of the ASP algorithm the most for all three databases. 

Meanwhile, the EM algorithm with K= 55 achieved better MAP values than the CLUST 

algorithm mostly on Caltech6 and Caltech101 images, and only 2% but nevertheless 

improvement on WANG images. Even the K-means algorithm with K= 25 brings 

marginal improvements over those by the AKM algorithm. 
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Table 6.24: MAP for Top 10 and 100 using EM, SP, KM, CLUST, ASP, AKM, and MSH algorithms 

Databases RIm EM K=55 CLUST  SP  K=15 ASP  KM K=25 AKM  

WANG T10 0.69 0.67 2% 0.69 0.56 13% 0.63 0.59 4% 

T100 0.44 0.42 2% 0.43 0.35 8% 0.35 0.33 2% 

Caltech6 T10 0.89 0.84 5% 0.89 0.80 9% 0.81 0.78 3% 

T100 0.62 0.55 7% 0.60 0.52 8% 0.47 0.46 1% 

Caltech101 T10 0.61 0.51 10% 0.58 0.52 6% 0.56 0.51 5% 

T100 0.40 0.35 5% 0.39 0.35 4% 0.33 0.32 1% 

 

As clarified with each algorithm on image retrieval in the previous sections, the 

improvements in mean average precisions are largely due to the fact that complex 

images are better discriminated by using large fixed K number of clusters. The 

adaptively determined value for K, either by applying a cluster quality measure such as 

in the AKM algorithm or by using MDL principle such as in the CLUST and ASP 

algorithms, is fundamentally a result of unsupervised learning and tends to result in a 

small value that may not reflect the colour and texture variations in an image. A part of 

this study in terms of effectiveness of image features and similarity measures was 

presented in our paper (Du, et al., 2014). 

Segmented objects/content based on DCT-CT local features can be of irregular shapes 

in the 12D multi-dimensional vector space, and resulted segments can be intertwined 

with each other and not well separated. Each above clustering algorithm treated the 

vector space differently. For instance, the K-means method partitions the vector space 

into convex shaped clusters, and hence using the adaptive K results in a small number of 

convex shaped clusters that cannot represent the segments of the original shapes. 

Increasing the number of clusters when K is big can help to solve the problem to a 

certain extent because one segment of irregular shape is now represented by a number 

of convex shaped clusters. 

The EM/GMM method results in overlapping ellipsoid shaped clusters closer 

resembling the segments of original shapes, and hence improves on the results of the K-

means method. However, due to the similar working principle (step by step refinement), 

the method still needs a large number of clusters of the ellipsoid shapes to closely 

resemble the segments of the original shapes.  

The Normalized Laplacian Spectral method enhances the cluster properties by 

transforming the original data into points that can form pronounced clusters on the 
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surface of the k-sphere, where the shapes of the segments into more regular shaped 

clusters, and hence has ability to capture the segments of the original shapes. The 

method does not need a large number of K clusters to get closer to the original segments 

because of this capability. Experiments showed that K=15 can reflect the number of 

segments that should exist in the image, but the MDL-based adaptive scheme may have 

a shortcoming in deciding the optimal number because the optimal is a global optima 

than a local one. 

Mean Shift method does not have this problem that much it operates in a low 

dimensional vector space. 

6.5 Summary  

This chapter presented a systematic evaluation of applying K-means, EM/GMM, 

Normalized Laplacian Spectral, and Mean Shift clustering algorithms over DCT-CT 

based local features for both image classification and retrieval under circumstances 

when the number of clusters is fixed and adaptively determined. The significance in 

performance differences between the two circumstances is checked by chi-square- and 

t-tests. Consequently, a summary of comparison between the four clustering methods 

was also made. We tried to explain the performance differences from the working 

principles, strengths as well as limitations of the algorithms. According to our 

knowledge, this is the first systematic evaluation ever attempted in CBIR field.  

The findings over the use of fixed number of clusters vs the use of adaptively 

determined clusters, to a certain extent, quite surprising to us at the beginning. We 

originally thought that adaptively determined number of clusters should better reflect 

the visual content of the image, and hence we were expecting better retrieval results. 

Some inspections of the retrieved images also revealed that adaptively determined 

clusters can result in shapes that coincide well to the objects within the image. Overall, 

however, image classification and retrieval results showed that using a large fixed 

number of clusters can reduce the number of “false positive” cases. This finding echoes 

good results of using a large number of clusters by the BOVW approach.  

Based on the results of the evaluation in this chapter and in Chapter 5, we argue for a 

fusion based solution to reduce the semantic challenge by integrating scores of 
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similarity measures from different algorithms to increase relevant images in the 

retrieved list and this will be presented in detail in the next chapter. 
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Chapter 7  

 

Multi Evidence Fusion Scheme for 

Content-Based Image Retrieval 

 

As we have seen in the previous two chapters, Content-Based Image Retrieval is a 

complex and a challenging task with no one-size-fit-all solution to achieve its 

objectives. Different features and different clustering techniques we have examined 

produced varying results depending on the class of images and/or the image database 

used in the evaluation. Whilst we noted that some feature-clustering combinations have 

consistently outperformed others in most scenarios, it is by no means a good reason to 

ignore the other feature-clustering combinations as they too perform reasonably well in 

at least some scenarios. Therefore, a natural path to consider is the fusion of multiple 

evidence in order to achieve an accurate and a reliable system. This chapter proposes 

such an approach where we fuse features and clustering techniques at multiple levels of 

a CBIR system.  

The rest of the chapter is organised as follows: we shall begin the chapter with a brief 

review of our conclusions in Chapters 5 and 6 followed by an overview of fusion 

techniques in section 7.1. A review of relevant work is presented in section 7.2. Our 

proposed new two data level fusion features and multi evidence fusion scheme are 

presented and evaluated in sections 7.3 and 7.4 respectively. A summary of the chapter 

is given in section 7.5. 

Our general approach to CBIR is to 1) extract local image features in YCbCr colour 

space, 2) cluster local image features to segment the image into objects/content, 3) 

compare two images for similarity based on segmented objects/content using cluster 

centroids as their feature representation, 4) Evaluate performance by 

classification/retrieval. 

Chapter 5 evaluated a seven different local image features and we found that DCT-CT 
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feature performed better across most/all classes of images in WANG and Caltech101 

databases. However, we found that LBPu2, LBPriu2, and DCT-T features performed as 

well as if not better than DCT-CT feature in Caltech6 database. Reasons behind 

performing these features, the DCT-CT feature integrates visual colour and texture (i.e. 

DCT-C and DCT-T features) together cause to increase the image discrimination and 

the feature exploits DC coefficients in order like discrete wavelet transform 3-level 

decomposition that is not like zigzag order in DCT-Zigzag feature cause to make the 

feature performance even higher than DWT-CT feature. Two local binary pattern 

features (i.e. LBPu2 and LBPriu2) follow a different way of capturing texture 

information in comparison with others, where the relationships between a pixel and its 

neighbourhood pixels are regarded to generate binary code of patterns and the features 

are represented by histograms that worked very well with the low number of clusters 

fixed or adaptive. 

In Chapter 6, we focused on the effects of different clustering algorithms on local image 

feature based CBIR systems. We evaluated K-means, EM/GMM, Normalized Laplacian 

Spectral, and Mean Shift different clustering techniques representing different 

approaches to clustering. The results revealed that the adaptive EM (i.e. CLUST) 

performed better across most/all classes of images in WANG and Caltech6 databases in 

terms of classification and retrieval evaluations. However, the adaptive K-means 

algorithm produced better classification results in Caltech101 database. Whilst K-

means, EM/GMM, Normalized Laplacian Spectral achieved similar retrieval results in 

this database, where images in different classes share common objects as well as colour 

and texture. 

In terms of a basic version of algorithms using fixed number of clusters, there were 

improvements in accuracy using cluster K values (55, 15, and 25) with the EM/GMM, 

Normalized Laplacian Spectral, and K-means clustering algorithms respectively due to 

the fact that complex images are better discriminated by using large fixed K number of 

clusters. The performance of EM and spectral were roughly similar and both were 

higher than the K-means algorithm. 

In summary, we have shown that there is no single combination of feature and 

clustering algorithm that outperforms others for all databases and all image classes 

because images vary in the type and number of distinct objects, colours, and patterns in 
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the scenes they represent. Different feature-clustering combinations retrieve lists of 

images with significant overlap, but not necessarily the same images. Our proposal is to 

use a multi evidence fusion scheme to exploit the different outcomes of local image 

features and clustering techniques to increase the performance of CBIR. 

7.1 Fusion Overview 

Originally, fusion methods were known in information retrieval (Fox & Shaw, 1994), 

where basic rules of similarity score combinations (Comb SUM, Comb MIN, Comb 

MAX, Comb ANZ, and Comb MNZ, as shown in Table 7.1) were used to fuse multiple 

similarity scores in to a single score. Lee in (Lee, 1997) tested these rules after using 

min-max normalization in equation 7.1 to control the ranges of similarity values that the 

retrieval systems produce.  

Table 7.1: Basic fusion rules 

Label Formula 

Comb SUM 
𝑆 = ∑ 𝑤 × 𝑆𝑖

𝑛

𝑖=1
 

Comb MIN 𝑆 = min (𝑆𝑖) 

Comb MAX 𝑆 = max (𝑆𝑖) 

Comb ANZ 𝑆 = 𝐶𝑜𝑚𝑏 𝑆𝑈𝑀/∑ 1
𝑖|𝑆𝑖≠0

 

Comb MNZ 𝑆 = 𝐶𝑜𝑚𝑏 𝑆𝑈𝑀 × ∑ 1
𝑖|𝑆𝑖≠0

 

 

𝑆 =
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒
     7.1 

where, S is normalized similarity. 

In general, a fusion method integrates information from different sources to increase the 

retrieval/classification accuracy. Fusion can be performed at different stages of a 

classification/retrieval system.  

1. Data level fusion: concatenates different types of data into a single feature; also 

called early fusion. 

2. Score level fusion: distance vectors from different domains are normalized to obtain 

score vectors in a common domain that are fused into one score vector; also known 

as late fusion. 
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3. Decision level fusion: is carried out in the semantic space. For instance, individual 

decisions of different classifiers are fused to arrive at single decision using majority 

voting. 

Fusion methods have been used successfully in other areas such as in biometrics (Anil, 

et al., 1999; Sellahewa & Jassim, 2008) and multimedia (Atrey, et al., 2010).  

7.2 Review of Fusion Techniques in CBIR 

Intuitively, natural world scenic images are rich in visual content; therefore it is a 

challenge to find a single feature descriptor that captures all image information. As 

mentioned in Chapter 2, numerous feature descriptors were proposed in the literature 

which are in diverse forms and carry different visual image content in terms of a low-

level feature. Hence, researchers in the CBIR field motivated towards a fusion scheme 

to consolidate visual information from different features. Some work from the literature 

will be reviewed in this section. 

In (Rahman, et al., 2006), both data and score level fusion were used. The global feature 

was the outcome of data level fusion, where colour histogram (108-bins) and edge 

histogram (72-bins) of an image in HSV colour space were combined into (180D) 

feature vector to capture visual colour and texture of images. Principal Component 

Analysis (PCA) was used to reduce the dimensionality of the global feature vector. 

Euclidean distance was used to compute the distance vector 𝐷𝑔. 

Rahman et al. also presented a semi-global feature to address one main limitation of the 

global feature representation which is ignoring spatial information about objects. First, 

the image in HSV colour space was divided into 4 x 4 non-overlapping blocks and five 

overlapping sub-images/regions were then generated from these 16 blocks as shown in 

Figure 7.1. The first three colour moments (i.e. mean, standard deviation, and skewness) 

of each channel were calculated while texture features were computed from GLCM (i.e. 

energy, maximum probability, entropy, contrast, and inverse difference moment). The 

colour and texture feature vectors were then combined to form the semi-global feature 

vector of 14D (i.e. 9D for colour and 5D for texture). Distance measures between five 

regions r of query image Q and those of database image B were computed based on 

Euclidean distance for both colour and texture features. The final distance measures 

from using the semi-global feature were then obtained 𝐷𝑠𝑔 = 𝑤𝑐 ∑ 𝐷𝑐(𝑄
𝑟, 𝐵𝑟)5

𝑟=1 +
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𝑤𝑡 ∑ 𝐷𝑡(𝑄
𝑟, 𝐵𝑟)5

𝑟=1 , where weights were adjusted experimentally to be 𝑤𝑐 = 0.7 for 

colour feature which is higher than 𝑤𝑐 = 0.3  for texture feature because the colour 

feature has more discrimination power than texture with these kind of features. 

                                         

Figure 7.1: Generated regions from sub-images. 

Due to the way of partitioning the image into fixed regions manner this affects the 

approach to be sensitive to shifting, scaling, and rotation. Therefore, local region 

features were presented, where the images were divided into 2 x 2 blocks and the 

average colour was calculated for each channel in HSV colour space. These colour 

features fed to a K-means clustering algorithm to segment images into regions. The 

centroid of each region in three channels i.e. 3D colour feature vector was extracted and 

a texture feature vector was the off diagonal of a 3 x 3 covariance matrix of each region. 

Each region i was weighted by 𝑤𝑖 =
𝑁𝑏

𝑁𝑇
, where 𝑁𝑏 is number of blocks in the region and 

𝑁𝑇 is the total number of blocks in the image. The Bhattacharyya function was used to 

calculate the distance between two region sets of the query and database images to yield 

𝐷𝑙  distance measures.  

For each above distance vector D (i.e. 𝐷𝑔, 𝐷𝑠𝑔, and 𝐷𝑙) the similarity measure was 

calculated by 𝑆(𝑄, 𝑇) = 𝑒𝑥𝑝−𝐷(𝑄,𝑇)/𝜎𝐷(𝑄,𝑇) to obtain 𝑆𝑔, 𝑆𝑠𝑔, and 𝑆𝑙 scores. The final score 

level fusion was calculated as follows: 𝑆(𝑄, 𝑇) = 𝑤𝑔𝑆𝑔(𝑄, 𝑇) + 𝑤𝑠𝑔𝑆𝑠𝑔(𝑄, 𝑇) + 𝑤𝑙𝑆𝑙(𝑄, 𝑇), 

where the highest weights was given to resulted scores from using the local region 

feature that capture more detail and bear more semantic information 𝑤𝑙 = 0.6. Whilst the 

resulted scores from using global and semi-global features were equally weighted 𝑤𝑔 =

𝑤𝑠𝑔 = 0.2. Image retrieval experiments were conducted on 3000 images from COREL 

and IAPR databases, 200 images for each category. Mean average precision values 

(MAP) using global, simi-global, region-based, and fusion-based similarities were 

respectively (74, 72, 80, and 86) % for the Top 10, (50, 48, 51, and 52) % for the Top 

100, and (31, 30, 36, and 39) % for the Top 200 retrieved images. Hence, there was an 

improvement using the fusion method. 

         2 

3          4 

1 

5 
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In (Vieux, et al., 2012), all rules in Table 7.1 were tested in terms of CBIR using 

WANG, Caltech101, and SIVAL image databases in addition to median value (Comb 

MED). The authors interpreted these rules according to two errors that occurred with a 

retrieved list in descending order from the CBIR system as follows:  

1. Non-relevant images appear ranked highly. 

2. Relevant images appear ranked lower. 

Linear combination (Comb SUM) is a commonly method that can either be weighted or 

not. Selecting minimum value (Comb MIN) among similarities will minimize the 

probability of error 1, while maximum value (Comb MAX) will minimize the 

probability of error 2, or median value (Comb MED) to manage errors 1 and 2. Comb 

ANZ ignores effect of a single run failing to retrieve relevant images and Comb MNZ 

provides higher weights to images that are retrieved by multiple retrieval sources.  

Vieux et al. proposed Bag of Region (BOR) method to extract a colour histogram and 

histogram of Local Binary Patterns features (see Subsection 2.1.2.2 for details) in 

addition to Speed Up Robust Feature (SURF) using BOVW method (Bay, et al., 2008). 

The experiments of retrieval were conducted on WANG, SIVAL Local, and Caltech101 

databases and fused results of using above three features on three databases showed that 

the best MAP values were respectively (56, 60, and 22) % for Top 5 retrieved images 

using the Comb SUM rule without weights means scores that were yield from extracted 

colour and texture features from BOR and those from BOVW can be integrated equally 

to increase the accuracy of retrieval. Our proposed fusion algorithm achieves an 

accuracy value of 84% for Top 5 retrieved images in the WANG database (see Table 

7.12 for details).    

In (Singh & Hemachandran, 2012), results from global and local colour features were 

tested separately to fuse with texture feature to explore the role of combination and 

localised features in increasing accuracy of image retrieval. Scores from colour source 

were weighted by 0.8 higher than those from texture source that were weighted by 0.2 

based on experimentation trying due to database images are mostly natural. First, global 

colour moments of image in HSV colour space (i.e. mean, standard deviation, and 

skewness) were calculated. Distances were then measured using Canberra function (see 

Chapter 2 equation 2.8) and referred to as Colour Moment-Whole image (CMW).  The 

Gabor filter with 4 scales and 6 orientations was applied on a greyscale image and 48-

dimension vector of means and standard deviations were calculated to capture texture 
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feature. The Canberra function was also used to calculate distances that were referred to 

as GTF. Second, the image was divided horizontally into three non-overlapping blocks 

to extract local colour feature by computing above three colour moments. The same 

distance was used and resulted measures were referred to as CMR.  

Retrieval experiments were conducted on WANG database. First, MAP values were 

55% and 45% using CMW and GTF respectively. After fusing their scores, the MAP 

rose to 58% for Top 10 retrieved images. Second, MAP values were 59% and 45% 

using CMR and GTF respectively. After fusing their scores, the MAP was increased to 

61% for Top 10 retrieved images. Hence, the fusion method improved the accuracy of 

image retrieval due to integrating visual colour and texture information. Also, the 

method showed that localized colour feature was better than global. Our proposed 

fusion algorithm achieves 80% MAP for Top 10 retrieved images (see in Table 7.12). 

In (Lokoč, et al., 2012), two kinds of features were used to represent images and called 

signature (SQFD) and global descriptors (MPEG-7). The linear combination was 

applied between resulted scores from using the global descriptors. Then outcomes were 

also linearly combined with those from using the signature feature to aggregate different 

information from different type of visual features (i.e. signature and global descriptors) 

which aim to increase the accuracy of retrieval. The image signature composed of 

centroids 𝐶𝑖 which were obtained from clustering feature vectors of 7-dimension (colour 

(L*, a*, b*), location (x, y), contrast X, and entropy 𝜀 information) by the K-means 

algorithm and weighted by 𝑤𝑖 =
|𝐶𝑖|

∑ |𝐶𝑖|𝑖
. Then SQFD distance in Chapter 2 formula (2.15) 

was used to compute the similarity between two image signatures. Meanwhile, the 

global descriptors were five descriptors from MPEG-7 standard, Scalable Colour (SC), 

Colour Structure (CS), Colour Layout (CL), Edge Histogram (EH), and Region Shape 

(RS).  

 Scalable Colour based on a colour histogram of the image in HSV colour space that 

is encoded by a Haar transform. The 64 coefficients form of this descriptor was used 

in this work and the distance between two descriptors was measured by L1 function.  

 Colour Structure a structure matrix of 8 x 8 pixels slides over the image to identify 

localized colour distributions. If structures of pixels are different in two images, the 

descriptor can discriminate between these images that have similar amount of pixels 
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of a particular colour. The L1 function was also used to measure distances between 

two descriptors.  

 Colour Layout a Discrete Cosine Transform was applied on 8 x 8 blocks of image 

in YCbCr colour space to yield colour layout descriptor. Here, the L2 function was 

employed to measure distances between two descriptors.  

 Edge Histogram based on the local edge distribution, where the image was divided 

into 4 x 4 sub-images and edges were determined for each sub-image in terms five 

directions: vertical, horizontal, 45° diagonal, 135° diagonal and non-directional 

edges. The outcome of five values for each of the 16 sub-images is 80 coefficients 

represent the local edge histograms. 

 Region Shape based on Angular Radial Transformation (ART) which is defined on 

orthogonal 2D sinusoidal basis functions to describe region of the shapes in the 

image. The L1 function was used to measure distances. 

Image retrieval experiments were conducted on WANG (ten queries from each of the 

ten classes), ALOI (one query from each class), and TWIC (one query from each class) 

databases. Different linear combinations were made between resulted scores from using 

MPEG-7 descriptors (i.e. MPEG-7 Comb), individual MPEG-7 descriptors and SQFD 

signature, and resulted MPEG-7 Comb and SQFD signature. Results were varied in 

terms of descriptors and three databases. The best improvement was using MPEG-7 

Comb in WANG and TWIC databases and further improvement using (MPEG-7 Comb 

+ SQFD). Whilst the best increment of accuracy was using (SC+SQFD) in ALOI 

database. Overall, there was positive effect as result of complement any information 

from different global MPEG-7 descriptors and the signature (SQFD) to improve the 

accuracy of image retrieval. In addition, the MAP values were 58% and 44% for Top 10 

and 100 retrieved images respectively using WANG database images, while our fusion 

algorithm achieves 80% and 52% respectively (see Table 7.12 using one-leave-out 

strategy i.e. one query not like this method uses ten queries). 

In (Karpagam & Rangarajan, 2012), data level fusion was used to combine colour 

histogram and texture features which were made up of energy values from 4-subbands 

of DWT (i.e. LL, HL, LH, and HH). Details of this method were explained in Section 

2.1.1.2. Results of image retrieval referred to that MAP values were 73% and 49% for 

Top 10 and 100 retrieved images respectively using WANG database. In terms of 

comparing these results to our work of fusion scheme, the MAP values are higher by 
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7% and 3% for Top 10 and 100 retrieved images respectively as will be shown in Table 

7.12.  

7.3 Data Level Fusion for CBIR 

In this section, we propose the fusion of two complimentary local image features based 

on the evaluation of different local image features as presented in Chapter 5. Our aim 

here is to investigate the benefits of, if any, integrating the visual information from 

frequency and spatial domains. Note that the benefit of combining colour and texture 

features (i.e. DCT-C and DCT-T features) in to a single feature DCT-CT obtained from 

the frequency domain was demonstrated in Chapter 5. 

In Chapter 5 we showed that LBP (both the standard and the rotation invariant LBP) 

features, which capture texture information in spatial domain, retrieve relevant images 

that are not retrieved by DCT-CT features. Thus, we propose to concatenate the DCT-

CT with LBPu2 feature to produce a single feature vector of 77-dimensions which we 

shall refer to as DCTu2. Similarly, we propose to concatenate the DCT-CT with 

LBPriu2 feature to produce a single feature vector of 22-dimensions, which we shall 

refer to as DCTriu2.  

We evaluated the proposed data level fusion features with three adaptive versions of 

clustering algorithms. The steps in the framework shown in Figure 4.1 were used to 

conduct the retrieval experiments. Briefly, the steps are: the DCTu2 and DCTriu2 

features are extracted at the feature extraction stage; one of CLUST, AKM, ASP 

adaptive algorithms is applied at the clustering stage; the proposed AgD dissimilarity 

measure summed minimum DL1 distance values from rows of the distance matrix at the 

matching of the two images stage. The retrieval results of individual features and the 

fused features are evaluated based on the mean average precision (MAP). 

7.3.1 Data Level Fusion with Adaptive EM/GMM (CLUST) Algorithm  

Table 7.2(a–c) illustrates retrieval performance of fused data with the CLUST algorithm 

on WANG, Caltech6, and Caltech101 image collections respectively. The results 

indicate that fusing DCT-CT features with LBP features has a negative effect compared 

to the DCT-CT on the WANG database, whereas both fused features are better than the 

DCT-CT feature in the Caltech6 database. This may means that LBP features capture 

complementary texture information to those captured by DCT-CT features on collection 
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of images. However, Table 7.2(c) shows the case of the Caltech101 images where the 

retrieval with DCTu2 features is only 1% higher than the DCT-CT features, while the 

DCTriu2 feature is less than DCTu2 by a similar margin.  

Table 7.2: MAP using data level fusion using CLUST on WANG, Caltech6, and Caltech101 databases 

Feature T10 T20 T30 T80 T90 T100  Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.56 0.51 0.48 0.38 0.37 0.36  DCT-C 0.70 0.64 0.59 0.44 0.43 0.41 

DCT-T 0.55 0.50 0.46 0.37 0.36 0.34  DCT-T 0.68 0.63 0.59 0.46 0.45 0.43 

DCT-CT 0.67 0.62 0.57 0.45 0.44 0.42  DCT-CT 0.84 0.79 0.75 0.60 0.58 0.55 

LBPu2 0.53 0.49 0.46 0.36 0.35 0.34  LBPu2 0.84 0.78 0.74 0.60 0.58 0.55 

DCTu2 0.60 0.54 0.50 0.40 0.39 0.38  DCTu2 0.89 0.85 0.79 0.62 0.59 0.56 

LBPriu2 0.47 0.43 0.40 0.33 0.32 0.30  LBPriu2 0.77 0.70 0.66 0.51 0.49 0.47 

DCTriu2 0.63 0.58 0.54 0.42 0.41 0.39  DCTriu2 0.89 0.85 0.80 0.64 0.61 0.59 

                                             (a) WANG                                                                                  (b) Caltech6 

 

         (c) Caltech101  

7.3.2 Data Level Fusion with Adaptive K-means Algorithm  

In this experiment, the AKM is implemented to cluster the DCT-CT, DCTu2, and 

DCTriu2 features. The results are reported in Table 7.3(a–c) which shows that the 

DCTu2 feature achieved an increase between 7% and 12% of MAP values over the 

DCT-CT feature on the WANG and Caltech6 images. The fused features resulted in a 

marginal improvement on the Caltech101 database.  

Table 7.3: MAP using data level fusion using AKM on WANG, Caltech6, and Caltech101 databases 

Feature T10 T20 T30 T80 T90 T100  Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.54 0.48 0.44 0.33 0.31 0.30  DCT-C 0.62 0.55 0.49 0.36 0.35 0.34 

DCT-T 0.43 0.39 0.36 0.29 0.28 0.27  DCT-T 0.79 0.73 0.68 0.53 0.51 0.49 

DCT-CT 0.59 0.53 0.49 0.37 0.36 0.34  DCT-CT 0.78 0.71 0.66 0.50 0.48 0.46 

LBPu2 0.53 0.50 0.48 0.40 0.39 0.37  LBPu2 0.79 0.73 0.68 0.56 0.54 0.52 

DCTu2 0.66 0.61 0.58 0.47 0.45 0.44  DCTu2 0.88 0.82 0.78 0.63 0.60 0.58 

LBPriu2 0.48 0.44 0.42 0.35 0.34 0.32  LBPriu2 0.78 0.71 0.66 0.51 0.49 0.47 

DCTriu2 0.64 0.59 0.55 0.44 0.42 0.41  DCTriu2 0.86 0.81 0.76 0.61 0.59 0.56 

                                           (a) WANG                                                                                   (b) Caltech6 

Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.48 0.44 0.42 0.32 0.31 0.30 

DCT-T 0.44 0.40 0.37 0.31 0.30 0.29 

DCT-CT 0.51 0.46 0.43 0.33 0.32 0.32 

LBPu2 0.40 0.37 0.36 0.32 0.32 0.31 

DCTu2 0.49 0.45 0.43 0.36 0.35 0.34 

LBPriu2 0.40 0.38 0.37 0.33 0.32 0.31 

DCTriu2 0.52 0.48 0.45 0.37 0.36 0.35 

(c) Caltech101 

Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.45 0.42 0.40 0.33 0.32 0.31 

DCT-T 0.36 0.32 0.31 0.26 0.26 0.25 

DCT-CT 0.51 0.47 0.44 0.36 0.35 0.35 

LBPu2 0.43 0.38 0.35 0.29 0.28 0.28 

DCTu2 0.52 0.48 0.46 0.37 0.36 0.35 

LBPriu2 0.36 0.33 0.32 0.27 0.26 0.26 

DCTriu2 0.51 0.46 0.43 0.35 0.33 0.32 
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7.3.3 Data Level Fusion with Adaptive Normalized Laplacian Spectral Algorithm  

Here, the spectral algorithm (ASP) is tested with the fused features and compared with 

the individual features. The mean average precision values are illustrated in Table 

7.4(a–c). The fused feature picks more relevant images compared to DCT-CT to raise 

the MAP by about 2-3% on the WANG database. A similar improvement can be seen 

on the Caltech6 database. The fusion has resulted in a 1-2% increase on the Caltech101 

database. Overall, the accuracy of the DCTu2 and DCTriu2 features is better than the 

DCT-CT on all three databases. 

Table 7.4: MAP using data level fusion using ASP on WANG, Caltech6, and Caltech101 databases 

Feature T10 T20 T30 T80 T90 T100  Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.57 0.53 0.49 0.40 0.38 0.37  DCT-C 0.70 0.64 0.59 0.44 0.43 0.41 

DCT-T 0.40 0.37 0.34 0.28 0.28 0.27  DCT-T 0.68 0.63 0.59 0.46 0.45 0.43 

DCT-CT 0.56 0.51 0.48 0.38 0.36 0.35  DCT-CT 0.84 0.79 0.75 0.60 0.58 0.55 

LBPu2 0.50 0.46 0.44 0.35 0.33 0.32  LBPu2 0.74 0.69 0.65 0.52 0.50 0.48 

DCTu2 0.59 0.54 0.50 0.41 0.39 0.38  DCTu2 0.86 0.82 0.78 0.61 0.58 0.56 

LBPriu2 0.42 0.40 0.38 0.31 0.30 0.29  LBPriu2 0.69 0.63 0.59 0.48 0.47 0.45 

DCTriu2 0.58 0.54 0.50 0.41 0.40 0.38  DCTriu2 0.85 0.81 0.77 0.61 0.58 0.55 

                                            (a) WANG                                                                                   (b) Caltech6 

 

Feature T10 T20 T30 T80 T90 T100 

DCT-C 0.45 0.42 0.40 0.33 0.32 0.31 

DCT-T 0.36 0.32 0.31 0.26 0.26 0.25 

DCT-CT 0.51 0.47 0.44 0.36 0.35 0.35 

LBPu2 0.43 0.38 0.35 0.29 0.28 0.28 

DCTu2 0.54 0.49 0.46 0.37 0.36 0.35 

LBPriu2 0.35 0.32 0.31 0.27 0.26 0.26 

DCTriu2 0.53 0.48 0.46 0.37 0.36 0.35 

(c) Caltech101 

7.3.4 Conclusion  

To summarise, the fusion of data level features (i.e. DCT-CT, DCTu2, and DCTriu2) 

for image retrieval was investigated with the adaptive clustering algorithms, CLUST, 

AKM, and ASP using three image collections, WANG, Caltech6, and Caltech101. On 

the one hand, the DCT-CT feature is robust compared to DCT-C and DCT-T features. 

This indicates that the integration of texture and colour information benefits the image 

retrieval process.  On the other hand, applying the CLUST on the proposed DCTu2 and 

DCTriu2 features is only worthwhile for the Caltech6 collection. With the AKM, the 

new features performed better than the DCT-CT, LBPu2, and LBPriu2 features on 

WANG and Caltech6 collections, whereas with the ASP, the new features are better 

than the DCT-CT, LBPu2, and LBPriu2 features on all three databases. This is evidence 

that the local binary patterns features are able to capture complementary texture 

information from the image content compared to those captured by the DCT-CT feature. 
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However, the amount of complementary information varied among the three image 

databases. There is also an effect of the choice of clustering algorithm. This leaded us to 

develop the proposed multi evidence fusion scheme where we combine the effects of 

local image features and clustering algorithms.  

7.4 Proposed Multi Evidence Fusion Scheme   

Our proposed scheme makes a distinction between data-level fusion and score-level 

fusion after computing similarities from different sources. In our work the score level 

fusion strategy (evidence fusion) was employed to combine the benefits of different 

features and clustering methods to increase the effectiveness of image retrieval and 

reduce the “semantic gap” problem in CBIR. We proposed a fusion algorithm in two 

versions. The first version called multi evidence fusion scheme (MEFS) employs fixed 

weights based on empirical attempts to fuse multiple scores into a single score.  The 

second version, Adaptive MEFS (AMEFS) uses linear regression to determine fusion 

weights adaptively. A common linear combination method (Comb SUM) without using 

weights was also tested and compared. Different local features (DCT-CT and LBPu2) 

and clustering methods (fixed and adaptive) that were explained in Chapters 3, 5, and 6 

were exploited in fusion experiments to evaluate our proposed scheme. 

Figure 7.2 shows a diagram of the proposed fusion framework for CBIR, where 

C1=EM/CLUST, C2=SP/ASP, C3=KM/AKM, and C4=MSH are symbols of the 

clustering algorithms. F1=DCT-CT, F2=LBPu2, and F3=DCT-C are colour-texture, 

texture, and colour local features that were employed. S is the resultant vector of 

retrieval scores/evidence after normalizing distances.       

 

 

 

 

 

 

 

Figure 7.2: Multi-Evidence Fusion Scheme. 
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The first three stages of (i.e. Pre-processing, Feature Extraction, and Clustering) are the 

same as the procedure shown in Figure 4.1. Therefore, we shall explain from the 

similarity measure stage. After distance vectors are obtained from different sources 

using the AgD measure with DL1 distance function and then are normalized using the 

formula in (7.1) to be ready for combination/fusion process. This is necessary because 

these vectors are from multiple domains so they need to be transformed into a common 

domain.  

The remainder of this chapter is dedicated to the evaluation of the proposed multi-

evidence fusion scheme. The MEFS and AMFES are evaluated separately. In each case 

we will consider the use of fixed clustering algorithms, adaptive clustering algorithms 

and a combination of the two. The same three databases will be used for the experience. 

We will demonstrate that the proposed multi-evidence schemes perform significantly 

better than the individual feature-cluster combinations.  

7.5 Score Level Fusion using Fixed Weights  

The multi evidence fusion scheme for three levels is expressed in equation 7.2 – the 

scheme could be extended to a higher level. Table 7.5 illustrates the values of weight at 

each level of fusion that were determined empirically. In other words, weight values 

were given from 0 to 1 and the value was fixed based on the best precision of retrieval 

achieved. The 𝑓𝑠 scores were sorted in ascending order and used to compute the 

precision of any top n retrieved images. 

𝑓𝑠 = [(𝑠1 × 𝑤1) + (𝑠2 × (1 − 𝑤1))] × 𝑤3 + [(𝑠3 × 𝑤2) + (𝑠4 × (1 − 𝑤2))] × (1 − 𝑤3)    7.2 

Table 7.5: Weights associated with each level of fusion  

Algorithm C1 C2 C3 C4 

Features F1 F2 F1 F2 F1 F2 F3 

Scores S1 S2 S3 S4 S5 S6  

 

 

 

 

 

S7 

Weights of Level1  0.6 0.4 0.6 0.4 0.5 0.5 

Scores fS8 fS9  

 

fS11 Weights of Level2  0.5 0.5 

Scores fS10 

Weights of Level3  0.6 0.4 

Scores fS12 

Weights of Level4  0.7 0.3 
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A general procedure and symbols are used for score-level fusion experiments in the 

following Sections:  

Level 1 fusion: C1F1F2 - fusion of score S1 based on feature F1 (DCT-CT) weighted by 

0.6 and score S2 based on feature F2 (LBPu2) weighted by 0.4 applying the clustering 

algorithm C1 (EM/CLUST). The resulting score is fS8. 

Level 1 fusion: C2F1F2 - fusion of score S3 based on feature F1 (DCT-CT) weighted by 

0.6 and score S4 based on feature F2 (LBPu2) weighted by 0.4 applying the C2 (SP/ASP) 

clustering algorithm. The resulting score is fS9. 

Level 1 fusion: C3F1F2 - fusion of score S5 based on feature F1 (DCT-CT) weighted by 

0.5 and score S6 based on feature F2 (LBPu2) weighted by 0.5 applying the C3 

(KM/AKM) clustering algorithm. The resulting score is fS11. 

Level 2 fusion: C1C2F1F2 - fusion of scores fS8 and fS9 above with equal weighting. The 

resulting score is fS10. 

Level 3 fusion: C1C2C3F1F2 - fusion of scores fS10 and fS11 above with 0.6 and 0.4 

weights respectively. The resulting score is fS12. 

Level 4 fusion: C1C2C3C4F1F2F3 - fusion of scores fS12 and S7 with 0.7 and 0.3 weights 

respectively. The final resulting score is fS. 

7.5.1 Score Level Fusion of Fixed Clustering Algorithms 

A fixed version of clustering algorithms was employed in this experiment. This means 

that EM (C1), SP (C2), and KM (C3) clustering algorithms were used with fixed K, 

where K =55, 15, and 25 respectively. The determination of these K values was based 

on experiments conducted and presented in Chapters 5 and 6, where the overall retrieval 

performance was high.  Table 7.6(a–c) shows MAP values for the WANG, Caltech6, 

and Caltech101 databases respectively. The fusion levels are progressively shaded over 

the three databases.  

WANG database:  the MAP increased by about 7% on average using fused scores of F1 

and F2 features with the EM and SP and by about 4% with the KM clustering algorithm 

at level 1. This means clustering different features with the same algorithm retrieved 

different relevant images because each feature can capture different visual information 

about the same image -- the DCT-CT feature captures visual colour and texture in 

frequency domain and LBPu2 feature captures visual texture in spatial domain. 

Therefore, fusing scores/evidence integrated the information and increased the 
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accuracy. Level 2 fusion of level 1 scores/evidence from C1F1F2 and C2F1F2 resulted in 

an improvement of 2-4%. This indicates that EM model-based (C1) and SP graph-based 

(C2) clustering algorithms have combined their information and increased the number of 

relevant retrieved images. The level 3 fusion where the outcomes of evidence from level 

2 and level 1 (C3F1F2) are combined resulted in a marginal improvement in MAP. This 

is likely because the combination of information from the KM partition-based (C3) 

algorithm could not affect to increase the number of relevant images in the ranked list. 

Caltech6 database: there is a significant improvement with all clustering algorithms (C1, 

C2, and C3) at level 1 fusion, while there is a marginal increment at levels 2 and 3.  

Caltech101 database: contrary to the previous two cases, the fusion had a negative effect 

on retrieval accuracy of Caltech101 database at all three levels because the performance 

of LBPu2 feature is poor when the number of clusters is a large. Even, if the value K=5 

is used with this feature, the retrieval results are improved only marginally, as shown in 

Table 7.6(d).  

As explained earlier in Chapters 5 and 6, images of different classes in the Caltech101 

collection have similar colour and texture. Therefore, using a high number of clusters 

could affect the proposed AgD measure because the AgD measure aggregates the 

minimum value of each row in the distance matrix. Therefore, the confusion among 

image classes will be increased resulting in lower retrieval accuracy. Even the fusion of 

evidence did not have an effect in addressing this challenge. 

Table 7.6: MAP of three levels fusion on WANG, Caltech6, and Caltech101 using (C1: EM, C2: SP, and C3: KM) 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.69 0.64 0.60 0.48 0.46 0.44 

 C1F2 0.60 0.56 0.53 0.43 0.42 0.40 

1 C1F1F2 0.77 0.72 0.68 0.54 0.52 0.50 

 C2F1 0.69 0.64 0.60 0.46 0.45 0.43 

 C2F2 0.62 0.57 0.54 0.44 0.42 0.41 

1 C2F1F2 0.76 0.71 0.67 0.54 0.52 0.49 

 C3F1 0.63 0.56 0.52 0.37 0.35 0.34 

 C3F2 0.53 0.50 0.47 0.39 0.38 0.37 

1 C3F1F2 0.67 0.62 0.58 0.46 0.44 0.42 

2 C1 C2F1F2 0.80 0.74 0.70 0.56 0.54 0.52 

3 C1 C2 C3F1F2 0.80 0.75 0.71 0.57 0.54 0.52 
(a)  WANG 
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Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.81 0.74 0.69 0.51 0.49 0.47 

 C1F2 0.74 0.69 0.65 0.55 0.53 0.51 

1 C1F1F2 0.95 0.92 0.89 0.76 0.73 0.70 

 C2F1 0.89 0.84 0.81 0.66 0.63 0.60 

 C2F2 0.90 0.85 0.81 0.68 0.66 0.63 

1 C2F1F2 0.95 0.92 0.90 0.77 0.74 0.70 

 C3F1 0.81 0.74 0.69 0.51 0.49 0.47 

 C3F2 0.74 0.69 0.65 0.55 0.53 0.51 

1 C3F1F2 0.90 0.85 0.79 0.62 0.60 0.57 

2 C1 C2F1F2 0.96 0.93 0.91 0.78 0.75 0.72 

3 C1 C2 C3F1F2 0.96 0.93 0.91 0.79 0.76 0.72 
(b) Caltech6 

 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.61 0.56 0.53 0.44 0.42 0.40 

 C1F2 0.37 0.35 0.34 0.31 0.30 0.29 

1 C1F1F2 0.57 0.53 0.51 0.42 0.40 0.39 

 C2F1 0.58 0.54 0.52 0.43 0.41 0.39 

 C2F2 0.46 0.43 0.40 0.34 0.33 0.32 

1 C2F1F2 0.58 0.54 0.51 0.43 0.41 0.40 

 C3F1 0.56 0.49 0.46 0.35 0.34 0.33 

 C3F2 0.31 0.30 0.30 0.28 0.28 0.27 

1 C3F1F2 0.48 0.45 0.42 0.34 0.33 0.32 

2 C1 C2F1F2 0.60 0.55 0.53 0.43 0.42 0.40 

3 C1 C2 C3F1F2 0.59 0.54 0.52 0.43 0.41 0.39 
(c) Caltech101 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.61 0.56 0.53 0.44 0.42 0.40 

 C1F2 0.37 0.35 0.34 0.31 0.30 0.29 

1 C1F1F2 0.59 0.55 0.53 0.44 0.42 0.40 

 C2F1 0.58 0.54 0.52 0.43 0.41 0.39 

 C2F2 0.46 0.43 0.40 0.34 0.33 0.32 

1 C2F1F2 0.60 0.56 0.54 0.45 0.43 0.42 

 C3F1 0.56 0.49 0.46 0.35 0.34 0.33 

 C3F2 0.31 0.30 0.30 0.28 0.28 0.27 

1 C3F1F2 0.55 0.50 0.47 0.38 0.37 0.36 

2 C1 C2F1F2 0.62 0.58 0.55 0.46 0.44 0.42 

3 C1 C2 C3F1F2 0.62 0.57 0.54 0.45 0.43 0.42 
                (d) Caltech101 

In conclusion, the proposed MEFS which fused scores/evidence resulting from 

clustering different local image features using different clustering algorithms with fixed 

number of clusters was able to increase the accuracy of image retrieval. However, 

performance varied due to the complex nature of image content in each image 

collection.  

7.5.2 Score Level Fusion of Adaptive Clustering Algorithms 

In this experiment, the adaptive version of the clustering algorithms CLUST (C1), ASP 

(C2), and AKM (C3) and MSH (C4) were used to cluster local image features. The 
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characteristic of this version is generating segments/clusters that best fit an image’s 

visual content automatically unlike fixing number of clusters manually as done in the 

previous experiments in Section 7.5.1. However, as explained in Chapters 3, 5 and 6, 

the resulting clusters vary among the algorithms.  

Table 7.7(a–c) shows MAP values of image retrieval for each feature with the clustering 

method and the levels of fused results are progressively shaded over three databases as 

before. Table 7.7(a) presents MAP values for WANG database. Fusing evidences of 

clustering DCT-CT (F1) features using CLUST (C1) algorithm and LBPu2 (F2) features 

also using CLUST (C1) achieved 4% more than that obtained from C1F1 alone and 12-

18 % more than that obtained from using C1F2. Meanwhile, the ASP algorithm on these 

features (C2F1 F2) at the same level of fusion achieved a significant increase in 

performance, about 7%.  Similarly, the AKM algorithm on these features (C3F1F2) 

increased the accuracy by 9%. Hence, proposed combination of evidence has had a 

positive impact on the retrieval system. 

Table 7.7: MAP of four levels fusion on WANG, Caltech6, and Caltech101 using (C1: CLUST, C2: ASP, C3: AKM, and C4: MSH) 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.67 0.62 0.57 0.45 0.44 0.42 

 C1F2 0.53 0.49 0.46 0.36 0.35 0.34 

1 C1F1F2 0.71 0.66 0.62 0.50 0.48 0.46 

 C2F1 0.56 0.51 0.48 0.38 0.36 0.35 

 C2F2 0.51 0.46 0.44 0.35 0.33 0.32 

1 C2F1F2 0.63 0.58 0.56 0.44 0.42 0.41 

 C3F1 0.59 0.53 0.49 0.37 0.36 0.34 

 C3F2 0.53 0.50 0.48 0.40 0.39 0.37 

1 C3F1F2 0.66 0.61 0.57 0.46 0.44 0.43 

 C4F3 0.56 0.50 0.47 0.36 0.34 0.33 

2 C1 C2F1F2 0.72 0.67 0.63 0.50 0.48 0.46 

3 C1 C2 C3F1F2 0.76 0.71 0.67 0.54 0.52 0.50 

4 C1 C2 C3 C4F1F2F3 0.78 0.72 0.69 0.54 0.52 0.50 
                                                 (a) WANG 

 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.84 0.79 0.75 0.60 0.58 0.55 

 C1F2 0.84 0.78 0.74 0.60 0.58 0.55 

1 C1F1F2 0.91 0.86 0.82 0.68 0.65 0.62 

 C2F1 0.80 0.75 0.72 0.57 0.54 0.52 

 C2F2 0.74 0.69 0.65 0.52 0.50 0.48 

1 C2F1F2 0.87 0.83 0.79 0.63 0.60 0.58 

 C3F1 0.78 0.71 0.66 0.50 0.48 0.46 

 C3F2 0.79 0.73 0.68 0.56 0.54 0.52 

1 C3F1F2 0.88 0.83 0.78 0.62 0.60 0.57 

 C4F3 0.63 0.57 0.52 0.40 0.38 0.37 

2 C1 C2F1F2 0.91 0.87 0.83 0.69 0.66 0.63 

3 C1 C2 C3F1F2 0.93 0.88 0.85 0.70 0.68 0.65 

4 C1 C2 C3 C4F1F2F3 0.93 0.89 0.84 0.69 0.67 0.64 
                                                                       (b) Caltech6 
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Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.51 0.47 0.44 0.36 0.35 0.35 

 C1F2 0.43 0.38 0.35 0.29 0.28 0.28 

1 C1F1F2 0.53 0.48 0.45 0.37 0.35 0.34 

 C2F1 0.52 0.48 0.46 0.37 0.36 0.35 

 C2F2 0.44 0.40 0.38 0.31 0.30 0.29 

1 C2F1F2 0.53 0.50 0.47 0.38 0.37 0.35 

 C3F1 0.51 0.46 0.43 0.33 0.32 0.32 

 C3F2 0.40 0.37 0.36 0.32 0.32 0.31 

1 C3F1F2 0.51 0.46 0.43 0.33 0.32 0.32 

 C4F3 0.46 0.43 0.41 0.34 0.33 0.32 

2 C1 C2F1F2 0.58 0.53 0.50 0.40 0.38 0.37 

3 C1 C2 C3F1F2 0.61 0.56 0.52 0.41 0.40 0.38 

4 C1 C2 C3 C4F1F2F3 0.61 0.56 0.53 0.42 0.41 0.39 
                                                                      (c) Caltech101 

Figure 7.3 show two ranked lists of Top 20 retrieved images using CLUST algorithm 

with the DCT-CT and LBPu2 features individually and then the ranked list of Top 20 

retrieved images that is obtained from fusing scores of the DCT-CT and LBPu2 features 

at level 1. The DCT-CT features which captures visual colour and texture in frequency 

domain retrieved 13 relevant images to a people query image, while the LBPu2 features 

which captures visual texture only in spatial domain, retrieved 13 relevant images. We 

can see 11 images of the second list are different to the first list.  

The fused scores/evidence based on the two features and same algorithm retrieved 16 

relevant images. The first image is recognized by the first feature but not by the second 

feature. The fusion confirmed that the image will be ranked at 1st position because the 

first score is weighted by 0.6 and the second by 0.4. The second image is recognized by 

the two features individually, but in different ranks 2 and 17 respectively. The fusion 

consolidated the image to occupy the 2nd position; especially the first distance is 

weighted by 0.6 and the second by 0.4 (Table 7.5). Images at the 3rd and 8th positions in 

the fusion list were included at the 9th and 18th positions of the first list of the DCT-CT 

feature respectively. This means fusing the two scores integrate visual information and 

helped to move the image to the low rank.  

Relevant images occupy the 6th, 13th, 14th, and 16th positions in the fusion list were 

included at the 10th, 11th, 2nd, and 12th positions in the second list using LBPu2 texture 

feature and they are different compared to those of the DCT-CT feature. In addition, the 

fusion supported to bring a relevant image that did not appear in the two lists of Top 20 

DCT-CT and LBPu2 features at the 17th position in the fusion list. However, the fusion 

affected negatively when one score or both are very big and then irrelevant images will 
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appear as relevant images such as those at the 9th, 12th, 18th, and 20th positions in the 

fusion list.  

Fusing outcomes of the CLUST and ASP algorithms from level 1 resulted 1% increase 

in MAP for the first top retrieved images at level 2 (i.e. C1C2F1F2). Meanwhile, fusing 

the results of level 2 with those of level 1 using the AKM algorithm increased the 

performance by 4% at level 3 (i.e. C1C2C3F1F2). This indicates that scores from the 

AKM algorithm supported those from the CLUST and ASP algorithms to recognize 

relevant images and/or retrieved more. As we can see that there are slight improvements 

at level 4 (i.e. C1C2C3C4F1F2) using the MSH algorithm.   
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Figure 7.3:  Applying CLUST algorithm to DCT-CT and LBPu2 individually and Fusion level 1. 
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Table 7.7(b) illustrates MAP values using Caltech6 database, where score-level fusion 

of features F1 and F2 using CLUST, ASP, and AKM clustering algorithms at level 1 

improved the retrieval accuracy by 7%, 8%, and 5-12% respectively. The effect of 

fusion at level 2 (CLUST and ASP) is poor. Then fusing these results with those of 

AKM increases the accuracy slightly at level 3. The final fusing between these 

outcomes and those of MSH is low.   

Table 7.7(c) shows MAP values using Caltech101database, where integrating the scores 

from F1 and F2 with CLUST and ASP by fusion affected the performance slightly, 

whereas using AKM did not change the results at level 1.  The fusion increased the 

accuracy of retrieval by around 3 to 5% at level 2. As a result of fusing outcomes of 

level 2 with those of AKM algorithm, the increment is between 1 and 3 per cent at level 

3. Here, the MSH algorithm has a marginal effect at level 4 which is similar to the 

WANG and Caltech6 databases. 

7.5.3 Score Level Fusion of Fixed and Adaptive Clustering Algorithms 

Here, we fuse the outcomes of the adaptive algorithms (i.e. CLUST, AKM, and MSH) 

and the fixed SP algorithm with K=15 because the performance of the SP algorithm 

with 15 clusters is similar to the EM’s performance with K=55 and it is better than the 

CLUST algorithm. Table 7.8(a–c) refers to the retrieval rates for each level of evidence 

fusion. Level 2 fusion (C1C2F1F2) records a 2% increase in MAP on the WANG 

database but it does not record any improvement in the Caltech6 and Caltech101 

collections. Levels 3 (C1 C2 C3F1F2) and 4 (C1 C2 C3 C4F1F2F3) have a marginal 

improvement on the three databases. 

Table 7.8: MAP of four levels fusion on WANG, Caltech6, and Caltech101 using (C1: CLUST, C2: SP, C3: AKM, and C4: MSH) 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.67 0.62 0.57 0.45 0.44 0.42 

 C1F2 0.53 0.49 0.46 0.36 0.35 0.34 

1 C1F1F2 0.71 0.66 0.62 0.5 0.48 0.46 

 C2F1 0.69 0.64 0.60 0.46 0.45 0.43 

 C2F2 0.62 0.57 0.54 0.44 0.42 0.41 

1 C2F1F2 0.76 0.71 0.67 0.54 0.52 0.49 

 C3F1 0.59 0.53 0.49 0.37 0.36 0.34 

 C3F2 0.53 0.50 0.48 0.40 0.39 0.37 

 C3F1F2 0.66 0.61 0.57 0.46 0.44 0.43 

1 C4F3 0.56 0.50 0.47 0.36 0.34 0.33 

2 C1 C2F1F2 0.78 0.73 0.69 0.55 0.53 0.51 

3 C1 C2 C3F1F2 0.79 0.74 0.70 0.56 0.54 0.52 

4 C1 C2 C3 C4F1F2F3 0.80 0.75 0.71 0.56 0.54 0.51 
 (a) WANG 
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Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.84 0.79 0.75 0.60 0.58 0.55 

 C1F2 0.84 0.78 0.74 0.60 0.58 0.55 

1 C1F1F2 0.91 0.86 0.82 0.68 0.65 0.62 

 C2F1 0.89 0.84 0.81 0.66 0.63 0.60 

 C2F2 0.90 0.85 0.81 0.68 0.66 0.63 

1 C2F1F2 0.95 0.92 0.90 0.77 0.74 0.70 

 C3F1 0.78 0.71 0.66 0.50 0.48 0.46 

 C3F2 0.79 0.73 0.68 0.56 0.54 0.52 

1 C3F1F2 0.88 0.83 0.78 0.62 0.60 0.57 

 C4F3 0.63 0.57 0.52 0.40 0.38 0.37 

2 C1 C2F1F2 0.95 0.92 0.89 0.75 0.72 0.69 

3 C1 C2 C3F1F2 0.95 0.91 0.89 0.74 0.72 0.68 

4 C1 C2 C3 C4F1F2F3 0.94 0.91 0.87 0.72 0.69 0.66 
                                                                                        (b) Caltech6 

 

Level Clustering/Feature T10 T20 T30 T80 T90 T100 

 C1F1 0.51 0.47 0.44 0.36 0.35 0.35 

 C1F2 0.43 0.38 0.35 0.29 0.28 0.28 

1 C1F1F2 0.53 0.48 0.45 0.37 0.35 0.34 

 C2F1 0.58 0.54 0.52 0.43 0.41 0.39 

 C2F2 0.46 0.43 0.40 0.34 0.33 0.32 

1 C2F1F2 0.58 0.54 0.51 0.43 0.41 0.40 

 C3F1 0.51 0.46 0.43 0.33 0.32 0.32 

 C3F2 0.40 0.37 0.36 0.32 0.32 0.31 

 C3F1F2 0.51 0.46 0.43 0.33 0.32 0.32 

1 C4F3 0.46 0.43 0.41 0.34 0.33 0.32 

2 C1 C2F1F2 0.58 0.54 0.51 0.42 0.40 0.39 

3 C1 C2 C3F1F2 0.58 0.54 0.51 0.42 0.40 0.39 

4 C1 C2 C3 C4F1F2F3 0.60 0.55 0.52 0.43 0.41 0.39 
          (c) Caltech101                        

7.5.4 Conclusion 

To sum up, the proposed multi-evidence fusion scheme (MEFS) achieved the following: 

first, fusing evidence/scores of the DCT-CT colour-texture feature in frequency domain 

and those of the LBPu2 feature in spatial domain that are clustered by the same 

clustering algorithm at level 1 resulted in high improvement means different features 

can capture different visual information about the same image and can be exploited to 

integrate them using appropriate weights. Second, the fusion between evidence of the 

Expectation Maximization (CLUST/EM) and those of Normalized Laplacian Spectral 

(ASP/SP) algorithms at level 2 using equal weights when these algorithms used fixed or 

adaptive number of clusters to represent images can integrate their performances to 

increase the accuracy of image retrieval in three databases. However, a combination 

between adaptive EM (i.e. CLUST) and fixed SP affected positively in WANG database 

only. Third, the effectiveness is marginally increased at levels 3 using the K-means 

(AKM/KM) and level 4 using the Mean Shift (MSH) indicated that both algorithms 
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have less impact on combination their resulted evidence to those of their previous level 

using suitable weights. Finally, each level contributed to increase the effectiveness of 

image retrieval by raising the number of relevant images in the retrieved list. However, 

it varied among clustering algorithms and database images. 

7.6 Score Level Fusion using Adaptive Weights  

The previous section used fixed weights for score fusion. However, using a fixed weight 

for all types of images might not be a reasonable solution. Here we propose to 

determine fusion weights adaptively using linear regression.  

Linear regression consists of finding the best-fitting straight line through points. The 

best-fitting line is called a regression line which minimizes the sum of the squared 

errors of estimation. The following is a straight line equation: 𝐴𝑥 + 𝑏 = 0            𝐴𝑥 =

𝑏, where A is input matrix b is output and x  (coefficients) is the demand. 

If we adapt this to our work i.e. to predict the weights automatically, then 𝐷𝑤 = 𝑓, 

where D is a matrix of distances, w are weights, and f  is the fusion vector. 

Suppose 𝑥 and 𝑦 distances based on one clustering algorithm with two different features 

and �̅� and �̅� are means, then the best line model (f) can be computed by: 

𝑓 = 𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡     7.3 

𝑠𝑙𝑜𝑝𝑒 =
𝑛∑𝑥𝑦−∑𝑥∑𝑦

𝑛∑𝑥2−(∑𝑥)2
              7.4 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = �̅� − 𝑠𝑙𝑜𝑝𝑒 ∗ �̅�     7.5 

Now, we can find w weights from the following a multiple linear regression instruction 

in MATLAB: w=regress (f, D) and then use them in the fusion formula as follows 

𝑓 = 𝑥 × 𝑤 + 𝑦 × (1 − 𝑤)     7.6 

Finally, 𝑓 scores are sorted in ascending order to retrieve images. This is implemented 

to satisfy the MEFS multilevel fusion method adaptively and is labelled as AMEFS.  

The following three experiments are similar to those in the previous subsections except 

for the use of linear regression to determine the weights for each fusion level adaptively 

instead of fixing them empirically. Therefore, the results will be shown for the final 
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level of fusion only and compared to those that obtained from the fixed weights (MEFS) 

and the simple combination method without any weights (Comb SUM) in three cases 

using fixed, adaptive, and mixture of the clustering algorithms for WANG, Caltech6, 

and Caltech101 databases.  

7.6.1 Score Level Fusion of Fixed Clustering Algorithms 

The experiment aims to investigate the basic version of clustering algorithms (i.e. EM 

with K=55, SP with K=15, and KM with K=25) with the same steps of the fusion 

method in Figure 7.2, where liner regression is adapted to determine the weights 

automatically. The results are compared to the weighted (i.e. MEFS) and Comb SUM 

methods in Table 7.9(a–c). 

Table 7.9(a) presents the outcomes of the retrieval using WANG database. It can be 

seen that the three methods are often identical in terms of their MAP. Table 7.9(b) 

illustrates the case with the Caltech6 database, where Comb SUM approaches the 

MEFS method and the accuracy of AMEFS method decreased about 3-4% at Top 80, 90 

and 100 retrieved images. Meanwhile, Table 7.9(c) shows the retrieval performance of 

AMEFS for the Caltech101 database, where its performance is on par or marginally 

above that of MEFS and Comb SUM methods respectively.  

Table 7.9: MAP of final fusion level on WANG, Caltech6, and Caltech101 using (C1: EM, C2: SP, and C3: KM)  

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.80 0.75 0.71 0.57 0.54 0.52 

AMEFS 0.80 0.75 0.71 0.56 0.54 0.51 

Comb SUM 0.80 0.75 0.71 0.57 0.55 0.52 
(a) WANG 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.96 0.93 0.91 0.79 0.76 0.72 

AMEFS 0.95 0.92 0.89 0.75 0.72 0.69 

Comb SUM 0.96 0.93 0.90 0.78 0.76 0.72 
   (b) Caltech6 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.59 0.54 0.52 0.43 0.41 0.39 

AMEFS 0.60 0.55 0.52 0.42 0.41 0.39 

Comb SUM 0.57 0.53 0.50 0.41 0.40 0.38 
        (c) Caltech101 

On the one hand, we can conclude that the adaptively weighted multi-level fusion 

method (AMEFS) performs similarly to the fixed weighted method (MEFS) on the three 

databases, WANG, Caltech6, and Caltech101. Moreover, Comb SUM method which 
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uses equal weighting in score fusion performs equally well on WANG and Caltech6 

databases, but not on the more complex Caltech101 database.  

7.6.2 Score Level Fusion of Adaptive Clustering Algorithms 

In this experiment, the adaptive clustering algorithms (CLUST, ASP, AKM, and MSH) 

are applied to local image features following the procedure in Figure 7.2. The results of 

the image retrieval at the final fused level using linear regression in three databases are 

reported in Table 7.10(a–c). The retrieval results of the MEFS and Comb SUM methods 

are again presented for comparison purposes. Table 7.10(a) illustrates that MAP values 

from using regression (AMEFS) method is less by 2% only compared to the weighted 

(MEFS) and Comb SUM methods in the WANG database. Table 7.10(b) shows the 

performance of the AMEFS is on par or above that of the MEFS method and is 

significantly better than the Comb SUM method in the Caltech6 database. Meanwhile, 

Table 7.10(c) refers to the results on the Caltech101 database where the performance of 

AMEFS is roughly equal to that of MEFS method and is marginally better than the 

Comb SUM.  

Table 7.10: MAP of final fusion level on WANG, Caltech6, and Caltech101 using (C1: CLUST, C2: ASP, C3: AKM, and C4: MSH)  

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.78 0.72 0.69 0.54 0.52 0.50 

AMEFS 0.77 0.70 0.66 0.52 0.50 0.48 

Comb SUM 0.77 0.72 0.68 0.54 0.52 0.50 
               (a) WANG 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.93 0.89 0.84 0.69 0.67 0.64 

AMEFS 0.93 0.89 0.85 0.71 0.68 0.65 

Comb SUM 0.92 0.87 0.82 0.67 0.64 0.61 
                  (b) Caltech6 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.61 0.56 0.53 0.42 0.41 0.39 

AMEFS 0.60 0.56 0.53 0.42 0.40 0.39 

Comb SUM 0.59 0.54 0.51 0.41 0.39 0.38 
                  (c) Caltech101 

Hence, the retrieval accuracy of the AMEFS close to that of the MEFS fusion method in 

WANG database and par or above in Caltech6 and Caltech101 databases along the 

number of retrieved images, when images are represented by adaptive number of 

clusters using different clustering algorithms and different local features. However, the 
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combination by Comb SUM method without using any weight can approach the MEFS 

method only in the WANG database. 

7.6.3 Score Level Fusion of Fixed and Adaptive Clustering Algorithms  

As in Section 7.5.3, here, we fused the evidence of adaptive algorithms (i.e. CLUST, 

AKM, and MSH) and the fixed SP algorithm with K=15 using linear regression.  The 

results of retrieval in terms of MAP are shown in Table 7.11(a–c). Overall, the 

performance of retrieval using AMEFS is less than those using MEFS and Comb SUM 

methods in three databases. Meanwhile, MEFS and Comb SUM methods are roughly 

similar when using fixed SP rather than ASP to represent images. This could be because 

the scores of the SP and CLUST algorithms are equally weighted by the fixed MEFS 

(w=0.5) and Comb SUM, whereas they are weighted differently by the AMEFS method.  

Table 7.11: MAP of final fusion level on WANG, Caltech6, and Caltech101 using (C1: CLUST, C2: SP, C3: AKM, and C4: MSH)  

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.80 0.75 0.71 0.56 0.54 0.51 

AMEFS 0.76 0.71 0.66 0.52 0.50 0.48 

Comb SUM 0.80 0.75 0.71 0.57 0.55 0.52 
               (a) WANG 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.94 0.91 0.87 0.72 0.69 0.66 

AMEFS 0.94 0.89 0.84 0.68 0.66 0.63 

Comb SUM 0.95 0.92 0.88 0.75 0.72 0.69 
                  (b) Caltech6 

Fusion Method T10 T20 T30 T80 T90 T100 

MEFS 0.60 0.55 0.52 0.43 0.41 0.39 

AMEFS 0.57 0.53 0.50 0.40 0.38 0.37 

Comb SUM 0.60 0.55 0.52 0.43 0.41 0.39 
                        (c) Caltech101  

7.6.4 Conclusion 

Overall, the proposed adaptive multi-evidence fusion scheme (AMEFS) achieved an 

accuracy level similar to that of the proposed MEFS, especially when clustering 

algorithms used the fixed number of clusters values only to represent images or used the 

adaptive number of clusters values only. The Comb SUM method of evidence fusion 

approached the accuracy of MEFS, especially when all/some clustering algorithms used 

a fixed number of clusters. 
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The proposed multi-evidence increased the effectiveness of image retrieval by 

exploiting different local features and clustering algorithms to narrow the semantic gap 

between low-level features and high-level conceptual meaning in CBIR. Table 7.12 

presents MAP results on the WANG database to compare the performance of our 

proposed methods with related works which are detailed in Chapters 1, 2 and 7. We will 

use F, A, and M to refer to fixed, adaptive, and mixed versions of clustering algorithms 

respectively. These are associated with W, R, and S that refer to weighted, regression, 

and Com SUM methods respectively used for evidence fusion. The Table 7.12 shows 

that three versions of the proposed fusion scheme achieved about 80-84%, 76-80%, and 

48-52% of MAP at the Top 5, 10, and 100 retrieved images respectively.  

Table 7.12: MAP of proposed methods and related work comparison 

Method T5 T10 T100 

FW 0.84 0.80 0.52 
FR 0.84 0.80 0.51 
FS 0.84 0.80 0.52 
MW 0.84 0.80 0.51 
MR 0.80 0.76 0.48 
MS 0.83 0.80 0.52 
AW 0.82 0.78 0.50 
AR 0.80 0.76 0.48 
AS 0.81 0.77 0.50 
(Li, et al., 2000) - - 0.47 
(Hiremath & Pujari, 2008) - - 0.51 
(Deselaers et al., 2008) - 0.56 - 
(Singh & Hemachandran, 2012) - 0.61 - 
(Vieux, et al., 2012) 0.56 - - 
(Lokoč, et al., 2012) - 0.58 0.44 
(Karpagam & Rangarajan, 2012) - 0.73 0.49 
(Salmi & Boucheham, 2014) - 0.75 - 
(Chaudhary & Upadhyay, 2014) - 0.74  
(Chen, et al., 2014) - - 0.72 

 

Specifically, our proposed fusion scheme with the best MAP is higher by 28% at Top 5 

compared to (Vieux, et al., 2012) that used Comb SUM on outcomes of BOR and 

BOVW; by 24% at Top 10 compared to the Flexible Image Retrieval Engine (FIRE) in 

(Deselaers, et al., 2008) that used Comb SUM among different global and local colour 

and texture features results; by 22% and 8% at Top 10 and 100 respectively compared 

to the method in (Lokoč, et al., 2012) that used Comb SUM on outcomes of resulted 

signatures using K-means clustering method and global descriptors (MPEG-7); by 7% 

and 19% at Top 10 compared to the approaches in (Karpagam & Rangarajan, 2012; 
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Singh & Hemachandran, 2012) respectively that used different global and local features; 

by 5% at Top 100 retrieved images compared to SIMPLcity CBIR system in (Li, et al., 

2000) that used K-means clustering method on colour and texture features in addition to 

shape feature; and by 1% compared to salient method in (Hiremath & Pujari, 2008). 

Recently, (Salmi & Boucheham, 2014) proposed a method that integrated colour and 

texture features, where colour feature of images in HSV colour space were calculated 

(mean, standard deviation, and skewness). Meanwhile, texture feature of greyscale 

images was a histogram of LBP with 8 neighbours and 1 radius. Then colour and 

texture features were combined to be a single feature to represent images. Euclidean 

function was used to compute a distance between two images. Experiment of retrieval 

was conducted on WANG database and MAP value was 75% at Top 10 retrieved 

images.  

Chaudhary and Upadhyay (Chaudhary & Upadhyay, 2014) presented a hybrid approach 

that exploited global and local features to retrieve images by applying Stationary 

Wavelet Transform (SWT) on images (horizontal, vertical, and diagonal). The 

difference between SWT and a traditional DWT is that the size of sub-bands images is 

the same as that of original images because no down-sampling is performed during the 

wavelet transformation. The global feature (F1=12D) was extracted by applying GLCM 

(horizontal, vertical, and diagonal) matrices and energy, contrast, correlation, and 

inverse difference moment were then computed. Meanwhile, the local feature (F2=18D) 

mean and standard deviation were calculated for three cropped regions (vertical, 

horizontal, and central). The final combined feature was (F=30D). Retrieval experiment 

was conducted on WANG database and MAP value was 74% at Top 10 retrieved 

images using 20 images as query and the remaining 80 images as database.           

In (Chen, et al., 2014), a novel framework for image retrieval based on multi-feature 

fusion and sparse coding was presented, where Colour Laplacian-of-Gaussian (CLOG) 

(hundreds to thousands 36-D) and SURF features were extracted. Then a dictionary 

learning method was used to construct them to be dictionary features. Due to size of 

resulted dictionary features, they were coded by a sparse linear combination to be 

efficient features. Then similarity measure between two features of images will be 

robust. The score-level fusion distance was calculated (𝐷 = 𝐷𝐶𝐿𝑂𝐺 × 𝑤1 + 𝐷𝑆𝑈𝑅𝐹 ×

𝑤2)), where the best weights are empirically determined (𝑤2 = 1 − 𝑤1). Retrieval 

experiment was conducted on WANG database and MAP was 72% at Top 100 retrieved 
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images. Although this method achieved a good performance, the computation 

complexity is high to compute dictionary features and Mountains and Beach classes are 

still a challenge due to common objects, where MAP values were 38% and 60% 

respectively.  

7.7 Summary 

This chapter proposed data-level fusion and score level fusion to increase the 

performance of CBIR. The two main proposals were based on the outcomes of our 

evaluations presented in chapters 5 & 6. The data level fusion is proposed to combine 

DCT based local image features in frequency domain with the LBP based local image 

features in spatial domain. Experimental results on three databases demonstrated that 

LBP features can capture additional and complementary texture information of image 

content to those captured by DCT-CT feature. 

The proposed score-level fusion scheme combines multiple evidence/scores to improve 

image retrieval accuracy. Multiple combinations of local features and clustering 

algorithms were used to calculate similarity scores (evidence) for a given query image. 

Three approaches to multi-evidence fusion were considered: 1) evidence fusion using 

fixed weights (MEFS) where the weights were determined empirically and fixed a prior; 

2) evidence fusion based on adaptive weights (AMEFS) where the fusion weights were 

determined adaptively using linear regression; 3) evidence fusion using a linear 

combination (Comb SUM) without weighting the evidences.  

Three publicly available databases were used to evaluate the proposed schemes and 

compare their results with existing work. Overall, the fusion schemes demonstrated the 

ability to improve image retrieval accuracy and reduce the semantic gap problem 

between low-level features and high-level conceptual meaning of image content. 

However, the improvement varied across different feature-clustering combinations (i.e. 

image representation) and the image databases used for the evaluation. Finally, we 

showed that the proposed multi-evidence schemes perform better than a number of 

existing approaches reported in the literature. 

The next chapter concludes the work of this thesis. It summarises the thesis, highlights 

its contributions and directs to possible further work. 
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Chapter 8  

 

Conclusions and Future Work 

 

As the final chapter of the thesis, we organise this chapter in three parts. In the first part, 

we shall summarise the work presented in the thesis. In the second part, we shall 

highlight the main findings and conclusions from this study, and outline some 

limitations with our research and the proposed solutions. In the final part of the chapter, 

we shall describe the future work that will address the limitations. 

8.1 Thesis Summary 

This thesis first presented a general introduction to CBIR concepts, the system 

architecture and some landmark CBIR systems that have been developed so far. We 

defined the focus of this research as to improve the effectiveness of CBIR rather than 

efficiency, and identified the main problem of CBIR as narrowing the “semantic gap”, 

which is caused by insufficiency of conformity between the interpretation of computers 

and human perception to visual information of the same image. We argued that the 

semantic gap is reflected by the gap between low-level visual features and high 

conceptual and contextual meanings of the image, and hence summarising the low-level 

features into mid-level shape features will help narrow the gap. We outlined two 

essential functional components of the CBIR process: extracting features and comparing 

images using the extracted features. These components are inter-related to each other 

where the accuracy of similarity measures between two images rely on the robustness of 

image features in reflecting visual image content. Extracted features can be influenced 

by many factors such as feature type (i.e. global or local), feature domain (i.e. frequency 

or spatial), and feature level (i.e. low, mid, and high). The thesis also presented a broad 

literature survey in Chapter 2. We first summarised the existing main approaches for 

tackling the problem of the semantic gap, such as clustering, Region of Interest (ROI), 

Relevance Feedback (RF), Browsing, and Bag-of-Visual-Word (BOVW), together with 

their strengths and limitations. The thesis then gave a broad literature review on existing 
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features of different levels representing the image visual content and similarity 

measures for global and local features, and also highlighted the importance and appeal 

of local low-level features for CBIR, and hence set this research in this specific 

direction. Image segmentation is one of the approaches aim to group the low-level local 

features into mid-level shapes using clustering methods, in order to increase the 

correspondence between these shapes and meaningful objects in the image. Therefore, 

the effects of different kinds of clustering algorithms in obtaining the shape features are 

of interests of this research. Four representative clustering methods, i.e. K-means, 

EM/GMM, Normalized Laplacian Spectral, and Mean Shift of the partition-based, 

model-based, graph-based, and density-based categories respectively are consequently 

reviewed in Chapter 3. 

The thesis then presented a systematic evaluation of the different types of local features 

and four clustering methods mentioned in Chapters 5 and 6 respectively using three 

well-established public domain benchmark databases, i.e. WANG, Caltech6, and 

Caltech101. The procedural framework for CBIR that our experimental studies followed 

can be summarised to the following sequential steps: 

Step 1: Extract local image features in YCbCr colour space. 

Step 2: Segment local image features into objects/regions by using clustering 

methods. 

Step 3: Compare two images for similarity based on segmented objects/regions 

using cluster centroids as their feature representation. 

Step 4: Evaluate system performance by classification/retrieval tests. 

We conducted both image classification tests and image retrieval tests, and evaluated 

the effectiveness of the features and clustering methods in terms of recall and precision. 

To evaluate the performance of the clustering methods, we tested the methods in two 

settings, i.e. when the number of clusters is adaptively determined and when it is fixed 

to a specific value. We used statistical significance analysis methods to evaluate the 

significant differences in performance. We used the chi-square (2) test for image 

classification results because of its suitability to categorical test outcomes, and the t-test 

for image retrieval results due to its suitability of continuous test outcomes. Such a 

thorough testing revealed a lot of detail on performance and performance differences 

which has not been seen in the existing literature. 
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Based on the outcomes of the evaluations in Chapters 5 and 6, the thesis proposed a 

multi-evidence fusion scheme for CBIR in Chapter 7 where we reviewed existing 

fusion-based approaches to CBIR. The proposed scheme is in principle a score-level 

fusion method. Score-level fusion has recently been used in many areas such as 

biometrics and multimedia with promising results. In addition, two new features based 

on data-level fusion are also proposed to combine expressiveness of features from both 

a frequency and the spatial domains (see Chapter 7). 

8.2 Main Findings and Conclusions  

We summarise the following main findings and contributions made through this 

research work as being presented in the thesis: 

 As we stated before, the aim of this research is to develop an effective retrieval 

scheme that reduces the semantic gap by increasing the number of relevant images 

and their positions in the result ranked list when the label of the query image is 

unavailable. Based on the results of two systematic evaluations on the different 

types of local features and clustering methods in segmenting the local features, the 

proposed scheme adopts a multi-evidence fusion framework, aiming to optimise the 

use of the local features and the clustering algorithms within the fusion framework. 

The proposed fusion scheme is presented in three versions: with fixed weights (i.e. 

MEFS), with adaptive weights (i.e. AMEFS), and without weights (i.e. Comb 

SUM). Three kinds of fusion are made among adaptive, fixed, and mixed clustering 

methods. The adaptively determined weights (i.e. AMEFS) can achieve a retrieval 

accuracy similar to fixed weights (i.e. MEFS) when the fusion is made between the 

adaptive or fixed clustering methods, but it is less when the fusion is made among 

mixed of adaptive and fixed clustering methods. However, Comb SUM can achieve 

the same or similar results to MEFS and AMEFS in some databases, especially 

when the fixed or mixed clustering methods are used in fusing. In terms of the 

clustering method’s performances within the fusion framework, the EM/GMM and 

the Normalized Laplacian Spectral Clustering outperform both the K-means and the 

Mean Shift methods in terms of relevant images into the ranked list. Overall, three 

versions of the proposed fusion scheme using three types of image representation 

have achieved 80-84%, 76-80%, and 48-52% mean average precision at the Top 5, 

10, and 100 retrieved images respectively over the benchmark WANG database, as 
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shown in Table (7.12). Specifically, our proposed fusion scheme with the best MAP 

value is higher by 28% at Top 5 compared to a method in (Vieux, et al., 2012) that 

used Comb SUM on outcomes from using BOR and BOVW, by 24% at Top 10 

compared to Flexible Image Retrieval Engine (FIRE) in (Deselaers, et al., 2008) that 

used Comb SUM among different global and local colour and texture features 

results, by 22% and 8% at Top 10 and 100 respectively compared to the method in 

(Lokoč, et al., 2012) that used Comb SUM on outcomes of resulted signatures from 

using K-means clustering method and global descriptors (MPEG-7), by 7% and 19% 

at Top 10 compared to approaches in (Karpagam & Rangarajan, 2012; Singh & 

Hemachandran, 2012) respectively that used different global and local features, and 

by 5% at Top 100 retrieved images compared to SIMPLcity CBIR system in (Li, et 

al., 2000) that used K-means clustering method on colour and texture features in 

addition to shape feature. Details of these approaches are in Chapters 1, 2 and 7. Our 

study confirmed that fusion integrates different information from different sources 

(i.e. types of features and segments by clustering algorithms) and improves the 

effectiveness of the retrieval mechanism (see Chapter 7). 

 We proposed two new combined features, i.e. DCTu2 and DCTriu2, which are 

respectively a feature-level fusion between DCT-CT in frequency domain and Local 

Binary Patterns (i.e. LBPu2 and LBPriu2) in the spatial domain. We evaluated their 

performances against the results of the other features. Retrieval tests showed 

different levels of precision among the adaptive versions of the clustering methods 

for the three image databases. The two new features showed their promise and better 

performance than the other features for all three databases when the Normalized 

Laplacian Spectral Clustering is applied.  The two new features also worked well 

with the K-means method for both WANG and Caltech6 databases, and with the 

CLUST algorithm for only the Caltech6 database. The test results indicated that the 

LBP features are able to capture complementary texture information from image 

content compared to those captured by the DCT-CT feature and can and should be 

exploited (see Chapter 7). 

 The evaluation on different types of local features using the K-means clustering 

method for segmentation indicates that each type of feature under the review has its 

own merits and limitations in representing image visual content for various classes 

of images. We have also found that the DCT-CT feature has promising performance 
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across various classes of images in the WANG and Caltech101 databases. Test 

results have shown that combining the colour and texture components in the DCT-

CT feature vector lead to better performance than separating the two components. 

The way of aggregating the DC coefficients into the vector also shows better 

performance of the feature vector that the alternative way of aggregating the 

coefficients in the zigzag manner. Since the DCT-CT feature vector exploits a 

similar principle of aggregating DC (texture) coefficients to that of the DWT in its 

high frequency sub-bands, we were able to compare the effect of the two different 

frequency transformations. Again, test results show slightly better or similar 

performance of the DCT-CT feature over that of the DWT-CT feature, and therefore 

it is safe to claim that the DCT-CT feature has at least the same level of performance 

as that of DWT-CT if not better. All indicators show that the DCT-CT feature is 

robust (only 12 dimensions) and has sufficient discriminative power. However, LBP 

texture features in the spatial domain can perform as well as if it not better than 

above features in frequency domain in some cases such that in Caltech6 database 

because these features follow a different way of capturing texture information 

compared to others, where the relationships between a pixel and its neighbourhood 

pixels are regarded to generate binary code of patterns and the features are 

represented by histograms that worked very well with the low number of clusters 

fixed or adaptive. This observation consolidates the understanding that no single 

feature can achieve best effectiveness of retrieval for all classes of various kinds of 

images and databases (see Chapter 5). 

 The existing literature has reported many attempts of using clustering methods in the 

local feature approach for CBIR, but the majority of the work reported used the K-

means method without questioning into its suitability for detecting clusters/segments 

in the feature space. Although widely used because of its simplicity and efficiency, 

the K-means method has its own well-known limitations (as we discussed in Chapter 

3). As far as we are aware, this thesis has made the first attempt to conduct a 

systematic and thorough evaluation of different categories of clustering algorithms 

for CBIR using the DCT-CT feature. We broadly covered the four main categories 

of algorithms, and selected one commonly used algorithm from each category (i.e. 

EM/GMM, Normalized Laplacian Spectral Clustering, Mean Shift as well as the K-

means). To satisfy our requirements for studying the effects of clusters on retrieval 
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results, we developed a simple adaption criterion to determine the appropriate 

number of clusters for the adaptive version of each selected clustering method, i.e. 

AKM for the K-means, and ASP for the Normalized Laplacian Spectral Clustering, 

and adopted the existing adaptive version for EM/GMM, i.e. CLUST (see Chapters 

5 and 6). The statistical tests we conducted in the evaluations revealed the statistical 

significance behind performance differences at image class level, which has been 

rarely attempted before. 

 We had a rather surprising discovery that using adaptively determined number of 

clusters does not necessarily improve the retrieval results. Although the adaptively 

determined number of clusters works well with simple images with a dominant 

object in the foreground, it does not work well for visually complex images. This 

discovery was somehow against our initial expectations and belief that the adaptive 

number of clusters should reflect more closely the image visual content. A closer 

look at our test results revealed more insight. For such visually complex images, the 

Normalized Laplacian Spectral Clustering achieved its best performances when 

K=15, the EM/GMM achieved its best when K=55, and the K-means did so when 

K=25, whereas most adaptively determined numbers of clusters were well below 10. 

We draw two possible conclusions from the observations. First, the stopping criteria 

used for adaptively determining the number of clusters, i.e. MDL for the CLUST 

and ASP methods and SSE for AKM, are in fact an unsupervised cluster quality 

measure that tend to favour a small value that may not reflect the colour and texture 

variations and complexity in a visually complex image. Second, similar 12-D local 

DCT-CT feature vectors may form segments of irregular shapes in the high 

dimensional vector space, and these shapes can be intertwined with each other and 

not clearly separated. How well the segments are discovered as clusters depends on 

the clustering algorithm used. The K-means method partitions the vector space into 

convex shaped clusters. An adaptively determined small number of clusters of a 

convex shape cannot represent the original segments of irregular shapes. When K is 

big, each irregular shape is more closely estimated by a number of smaller convex 

shapes, reducing the mismatch to a certain degree. Similarly, the EM/GMM method 

produces overlapping ellipsoid shaped clusters, and hence also needs a larger 

number of clusters to closely resemble the original irregularly shapes. The 

Normalized Laplacian Spectral Clustering method first transforms the original data 
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into points on the k-sphere, and in effect changes the irregular shaped segments into 

more regular shaped clusters, which makes it easier for the K-means method at its 

final step to form the clusters. It therefore has a better ability to capture the segments 

of the original irregular shapes (see Chapter 6), and requires fewer clusters to do so. 

 To a lesser but nonetheless important degree, we developed a customised 

dissimilarity measure (AgD) in comparing the proximity of two images whose good 

performance has been demonstrated through experiments when comparing with the 

known distance functions City-block (DL1), Euclidean (DL2), and Chi-Square (DChi-

Sq). It is worth mentioning that the proposed AgD measure is a meta measure and at 

the same time non-metric; it does not satisfy the symmetric property of a metric at 

least. The good performance of this proposed proximity measure shows that not all 

proximity should be measured by metrics. Developing non-metric but effective 

topological proximity measures can be of interest for future CBIR research. We also 

investigated augmenting the AgD measure with cluster shape variations, and hence 

used the Kullback-Leibler divergence DKLD with the mean vector (centroid) and 

covariance matrix (cluster variations). Image retrieval and image classification test 

results showed varied performances from image class to image class. In other 

words, taking the cluster shape variations into dissimilarity measurement works for 

images of some classes but not for others (see Chapter 6). 

8.3 Future Work 

Future work for this research includes immediate work to address the identified 

limitations of our current work, follow-up investigations, and new approaches and 

methods for CBIR. The immediate future work includes the following: 

 Our findings as well as reports from the Bag of Word approach (Vieux, et al., 2012) 

seem to agree that a large number of clusters is often needed for more accurate 

retrieval. The MDL principle and the SSE principle reported in this thesis normally 

favour fewer clusters and hence may be too crude for CBIR. Possible solutions 

based on cluster quality may include a much larger number of initial clusters and an 

earlier termination of the merging process when using the MDL measure, and bigger 

initial value of K when using the SSE measure. The relevant improvement of cluster 

quality across consequent values of K may also need to be considered. 
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 The colour and texture features can be further enhanced with spatial information 

when the local features are extracted. Coupled with a large number of clusters, the 

resulting clusters/segments from the clustering methods may further discriminate 

images and reduce the number of false positive images in the result ranked list.  

 The proposed fusion scheme may also be further improved. First, the effect of 

adding weights was not so important when images were represented by a large fixed 

number of clusters and can be ignored with this representation. Second, some 

clustering methods did not perform as well as others, hence can be replaced by more 

effective algorithms of the same category. Further research is needed on different 

spectral clustering algorithms due to their ability to deal with clusters of arbitrary 

shapes. Although density-based methods such as Mean Shift did not work well on 

high dimensional feature vectors, better ways for measuring similarity of data points 

in this clustering approach (such as Similar Nearest Neighbour (SNN) (Du, 2010)) 

should be investigated to bring out the best potential of this type of algorithms.  

 Generally, the adaptive version of clustering algorithm is better to use with simple 

images, while the fixed version using a big number of clusters with complex images. 

Therefore, we can use the entropy value to measure the image complexity and 

determine which version of clustering should be used in proposed multi evidence 

fusion scheme. If the value is low then the adaptive version is a suitable for image 

representation. Otherwise, the fixed version is used. On the other hand, the entropy 

measure can be used to adapt the number of clusters for the clustering algorithm 

itself.  

 The proposed fusion scheme was evaluated on WANG, Caltech6, and Caltech101 

databases, where 10, 5, and 6 categories were contained respectively. Therefore, it is 

from our interest to investigate the applicability of the fusion scheme to other, 

scalable databases such as Caltech256 and ImageNet which contain 256 and 22,000 

categories respectively. 

Future work following up this research can be outlined below: 

 Both image processing and unsupervised machine learning are active research 

fields. Newer features in measuring the colour and texture content of an image are 

constantly discovered. Newer and more effective clustering methods (such as fuzzy 
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clustering and biclustering methods (Heesch, 2008; Zhao, et al., 2012)) are also 

constantly being developed. Given the fact that we established with this research, 

i.e. there is no single feature or clustering algorithm that can cope with general 

images of variety of colour, texture and objects, close attention should be paid to 

these two fields for any new features and clustering algorithms that can be 

effectively exploited for CBIR.  

 Another potentially promising area of cluttering-based image segmentation 

approach for CBIR is cluster ensemble. Being a relatively new concept, cluster 

ensemble aims to consolidate the clustering results by grouping the outcomes 

produced by clustering algorithms (Strehl & Ghosh, 2003; Iam-On, et al., 2012). In 

principle, it is a clustering level fusion. There are two main types of cluster 

ensemble. The first type of methods uses the outcome cluster labels produced by 

different clustering methods as inputs and then yield a new set of clusters. The 

second type of ensemble applies a single clustering method to different subsets of 

features and then combines the outcome clusters into a new set of clusters. We have 

already conducted a feasibility study on the first type of cluster ensemble by using 

the DCT-CT feature, the adaptive versions of EM/GMM (CLUST), K-means 

(AKM), and Normalized Laplacian Spectral Clustering methods (ASP) as the basic 

clustering algorithms, and ASP as the combination/ensemble algorithm. Table 8.1 

shows mean average precision rates of image retrieval by CLUST, AKM and ASP 

methods separately and then the cluster ensemble method (CS) on the WANG 

database. The result shows that the performance of the CLUST is still better than 

that of CS, but the result of CS is better that the other two clustering methods, 

showing some potential of cluster ensemble. More work is clearly needed to further 

investigate the effects of cluster ensemble in a more thorough fashion as we did in 

Chapter 5 and 6, and consequently how to accommodate the cluster ensemble in our 

fusion scheme. 

Table 8.1: MAP using cluster ensemble compared to individual MAP of (CLUST, AKM, and ASP) algorithms 

 T10 T20 T30 T80 T90 T100 

CLUST 0.67 0.62 0.57 0.45 0.44 0.42 

AKM 0.59 0.53 0.49 0.37 0.36 0.34 

ASP  0.56 0.51 0.48 0.38 0.36 0.35 

CS 0.60 0.56 0.52 0.42 0.40 0.39 
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8.4 Concluding Remarks on Long-term Future Directions 

Through our experience in conducting this research, we also learnt some fundamental 

limitations of current CBIR research, at least as far as general images are concerned. 

Photographic images of general nature are very likely to contain objects of various 

kinds and semantics. For instance, photos of elephants can well contain grass fields, 

trees and even mountains that may also appear in images of mountains and trees. Most, 

if not all, benchmark image databases for evaluating the CBIR solutions tend to assign a 

specific class label to certain type of images. The simple recall and precision rates on 

the classes of images in the top T ranked list are, in this regard, insufficient to 

demonstrate the success or failure of solutions. Therefore, more appropriately a 

benchmark database of multiple class labels for each image is needed, and measures 

based on the match to those multiple class labels should be used to better judge the 

success of a CBIR solution.  

This discussion as well as our research experience also leads to a substantial re-think of 

CBIR approaches in general. We recognise the importance of low-level features in 

capturing various aspects of colour and texture information within local areas of an 

image. We also value the importance of the cluster-based segmentation approach in 

forming mid-level objects/clusters based on the low-level local feature vectors, but these 

objects/clusters should form basic “words” of a “dictionary” for images. Such basic 

words can then be used to form “phrases” and stored in the same extended dictionary. 

When an image is first loaded into a database, the words and the phrases are extracted 

from the image and then compared with the words and phrases that are already stored to 

consider whether these words and phrases are already existing or new and hence will be 

added into the dictionary. A registration process takes place to “register” the image with 

certain identified words and phrases. When a query image is present, the same 

extraction process is followed to obtain the words and phrases from the query image. 

The retrieval then becomes the process of matching the words and phrases of the query 

image to those of the stored images either completely or partially. Words and phrases in 

the dictionary may also be organised into a hierarchy of meta-clusters so that the 

corresponding images are also organised accordingly. Such a hierarchical structure 

among the images may help to improve the efficiency of image retrieval. 
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We also acknowledge the promises and hence the importance of automatic annotations 

of image content using supervised machine learning methods (Datta, et al., 2007). 

Although clustering-based segmentation and bags of words help narrow the semantic 

gap, automatic image annotation appears (arguably) the only way to bridge the gap. In 

the prospective of metadata looking at CBIR as explained in the previous paragraph, 

this automatic annotation may take places at the objects/clusters level to map visual 

words and phrases to semantic descriptions of objects. Despite challenges faced, it is 

certainly worth our attention to investigate effective methods in this field as a long-term 

research aim in CBIR. 
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(b) Beach 

      
(c) Buildings 

        
(d) Buses 

     

(e) Dinasours 
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(g) Flowers 

    

(h) Horses 

   

(i) Mountains 

   

(j) Foods 

Figure 1: Sample of images in WANG database. 
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(b) Motorbike 

    

(c) Airplanes 

     

(d) Faces 

 

     

(e) Leaves 

Figure 2: Sample of images in Caltech6 database. 

       

(a) Bonsai 

           

(b) Chandelier 

     

(c) Face Easy 
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(d) Ketch 

     

(e) Leopards 

  

(f) Watch 

Figure 3: Sample of images in Caltech101 database. 
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Table 1: Confusion matrices: applying CLUST on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for WANG images (Abbreviations: E: Elephants, F: Flower, B: Buses, D: Food, H: Horses, M: Mountains, P: 

People, C: Beach, L: Buildings, and S: Dinasours) 

CLUST/ DWT-CT/WANG  CLUST/ DCT-Zigzag/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 93 0 0 0 0 3 2 1 1 0  E 72 1 2 2 1 3 8 4 7 0 

F 0 97 0 1 0 0 2 0 0 0  F 1 91 3 3 0 0 1 0 1 0 

B 0 0 97 0 0 0 0 1 2 0  B 5 2 75 0 0 10 3 0 4 1 

D 8 0 4 72 1 1 11 1 2 0  D 11 2 7 58 1 0 18 0 1 2 

H 1 0 0 0 97 2 0 0 0 0  H 5 0 0 0 92 0 1 1 1 0 

M 6 1 4 0 0 79 0 7 3 0  M 6 0 18 0 0 63 0 10 3 0 

P 17 1 3 4 2 4 68 1 0 0  P 16 1 6 10 1 1 60 2 3 0 

C 6 2 3 1 0 14 3 68 3 0  C 7 1 7 2 0 24 5 49 5 0 

L 6 2 19 5 0 9 11 6 41 1  L 9 4 12 3 0 7 15 9 41 0 

S 0 0 0 0 0 0 0 0 0 100  S 1 0 0 0 0 0 1 0 0 98 

(a)  (b) 

CLUST/ DCT-C/WANG  CLUST/ DCT-T/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 80 0 2 1 3 3 6 1 4 0  E 85 1 0 1 5 2 3 1 2 0 

F 0 85 5 4 0 0 3 0 3 0  F 1 92 1 4 0 0 2 0 0 0 

B 3 0 84 0 0 5 5 1 2 0  B 0 0 97 0 0 0 0 0 3 0 

D 6 1 8 68 0 0 17 0 0 0  D 12 4 12 44 2 5 9 6 6 0 

H 4 1 0 0 91 0 4 0 0 0  H 6 1 0 1 87 1 3 1 0 0 

M 4 0 25 0 0 57 2 5 7 0  M 15 2 3 10 3 54 1 6 6 0 

P 7 0 5 6 0 2 69 3 8 0  P 15 11 9 16 6 3 37 1 1 1 

C 3 0 14 1 0 31 2 37 12 0  C 10 2 11 5 0 16 2 50 4 0 

L 8 0 8 2 0 16 10 4 52 0  L 5 4 31 8 3 6 3 3 36 1 

S 0 0 0 0 0 2 4 0 0 94  S 1 0 0 0 0 0 0 1 0 98 

     (c)            (d)      

       CLUST/LBPu2/WANG  CLUST/LBPriu2/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 55 1 4 3 13 7 3 5 4 5  E 45 9 1 4 8 15 5 8 2 3 

F 0 96 0 0 0 0 2 1 0 1  F 2 93 0 0 0 0 5 0 0 0 

B 1 0 94 0 0 1 0 2 1 1  B 1 1 86 3 0 1 0 5 1 2 

D 14 9 11 38 0 6 3 5 1 13  D 7 25 2 29 0 2 18 8 0 9 

H 14 2 1 0 82 0 0 1 0 0  H 24 5 0 3 65 2 1 0 0 0 

M 17 5 1 3 2 39 0 21 8 4  M 17 8 0 2 0 49 0 15 5 4 

P 13 25 1 4 9 2 41 2 2 1  P 12 22 1 12 1 2 47 1 0 2 

C 7 1 10 1 1 13 1 55 6 5  C 10 5 10 3 0 24 3 38 4 3 

L 8 4 16 1 2 8 0 7 46 8  L 14 4 10 13 0 7 1 12 32 7 

S 0 0 1 0 0 0 0 0 0 99  S 0 0 0 1 0 0 0 0 0 99 

                                                                  (e)                                                                                                                       (f) 

Table 2: Confusion matrices: applying CLUST on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for Caltech6 images (Abbreviations: Cr: Car, Mo: Motorcycle, Ap: Airplanes, Fc: Faces, Lv: Leaves) 

CLUST/ DWT-CT/Caltech6  CLUST/ DCT-Zigzag/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 100 0 0 0 0  Cr 99 0 0 0 1 

Mo 1 81 1 13 4  Mo 2 57 4 31 6 

Ap 2 2 82 8 6  Ap 1 2 79 11 7 

Fc 0 0 0 97 3  Fc 0 0 1 96 3 

Lv 0 0 0 3 97  Lv 0 0 2 6 92 

  (a)       (b)    

CLUST/ DCT-C/Caltech6  CLUST/ DCT-T/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 100 0 0 0 0  Cr 97 0 1 2 0 

Mo 6 70 1 15 8  Mo 0 53 5 34 8 

Ap 7 5 77 6 5  Ap 2 2 61 29 6 

Fc 6 0 1 86 7  Fc 0 0 1 89 10 

Lv 2 0 1 6 91  Lv 0 0 4 4 92 
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        (c)                                                            (d)  

CLUST/LBPu2/Caltech6  CLUST/ LBPriu2/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 96 3 0 0 1  Cr 98 1 0 0 1 

Mo 2 82 6 0 10  Mo 4 77 9 0 10 

Ap 1 5 83 0 11  Ap 2 4 83 0 11 

Fc 0 0 0 96 4  Fc 0 0 0 94 6 

Lv 0 1 3 0 96  Lv 1 9 5 0 85 

                                                                            (e)                                                                 (f) 

Table 3: Confusion matrices: applying CLUST on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for Caltech101 images (Abbreviations: Bo: Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, and 

Wt: Watch) 

CLUST/ DWT-CT/Caltech101  CLUST/ DCT-Zigzag/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 59 13 17 3 0 8  Bo 40 10 27 8 0 15 

Ch 17 36 24 5 2 16  Ch 26 13 38 9 0 14 

Fe 0 0 99 0 0 1  Fe 2 0 96 1 0 1 

Kt 7 2 22 64 0 5  Kt 15 3 17 57 0 8 

Lp 10 4 9 3 72 2  Lp 15 5 11 8 61 0 

Wt 16 7 31 3 0 43  Wt 21 10 26 8 0 35 

   (a)        (b)    

CLUST/ DCT-C/Caltech101  CLUST/ DCT-T/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 49 8 23 9 0 11  Bo 46 8 29 9 0 8 

Ch 15 29 28 16 0 12  Ch 21 19 36 15 1 8 

Fe 3 1 95 1 0 0  Fe 6 0 92 2 0 0 

Kt 7 4 15 69 0 5  Kt 11 9 33 44 0 3 

Lp 17 4 8 4 64 3  Lp 18 6 30 4 39 3 

Wt 34 10 14 11 0 31  Wt 28 9 30 7 0 26 

   (c)        (d)    

CLUST/LBPu2/Caltech101  CLUST/ LBPriu2/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 51 19 10 9 1 10  Bo 44 21 18 9 0 8 

Ch 18 50 14 9 0 9  Ch 25 38 22 7 0 8 

Fe 4 3 91 2 0 0  Fe 4 5 89 1 0 1 

Kt 28 10 16 42 0 4  Kt 23 20 21 32 0 4 

Lp 11 6 15 5 63 0  Lp 16 14 18 4 46 2 

Wt 22 25 10 10 0 33  Wt 24 23 23 9 0 21 

                                                                        (e)                                                                         (f) 

Table 4: Recall using DL2 on WANG (seven features by CLUST) 

CLUST/DL2/WANG 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 86 92 68 77 83 55 42 

Flowers 96 95 86 85 90 94 95 

Buses 94 96 73 83 94 86 83 

Foods 65 66 61 70 31 30 27 

Horses 97 95 86 93 80 78 66 

Mountains 75 73 52 60 49 35 43 

People 61 64 63 60 41 36 48 

Beach 60 59 41 46 40 38 39 

Building 46 35 41 53 30 38 33 

Dinasours 99 99 98 95 99 99 95 

Average 78 77 67 72 64 59 57 
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Table 5: Recall using DChi-Sq on WANG (seven features by CLUST) 

CLUST/DChi-Sq/WANG 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 39 48 11 38 60 34 39 

Flowers 84 71 22 72 84 78 59 

Buses 51 47 30 61 80 46 46 

Foods 16 10 8 13 60 40 21 

Horses 41 52 1 35 77 56 58 

Mountains 32 26 7 33 53 19 12 

People 12 15 7 18 61 24 42 

Beach 23 14 2 22 35 13 16 

Building 14 18 3 30 28 65 15 

Dinasours 74 76 25 77 77 62 38 

Average 39 38 12 40 62 44 35 

 

Table 6: Recall using DL2 on Caltech6 (seven features by CLUST) 

CLUST/DL2/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 100 100 97 100 94 96 97 

Motorcycle 70 74 58 65 43 85 72 

Airplanes 84 77 74 73 53 84 81 

Faces 95 95 95 87 82 90 93 

Leaves 96 94 94 92 91 95 84 

Average 89 88 83.6 83.4 72.6 90 85.4 

 

Table 7: Recall using DChi-Sq on Caltech6 (seven features by CLUST) 

CLUST/DChi-Sq/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 60 52 18 98 73 50 63 

Motorcycle 50 47 12 46 37 69 39 

Airplanes 65 76 15 69 74 82 75 

Faces 98 86 47 86 99 92 88 

Leaves 83 74 51 66 84 4 64 

Average 71 67 29 73 73 59 66 

 

Table 8: Recall using DL2 on Caltech101 (seven features by CLUST) 

CLUST/DL2/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 52 53 36 54 40 53 44 

Chandelier 31 36 19 22 13 46 32 

Face-Easy 98 99 89 94 82 87 86 

Ketch 64 61 63 70 38 43 26 

Leopards 65 71 62 65 35 46 49 

Watch 32 31 27 25 23 29 18 

Average 57 59 49 55 39 51 43 
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Table 9: Recall using DChi-Sq on Caltech101 (seven features by CLUST) 

CLUST/DChi-Sq/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 30 21 25 46 29 78 38 

Chandelier 8 12 12 31 14 32 22 

Face-Easy 93 93 39 83 85 25 21 

Ketch 31 28 23 59 27 15 21 

Leopards 24 14 13 55 12 70 47 

Watch 9 18 5 12 19 31 19 

Average 33 31 20 48 31 42 28 

Table 10: Confusion matrices: applying AKM on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for WANG images (Abbreviations: E: Elephants, F: Flower, B: Buses, D: Food, H: Horses, M: Mountains, P: 

People, C: Beach, L: Buildings, and S: Dinasours) 

AKM/ WCT-CT/WANG  AKM/ DCT-Zigzag/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 87 0 0 4 2 0 5 0 2 0  E 68 1 2 7 4 3 5 1 8 1 

F 0 88 1 5 1 1 4 0 0 0  F 4 61 7 21 3 1 2 1 0 0 

B 3 0 91 3 0 1 1 0 1 0  B 10 0 56 14 1 2 9 6 2 0 

D 1 0 15 65 0 0 17 1 1 0  D 3 2 15 60 1 2 12 3 1 1 

H 2 0 1 0 97 0 0 0 0 0  H 7 2 5 7 75 0 2 1 0 1 

M 17 1 13 2 1 50 0 7 9 0  M 13 0 22 10 1 28 3 9 14 0 

P 6 0 13 20 2 0 54 3 2 0  P 11 1 20 29 2 4 26 3 4 0 

C 22 0 17 7 1 11 5 26 11 0  C 19 3 16 19 1 13 9 8 12 0 

L 8 1 10 5 0 0 10 1 65 0  L 16 1 12 5 0 4 13 6 42 1 

S 1 0 0 0 0 0 0 0 0 99  S 6 1 1 6 1 1 4 0 0 80 

(a)  (b) 

AKM/ DCT-C/WANG  AKM/DCT-T/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 84 0 0 2 4 0 2 1 7 0  E 66 0 1 10 1 3 13 2 3 1 

F 0 90 2 6 1 0 1 0 0 0  F 2 67 6 11 0 0 9 1 4 0 

B 2 2 67 7 1 9 7 1 4 0  B 1 0 89 4 0 1 1 1 3 0 

D 1 0 0 90 0 1 6 0 2 0  D 6 4 22 46 1 1 10 1 9 0 

H 0 0 1 0 97 1 1 0 0 0  H 8 1 6 6 65 2 10 1 1 0 

M 8 2 24 5 1 44 1 5 10 0  M 14 1 3 12 3 39 4 18 6 0 

P 7 0 15 21 8 0 45 2 2 0  P 9 3 11 22 1 1 44 0 9 0 

C 9 3 18 14 1 15 9 21 10 0  C 15 3 11 9 1 12 15 24 10 0 

L 11 1 11 7 0 3 6 6 55 0  L 5 4 15 13 1 0 9 1 52 0 

S 2 0 2 3 0 0 1 0 1 91  S 1 0 0 0 0 0 0 0 0 99 

     (c)            (d)      

      AKM/LBPu2/WANG  AKM/LBPriu2/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 65 3 1 8 4 6 7 2 4 0  E 55 1 11 5 7 5 2 7 5 2 

F 0 91 0 3 0 0 6 0 0 0  F 0 90 0 0 1 1 7 0 0 1 

B 0 1 98 1 0 0 0 0 0 0  B 2 6 72 7 1 2 2 6 2 0 

D 3 10 9 65 0 0 10 1 0 2  D 5 15 13 31 1 2 20 5 4 4 

H 16 4 2 1 70 1 4 2 0 0  H 1 1 4 1 81 0 11 1 0 0 

M 14 11 9 9 2 28 3 13 9 2  M 11 8 21 6 0 28 3 13 10 0 

P 7 21 2 8 3 1 54 2 2 0  P 1 12 19 28 7 5 25 0 1 2 

C 10 2 27 8 0 15 5 23 9 1  C 17 5 21 5 2 15 4 24 7 0 

L 9 4 10 5 0 2 2 2 64 2  L 11 3 16 9 2 12 9 6 31 1 

S 0 0 1 2 0 0 0 0 0 97  S 0 0 1 0 0 2 0 0 0 97 

                                                           (e)                                                                                                    (f) 

Table 11: Confusion matrices: applying AKM on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for Caltech6 images (Abbreviations: Cr: Car, Mo: Motorcycle, Ap: Airplanes, Fc: Faces, Lv: Leaves) 

AKM/ DWT-CT/Caltech6  AKM/ DCT-Zigzag/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 100 0 0 0 0  Cr 86 5 6 3 0 

Mo 5 86 0 6 3  Mo 1 81 8 4 6 

Ap 5 4 82 4 5  Ap 7 8 55 20 10 

Fc 4 1 2 91 2  Fc 3 5 15 72 5 

Lv 1 8 3 7 81  Lv 0 9 9 33 49 

                                                                     

                                                                          (a)                                                                 (b) 
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AKM/ DCT-C/Caltech6  AKM/ DCT-T/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 98 0 1 1 0  Cr 100 0 0 0 0 

Mo 9 79 4 5 3  Mo 0 95 0 0 5 

Ap 14 1 63 16 6  Ap 17 8 66 1 8 

Fc 9 1 2 86 2  Fc 3 5 0 85 7 

Lv 8 10 15 21 46  Lv 0 4 1 1 94 

                                                                           (c)                                                                 (d) 

AKM /LBPu2/Caltech6  AKM / LBPriu2/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 95 3 0 0 2  Cr 96 0 1 0 3 

Mo 0 87 1 0 12  Mo 8 70 10 0 12 

Ap 0 5 77 2 16  Ap 1 1 83 2 13 

Fc 0 0 1 97 2  Fc 0 0 1 97 2 

Lv 0 1 0 1 98  Lv 2 0 6 2 90 

                                                                        (e)                                                                (f) 

Table 12: Confusion matrices: applying AKM on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 for Caltech101 
images (Abbreviations: Bo: Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, and Wt: Watch) 

AKM / DWT-CT/Caltech101  AKM / DCT-Zigzag/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 67 13 12 3 0 5  Bo 41 12 23 12 3 9 

Ch 14 52 8 10 0 16  Ch 14 33 17 11 1 24 

Fe 4 3 92 0 0 1  Fe 11 10 67 6 1 5 

Kt 4 9 18 67 0 2  Kt 11 12 26 35 3 13 

Lp 9 1 1 5 84 0  Lp 12 5 9 3 68 3 

Wt 12 21 15 18 0 34  Wt 18 20 18 14 0 30 

   (a)        (b)    

AKM / DCT-C/Caltech101  AKM / DCT-T/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 60 10 12 4 11 3  Bo 54 10 19 4 2 11 

Ch 9 47 9 9 14 12  Ch 22 28 24 5 1 20 

Fe 2 5 89 1 0 3  Fe 1 3 93 1 0 2 

Kt 5 18 11 54 7 5  Kt 5 6 34 45 1 9 

Lp 2 4 1 3 90 0  Lp 6 2 5 2 73 12 

Wt 10 17 16 15 1 41  Wt 8 13 22 4 0 53 

   (c)        (d)    

AKM /LBPu2/Caltech101  AKM / LBPriu2/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 35 7 31 10 0 17  Bo 30 21 13 12 0 24 

Ch 11 17 40 14 0 18  Ch 23 32 20 11 0 14 

Fe 0 0 100 0 0 0  Fe 1 4 92 3 0 0 

Kt 6 4 60 21 0 9  Kt 10 25 33 17 1 14 

Lp 17 11 18 4 44 6  Lp 5 7 2 3 76 7 

Wt 7 8 35 12 0 38  Wt 19 17 23 5 1 35 

                                                                        (e)                                                                          (f) 

 

Table 13: Recall using DL2 on WANG (seven features by AKM) 

AKM/DL2/WANG 

 Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 87 84 72 84 71 45 61 

Flowers 87 87 61 88 64 93 87 

Buses 94 89 64 70 88 95 61 

Foods 68 69 75 83 49 60 24 

Horses 95 96 80 95 56 63 80 

Mountains 49 43 34 41 42 37 19 

People 61 63 33 49 53 46 25 

Beach 43 35 10 15 23 14 21 

Building 57 64 48 58 35 38 37 

Dinasours 99 100 86 90 96 99 97 

Average 74 73 56 67 58 59 51 
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Table 14: Recall using DChi-Sq on WANG (seven features by AKM) 

AKM/DChi-Sq/WANG 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 71 73 71 80 73 45 56 

Flowers 91 92 82 89 97 38 91 

Buses 95 95 71 69 91 90 69 

Foods 49 47 69 81 38 56 21 

Horses 91 92 85 94 70 82 77 

Mountains 40 42 32 40 43 40 26 

People 62 62 39 40 43 72 26 

Beach 45 35 12 25 37 11 25 

Building 56 56 47 58 56 29 24 

Dinasours 99 99 82 73 100 1 88 

Average 70 69 59 65 65 46 50 

 

Table 15: Recall using DL2 on Caltech6 (seven features by AKM) 

AKM/ DL2/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 100 100 88 98 100 93 95 

Motorcycle 92 87 83 80 92 79 69 

Airplanes 79 80 58 65 72 75 82 

Faces 91 92 81 86 84 96 94 

Leaves 82 77 46 53 92 99 89 

Average 89 87 71 76 88 88 86 

 

Table 16: Recall using DChi-Sq on Caltech6 (seven features by AKM) 

AKM/ DChi-Sq/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 100 100 89 95 100 52 75 

Motorcycle 86 87 80 78 92 73 18 

Airplanes 81 81 59 61 71 76 71 

Faces 98 95 81 79 99 100 83 

Leaves 95 90 40 40 98 47 93 

Average 92 91 70 71 92 70 68 

 

Table 17: Recall using DL2 on Caltech101 (seven features by AKM) 

AKM/ DL2/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 56 59 49 54 53 37 35 

Chandelier 36 46 39 39 29 26 25 

Face-Easy 95 96 80 92 92 97 89 

Ketch 76 70 46 56 46 24 19 

Leopards 81 84 74 88 73 61 78 

Watch 33 34 35 34 50 40 37 

Average 63 65 54 61 57 48 47 
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Table 18: Recall using DChi-Sq on Caltech101 (seven features by AKM) 

AKM/ DChi-Sq/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 57 57 45 55 47 23 34 

Chandelier 37 41 46 39 27 3 36 

Face-Easy 96 92 77 80 97 100 85 

Ketch 70 63 43 54 53 4 29 

Leopards 83 82 73 89 68 53 77 

Watch 43 38 34 26 44 2 3 

Average 64 62 53 57 56 31 44 

 

Table 19: Confusion matrices: applying ASP on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for WANG images (Abbreviations: E: Elephants, F: Flower, B: Buses, D: Food, H: Horses, M: Mountains, P: 

People, C: Beach, L: Buildings, and S: Dinasours) 

ASP/ DWT-CT/WANG  ASP/ DCT-Zigzag/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 78 0 3 1 2 4 3 2 7 0  E 81 0 0 1 1 4 3 6 4 0 
F 1 94 0 1 0 0 4 0 0 0  F 0 93 1 2 0 0 3 0 1 0 
B 0 0 79 1 0 6 1 2 11 0  B 9 2 59 2 0 16 7 4 1 0 
D 10 1 8 66 0 1 4 3 4 3  D 3 2 3 72 1 2 12 4 1 0 
H 5 0 2 1 83 0 5 1 3 0  H 8 0 2 0 88 0 1 1 0 0 
M 2 0 13 0 0 67 0 11 7 0  M 5 1 5 0 0 74 0 9 6 0 
P 20 4 6 9 0 4 43 6 8 0  P 19 2 5 3 0 1 60 4 6 0 
C 10 1 8 3 0 19 1 56 2 0  C 8 0 3 2 0 27 3 56 1 0 
L 7 3 13 2 1 5 6 8 55 0  L 18 0 6 1 0 11 13 9 42 0 
S 0 0 0 0 0 0 0 0 0 100  S 0 0 1 0 0 0 0 0 0 99 

(a)  (b) 

ASP/ DCT-C/WANG  ASP/DCT-T/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 73 0 0 3 3 2 6 1 11 1  E 80 1 2 6 3 2 1 5 0 0 
F 1 80 3 10 1 0 2 0 3 0  F 1 94 0 1 0 0 1 3 0 0 
B 5 0 66 3 0 7 6 1 12 0  B 17 6 50 8 0 10 3 3 3 0 
D 2 0 5 72 0 0 14 0 5 2  D 22 7 12 24 3 11 14 5 2 0 
H 3 1 1 0 93 0 2 0 0 0  H 18 7 3 5 52 7 6 2 0 0 
M 2 0 13 0 0 61 1 8 15 0  M 23 3 9 10 2 36 5 9 3 0 
P 10 0 5 5 0 0 62 0 18 0  P 27 4 4 16 6 11 28 2 2 0 
C 7 0 5 1 0 21 3 41 22 0  C 21 10 3 5 4 11 2 39 5 0 
L 9 0 7 2 0 7 4 4 67 0  L 15 3 16 14 2 12 7 7 24 0 
S 0 0 0 0 0 1 0 0 0 99  S 2 0 0 0 0 0 0 0 1 97 
     (c)            (d)      

      ASP/LBPu2/WANG  ASP/LBPriu2/WANG 

DL1 E F B D H M P C L S  DL1 E F B D H M P C L S 

E 57 0 3 4 7 11 1 6 6 5  E 39 8 1 9 14 16 3 4 4 2 
F 1 92 0 0 1 0 2 0 0 4  F 1 86 0 1 0 1 9 1 1 0 
B 0 1 80 2 0 2 0 0 7 8  B 5 5 63 4 0 3 1 5 5 9 
D 11 8 6 46 1 2 6 2 3 15  D 9 15 4 48 0 1 5 1 6 11 
H 9 1 1 2 83 2 1 0 1 0  H 20 6 0 3 63 5 3 0 0 0 
M 19 3 4 3 1 32 0 14 12 12  M 15 11 5 4 1 25 2 22 3 12 
P 16 25 2 11 8 1 32 1 3 1  P 11 28 0 13 4 4 38 1 1 0 
C 10 2 10 4 0 21 1 38 6 8  C 11 9 7 6 1 21 2 26 7 10 
L 6 4 6 3 2 6 1 1 59 12  L 11 4 6 13 1 4 4 6 33 18 
S 0 0 0 0 0 0 0 0 0 100  S 0 0 1 0 0 0 0 0 0 99 

                                                                       (e)                                                                                                                         (f) 
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Table 20: Recall using DL2 on WANG (seven features by AKM) 

ASP/DL2/WANG 

 Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 70 69 86 73 64 40 43 

Flowers 87 90 84 82 87 89 84 

Buses 75 73 61 69 41 72 59 

Foods 58 55 67 76 17 32 47 

Horses 74 69 82 92 41 78 59 

Mountains 47 57 66 59 25 36 24 

People 50 38 52 58 13 31 41 

Beach 59 52 41 33 25 31 26 

Building 54 43 48 68 8 51 29 

Dinasours 97 100 99 99 95 100 99 

Average 67 65 69 71 42 56 51 

 

Table 21: Recall using DChi-Sq on WANG (seven features by AKM) 

ASP/DChi-Sq /WANG 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Elephants 37 22 24 65 44 25 34 

Flowers 79 72 36 81 89 90 86 

Buses 29 35 15 67 41 86 61 

Foods 24 12 5 75 30 41 27 

Horses 28 40 2 85 36 83 62 

Mountains 34 28 13 55 36 32 27 

People 20 22 1 51 9 49 26 

Beach 16 20 13 32 30 24 19 

Building 35 43 9 42 27 12 27 

Dinasours 75 74 17 85 74 60 81 

Average 38 37 14 64 42 50 45 

 

Table 22: Confusion matrices: applying ASP on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for Caltech6 images (Abbreviations: Cr: Car, Mo: Motorcycle, Ap: Airplanes, Fc: Faces, Lv: Leaves) 
ASP/ DWT-CT/Caltech6  ASP/ DCT-Zigzag/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 100 0 0 0 0  Cr 100 0 0 0 0 

Mo 3 81 1 12 3  Mo 2 58 1 23 16 

Ap 4 1 87 1 7  Ap 3 0 77 11 9 

Fc 0 1 3 85 11  Fc 0 0 1 96 3 

Lv 0 1 1 5 93  Lv 0 0 3 5 92 

(a)                                                          (b) 

ASP/ DCT-C/Caltech6  ASP/ DCT-T/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 91 0 2 4 3  Cr 94 1 4 1 0 

Mo 3 78 4 10 5  Mo 4 50 3 24 19 

Ap 13 7 52 8 20  Ap 1 0 63 23 13 

Fc 19 2 9 56 14  Fc 0 1 3 88 8 

Lv 3 1 10 7 79  Lv 0 1 3 13 83 

 (c)                                                          (d) 

ASP /LBPu2/Caltech6  ASP / LBPriu2/Caltech6 

DL1 Cr Mo Ap Fc Lv  DL1 Cr Mo Ap Fc Lv 

Cr 95 1 2 0 2  Cr 84 5 1 0 10 

Mo 0 73 6 1 20  Mo 4 69 8 0 19 

Ap 0 6 82 0 12  Ap 1 11 78 1 9 

Fc 0 0 0 91 9  Fc 0 0 0 94 6 

Lv 0 3 5 2 90  Lv 0 1 8 2 89 

                                                                               (e)                                                               (f) 
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Table 23: Recall using DL2 on Caltech6 (seven features by ASP) 

ASP/ DL2/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 98 100 100 89 76 88 84 

Motorcycle 75 81 52 78 43 70 66 

Airplanes 83 87 76 51 59 77 73 

Faces 77 85 94 58 83 85 94 

Leaves 79 93 92 76 78 89 80 

Average 82 89 82 70 68 82 79 

 

Table 24: Recall using DChi-Sq on Caltech6 (seven features by ASP) 

ASP/ DChi-Sq/Caltech6 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Car 79 100 32 88 83 86 84 

Motorcycle 58 76 25 80 56 69 23 

Airplanes 74 81 32 47 69 94 35 

Faces 99 80 34 58 93 98 81 

Leaves 63 88 37 73 67 41 90 

Average 74.6 85 32 69 74 78 63 

 

Table 25: Confusion matrices: applying ASP on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

for Caltech101 images (Abbreviations: Bo: Bonsai, Ch: Chandelier, Fe: Face-Easy, Kt: Ketch, Lp: Leopards, and 

Wt: Watch) 

ASP / DWT-CT/Caltech101  ASP / DCT-Zigzag/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 68 11 9 7 0 5  Bo 49 16 18 4 0 13 

Ch 18 47 16 4 1 14  Ch 26 34 26 8 0 6 

Fe 4 1 91 1 0 3  Fe 3 0 93 2 0 2 

Kt 17 7 8 61 0 7  Kt 15 4 14 60 0 7 

Lp 6 2 4 2 86 0  Lp 10 4 7 2 77 0 

Wt 31 12 16 7 0 34  Wt 29 12 21 10 0 28 
(a)                                                                                 (b) 

ASP / DCT-C/Caltech101  ASP/ DCT-T/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 42 12 14 11 9 12  Bo 43 14 22 12 0 9 

Ch 25 27 17 8 10 13  Ch 21 26 22 18 1 12 

Fe 9 16 56 8 4 7  Fe 3 0 93 4 0 0 

Kt 17 7 14 51 0 11  Kt 12 8 48 29 0 3 

Lp 6 2 7 2 83 0  Lp 11 8 17 0 62 2 

Wt 19 16 13 7 2 43  Wt 23 12 27 17 0 21 

                                                                                   (c)                                                                           (d)   

  ASP /LBPu2/Caltech101  ASP / LBPriu2/Caltech101 

DL1 Bo Ch Fe Kt Lp Wt  DL1 Bo Ch Fe Kt Lp Wt 

Bo 42 15 9 16 0 18  Bo 38 21 10 14 0 17 

Ch 18 44 11 15 0 12  Ch 28 32 9 18 0 13 

Fe 2 8 73 15 0 2  Fe 9 8 71 7 0 5 

Kt 16 20 6 52 0 6  Kt 19 27 21 23 0 10 

Lp 5 4 4 5 79 3  Lp 8 7 10 5 69 1 

Wt 23 19 12 12 0 34  Wt 18 31 12 11 1 27 

                                                                                    (e)                                                                        (f)   
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Table 26: Recall using DL2 on Caltech101 (seven features by ASP) 

ASP/DL2/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 64 65 54 38 36 42 39 

Chandelier 39 44 23 30 17 39 30 

Face-Easy 89 89 84 49 75 60 58 

Ketch 52 59 69 53 29 36 23 

Leopards 77 83 73 81 59 77 67 

Watch 30 29 28 36 17 26 24 

Average 59 62 55 48 39 47 40 

 

Table 27: Recall using DChi-Sq on Caltech101 (seven features by ASP) 

ASP/DChi-Sq/Caltech101 

Classes DCT-CT DWT-CT DCT-Zigzag DCT-C DCT-T LBPu2 LBPriu2 

Bonsai 46 43 36 35 45 79 29 

Chandelier 21 20 13 24 30 19 13 

Face-Easy 83 74 21 50 84 67 73 

Ketch 26 23 24 55 32 25 32 

Leopards 28 27 17 84 21 18 69 

Watch 13 12 6 43 12 6 14 

Average 36 33 20 49 37 36 38 
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Appendix C 
 

 

     (a)                                                                               (b) 

  

     (c)                                                                               (d) 

 

 

     (e)                                                                               (f) 

Figure 1: Recall of applying EM/GMM on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

features with fixed and adapted K clusters (WANG). 
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     (e)                                                                               (f) 

 

 

Figure 2: Recall of applying KM on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 features with fixed and adapted K clusters (WANG). 
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     (a)                                                                               (b) 

 

     (c)                                                                               (d) 

 

     (e)                                                                               (f) 

 

Figure 3: Recall of applying SP on DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 features 

with fixed and adapted K clusters (WANG). 
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     (a)                                                                               (b) 

 

     (c)                                                                               (d) 

 

     (e)                                                                               (f) 

 

(g) 

Figure 4: Recall of applying EM/GMM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech6). 
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(d)                                                                               (e) 

 

(f)                                                                               (g) 

Figure 5: Recall of applying KM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

methods with fixed and adapted K clusters (Caltech6). 
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Figure 6: Recall of applying SP on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 

methods with fixed and adapted K clusters (Caltech6). 
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(d)                                                                               (e) 
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Figure 7: Recall of applying EM/GMM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech101). 
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Figure 8: Recall of applying KM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech101). 
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(a) 

 

(b)                                                                               (c) 

 

(d)                                                                               (e) 

 

(f)                                                                               (g) 
Figure 9: Recall of applying SP on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 methods with fixed and adapted K clusters (Caltech101).  
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Figure 1: Average Precision using (EM/GMM, KM, and SP) methods on DCT -CT, DWT-CT, DCT-

Zigzag, DCT-C, DCT-T, LBPu2, and LBPriu2 features (WANG). 
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     (e)                                                                               (f) 
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Figure 2: Precision Top10 applying EM/GMM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, 

LBPu2, and LBPriu2 features with fixed and adapted K clusters (WANG). 
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(g) 

Figure 3: Precision Top10 applying KM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 features with fixed and adapted K clusters (WANG). 
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(d)                                                                               (e) 

 

(f)                                                                               (g) 

 

Figure 4: Precision Top10 applying SP on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 features with fixed and adapted K clusters (WANG). 
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(c)                                                                               (d) 

 

(e)                                                                               (f) 

 
                                                   (g) 

Figure 5:  Precision Top10 applying EM/GMM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, 

LBPu2, and LBPriu2 methods with fixed and adapted K clusters (Caltech6). 
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Figure 6: Precision Top10 applying KM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech6). 
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(g) 

Figure 7: Precision Top10 applying SP on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech6). 
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            (f)                                                                               (g) 

Figure 8: Precision Top10 applying EM/GMM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, 

and LBPriu2 methods with fixed and adapted K clusters (Caltech101). 
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(g) 

Figure 9: Precision Top10 applying KM on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech101). 
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(d)                                                                               (e) 

 

(f)                                                                               (g) 

 

Figure 10: Precision Top10 applying SP on DCT-CT, DWT-CT, DCT-Zigzag, DCT-C, DCT-T, LBPu2, and 

LBPriu2 methods with fixed and adapted K clusters (Caltech101). 
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