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Abstract 

In the last decade, research in Speech Emotion Recognition (SER) has become a 

major endeavour in Human Computer Interaction (HCI), and speech processing. 

Accurate SER is essential for many applications, like assessing customer satisfaction 

with quality of services, and detecting/assessing emotional state of children in care. 

The large number of studies published on SER reflects the demand for its use. The 

main concern of this thesis is the investigation of SER from a pattern recognition and 

machine learning points of view. In particular, we aim to identify appropriate 

mathematical models of SER and examine the process of designing automatic 

emotion recognition schemes. There are major challenges to automatic SER 

including ambiguity about the list/definition of emotions, the lack of agreement on a 

manageable set of uncorrelated speech-based emotion relevant features, and the 

difficulty of collected emotion-related datasets under natural circumstances. We shall 

initiate our work by dealing with the identification of appropriate sets of emotion-

related features/attributes extractible from speech signals as considered from 

psychological and computational points of views. We shall investigate the use of 

pattern-recognition approaches to remove redundancies and achieve compactification 

of digital representation of the extracted data with minimal loss of information. The 

thesis will include the design of new or complement existing SER schemes and 

conduct large sets of experiments to empirically test their performances on different 

databases, identify advantages, and shortcomings of using speech alone for emotion 

recognition.   

Existing SER studies seem to deal with the ambiguity/dis-agreement on a “limited” 

number of emotion-related features by expanding the list from the same speech 

signal source/sites and apply various feature selection procedures as a mean of 

reducing redundancies. Attempts are made to discover more relevant features to 

emotion from speech. One of our investigations focuses on proposing a newly sets of 

features for SER, extracted from Linear Predictive (LP)-residual speech. We shall 

demonstrate the usefulness of the proposed relatively small set of features by testing 

the performance of an SER scheme that is based on fusing our set of features with 

the existing set of thousands of features using common machine learning schemes of 

Support Vector Machine (SVM) and Artificial Neural Network (ANN). 
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The challenge of growing dimensionality of SER feature space and its impact on 

increased model complexity is another major focus of our research project. By 

studying the pros and cons of the commonly used feature selection approaches, we 

argued in favour of meta-feature selection and developed various methods in this 

direction, not only to reduce dimension, but also to adapt and de-correlate emotional 

feature spaces for improved SER model recognition accuracy. We used Principal 

Component Analysis (PCA) and proposed Data Independent PCA (DIPCA) by 

training on independent emotional and non-emotional datasets. The DIPCA 

projections, especially when extracted from speech data coloured with different 

emotions or from Neutral speech data, had comparable capability to the PCA in 

terms of SER performance. Another adopted approach in this thesis for dimension 

reduction is the Random Projection (RP) matrices, independent of training data. We 

have shown that some versions of RP with SVM classifier can offer an adaptation 

space for Speaker Independent SER that avoid over-fitting and hence improves 

recognition accuracy. Using PCA trained on a set of data, while testing on emotional 

data features, has significant implication for machine learning in general.   

The thesis other major contribution focuses on the classification aspects of SER. We 

investigate the drawbacks of the well-known SVM classifier when applied to a pre-

processed data by PCA and RP. We shall demonstrate the advantages of using the 

Linear Discriminant Classifier (LDC) instead especially for PCA de-correlated meta-

features. We initiated a variety of LDC-based ensembles classification, to test 

performance of scheme using a new form of bagging different subsets of meta-

feature subsets extracted by PCA with encouraging results. 

The experiments conducted were applied on two benchmark datasets (Emo-Berlin 

and FAU-Aibo), and an in-house dataset in the Kurdish language. Recognition 

accuracy achieved by are significantly higher than the state of art results on all 

datasets. The results, however, revealed a difficult challenge in the form of persisting 

wide gap in accuracy over different datasets, which cannot be explained entirely by 

the differences between the natures of the datasets. We conducted various pilot 

studies that were based on various visualizations of the confusion matrices for the 

“difficult” databases to build multi-level SER schemes. These studies provide initial 

evidences to the presence of more than one “emotion” in the same portion of speech. 

A possible solution may be through presenting recognition accuracy in a score-based 
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measurement like the spider chart. Such an approach may also reveal the presence of 

Doddington zoo phenomena in SER.   
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1. Chapter One 

Introduction 

Speech is an important way for people to communicate with one another, and 

emotion in speech can change the meaning of sentences as perceived by others, and 

the intentions of the speaker. Spoken text can have several different meanings, 

depending on how it is said. For example, with the word “really” in English, a 

speaker can ask a question, express either admiration or disbelief, or make a 

definitive statement. An understanding of text alone cannot always successfully 

interpret the meaning of a spoken utterance. Emotion modulates the choice of words 

and the tone of voice in speech as well as in many other human modes of interaction 

with other humans and/or computers. Designing automatic systems that have the 

ability of recognize emotion automatically is deemed to be useful for many 

applications including in healthcare settings and Human Computer Interaction (HCI).  

Speech Emotion Recognition (SER) is no longer a side issue. In the last decade, 

research in SER has become a major endeavour in HCI and in speech processing. 

The large number of studies published with regard to SER reflects the demand for its 

use (see Figure 1-1). The main concern of this thesis is the investigation of the ability 

to recognise emotions within speech from a pattern recognition point of view. In 

particular, the aim is to design automatic emotion recognition schemes, test their 

performance in terms of different databases, and identify the advantages and 

shortcomings of using speech alone for emotion recognition. Our investigations 

focuses mainly on emotion-related feature extraction from speech, and the use of 

different classifiers and their fusion. One ultimate objective is to determine the 

contribution of speech to the emotional state of speakers.  

In section (1.1) of this chapter we will focus on the some application regarding SER. 

The chapter will also present the challenges faced by SER as a pattern recognition 

task in sections (1.2) and (1.3). The contribution of the thesis is presented in section 

(1.4) followed by the publications related to this thesis in section (1.5), and finally 

the organisation of the thesis is shown in section (1.6). 
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Figure 1-1: Number of publications on SER from 1990-2014 

1.1 Speech based emotion recognition applications 

Studying the emotional state of speakers from their speech signals has emerged as 

one of the most important areas of speech research. Any speech system can be made 

more effective by incorporating emotion processing/analysis (Koolagudi & Rao, 

2012b). Knowledge of the emotional state of a speaker helps the listener/system 

understand the meaning of a message.  For example, speech recognition systems that 

are designed to assess stressed-speech in aircraft cockpits have been found to achieve 

better performance than traditional emotion-ignoring speech recognition systems 

(Hansen & Cairns, 1995). 

We recognize that speech is only one of many modes of interaction with regard to 

human beings interacting with one another and with machines that are modulated by 

emotional states. Moreover the expression of emotion is influenced by many factors 

including culture, personal experience, and by mental health state. Consequently, one 

cannot expect SER to be other than of limited success in most cases. However, in 

many applications, speech is the only available mode of interaction, and 

consequently modestly accurate SER can benefit such applications.  For example, 

customers care interaction systems that assess customer’s satisfaction and quality of 

service. It is also helpful in fostering interaction systems, which aim to detect a 

child’s emotional state (Lee , et al., 2011). Another, possible application of SER is 

hostage negotiation standoffs where speech is most likely to be the only available 

mode of communication. Building a dialogue system for natural speech is becoming 

an interesting area of research that could benefit from SER. Most existing 

applications with regard to automatic dialogue systems are reported to be restricted 
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to using binary responses (i.e. ‘yes’ and ‘no’), or designed for a specific area with a 

limited vocabulary. Consequently, responding in a more “natural” way to different 

form of emotional speech is still a serious challenge and one for which there is an 

ongoing demand
1
 (Steidl, 2009).  

In healthcare, people with anxiety, depression, and stress are frequently asked by 

psychologists to record their mood changes throughout the day. An application called 

Xpression, developed by U.K.-based EI Technologies, helps such people by sending 

a block of 200ms speech voice to the designed server to detect the embedded 

emotion and then report the changes in their mood to a psychologist every day
2
. SER 

is also used to help hearing-impaired people to speak naturally by designing a system, 

which can tell the users about their speech state. This system is able to train the user 

to improve his/her skills in terms of natural speech (Pao , et al., 2005).  Accurate 

identification of a patient’s emotional state is also reported to be necessary for 

psychotherapists (Paulo , et al., 1999); consequently, it is suggested that an emotion 

recognition framework be integrated into a speech therapist system in (Schipor , et al., 

2011). A content delivery system can also benefit from tracking emotional 

information contained in the objects (video, music) to improve the delivery quality 

(Malandrakis , et al., 2011). The effect of emotion recognition and regulation on 

intercultural adjustment is discussed in a study, which used different groups of 

students from different cultural environments studying at US universities. The study 

found that emotional recognition has an independent effect on intercultural 

adjustment (Yoo, et al., 2006). Such a high number of applications encourage further 

study to improve the performance of SER.  

1.2 Challenges of SER  

Raw speech signals captured by a microphone over a period of time are represented 

by a 1-dimentional waveform consisting of different frequencies, the contributions of 

which vary over time. Different frequency domain transforms can be used to obtain 

the frequency domain representation of the signal at multiple scales, but identifying 

the speaker’s emotional state from temporal domain or frequency domain 

representations is a challenge that has attracted research scientists from different 

                                                 
1
  A comprehensive discussion on some real challenges facing automatic call responding system is 

presented in (Steidl, 2009) pp. 1-3  
2
 http://ipglab.com/2013/03/04/xpression-app-tracks-your-mood/ 

http://ipglab.com/2013/03/04/xpression-app-tracks-your-mood/
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disciplines.  Variation in voice tones, as well as internal physiological changes while 

uttering a sentence (or even a single word), combine to generate the speaker’s 

emotional state. The speech signal, even when uttering a particular word, is affected 

by external factors such as gender, age, culture and health.  In other words, the 

speech signal contributes to the speaker’s emotional state, but cannot singularly 

discriminate emotions.  The first challenge is to identify emotion-relevant features 

that can be extracted from the raw signal or from its frequency domain. This 

challenge remains an active area of research and debate.   

Many recent studies have observed that emotion-related information in speech is 

spread along different kinds of features. This could be due to acoustic variability as a 

consequence of the existence of different sentences, speakers, speaking styles, and 

speaking rates (El Ayadi , et al., 2011).  Although the number of investigated 

features has been growing, there are still efforts being made to explore emotion-

relevant features from new sites of the speech signal. Chapter four of this thesis 

focuses on suggesting a new set of features for SER use. The features are extracted 

from the Linear Predicted (LP)-residual signal. 

Researchers have adopted large feature set (thousands), whether directly as in 

(Hassan & Damper, 2012; Schuller, et al., 2009b), and/or followed by feature 

selection steps such as are used in (Batliner , et al., 2011). Feature selection applied 

to high dimensional data is costly and complicated due to the complexity of the 

optimization that targets a suitable feature subset among a high number of features, 

especially when using the wrapper methods. Unlike the wrapper feature selection 

methods, filter based feature selection is not based on classification decision, but on 

some data characteristics such as correlation or entropy. Filters are reported to be 

more convenient for high dimensional data (Yu & Liu, 2003). However filter-based 

feature selection methods are not necessarily suitable for all classifiers, and feature 

selection cut off points could lead the system to ignore some “important” information 

included in the non-selected features.  

The features can also be selected in a transformed space. Transforming the data in 

the feature space into another subspace is usually based on a specific transformation 

map, which aims to help in features de-correlating, samples classifying, or at least 

reducing dimensions. The new selected features in the transformed space could be 
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referred to as a meta-feature. However, the extraction of the meta-feature is difficult 

to provide meaning about the more suitable original features, which leads to them 

being avoided by the studies that target emotional analysis.  

Recently, there have been promising efforts in terms of finding various approaches 

for interpreting meta-features. For instance Simmons et al. (Simmons, et al., 2015) 

propose a hybrid approach that uses a mutual information-based statistic to have a 

biologically meaningful interpretation for the Principal Component Analysis (PCA) 

output. These studies are encouraging further investigation on the use of meta-

features for SER. However this thesis is not focussing on meta-feature interpretation, 

but rather in chapter five the extraction and selection of meta-features is investigated. 

We shall see how a limited number of the meta-features of emotional speech shows 

an ability to exploit the information spread in a large set of features.  

Beside the challenges related to appropriate SER feature vector representation and 

extraction, testing the performance of any developed SER scheme faces another 

serious obstacle. Like any pattern-recognition task, developing and testing the 

performance of emotion classification schemes needs access to a sufficiently large 

dataset of feature vectors that are accurately labelled by their emotions or emotion-

related states. Creating such databases of speech signals assumes that the collected 

data do represent real life emotional speech, and can be easily labelled by human 

experts. This is a tough challenge that has frequently been discussed, questioned, and 

researched. The traditional method of data collection started with gathering acted 

emotion data (Batliner , et al., 2011). These data are normally designed by asking 

actors to repeatedly express different specific emotions, and suppress all other 

emotions, while uttering the same sentences chosen from a well-selected set of texts. 

The reliability of the emotional labels is dependent on how good and skilful the 

actors are. However, the concern is about the extent to which the data is a good 

representation of real life emotions. For this purpose, trying to collect “natural” 

emotional data requires repeated recorded speeches of subjects while expressing 

specific emotions without being aware of the recording. However, this approach 

might have serious ethical implications. Consequently, researchers have attempted to 

create non-acted databases by collecting non-prompted data (Steidl, 2009). Capturing 

the “natural” emotional speech portions and then labelling them in terms of their 

emotion is challenging. For instance, in designing the FAU-Aibo database, children 
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were convinced that they were controlling a pet robot by their speech instructions, 

while in reality the robot pet was controlled by a special wizard. Consequently, 

obeying or disobeying the children resulted in emotional speech states, which were 

recorded and then labelled to emotional-related states based on the decision of five 

experts. However such a design still suffers from producing a monologue instead of a 

dialogue (Schuller, et al., 2011b).  

SER accuracy is significantly different from one database to another, due to the 

design (acted, elicited, or non-acted), the speaker factor (gender and\or age), and the 

purpose of creating the dataset (analysis, synthesis, recognition). Therefore the 

recognition performance of a SER system achieves comparable accuracy rate to 

human raters in subjective listening tests (Vogt , et al., 2008). 

Perfect recognition of emotion is not easy even by humans when listening to one 

another; sometimes the human cannot recognize his own innermost emotion. In fact, 

some aspects of internal feelings remain hidden and do not appear in the speech, 

especially when the speaker likes to do that. Therefore, a computer-based system 

cannot do beyond what is observed from the speech sample input (Picard , et al., 

2001). 

In this thesis we have tested our developed schemes both on acted and non-acted 

databases, including an in-house acted database, and we shall attempt to measure and 

explain the expected discrepancy in accuracy rates achieved by the two types.   

1.3 SER as a pattern recognition task 

SER follows the same steps of pattern recognition (Figure 1-2), starting with pre-

processing the input data by extracting and selecting suitable features, followed by 

the classification step. The classification techniques have a clear impact on the 

model’s complexity and performance. Some classifiers are well known in improving 

model performance such as the Support Vector Machine (SVM), but in contrast, the 

SVM’s complexity may be considered as a serious disadvantage for some 

applications. Some other classifiers are simple in terms of computation and 

implementation, but may not perform well every time like the k-Nearest Neighbour 

(k-NN), and Linear Discriminant Classifier (LDC), especially in the case of a high  
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Figure 1-2: Pattern Recognition Steps 

dimensional data. However, judgments that are based on performance and 

complexity cannot be generalized everywhere, because the classification models’ 

characteristics are not completely independent of the previous steps, including 

feature extraction and selection. For example, LDC draws cluster borders based on a 

multivariate Gaussian distribution of the data belonging to that cluster, and performs 

well when applied to de-correlated data. Feature selection techniques, which are able 

to provide a de-correlated subset of attributes, are more appropriate for classification 

methods like the LDC, like the meta-feature selected by PCA. Therefore it is shown 

in Chapter Six how PCA with LDC scheme can outperform other schemes like the 

PCA with SVM. The performance of any pattern recognition task can be improved 

by the fusion of more than one model, whether in terms of the score level or the 

classification level. The decision of the models can be weighted to highlight the 

influence of some models over others as in Figure 1-3. In emotion recognition, a 

speaker-independent classification is more applicable. And mainly the researchers 

adopt the Leave One Speaker Out (LOSO) cross validation approach. 
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Figure 1-3: Fusion at classification level 

 In this thesis we investigate and compare the performance of various classifiers and 

various fusion schemes in terms of accuracy rates. However, we shall also 

investigate the pattern of performance of such classifiers for different feature 

selection and feature reduction schemes. 

1.4 Contributions of this thesis 

This thesis aims to investigate major issues regarding emotion recognition in speech, 

especially developing and testing the performance of a number of SER schemes. We 

shall use innovative approaches to feature extraction, feature selection and reduction, 

and classifiers.  

We started by investigating new sites within the speech signal to extract features 

relevant to emotion. In Chapter Four, a set of features, which are extracted from the 

LP-residual signal, is suggested for emotion recognition. These features include: 

1. Mel Frequency Cypstrum Coefficient (MFCC) of the LP-residual signal. 

2. Linear Predictive Cypstrum Coefficient (LPCC) of the LP-residual signal, 

and  

3. Wavelet Octave Coefficients of Residual (WOCOR).  

These sets of features are used for speaker recognition, but are not used in emotion 

recognition. The suggested features show the ability to improve the accuracy of 

recognition when fused with a large number of emotional features (6,652) extracted 

by OpenEar software (Eyben, et al., 2009).  
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In this thesis we also investigate the controversy about a small size feature set 

relative to emotion, and consequently suggest the use of a large number of features in 

SER studies. Meta-feature extraction and selection is proposed in this thesis as a 

solution to avoid the curse of dimensionality, including the use of Data Independent 

PCA (DIPCA), where PC projection is computed by data samples independent from 

the samples involved in training the classification, and the random projections that 

are based on compliance with the new innovative paradigm of Compressive Sensing 

(CS).  These techniques also avoid model complexity without affecting performance. 

We suggest a number of CS-compliant Random Projection (RP) matrices for 

transforming data into a meta-feature space instead of PCA. The advantage of RP 

matrices over PCA is their non-adaptive nature (i.e. the independence of the data 

used for model training), which results in significantly lower computational costs.  

The investigation presented in Chapter Five shows how the RP can be used for 

emotional space adaptation from speaker influence, together with an SVM classifier. 

However the SVM have some serious drawbacks, including the need for balancing 

the number of samples for each pair of classes, and building a set of machines for 

multi-class models, as well as high computation cost. An alternative classifier is 

investigated in Chapter Six using the fact that the de-correlated meta-features 

generated from a high dimensional feature space using PCA is suitable for 

classification, based on normal multivariate distribution. Therefore LDC using 

pooled estimated covariance for data pre-processed by PCA outperforms the well-

known SVM classifier and the state of the art results.  

We have also proposed an ensemble classification model that extracts meta-feature 

subsets using PCA with “well-selected” weights and have resulted in improved 

recognition accuracy. For further improving the performance of the SER scheme, we 

designed a multi-level classification by combining some of the confused classes. The 

confused classes have been detected using confusion matrices and a Non metric 

Multi-Dimensional Scaling (NDMS) that visualize the similarities between classes.  

A comparison with what we are aware of state of the art schemes shows that most of 

the models suggested in this thesis outperform state of the art models in terms of 

model performance. 

A score-based classification has been used to show that the speech sentences 

somehow encapsulate a mixture of emotions, such that the same speech sample can 
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reveal different emotions. Classifying speech samples confidently is rarely found in 

non-acted datasets, and stronger in the professionally acted datasets, especially in the 

case of datasets that are designed for analysis or synthesis and not for recognition 

purposes such as the EMO-Berlin dataset. This thesis investigates the presence of 

more than one emotion in an individual speech sample. 

1.5 List of publications 

Currently a part of this thesis is presented in two publications: 

1. An article submitted to Computer Science and Electronic Engineering 

Conference (CEEC) 2013, entitled “Excitation source and low level 

descriptor features fusion for emotion recognition using SVM and ANN”. 

The details of the contribution of the publication are presented in Chapter 

Four. 

2. An article submitted to the SPIE 9497, Mobile Multimedia/Image 

Processing, Security, and Applications 2015 conference, entitled   “Emotion 

Recognition in Speech: Tools and Challenges”.  

1.6 Thesis Organization 

The thesis includes seven chapters starting with the introduction in Chapter One 

followed by a background on emotion from a psychological point of view, and the 

common features extracted from speech signals in Chapter Two. A literature review 

on emotional datasets and speech features used for SER is also available in two 

different sections in Chapter Two. In Chapter Three, feature pre-processing 

techniques are presented, together with the classification methods used.  Research 

regarding feature pre-processing and classification are also reviewed in Chapter 

Three. 

The first contribution of this thesis regarding features extracted from the LP-residual 

samples is presented in Chapter Four. This is followed by the investigation of meta-

feature extraction and selection using different forms of PCA and RP using SVM 

classifier in Chapter Five. In Chapter Six the use of an LDC classifier is investigated 

to overcome some of drawbacks of SVM. The data is also pre-processed by some 

forms of the PCA and RPs. Meta-features subsets extracted by PCA is also fused in 

this chapter to improve recognition performance, in which the assumption of the 
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availability of a mixture of emotion in the same portion of speech is studied. Finally 

the conclusion of the whole thesis is come in the last chapter. 

 

 

 



12 

 

2. Chapter Two  

Emotion and speech signal features 

Emotion is known to modulate a variety of human-machine modes of interaction. 

Audio-visual modes including speech and facial expression are among the most 

commonly researched modes of interaction for detection and identification of 

emotions. Other detectable emotion-related signals include hand and body gesture as 

well as internal physiological changes. In this thesis the focus is on using speech 

alone for the detection and recognition of emotion.  

SER (Speech Emotion Recognition) is based on two major aspects, the first one is 

the meaning of emotion and the second one is the kind of speech signal features or 

parameters that could be relevant to emotion in speech. As a pattern recognition task, 

pre-processing the emotional speech data by extracting and then selecting the 

suitable features is followed by classification. A background of the feature extraction 

step is covered in this chapter. 

In this chapter a proper description of emotion from a psychology point of view will 

be presented in the first section (1.1), to understand how it could benefit in designing 

an automatic emotion recognition system. In order to highlight the difficulties 

involved in SER, we review the literature on the databases designed for emotion 

recognition from speech signal in section (1.2). In section (2.3) the most well-known 

and important types of speech signal features, which are reported to be relevant to 

emotion is shown. The final section (2.4) will cover a literature review of emotional 

features extracted from speech signal. 

2.1 How psychologists view human emotion? 

Understanding the exact meaning/manifestation of emotion is necessary in any 

emotion related applications. Psychologists conducting research into human 

emotions need emotional data/samples to be in a format that includes labelling of the 

samples by accurate emotions. Such needs raise questions like how many emotional 

categories should be considered, how to collect emotional data, and how to map the 

variety of emotional categories to manageable lists of labels.  
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Psychological studies are concerned with factors such as identifying the significant 

and fundamental list of emotions, how and why are they differentiated, and the 

situations of emotion eliciting. This would have a clear impact on any emotion 

related application. Understanding the emotion helps in recognizing it, predicting its 

influence on other behaviour, and controlling it. However, emotion definition is a 

matter of opinion amongst the psychologists, regarding the root of the emotion, basic 

and derivative emotions, and other aspects. The “biology versus culture” debates 

about the root of emotion attracted many researchers. On one side the traditional 

theory by Darwin claims the emotion to be survival-related pattern that have evolved 

to help the adaptation with the species environment in the evolution stages; while 

many anthropologists and social psychologists attacked the Darwin’s theory; as they 

attributed the emotion to sociocultural factors (Steidl, 2009).  In this study we adopt 

the concept suggested by Schuller et al (Schuller, et al., 2011b), who followed the 

definition of Cowie, (Cowie, et al., 2001b) that ‘emotion’ is what is “present in most 

of life but absent when people are emotionless”; this is the concept of pervasive 

emotion. This concept includes both the prototypical emotions like (anger, 

happiness…etc.), and what is called emotion-related states, in addition to the all 

related concepts to emotion like “emotional intelligence”.  

2.1.1 Emotion categories and dimensions 

In pattern recognition applications, labelling the data to classes is essential. The 

model will be trained using some samples labelled to what is assumed to be the 

correct classes. It is obvious that labelling the emotional data depends on the theory 

behind the emotion and the observer skill. Defining and predicting the number of 

emotions face serious difficulties amongst the psychologists. However, 

categorization of emotions can be done in both dimensional and discrete emotion 

models.    

2.1.1.1 Dimensional categorization  

Emotions can be distinguished according to some characteristics like: arousal, 

valence, and dominance. Emotion is possible to be distinguished using one-

dimensional or multidimensional model. 
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2.1.1.2 Uni-dimensional Model  

Some researcher argues about the usefulness and sufficiency of one dimension 

categorization of emotion. The dimension can be the arousal/excitation (low to high), 

or the valence (unpleasant to pleasant). The valence dimension is reported as the 

most important representation, which represents the principal of emotion. It is now 

one of the most accepted criteria for emotion and effect studies (Scherer, 2000). 

Distinguishing emotions to Positive and Negative is an example of one-dimensional 

categorization. 

2.1.1.3 Multidimensional Model 

Emotion are also represented in the literature by a multidimensional model. The 

suggested dimensions are Pleasantness-unpleasantness (valence), rest-activation 

(arousal), and relaxation- attention (dominance) (Cowie, et al., 2001b). Multi-

dimensional approach provides a theoretical model that could be compatible with the 

Opponents Processing in Emotion sensing (Solomon , 1980).  

 

Figure 2-1: Arousal and valence dimensions in emotion representing. 

Multidimensional representation helps in improving the capability for improved 

separation between emotions that are close in terms of arousal, valence or dominance. 

The obvious benefits from using two dimensions relate to the ability of visualizing 

the differences between emotions in an illustration (see Figure 2.1). In two/three 

dimensional space the Euclidian distance could also be used to measure the 

differences (Steidl, 2009). However there is no consensus about the exact needed 

number of emotions. 
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Table 2-1: A Selection of Lists of "Basic" Emotions (Ortony & Turner, 1990) 

Reference  Fundamental emotion  Basis for inclusion  

Arnold (1960) Anger, desire, despair, fear, 

hate, hope, tendencies love, 

sadness 

aversion, courage, dejection, 

Relation to action 

Ekman, Friesen, & Ellsworth 

(1982) 

Anger, disgust, fear, joy, 

sadness, surprise 

Universal facial expressions 

Frijda (personal communication, 

September 8, 1986) 

Desire, happiness, interest, 

surprise, wonder, sorrow  

Forms of action readiness 

Gray (1982)  Rage and terror, anxiety, joy Hardwired 

Izard (1971) Anger, contempt, disgust, 

distress, fear, guilt, interest, 

joy, shame, surprise 

Hardwired 

James (1884)  Fear, grief, love, rage Bodily involvement 

McDougall (1926 Anger, disgust, elation, fear, 

subjection, tender-emotion, 

wonder 

Relation to instincts 

Mowrer (1960) Pain, pleasure  Unlearned emotional states  

Oatley & Johnson- laird (1987)  Anger, disgust, anxiety, 

happiness, sadness 

Do not require propositional 

content 

Panksepp (1982)  Expectancy, fear, rage, panic  Hardwired  

Plutchik (1980)  

 

Acceptance, anger, 

anticipation, disgust, joy, fear, 

sadness, surprise 

Relation to adaptive 

biological processes 

Tomkins (1984) Anger, interest, contempt, 

disgust, distress, fear, joy, 

shame, surprise 

Density of neural firing  

Watson (1930) Fear, love, rage Hardwired  

Weiner & Graham (1984)  Happiness, sadness Attribution independent 

 

2.1.2 Discrete emotion model 

Another Model of categorization emotion is to label each individual emotion alone as 

a single state. Many researcher tries to define basic emotions, which are supposed to 

be expressed by mammals as a result of many theories mostly extending Darwin’s 

theory of emotion evolution. Although there is a no agreement about the exact 

number of basic emotions, the most popular list is the Ekman’s categorization of 

basic emotions. He regarded Anger, disgust, fear, joy, sadness, and surprise as basic 
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emotions. Table 2-1 shows some other suggestions of the basic emotions. This 

diverse categorization is a result of the disagreement of understanding the emotion 

concept itself, and would certainly add to the challenge of automatic emotion 

recognition. Defining basic emotion is important to explain some routine observation 

about emotion, which appears in human and some higher animals as well (Ortony & 

Turner, 1990). However recent studies tend to bypass the use of basic emotions and 

instead consider the alternative concept of Emotion-related states (Batliner , et al., 

2011).  In this thesis the investigation will include both basic emotion and emotion-

related states. 

2.2 Emotional Speech Data Collection 

Emotion could be present in (or detected from) different human modes of interaction 

with the environment and is manifested by expressions in the face, changes in speech 

tones, gestures, and/or electroencephalogram (EEG). Consequently emotion related 

datasets are collected by different researchers depending on their choice of 

interaction mode. For example, face expressions datasets include faces in different 

expressions (Kanade, et al., 2000), whereas SER datasets are collected from speech, 

which contain emotional speech samples (Engberg & Hansen, 2007; El Ayadi , et al., 

2011). Multi modal datasets is also suggested including face images and speech 

signals in the form of videos as in (Douglas-Cowie, et al., 2005).  

Being focused on speech emotion recognition, the main datasets investigated in this 

thesis are collected in benchmark databases that contain speech samples for 

sufficiently large sample of the population. Emotional speech applications use these 

datasets to train suggested models and/or to analyse the emotional characteristic 

included in the speech signal. Designing or eliciting an emotional data set, is a 

serious challenging task for the SER research community, due to difficulty in 

assessing how a recorded dataset is natural and/or usable. The prompted data is 

frequently criticized for being difficult to create a natural setup for expressing 

different emotions (El Ayadi , et al., 2011; Batliner , et al., 2011; Steidl, 2009; 

Schuller, et al., 2011b). Characteristic differences of detected ranges in contour 

fundamental frequency and other speech parameters values between real life clear 

emotion sentences and sentences acted by professional actors is reported by 

(Williams & Stevens, 1972). The actors are asked to act the emotions included in the 
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pre-designed structure of the data set, which might lead to produce a “full blown” 

emotions.  

Another issue regarding the prompted data is the prototypical approach in fixing the 

emotion included in the database, which lead to the absent of many available 

emotions or emotion-related states in the real life. In addition to that the prompted 

emotional data is not applicable when linguistic features are used, because the 

adopted texts are somehow predefined and fixed independently of any emotion. 

Deciding whether the acted recordings are really well representing the emotion or not 

is another challenge that faces the prompted data. Human examiner (annotators or 

experts) are used to judge and score emotional samples. Some database designers 

remove the samples that are not representing the emotion well (Burkhardt, et al., 

2005).  This kind of sentence selection might also influence the emotional data and 

raise doubts about the recording being natural. However some of these databases 

(like DES (Engberg & Hansen, 2007), Emo-Berlin (Burkhardt, et al., 2005), SUSAS 

(Hansen & Bou-Ghazale , 1997)) were not collected for SER, but for quality 

measuring of emotional content syntheses. In contrast the prompted data is easier in 

design, and unlike the non-prompted datasets, number of samples per class is 

controlled/pre-defined.  

The non-prompted data is recorded in an unsupervised environment, which means 

that the subjects are not directed to express a specific emotion, but they are led to an 

emotional state, and then the produced emotion is recorded without their knowledge. 

This kind of data seems to be more ‘realistic’. However, some researchers agreed to 

call this kind of data as a non-prompted emotional data, instead of name it as 

spontaneous or natural. (Schuller, et al., 2011b).  

Recording non-prompted samples of emotional data also faces many serious 

challenges. In the non-prompted speech data, some emotion-related states might 

appear, in which not suggested initially, but rather is likely to be available in the real 

life. The emotion-related states (like emphasized, rest, positive, etc.) are not 

necessary to be listed under the prototyped emotion categorization or the basic 

emotions. 

As we discussed above, the number of samples per emotion/class is not pre-defined 

in the non-prompted data, therefore it depends on emotion related states available in 
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the recordings. Additionally the non-prompted data needs another effort to label the 

speech samples to each individual emotions or emotion-related states. Experts are 

usually involved to manage this process. Sometimes some of the emotion-related 

states appear rarely in the collected data, which encourage mapping the available 

emotion-related states to less number of classes. For instance (Steidl, 2009) suggests 

a heuristic approach to map many emotional related-states to less number of 

categories. State of the art studies encourage the use of the non-prompted data, 

because it is more realistic and helpful in designing a real life application (Batliner , 

et al., 2011).  

The emotional databases are also different in terms of the target that the dataset is 

designed for. Some emotional databases are designed infant-directed like the dataset 

designed by (Slaney & McRoberts, 1998), which collect 500 samples from adults 

talking to their infants and classified 65% of the samples correctly. More other 

database is adult-directed as shown in the next section. 

2.2.1 Historical review of emotional databases 

The history of speech emotional databases started in the late 1990s with few 

databases but mostly limited in the number of samples (about 500), number of 

enrolled subjects (about 10), and number of uttered sentences (about 10). For 

example, the DES database (Engberg & Hansen, 2007), contains 419 speech 

utterances, expressed by 4 professional actors (2 male and 2 female) who were acting 

5 emotions, using 9 different sentences. The emotions that were meant to be 

expressed by the speakers in this database were anger, happiness, neutral, sadness, 

and surprise. The recordings are judged by twenty native speakers, whereby 67% are 

correctly evaluated. The Emo-Berlin database (Burkhardt, et al., 2005), contains 

studio recording of 10 sentences uttered repeatedly by 10 subjects (5 male and 5 

female) who were asked to express 7 emotions (anger, happiness, neutral, sadness, 

fear, disgust, and bored). There were 20-30 judges participating afterwards in 

evaluating and labelling the emotion recordings. About 500 out of 800 utterances are 

evaluated by 20 subjects as appropriate emotional sentences with minimum score of 

60%, assignable with minimum of 80%, and correct labelling accuracy rate of 84.3%. 

The Emo-Berlin database is one of the databases that will be used in this thesis.  
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Expansion of the size of the databases in terms of samples, subjects, and modals, in 

addition to adding more natural life characteristics to the database is followed in 

designing the later databases. For example, the eNTERFACE database (Martin, et al., 

2006) uses 42 subjects (9 female) and 1227 samples. To add more cultural diversity 

factors the subjects were chosen from 14 nations (see Table 2-2). Another naturalize 

attempt in this database was leading the subjects into an emotional situation by 

preparing them to listen to an emotional story and then they asked to utter five 

appropriate sentences per each emotion. The emotions induced in this database are 

anger, disgust, fear, joy, sadness, and surprise.  

The first attempt to create a “spontaneous” data set was made through the SUSAS 

database (Hansen & Bou-Ghazale , 1997), where a predefined set of words captured 

from English air-commands. A total of 3593 samples under different level of stress 

are produced. This was followed by the design of a comprehensive spontaneous 

database, called FAU Aibo database (Batliner, et al., 2008a;Steidl, 2009).  

The FAU-Aibo database (Steidl, 2009;Batliner, et al., 2008a), was designed by 

recording children's sound, which are coloured by different emotion, when they 

interact with Sony’s pet robot Aibo. The children were led to believe that the robot is 

responding to their commands, whereas it was actually controlled by a human 

operator in a Wizard-Of-Oz manner. Five experts labelled each word in the database 

independently, into 10 categories: angry, touchy, joyful, surprised, bored, helpless, 

motherese, reprimanding, emphatic, and ‘other’ for the remaining cases. The 

categories were mapped into four classes: anger, emphatic, neutral, and positive in 

addition to the fifth class for rest. The Aibo corpus formed the focus of the 

Interspeech 2009 emotion challenge (Schuller, et al., 2011a). Aibo dataset is one of 

the datasets that adopted in this thesis, and more details about it will be given in 

chapter 4. 

For further details a comprehensive review on databases can be found in (Schuller, et 

al., 2009b; El Ayadi , et al., 2011; Koolagudi & Rao, 2012b).  Figure 2-2, shows the 

percentage of number of emotions used in 32 datasets reviewed by (Koolagudi & 

Rao, 2012b)) while Figure 2-3 shows the number of simulated, elicited, and non-

prompted datasets. The number of non-prompted datasets is just 25%, and the 2-class 

datasets is the more present in the available emotional datasets. 
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Table 2-2: Geographic distribution of participants in the eNTERFACE database (Martin, et al., 

2006) 

Country Number of Subjects Country Number of Subjects 

Belgium 9 Cuba 1 

Turkey 7 Slovakia 1 

France 7 Brazil 1 

Spain 6 USA 1 

Greece 4 Croatia 1 

Italy 1 Canada 1 

Austria 1 Russia 1 

 

 

Figure 2-2: The percentage of emotions from 32 datasets collected in (Koolagudi & Rao, 2012b) 

 

Figure 2-3: The percentage of dataset types from 32 datasets collected in (Koolagudi & Rao, 

2012b) 

2.2.2 Shortcoming of emotional databases  

State of the art studies encourage using non-prompted (spontaneous) data sets due to 

their similarity to the real life human emotional states. Still the non-prompted data 

sets have two major problems, which could be taken into account when generating 
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emotional data. The first issue is regarding the neutrality of the monolog form of 

emotional speech that adopted in the available data sets. This shortcoming happens 

because of the absence of emotion-related state that accompany the dialog 

conversation. The difficulty of preparing the recording situation for spontaneous 

emotional dialog conversation is a serious challenge, but necessary to bring the 

emotional datasets furthermore towards the real life environment.  

The second issue is that the universality assumption (albeit implicit) of collected 

datasets as representing a wide range of cultures presents yet another serious research 

challenge due to the fact that no existing emotional dataset can claim such another 

characteristic of existing. In the next section a brief review on some cultural 

influence on emotion is presented. 

2.2.3 Cultural influence on emotion 

Some researcher as a consequence of the argument about the linguistic, has studied 

the influence of culture on emotion expressed by people brought up in different 

cultures, and culture influence verses the universal characteristic of emotions.  

Generally, studies report the universality of emotion to some extent. For instance in 

(Elfenbein & Ambady, 1986) listeners’ ability of recognizing emotions from 

different cultures, has been claimed to lead recognition accuracy score much higher 

than the random probability chance of recognition. This kind of claims are used to 

some extent as an indicator of the universality of emotion in different cultures. In 

contrast some other studies reported the influence of linguistic prior knowledge that 

judgers have on the emotional contents. The comprehensive study by Scherer et al. 

(Scherer, et al., 2001) show that recognition accuracy score of native judgers of 

German language emotional contents range from 74%- 84%, while Indonesian 

judgers of the same recording achieved only 52% accuracy. These two seemingly 

different investigations seems to indicate that the emotional characteristic is 

universal to some extent, but the linguistic characteristic has also its role in 

understanding the emotional contents in a text. We believe that this argument needs 

more investigations to settle this kind of questions. 

2.3 Acoustic Feature extraction for SER 

Feature extraction is one of the most important steps in pattern recognition (if not the 

most). In quantitative pattern recognition studies, extracted features are usually used 
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to build a mathematical model governing the variability of these features.  Extracting 

the appropriate SER features reflects the available knowledge about emotion 

characteristics as well as the influence of the person’s emotional state on the speech 

signal.  In this study we deal with acoustic features of the speech signal that extracted 

using different approaches.  

In general, features are either selected depending on a pre-knowledge based approach 

or “brute force” approach”. In pre-knowledge based feature extraction, experience 

plays a role in fixing the number of targeted features to feed the classification model. 

Practically, the number of features in a pre-knowledge SER system tends to be 

limited to not more than few hundreds. While in the “brute force” approach, feature 

extraction aims to cover as much as possible characteristic that the speech signal has, 

hopping to capture as much as possible information about emotion embedded in the 

speech signal, although this may result in the presence of redundancies. 

The vocal tract system produces speech from a time varying signal with a time 

varying excitation. Therefore the speech signal is non-stationary in nature, while 

most signals processing tools assume time invariant system and excitation, i.e. 

stationary signal. Therefore these tools are not directly useful for speech processing, 

and mainly short time parameter estimation is more applicable. Therefore, to 

overcome this issue of non-stationary over a long utterance of speech, it is customary 

to divide speech signal into frames through which the signal is almost stationary 

(Rabiner & Schafer, 2007). In the rest of this section a background of feature sites 

will be covered. 

2.3.1  Prosodic features 

Prosodic refers to some speech signal characteristics like stress, rhythm, and 

intonation, which are reported to reflect the emotional states, as well as the intonation 

of the speaker which change the meaning of sentences forms like question, or 

command. In this section major prosodic parameters, will be presented.  

2.3.1.1 Pitch and fundamental frequency 

Although the pitch and fundamental frequency are different in the sense that pitch 

refers to perceptual characteristic, while fundamental frequency is physical 

parameter of the speech signal, but there are an agreement about the correlation of 

both of pitch and fundamental frequency.  Fundamental frequency (F0) changes 
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through a spoken sentence, offer information about the intonation and stress happens 

along spoken words and sentences. F0 is measured in Hertz according to the 

fundamental period of vocal closure. F0= 1/T, where T is the fundamental period.  

Due to the non-stationary characteristic of the speech signal F0 is usually computed 

in the short-term signal. To have more clear view of the changes happen of the F0 

along the speech signal sample, F0 envelop parameters (like slope, onset, offset, etc.) 

is computed, beside other statistics like minimum, maximum, mean, median, etc. of 

F0 value along the whole signal (Buckow, et al., 1999). Figure (2-4) shows some 

statistics computed from the pitch contour. In this work we follow the 

implementation of openEAR toolkit (Eyben, et al., 2009), which use the cepstrum 

and Autocorrelation based algorithms for F0 computation.  

2.3.1.2 Energy and zero crossing based features 

Like the F0, short-term energy is computed for each frame, and the statistics is 

applied for the whole utterance. Unlike the fundamental frequency some statistics 

like the minimum, onset, and offset of the energy envelope, does not make sense 

because the minimum energy is usually zero or close to zero (see Figure 2-5).  

The short time energy is computed as follow (Rabiner & Schafer, 2007): 

௡ܧ  = ∑ ሺݔሺ݅ሻݓሺ݊ − ݅ሻሻଶ∞
௜=−∞  (2.1) 

Where w is hamming window. 

While the zero crossing is computed by: 

 ܼ௡ = ∑ Ͳ.ͷ|݊݃݅ݏሺݔሺ݅ሻ − ሺ݅ሻݔሺ݊݃݅ݏ − ͳሻ|∞
௜=−∞ ሺ݊ݓ − ݅ሻ (2.2) 
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Figure 2-4: Example of features used to describe a pitch contour (Buckow, et al., 1999) 

 

 

Figure 2-5: Section of speech waveform with short-time energy and zero-crossing rate 

superimposed 

2.3.1.3 Duration and Pauses features 

The duration of the words, and the normalized duration by the number of syllables is 

the core of this set of duration and pauses features. This kind of feature is usually 

computed by manually segmentation of the words. For full automatic emotional data 

analysis the computation of this kind of feature is not necessary.  Speaking rate is 

also reported as duration related features (Muto , et al., 2005), consequently, the 

position of maximum and minimum of F0 and the energy, beside the onset and offset 

of F0, are used for this purpose. 
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The duration of pauses, whether it is filled (like “Emm”, “Ahhh”, etc.) or silent 

pauses, is considered as pauses-based features (Steidl, 2009).  

2.3.2 Spectral Features 

Spectral information reflects the distribution of waveform frequencies along the 

speech signal. Spectral features are reported to carry information on text contents, 

speaker’s identity, and emotional state (Paliwal, 1998;Pérez, et al., 2012). Formant 

frequencies are widely used spectral features that characterize the phones in a speech 

signal, especially the lower formants. Speaker-related information can also be found 

in the higher formants.  Furthermore frequency bands magnitudes, spectrum Roll-off 

and centroids are all computed to represent the spectral features. We first describe 

some of these spectral features. 

2.3.2.1 Formants 

Formants of a speech signal represent the resonance that happen while the generated 

airwaves pass through the vocal tract. To model the speech resonance characteristic, 

the vocal tract is modelled by a simple tube of length L (about 170mm), this tube is 

normally divided into N equal length sub-tubes Si with different widths, (see Figure 

2-6).  

To understand how the formant is estimated, it is necessary to refer to Fant’s 

suggested model of speech production (Fant, 1970) as shown in (Figure 2-7). The 

passage of the speech signal, generated by the vocal cords, through the vocal tract is 

subject to multiple filtrations. This system is modelled by the following Z-space filter 

equation: ܨሺݖሻ = ܷሺݖሻ. ܸሺݖሻ. ܴሺݖሻ                                                     ሺʹ.͵ሻ 

Here, U represent the glottal pulses scaled by the voiced controller, V is the vocal 

tract filter, and R represents the lip radiation filter. This system can model the speech 

production as a linear time invariant system.   

The disruption of signal flow happened with the transition from one cylinder to 

another. Thus V(z) filter is defined by the following formula: 

ܸሺݖሻ = ͳܭ − ∑ ܽ௜ݖ−ଵ�௜=ଵ                                                      ሺʹ.Ͷሻ 
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where K is an acoustic flow parameter of the signal. And ܽ௜  is the ith linear 

prediction coefficient. 

The function V(z) has N/2 pairs of complex conjugate poles (i.e. the zeros of the 

polynomial in the denominator) as shown by the following expression: 

ͳ − ∑ܽ௜ݖ−ଵ�
௜=ଵ = ∏ͳ − ʹ݁−௖೔்�os ሺ ௜ܾ

�ଶ
௜=ଵ ܶሻݖ−ଵ + ݁−ଶ௖೔்ݖ−ଶ                 ሺʹ.ͷሻ 

The spectral envelop peaks known as the formants. The LP- spectrum has an 

amplitude frequency peak at frequency ܾ௜/ʹ� , which represent the formant 

frequencies. The formant bandwidth is also estimated as ܿ௜/ʹ� (Rabiner & Juang , 

1993). 

There are many features related to the formants like, formant frequencies, bandwidth, 

their amplitude, onset and offset of envelop between a pair of two formants.  

 

Figure 2-6: simulation of the vocal tract tube. 

Statistical parameters of the distribution of the magnitudes of different frequency 

bands over the length of the speech signal are used as equivalent features to formant 

features. In this work spectral magnitude peaks in different bands, their positions, 

bandwidth, and slope parameters are also used beside many different energy bands 

magnitudes. 
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Figure 2-7: Speech Production model 

2.3.2.2 Fourier transform based feature 

Fourier transform (FT) is the most common way of analysing signals into their 

spectral sub-bands. However, the non-stationary characteristics of the speech signal 

recorded over a relatively long time make the use of FT of limited benefits. This is 

due to the fact that FT cannot provide simultaneous information on the involved 

frequencies and their location within the signal. But it is well known that speech 

signal tends to be stationary in short frames of about 16 ms and hence the use of 

short-term Fourier analysis provides the appropriate analysis tool (Rabiner & Juang , 

1993). To conserve the continuity of the signals across the frames especially in the 

beginning and the end of the frames overlapped windows (like hamming window) 

that extenuate the amplitude in the frame sides. Many features can be extracted from 

the Fourier spectrum of the feature like the spectrum centroid, and Flux. The 

spectrum centroid is computed from the Fourier transform of the signal as follows: 

ሺ݇ሻܨ = ‖∑ ሺ݊ሻݔ × ݁−௜ଶ�௞௡��
௡=ଵ ‖  ሺ݇ = ͳ, ʹ, … ,ܰሻ                    ሺʹ.͸ሻ 

where ݔሺ݊ሻ is the input speech signal of length ܰ, and ܨሺ݇ሻ is the amplitude of the 

spectrum. While, spectrum centroid is defined by the following equation: 

ܵ௖ = ቆ∑ ݇ × ሺ݇ሻ�ଶ௞=ଵܨ ቇ
ቆ∑ ሺ݆ሻ�ଶ௝=ଵܨ ቇ                                                      ሺʹ.͹ሻ 

The spectrum Flux ܨௌ� is computed as follows: 
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�ௌܨ = √ଵ� ∑ ቀி�ሺ௞ሻா� − ி�−భሺ௞ሻா�−భ ቁଶ�
௞=ଵ                                                        ሺʹ.ͺሻ 

where ܧ� is the energy of the frame t. (Chen , et al., 2012) 

2.3.2.3 Mel Frequency Cepstrum coefficients (MFCC) 

The MFCC is a representation of the short-term power spectrum of the voice signal. 

The computation of the coefficient is based on a linear cosine transform of a log 

power spectrum on a nonlinear mel scale of the frequency. 

The MFCC’s can be computed using the algorithm shown below: 

 

2.3.3 Voice quality features 

The quality of the voice (e.g. breathiness or harshness) heard by others is an 

influencing factor in determining the speaker’s emotion, and therefore parameters 

that measure voice quality must be included in feature investigation for SER.  Voice 

quality features are partly based on the pitch and intensity parameters, and reflect the 

characteristics of the glottal resonance. Computing of the fundamental frequency and 

݉ = ʹͷͻͷ ݈݃݋ଵ଴ ቀͳ + ௙଻଴଴ቁ                                                ሺʹ.ͻሻ 

1- Pre-emphasize the signal by apply a high pass filter. This is required to 

obtain similar amplitude for all formants, such a filter has the following 

representation in Z domain: 

H(z)=1- a z
-1

. 

2- Compute the Fourier transform of the signal and find its log power 

spectrum. 

3- Convert the frequencies into mel-scale, according to the following 

formula: 

4- Create a band pass filter bank and find the summation of Db power 

spectrum of passed frequencies for different bands.  

5- Apply the cosine transform on the values obtained to reach the spectrum 

coefficient of the spectrum of the nonlinear male scale frequency.    

 



29 

 

the intensity for cycle-to-cycle variation is one way of estimating some of the voice 

quality features like jitter and shimmer.  

The relative jitter measurement of the voice quality is estimated as follows: 

௥ሺ݅ሻݎ݁ݐݐ݆݅ = ͳܰ − ͳ∑ |ܶሺ݅ + ͳሻ − ܶሺ݅ሻ|�−ଵ௜=ଵͳܰ ∑ |ܶሺ݅ሻ|�௜=ଵ                                        ሺʹ.ͳͲሻ 

Where ܶሺ݅ሻ is the wavelength of the fundamental frequency F0, also known as the F0 

period, and N is the number of extracted periods of F0.  

While the shimmer value satisfy the following equation: 

௥ሺ݅ሻݎℎ݅݉݉݁ݏ = ͳܰ − ͳ∑ |�ሺ݅ + ͳሻ − �ሺ݅ሻ|�௜=ଵͳܰ ∑ |�ሺ݅ሻ|�−ଵ௜=ଵ                                             ሺʹ.ͳͳሻ 

where, �ሺ݅ሻ are the extracted peak-to-peak amplitude data and N is the number of 

extracted fundamental frequency periods (Farrús, et al., 2007). 

2.3.4 Linear Predicted analysis 

The mathematical representation of Fant’s speech production model, which was 

explained in 2.3.2.1 has the following transform function: Sሺzሻܷሺݖሻ = Gͳ + ∑ a′k ௤௞=ଵ z−k                                                 ሺʹ.ͳʹሻ 
Where q is the number of parameters used in generating the speech signal. 

The filter above could be written in the time domain as: 

s[n] = ∑ ak ௣
௞=ଵ ݊]ݏ − ݇] −  ሺʹ.ͳ͵ሻ                                     [݊]ݑܩ

In reality it is very difficult to find the parameters of this filter directly, but the idea is 

to design a filter to estimate the current speech sample from the previous samples by 

using the stricter of the speech production model, represented by:   

Eሺzሻܵሺݖሻ = ͳ − ∑ a′k ௤
௞=ଵ z−k                                                   ሺʹ.ͳͶሻ 
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Figure 2-8: Filter of Generating estimated speech signal from Linear Predictive coefficients 

The estimated samples are used to define the mean absolute error with the actual 

sample as shown in (Figure 2-8). 

From equation 2.14 and 2.12, we obtain the following equation: 

 EሺzሻUሺzሻ = G ͳ − ∑ αk ୯k=ଵ z−kͳ − ∑ ak ୯k=ଵ z−k                                           ሺʹ.ͳͷሻ 

If   ak=αk  then: ୉ሺzሻ୙ሺzሻ = G   i.e.    e(n)=Gu(n) 

It is expected that the prediction error e(n) would be large for voiced speech at the 

beginning of each pitch period. The summation error is defined as follows: 

E = ∑ eሺnሻଶN
n=ଵ = ∑(sሺnሻ − s′ሺnሻ)ଶ                                       ሺʹ.ͳ͸ሻN

n=ଵ  

E = ሺ∑ sሺnሻN
n=ଵ − ∑ aksሺn − kሻሻଶN

n=ଵ                                            ሺʹ.ͳ͹ሻ 

The parameters ak are predicted as the values that minimize the expected error 

value E. This can be determined by differentiating the equation with respect to ai. 

∂E/ ∂a୧ = ሺ∑ ʹ [sሺnሻNn=ଵ − ∑ aksሺn − kሻ] ሺ−sሺn − iሻNn=ଵ ሻ         (2.18) 

where N is the total number of the samples. To minimizing E, set ∂E/ ∂a୧ =0, i.e  

to minimize the parameter E, 2.18 is equalized to zero 

∑  sሺnሻNn=ଵ sሺn − iሻ − ∑ ak ∑ sሺn − kሻ୮k=ଵ sሺn − iሻNn=ଵ =0             (2.19) 
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P is the number of the parameters to be estimated. Now, 

∑ ak୮
k=ଵ ∑ sሺn − kሻsሺn − iሻ = ∑ sሺnሻsሺn − iሻ                                  ሺʹ.ʹͲሻN

n=ଵ
N

n=ଵ  

This could be simplified in terms of the Autocorrelation function R as:  

∑ akP
k=ଵ Rሺk − iሻ = Rሺiሻ            i = ͳ,ʹ, … , P                                  ሺʹ.ʹͳሻ 

The corresponding system of equations: 

 

 

 

Solving this linear system equation above result in estimating the parameters ai, 

which is called linear predictive coefficients (Rabiner & Juang , 1993).  

The LP-residual signal rሺnሻ  of the speech signal is the difference between the 

original signal sሺnሻ and the predicted signal �ሺnሻ obtained by Linear Prediction: rሺnሻ = sሺnሻ − �ሺnሻ                                                    ሺʹ.ʹʹሻ 

�ሺnሻ = −∑aksሺn − kሻ                                          ሺʹ.ʹ͵ሻ ୮
k=ଵ  

2.4 Emotion relevant speech features 

Over the last two decades there has been a vast amount of researches in the area of 

emotion recognition from speech. The above list of speech based features have been 

incorporated into different types as emotion discriminating feature vector 

representations for SER schemes and their performances were tested on different 

emotional speech datasets with varying degrees of success. This section will cover a 

literature survey of some works regarding the relevant features to emotion extracted 

from the speech signal. 

At the early stages of emotion recognition researches, the focus was on using 

prosodic features (Pitch, duration and energy/ intensity) but much less attention was 
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given to other features like voice quality features (Schuller, et al., 2011b). The 

prosodic features is still investigated and included in the state of the art SER studies. 

For instance (Batliner , et al., 2011) investigated 6 different sets of features relevant 

to emotion all in which include pitch related features, 5 of them include energy based 

features, and 4 include the duration features.  Later on the amount of features have 

been extended to include prosodic, spectral, and voice quality features, in such a way 

that “brute force” approach of feature extraction (thousands of feature) were 

proposed frequently (Schuller, et al., 2009b;Hassan & Damper, 2012).  

The discovery of more new sites and features is an ongoing process. Recently some 

new sets of features extracted from the LP- residual signal have been added to the list 

of investigated features. For instance, (Chauhan, et al., 2010) use 40 samples of 

voiced speech LP-residual signal and another 40 samples around the glottal closure 

instants. While (Koolagudi & Rao, 2012b) uses features of the epoch parameter 

extracted from the glottal closure region of the LP-residual signal. These studies 

were motivated by the relevance of these features to emotion, as well as the limited 

use of the LP-residual signal in emotion recognition.  In this study we will propose a 

yet another set of features to be extracted from the LP-residual, which has not been 

used before in emotion recognition (see Chapter four).  

In the state of the art, for feature extraction, there are trends toward extracting 

acoustic features using many sites with many parameters (Batliner , et al., 2011). 

However such a high dimensional data need to be followed by dimension feature 

selection, or reduction step. This high number of features is a consequence of many 

factors but primarily the non-agreement on a limited number of emotion-related 

features (Vogt & Andre, 2005). For instance, studies on the relationship between 

global prosodic speech features and the basic emotions have shown that prosodic 

features provide a reliable indication of emotions. Moreover, many contradictory 

remarks/conclusions are reported in the literature on the effect of emotions on 

prosodic features. For instance, while Murray and Arnott (Murray & Arnott, 1993) 

indicate that a high speaking rate is associated with the emotion of anger, Oster and 

Risberg (Oster & Risberg, 1986) makes opposite conclusions. In another study Yang 

et al. (Yang & Lugger, 2010) argued that the prosodic features could separate classes 

in the arousal dimensions, whereas voice quality features are effective for 

discriminating classes in the valence dimension. In a similar study by Ebyen et al. 
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(Eyben, et al., 2010a), mel-spectrum is reported to be the most effective feature to 

separate classes in the valence dimension. However, in a correlation based feature 

selection study, Perez et al. (Pérez, et al., 2012)argued that the most relevant features 

to discriminate classes in the valence, arousal, and dominance dimensions are MFCC, 

cochleagrams, and LPC respectively. They also point out that Mel features have 

significant discriminatory contributions in valence and dominance, while energy 

features have discriminating characteristics in the arousal dimension.  A strong 

relation between voice quality and perceived emotion with listening human subjects 

is demonstrated in (Gobl & Chasaide, , 2003). Voice quality is also reported 

regularly in reference to the full-blown emotion (i.e. acted) (Cowie, et al., 2001a).  

The non-agreement on a set of features could be due to the nature of emotional 

databases used (Batliner , et al., 2011), which are captured under different conditions 

and factors. Simulated versus spontaneous, number of classes, cultures, or the 

circumstance of recordings could all be contributing to the need of different sets of 

features.  

Emotional features are extracted using different speech portions. Features could be 

extracted for each word and then statistics is applied for chunks or sentences. This 

kind of approach is called two layer based feature extraction. In contrast the single 

layer is extracting features from the whole chunk (Steidl, 2009). In order to extract 

features from the supra-segmental level of the speech signal, some researchers model 

the dynamic changes occurring in the speech signal using feature values in short 

segments, and hidden Markov Models have been used for this purpose (Daniel , et al., 

2006). Another approach is to project the sequence of segmental features (for each 

limited duration) through different statistics to generate a set of global features for 

each speech sample. Recently, researchers adopted a ‘brute force’ static set of 

features by extracting a set of Low Level Descriptors (LLDs), and computing many 

functionals of them, which tried to solve the non-agreement of the more important 

features relevant to emotion. This work adopts the use of 6552 acoustic features 

extracted by OpenEar software (Eyben, et al., 2009). 

The OpenEAR software extracted features based on the OpenSmile project (Eyben, 

et al., 2010b), in which extracting 250k features is implemented in real time factor rtf 

0.044. This performance encourages the use of high number of features in SER. The 
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study of Koolagudi (Koolagudi & Rao, 2012b) containes a comprehensive review on 

different features used in emotion reconition.  

And finally, Schuller et al. (Schuller, et al., 2007) showed that pooling together 

features extracted at different sites did improve emotion recognition accuracy 

performance. However, this pooling increase the dimension significantly leading to 

the curse of dimension, which is traditionally dealt with by dimension reduction 

schemes that create smaller sets of meta-features. While using "brute force" approach 

of feature extraction has been highlighted in some study (Schuller, et al., 

2009b;Hassan & Damper, 2013), we are not aware of any research along these lines. 

This would be one of the main tools that we will be investigating for SER.    

2.5 Summary 

Chapter 2 covered a background material on emotion in a psychological point of 

view, to provide the context in a guiding manner for conducting research in SER. 

This is also useful in designing more emotion relevant data sets so that more “natural” 

emotional content could be captured in the collected data. Some efforts for creating 

emotional datasets has also been surveyed in this chapter, highlighting the challenges 

that one face even in collecting reliably annotated data. The main quantitative 

emotion–related features and parameters extracted from speech signal, have also 

been described and presented in this chapter, including most of the OpenEAR based 

extracted feature that is adopted in most all of the experiments (a list of the 

OpenEAR features will be presented in Chapter 5).  The chapter ended with a brief 

literature review of SER research work that use various extracted sets of features.  

The next chapter will cover another major part of the theory background regarding 

the SER covering feature pre-processing and classification, before reporting the work 

done in the rest of the thesis. 
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3. Chapter Three 

Feature Pre-processing and Classification 

The traditional process of pattern recognition starts with extracting features/attributes 

that relate to some variable aspects of the objects/patterns under investigation, 

followed by selecting the “most relevant” features or meta-features that are used in 

training the classification model. In chapter 2, we presented various types of features, 

which are reported to be relevant to emotion. The non-agreement on “limited” set of 

emotional feature is a serious challenge that leads to the adoption of a “brute force” 

large number of features. To improve the classification model performance and/or 

reduce the complexity, feature or meta-feature selection is a widely used and 

reasonable solution. We shall present in section (3.1) some pre-processing methods; 

in order to generate a feature subspace that would include a “proper” lower 

dimension representation of the data, to be input into the SER model. Evaluating the 

performance of the SER model will have to be based on an appropriately chosen 

classification technique. In section (3.2) a description of the classification techniques 

that are investigated in this thesis, will be described. Finally a literature survey on 

both topics is included in sections (3.3) and (3.4). 

3.1 Pre-processing methods 

Speech signals generate many attributes/features that can be used to reveal 

information about different human characteristics and the semantics of the speech (eg. 

speaker, spoken text & context, and emotion). Knowledge about various sets of 

features relevant to emotion, helps in extracting a compact representation of speech 

that is relevant to emotion recognition and the performance and\or efficiency of the 

adopted SER model. Data pre-processing stage aims to identify and collect the most 

informative features/meta-features as an input into an appropriate classification 

model. It is essential to recognize that in practical applications, informative set of 

features/meta-features does not necessarily preclude the presence of hidden 

redundancies or correlations.  

This section presents some well-known and common dimension reduction techniques 

that are meant to preserve similarities of the data samples in terms of the relevant 
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objects/concepts. Particularly, we shall describe in the next two subsections (3.1.1 

and 3.1.2) methods for feature and meta-feature selection. 

3.1.1 Feature selection 

Feature selection is a common pattern recognition stage and is much more effective 

in a non-high dimensional feature space. It is the process of selecting a subset of 

features based on a criterion\objective. The objective is either measuring some 

characteristics of the data attributes by filtering (Filters) OR choosing a proper subset 

of features that yield the highest accuracy rate post classification. The latter approach 

is referred to in the literature as a Wrapper (Kojadinovic & Wottka, 2000). Filter 

methods are simple, efficient, and use data characteristic like the correlation or 

mutual information to select the “suitable” feature subset. Wrapper methods use a 

predetermined classifier to train, evaluate and determine the selected features (See 

Figure 3-1).The cost of optimization when selecting a suitable subset among a high 

number of features, is relatively high, especially when using the wrapper methods. In 

contrast the filter methods is known to be less accurate than wrappers (Yu & Liu, 

2003). This is due to the fact that in the training stage Filter methods are independent 

of the choice of classifier, while wrappers use the same classifier to optimize the 

objective cost function and evaluate the classification model (Bermejo, et al., 2012). 

 

Figure 3-1: A diagram of wrapper feature selection procedure. 
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Ideally, feature selection methods should de-correlate the feature space besides 

seeking the relevant features. A popular example on feature selection methods is the 

Sequential Floating Feature Selection (SFFS) (Pudil, et al., 1994), which has the 

ability not just to add only or remove only features (like Sequential Forward 

Selection (SFS) and Sequential Backward Selection (SBS)), but also to drop some 

other features with high criterion error, by including a back step of removing non-

suitable features during feature addition (Schuller, et al., 2011b).  

SFFS is initialized with an empty set of feature, and then adds features based on a 

specific criterion (objective function), which is equivalent to one step in SFS. 

Subsequently, at each stage the worse feature in terms of the same performance 

criterion, is removed equivalently to one step of SBF. Therefore SFFS dynamically 

update the set of feature until reaching the “optimized” feature set.  Unlike the PCA 

and Linear Discriminant Analysis (LDA) projections, SFFS attempts to optimize its 

objective function rather than de-correlating the features although the back step may 

reduce correlation. In other words, SFFS does not guarantee selecting the optimum 

de-correlated feature subset (Batliner, et al., 2008b). 

For high dimensional data, there are some different proposals for feature selection. 

These methods are based on the data-sparsity and aim to solve the problem in terms 

of l0 minimization, which is equivalent to the cardinality of the set of non-zero 

coefficients. However, due to the fact that l0 minimization is a No-deterministic 

Polynomial-time (NP) hard problem, the l1 minimization is adopted to have an 

approximated solution for the same problem. For instance, in (Dehua, et al., 2013) an 

iterative way of feature selection is embedded inside the SVM classifier by 

exploiting the l1 minimization for both the SVM and feature selection optimization. 

In chapter 5, we shall use an iterative version of sparse-SVM and present the 

obtained results for SER. 

3.1.2 Meta-feature selection 

Meta-features are simply a linear combination of atomic features and therefore are 

obtained by linear transformation of the original data vector space, i.e. determined by 

multiplying the data vectors by projection matrices. Ideal meta-features are expected 

to preserve the samples distances/similarities, i.e. orthogonal matrices. These 

projections might be obtained by supervised training using the training data samples, 
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like the LDA, or unsupervised but depend on the training data like the Principal 

component Analysis (PCA), it can also be unsupervised and independent of any data 

like Random Projection (RP). A number of meta-features are selected from the 

transformed space to obtain a manageable and informative representation of the data.  

3.1.2.1 Principal Component Analysis (PCA) 

In general data variables are mostly correlated to each other, unless the structure of 

the data is not simple or the dimension is small (Jolliffe, 2002). For any application 

with sufficiently large number of d-dimensional sample data, the PCA is a change of 

base linear transformation of R
d
 for which there is small set PC of base vectors, 

called principal components, such that the projection of almost all samples onto base 

vectors not in PC are small and negligible (See Figure 3-2). Consequently, PCA can 

be used a as a dimension reduction tool, by representing the samples in the subspace 

of PC. The PC base vectors are the eigenvectors of the covariance of the data (after 

subtraction of their mean vector). The eigenvalue ߣ corresponding to the eigenvector 

v of the data covariance C is a measurement of the variance in the direction of v, and 

usually only small number of these eigenvalues have significant absolute values 

(Mika, et al., 1999). Eigenvectors corresponding to the relatively small number of 

significant eigenvalues determines the columns of the PCA projection that de-

correlates the data samples.  

ܺ′ = ܺ ܶ                                                                  ሺ͵.ͳሻ 

The PCA algorithm: 

1. Let ࢄ = ,ଵݔ} ,ଶݔ … , ,{�ݔ ௜ݔ ∈ ܴௗ, and N is the number of samples of input 

data, and suppose that m is the d-dimensional mean vector. 

2. Define ࢅ = ,ଵݕ} ,ଶݕ … , ௜ݕ ,where ,{�ݕ = ௜ݔ − �. 
3. Compute the symmetric covariance matrix ∑ of Y,  

4. Compute the eigenvectors of ∑, as columns of the PCA transformation 

matrix T of order k. 

5. Transform the data X into X
’
 using the following formula: 

ܺ′ is the set of transformed data, referred to as the Eigen data, in the principal 

component sub-space.  
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Figure 3-2: The Principal component x’ represent the direction where data has high variance. 

Applying PCA is used to produce a de-noised version of the data by discarding a 

proper number of eigenvectors with lower eigenvalues. PCA serves as general-

purpose tools with various applications like information extraction, dimension 

reduction and data visualization (Moon & Phillip, 2001;Yeung & Ruzzo, 2001). 

3.1.2.2 Linear Discriminant Analysis (LDA) 

Unfortunately, the construction of the PCA projection does not take into account 

class information, and trained with sample data belonging to different classes, 

consequently within class samples could be dispersed while across class samples 

could get closer. The LDA is designed to avoid this situation by solving a 

generalized eigenvalue problem (i.e. of the form (A– λB) v= 0) whose eigenvectors, 

corresponding to the most significant eigenvalues, form the columns of a projection 

matrix that maintaining the class discriminations as much as possible (see Figure 3-

3). For that purpose Fisher (Fisher, 1936) suggested the objective presented in 

equation (3.2), which aims to maximize the between classes and minimize the within 

class distances, represented in the following objective function: 

ܱሺܹሻ = ்ܹܵ஻்ܹܹܵ�ܹ                                                            ሺ͵.ʹሻ 

here,  ܵ஻  and ܵ�  are the between classes and the within classes scatter matrices 

respectively, and W is the vector variable. If N in the number of classes, then:  

ܵ஻ = ∑ሺ�
௜=ଵ ௜ߤ − ௜ߤሻሺߤ −  ሻ்                                                                  ሺ͵.͵ሻߤ
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ܵ௪ = ∑∑ ሺݔ − ௜௫∈஼೔ߤ
�

௜=ଵ ሻሺݔ −  ௜ሻ்                                                   ሺ͵.͵ሻߤ

 

Figure 3-3: Linear Discriminant Directions 

Where, ߤ௜ is the mean of the samples in the i-th class, and ߤ is the mean vector of the 

whole data samples. 

3.1.2.3 Random Projection (RP) 

RP projection matrices ௗܲ×௞  that have orthonormal columns offer a non-adaptive 

alternative that project n observations each in a d-dimensional space ܺ௡×ௗ into k-

dimensional subspace with k<<d using random entries selected by a specific 

distribution, such that most of the sample distances/similarities are preserved, or 

subject to minute errors. The transformed data ܺ௡×௞ோ�  are define by the formula: ܺ௡×௞ோ� = ܺ௡×ௗ × ௗܲ×௞                                                          ሺ͵.ͷሻ 

The computation of random projection matrices is not as expensive as the PC 

projection, for instance the order of complexity for projecting the data ܺ௡×ௗ  on a 

random matrix ௗܲ×௞ is O(nkd). The idea behind using random matrices is the 

Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984), states that under 

certain conditions a high dimensional data can be transformed into a random 

subspace; thereby the distances are preserved, with an error allowance ε.  
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Designing a suitable random matrix P is an essential issue. For example a high 

dimensional Gaussian random matrix is not necessarily orthogonal in its columns, 

which means that projecting into this sub-space might lead to data distortion. 

However, Hecht-Nielsen (Hecht-Nielsen, 1994) has shown that in high dimensional 

space there exist many nearly orthogonal directions beside the original directions. In 

(Bingham & Mannila, 2001) the orthogonality of matrices was measured by the 

difference ||்ܲܲ − �||between the ்ܲܲ and the identity matrix �.  For the Gaussian ݀ × ݇ matrix it has been shown the difference is at most 1/k. Moreover practical 

results show that any binary element content matrices are also suitable a random 

projection matrices (Shuhong, et al., 2010). In other words, these authors remove the 

need for checking orthogonality for such random matrices.   

Random projections are closely related to Compressive Sensing (CS) in the sense 

that latter aims to reconstruct original signals through sensing a compressed version 

of the signal, using Restricted Isometric Random Projections (RIRP).  

3.1.2.4 Compressive sensing (CS) 

The concept of CS is a recently developed concept that relaxes the stipulated 

stringent requirement of Nyquist-Shannon sampling theory on the number of samples 

needed for the perfect recovery of a signal.  According to the CS paradigm, sparse (or 

nearly sparse) signals can be recovered well from far less than double the highest 

frequency, as required in the signal, required by the Nyquist-Shannon Theory. In most 

signal/image applications, signals are compressed and represented by sparse feature 

vectors using transformations (e.g. wavelet & DCT) that remove significant correlations 

and redundancies in the capture signals. Compressive sensing is an attempt to recover 

the sparse (compressed) signal directly by sensing a relatively small number of linear 

measurements (i.e. meta-features) of the signal/image from which the significant (i.e. the 

nonzero) sample/pixel values of the compressed signal/image can be recovered.  CS 

relies on the sparsity and the incoherence principals that must be satisfied by the 

ሺͳ − �ሻ‖ݔ − ଶ‖ݕ < ‖݂ሺݔሻ − ݂ሺݕሻ‖ଶ < ሺͳ + �ሻ‖ݔ −  ଶ                            ሺ͵.͸ሻ‖ݕ

Johnson-Lindenstrauss lemma 

Given 0 < ε < 1, a set X of N points in R
d
, and a number ݇ > ͺ ݈݊ሺܰሻ /�ଶ, there 

is a linear map ƒ: Rd → Rk such that: 
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projection matrix. The sparsity means that the information content of the signal can 

be represented by less than the original signal bandwidth, i.e. the signal depends on a 

number of degree of freedom much less than the signal length.  

While the incoherence characteristic means that the compressed version of the signal 

can be sensed or acquired back (Emmanuel & Wakin, 2008). The main crucial 

observation in compressive sensing is that the design of sensing and sampling 

methods/dictionaries with the ability to capture adequate information of the signal, is 

possible with relatively smaller number of linear meta-feature measurements than the 

dimension of the data vectors. Additionally, these dictionaries (sensing matrices) 

meanwhile capturing information are not trying to comprehend the signal, i.e. non-

adaptive. Such a dictionary should satisfy what is called Restricted Isometric 

Property (RIP) (Candès & Wakin, 2008), closely related to the above Lemma. 

3.1.2.5 Restricted Isometric Property (RIP)  

Let Ω denote the set of all length-N vectors with K non-zero coefficients. An MxN 

measurement matrix Φ has the restricted isometric property (RIP) with parameters K 

and  (0,1), if it satisfies: 

(1-) ||x||
2   ≤ || Φx||2 ≤  (1+)||x||

2
   for all x in  Ω                      (3.7) 

The definition above indicates that any Gram matrix of any RIP matrix has 

eigenvalues in [1-, 1+]. The RIP is sufficient but not necessary to guarantee the 

recovery of the sparse signals, i.e. there might be other non-RIP matrices that can 

reconstruct sparse signals. The random matrix, which has the Gaussian distribution 

N(1,0), or a Bernoulli distribution satisfy the RIP condition. The RIP random 

matrices are called Random Restricted Isometric Projection (RRIP) matrices. 

3.1.2.6 Examples of RP matrices 

The Bernoulli and Gaussian random matrices are known to be RRIP, but these are by 

no means the only cases. Generally any independently and identically distributed 

(i.i.d.) data matrix could be used for this purpose. Below we present some other 

suggested RRIP matrices: 

1-Achlioptas (Achlioptas, 2003), suggests a matrix defined as:  
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�௖ሺ݅, ݆ሻ = {+ͳ  ݐ݅ݓℎ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ͳ/͸Ͳ    ݐ݅ݓℎ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ʹ/͵−ͳ  ݐ݅ݓℎ ݂݋ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ͳ/͸ 

2- Circulant Toeplitz matrix, where every row in this matrix is the right cyclic shift 

of the row above, as below: 

௡ܶ = [ܽ଴ܽ௡… ܽଵܽ଴… ……… ܽ௡ܽ௡−ଵ…ܽଵ … ܽ௡ ܽ଴ ] 
3- Matrices in the form, below can also be used, (e.g.  k=2, and ϵ = Ͳ.ͳሻ: 

ܥ =  
[  
   
 ͳ݇ͳ݇ଵ+ሺ௡−ଵሻ�…  

ͳ݇ଵ+� ͳ݇ଵ+ଶ� … ͳ݇ଵ+ሺ௡−ଵሻ�ͳ݇    ͳ݇ଵ+�      … ͳ݇ଵ+ሺ௡−ଶሻ�   …              …     … …ͳ݇ଵ+� ͳ݇ଵ+ଶ� ͳ݇ଵ+ଷ�  … . ͳ݇             ]  
   
 
 

The columns in these matrices are not required to be orthonormal as in the case of 

the PCA projection matrix, but it must be linearly independent. This property might 

pose the random projection as more suitable technique in some cases, especially 

when the features are not highly correlated.  

A special form of RP matrices, which is frequently used here, is the Binary Random 

matrix (BR) whose entries are {0, 1} with equal probability of r =0.5. The column 

elements of the matrix will be the coefficients of the linear combinations forming the 

projected meta-features. The matrix entries here, will either ignore some of the 

attributes scores or will not change its value, which might be useful to pick a suitable 

random representation of the data in lower dimensions without scaling the individual 

sample dimension score. This version of random binary matrix is not RIP. It shares 

the duality of elements with the RIP version of the Bernoulli matrix that has elements 

of the form  , with a ratio of r=0.5 for each. Many other random binary matrices 

are used as projections matrices (Shuhong, et al., 2010). 

±1 n
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3.2 Classification and validation 

Supervised classification is based on training the classifier using a labelled set of 

samples, and evaluate the model’s performance with another independent set. The 

aim of training the classifier is to generate separators between different classes’ 

clusters. The separator might be a hyper-plane (linear subspace), which is optimized 

based on the position or the distribution of the training samples, or it could be a 

combination of hyper-planes (non-linear). One of the most popular classifier is the k-

NN (Cover & Hart, 1967), which classifies a sample based on the nearest neighbour 

sample(s). Usually the measurement of nearness is the Euclidian distance, and 

majority voting of the label of the k nearest samples will be responsible in making 

the final decision. In this section we introduce some classifiers, which are used in 

this thesis, like the Support Vector Machine (SVM) (Cortes & Vapnik, 1995), Linear 

Discriminant Analysis (LDC), and Artificial Neural Network (ANN). 

Training a given set of data influences the separator hypothesis produced by the 

classifier, which might lead to the problem of over-fitting or a bias decision toward 

the data samples participating in the training stage. To overcome this problem, the 

adopted evaluation process influences the classifier performance. The most well-

known evaluation approach is the cross-validation techniques, which aims to let as 

much as possible data participating in training and evaluating the model, so that the 

achieved accuracy rate is more or less achievable for independent data. In this 

section a description of some classifiers and validation techniques will be displayed.  

3.2.1.1 The Support Vector Machine (SVM) 

The SVM classifier aims to find an optimal hyper-plane, which separate two classes’ 

samples.  Optimality is obtained by maximizing the width of the margin between the 

hyper-plane and data points (support vectors) on the border of both classes’ clusters.   

Given N samples data ܺ = ,ଵݔ} ,ଶݔ … , ௗܴ∋{ �ݔ , and a set  ܻ = ,ଵݕ} ,ଶݕ … , { �ݕ , 

where yi ∈ {−ͳ, ͳ}, is the class label of ݔ௜.  
The targeted separator an affine hyper-plane f in ܴௗ is defined as follow: {ݔ: ݂ሺݔሻ = ߚ்ݔ + ଴ߚ = Ͳ}                                            ሺ͵.ͺሻ 

Here, ߚ 
is a unit vector normal to the hyperplane and ߚ଴ is a constant vector.  
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The induced classification rule by ݂ሺݔሻ is simply defined by: ܩሺݔሻ = ߚ்ݔ]݊݃݅ݏ +  ଴]                                            ሺ͵.ͻሻߚ

Perfect class separation is equivalent to having  ݕ௜݂ሺݔሻ > Ͳ, ∀ ݅. However, the fact 

the training set may not be fully representative of the real-life application then 

avoiding over-fitting and bias, SVM classification decision will be made on the bases 

of a sufficiently large margin M (see Figure 3.4 a), needed to separate data points 

from the hyperplane, i.e. solve the following optimization problem: max�,�బ  ሺ͵.ͳͲሻ                                                                 ܯ 

ߚ்ݔ௜ ሺݕ :݋ݐ ݐ݆ܾܿ݁ݑݏ + ଴ሻߚ ≥ ,ܯ i = ͳ,ʹ, … , N             ሺ͵.ͳͳሻ  
Replacing M with ଵ ‖�‖, yields the equivalent minimization problem: 

min�,�బ‖ߚ‖                                                                 ሺ͵.ͳʹሻ 

ߚ்ݔ௜ ሺݕ ݋ݐ ݐ݆ܾܿ݁ݑݏ + ଴ሻߚ ≥ ͳ, i = ͳ,ʹ, … , N                               ሺ͵.ͳ͵ሻ  
which is a convex, quadratic criterion with linear inequality constraint.   

SVM introduces slack variables � = ሺ�ଵ, �ଶ, … , ��ሻ to solve this problem to allow 

modelling inseparable data samples (see Figure 3.4 b).  The sum of the  �௜’s need to 

be bounded by a constant K, because > ͳ leads to misclassification of the point ݔ௜. 
Thus the final optimization has the form:  

min‖ߚ‖ } ݋ݐ ݐ݆ܾܿ݁ݑݏ  ߚ்ݔ௜ ሺݕ + ଴ሻߚ ≥ ͳ − �௜ ∀݅�௜ > Ͳ, ∑�௜ <  ሺ͵.ͳͷሻ                              {ݐ݊ܽݐݏ݊݋ܿ

For computation purposes the equation (3.15) is rewritten in the following form: 

min�,�బ ͳʹ ଶ‖ߚ‖ + ܥ ∑ �௜�௜=ଵ                                         ሺ͵.ͳ͸ሻ 

௜� ݋ݐ ݐ݆ܾܿ݁ݑݏ > Ͳ, ߚ்ݔ௜ ሺݕ  + ଴ሻߚ ≥ ͳ − �௜    ∀݅                      ሺ͵.ͳ͹ሻ 

This optimization is solved using the Lagrange function: 

�ܮ = ͳʹ‖ߚ‖ଶ + ܥ ∑ �௜�௜=ଵ − ௜ݕ ]௜ߙ  ሺߚ்ݔ + ଴ሻߚ − ሺͳ − �௜ሻ] − ∑ ௜�௜         ሺ͵.ͳͺሻ�௜=ଵߤ  
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,ߚ is minimized by equating its gradients w.r.t �ܮ ,଴ߚ  ܽ݊݀  �௜ to 0. For more details 

on how to solve this optimization problem see (Hastie, et al., 2001, pp. 132-135)  

 

Figure 3-4:  (a) Separated classes                                     (b) overlapped classes 

3.2.2 Linear Discriminant Classifier (LDC) 

The LDC classifier assumes that the population �௜ ݐ ݂݋ℎ݁ ݈ܿܽܥ ݏݏ௜, ݅ ݁ݎℎ݁ݓ =ͳ, ʹ, … ,  :of each class follows a multivariate Gaussian distribution ܭ

݂ሺݔ|�௜ሻ = ͳሺʹ�ሻ௣ ଶ⁄ |Σ|ଵ ଶ⁄  ݁[−ଵଶሺ௫−�೔ሻ′Σ−భሺ௫−�೔ሻ]                      ሺ͵.ʹ͸ሻ 

Where ߤ௜ is the mean vector of the class ܥ௜ and samples are classified to class �௜  with 

largest value of ݌௜݂ሺݔ|�௜ሻ where the monotonicity of the log function implies that 

log (݌௜݂ሺݔ|�௜ሻሻ is equivalent to ݌௜݂ሺݔ|�௜ሻ. Here, ݌௜  is the prior probability of the 

class i. The linear score function is re-expressed as follows: 

௜ܵ = − ͳʹ ߤ′Σ−ଵߤ + ݔΣ−ଵ′ߤ + log ௜݌                                  ሺ͵.ʹ͹ሻ 

௜ܵ = ܽ௜଴ + ∑ ܽ௜௝ݔ௜ + log ௜                                     ሺ͵.ʹͺሻ�௝=ଵ݌  

where: 

                                      ܽ௜଴ = − ͳʹ ߤ′Σ−ଵߤ                                                        ሺ͵.ʹͻሻ 

ܽ௜௝ =  Σ−ଵ                                            ሺ͵.͵Ͳሻ′ߤ ݂݋ ݐ݈݊݁݉݁݁ ℎݐ݆
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The priori probability of population i is estimated based on prior knowledge of the 

class’ distribution. In this study we substitute the population covariance by the 

pooled covariance ܥ௣ of the whole classes' data. Thus the score function representing 

the classification rule is set as follows: 

௜ܵሺݔሻ =  − ͳʹ ܥ′ߤ௣−ଵߤ +  ሺ͵.͵ͳሻ                                                ݔ௣−ଵܥ′ߤ

3.2.3 Artificial Neural Network (ANN) 

ANN aim to find a set of weights corresponding to a diagram of nodes that map the 

input data into their targets through a hidden layer(s) and an output layer. The set of 

weights will be adjusted in an iterative process to minimize the Mean Square Error 

(MSE) defined by: 

ܧ = ͳʹ ሺݐ −  ሻଶ                                                           ሺ͵.͵ʹሻݕ

where t is the actual target value of the sample, and y is the output value of the model.  

 

Figure 3-5: An example of Neural Network topology. 

In chapter four we adopt the use of feed forward back-propagation neural network. 

ANN adopts various kinds of topologies depending on the application (e.g. see 

Figure 3-5). The error defined in (3.32) can be minimized by different optimization 

techniques, like the Gradient decent methods. 

The input sample ܺ = ሺݔଵ, ,ଶݔ … ,  ,ሻ feeds into the N input layer nodes in first step�ݔ

the value of at each node in the hidden layer will be calculated through the output of 
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function fed by linear combination of the input layer nodes value with the initial 

weights corresponding to the hidden layer: ݊݁ݐ௜ = ݂ሺ்ܹܺ + ܾሻ                                               ሺ͵.͵͵ሻ 

The same procedure will be repeated to produce the value at the nodes in the next 

layers until the output nodes has their values.  The output values ݕ and the target 

values ݐ  is used to calculate the error E defined in (3.32). Weight adjusting based on 

gradient decent method for the activation function: 

ݕ = ͳͳ + ݁−௭                                                         ሺ͵.͵Ͷሻ 

can be defined as: 

�ா�௪೔  =Δݓ௜ = ሺݕ − ሺͳݕሻݐ −  ௜                                           ሺ͵.͵ͷሻݔሻݕ

where, Δݓ௜ is the amount of change when updating ݓ௜ in each iteration. To decrease 

the chance of over-fitting, a learning parameter ߙ is multiplied by the Δݓ௜ . Thus ߙ Δݓ௜  characterize the weight-adjusting rule in back-propagation ANNs. The 

adjusted weights are the parameters of the trained classification model, which are 

used in evaluating the model using the test samples. 

3.2.4 Ensembles 

Ensembles are machine learning algorithms that uses more than one classification 

models; the overall decision is obtained from a weighted\un-weighted majority 

voting of the included classification decisions (Dietterich, 2000). Ensemble may 

outperform individual classifiers, if the decision of the classifiers in the ensemble 

disagreed on some individual samples and the classifier errors are not correlated 

(Dietterich, 1997). The classifier models can have different decisions on the same 

sample, if they are trained by different versions of data (Bagging) or classified by 

different classifiers.  

Researchers are adopting different ways for producing various versions of data from 

the same source. One such approach is to randomly choose more than one subset of 

instances (with replacement) from the original set of features. In other words suppose 
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that we have the data matrix ܺ௡×ௗ of n samples each in R
d
, then the k subsets of data 

can be defined as: ܺ௠×ௗ௜ , where m < n, and i = ͳ,ʹ, … , k. 
Alternatively choose more than one subsets from the feature set, to train independent 

models to have their own decision. Hence, k subsets of data is defined as follows: ܺ௡×௣௜ , where p < d, and i = ͳ,ʹ, … , k.   
In this thesis we adopt also choosing a number of meta-feature subsets produced by 

PCA to be classified by different models collected in an ensemble scheme. 

Final decisions are made by majority voting, i.e. if the classes’ labels denoted as ci, 

and the ensemble consists of ܭ models then the number of classifiers that predict the 

instance x as the class ci   is given as: ݒ௜ = ሻݔ௝ሺܯ}| = ܿ௜|݆ = ͳ,ʹ, … ,  ݏݎ݂݁݅݅ݏݏ݈ܽܿ ݂݋ ݎܾ݁݉ݑ݊ ℎ݁ݐ ݏ݅ ܭ ݁ݎℎ݁ݓ,|{ܭ

Predicting the class for majority voting is given by: ܦሺݔሻ = argmax௖೔ ݅|௜ݒ} = ͳ, ʹ, … ,  .ݏ݁ݏݏ݈ܽܿ ݂݋ ݎܾ݁݉ݑ݊ ℎ݁ݐ ݏ݅ ݇ ݁ݎℎ݁ݓ,{݇
3.2.5 Validation Protocols 

Validation processes is important to deal with two major problems in pattern 

recognition. The first factor in such protocols is the model selection for data 

classification, in addition to related parameter estimation (e.g. k in k-NN classifier). 

The second problem is the performance estimation, which is measured by the true 

error rate of the data samples involved in the model testing. Performance 

measurements aim to estimate the true error rate of the whole “population”.  

Data splitting to training, validation, and testing sets is adapted to exploit the 

knowledge provided by the whole data in model training, validation, and estimating 

of the model performance. It is expected that training of a model result in an over-

fitting problem, due to bias trend happen in optimizing the classifier hypothesis 

toward the training data. Consequently the training samples might be classified very 

well, while for an independent part of data the result might not sound comparable to 
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the training samples. Cross validation via holdout, and leave one out approaches is 

used to overcome this problem. 

The idea of holdout is to split the data in to k-folds; one fold will be used to evaluate 

the model and the remaining parts of the data to train the model. The popular number 

of folds used is k=10. If k=N where N is the number of the observations, the cross-

validation technique called Leave One Out (LOO), which means that one sample will 

be leaved for testing the model while the remaining samples will be involved in 

training the model. Choosing the parameter k depends on the size of the data and the 

application under investigation. However small k results in less time consuming in 

model training, small variance of experiment performances, but the bias of the 

estimator will be large. For speaker independent applications, the data samples of an 

individual single speaker used to evaluate the model need is not involved in model 

training. Therefore, in this work Leave One Speaker Out (LOSO) approach is 

adopted for two of the database (Emo- Berlin, and the Kurdish), while in the case of 

Aibo FAU database we followed what suggested in the interspeech09 challenge by 

using the “Ohm” part of the data for model training and the “Mont” part to test the 

model.  

3.3 Related works on feature Pre-processing in SER 

In the literature feature selection is a frequently adopted process in emotion 

recognition, while only few studies are found to deal with meta-feature selection. 

This may reflect the ease with which analysis and interpretation of each individual 

feature can be conducted and the outcome can be related directly to the parameters of 

speech in its original space (Batliner , et al., 2011).  For example, Vogt et al. (Vogt & 

Andre, 2005) adopted a Correlation based Feature Selection (CFS), using the best 

first search approach to select 90-160 from 1280 features. The tool used for feature 

selection was the publically available data mining software Weka. The study 

classifies the emotions by Naïve Bayes classifier, benefitting from the consistency of 

a de-correlated data produced by CFS and Naïve Bayes classifier, the simplicity in 

computation, and the satisfactory performance when the data has unbalanced samples 

per classes. When they applied on acted and non-acted datasets, they found that the 

selected features for acted dataset are mostly not overlapped with those selected from 
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non-acted dataset. This highlights the difficulty of determining a specific limited set 

of feature for SER.  

Pérez-Espinosa (Pérez, et al., 2012) proposed another filter-based forward feature 

selection approach that uses filter based correlation share and portion measurements 

to update the set of features. They concluded that the MFCC, LPC and cochleagrams 

feature groups are very important to estimate the level (High – Low) of the three 

Emotion Primitives (Valence, Activation, and Dominance). They built three models 

using SVM to classify emotional instances into the high\ low labels for each 

primitive. The primitive levels are used to train another SVM to assign the instance 

primitives levels to their basic emotions.  

The above two filter-based approaches to feature selection may not be suitable for all 

classifiers. In the literature there are researchers who adopted the alternative 

“Wrapper” feature selection techniques for SER. Batliner et al. (Batliner , et al., 

2011), adopted the Sequential Floating Feature Selection (SFFS) approach to select 

from a combination of three sets of features consisting of acoustics only, linguistics 

only, and both acoustic and linguistic based features. The number of selected features 

is fixed to 150 features (50 per for each of the three splits), using a cut-off criterion 

related to Receiver Operating Characteristic (ROC) curves. SVM classifier is used in 

error measuring as criterion for the SFFS. This approach, denoted by SVM-SFFS, 

was first used by Schuller et al. (Schuller, et al., 2005a), to select 75 features from 

276 speech features and tested the performance of the resulting scheme on the Emo-

DB database using 10-fold speaker dependent cross validation. They compared the 

accuracy achieved by 9 classifiers found that SVM outperformed all of other 

schemes with an accuracy of 87.5%.   

Lee et al. (Lee , et al., 2011) proposed a binary-based feature selection using 

Bayesian Logistic Regression to benefit from diversity of relevant features for each 

pair of classes. The process resulted in 40-60 features per fold and pair of classes, 

and reported an accuracy of 41.57% Un-weighted Average Recall (UAR) for FAU-

Aibo database based on the interspeech2009 suggested protocol for data splitting. 

Note that this dataset with the same protocol is adopted in all our experiments 

conducted in this thesis.  



52 

 

A comparison between features and meta-features is rarely adopted especially in 

terms of classification performance and complexity. This could be due to the 

capability of analysing the untransformed feature space using feature selection 

methods, while meta-features somehow fuses multiple features in a way that the 

contribution of each single participating feature cannot be determined easily. 

However, recently, there have been some promising efforts in finding various 

approaches to interpret meta-features. For instance Simmons et al. (Simmons, et al., 

2015) propose a hybrid approach that uses a mutual information-based statistics to 

have a biologically meaningful interpretation for the PCA output. Meta–features 

compensate for the disadvantages of feature selection methods may end up with 

features that are correlated. For this reason in (Batliner, et al., 2008b) PCA was used 

to de-correlate the feature space and a cut-off based on the eigenvalues is used to 

select a constant number of features.  

Dimension reduction of SER related feature space by transforming into a new space 

(meta-feature space) is adopted in (Zhang & Zhao , 2013) using six linear and non-

linear methods for dimension reduction namely PCA, LDA, locally linear embedding 

(LLE), isometric mapping (Isomap), supervised locally linear embedding (SLLE), 

and a proposed modification of SLLE namely Modified SLLE (MSLLE). The study 

extracted 25 meta-features and applied to two databases, one of which used in this 

study (Emo-Berlin database). The best highest obtained accuracy rate was 78.56%, 

using MSLLE and SVM classifier. We are not aware of any study, which has 

adopted transforming more than 1k features, to extract meta-features. In chapter 5, 

we shall investigate the use of meta-features, which are selected from thousands of 

features and compared to the feature selection methods. 

3.4 Related Works to emotion classification 

Classification techniques used for emotion recognition, in the early stages of SER 

studies, include the most popular ones like k-NN and LDC (Petrushin, 1999;Long 

Pao , et al., 2005). These techniques are reported to be successful for non-prompted 

data (Lee & Narayanan, 2005). Later on, and as the number of the investigated 

features increased rapidly, these classifiers were found to be incapable of achieving 

similar level of success. For instance k-NN is not affective in high dimensional 

feature space, because the distance-based distinction after 20 dimensions decreases 
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until there is no difference between the distances in very high dimension space 

(Beyer , et al., 1999).  LDC also faces serious challenges to model multivariate 

Gaussian distribution in a high dimensional space, due to the difficulty in estimating 

the data covariance, especially when the number of dimension is significantly larger 

than the number of observations (Bai, 2011). However the LDC is more suitable for 

dealing with un-correlated features as long as the density of samples is sufficiently 

large. Transforming high dimensional data into a PC space facilitates the use of LDC. 

In chapter six of this thesis an investigation of this topic will be shown.   

The state of the art studies have frequently used the SVM classifier, and reported it 

as a successful technique for high dimensional space. The SVM is an extension of 

the LDC with new conditions based on maximizing of margins of the separator 

hyper-plane. The SVM has helped achieving a good accuracy in the high 

dimensional feature space in many SER studies (Batliner , et al., 2011;Hassan & 

Damper, 2012;Lee , et al., 2011). However, SVM being a binary classifier there are 

many challenges for its extension into a multiclass classification tool that need to be 

dealt with appropriately.  Some researchers adopted a pairwise (1 vs. 1) approach 

(Schuller, et al., 2009b;Batliner , et al., 2011) to build a multi-class SVM classifier. 

In (Lee , et al., 2011) a hierarchical binary tree is adopted, that is based on a pre-

knowledge of similarity between classes at each level. For example when applied to 

the 5-class FAU-Aibo database, the pair of classes in the binary tree was 

(Angry/Emphatic vs. Positive, Angry vs. Emphatic, Angry vs. Neutral/Rest, 

Emphatic vs. Neutral/Rest, Positive vs. Neutral/Rest, Neutral vs. Rest). Hassan et al. 

(Hassan & Damper, 2012) proposed an automatic approach that uses Non-Metric 

Multi-Dimensional Scaling (NMDS) of the confusion matrices to organize the 

hierarchical binary tree, and improvement of the accuracy rate over various 

multiclass SVM techniques is reported for speaker independent SER. Their binary 

tree produced for the FAU- Aibo dataset is shown in (Figure 3-6).  

Ensemble classification was also used for SER, for instance Schuller et al. (Schuller 

et al. 2005b) used Bagging and boosting ensembles showing comparable accuracy to 

what are achieved by classifiers like k-NN and SVM. 
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Figure 3-6: 3DEC scheme for five-class Aibo-Ohm database. Key: N-neutral; A-Angry; E-

emphatic; P-positive; R-rest. 

3.5 Summary 

In this chapter, we attempted to cover theoretical background on the techniques of 

Computational SER in a sufficiently informative manner. This covered data pre-

processing which include feature and meta-feature selection; and classification 

techniques, (SVM, ANN, LDC and Ensembles). Integrated into these discussions we 

had a literature review on both topics in SER area and related works. In the next 

chapter we initiate our investigations on SER feature/meta-feature selection and 

introduce new suggested set of features extracted from the LP-residual signal. 
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4. Chapter Four  

Excitation source features for SER 

Although emotions seem to be influenced by a wide range of speech signal 

parameters\features see (section 2.4); investigations of emotion related features are 

ongoing research area (Schuller, et al., 2009b; Pérez, et al., 2012). Features extracted 

from the LP-residual signal (also denoted by excitation source) are one of the feature 

sites, which characterize the glottal influence on speech signal and consequently 

reflect the embedded voice quality characteristics. Excitation source based features 

are not widely investigated in emotion recognition research. In the next two sections 

we shall provide motivation for the inclusion of excitation features and give detail 

description of different type of such features.  

In the work presented in this chapter, we fuse the features extracted from the LP-

residual with large set of feature from the original signal at the classification level 

using SVM and feed forward ANN. SVM is reported to model complex and real-

world problems, and can control the complexity associated with high dimensional 

feature space (Anill & Robet, 2000). Additionally ANN is one of the most popular 

classification tools, which models the human process thought as an applicable 

algorithm (Heaton, 2008). 

Our proposed model is tested on a newly created emotional database in Kurdish 

language, the Berlin emotional database (Burkhardt, et al., 2005), and the 

spontaneous FAU-Aibo database (Batliner, et al., 2008c; Steidl, 2009). A description 

of the datasets used in this study is presented in (Subsection 4.5.1.1). 

This chapter is organized as follows: section (4.1) presents an introduction to the 

chapter, followed by a description of the set of features extracted from the LP-

residual signal in section (4.2). In section (4.3) a description of a “brute force” set of 

features extracted from the original speech signal is presented, while section (4.4) 

explains the SER model methodology. Finally, experimental work and conclusion 

comes in sections (4.5) and (4.6). 
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4.1 Introduction  

Speech signal is originally produced at the vocal cord, which is then subjected to 

filtration by the vocal tract and the lip, before being detected. The influence of the 

vocal tract on the original speech signal is modelled by a linear prediction analysis 

(LP-Analysis).  Excitation source signal, known as the LP-residual, refers to the 

natural error that occur between the original signal and the predicted one. The 

influence of excitation source based features is mostly ignored in emotion 

recognition research. This could be due to: 1) the popularity of spectral features; 2) 

viewing the LP-residual as an error signal; or 3) Lack of knowledge about the higher 

order relations contained in the LP-residual (Koolagudi & Rao, 2012b). Practical 

experiments have shown the relevance of LP-residual signal to emotions. For 

instance, Chauhan et al. (Chauhan, et al., 2010) conducted a perceptual experiment 

using three sets of emotional utterances. The experiment used a total of 1200 

utterances (15 sentences × 8 emotions × 1 artists × 10 sessions). The first set contains 

the original signals that carry information on both vocal tract and excitation source of 

the signal. The audio files of the LP-residual of the first set were computed to 

represent the second set. Finally, Exciting the LP coefficient of the signals in the first 

set using white random noise generates the last set. The last set contains the vocal 

tract effects on the signal. The Mean Opinion Score (MOS) of Average Emotion 

Recognition Rate (AERR) for original speech utterances by 20 listeners who were 

asked to recognize the emotions, was 60%, 45%, and 32% using the first, second, 

and third sets respectively. The human ability to recognize emotion from the source 

signal (45%) is a strong motivation to investigate the LP-residual signal.  

Another motivation to use excitation source features is that the LP-residual contains 

information that cannot be predicted by the linear LP-Analysis due to the presence of 

non-linear relations between the speech signal samples. The non-linear information 

contained in the LP-residual captures the characteristic of the glottal closure instance 

region. The glottal vibration and variation (including the closure instances), captured 

from the LP-residual signal, is investigated in this study for their capacity to 

encapsulate discriminative information on different emotions. 

In the next section, we shall formulate the LP-residual signal and describe different 

types of features that can be extracted from this signal. These features have been 
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used for speaker recognition but not for SER (Soma, et al., 2012; Yessad & 

Amrouche , 2012). We propose to extract such features to complement the large set 

of features that are extracted from the original speech signal, and shall demonstrate 

the benefit from this addition to improve SER accuracy rates. 

4.2 LP-residual signal proposed features 

The LP-residual signal r of the speech signal is the difference between the original 

signal s  and the predicted signal � obtained by LP-Analysis, i.e.: 

 

Where ak is the linear predictive coefficient that is determined by minimizing the 

error in the least square sense as described in (2.3.4), and p is the number of previous 

samples used in predicting the current one i.e. the number of linear prediction 

coefficients (p is set as 12 in this chapter). Figure 4-1 shows a speech signal, its LP-

residual signal in addition to the spectral of the LP-residual signal.  

As explained above, the LP-residual signal encapsulates information relevant to 

emotions in speech. Traditional SER schemes pay little attention to the LP-residual 

signal and instead focus on using different types of spectral and cepstral features (e.g. 

MFCC and LPCC) extracted from the original speech signal.  Motivated by the 

discussion in the last section, we have investigated the addition of cepstral and 

wavelet octave features extracted from the LP-residual signal, to other traditionally 

used features extracted from the original speech signal for SER. Our LP-residual 

features are: 

1. MFCC of the LP-residual signal: For our investigations, 12 MFCCs is 

extracted from the LP-residual signal for each 20ms frame that is shifted with 

10 ms (the first 12 coefficients is known to carry the most relevant 

information to speech). MFCC of the LP-residual signal is already used for 

speaker recognition (Soma, et al., 2012; Yessad & Amrouche , 2012) and 

 
rሺnሻ = sሺnሻ − �ሺnሻ                                                  ሺͶ.ͳሻ    

 

 �ሺnሻ = − ∑ aksሺn − kሻ                                         ሺͶ.ʹሻ  ୮
k=ଵ  
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shows capability in detecting speaker related information. We shall propose it 

for SER to use it as another cepstrum of the signal r. 

 

Figure 4-1: The spectrum of LP-residual signal of an emotional sentence. 

2. LPCC of the LP-residual signal: The second set of features includes 12 

LPCC of the residual signal r are computed by applying LP-Analysis on the 

LP-residual signal to compute LP coefficients ὰk for each windowed frame 

(windows of 20ms with 10ms shift) followed by transforming them (ὰkሻ into 

cepstral coefficients (see Figure 4.2). The ὰk  is predicted using the same 

method of predicting ak, such that: 

ሺnሻݎ̂ = −∑ ὰkrሺn − kሻ                                                     ሺͶ.͵ሻ ୮
k=ଵ  

where ̂ݎ is the LP-residual of the LP-residual signal 
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Figure 4-2: LPCC of LP-residual function 

3. Wavelet octave coefficients of the LP-residual signal: this feature refers to 

the Wavelet Octave Coefficients of the Residual (WOCOR) and has also been 

used for speaker recognition, (Zheng, et al., 2007). The motivation for using 

WOCOR, stems from the fact that, unlike Fourier transforms, wavelets are 

capable of characterizing the time-frequency properties in pitch pulses. To 

compute the WOCOR set of features, we first determine the voiced parts and 

estimate the pitch periods in the speech signal. Pitch period locations are used 

to apply Hamming windows with 2 pitch pulse periods. Wavelet transform is 

then applied to the windowed residual signal ݁ℎ ሺnሻ as shown below: 

    wሺa, �ሻ = ͳ√a ∑e୦ ሺnሻ ψ∗ሺn − �a n ሻ                                        ሺͶ.Ͷ ሻ    

Where a={2
k
 k=1, 2, …, K} , b=1,2,…,N, and N is the windowed signal length. 

In this study we compute the WOCOR features as:  

WOCOR={||w(2
k,b)||, b=1,2,…,N and k=1,2,…,6}, 

Where ||.|| is the Euclidian norm. 

The above three types of features capture the cepstrum and wavelet band analysis 

properties of non-linear phenomena included in the LP-residual signal, which we use 

to demonstrate that the residual signal encapsulates important emotion related 
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information. In total we obtain 54 LP-residual features made up of mean and 

standard deviation of 12 LPCC and 12 MFCC coefficients, as well as 6 WOCOR. 

Here after we shall denote this set of feature as Excitation Source features (ES).  

 

Figure 4-3: (a) the density distribution of 2
nd MFCC’s mean of the LP- residual for Neutral and 

disgust. (b) The density distribution of 2
nd MFCC’s mean of the original signal for Neutral and 

Disgust emotional samples from Emo-Berlin database. 

It has been known that LPCC and MFCC of the original speech signal are among the 

most emotion discriminating features in speech (Pérez, et al., 2012). Here, we shall 

argue that the above ES features also have emotion discriminating power. To 

demonstrate this we shall use the whole neutral and disgust samples from the Emo-

Berlin database. The density distribution of some of the proposed coefficients (here 

the second MFCC of the LP-residual) discriminate the neutral and disgust emotion 

better than the MFCC of the original speech signal (See Figure 4-3). This 

observation is another motivation in proposing the ES feature set.  

Some of the existing SER models use a “brute force” set of Low Level Descriptor 

(LLD), to be described in next section. In the rest of this chapter we shall investigate 

the complementarity of our 54 ES features extracted from the LP-residual signal to 

“brute force” set of LLD feature. 

4.3 Low Level Descriptors LLDs 

The LLD baseline set consists of 6552 LLDs for emotion recognition are extracted 

using OpenEAR toolkit (Eyben, et al., 2009). These features include five groups of 
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features, as listed in (Table 4-1), together with several statistical parameters as listed 

in (Table 4-2). For each descriptor group and each feature with their deltas, the 

toolkit computes about 39 statistical functional. Finally, for each sample dataset we 

extracted 6552 LLDs (OP features later on), which includes 52 parameters, their 

delta and the delta of their delta. 

Table 4-1: (33) Low Level Descriptor (LLD) used in Acoustic analysis with Open Ear 

Feature Group   

Raw Signal  

Signal Energy 

Pitch  

 

Zero-crossing-rate  

Logarithmic  fundamental frequency F0 in Hz via cep- strum and autocorrelation (ACF). Exponentially 

smoothed F0 envelope. 

Voice Quality  Probability of voicing (ACF(T0)/ACF(0))
AC୊ሺ୘଴ሻAC୊ሺ଴ሻ ሻ 

Spectral Energy in bands 0-250Hz, 0-650Hz, 250- 650Hz, 1-4kHz  25%, 50 %, 75%, 90% roll-off point, 

centroid, flux, and rel. pos. of spectrum max. and min. 

Mel-spectrum 

Cepstral  

Band 1-26 

MFCC 0-12 

 

Table 4-2: (39) functionals and regressions coefficient applied to the LLD contour. 

Functionals, etc. # Functionals, etc. # 

Respective rel. position of max./min. value 2 Quartiles and inter-quartile ranges 6 

Range (max.-min.) 1 95 % and 98 % percentile 2 

Max. and min. value - arithmetic mean 2 Std. deviation, variance, kurtosis, skewness 4 

Arithmetic mean, quadratic mean 2 Centroid 1 

Number of non-zero values 1 Zero-crossing rate 1 

Geometric, and quadratic mean of non-zero values 2 # of peaks, mean dist. btwn. peaks, arth. mean of 

peaks, arth. mean of peaks - overall arth. Mean 

4 

Mean of absolute values, mean of non-zero abs. values 2   

Quadratic regression coefficients and corresp. 

approximation error 

5 Linear regression coefficients and corresp. 

approximation error 

4 

4.4 The Speech Emotion Recognition (SER) model 

Having described the two sets of emotion-related features (ES and OP), we shall use 

these two sets to model the SER. In this section we describe the experiments 

conducted to determine the performance of the suggested ES features for emotion 

recognition. We aim to investigate the complementary characteristic of the ES 

features to the 6552 LLD set (OP) used in (Hassan & Damper, 2012; Schuller, et al., 

2009b). 

4.4.1 Multi-class SVM and ANN Models 

The SER problem under investigation in this thesis is a multi-class problem. Here we 

use SVM and ANN on both of the ES and OP feature sets using One Versus One 
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(OVO) or pairwise model approaches. Basically the SVM is a binary classification 

but it has been adapted for multi-class problems, while the ANN is a multi-class 

classifier. Generally, there are different models for binary classifications like (One 

Versus All (OVA), OVO, Directed Acyclic Graph (DAG), and Unbalanced Decision 

Tree (UDT), (Hassan & Damper, 2010). Each of these different schemes can be 

depicted as a directed graph whose nodes are labelled by a splitting of the class sets. 

See Figure 4.4, for some examples of diagraphs for each of these models.  

The OVO is the most common approach of building a multi-class SVM. Unlike 

DAG and UTD, the OVO approach is not influenced by the positions of classes on 

the classification tree, because all the possibilities of pairs of classes is taken into 

account. In fact it is a kind of ensemble algorithm in the sense that for each class it 

repeats (c-1) experiments (where c is the number of classes) and then the majority 

rule decision can compensate for misclassifying it by few models. However OVO 

model approach has the disadvantage of complexity growing when the number of 

class c is large, because the number of repeated models is � ሺ� − ͳሻ ʹ⁄  models, i.e. it 

is O(c
2
)-complexity. However, in our case the number of classes being small (<8) 

which means that the number of repeated OVO models is not prohibiting. 

Traditionally ANN designs a single system that has c nodes in the output layer, each 

node representing an output class.  The major disadvantage of this single system of 

ANN, appear with higher dimensional feature and\or large number of classes 

involved. Higher dimensional feature with a multiple output node requires more 

complex NN architecture, and consequently it requires high training time (Ou & 

Murphey, 2007). However, similarly to the SVM, there are other popular ANN 

approaches such as the OVO, OVA, and P models Versus Q models (PVQ), where P 

is a subset of the whole classes of the problem and Q is the rest classes. Each of 

OVO, OVA, and PVQ are a collection of binary ANN models. Again the OVO 

approach produces c-1 decisions for each individual class, and in total ݊ = � ሺ� − ͳሻ ʹ⁄  decisions. The OVA, on the other hand, produces c decisions in 

total.  The PVQ is a multi-level binary tree that at the first level, it builds a model for 

P classes against the remaining Q = c-P classes.  At each branch of every subsequent 

level, it repeats the process with a smaller subset of the parent set of classes, until 

each branch is single class.  
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Figure 4-4: models for Multi-class SVM (Hassan & Damper, 2012). 

In this chapter we adopt the OVO model for ANN. The OVO model is capable to 

reduce the complexity of each ANN system, since the number of classes is not large. 

Moreover, this would provide consistent way of fusing the ANN with the SVM. 

4.4.2 A Fusion model 

There are different ways of fusing the two OVO models of SVM and the ANN 

classifiers at the decision level. We are interested in determining how 

complementary ES features are to the OP features. We therefore conducted 

experiments by fusing OP and ES features using SVM and ANN classifiers, results 

in four possibilities of fusion. Given c classes, we obtain 2n decisions made by n 

SVMs in addition to n ANNs, 2n SVMs, or 2n ANNs for each experiment, 

where  ݊ = ܿ ሺܿ − ͳሻ ʹ⁄ . The decisions made using OP and ES features for both 

classifiers are weighted by ݓଵ and ݓଶ that are validated using LOSO cross validation 

on the training set (i.e. 9-folds, 11 folds and 26 folds for Emo-Berlin dataset, Kurdish 

and Aibo datasets) and ݓଵ+ ݓଶ=1. In order to reduce the computation costs for the 

cross validation, the weights has been limited to {0.1, 0.2, …, 0.9}. Figure 4-5, 

shows the structure of an example of the adopted scheme. 

To check the significance of the result throughout this thesis, we adopt one tailed 

binomial test, assuming that the results can be modelled as the discrete probability 

distribution of the number of the correct recognition trail out of the number of test 

samples (Hassan & Damper, 2013).  
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Figure 4-5: Fusing the SVM and ANN, for 3 classes, (Sc) is a score produced from the ratio of 

the number of correct decision to (c-1), where c is the number of classes (3 in this example). 

w_OPSVM and  w_OPANN are the LOSO based validated weights for OP feature when applied 

to SVM and ANN classifier respectively.  While, w_ESSVM and w_ESSVM are the LOSO 

based validated weights for ES feature when applied to SVM and ANN classifier respectively. 

In these experiments, the SVM with linear kernel function and Sequential Minimal 

Optimization (SMO) method was used for classification. Although, non-linear kernel 

like Radial Basis Function (RBF) is more popular, it has been reported to have no 

significant advantage over the linear kernel when the number of features is higher 

than the number of instances (Hsu, et al., 2010). For the feed-forward ANN, the input 

layer contains 6552 neurons for the OP feature set, and 54 neurons for ES set. A 

single hidden Layer with 70 neurons for OP and 40 for ES are used. The number of 

neurons in the single hidden layer is usually chosen between the number of neurons 

of the input layer and that of output layer (Heaton, 2008). The output layer contains 

one neuron with hard-limit function i.e. the output of each ANN will be either 0 or 1. 

Furthermore the method used for weight updating is scaled conjugate gradient. 

4.5 Experimental Work 

To evaluate the performance of the fused SER model we adopted a speaker 

independent approach. We followed the cross validation protocol of LOSO for both 

Kurdish and Emo-Berlin database. For the Aibo database, we followed the advice of 

the interspeech09 challenge (see (Schuller & Batliner, 2009a)) and use the ‘Ohm’ 

part of the database for training and the ‘Mont’ part for testing the SER model. 

Before we present the results of our experiments, we next describe the datasets used 

in this study.  

4.5.1 The experimental Datasets and related challenges 

Emotional datasets vary in many aspects, like the spontaneity of the data, the number 

and age of participants, and the recording environment. In this section we first will 
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describe three emotional databases used in this thesis, and then we shall discuss the 

problem of the balance between the number samples for different classes. 

4.5.1.1 Datasets 

In this subsection we describe the three emotional speech datasets used in this thesis, 

which are: 

1. The Kurdish emotional speech database: This is a new database acquired 

using Kurdish language speakers. It includes 7 emotions (Anger, Happiness, 

Sad, Fear, Boredom, Surprise, and Neutral) acted by 6 male and 6 female 

actors. Each actor utters 10 Kurdish sentences on 4 different sessions for each 

emotion. Consequently, the dataset contains a total of 3360 recordings (i.e., 

12 ×7 ×10 ×4 recordings). The speakers have been told to act these sentences 

and express them in their own style, by remembering/imagining a situation 

with the relevant emotion. The aim for building this dataset is to produce 

emotional speech samples that are expressed based on the actors ability and 

style of expressing emotion, and judged by native listener, in addition to 

extract some linguistic features. However linguistic features is not used in 

this thesis. The speakers have different acting experience (2 to 8 Years) and 

ages (19 to 36 years). The recording process has been done in a quiet room 

without restriction in the recording path. We selected 5 long and 5 short 

sentences to be spoken. The data files are recorded in wav format with 32 

KHz sample rate. To determine the perceptibility of the emotions; 10 listeners 

participated in a subjective test. Average of correct labeling for the uttered 

sentences was 41%.  

2. Berlin emotional speech database: The Berlin emotional speech database 

(also called Emo-Berlin) is an emotional speech database in German 

language. Ten professional native German actors (5 Male and 5 Female) were 

involved in recording 10 German sentences in 7 emotions. The considered 

emotions were Neutral, Anger, Happiness, Sad, Fear, Boredom, and Disgust. 

Some of the utterances were recorded in more than one session. Total of 535 

utterances remained in the database after eliminating some unconvincing 

recordings based on a subjective test (Burkhardt, et al., 2005).  The utterances 

are evaluated by 20 subjects as appropriate emotional sentences with 
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minimum score of 60%, assignable with minimum of 80%, and correct 

labeling accuracy rate of 84.3%.  

3. FAU-Aibo (spontaneous) database: The FAU-Aibo database (Steidl, 2009; 

Batliner, et al., 2008a) was designed by recording children's sound, which is 

colored by different emotion, when they interact with Sony’s pet robot Aibo. 

The children were led to believe that the robot is responding to their 

commands, whereas it was actually controlled by a human operator in a 

Wizard-Of-Oz manner. Sometimes the Aibo disobeyed the child’s command, 

to lead them to different emotional reaction. The data were collected at two 

different schools identified by ‘Ohm’ and ‘Mont’; the number of speakers 

was 26 and 25 respectively. Five experts labeled each word in the database 

independently, into 10 categories: angry, touchy, joyful, surprised, bored, 

helpless, motherese, reprimanding, emphatic, and ‘other’ for the remaining 

cases. The categories were mapped into four classes: anger, emphatic, 

neutral, and positive in addition to the fifth class for rest. The labels of the 

words were mapped to so-called ‘turn’ (i.e. utterances) and chunks using 

various heuristic method described by Steidl (Steidl, 2009). However, the 

dataset designer claims, "Their ‘turns’ are similar to the units used in other 

studies. As they can consist of up to 53 words, they are not really optimal – 

we claim that our chunks are. By using different thresholds etc., the chunk 

size can be adapted to specific needs; the same way, different chunk sizes can 

be established for finding out how classifiers behave if faced with shorter or 

longer units. A pivotal characteristic of this solution is that our chunks are 

syntactically – and by that, semantically – well defined. This is a necessary 

prerequisite for higher linguistic (deep or shallow) processing in any end-to-

end automatic dialogue system" (Batliner, et al., 2008a). The number of 

chunks available in the dataset result in a total of 18216 speech samples. The 

Aibo corpus formed the focus of the Interspeech 2009 emotion challenge 

(Schuller, et al., 2011a). 

4.5.1.2 Unbalanced number of samples to classes 

The number of utterances per class in the FAU-Aibo databases is significantly 

unbalanced. For example, the number of Neutral samples in the Mont part of the 

dataset is 5377 samples, while there are only 215 samples that belong to the Positive 
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emotional class. The unbalanced training influences most of the classification 

techniques significantly. Both SVM and ANN might bias to the classes with high 

number of samples.  To overcome this issue, we follow the Synthetic Minority Over-

sampling Technique (SMOTE). SMOTE is applied to the training set to increase the 

number of samples in the minority class (Chawla, et al., 2012). SMOTE generate 

samples on the line between any sample in the minority class and their k neighbours. 

Based on the desired amount of samples, n neighbours are chosen randomly, where 

n<k.   

We also adopt UAR to measure the recognition performance accuracy of the FAU-

Aibo dataset. UAR is defined as the accuracy per class averaged by the total number 

of classes. Note that the Weighted Average Recall (WAR) measures the total number 

of the correctly classified samples divided by the total number of the test set samples. 

UAR measurement is more realistic than the WAR for unbalanced data (Schuller, et 

al., 2011a). For instance in the Mont part of the FAU-Aibo database, 5377 out of 

8257 samples belong to Neutral emotion (Here 5 emotional classes are involved). 

This means that if all the samples are classified as Neutral then the WAR will be 

equal to 65.1%, while in fact all the samples belong to the other 4 classes are 

classified incorrectly.  

4.5.1.3 Speaker Normalization (SN) 

In this thesis we applied Speaker Normalization on each individual speaker samples 

inspired by the work of Valsenko et al. (Vlasenko, et al., 2007). SN is realized as 

subtracting the mean of all samples that belong to one speaker, devided by the 

standard deviation of those samples. The aim of SN is to neutrlize the samples from 

speaker influence, thereby the emotion space is more adapted. While the emotion 

lables is not necessary in SN yet; its use will be applicable for speaker independent 

applications. 

4.5.2 Results and discussion  

To test the performance of the SER model designed in this chapter, we conducted 

four experiments. In the first one we fuse the OP feature classified by SVM and ES 

features classified by ANN. The second experiment fuses ES features classified by 

SVM with OP feature classified by ANN. The third experiment fuses both of OP and 

ES using SVM. And finally OP and ES features are fused using ANN. Recognition 
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performance of each of ES and OP feature classified by SVM and ANN separately 

are also computed in this experiments. The results in Table 4-3 show the recognition 

performance of the suggested model applied to the three used datasets. A quick 

analysis of the results (in Table 4-3) reveals interesting patterns. The recognition 

performance using ES feature classified by SVM is 57%, 37.2%, and 36.7% for the 

Emo-Berlin, Kurdish and Aibo databases respectively. While in the case of all the 

three datasets, the same ES feature classified by ANN achieves less recognition 

performance (56.1%, 32.8%, and 35.6% with p=0.1, p=͸.ʹ × ͳͲ−଺and p=0.02 for the 

Emo-Berlin, Kurdish and Aibo databases respectively). In other words, the SVM has 

significant improvement of recognition accuracy over the ANN classifier for both 

Kurdish and Aibo datasets. However, the performance of the SER for the three 

datasets, when OP features are used follows a different pattern. The Emo-Berlin 

dataset achieve better recognition accuracy using SVM than ANN (p=0.02), while 

for the other two datasets the ANN outperforms the SVM with (p=0.04 and p=͹.͸ ×ͳͲ−ଵହ for Kurdish and Aibo dataset respectively). This quick analysis indicates that 

the adopted classifier alone does not influence the performance of SER; but there is 

an influence of the experimental database. 

Table 4-3: SER accuracy rates, numbers in brackets are the fusion weights, Note that the 

number of categories a 7 for both Kurdish and Emo-Berlin dataset, while just 5 categories are 

available in Aibo dataset. 

 

 

 

 

 

 

 

A closer analysis of the results, reveal the following major observations: 

1- The recognition performance of the SER for the Emo-Berlin datasets is much 

higher than the Kurdish and the FAU-Aibo datasets. We can attribute this to 

the facts that the Emo-Berlin dataset uses professional actors in recording the 

 

Kurdish Berlin Aibo  

ES (SVM)  37.2 57.0 36.7 

ES (ANN)  32.8 56.1 35.6 

OP (SVM) 43.2 87.4 39.3 

OP (ANN) 44.4 84.7 44.9 

OP(SVM)+ES(ANN) 44 (.8,.2) 89.0(.7,.3) 41.6(.7,.3) 

OP(ANN)+ES(SVM) 44.6(.8,.2) 86.5(.7,.3) 45.1 (.7,.3) 

OP(SVM)+ES(SVM) 43.8(.8,.2) 89.2(.7,.3) 41.1(.5,.5) 

OP(ANN)+ES(ANN) 44.5(.8,.2) 85.4(.7,.3) 45.5(.7,.3) 
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emotional data, unconvincing samples have been removed, and the database 

was designed for emotion synthesis and analysis not for emotion recognition. 

2- The use of actors and the removal of large number of difficult samples from 

the Emo-Berlin dataset seem to result in having the trained samples cluster 

reasonably well around their classes which help separate them easily by linear 

classifiers such as the linear kernel used by the SVM. Note that the subjective 

test for Emo-Berlin dataset accuracy rate was 84.3%. 

3- The OP feature vectors are of significantly higher dimension (6552) than the 

ES feature vectors (54). This may explain the reason for both classifiers 

achieve higher accuracy on the OP than on the ES features for all the 

databases.  

4- For the Kurdish and FAU-Aibo datasets the classes samples seem to be more 

overlapped with regards to both feature sets, and this may explain to some 

extent the undesirable performance of the SER for both feature sets relative to 

the performance on Emo-Berlin dataset. Note that the subjective test that 

conducted on the Kurdish dataset result in 41% correct labelling of the speech 

samples. Accordingly, for the Kurdish database, our fusion scheme 

outperforms the subjective system and achieves 44.5%.  

5- The linear SVM works on the original features with no dimension reduction, 

while the non-linear classifier (ANN with hidden layer) uses a supervised 

procedure to reduce the dimension of the OP (resp. the ES) set of features 

from 6552 to 70 (from 54 to 40). Usually, such procedures might help in 

reducing the effect of feature redundancy, which have an impact on accuracy 

rates. However, the impact on accuracy rate is somewhat dependent on the 

ratio of the number of training samples used to the dimension. These ratios 

for the Kurdish, the Emo-Berlin, and the Aibo datasets are 0.47, 0.07 and 

1.52 respectively. Comparing the performance of the ANN and the SVM for 

the OP features seem to indicate that the nearer the ratio to 0 the better the 

performance of the SVM classifier, and as the ratio increases the ANN 

performance improves proportionately. This observation seems to be 

consistent with the conclusions of the work of Silverman, which investigated 

the difficulty in parameter estimation for kernels in high dimensional data 

(Silverman, 1986). We shall observe similar effects in chapter 5. However, 

this interpretation is not the only reason of high recognition accuracy for 



70 

 

Emo-Berlin dataset, but additionally the well-clustered samples for each class 

for the whole data help in avoiding the over fitting issue. 

The main target of the experiments in this chapter is to investigate the 

complementarity capability of the ES feature to the large set of feature OP.  For this 

purpose fusing both sets of features at the classification level is adopted. Fusing the 

proposed ES features with the OP improves the recognition accuracy from 44.4%, 

87.4%, and 44.9% to 44.6%, 89.2%, and 45.5% for Kurdish, Emo-Berlin, and Aibo 

databases respectively. However, based on a one tailed Binomial test, the 

improvements over Emo-Berlin and Aibo datasets is significant with (p=0.03 and 

p=0.048 respectively). The stated weights reflect the amount of contribution of ES 

feature in improving the SER performance. The fusion results yield the following 

additional remarks:   

1. In all of the four fusion schemes, fusing ES feature with OP features 

improves the SER accuracy, but they are significant on datasets. This is an 

indication of the complementarity between the ES features and the OP 

features. 

2. The fusion weights (evaluated using LOSO cross validation on the training 

data) are almost similar regardless of the testing database or the classifier 

combination. For both EMO-Berlin and FAU-Aibo dataset optimal (OP, ES) 

fusion weight is (0.7, 0.3) which is comparable to the optimal weighting of 

(0.8, 0.2) the Kurdish dataset.  

To be able to explain reasons for the very different patterns of accuracy observed 

across the 3 different databases, a closer look at the Confusion Matrix (CM) for 

each of the databases for all possible pairs of emotions (actual Vs predicted) 

could help identify the sources (classes of emotions) that are more responsible for 

false errors. The confusion matrix is a table that contains information the 

percentage of the actual classes (the rows) samples that the scheme can recognize 

for each of the predicted (columns) classes. Therefore the percentage of accurate 

classification for each class appears on the diagonal entry, and the confusion ratio 

between each pairs of classes appears at the other positions. Note that a 0 entry in 

the matrix means that the two corresponding classes are not expressed together, 

which might be addressing these pairs as opponent's classes, (see opponent 

theory of emotion, (Solomon , 1980)). The confusion matrices for the three 
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datasets using the fusion model and ES feature are presented in tables (4-4 and 4-

5) for the best performing fusion scheme as well as the best performing ES 

scheme. These confusion matrices convey the following information: 

  Table 4-4: Confusion matrix for Emo-Berlin, the Kurdish, and FAU-Aibo database for fusion 

scheme with best Average Recall. 

 
  Anger Happy Neutral Sad Fear Disgust Bored 

E
m

o
-B

er
li

n
 

Anger 92.1 6.3 0 0 1.6 0 0 

Happy 19.7 73.2 0 0 7.0 0 0 

Neutral 0 0 94.9 0 0 5.1 0 

Sad 0 0 0 93.5 0 6.5 0 

Fear 1.4 11.6 1.4 0 84.1 0 1.4 

Disgust 0 0 7.4 2.5 0 90.1 0 

Bored 0 2.2 2.2 0 4.3 2.2 89.1 

         

 
  Anger Happy Neutral Sad Fear Bored Surprise 

T
h

e 
K

u
rd

is
h

 

Anger 73.8 13.8 4.8 2.3 0.6 3.5 1.3 

Happy 7.5 51.7 9.0 16.3 2.7 8.1 4.8 

Neutral 1.7 17.3 53.5 16.3 1.0 9.6 0.6 

Sad 4.2 24.8 18.1 29.2 6.9 13.3 3.5 

Fear 0.4 6.0 3.5 11.5 57.7 4.4 16.5 

Bored 5.6 26.9 15.4 22.5 7.1 18.1 4.4 

Surprise 5.4 18.8 5.0 6.7 35.2 4.6 24.4 

         

 
  Anger Neutral Positive Rest Emphasise      

F
A

U
-A

ib
o

 

Anger 50.9 9.2 7.0 16.7 16.2   
Neutral 11.6 40.0 12.4 18.1 17.9   
Positive 2.8 21.9 51.6 18.1 5.6   

Rest 17.4 21.6 22.7 25.3 13.0   
Emphasise 20.1 20.6 2.8 11.7 44.8   

 

1. For the fusion scheme, the CM matrix for the Berlin-Emo database has 

many 0’s as a result of acting participants succeeding in suppressing all but 

the one they were asked to act. While the CM for the ES scheme has less 0’s 

indicating to the low recognition performance of the ES scheme. To some 

extent, the confusion ratio of each individual emotion with the other 

emotions follow similar pattern of variation in both fusion and ES schemes 

for all the datasets.  

2. The “Bored” and “Surprise” emotions are very badly recognized in the 

Kurdish dataset thereby affecting the overall accuracy. While in the Aibo 

dataset the “Rest” is the worst recognized categories, and extracted feature 
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vectors seem to confuse “Rest” with other emotions and only accurately 

recognise this emotion 25% of the time which close to the random selection 

of emotion (i.e. 20%).  Note that Rest is defined in the FAU-Aibo dataset as 

the non-Neutral emotion that is not covered by the other categories 

(Batliner, et al., 2008a). The system presents this category as a scattered 

along the other categories, especially (Positive and Neutral). This might 

indicate somehow to the ambiguity of labeling the samples belong to this 

category, in the dataset design stage. It might also be an indication of having 

samples that includes a spectrum of other emotion information. 

3. The Anger and Happy emotions (in both the Kurdish and Emo-Berlin 

dataset) are confused against each other. These two emotions are almost 

opponent in the valence dimension, but they have both high positions in the 

arousal dimension. 

Table 4-5: Confusion matrix for Emo-Berlin, the Kurdish, and FAU-Aibo database for ES 

scheme with best Average Recall. 

 
  Anger Happy Neutral Sad Fear Disgust Bored 

E
m

o
-B

er
li

n
 

Anger 66.9 22.8 3.1 0 4.7 0 2.4 

Happy 42.3 38 7 0 8.5 1.4 2.8 

Neutral 6.3 2.5 60.8 5.1 0 24.1 1.3 

Sad 0 1.6 11.3 74.2 1.6 11.3 0 

Fear 14.5 10.1 1.4 8.7 58 2.9 4.3 

Disgust 1.2 4.9 28.4 12.3 2.5 48.1 2.5 

Bored 10.9 8.7 6.5 0 26.1 4.3 43.5 

  
       

 
  Anger Happy Neutral Sad Fear Bored Surprise 

T
h

e 
K

u
rd

is
h

 

Anger 69 12.9 5.4 4.4 0.4 5.8 2.1 

Happy 14.8 31.3 15.4 17.3 3.5 9.4 8.3 

Neutral 6.7 14.6 46.7 16.9 1.3 10.6 3.3 

Sad 9.6 14.4 20.8 26.7 6 15 7.5 

Fear 2.3 5.6 2.9 11.3 52.7 7.1 18.1 

Bored 10.4 16.9 15 24 7.1 16.9 9.8 

Surprise 7.3 15.4 7.3 12.1 33.1 8.5 16.3 

         

 
  Anger Neutral Positive Rest Emphasise      

F
A

U
-A

ib
o

 

Anger 39.8 10.3 15.5 11 23.4   
Neutral 19.2 27.9 20.5 13.9 18.6   
Positive 3.7 25.1 49.8 13.5 7.9   

Rest 20.5 17.6 26.4 19.6 15.9   
Emphasise 23 13.4 8.8 8.3 46.5   
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4.5.3 Comparison with state of the art studies  

The ES features exploit much information of the LP-residual signal compared to 

some other proposed LP-residual features. For instance in (Koolagudi & Rao, 2012a) 

sixteen feature vectors each containing 40 samples of LP- residual around glottal 

closure is used as a source feature. The study achieves emotion recognition accuracy 

of 52.43% when applied to Emo-Berlin database. The nature of the feature extracted 

in (Koolagudi & Rao, 2012a) and the classifier used is quite different from what is 

used in this study, which make the comparison difficult. However it is obvious that 

the recognition accuracy achieved in this study is better using ES features in Emo-

Berlin database (57%). Schuller et al. (Schuller, et al., 2009b) used the same OP 

feature baseline on Emo-Berlin and achieved SER accuracy of 85.6%. Another 

reported result by Vlasenko et al. (Vlasenko, et al., 2007) was 89.9%, when only 494 

samples of the Berlin-Emo was involved, whereas our scheme achieved comparable  

accuracy of 89.2% but with the full set of 535 samples. The differences in the 

number of samples demonstrate that our results are as good as the state of the art, and 

validate our claim that the ES features are relevant to emotion recognition from 

speech. In the interspeech09 challenge many studies were made regarding the FAU-

Aibo dataset (see Figure 4-6). The UAR achieved in majority voting among the 

whole proposed (44%), is significantly less than the achieved result in this chapter 

(45.5%), with (p=0.01<0.05, using one tailed Binomial respectively). 

Figure 4-6: interspeech09 Challenge accuracy achievement including ten different works in 

addition to the majority voting of all of them (M.V.) (Schuller et al. 2011b). The last bar 

represents the result obtained in this chapter. 
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4.6 Conclusion 

In this chapter we initiated a discussion on the need to use excitation source features, 

extracted from the LP-residual signal, for possible capacity to encapsulate 

discriminative information on different emotions. We introduced a relatively small 

set of ES features and investigated its complementarity to the high dimensional OP 

features that are extracted from the original speech signal. The ES features that we 

adopted here are the MFCC and LPCC of LP-residual signal as well as the WOCOR. 

The performance of ES-based SER, across various databases, using any of the two 

classifiers are sufficient to make the claim that the ES features alone do capture 

emotional related information, and the ES feature vectors (54 attributes) encapsulate 

sufficient emotion discriminating powers that would be complementary to the power 

of the traditional OP feature vectors (6552 attributes). In fact, the performance of the 

ES-only scheme for the Kurdish and Aibo databases are comparable to the 

performance of the OP-only scheme, while for the Berlin database the performance 

of ES-only scheme is satisfactory though much lower than that of the OP-only 

features. The work in this chapter also revealed the difficulties in separating different 

emotions unless individuals are well trained on expressing their emotion. In fact, 

these results are consistent with the difficulties mentioned in the psychology 

literature about the challenge of labelling emotions by individuals. 

The high dimensionality feature space in these experiments is serious challenge in 

relation to system efficiency, hence the need for a dimension reduction step. Our 

experiments have confirmed the ability of ANN to recognize emotions even in the 

original high dimensional situation. This is due to the fact that the proposed ANN 

implicitly reduces dimension in the hidden layer. The ANN outperforms the SVM 

classifier on the Kurdish and FAU Aibo database. The fusions of ES and OP feature 

have performed as well as, if not better than, the state-of-the-art SER schemes. Based 

on these observations and conclusions, the next chapters will focus on the 

investigation of different dimension reduction schemes for SER. 
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5. Chapter Five  

Features and Meta-Features selection for SER 

The number of investigated features relevant to emotion from the speech signal has 

been increased in recent studies, which resulted in producing a high dimensional 

feature space. For instance in (Hassan & Damper, 2012) and (Schuller, et al., 2009b), 

6552 features are involved in SER model training, and in (Batliner , et al., 2011) 

3713 features followed by feature selection step are used for SER. However, the high 

dimensionality of any pattern recognition problem might produce two kinds of 

problems, model complexity and over-fitting.  

This chapter investigates various solutions for dimensionality reduction, including 

sparse space-based feature selection, adaptive meta-feature selection techniques like 

PCA and non-adaptive ones like Random Projection (RP). Section (5.1) presents an 

introduction to the problem of high dimensionality of feature vectors and known 

solutions adopted in the literature. In section (5.2) we present a sparse-based feature 

selection scheme that is embedded in SVM, and we shall demonstrate experimentally 

the shortcomings of this approach. In (5.3) and (5.4), PCA and RP are described 

respectively as alternative solutions. In section (5.5), we shall analyse and 

demonstrate the performance of our proposed SER model using the PCA and RP 

projections for meta-Feature selection. Finally, the conclusion and a description of 

the next and final step in this thesis will be presented in section (5.6). 

5.1  Introduction  

Mathematical modelling of real life applications rely on providing an abstract 

representation of reality in terms of mathematical structures that encapsulate the 

main variables together with inter-relationships among the various entities/objects 

under investigations. This is a particularly tough challenge in applications where the 

main entities/objects/variable are not well understood or well defined. The case of 

SER is one such application that has shown to elude attempts to model 

mathematically, perhaps due to difficulties in having a well-defined understanding of 

human emotions from a psychology point of view.  In such scenarios, often one 

builds models that involve a huge number of attributes that require dealing with a 

high dimensional vector space, even when one may not be able to ascertain that the 
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variables (attributes) are uncorrelated or linearly independent. The various attributes 

that researchers have been considering in SER are normally assembled over a period 

of time with different refined considerations of the subject materials. This standard 

scientific refinement approach often leads to incremental improvement of the 

mathematical model performance but in many case attributes are introduced that are 

implicitly/nearly present in terms of a combination of others.    

In general high dimensional vector spaces may provide a good representation of 

datasets obtained from the domain application. However, in real-life applications 

when number of samples are constrained, the question whether the representation is 

reasonably adequate or not, one needs to know if the number of samples is consistent 

with the number of dimensions. Theoretically the need of large number of samples in 

a high dimensional space is obvious, due to the fast exponentially growing of the 

high dimensional space volume. In a high dimensional space, experimental data 

obtained from pattern recognition tasks is usually spatially sparse (i.e. of low 

density), and significant statistics is difficult to estimate or to discover /interpret 

patterns or anomalies that may exist in the wider population. Reliable generalization 

of classification cannot be achieved unless the number of experimental samples is 

sufficiently large and clustered together in a reasonably separated manner. So, a 

single class largely populates each cluster and the distribution of samples is a good 

representation of the wider real population. Silverman investigated the difficulty in 

parameter estimation for kernels in high dimensional data (Silverman, 1986). The 

number of required samples as a function of the space dimension needed for kernel 

parameter estimation based on Silverman studies grows exponentially as shown in 

Table 5-1 (Webb, 2002). Therefore, as the dimension of the modelling space grows, 

more samples are needed to represent the data clusters properly. For instance, to 

preserve the density of the n samples data as it is in one dimension, about  n
2
 samples 

are required to represent the same data in two-dimensional space, and almost n
d+1

 

samples when transformed to d dimensions.  

The logical step to deal with such a high dimensional space is to reduce dimension 

especially when limited number of samples is available. We shall investigate 

dimension reduction as a mean of feature selection or meta-feature selection (feature 

selection in a transformed space).  
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Table 5-1: Number of samples needed to estimate the kernel function in high dimensions 

(Silverman, 1986; Webb, 2002) 

Number of dimension  Number of samples 

1 4 

2 19 

5 786 

7 10700 

10 842000 

 

Traditional feature selection in multi-dimensional spaces exploiting correlations 

between various attributes (or other objective functions) is impractical and inefficient 

when dealing with high dimensional spaces. Moreover, the traditional feature 

selections are not only dependent on the training samples, but do not guarantee the 

optimality/uniqueness of the selected features (Schuller, et al., 2011b). For this 

reason some studies refrain from naming the individual selected features, due to the 

difficulties of generalizing them to different data and recognition models (Batliner , 

et al., 2011). For applications that are modelled by a high dimensional vector space, 

the alternative efficient approach is to use special data sparsity based feature 

selection.  

In our particular application, we follow studies that use sparse SVM whereby the l1 

"norm" is adopted beside the Euclidian l2 norm. The l1 minimization penalty is 

adopted instead of the sparsity “norm” l0. Minimization of l0 is equivalent to 

minimizing the cardinality of the selected feature set, and is known to be an NP hard 

problem. The advantage of this approach over the traditional feature selection 

method is its low cost (Liu, et al., 2013). Although, the SER is modelled by a very 

high dimensional feature space, we are not aware of any research that exploits the 

sparse-penalty feature selection approaches. In the next section the use of the recent 

updates of these methods for SER is presented.  

However, all kinds of feature selection result in loss of information that is provided 

by the whole set of features/attributes, unless the selected attributes can linearly 

generate (i.e. span) all the other discarded attributes. Loss of information, as a result 

of feature selection, can be avoided only if the non-selected attributes are redundant 

for all the samples. Assuming that the number n of samples is compatible with the 

requirements stated in the Table 5.1, then ideally the selected set of features must 
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satisfy the following Lemma that links the set of n-dimensional vectors formed by 

the unselected attributes to those vectors formed by the selected one.  

Let ܺ௡×ௗ be a set of n samples each is a d-dimensional feature vectors, expressed as 

an ݊ × ݀ matrix whose rows are the samples. Suppose that a feature selection 

procedure selects ܺ′௡×௞, where k<<d. 

Lemma:  

If each column vector ݕ ∈ {ܺ − ܺ′}, is a linear combination of all or some of the 

columns of ܺ′௡×௞  (i.e.:  ݕ = ܽଵݔଵ + ܽଶݔଶ + ⋯+ ܽ௞ݔ௞ሻ, ′ܺ ℎ݁݊ݐ  encapsulate 

information the whole set X. 

Proof: 

The definition of linear combination guarantee that each vector in ܺ′௡×௞, influence 

the magnitude and directions of at least one vector that belong {ܺ − ܺ′}. 
This Lemma doesn’t guarantee that the feature selection is optimal. For optimality, 

one needs to show that the number of columns cannot be further reduced, i.e. the 

columns of ܺ′ are linearly independent. These requirements make the task of feature 

selection an inefficient task in high dimensional spaces.   

Consequently, another alternative approach that can have the advantage of not 

ignoring any individual attribute is the meta-feature selection approach. Here, a 

meta-feature refers to linear combinations of attributes. The adopted meta-feature 

selection approaches in this thesis are based on linearly transforming the original 

features from their high dimensional feature space into a lower dimensional subspace.  

Here, we must have the number of selected meta-features c<<d, where d is 

dimensions of the samples. The set of coefficients of a selected meta-feature form a 

column vector in what is known as the projection ݀ × ܿ matrix P, also referred to as a 

dictionary. The selected meta-features are computed by the matrix multiplication ܺܲ. 

Efficient dictionaries are sparse, and in the transformed space the similarities are 

somehow preserved (i.e. do not grow beyond acceptable bounds).  

This chapter will include investigations of different versions of transformation 

dictionaries, including PCA produced from the training data. We introduce also 

another version of PCA named by Data Independent PCA (DIPCA) that is generated 
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using independent data of the participated dataset in the SER model training. The 

aim of this approach is to benefit from the behaviour of features from various data 

that has the same characteristics. For instance we produce the PCA from an 

emotional dataset and use it to transform the feature of another emotional dataset in 

the SER model designing. However, the meta-feature selection methods cannot help 

in discovering emotion’s relevant features.  

In this chapter the use of PCA, different versions of independent PCA, and versions 

of Random dictionaries (Binary Random Projection (BRP), and the Toeplitz (Tn )), 

are presented for meta-features selection from the OP set of 6552 features. 

5.2 Feature selection using doubly regularized SVM (DrSVM)  

In a high dimensional space, feature selection under SVM is frequently investigated 

and various approaches are suggested (Wang , et al., 2006). Such SVM models solve 

the lq minimization, for different distance functions q, defined as follows: 

min�,௕,� ሺߣ‖�‖௤௤ + ∑ �௜    ሻ௡௜=ଵ                                                  ሺͷ.ͳሻ   
.ݏ ௜்ݔ௜ሺݕ  .ݐ � + ܾሻ ≥ ͳ − �௜ , �௜ ≥ Ͳ, ݅ = ͳ,… , ݊ 

Where � = ሺݓଵ, … , = � ,௣ሻ் is the vector of regression coefficientsݓ ሺ�௜, … , �௡ሻ் is 

the vector of slack variables, n is number of instances in the training set,  ݕ௜ 
represents the label of instance i, and ߣ > Ͳ is the regularization parameter.  

Note that the l0 is a measure of the sparsity of a vector �, i.e. ‖�‖଴ = ௜ݓ|௜ݓ}݀ݎܽܿ ≠ Ͳ}                                            ሺͷ.ʹሻ             

Therefore, l0 minimization is meant to select “fewest” attributes from the whole set 

of features. Unfortunately, the l0 minimization is an NP-hard problem (Candes & Tao, 

2005). However, the popular alternative way to solve this problem is an 

approximated solution using the l1 minimization (Bach, et al., 2011; Carlos , et al., 

2013). 

The l1 optimization is a convex problem that can be modelled using linear 

programing optimization methods. It is argued that the use of the l1 norm within 

SVM (i.e. l1-SVM) yields advantages over the traditional SVM especially in the 

presence of redundant noisy features. But when highly correlated features are present, 



80 

 

the l1-SVM tends to pick fewer features. In other words “when there are several 

highly correlated input variables in the data set, and they are all relevant to the output 

variable, the l1-norm penalty tends to pick only one or few of them and shrinks the 

rest to 0” (Wang , et al., 2006). To overcome these disatvanteges (Wang , et al., 2006) 

sugessted the Doublly regulrized SVM (DrSVM) method that uses a mixture of l1 

and l2 minimization. The aim is mixing these two minimization methods to perform 

feature selection with the same capability of l1 minimization, while 

selecting/removing the highly correlated features as a consequent of the use of the l2-

norm minimization. 

The DrSVM has the following optimization form: 

min�,௕,� ሺ ʹଶߣ ‖�‖ଶଶ + ଵ‖�‖ଵߣ ͳ݊ ∑ �௜    ௡௜=ଵ ሻ                                    ሺͷ.͵ሻ   
.ݏ ௜்ݔ௜ሺݕ  .ݐ � + ܾሻ ≥ ͳ − �௜ , �௜ ≥ Ͳ, ݅ = ͳ,… , ݊. 

In this section we shall adopt the iterative algorithm proposed by Lui et al. (Liu, et al., 

2013), which called ISVM3. This version of the DrSVM, achieves efficiency as a 

result of removing some computations from the iterative loop. The assumption of 

sparse density of the data in the feature space justifies the use of such classifiers.  

5.2.1 The DrSMV classifier  

In this section DrSVM-ISVM3 is adopted to test the capability of sparse SVM using 

OP features and conduct experiments to test its performance when used for SER. The 

model builds classifying machines for each pair of classes, ݊ = ܿሺܿ − ͳሻ/ʹ 

classifiers, where c is the number of classes. Majority voting on the n machines will 

produce the final decision.  

The FAU-Aibo database contains an unbalanced number of samples per class; 

therefore, we follow the SMOTE procedure for balancing the training set of the 

FAU- Aibo corpus, and use UAR to measure the recognition accuracy.  

In the case of Emo-Berlin and the Kurdish databases, we used the LOSO approach to 

define the test and train set for model accuracy measuring. With the FAU-Aibo 

database the Mont part of the data is defined as a test set and the Ohm part is 

exploited to train the model.  The data has also been normalized based on Speaker 

Normalization procedure described in 4.5.1.3.  
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5.2.2 Experimental Results and discussion  

The recognition accuracy of the SER designed model using DrSVM is presented in 

table 5-2, which shows the impact of the DrSVM on SER model accuracy compared 

to the traditional SVM using the OP feature. Basically, the DrSVM select almost half 

of the used features based on minimizing the cardinality of feature sets using the l1 

minimization. The table also includes SER accuracy when we simply use a Random 

Feature Selection (RFS), which select in random manner a number of features close 

to the selected number by DrSVM. This table shows that it is even outperformed by 

the RFS.   

Here some observation and analysis of the table 5-2: 

1. It is obvious that the DrSVM does not improve the SER accuracy over the 

traditional SVM when applied to the OP features; actually, it is either worse 

(on Kurdish and Emo-Berlin dataset) or comparable (on FAU-Aibo data set). 

Feature selection removes some features from the input to the SER model, 

which might result in missing “important” information. 

2. DrSVM uses a non-adaptive feature selection, and therefore we extended our 

experiments to compare its performance with that of a genuine Random 

Feature Selection (RFS) that selects 3500 features (almost half of the OP 

features) randomly to be classified by the traditional SVM. The results show 

that RFS can perform better (when applied to the Kurdish and Emo-Berlin 

dataset) or comparable to the DrSVM (when applied to FAU-Aibo) dataset.  

3. The pattern of accuracy observed when SVM, DrSVM and RFS applied to 

Aibo dataset is different from that achieved for the other two datasets; the 

recognition accuracy for FAU-Aibo dataset lies between (38.5% and 39.7%). 

This might be due to the high correlation between features of Aibo dataset as 

a result of the tight range of speaker ages (10-13 Years). Here the voice 

characteristic of both genders might not be present clearly. Consequently, 

unlike the Kurdish and Emo-Berlin datasets, the gender factor is not 

influencing the speech samples. 
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Table 5-2: SER model result using SVM fed by OP feature and the DrSVM 

Datasets Traditional SVM DrSVM RFS 

Emo-Berlin 87.4 82.6 85.1 

Kurdish 43.2 35.4 41.7 

FAU-Aibo 39.7 39.4 38.5 

 

For a clearer view about the recognition performance for each single individual 

emotion, we now present in Table 5-3 the confusion matrix of the DrSVM 

recognition performance. 

Table 5-3: Confusion matrix of SER using DrSVM. 

 
  Anger Happy Neutral Sad Fear Disgust Bored 

E
m

o
-B

er
li

n
 

Anger 85.8 10.2 0 0 3.1 0 0.8 

Happy 18.3 69.0 2.8 0 7.0 0 2.8 

Neutral 0 0 91.1 0 1.3 7.6 0 

Sad 0 0 1.6 93.5 0 4.8 0 

Fear 8.7 14.5 1.4 4.3 69.6 1.4 0 

Disgust 0 0 9.9 3.7 1.2 85.2 0 

Bored 0 2.2 8.7 0 4.3 4.3 80.4 

         

 
  Anger Happy Neutral Sad Fear Bored Surprise 

T
h

e 
K

u
rd

is
h

 

Anger 66.3 15.2 5 8.5 0.6 3.5 0.8 

Happy 9.8 41.7 12.5 13.3 5.2 14.2 3.3 

Neutral 1.7 16.7 44 20.4 5.4 10.2 1.7 

Sad 2.5 22.5 20.4 23.5 7.3 20.8 2.9 

Fear 1.7 9 7.3 16.9 37.7 11.5 16.0 

Bored 5 24.2 17.1 27.1 7.5 15.8 3.3 

Surprise 5.2 16.7 9.2 16.0 22.3 12.1 18.5 

         

 
  Anger Neutral Positive Rest Emphasise      

F
A

U
-A

ib
o

 

Anger 54.5 16 10.5 7.7 11.3 
  

Neutral 19.3 37.9 16.3 11.5 14.9 
  

Positive 3.7 25.1 51.2 13 7 
  

Rest 23.3 30.8 20.1 17 8.8 
  

Emphasise 27.5 18.7 5.9 6 41.9 
  

 

The pattern demonstrated in these CMs is almost similar to the patterns observed in 

the last chapter when ES and OP are fused using ANN and SVM. For instance the 

system confused Anger and Happy emotions in the Emo-Berlin dataset (the Happy 

emotion is not present in the Aibo dataset). These two emotions are almost opponent 

in the valence dimension, but they have both high positions in the arousal dimension. 
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Another example is that, bored and surprise in the Kurdish dataset and rest in the 

FAU-Aibo are highly confused with other emotions and hence are badly recognized. 

The presence of such widespread confusion significantly reduces the SER 

performance. 

We conclude from the results in tables 5-2 and 5-3 that the feature selection by the 

DrSVM reduces dimension but does not outperform the SVM using OP feature and 

not even the completely random feature selection. Consequently, we shall investigate 

the use of meta-feature selection in transformed spaces. In the next two sections PCA 

and RP are described as a techniques for meta-feature selection.  

For all experiments in the rest of the chapter, we shall continue to follow the same 

procedures/protocols but we will only use the SVM classifier. 

5.3 Principal Component Analysis (PCA)  

The PCA finds directions (components or base vectors) along which data samples 

have high variances. The eigenvalues of the samples covariance matrix, after 

subtracting the mean of the samples, measure the samples data variance along the 

directions of the corresponding eigenvectors. The eigenvectors generates the 

principal components of the model, and are arranged in the decreasing order of the 

correspondence eigenvalues. Computing the PCA is somewhat restricted to the 

number of samples available.  

Meta-features selected from the PC space are reported to be difficult to interpret, in 

terms of the original attributes, because the transformed sample dimension scores is a 

linear combination of all origin samples scores (Schuller, et al., 2011b). However, 

recently, there have been some promising efforts in finding various approaches to 

interpret meta-features. For instance Simmons et al. (Simmons, et al., 2015) propose 

a hybrid approach that uses a mutual information-based statistics to have a 

meaningful interpretation of the PCA output in terms of the original features. These 

studies are encouraging further investigation on the use of meta-features for SER. 

5.3.1 PCA limitation when number of samples is small 

As mentioned previously PCA is computed through the solution of eigenvalue 

problem of the covariance matrix C= AA
T
 of the data A, that are generated through 

their corresponding eigenvalues. In what follows we shall show that the non-zero 
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eigenvalues of a matrix like C is equal to n, where n is the number of samples 

included in the data set A. We will start with showing that the non-zero eigenvalues 

of both AA
T
 and A

T
A are the same. 

Theorem 5.1 (Spectral Theorem): Assume that A is a symmetric matrix (i.e. AA
T
= 

A
T
A), then A is orthogonally diagonalizable and has only real eigenvalues 

(Leinfelder 1979). 

But unfortunately the matrix A is not always symmetric and alternatively we can use 

the fact that any AA
T
 and A

T
A is a symmetric matrix. By applying the spectral 

theorem to AA
T
 and A

T
A we can reach the following proposition: 

Proposition 5.1: The matrices AA
T
 and A

T
A share the same eigenvalues. 

Proof: Let v be the eigenvector of A
T
A with eigenvalue λ ≠ Ͳ.  

This means that:                   (A
T
A)v = λv. 

Multiply both sides by A:     

                                            A (A
T
A) v= λAv.  

                                           AA
T 

(Av)= λ ሺAvሻ. 
This means that AA

T 
and A

T
A have the same eigenvalues  λ , but with different 

eigenvectors Av and v respectively. 

Practically, if A is 500× ʹ matrix then the non-zero eigenvalues of the ʹ × ʹ matrix 

A
T
A are the same of the eigenvalues of a ͷͲͲ × ͷͲͲ matrix AA

T
 but

 
with different 

multiplicities. An example of the datasets used in the SER models in this thesis is the 

Emo-Berlin dataset that contains about 450 samples in the training stage, while the 

number of dimensions used is 6552. In such a case, PCA cannot create more non-

zero eigenvalues than the number of samples (450); consequently the number of 

samples will restrict the upper bound of the principal components. This disadvantage 

in addition to the fact that the PCA relies on the training data makes PCA not always 

practical.  

5.3.2 Data Independent PCA (DIPCA) 

The above stated limitations of PCA cannot be used to exclude the use of this well-

known and widely used dimension reduction scheme. Hence it is desirable to have an 
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efficient PCA-based scheme that is independent of a given training set, and yet retain 

PCA’s important characteristics in that distances/similarities between projected 

vectors are not much different from their original vectors. For this purpose, we 

introduce the data independent version of PCA matrices, DIPCA, by constructing a 

PCA projection matrix trained on different datasets (Emotional speech data, Neutral 

speech data, and Non-speech data), to be used in transforming any new unrelated 

dataset. The main benefit from such an approach is that the projection transform is 

computationally independent from the dataset available for training the classification 

model. For SER, the complexity of model training is decreased using of DIPCA 

helps in investigating the usefulness of sharing information between different 

emotional and non-emotional speech datasets. In other words feature correlation 

characteristic of one emotional dataset has been investigated in adapting different 

emotional dataset. 

In this chapter each of the PC projection matrix trained on each of three datasets 

(Kurdish, Emo-Berlin, FAU-Aibo) will be used as a DIPCA projection for the other 

two datasets.  

5.3.3 Random projection (RP)  

In recent years, research into different branches of mathematics has revealed that 

certain types of random projection matrices can provide a dimension reduction tools 

without greatly inflating distances (or distorting similarities) in the transformed 

domain. It has been shown that certain types of orthonormal random projections can 

preserve the Gaussian mixture clusters (Dasgupta, 1999). The high dimensional data 

projected into lower dimensional subspace by projecting the data onto a “random” 

matrix in which columns are not necessarily orthonormal, but rather they are 

independent and identically distributed (i.i.d).  

Theoretically, RP has the advantages of being generated independently from the data, 

i.e. the projection matrix generation is always done offline from the training stage. In 

fact they are randomly generated based on specific distributions that keep the i.i.d 

characteristic of the columns of the dictionary. Consequently, it contributes in 

reducing dimensions for different datasets, independently of the classification.  

In this chapter we shall use two different types of random matrices named as the 

Binary Random Projection (RBP), and Toeplitz (Tn). The elements of BRP are zero 
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and ones distributed randomly with equal ratio. While the Tn matrix (See 3.1.2) is 

normally designed as follows: 

௡ܶ = [ܽ଴ܽ௡… ܽଵܽ଴… ……… ܽ௡ܽ௡−ଵ…ܽଵ … ܽ௡ ܽ଴ ] 

 

Figure 5-1: random data projected onto a Gaussian RP and Binary RP. 

The projected data distances and/or similarities can be preserved with RP matrices 

that are i.i.d. and column element sums normalized to one. However in pattern 

recognition problems it is not necessary always to preserve distances. For instance 

non-linear kernel functions for SVM transform the data into new space in which their 

classes are linearly separated. In chapter three we showed that BRP matrices are not 

always orthogonal, but still contribute in data transforming to lower dimension, with 

reasonable preservation of clusters. 

However, different random matrices behave in different ways based on the nature of 

the dictionary design. Next we present an experiment using a random generated data 

of two clusters with 500 samples in 6553 dimensions. The clusters are Gaussian 

distributed with their own mean and standard deviation that are chosen randomly. 

We project these data onto two spaces using Gaussian Random matrix and BR matrix. 

Figure 5-1 presents two of the 6553 dimensions that have been chosen randomly. 

Interestingly, we can observe how the distribution of the data is somehow preserved 
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when projected on to the Gaussian matrix. While the projected data on to BR matrix 

loses their Gaussian distribution, but looks more correlated and separated. This 

behaviour of BR is encouraging to be used in SER model, using SVM classifier, in 

the sense that the projected data is better separated than the data in the original and 

the Gaussian space. 

5.3.4 RP and DIPCA space adaptation 

Real live SER applications are mostly speaker independent, i.e the objective is to 

recognise the emotion from a speech signal rather than recognising the person who is 

exhibiting the specific emotion. Therefore, speaker identities are not relevant to the 

training of SER. However, individual speakers included in speaker independent SER 

inevitably has an impact on the emotion classes clustering. Some researchers as in 

(Hassan & Damper, 2013; Zhang & Schuller , 2014) studied adaptation of emotional 

speech data, which contain different speakers, languages, or recorded under different 

conditions. The aim of the adaptation stage is to minimize the shift covariance 

between the training and test data. Hassan et al. (Hassan & Damper, 2013) propose 

an adaptation penalty, referred to as the Importance Weight, which is defined as: 

ሻݔሺߚ =  ,ሻݔ௥ሺ�݌ሻݔ௘ሺ�݌
where, ݌�௘ሺݔሻ,  ሻ are the multivariate probability distribution of the test and trainݔ௥ሺ�݌

feature vectors respectively. The estimated IW is used later as a penalty of the SVM 

classifier to adjust the hyper plane created by the SVM.  

Zhang et al. (Zhang & Schuller , 2014) proposed another way for emotional data 

space adaptation that uses an auto-encoder based weight-adjusting procedure using 

the test and the train data to compensate for the expected shift that happened between 

the train and test data. The test data is used as an input to a one hidden layer De-

noising Auto-encoder (DEA), which results in two matrices of weights ܹଵ,ܹଶ for 

both the input and the hidden layer, in addition to a bias vector ܾ. The output weights 

are used in another DEA that for the training data. The final output adjusted weights 

are used for both test and training data for adaptation purpose. 

Inspired by these studies, we argue that the DIPCA would be useful in emotional 

data adaptation; in the sense that projecting emotional data onto the PCs of 
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independently trained emotional data can adapt the test and train data to the same 

emotional based adapted space. Another possibility under investigation in this 

chapter is the use of RP for the same purpose. Although the RP does not depend on 

emotional data; but it has the ability to design an independent space that might be 

useful in any independent data adaptation. 

5.3.5 RP and Kernel Functions 

A kernel function transforms data into a higher dimensional space, such that the 

classes are more linearly separable than before. Kernel functions are exploited to find 

an easy environment for SVM in separating the classes linearly. For instance a data 

of two classes might be not linearly separable as shown in figure 5-2(a). A kernel 

function of form ݖ = ଶݔ +  ଶ transforms the data onto linearly separable regions asݕ

shown in Figure 5-2(b).  However, in using kernel function for SVM the actual 

transformation is not necessary to be performed; but defining the inner product in the 

new space is adequate for its use. 

In high dimensional space, however, kernel functions are not useful because they 

worsen the curse of dimension problem. Usually, in high dimensional space the class’ 

samples are expected to be more separable from each other. The SVM is an efficient 

classifier for high dimensional data, but it still suffers from making a biased decision 

to the “non-adequate” training data samples compared to a high number of 

dimensions. Consequently, the issue of a biased decision toward the training set 

(over fitting), can be overcome by represent the samples in lower, rather than higher, 

dimensional space. Rahimi et al. (Rahimi & Recht , 2007) propose explicitly 

mapping the data to a low-dimensional Euclidean inner product space using a 

randomized feature map z: R
d
 → R

D
 so that the inner product between a pair of 

transformed points approximates their kernel evaluation.  

Inspired by the experiment conducted in 5.3 that demonstrate that BR 

transforms/reduce dimensions while spreading out the samples, (see Figure 5-1); we 

propose the use of BR as a substitute for any kernel function with SVM. We shall 

demonstrate that the SVM hyper-plane can separate the classes post projection onto 

the BR space better than data in the original feature space and even when projected 

onto Gaussian Random (GR) space. However, we shall see later that this approach 

somehow increases the complexity of the SER system.  
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Figure 5-2: Example of data transforming to be linearly separated. 

5.4 SER using meta-feature selection.  

In this section we shall present the use of PCA, independent PCA, and different 

random projection matrices. The reduced dimension data will be fed into the SVM 

classifiers. The different version of PC projection matrices involved in the current 

experiment is generated from the training data, PCs of the other two emotion datasets, 

PCs of non-emotional speech (Neutral), and the PCs of non- speech data (image 

data). The image data is investigated to show how different environment space can 

contribute in creating proper projections for meta-feature space. The images were 

borrowed from a mammogram dataset, which are pre-processed by extracting 

features called Histogram of Oriented Gradients for Human Detection (HOG) feature 

(Dalal & Triggs , 2005). The random matrices used here are the BR matrix, and 

Toeplitz matrix. The BR matrix used in this study consists of 0s and 1s, with equal 

ratio. To be assured of the randomness effects on the recognition accuracy, 30 

different versions of RPs are used in the emotion recognition model. The mean and 

the standard deviation of the results are presented. The experiments are conducted to 

test SER using a sufficiently large number of OP features.  

5.4.1 Result and discussion  

The experiments shown in figures 5-3, 5-4, and 5-5 present how data pre-processing 

with different transformation matrices contribute in the SER performance. The 

figures describe the changes of the SER recognition performance with different 

number of meta-features used in the classification model. However, these figures are 

presented to study the behaviour of these methods along different chosen dimensions.  
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The number of selected meta-features is one of the parameters, which need to be 

evaluated. Throughout this thesis, the classification parameters and model weights is 

evaluated by applying LOSO on the training set i.e., in this stage, 9-folds, 11-folds, 

and 26-fold cross validation are used for the Emo-Berlin, the Kurdish, and FAU Aibo 

databases, respectively. Tables 5-2, 5-3 and 5-4 present the recognition accuracy of 

each of the databases with the number of chosen dimensions in the evaluation stage. 

From the figures 5-3, 5-4, and 5-5, and Tables 5-4a, 5-4b and 5-4c we can observe 

the following: 

1. The recognition performance (UAR here) when using the PCA applied to the 

FAU-Aibo database decreased if more than 100 PCs out of 6552 PCs were 

selected (see figure 5-5), i.e. adding more meta-features lead to redundancy. The 

reason could be the close ages (10-13 years) of speakers involved in creating 

FAU-Aibo database, which lead to the absent of many variation factors (e.g. 

gender and age) and thereby increasing the correlation between original features, 

which mean that fewer meta-feature components suffice to adequately represent 

the training data. This pattern is not apparent in the other two databases. First of 

all these two datasets include recordings for adult male and female, and second 

there is a big difference between the ration of available samples in the two 

databases compared to the number of attributes: (1.52 for Aibo, 0.47 for the 

Kurdish, and 0.07 for Berlin).  

2. The PCA projection generated by the FAU-Aibo dataset yields best SER 

performance when tested on all the 3 dataset. Some of the improvement could 

possibly be attributed to the fact that this projection was trained on the largest 

number of samples (See all individual tables). 

3. The performance of the DIPCA projections, constructed from other emotional and 

neutral speech data, have a very similar pattern (the difference are marginal in 

either direction) to those obtained from training PCA on samples from the 

databases themselves. This is an indication of the similarity of the feature 

correlation of “any” emotional or neutral speech data. 

4. The RP versions reach its highest recognition accuracy when selecting more than 

500 meta-features. While the PCA needs (100-350 meta-features) to achieve its 

highest performance, which is attributed to fact that the first few PCs are the more 

“informative” dimensions. This is a consequence of RP randomness, which needs 
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larger number of representation of sample scores to be able to represent the whole 

meta-features.  

5. When we trained PCA on the unrelated (to emotion) set of samples that come 

from the structured pattern recognition in mammogram images application, the 

corresponding PC_Hog projection achieves worse accuracy, although the 

performance improves when adding more components.  

6. BR and Tn achieve the highest accuracies over PCA-based schemes, with 

(p=0.001, p=0.004 and p=0.0006 <0.05 for Emo-Berlin, Kurdish, and Aibo data 

sets respectively using Binomial test), but these non-PCA schemes consumes 

along time for training the classifier. While the PCA schemes consumes more 

time when a large number of samples in the training stage at projection generation 

stage.  

7. However the time needed to test one sample varies from 6.1 ms to 17.3 ms, which 

depends on the number of features involved in the SER model, which is 

appropriate for real time application. 

Figure 5-3: UAR for Emo-Berlin database, using different projection matrices 
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Figure 5-4: UAR for the Kurdish database, using different projection matrices 

 

 

Figure 5-5: UAR for FAU-Aibo database, using different projection matrices 

 

 

Table 5-4: Evaluated number of dimension and there relevant recognition accuracy (a: Emo-

Berlin database. b: Kurdish database. c: FAU-Aibo database. LOSO in a. and b. while in c. the 

interspeech09 challenge standard is followed. The symbol (*) refers to the standard deviation of 

the experiments over 30 different version of RP matrix. 

a: Emo-Berlin 

       WAR std(Sp)/Ac* (Av/std) Dim Ts_Time(ms) Tr_Time (s) 

BRP 88.4 4.5/0.97* 600/78.2 13.4 669.4 

Tn 86.1 7.1/0.91* 770/48.3 13.6 886.9 

PCA_Emo 83.4 7.3 315/66.9 10.1 85 

PCA_Aibo 84.7 9.1 355/60 9.8 79.2 

PCA_Kurdish 81.5 7.2 345/79.8 9.6 26.7 

PCA_N 83.3 8.8 400/57.7 10.9 26.9 

PCA_Hog 82.7 7.4 770/58 14.1 18 
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b: Kurdish dataset 

  UAR std(Sp)/Ac* (Av/std) Dim Ts_Time(ms) Tr_Time (s) 

RB 42.2 0.8* 710/69 17.5 3338.2 

Tn 40.6 0.74* 620/45 16.3 3245.7 

PCA_Emo 38.3 - 350/43 12.1 721.1 

PCA_Aibo 39.4 - 400/56 13.6 761.3 

PCA_Kurdish 38.2 - 350/48 12.7 827.9 

PCA_N 38.5   -  410/51 14.1   721.3 

PCA_Hog 35.2 - 780/43 23.1 185.4 

c:FAU-Aibo database 

  UAR std (exp.) Dim Ts_Time(ms) Tr_Time (s) 

BRP 46.5 0.55* 700 16.9 2013.8 

Tn 46.5 0.61* 700 17.3 2114.7 

PCA_Aibo 44 0.34 110 6.1 2357.8 

PCA_Emo 42.9 0.44 100 5.1 442.1 

PCA_KURDISh 43.1 0.32 100 3.1 417 

PCA_N 43.1 0.31 100 3.3 401 

PCA_Hog 41.3 0.41 150 7.2 501.2 

 

Finally, we investigated the adaptation role of transforming independent sets of 

emotional data (here testing and training data) into a random space.  Figures 5-6, 5-7 

and 5-8 show the UAR-in (the ability of the classifier to separate the training data), 

and UAR-out (the classification performance) for the datasets using PCA and BRP. 

Unlike the PCA, the BRP shows a stability of both UAR-in and UAR-out for the 

three databases and all dimensions up to 1000. Over-fitting appears early for PCA.  

Thus the BRP with SVM looks suitable for adapting spaces and avoiding over-fitting. 

 

Figure 5-6: WAR_in &out using BRP and PCA applied on Emo-Berlin dataset. 

60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

0 500 1000

W
A

R
%

 

Meta-features 

PC_in

PCA_Out

BRP_in

BRP_Out



94 

 

 

 

Figure 5-7: WAR_in &out using BRP and PCA applied on the Kurdish database 

Figure 5-8: WAR_in &out using BRP and PCA applied on FAU Aibo dataset. 

To further analyse of SER accuracy rates for individual emotions; the confusion 

matrices of the designed model using BRP+SVM is shown in table 5-5. The pattern 

is almost identical to the previously obtained patterns in using DrSVM (See table 5-3) 

and ES-OP fusion (Chapter 4). 

5.4.2 Comparison to state of the art studies 

It is necessary for the reliability of the obtained result in this chapter to have a 

comparison with the state of the art studies. We focus first on the schemes that use 

feature selection techniques applied on Emo-Berlin and Aibo datasets.  

Schuller et al. (Schuller et al. 2005a), used SVM-SFFS by exploiting 75 features 

selected from 276 features and applied to the Emo-Berlin database using 10-fold 

Speaker Dependent (SD) cross validation, the suggested schemes achieves 87.5% 

recognition accuracy.  It is obvious that the Speaker Independent (SI) approach that 

adopted in this thesis is more challenging than SD approach. Therefore, our achieved 
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SER performance (88.4% for SI) is significantly above what has been achieved by 

Schuller et al. (Schuller et al. 2005a).  

Regarding the FAU-Aibo database, Lee et al. (Lee et al. 2011) propose a binary-

based feature selection using Bayesian Logistic Regression. The process results in 

selecting 40-60 features per each fold and pair of classes and the achieved UAR was 

41.6%. The protocol used was based on the interspeech2009 advices for data 

splitting, which is also adopted in this study. This result has been significantly 

outperformed by the use of BRP on Aibo dataset in this chapter (46.7%, with 

p=ͻ.͵ × ͳͲ−ଵସ). The state of art results as well as the result achieved in chapters 4 

and 5 is shown in Table 5-6.  

Table 5-5: Confusion matrices of SER model using BRP+SVM 

 
  Anger Happy Neutral Sad Fear Disgust Bored 

E
m

o
-B

er
li

n
 

Anger 92.1 6.3 0 0 1.6 0 0 

Happy 16.9 74.6 1.4 0 5.6 0 1.4 

Neutral 0 0 93.7 0 1.3 5.1 0 

Sad 0 0 0 100 0 0 0 

Fear 1.4 7.2 2.9 0 88.4 0 0 

Disgust 0 0 7.4 6.2 0.0 85.2 1.2 

Bored 0 2.2 8.7 2.2 6.5 2.2 78.3 

 
  Anger Happy Neutral Sad Fear Bored Surprise 

T
h

e 
K

u
rd

is
h

 

Anger 77.9 8.5 3.3 3.3 0.4 5.6 0.8 

Happy 9.4 36.3 9.8 17.9 4.4 16 6.3 

Neutral 4.2 9.8 49.8 20 4 10.4 1.9 

Sad 4.8 16.9 19.2 30.6 7.5 17.1 4 

Fear 0.8 3.5 3.1 13.1 52.3 5.4 21.7 

Bored 7.7 19 14.8 20.8 7.3 23.8 6.7 

Surprise 4.2 12.7 3.1 13.1 30.4 7.9 28.5 

 
  Anger Neutral Positive Rest Emphasise      

F
A

U
-A

ib
o

 

Anger 58.1 9.7 6.2 9 17 
  

Neutral 11 42.2 15.2 14.5 17.1 
  

Positive 2.8 22.3 60 11.2 3.7 
  

Rest 19.6 23.1 25.8 20.5 11 
  

Emphasise 19 17.6 4.6 8.9 49.9 
  

 

 

 



96 

 

Table 5-6: A comparison of what achieved in chapter 4& 5 with the State-of-Art (SOA) methods. 

Database OP BRP ES+OP SOA (FS) SOA 

Emo-Berlin 87.4 88.4 89.2 87.5 (Schuller et al. 

2005a) 

89.9 (Vlasenko, Schuller 

& Wen 2007) 

Kurdish 44.5 42.2 44.6 -- -- 

Aibo 39.7 46.7 45.5 41.6 (Lee et al. 2011) 
44 (Schuller,et al., 

2011b) 

5.5 Conclusion 

Recent SER schemes, including ours, begin with a pre-processing step that consists 

of extracting an initially high dimensional feature vectors and dimension reduction 

procedure that either opt for feature selection or meta-feature selection. We 

highlighted the practical difficulties that arise as a result of low density of available 

data relative to the high dimension of the feature vectors.  This chapter was devoted 

to address the problem of feature selection and meta-feature selection as means of 

reducing redundancies that maybe a consequence of the original feature space being 

of a relatively high dimension. The background to the investigations in this chapter is 

extreme variation in the performance of exiting SER schemes, including ours, when 

applied to 3 different speech-based emotion databases. We opted for using the SVM 

classifier for its efficiency for high dimensional data, but we recognise that low 

density of available samples might lead to a bias decision towards the sparse training 

data. The use of DrSVM, within which feature selections are used to reduce 

dimension, has not led to improve the SER accuracy. Using tradition dimension 

reduction such as PCA, prior to applying SVM, was also used to overcome the 

problem without gaining much. However, the RP (BRP and Tn matrices in particular) 

prior to SVM, were effective in improving recognition. The RP matrices can avoid 

the problem of over-fitting and work like an adaptation process for the emotion 

feature space, and somehow compensate the need for the SVM kernel function. The 

over-fitting when using PCA appear with smaller number of components, especially 

in the Aibo dataset, in which the speakers voices features are more correlated due to 

the tight age duration.  

We have shown in this chapter that “adequate” number of speech samples is useful to 

train PC projection matrix to be used later for classifying different dataset. The 

interesting result of using Neutral (non-emotional) speech data in training PC 
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projections for different data involved in SER model, might reflect the neutrality of 

these recordings in the primitive directions like arousal and valence. 

The need for balanced number of samples per classes is another issue that influences 

the performance of the SVM. For this reason it is useful for next step to know how 

this approach behaves with different classifiers that are not suffering from this 

shortcomings. In the next chapter the focus will classification level in SER including 

fusion of different models and different kind of ensembles.  
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6. Chapter Six 

Classifications and Ensembles for SER  

Having investigated the implication of feature selection and meta-feature, using a 

variety of dimension reduction procedures, on the SER performance across different 

types of emotional speech datasets we shall now focus on the effect of selected 

classifiers.   In this chapter, we highlight some drawbacks of the classifiers used in 

this thesis, and investigate the impact of various alternative classifier schemes. In the 

last chapter SVM and its variant DrSVM were adopted for SER and considered as 

one of the effective and commonly adopted classifier in SER. However SVM suffers 

from inefficient time complexity, and more importantly for unbalanced samples per 

classes its decisions tend to be biased toward classes with larger numbers of samples. 

We shall investigate and develop alternative classification models that avoid the 

drawbacks observed in the models presented in chapter five (See section 6.1). In (6.2) 

we present the results of experiments conducted on an SER scheme that uses LDA 

with SVM. In (6.3), we describe, discuss and test the use of the LDC as an 

alternative classifier. Section (6.4) covers the performance of various forms of 

ensembles and multi-level classification that aim to improve the recognition accuracy 

of SER. We shall investigate the possibility of using the ensemble schemes for 

emotion ranking in (6.5). Finally the conclusion is given in (6.7). 

6.1  SVM drawbacks 

The classification scheme is among the most important factors affecting the 

performance of any pattern recognition model. The dimension of the feature space, 

the number of categories\classes, and\or number of samples might each has its role in 

choosing the proper classification technique.  

Recent studies in SER, have frequently suggested SVM (Schuller, et al., 2009b; 

Batliner , et al., 2011; Hassan & Damper, 2012). It has already been tested in chapter 

5 with various pre-processing techniques. SVM is an affective classifier for high 

dimensional data and has become well known in the last few years in many different 

applications, including emotion recognition in speech. But it has some serious 

drawbacks that affect the model complexity and sometimes the performance. These 
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drawbacks are clearly observed as a consequent of the nature of the data chosen in 

this study in terms of being: 

1. High dimensional features space with inconsistent number of samples, which 

normally results in over-fitting problem. 

2. Imbalanced number of samples per classes in some of the datasets. 

3. The multi-class nature of most of the SER applications.  

In chapter 5, the issue of number of dimensions with the number of samples has been 

dealt with by meta-feature selection using PCA and RP. However the performance 

improvement of the PCA feature by the SVM model classifier was not as high as that 

for the RP projection. This might be because the selected meta-features using PCA 

are de-correlated and the density of samples in the reduced dimensional feature space 

is maximized; and thereby the SVM hyper-plane has less chance to separate the 

classes properly. While the BRP projection used in chapter 5 stretched the data such 

that the classes might be easier to be separated. However the use of BRP projection 

increases the complexity of SVM due to the difficulty in detecting support vectors in 

a random space. In this chapter we will investigate classification techniques 

consistent with the PCA like the Linear Discriminant Classifier (LDC), as an 

alternative for the SVM. 

The second issue of imbalanced number of samples per classes is solved using 

SMOTE (Chawla, et al., 2012). SMOTE create artificial samples to increase the 

number of samples of the minority classes. Most of the classifier like SVM and ANN, 

require almost balanced number of samples per classes for proper performance, 

because the decision of these classifiers is based on individual samples. The LDC 

classifier, on the other hand, is based on modelling samples of each class using 

multivariate Gaussian distribution, which needs computing mean and variance of 

each class. Therefore, the imbalance of number of samples per classes is not a 

serious disadvantage as long as each class are represented by a sufficient number of 

samples to ensure reasonable estimations of the distributions parameters. 

The third drawback is related to the difficulty of choosing a good multiclass model 

for the SVM, because SVM is a binary classification method.  Multiclass SVM 

classification needs more than one SVM machine to make a final decision (Hassan & 
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Damper, 2012). Again this is not necessary for LDC because it is a multi-class 

classification technique. 

In summary, LDC seems to provide a more appropriate alternative classifier for SER. 

However, LDC is not suitable for non-dense high dimensional feature space without 

a suitable dimension reduction technique like PCA, which produces a de-correlated 

set of meta-features. In the next section we shall present some experiments that also 

motivates choosing LDC in a de-correlated feature space. 

One other classifier that is reported to be comparable in its performance to SVM for 

SER is the Random Forest (RF) (Schuller, et al., 2007). RF is one of the ensemble 

techniques that build many decision trees, each of which is fed by randomly selected 

subset of the data.  

Inspired by the idea of ensembles approach to classification, we shall adopt different 

ensembles in this chapter. For example, by mimicking the RF approach using 

multiple LDC classifiers rather than decision trees. 

The ensemble method could also be adopted, using various samples of instances, 

each feed independent model followed by a majority voting for having the final 

decision. The various samples could also be taken from the features, i.e. the feature 

set is divided into a randomly chosen subsets of equal size each feed an independent 

model. 

In this chapter, we also propose yet another ensembles approach by choosing subsets 

of the meta-features, (using PCA in this chapter) to feed various models. We claim 

that subsets with different sizes of meta-feature present different representation of 

feature space, and will investigate its usefulness in SER in this chapter. 

The different recognition accuracies of emotional datasets are also analysed in this 

chapter, based on how single emotion or emotion related state is available in the 

same speech sample. We refer to the usefulness of presenting the score of emotion 

classes for each tested sample instead of presenting the final predicted label. This 

might be helpful for some promising application like emotion content browsing from 

speech signal. 
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6.2  The Linear Discriminant Analysis (LDA)  

In this section we shall present yet another motivation to use the LDC classifier for 

SER. Inspired by the fact that LDC is based on equivalent idea to the Fisher method 

of linear discriminating of classes (Fisher, 1936); we shall start by using LDA for 

dimension reduction, the SVM for classification, and follow the protocols used in 

chapter 5.  

LDA is a supervised dimension reduction aims to construct a meta-feature space, in 

which the classes’ samples are more separated. Fisher linear discriminant method 

aims to find directions, that minimize the within class variance and maximize the 

distances between the classes means. The objective of using the LDA in pattern 

recognition is manifested in reduced false rejection and false acceptance rates (i.e. 

increase the recall rate). In the last chapter, the meta-feature spaces were built using 

unsupervised methods such as PCA and RP. LDA can’t be applied when the number 

of samples is less than the number of dimensions. To overcome this problem, the 

PCA is usually applied as a pre-processing step to transform the data into another 

subspace of a lower dimension, which is less than the number of samples. Figures 6-

1, 6-2, and 6-3 show the recognition accuracy of this combined PCA-LDA meta-

feature selection model, for our 3 experimental databases, using the SVM classifier. 

The results show increased recognition accuracy of the model compared to the use of 

PCA alone. 

 

Figure 6-1: Recognition accuracy of Emo-Berlin using PCA pre-processing followed by LDA 
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Figure 6-2: Recognition accuracy of The Kurdish using PCA pre-processing followed by LDA 

 

Figure 6-3: Recognition accuracy of FAU-Aibo database using PCA pre-processing followed by 

LDA. 

In chapter 5, we presented the SER recognition accuracy achieved using PCA+SVM 

for the 3 experimental databases as 82.6%, 38.6 and 42.9% for Emo-Berlin, the 

Kurdish, and FAU Aibo datasets respectively. The above experiments show an 

average improvement of 4% - 6% in SER accuracy using PCA+LDA and the SVM 

classifier. In fact, this led to achieving 86.6%, 44.7% and 47.1% for Emo-Berlin, the 

Kurdish, and FAU Aibo datasets respectively.  

Having established that LDA helps improving accuracy using the SVM, and the fact 

that the Fisher discriminating method underpin both the LDA as well as the LDC 

classifier then it is more natural to exploit this common factor to try and use LDC the 

classifier on the PCA instead of the SVM. This will be done in the next section. 
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6.3 SER using LDC Classifier  

In this section we investigate the performance of a SER model based on using the OP 

features pre-processed by RP and PCA, with the LDC classifier. As mentioned 

earlier, the LDC assumes a multivariate normal distributed model for the samples of 

each class, which is usually approximated by using the covariance of the 

experimental samples. Again, all experiments follow the protocol that we described 

in chapter 5. 

6.3.1 Results and discussion  

The LDC relies on the assumption of multivariate Gaussian distribution of the 

clusters, and consequently works well with a de-correlated set of data (independent 

features). In the PCA, the eigenvectors (the principal components) that correspond to 

the most significant eigenvalues of the samples covariance matrix de-correlate the 

data and preserve the distribution of the projected samples much better than the RPs 

when using smaller number of dimensions. In tables 6-1, 6-2, and 6-3 the recognition 

accuracy achieved by the various meta-feature selection modes of the evaluated 

number of dimension for the three databases are presented. 

Table 6-1: Meta-feature techniques using LDC for Emo- Berlin database 

LDC-EMO 

SVM 

(ch5) WAR std of RPs Dim Ts_Time(s) Tr_Time (s) 

BRP 88.4 80.7 0.13 115 0.068 23 

Tn 86.1 75.3 0.08 155/43 0.08 24 

PCA_Aibo 84.7 85.4 - 75/22 0.01 11 

PCA_Emo 83.4 90.7 - 200/20 0.05 61 

PCA_KURDISH 81.5 83.5 - 80/26 0.05 12 

 

Table 6-2: Meta-feature techniques using LDC for Kurdish database 

LDC-Kurdish SVM (ch5)  WAR std of RPs Dim Ts_Time(s) Tr_Time (s) 

BRP  42.2 39.7 0.1 245.8/14.4 0.05 11.5 

Tn 40.6 38.6 0.12 229.2/33.4 0.04 23.7 

PCA_Aibo 38.3 42.9 - 195.8/33.42 0.06 79.2 

PCA_Emo 39.4 42.7 - 200/42.6 0.07 25.44 

PCA_KURDISh 38.2 43.5 - 190.9/30.1 0.07 372 
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Table 6-3: Meta-feature techniques using LDC for FAU-Aibo database 

LDC-Aibo 

SVM 

(ch5)  UAR std of RPs Dim Ts_Time(s) Tr_Time (s) 

BRP  46.5 43.1 0.4 500 0.06 45 

Tn 46.5 42.6 0.31 400 0.04 54 

PCA_Aibo 44 46.3 - 400 0.04 116.75 

PCA_Emo 42.9 43.6 - 500 0.05 23 

PCA_KURDISH 43.1 46.0 - 150 0.01 73 

 

Analysis of the results in the above tables can be summarized by the following 

observations and conclusions: 

1. In comparison with the previous result achieved when we used the SVM 

classifier; the recognition accuracy obtained by PCA+LDC is higher than 

PCA+SVM schemes when applied to all three datasets.  

2. The LDC model is simple to be built, and more efficient than classifiers that 

include optimization process in separating classes. The training stage 

consumes negligible time though it increases as number of samples increase. 

3. For each database, the best result of LDC is obtained when the PCA is trained 

on samples in the same database. This could be interpreted by the fact that 

PCA de-correlates the feature space; thereby the estimated multivariate 

Gaussian based parameters (e.g. mean and variance) are more accurate 

representation of the data than those obtained from other database samples. 

This also interprets the observation of that the PCA projections (PCA and 

DIPCA projections) outperform the RP projections in all the cases. 

4. We are not aware of any SER work that use dimension reduction for more 

than 1K features, although it could be useful for simple classification 

techniques like the LDC. 

The availability of different types of features/meta-features that are used in SER 

models and tested with classifiers is a motivation to investigate the use of ensemble 

classification in dealing with SER and the noted discrepancies in the pattern of 

accuracy achieved by the various schemes.  In the next section we shall adopt 

different kinds of ensembles and test their performances for the 3 databases. 
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6.4  Ensemble classification  

Ensemble classification consists of a set of models that are solving the same problem, 

with the aim of improving recognition accuracy. The models either use different 

classifiers trained by the same data (Boosting), or different versions of the data (e.g. 

differing in the selection samples/attributes) are used to train the same classifier 

(Bagging). The investigation made in this chapter is not interesting in using boosting 

approach, because the main aim of boosting classifier is to fit the as much as possible 

training samples. However, we observe that the data under investigation is not facing 

the problem of fitting the training samples, but rather the over-fitting is present. 

Consequently, the current investigations will focus on the Bagging approach to build 

ensembles for SER.  

Choosing M random sets of samples with replacement, or M random sets of 

attributes facilitate the creation of variety versions of the same data.  In both cases M 

models will be trained and final decisions are made according to a specific strategy 

that takes into account the decisions of all the models. Ensemble classification model 

trained by different random sets of samples/features is an attempt to train different 

models, in order to compensate for the incorrect decision of a classifier by other 

classifier(s). This might be helpful to avoid the drawbacks of the lack of “enough” 

samples for individual emotions. The ensemble model might be able to present the 

bigger picture of the SER model.  

A common strategy is the majority-voting rule where all decisions are assumed to be 

of the same weight. However, the final decision can be based on the level of 

confidence/reliability (represented by a score computed from the model) of the 

various decisions.  The score is a confidence measure how a single individual sample 

belongs to a class. In the case of LDC the test sample score is the posterior 

probability of each sample to belong to a class. The score gives more information 

about how a single sample belongs to a class in percentages (%). While the decision 

is scalar value refer to the class that the sample belongs to. 

Here we shall propose the following three different ensembles designed for SER: 

A. The first ensemble (Ens1 hereafter) consists of 5 models each of which 

trained using a set of random samples, chosen with replacement from the 

original data (66% of the data). While we are using LDC classifier, PCA is 
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applied to each of the selected data and first 200, 150, and 400 PCs (the 

average number of PCs that achieved the highest recognition accuracy) are 

chosen for the Kurdish, Emo-Berlin, and Aibo datasets respectively. The 

majority-voting rule of the output class labels and the averaging of all of the 

classes’ scores are computed to make the final decision.  

B. For the second ensemble (Ens2), we trained 5 models using random sets of 

features (2000 out of 6552 features), followed by PCA dimension reduction 

to (200, 150, and 400) dimensions for the Kurdish, Emo-Berlin, and Aibo 

datasets respectively. As in Ens1, the majority-voting rule of the class labels 

and the averaging of all of the classes’ scores computed to make the final 

decision.  

The aim of Ens2 is to investigate the ability of different feature subsets to 

influence emotion recognition, in addition to the possibility of modelling a 

more informative picture of the emotional feature space. 

C. The third ensemble (Ens3), use three models, trained by data that are subsets 

of meta-features including the highest 50, 150, and 250 PCs. Although, the 

first 50 PCs are included in the first 150, which in turn is also included in the 

first 250 subset of feature, they are assumed to show different shapes of 

classes’ clusters. These different meta-feature subset galleries increase the 

chance of all the samples to be represented using more transformed meta-

features in the PC space. Unlike Ens1 and Ens2, the subsets of features here 

are not randomly selected but rather it is determinant way. Therefore, for the 

final decision fusion at the score level is adopted using these three subsets of 

meta-features. Figure 6-4 demonstrates the designed fusion model. In this 

model we are weighting the scores for each model. The weights are validated 

using LOSO approach applied to the training set, result in 9-folds, 11-folds 

and 26-folds validating models for Emo-Berlin, the Kurdish and the FAU-

Aibo datasets respectively. Fusion of feature sets from different sites 

especially in biometrics is reported to improve the recognition accuracy.  
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Figure 6-4: Meta-feature subsets using PCA fused with LDC classifier 

6.4.1  Result and Discussion 

In table 6-4 we present the results obtained using Ens1, Ens2 and Ens3. The highest 

accuracy achieved in the last section using PCA+LDC is shown in the first column in 

order to enable comparison with what is achieved by the 3 ensemble schemes. For 

Ens1 and Ens2, the results also include the standard deviation of the ten experiments 

in order measure the spread of accuracy for the different randomly chosen 

sample/attributes in the different experiments. The pattern of recognition accuracy, 

achieved by the ensemble models in table 6-4, convey the following observations: 

1. The mean accuracy of Ens1 is marginally lower than that achieved by the 

PCA+LDC scheme, when applied to both Emo-Berlin and Aibo datasets. In 

fact taking into account the value of standard deviation over the 10 different 

repetitions, one can see that there would be random subsets of samples for 

which Ens1 has marginally better accuracy. While in the case of the Kurdish 

dataset Ens1 outperforms the PCA+LDC by more than 1.3% and taking into 

account the value of � one can see that Ens1 outperform the PCA+LDC for 

almost all random subsets of samples (µ-5*� > 43.5), i.e. the random data 
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subsets have more discriminating capability than the full set of samples after 

the application of PCA. This probably reflects the diversity of speakers 

experience in expressing emotions. Note that, when the mean of recognition 

accuracy of Ens1 is higher than the PCA+LDC baseline by more than 

3�, where � is the standard deviation of 10 experiments. 

Table 6-3: Recognition accuracy of Ens1, Ens2 and Ens3. MV refers to fusion at decision, and Sc 

to fusion at the Score level, while  µ and � refers to the average accuracy of 10 repetitions of 

experiments. 

 

PCA+LDC 
Ens1  Ens2 

Ens3 
MV(µ  \ �) Sc(µ  \ �) MV(µ  \ �) Sc(µ  \ �) 

Emo-Berlin 90.7 90.2\0.35 90.4\0.41 90.9\0.48 90.9\0.46 91.2 

Kurdish 43.5 44.8\0.17 44.9\0.25 45\0.33 44.8\0.24 44.9 

Aibo 46.3 45.9\0.33 45.6\0.41 47.1\0.25 46.8\0.17 47.3 

 

2. The Ens2 improves SER recognition accuracy above that of the PCA+LDC 

when applied to all the datasets. In other words, a collection of random 

subsets of OP features provides appropriate representation of emotion classes. 

3. No significant difference is observed between both majority rule and score 

fusion decision for Ens1 and Ens2 schemes. The score based fusion is more 

efficient when the models is fed by deterministic data (as in Ens3), thereby 

weighting of the models can be adopted to highlight the useful ones in 

making the final decision.   

4. Fusion using Ens3 outperforms the PCA+LDC scheme with significant 

accuracy ratio (45%, p=0.01 and 47.3%, p=0.02) for both Kurdish and Aibo 

datasets respectively. However in the case of Emo-Berlin dataset the 91.2% 

accuracy achieved by Ens3 is not significant at the 5% level. 

5. In relation to the performance of the Ens3, we argue that the first 50, 150, and 

250 PCs are different representations of the data; thereby weighting the 

models trained by those PC subsets improves the recognition accuracy.  

6. We validated the weights using LOSO approach cross-validation. For each 

speaker in the test set we generated a specific set of weights based on the rest 

speakers’ samples in the training set, i.e. the set of weights reflects how 

different sets of speakers’ data could contribute in model weighting. The set 

of weights generated for Emo-Berlin and the Kurdish dataset are 10 sets and 

12 sets respectively, because we apply 10-folds and 12-folds LOSO in testing 
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the model. In the case of the Aibo dataset, the weights are chosen for a single 

experiment. Table (6-5) shows the validated weights in Ens3 per each dataset. 

In summary, the limited amount of experiments demonstrates the use of Ensemble 

approach to improve SER accuracy above the traditional deterministic approaches. 

Table 6-4: Sets of validated weights per datasets in Ens3. 

Emo-Berlin The Kurdish  FAU-Aibo 

Sp. 50PC 150PC 250PC Sp. 50PC 150PC 250PC 50PC 150PC 250PC 

1 0.4 0.3 0.3 1 0.3 0.3 0.4 0.3 0.3 0.4 

2 0.4 0.5 0.1 2 0.3 0.4 0.3 

   3 0.5 0.1 0.4 3 0.5 0.1 0.4 

   4 0.3 0.5 0.2 4 0.1 0.6 0.3 

   5 0.5 0.3 0.2 5 0.1 0.8 0.1 

   6 0.2 0.5 0.3 6 0.5 0.2 0.3 

   7 0.5 0.3 0.2 7 0.2 0.4 0.4 

   8 0.5 0.4 0.1 8 0.4 0.5 0.1 

   9 0.4 0.4 0.2 9 0.3 0.4 0.3 

   10 0.5 0.4 0.1 10 0.5 0.2 0.3 

           11 0.4 0.3 0.3 

       12 0.3 0.6 0.1 

   Av. 0.42 0.37 0.21 Av. 0.32 0.4 0.275 

   Std 0.1 0.13 0.1 Std 0.14 0.2 0.11 

    

6.4.2 Multilevel SER system  

We now investigate a Multi-level Classifier (MC) approach to be built from the Ens3 

confusion matrices, which are presented below in Table 6-6, for each dataset. This 

rather limited experimental work on MC classifier presented here are only a pilot 

study, inspired by the work of Hassan et al. (Hassan & Damper, 2012) who devised 

an interesting NMDS graphical tool to represent similarities between classes 

obtained from the confusion matrices. The bigger the confusion entry the more 

similar their class are. Hassan et al. used this graphical representation of the 

confusion matrix in building hierarchical classifier models whereby the more 

confused classes\emotions are combined in super classes to be separated from the 

other classes at the first level.  

Given a confusion matrix, which may or may not be symmetric, with entries ܿ௜,௝, ݅, ݆ = ͳ, ʹ, … , -the k dimension NDMS is constructed by finding a set of k ܥ
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dimensional vectors ,ଵݔ  ,ଶݔ … , ஼ݔ , in which satisfies the following minimisation 

problem: 

min௫భ,௫మ,…,௫� ∑ሺ‖ݔ௜ − ‖௝ݔ − ܿ௜,௝ሻଶ 

Here, ‖. ‖ might be a metric or non-metric measurement. 

Table 6-5: Confusion matrix of the result obtained by Ens3. 

 
  Anger Happy Neutral Sad Fear Disgust Bored 

E
m

o
-B

er
li

n
 

Anger 94.5 3.9 0 0 1.6 0 0 

Happy 12.7 83.1 0 0 4.2 0 0 

Neutral 0 0 98.7 0 0 1.3 0 

Sad 0 0 0 96.8 0 3.2 0 

Fear 7.2 5.8 7.2 0 79.7 0 0 

Disgust 0 0 1.2 2.5 0 96.3 0 

Bored 0 4.3 2.2 0 4.3 2.2 87 

         

 
  Anger Happy Neutral Sad Fear Bored Surprise 

T
h

e 
K

u
rd

is
h

 

Anger 70.2 12.7 4.4 1.7 0.4 8.5 2.1 

Happy 6.9 40.6 7.5 17.1 4 16 7.9 

Neutral 2.1 11.5 51.3 16 2.7 13.8 2.7 

Sad 3.3 16.7 15.4 30.4 5.6 20.8 7.7 

Fear 0.4 2.5 2.9 8.5 54.4 7.1 24.2 

Bored 3.8 17.3 12.5 22.1 6.5 29.2 8.8 

Surprise 1.7 14.2 4 7.5 26.3 8.1 38.3 

         

 
  Anger Neutral Positive Rest Emphatic      

F
A

U
-A

ib
o

 

Anger 58.9 10.8 4.4 10 15.9 
  

Neutral 8.6 45.8 11.2 16.1 18.3 
  

Positive 3.2 21.8 54.8 17.6 2.7 
  

Rest 15.6 25.3 20.7 24.9 13.6 
  

Emphatic 15.2 19.5 3.8 9.5 51.9 
  

 

The two-dimensional NDMS of our confusion matrices are shown in Figures (6-5, 6-

6, and 6-7). Considering the NDMS graphs we adopt the Ens3 as our classification 

model, and design an MC classification for the three datasets as follows: 

A. For Emo-Berlin dataset we combined the Anger and Happy emotions in a 

superclass SC={Anger, Happy}, therefore the first level classification contains 

the classes {SC, Neutral, Sad, Fear, Bored, Disgust}. While for the second level 

the classes involved in the classification model are {Anger, Happy}. Note that in 
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this level the number of samples is less than 250 samples, and therefore 

choosing 250 PCs (as used in Ens3) is not applicable, and therefore we used 

50,100,150 PCs in the MC instead of 50, 150, 250 PCs.  

B. For the Kurdish dataset we defined CS1= {Surprise, Fear}, and SC2= {Bored, 

Sad}, therefore the regarded classes in the first level are {Anger, Happy, 

Neutral, SC1, SC2}. While in the second level a model is adopted to classify 

SC1 into Surprise and Fear, and another model to classify SC2 into Bored and 

Sad. 

C. Finally for Aibo dataset the classes {Anger, SC, Positive, Emphatic} are 

classified in the first level, where SC is defined as {Rest, Neutral}, which will be 

clasiified in the second level.  

 

Figure 6-5: NMDS for Emo-Berlin dataset. 

The recognition accuracy rate for the MC model is presented in table 6-7, and shows 

an improvement, albeit marginal, for both the Kurdish and Aibo datasets. The small 

number of samples in the Emo-Berlin dataset might be the reason for not improving 

the accuracy of MC over Ens3. To some extent in this case the MC is disadvantaged 

the small size of the samples available for training the 2
nd

 level. However the MC 

model applied to Aibo dataset show significant improvement (with p=0.048<0.05) of 

the SER using Ens3. For the Kurdish dataset no significant improvement is observed 

at (p=0.1>0.05). This result in table 6-7 shows also that our suggested models 

outperform the state of art results for all the used datasets. 
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Figure 6-6: NMDS for the Kurdish dataset. 

 

 

Figure 6-7: NMDS for FAU Aibo dataset 

 

Table 6-6: Multi level Classifier & Ens3 accuracy rate comparison with state of the art results 

 PCA+LDC Ens3 MC SOA 

Emo-Berlin 90.7 91.2 89.5 89.9 (Vlasenko, et al., 2007) 

Kurdish 43.5 44.9 45.5 -- 

Aibo 46.3 47.3 47.9 44 (Schuller, et al., 2011b) 

The limited success of this pilot study is a motivation to conduct a more extensive 

investigation into MC SER schemes. This may require, a modified strategy in 

creating super classes. 
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6.5 Towards emotional content browsing in speech 

The automatic score-based model evaluation of SER, done so far in this thesis, 

highlights the presence of a spectrum of various emotions in one speech portion, 

especially in the datasets that have high ratio of confusion between emotions. This 

has been consistently manifested in the various confusion matrices obtained 

throughout out the thesis, where we noted that only in the case of the Emo-Berlin 

dataset the confusion matrices had many zero entries, and there were no zeros in the 

confusion matrices for the other two datasets. The confusion matrix represents an 

aggregate of the accuracy using the scores from all the samples. Perhaps, a 

consideration of the scores for each sample may reveal more information on how the 

classification of each sample is reliable when the score of the sample for the other 

emotion is not much different to the accepted emotion class. The score-based 

decision reflects how far the score of the positive sample from the next negative one 

and judge the correct labelled samples, while ranking judges the incorrect labelled 

samples.  The spider chart provides a simple visualization of the above reliability of 

decision concept, whereby the tested sample is placed at the center of a spider web 

while the emotions are places at the corners. The scores for a sample are marked 

along the central line in the direction of the emotion. Here we use the spider chart to 

visualize the scores for any tested sample toward the available emotions, using scores 

obtained from the LDC classifier.  For example in testing one sample from the FAU-

Aibo (see Figure 6-8 C), the implemented spider chart shows that the sample is more 

likely to belong to Anger emotion (55%), the second possible emotion is the 

Emphasized emotion (37%), next emotions are Neutral, Positive, and Rest emotions 

for just 4%, 2%, and 2% scores respectively. Similar interpretation is correct for 

spider charts in Figure 6-8 A&B.  

The spider chart can be used to rank the sample with respect to the available 

emotions. Ranking based classification is a common practice in search engines, when 

searching for a specific term/object/item in text, music, speech, or by imaging. For 

instance Music Emotion Recognition (MER) is considerably studied in the research 

community because of the rich emotion content in music and human’s response to 

music listening is often related to emotion. Therefore, MER is considered as a 

promising means to enhance the organization, retrieval, and browsing of music 
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collection (Yang & H. Chen , 2011). Similarly, emotion content browsing in speech 

seems to be promising filed in improving high quality search engines.  

Ranking based emotion detection is helpful for emotion browsing, the aim being the 

detection and sorting the most similar instances to the browsed content. Emotional 

studies are rarely involved in applications of speech emotion ranking. However, 

emotion ranking was used in (Cao , et al., 2015) to improve the recognition accuracy 

of SER by adopting an emotion ranker using a pairwise SVM. 

An appropriate tool for measuring the ability of ranking is the Receiver Operating 

Characteristic (ROC) curve (See Figure 6-9). ROC plots a curve of the true positive 

rate (sensitivity) against false positive rate (1- specificity) for a binary classification. 

The area under the ROC (AUC) measures the model performance of having true 

positive against the false positive decision. The AUC is given by the following 

formula: 

� = ∑ ∑ ͳ௫೔>௬ೕ௡௝=ଵ௠௜=ଵ ݉݊  

Where x1, x2,… , xm are positive examples and y1, y2,…, yn are negative examples. 

High AUC refers to the good ability of classes ranking, while bad recognition 

accuracy refers to choosing a bad cut-point threshold. The AUC present the quality 

of the model regardless of the cut-point used by the classifier, which allows the 

ignored scores above or below that threshold to be represented. Now AUC for the 

ROC curve is computed for PC+LDC scheme, described in (6.3) for one emotion 

versus all others.  

In tables (6-8, 6-9, and 6-10) we present the confusion matrix, UAR, and AUC for 

each class against the rest of classes computed for the Emo-Berlin, FAU Aibo, and 

the Kurdish datasets. Significantly high AUC value is an indication of a good 

ranking quality of the model.  

Although the PCA+LDC model is not a ranked-based classification but, generally the 

observed high accuracy is comparable to the AUC, unless the cut point/threshold of 

the classifier is chosen badly especially when the threshold is significantly biased 

away from the Equal Error Rates (EER). Ranking the emotion of the Emo-Berlin 

dataset is high for all emotions, and the worse AUC is observed for Anger emotion. 
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This is due to the ability of the participant in suppressing all emotions but the one 

that they are asked to act. For the FAU-Aibo dataset the rest emotion class seems to 

be poorly ranked and it is comparable to its recognition accuracy. Finally in the case 

of the Kurdish dataset Bored and Sad emotions have small AUC as an indication to 

the bad ranking of the model towards these two emotions.  

 

Figure 6-8: Spider Chart of one sample from each dataset 
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Figure 6-9: ROC relation to other measurements 

 

 

Table 6-7: UAR, AUC for ROC curve for individual emotion vs. all, in Emo-Berlin database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EMO Confusion Mat. UAR AUC 

Angry vs. all 
0.625 0.375 

0.7412 0.8713 
0.14 0.8574 

Happy vs. all 
0.9525 0.0474 

0.8424 0.9289 
0.2676 0.7323 

Neutral vs. all 
0.921 0.0789 

0.9035 0.9656 
0.1139 0.886 

Sad vs. all 
0.9852 0.0147 

0.9926 0.9978 
0 1 

Fear vs. all 
0.9785 0.0214 

0.8370 0.969 
0.3043 0.6956 

Disgust vs. all 
0.9779 0.0220 

0.9704 0.9962 
0.0370 0.9629 

Bored vs. all 
0.9897 0.0102 

0.9079 98.81 
0.1739 0.8260 
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Table 6-8: UAR, AUC for ROC curve for individual emotion vs. all, in FAU-Aibo database 

 

 

 

 

 

 

 

 

 

Table 6-9: UAR, AUC for ROC curve for individual emotion vs. all, in Kurdish database 

Kurdish Confusion Mat. UAR AUC 

Anger vs. all 
0.7583 0.2416 

0.8560 0.9475 
0.0461 0.9538 

Happy vs. all 
0.7690 0.2309 

0.6720 0.7381 
0.425 0.575 

Neutral vs. all 
0.8329 0.1670 

0.7727 0.8589 
0.2875 0.7125 

Sad vs. all 
0.6902 0.3097 

0.6263 0.6691 
0.4375 0.5625 

Fear vs. all 
0.8517 0.1482 

0.7706 0.8653 
0.3104 0.6895 

Bored vs. all 
0.7024 0.2975 

0.5887 0.6316 
0.525 0.475 

Surprise vs. all 
0.7975 0.2024 

0.6873 0.7848 
0.4229 0.5770 

 

6.6 Conclusion 

To continue the work done in the last chapter, which was focused on dimension 

reduction techniques using SVM, the work in this chapter tries to overcome some 

Aibo Confusion Mat. UAR AUC 

Anger vs. all 
0.7184 0.2815 

0.7489 0.8175 
0.2206 0.7793 

Neutral vs. all 
0.6729 0.3270 

0.6663 0.7258 
0.3403 0.6596 

Positive vs. all 
0.7631 0.2368 

0.7281 0.7891 
0.3069 0.6930 

Rest vs. all 
0.6281 0.3718 

0.6126 0.6549 
0.40293 0.5970 

Emphatic vs. all 
0.7195 0.2804 

0.7096 0.781 
0.3003 0.6996 
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drawbacks of classification models like SVM in a high dimensional emotional 

feature by adopting PCA+LDC. PCA+LDC is a simple scheme showing good 

performance for SER. High dimensional emotional attributes pre-processed by PCA 

produces informative de-correlated emotional meta-features, which show reasonable 

capability to facilitate the classification procedure for the simple classifier LDC. 

However, RP projections with the LDC classifier have not achieved what was 

achieved by the PCA+LDC, due to the wide dispersion of the data distribution in the 

random subspace. 

The relatively modest number of experimentation with the ensemble of versions of 

PCA+LDC showed an improvement over the single PCA+LDC scheme. Those 

versions were based on training of selected subsets of samples or features. It was 

natural to investigate a new approach of the ensemble classifier using meta-feature 

subsets of the highest PCs (Ens3). This approach showed limited improvements over 

other ensemble schemes, and certainly over the state of art results, with (p=0.04, and 

p=ͳ.ͻ × ͳͲ−ଵ଴, for both Emo-Berlin and Aibo dataset). 

Consideration and visualization of the confusion matrices point towards the 

possibility of developing a multi-level classifier based on the entries in the confusion 

matrix, for improved SER accuracy. Indeed, the pilot study that used the Ens3 in a 

multi-level context we got improved recognition accuracy for the Aibo dataset.  

More research could reveal more insight into this problem/approach.  

The spider charts is a visualization of a score based ranking of emotion classes, that 

could aid in gaining more knowledge to shed a light on the many SER influencing 

factors (e.g. speaker, culture, age, and gender). But this requires extensive 

investigations.  
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7. Chapter Seven 

Conclusion 

This thesis was devoted to investigate, develop and test the performance of automatic 

computational tools to deal with the main challenges in SER from a pattern 

recognition point of view. These investigations primarily targeted the main 

components of pattern recognition solutions starting with feature extraction, feature 

selection and dimension reduction, and ending with classification. Right at the outset, 

we found that SER belongs to a category of pattern recognition applications where 

there are wide disagreements among researchers or different interpretation of the 

main objects and concepts under investigation. Even the list of emotions is subject to 

debate, let alone how to determine the emotional state of speaker or determine 

factors that influence the recognition of emotions expressed by speakers. These basic 

difficulties are the main obstacle to determine the quantitative features/attributes that 

help develop a mathematical model for SER. Moreover, data collection and 

construction of speech based emotion-related database, necessary to test the 

performance of SER algorithms, is challenge in itself.  

Our investigation into identifying speech signal features relevant to emotion 

recognition revealed a wide controversy in the literature on a limited set of features. 

Over the last two decades of SER research has led to the emergence of various types 

of acoustic features that can be extracted from the speech signal. In fact the non-

convincing accuracy rate obtained by the suggested SER models especially for 

spontaneous datasets, encourage researchers to seek more and more features resulting 

in feature vectors of dimension that amount to several thousands. The obvious 

pattern recognition approach to deal with a high dimensional model is the use of 

deterministic/non-deterministic dimension reduction and meta-feature selection 

procedures, while most existing SER research tend to rely on simplistic, albeit 

credible, feature selection procedures. Beside this what so called “curse of dimension” 

problem is related to the lack of sufficient density of samples available for training. 

In this thesis we dealt with the choice of adequate experimental datasets to test any 

recognition scheme to be developed, by conducting extensive experiments on three 

different datasets collected for different purposes. The first of these databases is an 
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acted data by professional actors (Emo-Berlin) and cleaned from the unconvincing 

samples, the second dataset is acted by non-professional actors (the Kurdish dataset). 

The third one is the non-acted FAU-Aibo dataset that involved young children 

speakers (10-13 years). The use of various kinds of datasets is meant to provide 

evidences on the reliability and extendibility of achieved accuracy results to data that 

are collected under different conditions. Moreover, such experiments are expected to 

shed light on effect of variation in the ability of the participants in expressing 

specific emotion while speaking as well as variation in the reliability of the aftermath 

labelling of samples by a range of people of variable expertise. 

The second issue that we confronted was the sufficiency, or otherwise, of currently 

researched sets of speech signal based emotion-related features. In chapter four we 

concluded that there are yet additional features, that are expected to have an impact 

on the expression of emotion during speech that may add information to the already 

high dimensional set of acoustic features. We proposed a set of features (ES) to be 

extracted from the LP-residual signal that models the excitation source of the speech 

signal, which is subjected to removing the influence of the vocal tract system. The 

ES is of relatively small dimension compared to the high dimensional features 

known as OP in this thesis. The experiments conducted in chapter 4 have 

demonstrated that the proposed ES features do indeed have complementary 

information of the OP features for improved accuracy. 

The effect of various sets of features can be more highlighted by fusing them at the 

classification level. We evaluated weights for the decisions of models trained by ES 

and OP features using ANN and SVM classifiers. The fusion weights quantify the 

contribution of each feature sets to SER performance. For the developed weighted 

fused scheme we observed that ANN classifier is more effective by using it in a 

pairwise approach for SER. The pairwise network is simpler in terms of computation 

especially for high dimensional data, and is convenient for fusing with pairwise-

based classification models like the SVM. However, the high dimensionality of the 

feature vectors (more than 6.5K dimension) raises reasonable questions about the 

possibility of the presence of redundant and correlated features/attributes. Although it 

is logical to assume the presence of redundancies, but proving this mathematically is 

not realistic due to the fact that we only know relatively small set of sample feature 

vectors whose attributes may be subject to computational errors. The alternative 
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would be to use dimension reduction and feature selection to remove redundancies 

and/or to eliminate the influence of features that have minute/marginal contribution 

to accuracy.   The ANN with one hidden layer (as used in chapter four), compress the 

input feature vector in the hidden layer, which is mapped later to one target output 

node. The ANN outperforms the SVM in the case of FAU-Aibo, and the Kurdish 

datasets, in which high confusion between classes is present, i.e. the accuracy rate for 

these two datasets is low (<50%). The high recognition accuracy obtained by ANN 

when using the high dimensional feature set (OP) encouraged and motivated the 

investigation of different dimension reduction methods in chapter 5. 

We have investigated various approaches of dimension reduction in order to reduce 

the redundancy and correlation that is more likely to be present in high dimensional 

attributes obtained from a relatively small set of speech signal samples. Although, 

recent researchers suggested the usefulness of these approached for SER, the feature 

selection approach largely remained the most common way of dealing with curse of 

dimension. But adopted feature selection approaches are expected to leads to ignore 

vital information provided by the discarded features. Moreover, feature selection 

methods in a high dimensional feature space is either not efficient when using 

wrapper approach, or it might not be consistent with the classification technique 

when using filter approach. However, instead of dismissing feature selection 

approach altogether, we used feature selection methods that exploit the data-sparsity 

characteristics and a modified version of the SVM classifier, called DrSVM, which 

uses the l1 minimization as an approximation for minimizing the cardinality of the set 

of the selected features. This approach was outperformed by, or had comparable 

performance to, the use of the whole set of features and even by the use of a random 

feature selection, which further encouraged seeking another alternative.  

Based on the conclusions above, we tried to extract and select meta-features, which 

are attributes selected from the transformed space by different projection matrices 

like PCA and RP projections. The performances of these kinds of pre-processing 

techniques depend on the used classifier techniques. Our experiments have shown 

that data pre-processing by the Binary RP can have an adaptation role, which helps in 

reducing over-fitting when used with SVM classifier. But this is not the case when 

using the BRP matrices with the LDC classifier, due to the difficulty in estimating 

the statistical parameters in a random subspace, which are vital in building the LDC 
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model. On the other hand, the PCA de-correlates the meta-features and thereby 

fitting the requirements of the LDC procedure that is based on the assumption that 

the classes’ samples has a Gaussian distribution.  Our investigations of dimension 

reduction techniques from more than 1K features using PCA or RP projections for 

SER, which has not been investigated so far; highlight the usefulness of meta-

features in terms of efficiency and performance. Meta-features extracted by PCA and 

classified by LDC improve the results of the SER to 90.7%, 43.2%, and 46.3 for 

Emo-Berlin, the Kurdish and FAU-Aibo datasets respectively. Additionally 

PCA+LDC takes negligible time in model training.  

Extracting and selecting meta-features using adaptive projections (like PCA) and 

non-adaptive ones (like RPs), was based on using the emotional dataset in training 

the PC projections or building projection matrices of random numbers which are 

totally independent from the data used in training the classifier. However, the 

question was what if the PC projection is trained using another emotional or Neutral 

speech samples. To answer such questions we conducted experiments to investigate 

the use of PC projections, trained by one emotional dataset or trained by datasets that 

are not relevant to emotions or speech, to classify data samples from another dataset. 

The PC projections trained by emotional speech samples that are not involved in 

classifying the data, followed by SVM classifier, show comparable accuracy rate to 

the PC projection of the data involved in the classification stage. And interestingly 

the PC projection matrices by Neutral speech samples also showed good capability in 

capturing the principal components of another emotional data. The Neutral class of 

emotion is assumed to be with score zero in the emotional primitives\dimensions like 

Arousal and Valence. Consequently, adequate number of Neutral samples shows 

usefulness in representing the correlations of emotional speech attributes. Although 

the use of PC projections trained on Mammogram image data did not achieve 

comparable accuracy, but their performance was far from disastrous. In conclusion, 

using PC’s trained on non-speech data or even mix of different type of data require 

further investigations in the future.   

The idea of extracting features from the emotional data is to present the more 

“representative” picture of the emotional speech samples. It would be useful to have 

different models that solve the same problem. To satisfy this target, we investigated 

the use of ensemble classifiers. The thesis consists of three forms of suggested 
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ensembles that are based on selecting random subsets from the speech samples, 

random subsets from the feature sets, and finally using three subsets of meta-features 

extracted by PCA. The ensembles prove the possibility of improving the recognition 

accuracy rate, as an indication that each random subset from the features might draw 

a different picture of the emotional population, such that each of these 

representations are not linearly dependent i.e. they are non-redundant portions in the 

whole picture. There are many other possibilities of designing ensemble classifier 

like fusing various subsets of data and classifiers, which we expect to provide new 

avenues to be investigated in the future. 

Despite the extensive experimentation and the various tested SER schemes a 

puzzling, though expected, observation continued to come to the fore.  A huge gap in 

the SER accuracy rates are achieved by each of the emotion recognition schemes, 

including the SOA schemes, when tested on “acted” and on “non-prompted 

databases. We presented few arguments to explain the presence of this gap. But an 

important plausible explanation, supported by the results of our various 

investigations, is the presence of information relevant to more than one emotion in 

the same portion of a speech sample. This could be interpreted by the problem of 

labelling the emotional speech samples. For instance in a subjective test made for the 

Kurdish dataset the correct labelling of the emotional recordings by 10 listeners was 

just 41%. Any pattern recognition model is expected to achieve accuracy rate close 

to what obtained by human capability. We can conclude that the speech signal is not 

sufficiently adequate source of information about the full picture of emotions. In this 

respect we note that the human ability of recognizing emotions from the speech 

signal uttered by others is reported frequently to be non-convincing. 

The various experimental work, conducted in this thesis, together with experience 

gained by researchers in data mining and pattern recognition provide convincingly 

credible argument that this performance gap in the accuracy of emotion recognition 

from speech could not be dealt with as a simple classification problem. In other 

words speech is not sufficient for emotion recognition, and the same speech portion 

maybe modulated by a spectrum of different emotions, especially in the non-

prompted datasets. Our argument is based on the fact that these databases are 

recorded under different circumstances and for different purposes. In general, 

determining the emotion of a person from a recorded speech, by human observers, is 
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a very difficult task without access to facial expressions and/or bodily gestures 

during the uttering of the speech. This is exactly what happened when recording the 

non-prompted databases, which were supposed to capture emotions from the real life 

speech. This difficulty explains the rather low accuracy rates for the FAU Aibo and 

the Kurdish datasets. Although the Kurdish database is acted database; but the 

speaker are told to act the emotions using their own style, and all of the produced 

sentences have been involved in the study without removing the unconvinced ones. 

In the case of the acted Emo-Berlin datasets the subjects obviously attempt to 

suppress all but one emotion that they are asked to stress, and consequently all the 

schemes achieve significantly higher accuracy. A sceptic may refute this last 

argument by pointing out that the best accuracy rate is a mere 91.2%. However, we 

argue that achieving higher accuracy over prompted/acted datasets is certainly 

possible but this requires the speakers to be professional actors of higher standard 

than participants in existing databases. In fact, the Emo-Berlin database was designed 

for emotion synthesis purpose (not recognition), and according to the documentation 

of the database about 250 samples out of original 800 recording samples have been 

removed from the dataset due to variation in expert listeners judgment.  

The above discussion, together with the observations depicted in the presenting the 

model recognition scores in terms of Spider charts, motivate our hypothesis, to be 

investigated in the future, that emotion recognition from speech should not be dealt 

with as a simple classification problem. In other words speech is not sufficient for 

emotion recognition, but the same speech portion maybe modulated by a spectrum of 

different emotions, especially in the non-prompted scenarios.  

Along the investigation made in this thesis, we recommend to further investigate 

SER with regards to the following issues in the future to shed more light on the 

various challenges discussed in this thesis: 

1. The use of boosting based ensemble classification; thereby incorporate 

various classifier techniques in building an SER. To avoid possible over-

fitting that may occur by the boosting approach in the context of high 

dimensional feature vectors, we recommend the use of a hybrid ensemble 

classifier that include the bagging approach by having various random 
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subsets of features each subset is classified by a number of classifiers in a 

boosting model. 

2. The investigation made in chapter 6, refer to the possibility of using Speech 

Emotion ranking for the promising application of Speech Emotion Browsing 

(SEB). This approach is also requiring further investigations. 

3. During the extensive speaker independent based SER experiments in this 

thesis, we have observed different level of contributions to SER accuracy for 

different groups of speakers. This observation encourages investigating the 

“Doddington Zoo” problem, which is well-known problem in biometric area. 

Here, the speakers would be marked as sheep, goat, lamb, or wolf based on 

the speaker samples contribution in the SER accuracy in terms of their 

confusion matrix. We recommend this investigation to have more information 

about the speaker “ability” of expressing emotion.  This could also lead to 

developing speaker-dependent SER schemes.  

4. For more reliable emotion recognition system, it is necessary to focus on 

multimodal approach to be fed from various sources of information like face, 

speech and gesture. 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

Bibliography 

Achlioptas, D. (2003), Database-friendly random projections: Johnson-

Lindenstrauss with binary coins, Computer and System Sciences , Volume 66, pp. 

671–687. 

Anill, K. & Robet, P. W. (2000). Statistical Pattern recognition: A review, IEEE 

transaction on Pattern analysis and machine intellegence, 22(1), pp. 4-37. 

Bach, F., Jenatton, R., Mairal, . J. & Obozinski, G. (2011), Optimization with 

Sparsity-Inducing Penalties, Foundations and Trends in Machine Learning, 4(1), 

pp. 1–106. 

Bai, J. (2011). Estimating High Dimensional Covariance Matrices and its 

Applications, Annals of Economics And Finance, 12(2), pp. 199-215. 

Batliner, A., Steidl, S. & Noth, . E. (2008a), Releasing a thoroughly annotated 

and processed spontaneous emotional database: the FAU Aibo Emotion Corpus, 

Marrakesh, Satellite Workshop of LREC 2008 on Corpora for Research on 

Emotion and Affect. pp. 28-31. 

Batliner, A., Schuller, B., Schaeffler, S. & Steidl, S. (2008b), Mothers, adults, 

children pets: towards the acoustics of intimacy, Las Vegas, IEEE- ICASSP, p. 

4497 - 4500. 

Batliner, A., Stiedl, S. & Noth, E. (2008c). Private Emotion vs. Social intraction 

a Data driven Approach toward Analysis Emotion in Speech, User Modelling and 

User-Adapted Intraction (umani), 18(1-2), pp. 175-206. 

Batliner , A. et al. (2011), Whodunnit – Searching for the most important feature 

types signalling emotion-related user states in speech, Computer Speech & 

Language, 25(1), pp. 4 - 28. 

Bermejo, P., de la Ossa, L., Gamez, J. & Puerta, J. (2012). Fast wrapper feature 

subset selection in high-dimensional datasets by means of filter re-ranking, 

Knowledge-Based Systems, pp. 35-44. 



127 

 

Beyer , K. S., Goldstein, J., Ramakrishnan, R. & Shaft, U.(1999), When Is 

''Nearest Neighbor'' Meaningful?, London, UK, 7th International Conference on 

Database Theory, pp. 217-235. 

Bingham, E. & Mannila, H. (2001), Random projection in dimensionality 

reduction: applications to image and text dat, New York, NY, USA, 7th ACM 

SIGKDD international conference on Knowledge discovery and data mining, pp. 

245-250. 

Buckow, J. et al. (1999), Fast and robust features for prosodic classification, In: 

V. Matousek, P. Mautner, J. Ocelíková & P. Sojka, eds. Text, Speech and 

Dialogue. pp. 193-198. 

Burkhardt, F. et al. (2005). A database of german emotional speech. Lissabon, 

Interspeech, pp. 1517-1520. 

Candes, E. J. & Tao, T. (2005), Decoding by linear programming, Information 

Theory, IEEE Transactions on, 15(12), pp. 4203-4215. 

Candès , E. J. & Wakin, M. B. (2008), An Introduction To Compressive Sampling, 

IEEE Signal Processing Magazine, MARCH , 25(2), pp. 21-30. 

Cao , H., Verma , R. & Nenkova, A. (2015), Speaker-sensitive emotion 

recognition via ranking: Studies on acted and spontaneous speech, Computer 

Speech & Language, 29(1), pp. 186 - 202. 

Carlos , R., Vladik , K. & Miguel , A. (2013), Why ℓ1 Is a Good Approximation 

to ℓ0: A Geometric Explanation, Journal of Uncertain Systems, 7(3), pp. 203-207. 

Chauhan, A., Koolagudi, S. G. & Kafle, S. (2010), Emotion Recognition using 

LP Residual, IIT Kharagput, IEEE Students' Technology Symposium, pp. 255-

261. 

Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. (2012), SMOTE: 

Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence 

Research, Volume 16, pp. 321–357. 

Chen , L., Mao , X., Xue , Y. & Lung , L. (2012), Speech emotion recognition: 

Features and classification models, Digital Signal Processing, 22(6), pp. 1154–

1160. 



128 

 

Cortes, C. & Vapnik, V. (1995), Support-Vector Networks, Machine Learning, 

20(3), pp. 273-297. 

Cover, T. & Hart, P. (1967), Nearest neighbor pattern classification, Information 

Theory, IEEE Transactions, 13(1), pp. 21-27. 

Cowie, R. et al. (2001a), Emotion recognition in human–computer interaction, 

IEEE Signal Process. Mag., 18(1), pp. 32–80. 

Cowie, R., Sussman, N. & Ben-Ze’ev, A. (2001b), Emotion: Concepts and 

Definitions, In: Emotion-Oriented Systems: The HUMAINE Handbook, Verlag 

Berlin(Heidelberg): Springer, pp. 9-30. 

Dalal , N. & Triggs , B. (2005), Histograms of oriented gradients for human 

detection,  IEEE-Computer Vision and Pattern Recognition, pp. 886-893. 

Daniel , N., Kjell , E. & Kornel , L. (2006), Emotion Recognition in Spontaneous 

Speech Using GMMs, Pittsburge, PA, USA, Interspeech, pp. 809-812. 

Dasgupta, S. (1999), Learning Mixtures of Gaussians, IEEE Symposium on 

Foundations of Computer Science, PP. 634-644. 

Dietterich, T. G. (1997), Machine Learning Research: Four Current Directions, 

Artificial Intelligence Magzine, Volume 4, pp. 97-105. 

Dietterich, T. G.(2000), Ensemble methods in machine learning, In: Multiple 

classifier systems, Springer Berlin Heidelberg, pp. 1-15. 

Douglas-Cowie, E. et al. (2005), Multimodal Databases of Everyday Emotion: 

Facing up to Complexity, Lisbor, Portugal, Interspeech, pp. 813-816. 

El Ayadi, M., Kamel , M. S. & Karray, F. (2011). Survey on speech emotion 

recognition: Features classification schemes and databases, Pattern Recognition, 

44(3), pp. 572 - 587. 

Elfenbein, H. A. & Ambady, N. (1986), On the universality and cultural 

specificity of emotion recognition: A meta-analysis, Psychological Bulletin , 

28(2), pp. 203–235. 

Emmanuel, J. & Wakin, M. B. (2008), An introduction to compressive sampling, 

Signal Processing Magazine, IEEE, 25(2), pp. 21-30. 



129 

 

Engberg, I. S. & Hansen, A. V. (2007), Documentation of the Danish Emotional 

Speech Database, Internal AAU report, Center for Person Kommunikation, 

Denmark, 22.  

Eyben, F. et al. (2010a), Cross- corpus classification of realistic emotions: some 

pilot experiments, Valletta, Malta, 7th International Conference on Language 

Resources and Evaluation (LREC), pp. 77–82. 

Eyben, F., Wöllmer, M., & Schuller, B. (2009), OpenEAR—introducing the 

Munich open-source emotion and affect recognition toolkit, In Affective 

Computing and Intelligent Interaction and Workshops, 2009, ACII 2009, 3rd 

International Conference on, pp. 1-6. 

Eyben, F., Wöllmer, . M. & Schuller, B. (2010b), openSMILE - The Munich 

Versatile and Fast Open-Source Audio Feature Extractor, Firenze, Italy, ACM 

Multimedia (MM), ACM, pp. 25-29. 

Fant, G. (1970), Acoustic theory of speech production, Mouton, The Hague, Paris, 

Volume 2. 

Farrús, M., Hernando, J. & Ejarque, P. (2007), Jitter and Shimmer Measurements 

for Speaker Recognition. Proceeding of Interspeech, pp. 778-781. 

Fisher, R. A. (1936), The use of multiple measurements in taxonomic problems, 

Annals of eugenics, 7(2), pp. 179-188. 

Gobl , C. & Chasaide, A. N. (2003), The role of voice quality in communicating 

emotion, mood and attitude, Speech Communication, 40(1-2), pp. 189 - 212. 

Hansen , J. & Bou-Ghazale , S. (1997), Getting started with susas: A speech 

under simulated and actual stress database. Rhodes, Greece, ISCA-Eurospeech, 

pp. 1743–1746. 

Hansen , J. H. & Cairns, D. A. (1995), ICARUS: Source generator based real-

time recognition of speech in noisy stressful and Lombard effect environments, 

Speech Communication, 16(4), pp. 391 - 422. 

Hassan, A., & Damper, R. (2010), Multi-class and hierarchical SVMs for 

emotion recognition,  Proceedong of Interspeech 11
th

, pp. 2354-2357.  



130 

 

Hassan, A. & Damper, R. (2012), Classification of emotional speech using 3DEC 

hierarchical classifier. Speech Communication, Volume 54, pp. 903-916. 

Hassan , A. & Damper, R. (2013), On Acoustic Emotion Recognition: 

Compensating for Covariate Shift, IEEE Transaction on Audio, Speech, and 

Languege Processing, July, 21(7), pp. 1458-1468. 

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical 

Learning, 2
nd

 ed. New York: Springer New York Inc. 

Heaton, J. (2008), Introduction to Neural Networks for Java, Heaton Research. 

Hecht-Nielsen, R. (1994), Context vectors: general purpose approximate 

meaning representations self-organized from raw data, Computational 

Intelligence: Imitating Life, pp. 43–56. 

Hsu, C.-W., Chang, C.-C. & Lin, C.-J. (2010), A Practical Guide to Support 

Vector Classification, Tech. rep., Department of Computer Science, National 

Taiwan University. 

Johnson , W. B. & Lindenstrauss, J. (1984), Lipshitz mapping into Hilbert space, 

Modern Analysis and Probability, pp. 189-206. 

Jolliffe, I. T. (2002), Principal Component Analysis, Second ed. New York: 

Springer. 

Kanade, T., Cohn, J. F. & YingLi , T. (2000), Comprehensive database for facial 

expression analysis, 4th IEEE International Conference on Automatic Face and 

Gesture Recognition, pp. 46-53. 

Kojadinovic, I. & Wottka, T. (2000), Comparison between a filter and a wrapper 

approach to variable subset selection in regression problems, European 

Symposium on Intelligent Techniques (ESIT). 

Koolagudi, S. G. & Rao, K. S. (2012a), Emotion recognition from speech using 

source, system, and Prosodic features, Intrenational Speech Technology, 15(2), 

pp. 265-289. 

Koolagudi, S. G. & Rao, K.  S. (2012b), Emotion recognition from speech: a 

review, International Journal of Speech Technology, 15(2), pp. 99–117. 



131 

 

Lee , C. et al. (2011), Emotion recognition using a hierarchical binary decision 

tree approach, Speech Communication, 53(9), pp. 1162–1171. 

Lee, C. M. & Narayanan, S. S. (2005), Towards detecting emotions in spoken 

dialogs, IEEE Transactions on Speech and Audio Processing, 13(2), pp. 293-303. 

Leinfelder, H (1979), A geometric proof of the spectral theorem for unbounded 

self-adjoint operators, Mathematische Annalen, 242(1), pp. 85-96. 

Liu, D., Qian, . H., Dai, G. & Zhang, Z. (2013), An iterative SVM approach to 

feature selection and classification in high-dimensional datasets, Pattern 

Recognition, 46(9), pp. 2531–2537. 

Long Pao , T., Chen, Y.-T., Heng Yeh , J. & Hao Chang , Y. (2005), Emotion 

Recognition and Evaluation of Mandarin Speech Using Weighted D-KNN 

Classification, Tainan, Taiwan, The Association for Computational Linguistics 

and Chinese Language Processing (ACLCLP), pp. 203-212. 

Malandrakis , N., Potamianos , A., Evangelopoulos , G. & Zlatintsi , A. (2011), A 

Supervised Approach To Movie Emotion Tracking, Prague, IEEE-Acoustics, 

Speech and Signal Processing (ICASSP), pp. 2376 - 2379. 

Martin, O., Kotsia, I., Macq, B. & Pitas , I. (2006), The eNTERFACE’05 Audio-

Visual Emotion Database, Data Engineering Workshops, Proceedings, 22nd 

International Conference on IEEE, pp. 8-8. 

Mika, S. et al. (1999), Kernel PCA and De-Noising in Feature Spaces, MIT 

Press-Advances In Neural Information Processing System, pp. 536-542. 

Moon, H. & Phillip, J. P. (2001), Computational and performance aspects of 

PCA-based face-recognition algorithms, Perception-London, 30(3), pp. 303-322. 

Murray, I. & Arnott, J. (1993), Toward the simulation of emotion in synthetic 

speech: a review of the literature on human vocal emotion, The Journal of the 

Acoustical Society of America, 93(2), pp. 1097–1108. 

Muto, M., Kato, H. & Tsuzak, M. (2005), Effect of speaking rate on the 

acceptability of change in segment duration, Speech Communication, 74(3), pp. 

277 - 289. 



132 

 

Ortony, A. & Turner, T. J. (1990), What's Basic About Basic Emotions?, 

Psychological Review, 97(3), pp. 315-331. 

Oster, A. & Risberg, A. (1986), The identification of the mood of a speaker by 

hearing impaired listeners, STL-QPSR, 27(4), pp. 79-90. 

Ou, G. & Murphey, Y. L. (2007), Multi-class pattern classification using neural 

networks, Pattern Recognition, 40(1), pp. 4-18. 

Paliwal, K. K. (1998), Spectral subband centroid features for speech recognition, 

IEEE- Acoustics, Speech and Signal Processing,  pp. 617-620. 

Pao , T., Chen , Y., Yeh , J. & Chang , Y. (2005), Emotion recognition and 

evaluation of Mandarin speech using weighted D-KNN classification, Conference 

on Computational Linguistics and Speech Processing XVII, pp. 96-105. 

Paulo, P. M., Larry, E. B. & Leslie, S. G. (1999), Emotion Recognition in 

Psychotherapy: Impact of Therapist Level of Experience and Emotional 

Awareness, Journal Of Clinical Psychology, 55(1), pp. 39-57. 

Pérez, H., Carlos, R. A. & Luis, V. (2012), Acoustic feature selection and 

classification of emotions in speech using a 3D continuous emotion model, 

Biomedical Signal Processing and Control, 7(1), pp. 79-87. 

Petrushin, V. A. (1999), Emotion in Speech: Recognition and Application to Call 

Centers, Artificial Neural Networks in Engineering, pp. 7-10. 

Picard , R. W., Vyzas , E. & Healey , J. (2001), Toward Machine Emotional 

Intelligence: Analysis of Affective Physiological State, IEEE Transactions On 

Pattern Analysis And Maghine Intellegence , 23(10), pp. 1175-1191. 

Pudil, P., Novovičová, J. & Kittler, J. (1994), Floating search methods in feature 

selection, Pattern Recognition Letters, Nov., 15(11), pp. 1119-1125. 

Rabiner , L. & Juang , B. (1993). Fundamentals of Speech Recognition. 1
st 

ed. 

Rabiner, L. R. & Schafer, R. W. (2007), Introduction to Digital Speech 

Processing, Foundations and Trends in Signal Processing, 1(1-2), p. 1–194. 

Rahimi , A. & Recht , B.(2007), Random Features for Large-Scale Kernel 

Machines, In Advances in neural information processing systems, pp. 1177-1184. 



133 

 

Scherer, K. R. (2000), Psychology models of emotion, In: J. Borod, ed. The 

neuropsychology of emotion. Oxford University press ed. pp. 137-166. 

Scherer, K. R., Banse, R. & Wallbott, H. G. ( 2001), Emotion Inferences From 

Vocal Expression Correlate Across Languges and Cultures, Journal of Cross-

Cultural Psychology, 32(1), p. 76–92. 

Schipor , O. A., Pentiuc , S. G. & Schipor , M. D. (2011), Towards a Multimodal 

Emotion Recognition Framework to Be Integrated in a Computer Based Speech 

Therapy System, Brasov, Speech Technology and Human-Computer Dialogue, 

pp.1-6. 

Schuller, B., Müller, R., Lang, M. & Rigoll, G. (2005a), Speaker Independent 

Emotion Recognition by Early Fusion of Acoustic and Linguistic Features within 

Ensembles. Interspeech, ISCA, pp. 805-809. 

Schuller, B. et al. (2005b), Speaker independent speech emotion recognition by 

ensemble classification, IEEE International Conference on Multimedia and Expo, 

ICME, pp. 864-867. 

Schuller, B. et al. (2007), The Relevance of Feature Type for the Automatic 

Classification of Emotional User States: Low Level Descriptors and Functionals, 

Antwerp, Belgium, interspeech, pp. 2253-2256. 

Schuller, B. & Batliner, A. (2009a), The Interspeech 2009 Challenge, Brighton 

UK, Intrespeech 09, pp. 312-315. 

Schuller, B., Vlasenko, B. & Florian , E. (2009b), Acoustic Emotion Recognition: 

A Benchmark Comparission of Performance, IEEE Workshop on Automatic 

Speech Recognition & Understanding. 

Schuller, B. et al. (2011a), Interspeech 2011 speaker state challenge,  Florance, 

Italy, 12th Annual Conference of the International Speech Communication 

Association, pp. 3201-3204. 

Schuller, B., Batliner, A., Steidl, S. & Seppi, D. (2011b), Recognising realistic 

emotions and affect in speech: State of the art and lessons learnt from the first 

challenge, Speech Communication, 53(9), p. 1062–1087. 



134 

 

Shuhong, J., Gesen, Z., Ping, C. & Xiaoli, X. (2010), Bernoulli Compressed 

Sensing and Its Application to Video-Based Augmented Reality, Journal of 

Computational Information Systems, 6(14), pp. 4819-4826. 

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, 

Volume 26, CRC Press.  

Simmons, S., Peng, . J., Bienkowska, J. & Berger, B. (2015), Discovering What 

Dimensionality Reduction Really Tells Us About RNA-Seq Data, Journal of 

Computational Biology, 22(8), pp. 1-14. 

Slaney, M. & McRoberts, G., (1998), Baby Ears: A Recognition System For 

Affective Vocalizations, IEEE-International Conference on Acoustics, Speech, 

and Signal Processing (ICASSP), pp. 1-4. 

Solomon , R. (1980), The opponent-process theory of acquired motivation: the 

costs of pleasure and the benefits of pain. American psychologist, 35(8), pp. 691. 

Soma, K., Joyanta, B. & Milton S., B. (2012), Performance evaluation of pbdp 

based real time Identification system with normal MFCC vs MFCC of residual 

features, Perception and Machine Intelligence, Lecture Notes in Computer 

Science, pp. 358-366. 

Steidl, S. (2009), Automatic classification of emotion-related user statesin 

spontaneous childern's speech, PhD thesis, Depatrment of Computer Science, 

University of Erlangen-Nuremberg, Germany. 

Vlasenko, B., Schuller, B. & Wen, A. (2007), Combining Frame and Turn-Level 

Information for Robust Recognition of Emotions within Speech, Antwerp, 

Belgiume, Interspeech. 

Vogt , T., Wagner, J. & André, E. (2008), Automatic Recognition of Emotion 

from Speech: A Review of the Literture and Recommendtions for Practical 

Realisation, Affect and emotion in HCI, pp. 75-91. 

Vogt, T. & Andre, E. (2005), Comparing feature sets for acted and spontaneous 

speech in view of automatic emotion recognitio,. IEEE International Conference 

on Multimedia and Expo-ICME, pp. 474 - 477. 



135 

 

Wang , L., Zhu , J. & Zou, H. (2006), The doubly regularized support vector 

machine, Statistica Sinica, 13(2), pp. 589-616. 

Webb, A. R. (2002), Statistical Pattern Recognition, Second ed. Malvern, John 

Wiley & Sons. 

Williams, C. E. & Stevens, K. N. (1972), Emotions and Speech: Some Acoustical 

Correlates, The Journal of the Acoustical Society of America, 52(4), pp. 1238-

1250. 

Yang , Y.-H. & H. Chen , H. (2011), Ranking-Based Emotion Recognition for 

Music Organization and Retrieval, IEEE Transactions On Audio, Speech, And 

Language Processing, 19(4), pp. 762-774. 

Yang, B. & Lugger, M. (2010), Emotion recognition from speech signals using 

new harmony features, Signal Processing, 90(5), p. 1415–1423. 

Yessad , D. & Amrouche , A. (2012), SVM based GMM Supervector Speaker 

Recognition using LP Residual Signal, Lectures Notes in Electrical Engineering, 

June.pp. 579-586. 

Yeung, K. Y. & Ruzzo, W. L. (2001), Principal component analysis for 

clustering gene expression data, Bioinformatics, 17(9), pp. 763-774. 

Yoo, S. H., Matsumoto, D. & LeRoux, J. A. (2006), The influence of emotion 

recognition and emotion regulation on intercultural adjustment, International 

Journal of Intercultural Relations, 30(3), p. 345–363. 

Yu, L. & Liu, H. (2003), Feature Selection for High-Dimensional Data: A Fast 

Correlation-Based Filter Solution, 20th International conferance of Machine 

Learning, pp. 856-863. 

Zhang , S. & Zhao , X. (2013), Dimensionality reduction-based spoken emotion 

recognition, Multimedia Tools and Applications, April, 63(3), pp. 615-646. 

Zhang, Z. & Schuller , B. (2014), Autoencoder-based Unsupervised Domain 

Adaptation for Speech Emotion Recognition, IEEE Signal Processing Letter, 

21(19), pp. 1068-1072. 



136 

 

Zheng, N., Lee, T. & Ching, P. C. (2007), Integration of Complementary 

Acoustic Features for Speaker Recognition, Signal Processing Letters, IEEE, 

14(3), pp. 181-184. 

 

 


	Abstract
	Acknowledgement
	Contents
	List of Abbreviation
	List of Figures
	List of Tables
	1. Chapter One Introduction
	1.1 Speech based emotion recognition applications
	1.2 Challenges of SER
	1.3 SER as a pattern recognition task
	1.4 Contributions of this thesis
	1.5 List of publications
	1.6 Thesis Organization

	2. Chapter Two  Emotion and speech signal features
	2.1 How psychologists view human emotion?
	2.1.1 Emotion categories and dimensions
	2.1.1.1 Dimensional categorization
	2.1.1.2 Uni-dimensional Model
	2.1.1.3 Multidimensional Model

	2.1.2 Discrete emotion model

	2.2 Emotional Speech Data Collection
	2.2.1 Historical review of emotional databases
	2.2.2 Shortcoming of emotional databases
	2.2.3 Cultural influence on emotion

	2.3 Acoustic Feature extraction for SER
	2.3.1  Prosodic features
	2.3.1.1 Pitch and fundamental frequency
	2.3.1.2 Energy and zero crossing based features
	2.3.1.3 Duration and Pauses features

	2.3.2 Spectral Features
	2.3.2.1 Formants
	2.3.2.2 Fourier transform based feature
	2.3.2.3 Mel Frequency Cepstrum coefficients (MFCC)

	2.3.3 Voice quality features
	2.3.4 Linear Predicted analysis

	2.4 Emotion relevant speech features
	2.5 Summary

	3. Chapter Three Feature Pre-processing and Classification
	3.1 Pre-processing methods
	3.1.1 Feature selection
	3.1.2 Meta-feature selection
	3.1.2.1 Principal Component Analysis (PCA)
	3.1.2.2 Linear Discriminant Analysis (LDA)
	3.1.2.3 Random Projection (RP)
	3.1.2.4 Compressive sensing (CS)
	3.1.2.5 Restricted Isometric Property (RIP)
	3.1.2.6 Examples of RP matrices


	3.2 Classification and validation
	3.2.1.1 The Support Vector Machine (SVM)
	3.2.2 Linear Discriminant Classifier (LDC)
	3.2.3 Artificial Neural Network (ANN)
	3.2.4 Ensembles
	3.2.5 Validation Protocols

	3.3 Related works on feature Pre-processing in SER
	3.4 Related Works to emotion classification
	3.5 Summary

	4. Chapter Four  Excitation source features for SER
	4.1 Introduction
	4.2 LP-residual signal proposed features
	4.3 Low Level Descriptors LLDs
	4.4 The Speech Emotion Recognition (SER) model
	4.4.1 Multi-class SVM and ANN Models
	4.4.2 A Fusion model

	4.5 Experimental Work
	4.5.1 The experimental Datasets and related challenges
	4.5.1.1 Datasets
	4.5.1.2 Unbalanced number of samples to classes
	4.5.1.3 Speaker Normalization (SN)

	4.5.2 Results and discussion
	4.5.3 Comparison with state of the art studies

	4.6 Conclusion

	5. Chapter Five  Features and Meta-Features selection for SER
	5.1  Introduction
	5.2 Feature selection using doubly regularized SVM (DrSVM)
	5.2.1 The DrSMV classifier
	5.2.2 Experimental Results and discussion

	5.3 Principal Component Analysis (PCA)
	5.3.1 PCA limitation when number of samples is small
	5.3.2 Data Independent PCA (DIPCA)
	5.3.3 Random projection (RP)
	5.3.4 RP and DIPCA space adaptation
	5.3.5 RP and Kernel Functions

	5.4 SER using meta-feature selection.
	5.4.1 Result and discussion
	5.4.2 Comparison to state of the art studies

	5.5 Conclusion

	6. Chapter Six Classifications and Ensembles for SER
	6.1  SVM drawbacks
	6.2  The Linear Discriminant Analysis (LDA)
	6.3 SER using LDC Classifier
	6.3.1 Results and discussion

	6.4  Ensemble classification
	6.4.1  Result and Discussion
	6.4.2 Multilevel SER system

	6.5 Towards emotional content browsing in speech
	6.6 Conclusion

	7. Chapter Seven Conclusion
	Bibliography

